
Starbucks, Ex. 1081
Starbucks v. Ameranth, CBM2015-00091

Designed forflflr"‘4

1?»wt-..fl 0

iiicrosort~ Microsoft” Programming SeriesWindows NT”
Windows'95

@ .

Micr oft” Inslde

.2" :‘~.hL.. _.:» 3 I

6.5

The Deve|oper’s

Guideto Design,

Architecture, and

.1

Implementation

from a Leading

Microsoft Expert

Ron Soukup
Foreword by Jim Gray,
Head of the Microsoft

San Francisco Research Lab

Starbucks, 1081

arbucks ‘V. Ameranth, CBM2015-00091

Starbucks, Ex. 1081
Starbucks v. Ameranth, CBM2015-00091

Microsoft®

SQL
Server" 6.5

Ron Soukup

Starbucks, Ex. 1081
- D 1 I I I O

Microsoft Press

Starbucks, Ex. 1081
Starbucks v. Ameranth, CBM2015-00091

PUBLISHED BY
Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

AH rights ‘reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Soukup, Ron.

Inside Microsoft SQL Server 6.5 / Ron Soukup.
p. cm.

Includes index.

ISBN 1-57231-331-5

1. Database management. 2. SQL Server. 1. Title.
QA76.9.D3S66 1997
005.75'85-—dc21 97-37611

CIP

Printed and bound in the United States of America.

123456789 MLML 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact

Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Intel is a registered trademark of Intel

Corporation. BackOffice, FoxPro, Microsoft, Microsoft Press, MS-DOS, TransAccess, Visual Basic,
' Visual C++, Windows, Windows NT, and Win32 are registered trademarks and ActiveX, Visual J++,
Visual SourceSafe, and Visual Studio are trademarks of Microsoft Corporation. Java is a trademark of

Sun Microsystems, Inc. Other product and company names mentioned herein may be the trademarks
of their respective owners.

Acquisitions Editor: David Clark
Project Editor: Lisa Theobald
Technical Editor: John Conrow

Starbucks, Ex. 1081

Starbucks V. Ameranth, CBM201 5-00091

To Kay, Kelly, andJamie,

foryour love and support during

the years ofship crunch.

And

To the SQL Server Development Team.

Worleing with you has been the greatest

privilege of my career.

 CONTENTS
Foreword xi

Preface xiii

n The Evolution of Microsoft SQL Server: 1989 to 1996 3
The Competitive Background That Spawned Microsoft SQL Sewer 3

The Early Days with the NDK 6

Microsoft SQL Server Ships 7

Development Roles Evolve 9

OS/2 and ”Frienclly Fire” T 1
Version 4.2 T2

OS/2 2.0 Release on Hold 13

SQL Server For Windows NT 14

Success Brings Fundamental Change T9

The End of Joint Development 21

The Charge to SQL95 23

The Next Version 26

E A Tour of Microsoft SQL Server 27
Introduction 27

The SQL Sewer Engine 28

DBMS-Entorcecl Data Integrity 33

Transaction Processing 37

Symmetric Server Architecture 39

Security 42

High Availability 43

USING MICROSOFT SQL SERVER

Distributed Data Processing 44
Data Replication 45
Systems Management 47
SQL Sewer UtiIities and Extensions 53
DeveIopment Intertaces 58
SUMMARY 60

a SQL Server Architecture 63
Overview; 63
The SQL Server Engine 63
Large Memory Issues .. r. 93
Transaction Logging and Recovery 96
The SQL Server Kernel and Interaction with Windows NT I00
SUMMARY I I0

a Planning for and Installing SQL Server 113
Setup Is Easy, but Think First I I3
SQL Server vs. SQL Workstation I I3
Choosing Hardware II4
Hardware GuideIines I I8
The Operating System I4I
The FiIe System I42
Security and User Context I43
Licensing Choices I44
Network ProtocoI Choices I49
Character Set and Sort Order Issues I53
Running Setup I62
Basic Contiguration Atter Setup I63
Unattended and Remote Setup I66
SUMMARY I7I

Contents

B Databases and Devices 173
What Is a Database? 173

Database Devices 174

Creating Databases 180

Maximum Database Size and Database Fragments 184

Expanding and Shrinking Databases 184

Databases ”Under the Covers” 185

Database Options 187

Changing Database Options 189

Other Database Considerations 191

SUMMARY 194

H Tables 195
Introduction 195

Creating Tables 196

Internal Storage—The Details 207

Indexes 218

User-Detined Datatypes 224

Identity Property 227
Constraints 231

Temporary Tables 265
SUMMARY 267

B Querying Data 269
Introduction 269

The SELECT Statement 269

Joins 272

Dealing with NULL 288

Subqueries 298
Views and Derived Tables 31 1

Other Search Expressions 315
SUMMARY .. 347

vii

viii

U$|NG MICROSOFT SQL SERVER

Modifying Data 349
Introduction 349
Basic Moditication Operations 349
Internal and Periormance Considerations 376
SUMMARY 398

E Programming with Transact-SQL 399
Introduction 399
Transact-SQL as a Programming Language 400
Transact-SQL Programming Constructs—The Basics 403
SUMMARY s 448

Batches, Transactions, Stored Procedures, and Triggers 449
Introduction 449
Batches 449
Transactions 451
Stored Procedures 466

Executing Batches, or What's Stored About a Stored Procedure? 479
Triggers 500
Debugging Stored Procedures and Triggers 504
Working with Text and Image Data 508
Environmental Concerns 521
SUMMARY 527

m Cursors 529
Introduction 529
Cursor Basics 530

Important! Cursors and lSAMs 532
Cursor Models 537

Appropriate Use oi Cursors 542
Transact-SQL Cursor Syntax and Behavior 552
SUMMARY 570

m Transact-SQL Examples and Brainteasers571
Introduction 571

Using Triggers to impiement Reterentiai Actions 571

Contents

Brainteasers 578

SUMMARY 637

[E] Locking 639
Introduction 639

The Lock Manager 639

Lock Types tor User Data 645

Viewing Locks 647

Lock Compatibility 647

Lock EscaIation 654

Lock Hints and AppIication Issues 655
SUMMARY 655

m Design and Query Performance Implications 659
Introduction 659

Pertormance Guidelines 660

Develop Expertise on Your DeveIopment Team 660

Entorce SoIid AppIication and Database Design 662

State Pertormance Requirements For Peak Usage 667

Consider Perceived Response Time tor Interactive Systems 668

Prototype, Benchmark, and Test Throughout Development 670
Create Useful Indexes 674

Choose Appropriate Hardware 679

Use Cursors Judiciously 680

Use Stored Procedures AImost AIways 680

Minimize Network Round-Trips 681

Understand Concurrency and Consistency Trade-Otts 682

Analyze and ResoIve Locking (Blocking) Problems 683

AnaIyze and ResoIve DeadIock Problems 685

Consider Segregating OLTP and D55 AppIications 704

Monitor and Tune Queries 704

Monitor Query Pertormance 724

SUMMARY 738

ix

USING MICROSOFT SQL SERVER

E Configuration and Monitoring for Performance 739
Introduction 739

Review and Adjust Windows NT Configuration Settings 740

Review and Adjust SQL Server Configuration Settings 742

Maintain the System 766
Monitor System Performance 767
SUMMARY 773

Appendix: SQL Server Bui/f-In Global Variables 777

Bibliography 78 I

Suggested Reading 783
Index 787

A Tour of

Microsoft SQL Server
Introduction

Microsoft SQL Server is a high—performance, client/server relational database
management system (RDBMS). It was designed to support high—vo1ume trans-
action processing (such as that for online order entry, inventory, accounting, or
manufacturing) as well as data warehousing and decision-support applications
(such as sales analysis applications) on Microsoft Windows NT Server—based net-

. works. SQL Server is fully operational on all hardware architectures supported
by Windows NT, including Intel, DEC Alpha AXP, MIPS R4000, and Motorola
PowerPC-based systems. For all these hardware platforms, SQL Server versions
are built simultaneously from the same source code baseline, and all versions ship
together on the same CD—ROM. SQL Server also provides many client tools and
networking interfaces for the Microsoft Windows 95, Windows 3.1, and MS—DOS
operating systems. And because of SQL Server’s open architecture, other systems
(for example, UNIX—based systems) can interoperate with it as well.

SQL Server is part of the core of a family of integrated products, including de-
velopment tools, systems management tools, distributed system components, and
open development interfaces, as shown in Figure 2-1 on the following page. It
is also a key part of Microsoft BackOffice.

This book focuses on the capabilities and uses of the SQL Server engine; this
chapter provides an overview of the entire SQL Server family of components and
describes the features and benefits of each component. Understanding these

features and benefits will prove helpful to you as you develop applications.

27

PART 1 OVERVIEW

Third-party tools Microsoft Visual Studio Microsoft Office

PowerBuilder Microsoft Visual Basic Microsoft Word

Borland Delphi Microsoft Visual C++ Microsoft Excel
Oracle Power Objects Microsoft Visual |nterDev Microsoft Access
Microfocus COBOL Microsoft Visual J‘''’’ Microsoft Query

Microsoft Visual FoxPro

------------- -- Open Interfaces ...-...------.

DAO with ODBCDirect| OLE DB ODBC Provider SOL-DMO | EmbeddedRDO SOL for C
ADO

DB-Library

Ufilifies :-- Server Programming - -,
ISOL/w : I

SOL Enterprise SQL Web A$5l5l0“l ' Extended Extended
Manager SOL Trace stored stored

SOL Performance Monitor Procedure-9 P"°°ed”"e5
SOL Mail I
SOL SNMP '

SOL Security Manager

Open Data Services

 SOL Executive I
Internet Information Server
Microsoft Commercial
Internet System

Windows Microsoft Systems Microsoft
Exchange Management Transaction
Server Server Server

Figure 2-1. SQL Server and itsfozmily of integrated components.

The SQL Server Engine
The Microsoft SQL Server engine is designed to support a variety of demanding
applications, such as online transaction processing (OLTP) and decision—support
applications. At the core of its decision—support capabilities is Transact—SQL,
Microsoft’s Version of Structured Query Language. Beneath this query language

are the components that support transaction processing and recoverability.

1 AT¢wn!Hi4:rusui5I5iL5a:'vur

Transact-SQL

Industrywide, SQL is a well-known and widely used data access tool. Every

mainstream database management system (DBMS) product implements SQL in

some way. Transact—SQL (often referred to as “T—SQL”) is a powerful and unique

superset of the SQL standard.

The SQL SELECT statement provides tremendous power and flexibility for retrieving

information. Data from multiple tables can be easily projected and the results

returned in tabular format with information chosen and correctly combined from

the multiple tables. Check out the following two tables from the pubs sample

database. (The pubs database, used for many examples in this book, is installed

when Microsoft SQL Server is installed. For brevity, an abbreviated amount of
the data will sometimes be used, as is true in this example.)

publishers Table

pub_7'd pub_name city state
0736 New Moon Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA

titles Table

title_id title pub_id
BU1032 The Busy Executive's Database Guide 1389

BU1111 Cooking with Computers: Surreptitious 1389
Balance Sheets

BU2075 You Can Combat Computer Stress! 0736
BU7832 Straight Talk About Computers 1389
MC2222 Silicon Valley Gastronomic Treats @877
MC3021 The Gourmet Microwave @877

MC3026 The Psychology of Computer Cooking @877

The following simple SELECT statement logically joins the titles and publishers

tables to project the names of the book titles with the names of the companies
publishing each title.

SELECT title. pub_name, city, state
FROM titles, publishers
WHERE titles.pub_id = publ1'shers.pub_id

PART 1 OVERVIEW

Here’s the result:

title pub_name city state

The Busy Executive's Database Aigodata Infosystems Berkeley CA
Guide

Cooking with Computers: Algodata Infosystems Berkeley CA
Surreptitious Balance Sheets

You Can Combat Computer Stess! New Moon Books Boston MA
Straight Talk About Computers Algodata Infosystems BerkeIey CA
Silicon Valley Gastronomic Binnet & Hardley Washington DC
Treats

The Gourmet Microwave Binnet & Hardley Washington DC

The Psychology of Computer Binnet & Hardley Washington DC
Cooking

This query, a simple SQL statement, shows that standard SQL provides a power-
ful way to query and manipulate data. (In Chapters 7 and 10, well explore SQL

queries in much greater depth.)

The National Institute of Standards and Technology (NIST) has certified Microsoft

SQL Server version 6.5 as compliant with the American National Standards Insti-
tute (ANSI) SQL—92 standard. However, considerably more power is available in

Transact—SQL because of its unique extensions to the standard.

Standards and Testing

Although the ANSI standard is commonly referred to as “SQL—92,” the official
standard is ANSI X3.135~1992 and is entitled “American National Standards In-

stitute Database Language—SQL.” “X3H2” is the designator for the ANSI SQL
committee. NIST, a division of the United States Department of Commerce, con-

ducts a suite of tests (which vendors pay the costs of running) to certify com-

pliance with the standard. You can find a summary of products currently certified
as compliant at H : s eck|e.ncsl.nist. 0v 5 I-testin VPLs.

Transact-SQL extensions

Transact—SQL provides a number of capabilities that extend beyond typical imple-
mentations of SQL. Queries that are difficult to write in standard SQL can be easily

and efficiently written using these capabilities. Some of my favorites include the
ability to embed additional SELECT statements in the SELECT list and the ability
to drill into a result set by further selecting data directly from a SELECT statement,

30

2 A Tour of Microsoft SQL Server

a feature known as a derived table. Transact-SQL provides many system func-

tions for dealing with strings (for finding substrings and so on), for converting

datatypes, and for manipulating and formatting date information. Transact—SQL
also provides mathematical operations such as square root. In addition, special

operators, such as CUBE and ROLLUP, allow multidimensional analysis to be
efficiently projected at the database server, where the analysis can be optimized

as part of the execution plan of a query. The CASE operator allows for complex
conditional substitutions to be made easily in the SELECT statement. Multidimen-

sional (sometimes referred to as OLAP, or online analytic processing) operators,

such as CUBE, and conditional operators, such as CASE, are especially useful in

implementing data warehousing solutions with SQL Server.

The query optimizer
In Transact-SQL, a cost-based query optimizer determines the likely best way to

access data. This allows you to concentrate on defining your query criteria rather

than defining how the query should be executed. For example, this nonprocedural

approach eliminates the need for you to know which indexes exist and which,
if any, should be used. Would it be more efficient to incur additional 1/05 to read
index pages in addition to data pages, or would it be better just to scan the data
and then sort it? The optimizer automatically, invisibly, and efficiently resolves

these types of important questions for you.

The SQL Server optimizer maintains statistics about the volume and dispersion
of data, which it then uses to estimate the plan most likely to work best for the

operation requested. Because a cost-based optimizer is by definition probability-
based, an application might want to override the optimizer in some specialized
cases. In your application, you can specify optimizer hints that will direct the
execution plan chosen. In addition, you can use SQL Server’s SHOWPLAN fea-
ture, which explains the execution plan chosen, provides insight into why it was
chosen, and even allows for tuning of the application and database design.

The programmable server
Transact—SQL provides programming constructs—such as variables, conditional
operations (IF—THEN-ELSE), and looping—that can dramatically simplify ap-

plication development by allowing you to use a simple SQL script rather than a

third—generation programming language (5GL). These branching and looping con-
structs can dramatically improve performance in a client/server environment by
eliminating the need for network conversations. Minimizing network latency is

a key aspect of maximizing client/server application performance. For example,

instead of returning a value to the calling application, which requires that the
application evaluate and subsequently issue another request, you can build con-

ditional logic directly into the SQL batch file so that the routine is completely
evaluated and executed at the server.

31

PART 1

3}!

OVERVIEW

You can use Transact-SQL to write complex batches of SQL statements. (A batch
of SQL statements in a complex application can be up to several hundred lines
long.) An important new capability of SQL Server 6.5 is the SQL Debugging
Interface (SDI), which allows debuggers such as those available with Microsoft
Visual Studio 97 to fully debug Transact-SQL routines, including stepping through
the statements, setting breakpoints, and setting watchpoints on Transact-SQL
variables.

Stored procedures
Simply put, storedprocedures are collections of SQL statements stored within a
SQL Server database. You can code complex queries and transactions into stored
procedures and then invoke them directly from the front—end application. When-
ever a dynamic SQL command is sent to a database server for processing, the
server must parse the command, check its syntax for sense, determine whether
the requester has the permissions necessary to execute the command, and for-
mulate an optimal execution plan to process the request. Stored procedures
execute faster than dynamic SQL batches, sometimes dramatically faster, because

they eliminate the need for reparsing and reoptimizing the requests each time
they are executed. SQL Server supports stored procedures that let developers store
groups of compiled SQL statements on the server for later recall, to limit the over-
head when the procedures are subsequently executed.

Stored procedures differ from ordinary SQL statements and from batches of SQL
statements in that they’re checked for syntax and compiled thefirst time they are
executed. SQL Server stores this compiled version and then uses it to process

subsequent calls, resulting in faster execution times. Stored procedures can also
accept parameters, so a single procedure can be used by multiple applications
using different input data.

Even if stored procedures provided no performance advantage (which, of course,
they do), there would still be a compelling reason to use them: they provide an
important layer of insulation from changes in business practices. Suppose, for
example, that an application is used to maintain a mailing list for a retailer’s
catalog distribution. Subsequent to the application being deployed, a change in
criteria and logic (that is, the business rules) occurs, thus affecting which cus-
tomers should automatically receive new catalogs. If the business rules had been

programmed directly into the company’s applications, every application would
need to be modified, likely an expensive and time-consuming operation. Fur-

thermore, if multiple developers worked on the applications, the rules might not
have been programmed with the exact same semantics by every programmer.
A stored procedure, on the other hand, could be modified once, in seconds, at
the server. The applications would not need to be changed or even restarted. The
next time each application executed the stored procedure, the new rules would
be in place automatically.

In addition to providing a performance advantage, stored procedures can pro-
vide an important security function. By granting users access to a stored proce-
dure but not to the underlying tables, you can allow them to access or manipulate
data only in the way prescribed by the stored procedure.

Extended stored procedures
A unique capability of Microsoft SQL Server, extended storedprocedures allow
developers to extend the programming capabilities provided by Transact-SQL
and to access resources outside of SQL Server. Messaging integration, security

integration, the ability to write HTML (Hypertext Markup Language) files (files
formatted for use on the Internet), and much of the power of SQL Enterprise Man-

ager are all implemented using extended stored procedures. You can create ex-
tended stored procedures as external dynamic link libraries (DLLs). (DLLs are
typically written in C and C++, although implementation in other languages is
also possible.)

For example, you could write a DLL to establish a modem connection, dial the
ACME Credit Service, and return a status indicating credit approval or rejection.

(The C language more readily lends itself to particular tasks because of such
language constructs as arrays, structures, and pointers.) For example, writing a
financial function that uses recursion in-C (for example, the internal rate of re-

turn, or IRR) might be more efficient that writing it as a Transact—SQL stored
procedure. Open Data Services (ODS) is an application programming interface
that lets you build extended stored procedures that can return self-describing
result sets to the calling client applications, just as a “normal” procedure would.

Extended stored procedures allow even Microsoft to extend SQL Server. Good
engineering practices dictate that where code does not benefit from being shared
or is not in common, it should be segregated and isolated. With this principle in
mind, Microsoft added integration with messaging via MAPI as a set of extended
stored procedures (xp_sendmail, xp_readmail, and so on) instead of directly
modifying the SQL Server engine. Extended stored procedures allow us to add
powerful features without any chance of disrupting the core server engine so that
more features can be added quickly, with less risk of destabilizing the server. And
because the code is loaded dynamically, the DLL is loaded only if a routine is
implemented as an extended stored procedure, so the memory footprint of SQL
Server does not grow for services that aren’t being used.

DBMS-Enforced Data Integrity
A database is only as useful as the user’s confidence in it. That's why the server

must enforce data integrity rules and business policies. SQL Server enforces data
integrity within the database itself, guaranteeing that complex business policies
will be followed and that mandatory relationships between data elements are
complied with.

33

PART l OVERVIEW

Because SQL Server’s client/server architecture allows you to use a variety of
front-end applications to manipulate and present the same data from the server,
it would be cumbersome to encode all the necessary integrity constraints, secu-

rity permissions, and business rules into each application. If business policies were
all coded in the front—end applications, every application would need to be modi-
fied every time a business policy changed. Even if you attempted to encode
business rules into every client application, the danger of an application misbe-
having still exists. Most applications cannot be fully trusted. Only the server can
act as the final arbiter, and the server must not provide a back door for a poorly
written or malicious application to subvert its integrity.

SQL Server uses advanced data integrity features, such as declarative referential
integrity (DRI), datatypes, defaults, constraints, rules, stored procedures, and
triggers, to enforce data integrity. Each of these features has its own use within
a database; combining these integrity features can make your database flexible
and easy to manage, yet secure.

Declarative Referential Integrity
A central tenet of relational database theory is that every tuple of every relation

(more colloquially, every row of every table) can be uniquely identified. The
attribute or combination of attributes (the column or combination of columns)

that ensures uniqueness is known as theprimary key. A table can have only one
primary key. SQL Server allows you, when defining a table, to designate the
column(s) that make up the primary key. This is known as a PRIMARY KEY
constraint. SQL Server uses this PRIMARY KEY constraint to guarantee that the
uniqueness of the designated column(s) is never violated.

Sometimes multiple columns of a table can uniquely identify a row—for ex-
ample, an employee table might have an employee ID (emp_z'd) and a social se-
curity number (soc_sec_num) column, and both are considered unique. Such
columns are often referred to as alternate or candidate leeys. These keys must

also be unique. Although a table can have only one primary key, it can have
multiple alternate keys. SQL Server supports the multiple alternate key concept via
UNIQUE constraints. When a column or combination of columns is declared
unique, SQL Server prevents any record being added or updated that would vio-
late this uniqueness.

Assigning an arbitrary unique number as the primary key when no natural or
convenient key exists is often most efficient. For example, businesses commonly
use customer numbers or account numbers as unique identifiers or primary keys.

SQL Server makes it easy to efficiently generate unique numbers by allowing one
column in a table to have the Identityproperty. You use the Identity property
to make sure that each value in the column is unique and that the values will

3 A Tour of Microsoft SQL Sawur

increment (or decrement) by the amount you specify from a starting point that

you specify. (A column having the Identity property will typically also have a
PRIMARY KEY or UNIQUE constraint, but this is not required.) '

SQL Server enforces logical relationships between tables with FOREIGN KEY
constraints. Aforeign leey in a table is a column or combination of columns that
match-the primary key (or possibly an alternate key) of another table. The logi-
cal relationship between those two tables is the basis of the relational model.

For example, the simple SELECT example shown earlier in this chapter includes
a titles table and a publishers table. The titles table column title_id (title ID) is its
primary key. The publishers table column pub_id (publisher ID) is its primary
key. The titles table also includes a pub_id column, which is not the primary key
because a publisher can publish multiple titles. Instead, pub_id is a foreign key,
and it references the primary key of the publishers table. After this relationship
is declared when the table is defined, SQL Server ensures that a title cannot be

entered unless a valid publisher for it is in the database and that a publisher cannot
be deleted if any titles in the database reference that publisher.

To further enforce data integrity, SQL Server makes sure that any data entered
matches the type and range of the specified data type and, for example, allows
a NULL value to be entered only if the column has been declared as allowing
NULLs. SQL Server supports a wide range of datatypes, allowing for great flex-
ibility with efficient storage.

Datatypes
SQL Server datatypes provide the simplest form of data integrity by restricting
the types of information (for example, characters, numbers, or dates) that can
be stored in the columns of the database tables. You can also design your own

datatypes (user-dfined datatypes) to supplement those supplied by the system.
For example, you could define a state_code datatype as two characters (CHAR(2));
SQL Server would then accept only two—character state codes. A user-defined
datatype can be used to define columns in any table. An advantage of user-
defined datatypes is that rules and defaults, which are discussed in the next two
sections, can be bound to them for use in multiple tables, eliminating the need
to include these types of checks in the front-end application.

CHECK Constraints) and Rules

CHECK constraints and rules are integrity constraints that go beyond those

implied by a column’s datatype. Whenever a user enters a value, SQL Server
checks that value against any CHECK constraint or rule created for the specified
column to ensure that only values that adhere to the definition of the constraint
or rule are accepted. Although CHECK constraints and rules are essentially
equivalent in functionality, CHECK constraints are easier to use and provide more

35

PART 1 OVERVIEW

flexibility. A CHECK constraint can be conveniently defined when a column is
defined, and constraints can be defined on multiple columns. Rules, however,

must be defined and then bound to a column or user-defined datatype separately.

While a column or user-defined datatype can have only one rule associated with

it, a CHECK constraint can reference multiple columns in the same table or it can

reference one of the built—in functions that SQL Server provides.

Both CHECK constraints and rules can require that a value fall within a particu-

lar range, match a particular pattern, or match one of the entries in a specified
list. An advantage of CHECK constraints is that they can depend on either the
value of another field or fields in the row or on the value returned by one of the

system-supplied functions. A rule cannot reference other fields. As an example

of applying a CHECK constraint or rule, a database containing information on
senior citizens could have the CHECK constraint orlrule “agefield must contain
a value between 65 and 120years. ”A birth certificate database could require that

the date in the bz'n‘b_a'ate field be the current date——checking the value returned

by SQL Server’s built—in GETDATE()function—or that it be some date prior to
the current date.

Defaults

Defaults allow you to specify a value that SQL Server inserts if no explicit value

is entered in a particular field. For example, you could set the current date as
the default value for an order_date field in a customer order record. Then, if a

user or front-end application doesn’t make an entry in the order_date field, SQL

Server automatically inserts the current date. You can also use the keyword

DEFAULT as a placeholder in an INSERT or UPDATE statement, instructing SQL
Server to set the value to the declared default value.

Triggers
Triggers are a special type of stored procedure. Stored procedures can be executed

only when explicitly called; triggers are automatically invoked, or “triggered,” by

SQL Server, and this is their main advantage. Triggers are associated with par-

ticular pieces of data and are called automatically whenever an attempt to modify

that data is made, no matter what causes the modification (a user’s entry or an

application action).

Conceptually, triggers are similar to a CHECK constraint or rule. SQL Server

automatically activates triggers, constraints, and rules whenever an attempt is

made to modify the data they protect. CHECK constraints and rules then per-

form fairly simple types of checks on the data—for example, “make sure the age

field has a value between 0 and 120. ” Triggers, on the other hand, can perform

extremely elaborate restrictions on the data, which helps to ensure that the rules

by which your business operates cannot be subverted. Because triggers are a form

of stored procedure, they have the full power of the Transact—SQI. language at
their disposal and they can invoke other stored and extended stored procedures.
You can write a trigger that enforces complex business rules, such as this:

Don’t accept an order
If the customer has any past due accounts with us

OR

If the customer has a bad credit rating by ACME Credit Service (with

the trigger calling an extended procedure that automatically dials up
ACME to get the credit rating)

OR

If the order is for more than $50,000 and the customer has had an
account with us for less than six months

This is a powerful integrity check. Yet the trigger to enforce it is simple to write.

Triggers can also enforce referential integrity, ensuring that relationships between
tables are maintained. For example, a trigger can prohibit a customer record from
being deleted if open orders exist for the customer or it can prohibit any new
order for a customer for which no record exists. Triggers can go beyond simply
insisting that relationships exist: they can perform referential actions. This means
that triggers can cause changes to ripple through to other tables. For example,
if you want to drop a delinquent customer from your system and delete all of
that customer’s active orders, a trigger on the customer table could automatically
delete all entries in the orders table.

Triggers automatically execute whenever a specified change to a data object is
attempted. A trigger executes once per statement, even if multiple rows are af-
fected. It has access to the before and after images of the data. (These before

and after images are reconstructed from the transaction log into pseudo tables
that can be accessed from within the trigger.) The trigger can then take further

action, including rolling back the transaction. Although you can use triggers to
enforce referential integrity, it is usually more convenient to establish these rela-
tionships when you create the tables by using declarative ‘referential integrity.

Transaction Processing

Transaction processing guarantees the consistency and recoverability of SQL
Server databases. A transaction is the basic unit of work under SQL Server. Typi-

cally, it consists of several SQL commands that read and update the database,
but the update is executed only when a COMMIT command is issued. (Note that
the example below is pseudocode and that error handling is required to achieve
the behavior described.)

Transaction processing in SQL Server assures that all transactions are performed
as a single unit of work——even in the presence of a hardware or general system

37

PART l OVERVIEW

failure. Such transactions are referred to as having the ACIDproperties: atomic-
ity, consistency, isolation, and durability. In addition to the explicit multistatement

transactions such as those provided in the DEBIT_CREDITexample below, SQL
' Server guarantees that a single command that affects multiple rows maintains the
ACID properties.

Here is an example in pseudocode of an ACID transaction, followed by an ex-
planation of each of the ACID properties.

BEGIN TRANSACTION DEBIT_CREDIT

Debit Savings account $1000

Credit Checking account $1000
COMMIT TRANSACTION DEBIT_CREDIT

Atomiciiy

SQL Server guarantees the atomicity of its transactions. With atomicity, each trans-
action is treated as a1l—or-nothing—it either commits or aborts. If a transaction

commits, all of its effects remain. If it aborts, all of its effects are undone. In the

DEB]T__CREDIT example above, if the savings account debit is reflected in the

database but the checking account credit is not, funds will essentially disappear
from the database; that is, funds will be debited from the savings account but
never credited to the checking account. If the reverse occurred (if the checking
account were credited and the savings account were not debited), the customer’s
account would mysteriously increase in value without a corresponding customer
cash deposit or account transfer. Because of SQL Server’s atomicity feature, both
the debit and credit must be completed or neither event is completed.

Consistency

The consistency property ensures that a transaction will not allow the system to
enter an incorrect logical state—the data must always be logically correct. Con-
straints and rules are honored, even in the event of a system failure. For the
DEBIT_CREDIT example, the logical rule is that money cannot be created or
destroyed—a corresponding, counter-balancing entry must be made for each
entry. (Consistency is implied by, and for most situations is redundant to, atom-
icity, isolation, and durability.)

Isolation

Isolation separates concurrent transactions from the updates of other incom-
plete transactions. In the DEBIT_CREDIT example, another transaction cannot
see the “work in progress” while the transaction is being carried out. For ex-
ample, if another transaction read the balance of the savings account after the
debit occurred, and then the DEBIT_CREDITtransaction was aborted, the other

transaction would be working from a balance that never logically existed.

2 A Tour on! Micrata-it SQL Server

Isolation among transactions is accomplished automatically by SQL Server. It locks
data to allow multiple concurrent users to work with data, but it prevents side
effects that could distort the results and make them different than would be

expected if users serialized their requests (that is, if requests were queued and
ran one at a time). This serializabiliw feature is one of the isolation levels that
SQL Server supports. SQL Server supports multiple degrees of isolation levels that
allow you to make the appropriate trade—off between how much data to lock and
how long locks must be held. This trade—off is known as concurrency versus
consistency. Locking reduces concurrency (because locked data is unavailable
to other users), but it provides the benefit of higher consistency. (I’ll discuss
locking in greater detail in Chapter 13.)

Durability
After a transaction commits, SQL Server’s durability property ensures that its
effects will persist even if a system failure occurs. Conversely, if a system failure
occurs while a transaction is in progress, the transaction will be completely
undone, leaving no partial effects on the data. For example, if a power outage
occurs in the midst of a transaction before the transaction is committed, the
entire transaction will be automatically rolled back when the system is restarted.
If the power fails immediately after the acknowledgment of the commit is sent
to the calling application, the transaction is guaranteed to exist in the database.
Write—ahead logging and automatic rollback and rollforward of transactions dur-

A ing the recovery phase of starting SQL Server assure durability.

Symmetric Server Architecture
SQL Server uses a single-process, multithreaded architecture known as Symmetric
ServerArcbz'tecture that provides scalable high performance with efficient use of
system resources. With Symmetric Server Architecture, only one memory address
space is provided for the DBMS, eliminating the overhead of having to manage
shared memory.

Traditional Process/Thread Model
To understand and contrast the architecture of Microsoft SQL Server, it is "useful

for you to first understand the traditional architectures that have been used by
UNIX-based DBMS products. UNIX-based DBMS products are usually structured
in one of two ways. In the first way, multiple processes (or shadow processes)

are used, with one process per user, which makes the system quite resource
intensive. The second type of architecture employs a single process that tries to
simulate an operating system threading facility by moving in a round—robin way
among multiple requests, maintaining a stack for each request and switching to
that specific stack for whatever unit is being executed.

39

PART 1 OVERVIEW

 A stack is a LIFO (last-in, first-out) data structure kept in memory
that basically serves as the control block for the executable unit to
the operating system (a thread on Microsoft Windows NT, often
called a lightweight process on other operating systems). A stock
stores status data such as function call addresses, passed param-
eters, and some local variables.

In the first approach, because each process has its own address space, processes
must resort to shared memory to communicate with one another. Unfortunately,
shared memory is less efficient to use than the private memory of a process’s
own address space because of the weight of synchronization mechanisms (sema-
phores, mutexes, and so on) that are needed to avoid collisions while accessing
shared memory. In addition, the implementation of stack switching and efficient
access to shared memory adds overhead and complexity. Adding complexity to
a system is never good. The best way to avoid bugs in software and maximize
performance is to keep code simple and, better yet, to write no new code when
an existing tried—and-true service exists.

In the second approach—simulated multithreading—the DBMS performs duties
that should be performed by the operating system: at best, the DBMS can only
simulate operating system behavior and give the illusion of providing threads.
Typically, using such an architecture requires that the executing task be trusted
to “yield” back to the system so another task can be run. If the task does not
yield (because of software or hardware failure), all other tasks will be severely,
perhaps fatally, affected. Trust is not a good basis upon which to build a multiuser
system. Furthermore, if the schedulable unit in an operating system is the process,
an instance of even a process that round—robins multiple requests can at most
run only one request, no matter how many CPUs are available to service requests.
Hence, multiple processes must be executed so that multiple CPUs can be used,
with all the aforementioned drawbacks associated with multiple processes.

Microsoft SQL Server Process/Thread Model

A tbread (more formally called a thread ofexecution and sometimes referred to
as a ligbtweigbtprocess) is the executable unit on the Windows NT operating
system. Threads, not processes, are scheduled for execution by Windows NT.

Rather than move a single thread among all user tasks, SQL Server employs ‘a
pool of threads. On a single CPU machine, a process using multiple threads is
more efficient because even if one thread is not currently runnable (for example,
it is waiting for an 1/0 to complete), another thread may well be runnable and
will be executed. In a symmetric multiprocessor system, a process that has mul-
tiple threads (such as SQL Server) can use all the processors.

Windows NT provides symmetric multiprocessor support that allows execution
of threads in parallel on multiple CPUs. Thus, SQL Server’s process/thread
model allows multiple SQL Server user connections to execute in parallel on mul-
tiprocessor hardware. In addition, certain discrete tasks, such as scanning data,
can use multiple threads. For some tasks, a request by one user will run simul-
taneously across multiple CPUs. But more typically, a single user’s task will run
on one available CPU, another user’s task will run on some other CPU, and so

forth. (A more complete description of the Windows NT process and thread model
is beyond the scope of this book. For more information, I suggest you read In-
side Windows NT by Helen Custer [Microsoft Press, 1995].)

Because SQL Server uses native Windows NT threads, it automatically scales well
to multiprocessor hardware with no special configuration or programming re-
quired. In addition, a relatively small amount of memory (about 55 KB) is required
for each user connection. A large number of simultaneous users can be connected
without consuming a lot of memory on the server.

Each user thread is maintained separately, so if one thread causes an access vio-

lation, only that thread will be affected; other threads will continue to operate
unaffected. SQL Server’s process/thread model greatly exceeds the reliability of

typical UNIX-based database servers. A

Multiuser Performance

The efficiency of the SQL Server threading model is borne out by its multiuser
performance. SQL Server is able to efficiently handle hundreds, even thousands,
of simultaneous active users. Built—in thread pooling allows workloads of this

magnitude to be performed without the need for an external Transaction (TP)
Monitor, which adds cost and complexity to a system.

NOTE There can, of course, never be a simple answer to questions such as
”How many users can SQL Server handle?” or ”How big a database
can it handle?" The answers to these questions depend on the appli-
cation and its design, required response times and throughput, and
the hardware on which the system is running.

A majority of the systems that just a couple of years ago had required a mainframe
or large minicomputer-based solution can now be efficiently built, deployed, and
managed with SQL Server. Such industry-standard benchmarks as TPC-C can
be illuminating. Today’s SQL Server can perform workloads that surpass those
submitted by the largest mainframe systems of a few years ago. As computer
resources continue to grow, SQL Server will extend its reach into systems that
traditionally would have required a mainframe solution.

41

PART 1 OVERVIEW

Security

42

SQL Server provides numerous levels of security. At the outermost layer, SQL

Server logon security is integrated directly with Windows NT security. With this

integrated security in place, SQL Server can take advantage of the security fea-

tures of Windows NT, such as password encryption, password aging, and maxi-

mum length restrictions on passwords.

Without integrated security, the administrator creates user accounts in the net-

work/operating system and in SQL Server. A user logs on to the network and then

must log on again to SQL Server. With integrated security, SQL Security Manager

automatically copies Windows NT user accounts to SQL Server, providing an easy
one-step process to implement integrated security. The user accounts created in

Windows NT are automatically used to log a user on to SQL Server.

Integrated security relies on trusted connections, which makes use of the imper-

sonation feature of Windows NT. Through impersonation, SQL Server can take

on the security context of the Windows NT user account initiating the connec-

tion and test whether the Security Identifier (SID) has a valid privilege level.

Windows NT impersonation and trusted connections are available with both the

Named Pipes and Multi-Protocol network interfaces (Net-Libraries). Integrate_d

security can be used with all the most popular network protocols, including
TCP/IP, IPX/SPX, and NetBEUI.

For installations with a mix of named pipes and other clients (such as IPX/SPX

or TPC/IC sockets), SQL Server can be installed in a mixedsecurity model: named

pipe clients will use integrated security and other clients will use standard SQL

Server logon security. In addition, an application can request a trusted connec-

tion even if SQL Server has not been configured for integrated or mixed secu-

rity. (You can also choose to disallow trusted connections.)

The Multi-Protocol Net—Library also allows all communications and data between

the client application and the server to be optionally encrypted, which prevents

even someone using a hardware “sniffer” from eavesdropping on the data. This

is accomplished by using the Windows NT remote procedure call (RPC) services

to encrypt the network traffic. This encryption uses a 40-bit key for versions of

Windows NT Server sold outside of the United States and has an “RC4” designa-
tion by the U.S. National Bureau of Standards. The U.S. version of Windows NT

Server uses a 128-bit key for much stronger security; however, it is not export-
able due to U.S. government restrictions. Since SQL Server uses only the under-

lying services, the key length is transparent. ‘

Monitoring and Managing Security
SQL Server makes it easy to monitor logon successes and failures. Administra-

tors can simply check the appropriate box in the SQL Server Setup program.

When logon monitoring is enabled in this way, each time a user successfully or

1 A Tour of Mlcromfi SQL S-awe!’

unsuccessfully attempts to log on to SQL Server, a message is written to the
Windows NT event log indicating the time, date, and user who tried to log on.

SQL Server has a numberof facilities for managing data security. Access privi-
leges (select, insert, update, and delete) can be granted and revoked to users or
groups of users on objects such as tables and views. Execute privilege can be
granted on local and extended stored procedures. For example, to prevent a user
from directly updating a specific table, you can write a stored procedure that
updates the table and then cascades those updates to other tables as necessary.
You can grant the user access to execute the stored procedure, thereby ensur-
ing that all updates will take place through the stored procedure, eliminating the
possibility of integrity problems arising from ad hoc updates to the base table.

High Availability
In many mission—critica1 environments, it is imperative that the application be
available at all times—24 hours a day, seven days a week. SQL Server helps
availability by providing online backup, online maintenance, automatic recovery,
disk mirroring, and the ability to configure a fallback (or failover) server.

SQL Server’s dynamic online backup allows databases to be backed up while
users are actively querying and updating in the database. The SQL Executive
service provides a built-in scheduling engine that enables backups to be sched-
uled to occur automatically, without involving the administrator. Other mainte-
nance tasks, such as diagnostics, design changes (for example, adding a column
to a table), and integrity changes can be accomplished without having to shut
down SQL Server or restrict user access.

Only a few system—wide configuration changes, such as changing the amount of
memory configured for use, require that SQL Server be restarted. Although these
activities do not commonly occur in a well-planned and well-deployed produc-
tion system, they can typically be completed with less than a minute of system
downtime if and when they are necessary.

In the event of a system failure, such as a power outage, SQL Server ensures rapid
database recovery when services are restored. By using the transaction logs asso-
ciated with each database, SQL Server quickly recovers each database upon
startup, rolling back transactions that had not yet completed and rolling for-
ward transactions that had committed but were not yet written to disk. In addi-

tion, the SQL Executive service can be set to continually monitor the state of SQL
Server. If an error occurs that causes SQL Server to stop unexpectedly, SQL Ex-

ecutive will detect this and can automatically restart SQL Server with minimal
interruption.

In cooperation with shared-disk cluster hardware (such as the Compaq Online

R?F°VeYY Sewer), SQL Server 65 provides fallback (also known as failover) capa-
b111W~ You can designate a SQL Server standby server to back up the primary

43

PART 1 OVERVIEW

server. Should the primary server fail, the hardware support will signal the standby
machine. SQL Server on the standby server will then mount and recover the
databases of the primary server and take over its workload. The standby server
does not need to be inactive while the primary server is working—it can also

be functioning as a primary server. In fact, two primary servers can be config-
ured as standbys for each other as well as for other servers.

Support is built into DB—Library and the SQL Server ODBC driver so that the
primary—standby relationship is silently made known to the application when it
initially connects. Should the primary server unexpectedly become unavailable,
the application can automatically reconnect to the “hot backup” standby server
and resume work with no user intervention and minimal disruption.

Distributed Data Processing
SQL Server provides features such as transactional remote stored procedure calls
and two—phase commit for easily managing and using data in distributed envi-
ronments. Although even Microsoft SQL Server version 1.1 supported a two—phase
commit protocol, the new Microsoft Distributed Transaction Coordinator (MS
DTC) that ships as part of SQL Server 6.5 has made those capabilities obsolete.

MS DTC was designed to be the “vote collector” and coordinator of transactions,
and it allows many different types of systems to participate, laying the founda-
tion for ACID transactions among heterogeneous systems. A system participat-

ing in a transaction coordinated by MS DTC manages its own work and is called
a resource manager. This resource manager system communicates with MS DTC,
which coordinates all the resource managers participating in the transaction to

implement the two—phase commit protocol. Distributed transactions honoring the
ACID properties are supported as a whole: the entire distributed transaction at
all sites either commits or aborts.

SQL Server 6.5 is the first resource manager coordinated by MS DTC. However,
by providing an X/Open DTP XA—compliant interface, MS DTC, and hence SQL
Server, also interoperate with several transaction processing monitors, including
Encina, Topend, and Tuxedo. MS DTC implements the OLE (Object Linking and
Embedding) Transaction interfaces. Because all OLE Transaction interfaces are
public, any database system can become an OLE Transaction resource manager
and consequently participate in distributed transactions with SQL Server. In the
future, Microsoft and other software companies will add other transactional re-
source managers, such as transactional behaviors, to the file system and workflow
management systems. Transactional resource managers would, for example, al-
low a transaction with ACID properties to span Microsoft SQL Server, the Informix
RDBMS, and the NTFS file system. (I can even imagine smart hardware devices
participating in such transactions—such as a check—writing transaction in which

the transaction is complete only when and if the check is printed correctly.) So
far, both Informix and Sybase have also pledged support for MS DTC.

In the first phase of the two—phase commit protocol, all participating resource
managers (that is, those that have “enlisted” in the transaction) prepare to com-
mit. This means that they have acquired all the locks and resources they need
to complete the transaction. MS DTC then acts as a vote collector. If it gets con-
firmation that all participants are prepared to commit, it signals “go ahead. and
commit.”

The actual COMMIT is the second phase of the protocol. If one or more partici-

pants notify the system that it cannot successfully prepare the transaction, MS
DTC will automatically send a message to all participants indicating that they must
abort the transaction. (In this case, an abort, rather than a commit, is the sec-

ond phase of the protocol.) If one or more participants do not report back to
MS DTC in phase one, the resource managers that have indicated that they are
prepared to commit (but have not yet committed, since they have not received
the instruction to do so yet), are said to be in doubt. Resource managers that have
transactions in doubt will indefinitely hold the locks and resources necessary to

ultimately commit or roll back the transaction, preserving the ACID properties.
(SQL Server provides a way to force in doubt transactions to abort.)

Another important distributed capability is the ability for a SQL Server to issue
remote procedure calls (RPCs) to other SQL Servers. Remoteprocedure calls are
stored procedures that can be invoked from a remote server, allowing server-
to-server communication. This communication can be accomplished transpar-

ently to the client application, since the client can execute a procedure on one
server, and that procedure can then invoke a procedurelocated on a different
server. Using RPCs can easily extend the capacity of an application without the
added cost of reengineering the client application. And these RPCs can be coor-
dinated by the MS DTC service to ensure that the transactions maintain their ACID
properties.

Data Replication

Replication allows you to automatically distribute copies of data from one server
to one or more destination servers at one or more remote locations. A key design

point of the replication capabilities of Microsoft SQL Server is data integrity. The
data at subscribing sites may be slightly out of date, but it will accurately reflect
the state of the master copy_ of the data at some recent point in time. Because
of this emphasis on the correctness of data, the replication metaphor used is
publish and subscribe. For each piece of data participating in replication in the

entire system, one site is the designated owner of that data, and that site publishes
It to the other sites, which subscribe to that data. (A given site can publish some
data and subscribe to other data.)

45

PART 1 OVERVIEW

Distributed transactions using the two-phase commit protocol guarantee ACID
properties, but replication does not. Replication is not strongly consistent (the C
in ACID). Instead, replication provides loosely consistent data. Recall that with the
two-phase commit protocol, a transaction is an all—or-nothing proposition and
the data is assured to be strongly consistent. But inherent in the two-phase com-
mit algorithm is the fact that a failure at any one site makes the entire transac-

tion failor ean_k_eep the transaction in doubt for long periods of time, during
which all participaHfs‘need to h\old locks, crippling concurrency.

At first look, you may think a system should require that updates be made at all
sites in real time. In fact, when the costs of two-phase commit are realized (chiefly,
the vulnerability that can result due to a failure at just one node), the most prag-
matic solution might be to make changes in real enough time.

For example, suppose you run a car rental agency, with 500 rental counters
worldwide, and you maintain a customer profile table containing 500,000 rent-
ers who belong to your Gold Card program. You want to store this customer
profile locally at all 500 rental counters so that even if a communication failure
occurs, the profile will be available wherever a Gold Card member might walk
up to do business. Although all sites should have up—to-date records of all cus-
tomers, it would be disastrous to insist that an update of the Gold Card profile
must occur as part of a two-phase transaction for all 500 sites or not at all. With
this scenario, because of the realities of worldwide communications, or because
at one site a storm might have knocked out the power, it is likely that you would
seldom be able to perform a simple update to the customer profile.

Replication is a much better solution in such a case. The master customer pro-
file table would be maintained at your corporate headquarters. Replication pub-
lishes this data, and the rental counters then subscribe to this information. When
customer data is changed, or when a customer is added or removed, these changes
(and only the changes) are propagated to all the subscribing sites. In a well-
connected network, the time delay might be just a few seconds. If a particular
site is unavailable, no other sites are affected—they still get their changes. When
the unavailable site is back online, the changes are automatically propagated and
the subscriber is brought up to date. At any time, a given rental counter may not
have exactly the same information as the corporate site—it might be slightly out
of date. The data at the rental counter is consistent with the state of the data at
the corporate headquarters at some earlier time; it is not necessarily currently con-
sistent with the corporate site data. This is what is meant by loosely consistent,
as opposed to the strongly consistent model of two-phase commit in which all

« sites (or none) immediately reflect the change.

Although a time delay can occur in loosely consistent systems, maintaining trans-
actional consistency is one of the chief design points of SQL Server replication.
If multiple updates occur as a single atomic transaction to data being replicated,

j __3:_t A-'rw-'otm_um& sat sun»

the entire transaction will also be replicated. At the subscribing site, the trans-
action will either entirely commit or it will again be replicated until it commits.

With SQL Server, data can be replicated continuously or at specified intervals. It
can be replicated in its entirety or as filtered subsets (known as borizontal and
verticalpartitions). In addition to replication to other SQL Servers, version 6.5 can
replicate to Microsoft Access databases, ORACLE databases, or other ODBC
subscribers (so long as they provide an appropriate ODBC driver). -

Unlike SQL Server, some products on the market promote replication as an
“Update Anywhere-Anytime—Anyway” model. However, this model has inherently
unstable behavior if many nodes participate and update activity is, moderate to
heavy} Updates made at multiple sites will conflict with one another and must
be reconciled. A small system with few changes might appear to use the “Up-
date Anywhere-Anytime—Anyway” model effectively, but a large system with a
tenfold increase in nodes and traffic gives a thousandfold increase in deadlocks
or reconciliations. Before long, even accurate reconciliation will be impossible
because updates will have been made based on data that has not been accurately
reconciled. The system will degrade into an inconsistent state, with no clear way
to fix it or even to know what is the “correct” state.

Systems Management
The difficulty of systems management is probably the single biggest obstacle
that has inhibited mass deployment of client/server solutions. Far from being a
“downsized” version of the mainframe, today’s distributed client/server system
may be deployed on dozens or even hundreds of distributed servers, all of which
must be controlled to the same exacting standards as mainframe production
software systems. The issues here reside both inside and outside of the database
environment. SQL Server provides a comprehensive architecture and tools for
managing the database and related activities.

SQL Enterprise Manager
SQL Server’s SQL Enterprise Manager is a major advancement in making
client/server deployments manageable. Easy to use, SQL Enterprise Manager
supports centralized management of all aspects of multiple SQL Servers, includ-
ing managing security, events, alerts, scheduling, backup, server configuration,
tuning, and replication. SQL Enterprise Manager allows SQL Server database
schemas and objects such as tables, views, and triggers to be created, modified,

1' GWY, He-lland, O’Neil, and Shasha, “The Dangers of Replication and a Solution,” SIGMOD
(19961 SIGMOD (Special Interest Group Management of Data) is a yearly database-oriented
Conference for developers. For more information, see ht1p:[[bunny.cs.uiuc.edu.

47

H“ I OVERVlEW

and copied. Because groups of servers can be associated, SQL Enterprise Man-
ager can manage hundreds of servers simultaneously.

Although it can run on the same computer as the SQL Server engine, SQL En-

terprise Manager offers the same management capabilities while running on any
Windows NT workstation or Windows NT server in the environment. SQL En-
terprise Manager also runs on Windows 95, although a few capabilities are not
available in this environment (most notably the ability to use Service Control

Manager, a feature of Windows NT, to remotely start and stop SQL Server). In
addition, the efficient client/server architecture of SQL Server makes it practical
to use the remote access (dial-up networking) capabilities of Windows NT and
Windows 95 for administration and management.

SQL Enterprise Manager provides an easy—to—use interface, as shown in the illus-

tration below. You can perform even complex tasks with just a few mouse clicks.

; Mlulusoll 5Ul Lnlerpme Manager

13 fi SQL 65 __
E] Q GIZMO (SQL Server 5.5 .» - - SQL Mail

» -fig. sou. Executive
Database Devices5- - master

3 MSDBData
MSDBLOQ
Northwind

Extem Lock - Exclusive
A I .. xrll we-ma

SQL Enterprise Manager relieves you from having to know the specific steps and
syntax to complete a job. You can use the Database Maintenance Plan Wizard,
shown below, to set up and schedule key maintenance tasks to help keep your
system running properly.

' Datahm» H.mI!r:nam:e Plan -and pubs

Distributed Management Objects
In the Microsoft Windows 95 and Microsoft Windows NT operating systems,

Microsoft SQL Server Distributed Management Objects (SQL—DMO) provides
32-bit Automation (formerly known as OLE Automation). These objects, prop-
erties, methods, and collections are used to write scripts and programs that can
administer multiple SQL Servers distributed across a network. SQL Enterprise Man-
ager is built entirely with SQL—DMO. You can customize your own specific man-
agement needs using SQL—DMO, or you can integrate management of SQL Server
into other tools you use or provide.

All SQL Server functions are exposed in the form of objects, methods, and prop-
erties. The SQL—DMO model simplifies the management “surface” of SQL Server
by organizing management functions in terms of the SQL Server object model.
The primary object is SQLServer, which contains a collection of Database objects.
The Database object contains a collection of Table, View, and StoredProcedure
objects. Objects contain properties (SQLServer.Name = "MARKETING_SVR") and
methods (SQLServer.Start or SQLServer. Shutdown).

4'!

PART 1

50

OVERVIEW

Here are some examples of SQL-DMO objects and methods:

Obiect.Method Action

SQLServer.Shutdown Stops a SQL Server

SQLServer.Start Starts a SQL Server

Database.Dump Performs a database dump

Index.UpdateStatistics Updates optimizer information for indexes

Database.Table.Add Adds a table to a database
 j:___:

The SQL-DMO object model is comprehensive, consisting of more than 70 dis-
tinct objects and more than 1500 COM interfaces. The organization of these
objects greatly reduces the task of learning and fully using SQL Server manage-
ment components, as shown in Figure 2-2.

Any 32-bit Automation controlling application can harness the power and ser-
vices of SQL-DMO. Probably the most common such Automation controller is
Microsoft Visual Basic.

Automation and Visual Basic Scripting
The power of using an ActiveX interface (Automation) for SQL Server manage-
ment becomes clear when you consider the potential of using a robust language
such as Visual Basic as a scripting environment for administrative tasks. The
following sample code lists the name and space available on all databases on a
server. This code is simple, compact, easy to write and read, and yet very pow-
erful. (Traditionally, programming such a task would have required several pages
of much more complex C code.)

Dim Myserver as New SQLServer ‘Declare the SQL Server Object
MyServer.Name = "MARKETING_SVR"
MyServer.Login = "sa"

MyServer.Connect ' Connect to the SQL Server
' list the name, space available for all databases
For each MyDB in MyServer.Databases

Print MyDB.Name, MyDB.SpaceAvailable
Next MyDB

MyServer.Disconnect ' Disconnect

Application

___."=

SQL Server

.... If-; _—k-..‘ . -iii

|.3 Dmbm

. " 5.1....

4" P-nrgflii-u

I'_—"-..— ' '-4|:

F’-*"?"'i

_i- ,r_I_!

r:-"- --

Service

Legend

iifiut WHY-—— __

1.0-I~__.v:-as-_vvf‘I

Figure 2-2. Tbe SQL~DMO model makes using the objects easy.

PART l

52

OVERVIEW

SQL Executive

SQL Executive is an active, intelligent agent that plays an integral role in the
management of the SQL Server environment. It provides a full-function sched-

uling engine designed to support regular tasks for the management and adminis-
tration of SQL Server, and it allows you to schedule your own tasks and programs.
SQL Executive plays a fundamental role in replication, acting as the mechanism
that runs the distribution tasks that propagate data changes to subscribing sites.
It is also the foundation for the SQL Server alerting system.

SQL Executive is a Windows NT—based service that can be started when Windows

NT starts. It can also be controlled and configured from within SQL Enterprise
Manager or SQL Service Manager. SQL Executive is entirely driven by entries in
a SQL Server table that act as its control block. Clients never directly communi-
cate with or connect to SQL Executive to add or modify scheduled tasks. Instead,
they simply make the appropriate entries in the SQL Server table (although this
typically occurs through SQL Enterprise Manager via a simple dialog box that’s
similar to a typical calendar program). At startup, SQL Executive connects to the
SQL Server that contains its task table and then loads the list of tasks.

SQL Executive, like the SQL Server engine, is a single multithreaded process. It
runs in its own process space and manages the creation of Windows NT threads

to execute scheduled tasks. Its discrete managed subsystems (for replication,
task management, and event alerting) are responsible for all aspects of pro-
cessing specific tasks. When tasks are completed (successfully or not), the sub-
system returns a result status (with optional messages) to SQL Executive. SQL
Executive then records the completion status in the Windows NT event log and
task history table in SQL Server and optionally sends e-mail to the designated
administrator reporting the task status.

The event/alert subsystem gives SQL Server its ability to support proactive man-
agement. The primary role of the event/alert subsystem is to respond to events
by raising alerts and invoking responses. As triggering activities (or user-defined
activities) occur in the system, an event is posted to the Windows NT event log.
The event log then notifies SQL Executive that an event has occurred.

SQL Executive determines whether any alerts have been defined for this event

by examining the event’s error number, severity, database of origin, and mes-
sage text. If an alert has been defined (in the alert table), the administrator(s) can

be alerted via e-mail, pager, or by raising a Simple Network Management Proto-
col (SNMP) trap (discussed later in this chapter). Or a SQL Executive on-demand
task can be invoked and can take corrective action. (For example, SQL Execu-
tive might automatically expand a database that is almost full.)

3 its réme_ratern-fufi sat saw

If no alerts are defined locally, the event can be forwarded to another server
for processing. This feature allows groups of servers to be monitored centrally
so that alerts and administrators can be defined once and then applied to mul-
tiple servers. Beyond the database environment, Microsoft Systems Management
Server (SMS)—a BackOffice component—is available to provide key services to
manage the overall software configuration of all the desktops and servers in the
environment.

SQL Server Utilities and Extensions
SQL Server also includes utilities and extensions that provide increased function-
ality, such as Internet enabling, monitoring capability, easy setup, and easy data
importing.

SQL Server Web Assistant and Internet Enabling
SQL Server provides dynamic ways in which to work with the Internet: SQL Server
Web Assistant and interoperability with Microsoft Internet Information Server (IIS).
Although both the SQL Server Web Assistant and IIS enable SQL Server data to
be used with Web pages, they satisfy different needs.

SQL Server Web Assistant generates HTML files from the result sets of SQL Server
queries, making it simple to publish SQL Server data on the Internet. Let's say,
for example, that a parts supplier keeps its inventory list in SQL Server. The
supplier could publish its current parts inventory as a Web page (an HTML file)
using SQL Server Web Assistant. SQL Server Web Assistant allows an ad hoc query
or stored procedure to be submitted, provides some simple formatting capabili-
ties, allows for the inclusion of links to other Web pages, and allows a template
to be used for more advanced formatting. The output of the query is written as
an HTML 2.0 table, and a Web page is created. The process to create or update
the Web page can be automated by SQL Server Web Assistant to occur at a regular
i_nterval or whenever the data changes (via a trigger).

SQL Server Web Assistant is distinct from but complementary to the IIS in
Microsoft BackOffice. With SQL Server Web Assistant, users browsing the Web
page work separately from SQL Server, because the data on the Web page has
been extracted. SQL Server Web Assistant does not use or require IIS, and a SQL
Server Web Assistanfpage can be viewed using any Internet browser.

IIS uses SQL Server’s high performance native ODBC interface to allow SQL
queries to be fired from a Web page when a user accesses a particular region
on the page. The results are then dynamically retrieved and combined with the
HTML file for up—to-date viewing. In addition to SQL Server Web Assistant and
the dYnaII1iC query capabilities enabled with IIS, SQL Server is Internet-enabled

53

PA“ I OVERVIEW

in several other important ways. By minimizing network traffic and handshaking,
SQL Server is inherently designed for efficient client/server computing. Extremely
rich requests can be packaged via stored procedures or Transact—SQL batches for

resolution entirely at the server with only the results sent back to the initiating
client application. This capability has been a hallmark of SQL Server's client/server

architecture from the outset, but nowhere is it more important than on the
Internet, where network speed and bandwidth are often quite limited. In addi-
tion, SQL Server’s networking architecture allows for ease of use and security on
the Internet, including network name resolution. For example, Internet users can
connect via a friendly name such as “sql.microsoft.com” instead of via an arcane

IP address such as 200.1S4.54.678:1433. Secure encryption of data over the Internet
is also possible.

SQL Trace

SQL Trace is a Win32-based graphical utility that allows database administrators

and application developers to monitor and record database activity. SQL Trace
can display all server activity in real time, or it can create filters that focus on

the actions of particular users, applications, or types of commands. SQL Trace
can display any SQL statement or stored procedure sent to any SQL Server (as-
suming your security privileges allow it) as well as the output or response sent
back to the initiating client. The capabilities of SQL Trace provide an important

' tool for tuning and debugging applications and for auditing and profiling the use

of the SQL Server.

SQL Service Manager
SQL Service Manager, shown below, manages the SQL Server, SQL Executive, and
MS DTC services. It provides a simple way to start, stop, or check the state of

any of these services. Many applications have “borrowed” its original intuitive
traffic—light graphic as a way to provide a simple visual representation of a
process’s state.

Srvic anagr 3

MSSOLServe_n_'_ _ |

Windows NT Performance Monitor Integration

SQL Server provides an extension DLL (SQLCTR60.DLL) that integrates with the
Windows NT Performance Monitor and graphically displays important perfor-
mance statistics, such as memory usage, number of users, transactions per sec-
ond, and CPU use as well as many others (there are more than 75 such counters).
Integrating with the Windows NT Performance Monitor is advantageous because
it allows you to use a single tool to measure all aspects of a system’s performance.
If SQL Server simply provided its own performance—monitoring tool, it would still
be necessary to check the performance of the operating system and network.
Integration with the system performance monitor provides “one-stop shopping.”
A Performance Monitor graph is shown in the illustration below.

1.000 Cache Hut Flalio --- - SOLSeweI \\WATEFi
1.000 [/0 - Transactions/sec SQLServer \\WATEFl
1.000 I/0 Reads/sec — SOLServer \\WATER

Pae Writes/st - SQLSeIver \\\o\/ATEFI

Using Performance Monitor, you can set an “alert” on any statistic that is being
monitored; when a predefined threshold is reached, Windows NT will automati-
cally execute a predefined command. For example, you can set an alert that is
generated when a SQL Server database’s transaction log becomes 90 percent full.
The alert will execute a batch program to back up the log and purge it, freeing
up space for new transactions.

I. Security Manager
QL Security Manager simplifies the management of user logons with SQL Server.
uprovides an interface to integrate Windows NT user accounts directly into SQL
rver without having to redefine each user logon. SQL Server uses the Windows

T user accounts to validate database users and administrators.

55

PART 1 OVERVIEW

SQL Client Configuration Utility
The SQL Client Configuration Utility is used with applications written with the
DB—Library API. You use it to set up specific networking options for the appli-
cation. In most cases, network name resolution is now automatic and the SQL

Client Configuration Utility is usually not required.

SQL Server Setup
SQL Server’s graphical Setup program allows SQL Server installation to be per-
formed with a degree of ease and speed unprecedented for a full—feature DBMS.
If the defaults are chosen, SQL Server can be installed in 5 to 10 minutes, depending

on the speed of the computer. A custom installation typically takes well under
30 minutes. Traditional DBMS products usually require several days for installa-

tion and often require that you enroll in training classes before installing the
product. SQL Server Setup can even install the product on a remote computer,
a particularly useful feature if you manage a large number of servers. Setup ini-
tialization is easily specified so that it can be fully automated for numerous in-

stallations, or you can encapsulate the installation of SQL Server in the rest of
an application’s installation process.

After you’ve installed SQL Server, you use the Setup program to configure net-
working choices and server environment options (such as the security mode
desired). The program also provides a simple uninstall process.

ISQL/w & ISQL

Having a simple interactive window in which to submit basic SQL commands and
get results is essential to a database developer—as a hammer is to a carpen-
ter. Even though other, more sophisticated, power tools are useful, there is al-
ways need for the basics. SQL Server provides the basics in two styles: ISQL/w
and ISQL.

For interactive use, ISQL/w (ISQLWEXE) provides a clean and simple Windows- I
based interface. It provides a graphical representation of SHOWPLAN, the steps
chosen by the optimizer for query execution. ISQL/w allows for multiple win-
dows so that simultaneous database connections (to one or more servers) can

exist and be separately sized, tiled, or minimized.

ISQL (ISQLEXE) is a character-based command-line utility. Every parameter,

including the SQL statement or the name of the file containing the statement, can
be passed to this character-based utility. Upon exit, it can return status values
to Windows NT that can be checked within a command file (.CMD or .BAT).

Consequently, programs commonly launch scripts of SQL commands by spawning
the character-based ISQL utility and passing the appropriate parameters and

filenames. SQL Server Setup itself spawns ISQL.EXE numerous times with scripts

that install various database objects and permissions.

1 tli.'|'1_tt.i|-~uf_l'I3|'.fIIt_arJl'|5Gl.':un-var

Bulk Copy Utility
SQL Server provides a character-based utility called bcp, or “bulk copy” (BCREXE),
for flexible importing and exporting of SQL Server data. Similar to ISQL, bcp
allows all parameters to be passed to it and is often called from command files.
A special set of functions exists in DB—Library that lets you easily create a cus-
tom loader or unloader for your application; the bcp utility is a generalized
wrapper application that calls these functions. SQL Enterprise Manager and SQL-
DMO also provide facilities to simplify the transfer of data into or out of SQL
Server, but their emphasis is on data migration between SQL Servers. The bcp
utility provides an important capability by allowing you to specify the exact data
format to be read or written, thus giving you the ability to exchange data with
other data sources.

SNMP Integration
Support for Simple Network Management Protocol (SNMP, a standard protocol
within TCP/IP environments) is provided via the SQL Server Management Infor-
mation Block (MIB, another standard of the SNMP and TCP/IP environment). A
group of database vendors, including Microsoft, cooperated in defining a stan-
dard MIB that would report certain status data about a database environment for
monitoring purposes.

This group was a subcommittee of the IETF, the Internet Engineering
Task Force, and the draft specification is known as ”|ETF SNMP
RDBMS-MIB (RFC l697)." The SQL Server MIB is generally based on
this proposal but provides additional data beyond that called for in
the specification.

For example, status information (such as whether SQL Server is currently run-
ning, when it was last started, and how many users are connected) is reported
to SNMP via this MIB. A variety of SNMP management and monitoring tools exist
and can access this data. If, for example, you use Hewlett—Packard’s OpenView
or Computer Associate’s CA—Unicenter in managing your network, the SQL Server
MIB enables those tools to also monitor multiple statistics regarding SQL Server.

SQL Server also supports the ability to raise SNMP traps. An SNMP trap sends
notification to the SNMP agent that some type of change in status or condition
has occurred. The SNMP agent can then forward that notification to prespecified
workstations that are running SNMP monitoring application(s). This means that
it IS simple to configure alerts within SQL Enterprise Manager that will notify your
network management application, such as OpenView or CA—Unicenter, of some
situation that warrants attention (that the database should be expanded in size,
for example).

57.

PART 1 OVERVIEW

SQL Server Books Online

In addition to being available in printed form, all SQL Server documentation is
available online. A powerful viewer makes it simple to find and search for top-
ics within seconds. (The viewer is the same one used by MSDN, the Microsoft

Developer Network Library, which provides technical information to developers

by subscription.)

Even if you favor printed books, you’ ll appreciate the speed and convenience of
the search capabilities of SQL Server Books Online. In addition, because of the

lead time required in the production of the printed manuals that ship with SQL
Server, SQL Server Books Online is more complete and accurate than those

manuals. Because this book cannot hope to and does not try to replace the

complete documentation set, the CD—ROM included with this book also contains
the complete SQL Server Books Online documentation.

Development Interfaces

58

SQL Server provides several development interfaces, supporting client and server

application development. These interfaces—the DB—Library, ODBC, the Embed-
ded SQL precompiler, and Microsoft Open Data Services—are described below.

DB-Library
DB-Library is a SQL Server—specific API that provides all the necessary macros

and functions for an application to open connections, format queries, send them

to the server, and process the results. It also includes the special purpose bulk

copy interface used by the bcp utility. You can write custom DB-Library appli-
cations using either C/C++ or Microsoft Visual Basic (or any programming lan-

guage that is capable of calling a C function).

DB-Library is the original programming interface to SQL Server. Libraries are pro-
vided for MS—DOS, Windows 3.1, Windows 95, and Windows NT. (The Windows

NT library for Intel computers is the same library used for Windows 95, so you

can write a single application that targets both environments.) Developers are

granted licensed rights to redistribute the DB-Library runtimes royalty—free.

ODBC

ODBC (Open Database Connectivity) is an API for database access that is both
a formal and de facto industry standard. Besides being the most popular data-

base interface used by applications today, ODBC has gained status as the for-

mal call—leve1 interface standard by ANSI and ISO. Microsoft SQL Server provides

a high-performance, native ODBC interface for all Windows—based programming
environments, and like DB—Library, it can be distributed royalty—free with any

application. The SQL Server ODBC driver implements every function in the

I A Tour of Miclcsofl SQL Server

ODBC 2.0 specification. In “ODBC-speak,” this makes it fully “Level 2” (the
highest level) conformant.

ODBC drivers for other operating systems (Macintosh System 7, many flavors of
UNIX, and OS/2) are available from Visigenic. (You can check out Visigenic’s Web
site at httg:[[www.visigenic.com.) Microsoft licenses the source code for the SQL
Server ODBC driver to Visigenic so that high—performance interfaces are avail-
able for those operating systems as well.

Most new application development is probably best targeted toward ODBC, rather
than DB-Library. If you are already using DB—Library or have a lot invested in
DB—Library in terms of knowledge and applications, then don’t think you must
abandon it. DB—Library will remain supported indefinitely, and that’s why it was
significantly enhanced for SQL Server version 6.5. In the future, though, you
should expect fewer enhancements for DB-Library. It will likely continue to be
maintained simply for backward compatibility. (You may also be steered to
DB—Library if your application must include an MS—DOS version or if you will
be directly using the bcp library, for which there is no current ODBC equiva-
lent.)

If you are starting new development, however, most applications would be bet-
ter served using ODBC. Having had the benefit of learning from DB—Library and
going through a long design and specification phase, I’ve found that ODBC is a
simpler, more elegant API than DB—Library. Despite some myths to the contrary,
ODBC is as fast or faster than DB—Library. We call the ODBC driver for SQL Server
a native interface to make it clear that it is not mapped onto DB—Library and does
not incur more overhead than DB-Library. It directly reads and writes the SQL
Server data stream protocol, Tabular Data Stream (TDS), just as DB—Library does.
Perhaps the best proof of Microsoft’s confidence in its performance is the fact
that ODBC is used in SQL Server’s published performance benchmarks. Since
the name of the game in benchmarking is to eke out every last ounce of perfor-
mance, if using the ODBC driver caused even a tiny slowdown, you can bet we’d
use DB—Library instead.

ESQL for C

SQL Server provides an Embedded SQL precompiler (ESQL for C) that allows
developers to write SQL Server applications by “embedding” the SQL queries
directly in their C source code. Many minicomputer and mainframe developers
are already accustomed to this style of programming, and ESQL might be a natural
choice for that reason. In addition, Microsoft has licensed some of the Embed-
ded SQL run—time environment to Microfocus, the leading provider of Cobol

Compilers and tools. Microfocus offers an embedded SQL interface for SQL Server
directly in its Cobol development environment.

59

PART 1 OVERVIEW

Open Data Services

SQL Server offers an open API for developing server—based gateway and connec-

tivity applications that work in conjunction with SQL Server. Microsoft Open Data
Services (ODS) is an event—driven API that provides a programmable gateway
platform for server applications that can access any data source. ODS can be used

to develop custom database gateways, data—driven event alerters, external pro-
gram triggers, request auditing, extended stored procedure DLL‘s, and more. ODS

is actually a core part of the SQL Server architecture and benefits from the high-
performance architecture. It provides all the network, connection, and thread
management that SQL Server uses.

ODS—based applications can function as stand-alone gateways, or as data—access
servers, supporting connections from the same client platforms as SQL Server.

They can also integrate with SQL Server directly through remote stored proce-
dure calls.

Microsoft TransAccess uses ODS to provide data connectivity from SQL Server
to the MVS CICS environment, including access to DB/2, VSAM, and IMS data.

In addition, ODS is used by many other software vendors to provide SQL Server-
compatible gateways to popular host computing platforms, including IBM DB2,
IBM SQL/DS, CICS, IBM AS/400, and others.

The Microsoft SQL Server component and product family, including the SQL
Server RDBMS, visual systems management tools, distributed systems compo-
nents, open client/server interfaces, and visual development tools, provides a
complete and robust platform for developing and deploying large-scale applications.

The remainderof this book concentrates on the capabilities and uses of the SQL
Server engine, which is the foundation of the product.

PART 3 USING MICROSOFT SQL SERVER

200

Naming Conventions
Many organizations and multiuser development projects adopt standard nam-
ing conventions, which are a good thing, in general. For example, assigning a
standard moniker of cust_z'd to represent a customer number in every table makes
it obvious that all the tables have data in common. If, instead, several moni-

kers were used in the tables to represent a customer number, such as cust_z'd,
cust_num, customennumberg and customer_#, it would not be so obvious that

these monikers represented common data. One convention I see occasionally
and recommend against using is Hungarian-style notation for column names.

(Hungarian notation is a widely used practice in C programming, whereby vari-
able names include information about their datatypes. Its name is attributed to

its use by legendary Microsoft programmer Charles Simonyi, who is of Hungar-
ian ancestry.) Hungarian-style notation uses names such as smt_rm_cusmum to

represent that the cusmum column is a small integer (smozllint of 2 bytes) and is
NOT NULL (does not allow nulls). Although this practice makes good sense in

C programming, it defeats the datatype independence that SQL Server provides.

Suppose it is discovered, for example, that the cusmum column requires a 4-byte
integer (mt) instead of a 2—byte small integer. It is relatively simple to re—create
the table with the column as an int instead of a smallim‘. In SQL Server, stored

procedures will deal with the different datatype automatically. Applications us-
ing DB-Library or ODBC that bind the retrieved column to a character or inte-
ger datatype will be unaffected. The applications would need to change if they
bound the column to a small integer variable, as the variable’s type would need

to be larger. For this reason, it is best to try not to be overly conservative with
variable datatypes, especially in your client applications. You should be most
concerned with the type on the server side; the type in the application can be

larger and will automatically accommodate smaller values. By overloading the
column name with datatype information, which is readily available from the

system catalogs, the insulation from the underlying datatype is compromised.
(You could, of course, change the datatype from a smallmt to an im‘, but then

the Hungarian-style name would no longer accurately reflect the column defi-
nition. Changing the column name would then result in the need to change

application code or stored procedures or both.)

Datatypes
SQL Server provides a large number of datatypes, as shown in Table 6-1 on pages
202-03. Choosing the appropriate datatype is simply a matter of mapping the

domain of values you need to store to the corresponding datatype. In choosing
datatypes, you want to avoid wasting storage space while allowing enough space
for a sufficient range of possible values over the life of your application.

El Tabla:

Datatype synonyms
SQL Server syntactically accepts as datatypes both the words listed as synonyms
and the base datatypes shown in Table 6-1, but it uses only the type listed as
the datatype. For example, a column can be defined as cbamcterfl), cbaracter;
or cbar(1), and SQL Server will accept all these as valid syntax. Internally, how-

ever, the expression is considered cbar(1), and subsequent querying of the SQL
Server system catalogs for the datatype will show it as cbarfl), regardless of the
syntax that was used when it was created.

Nulluble columns are variable-length
Before deciding to use an ostensibly fixed-length datatype such as cbar instead
of a variable-length one such as wzrcbm; it is important that you understand
nullabilflyz all datatypes, with the exception of bit, can be declared either NULL
or NOT NULL (that is, they can allow or disallow a null entry). Internally, de-
claring a column to allow a null entry makes that column a variable-length col-
umn. For example, a column declared as C/9611(5) NULL is internally identical to
one declared z2arcbar(5) NULL. In both cases, if a null value is entered, no stor-

age is consumed. If only 3 bytes are entered, then only 5 bytes of storage are
used, even for the fixed—length type.

~_'_ There is an exception to this. The command SETANSLPADDING
ON instructs SQL Server to physically store spaces in the remaining
2 bytes of the c/1ar(5) type, in which case 5 bytes of storage would
be used. This setting conforms to the ANSI SQL-92 standard.

Variable-length vs. fixed-length datatypes
Deciding to use a variable-length or a fixed—length datatype is not always straight-
forward or obvious. As a general rule, variable-length datatypes are most appro-

priate when you expect significant variance in the size of the data for a column
and the data in the column will not be frequently changed.

Using variable-length datatypes can yield important storage savings. Choosing
them can sometimes result in performance loss (as I will explain in a moment)

and at other times can result in improved performance. A row with variable-length

columns (including supposed fixed-length columns that allow NULLs) requires
special offset and adjust entries to be internally maintained. These entries keep
track of the actual length of the column. Calculating and maintaining the offsets

requires slightly more overhead than a pure fixed—length row, which needs no
such offsets at all. This is a CPU task of a few addition and subtraction opera-

tions to maintain the offset value. However, the extra overhead of maintaining

these offsets is generally inconsequential, and I have not seen a system in which
this alone made a significant difference. A more significant performance differ-

ence might arise from the method by which updates are processed.

201

PART 3 USING MICROSOFT SQL SERVER

bsomvmfmo.m%m.m§.3m-E93:_o>ucmtauSo.»2wow:__3_a..Hm8o_a_oE_omvSo:__._.50Ho£_u:om_._o£
.8.0:02xuosuuo£3m._mn_E:Zxm:oE=uE...i Hmomm.Rw.mm.o.mo~Nmm.N~oHHo.mom.3.£0mofimmmum-E9HH=0

.8:__u>ucmtauEon9Humanoi\Hmmuc_Q_cE_um_u50:ES0Ho£vc_om:o£
 mainwH.929.02>u_uSuoogs?flon_E:Z. xw:oE>._2w:o<<mHHm._2uo._nm;%.Wwwm:m..~¢J.m_.womwm»mviuwum_.Hwm.o_uo._oono05:.9:o.:.xEm=.:§gocu.HE_wcw_m_n_o_.o>_._um._2m.2uEo;u._...x._23_H3$20:Hmwvmo§_.wHuo.F_unmm«Q3HEmc.:¢o>gflucgocuH?f9HBo>H._wUEo;UH.=:._o;u.w_m_..._._m.uo._o;u.HH402maoexcocxmmH.m3::H.wN_mu_H_owamcSo_._E>.H>__u_toaH_:w>w._u%oum_uHHm...§uo._o.Huvm___2mc_9:Ho6H.w.uo.o4uHabsofiHHE_mcm_3.5:.w_uo._9HoBa2Q_H3v2oc9.u.m_uno.22u_u._o_._ummm0.a:H:EueufiH$.33._w_u_n:o.HU :3-9wW_.g_._-.&%c_oH,%HM°z. E3m21%._mmmovgu.OAHN_uco_c.m92mnmmtfVHmmmovdlEO.¢m._omE:cHomco=cE._xo._a<m_:o._w£,>HermonHum:H

Hmoi-2Lama-wageEammzHHHH wonmommom._mm.mmomImmN.N59.9m>:_mon_Hco_.m_um._nHm3:oQHH.monmomm0..9vanm_._wo3_mn.Ace.uma:m._v.n:.HotofiacxoaafimmtfwHwommom._IEO¢m._mnE:cHomco._.._uE_xo._a<Hm_:m$.H»>PruouHBOQHE_oQmc.:OO_u_
coaao..

Ho25%Nbm>o.3.uo.__=_oo.Hm_wmncouHo93_.mm2o>oH:0.£_m__umm2mmco.couH

__u_.{>d.:o_m_uo._m328%.390.co9___8&%wmtfim_1NHmmo_|EO.¢n._mnE:c_oco_.uo¢.0w_o_.H>>
wd_oE.Gmw.Hu_.mE2ZuoxwH\%Ho.:mE::H_oE6m_uwmxuum

U03

 2AHHnnm20E0;WEQED:o_o_.H>>HE.5.:3.3N.Romano.momma-E9.3322.o_o.H>>..Esosw.3%am2w§.mm<.§.~-so;mwmoemmw._mw.__>mM325MEamgg

wflm.wm_uH5.mm\mm:u~_...

Table 6-1. SQL Server supplies many damtypes.

202

Batches, Transactions,

Stored Procedures,

and Triggers

Introduction

In this chapter, I’ll discuss using Transact—SQl. for more than interactive queries.
When you send a query to the server, you are sending a command batch to SQL
Server. But you can do more! I’ll show you how to wrap up commands in a
module that can be stored and cached at the server for later reuse (stored pro-

cedures), and I’ll demonstrate how you can create modules that will automati-

cally execute when some event occurs (triggers). Although I’ve briefly discussed
transaction boundaries earlier in the book, in this chapter I’ll help you better

understand them and the effects of changes by multiple users.

Batches

A batch is one or several SQL Server commands that are dispatched and executed

together. Because every batch sent from the client to the server requires hand-
shaking between the two, sending a batch instead of sending separate commands
can prove to be more efficient. Even a batch that does not return a result set (for
example, a single INSERT statement) requires at least an acknowledgment that
the command was processed and offers a status code for its level of success. At
the server, the batch must be received, queued for execution, and so on.‘

Although commands are grouped and dispatched together for execution, each
command is distinct from the others. Let’s look at an example. Suppose that you

need to execute 150 INSERT statements. Executing all 150 statements in one batch

requires the processing overhead once, rather than the overhead incurred 150

449

PART 3 USING MICROSOFT SQL SERVER

450

times. I know of a real-life situation in which an application that took 5 to 6

seconds to complete 150 individual INSERT statements was changed so that all

150 statements were sent as one batch. The processing time decreased to well

under 0.5 second, more than a tenfold improvement. And this was on a LAN, not

on a slow network like a WAN or the Internet where the improvement would

have been even more pronounced. (Try running an application with 150 batches

to insert 150 rows over the Internet, and you’ll be really sorry!)

Using a batch is a huge win. By using the Transact—SQL constructs that I presented

in Chapter 9, such as conditional logic and looping, you can often perform sophis-

ticated operations within a single batch and eliminate the need to carry on an

extensive conversation between the client and the server. Those operations can

also be saved on the server as a stored procedure, which allows them to execute

even more efficiently. Using batches and stored procedures .to minimize the client/

server conversations is crucial for achieving high—performing applications. And

now that more applications are being deployed on slower networks—such as

\WANs, the Internet, and dial—up systems——instead of on LANs only, using batches
and stored procedures is crucial.

Every SELECT statement (except for those used for assigning a value to a vari-

able) generates a result set. Even a SELECT statement that finds zero rows returns

a result set that describes the columns that were selected. Every time the server

sends a result set back to the client application, it must send metadata as well
as the actual data. The metadata describes the result set to the client. You can

think of metadata in this way: “Here is a result set with eight columns. The first

column is named lczst_12ame and is of type cbar(30). The second column is. . ..”

Obviously, then, executing a single SELECT statement with a WHERE clause

formulated to find (in one fell swoop) all 247 rows that meet your criteria is much

more efficient than separately executing 247 SELECT statements that each returns

one row of data. In the former case, one result set is returned. In the latter case,

247 result sets are returned—the performance difference is striking. Using batches

might seem like a painfully obvious necessity, yet many programmers still write

applications that perform poorly because they do not use batches. The problem

is especially common for developers who have worked on ISAM or similar se-

quential files doing row—at—a—time processing. Unlike ISAM, SQL Server works best

with sets of data, not individual rows of data, so that you can minimize conver-

sations between the server and the client application.

Following is a simple batch, issued from ISQL. Even though three unrelated

operations are being performed, I can package them in a single batch to con-
serve bandwidth.

INSERT authors VALUES(etc.)
SELECT * FROM authors

UPDATE publishers SET pub_1'd= (etc.)
G0

10 Batches, Transactions, Stored Procedures, and Triggers

‘I G0 is not an SQL command. It is the end~of-batch signal that tells
ISQL and ISQL/w that everything since the last GO should be sent to
the server for execution. All commands between (305 are sent to

gether in a batch for execution. There is nothing special about the
word GO—the end-of-batch signal is specific to the front-end tool
(ISQL and ISQL/w use GO), and the server is not aware of it. With
a custom application, a batch is executed with a single dbsqlexec
from DB-Library or SQLExecute from ODBC.

Transactions

Like a batch, a user-declared transaction typically consists of several SQL com-

mands that read and update the database. But unlike a batch, a transaction doesn’t
make any permanent changes until a COMMIT statement is issued, or a trans-
action can undo its changes when a ROLLBACK statement is issued. With a batch,
each command is separately and automatically committed. When a transaction
is declared or SQL Server is configured for implicit transactions, commands are
performed as a unit. Usually, both batches and transactions contain multiple
commands dispatched together. A single transaction can span across batches
(although that’s a bad thing to do from a performance perspective), and a batch
can contain multiple transactions.

Following is a simple transaction. The BEGIN TRAN and COMMIT TRAN state-
ments cause the commands between them to be performed as a unit.

BEGIN TRAN

INSERT authors VALUES(etc.)
SELECT * FROM authors

UPDATE publishers SET pub_1'd= Cetc.)
COMMIT TRAN
60

Transaction processing in SQL Server assures thatall commands within a trans-
action are performed as a unit—even in the presence of a hardware or general
system failure. Such transactions are referred to as having the ACID properties
(atomicity, consistency, isolation, and durability). (For more information about
the ACID properties, refer to pages 38 and 39 in Chapter 2, “A Tour of Microsoft
SQL Server”)

Explicit and Implicit Transactions
By default, SQL Server treats each statement, Whether dispatched individually or
as part of a batch, as independent and immediately commits it. If you want
multiple statements to be part of a transaction, you must wrap the group of state-
ments within BEGIN TRANSACTION and COMMIT or ROLLBACK TRANSAC-

TION statements. You can also configure SQL Server to implicitly start a transaction

#51

PART 3 USING MICROSOFT SQL SERVER

E,‘-?Ti>';!t"i‘r‘=L;i-"

452.

by using SETIMPLICI[TRANSACTIONS ON or by turning the option on globally
using sp_configure ‘user options’, 2. More precisely, take the previous value
for the ’user options’ setting and OR it with (decimal) 2, which is the mask for

IMPLICIT_TRANSACTIONS. For example, if the previous value was (decimal) 8,

you’d set it to 10, since 8 | 2 is 10. If bit operations like 8 I 2 are somewhat for-
eign to you, let SQL Server do the work. You can issue a SELECT8 |2 in ISQL/W
and the row returned will be 10. (But be careful not to assume that you just add

2 to whatever is already there—for example, 10 | 2 is 10, not 12.)

If implicit transactions are enabled, all statements are considered part of a transac-

tion and no work is committed until and unless an explicit COMMIT TRAN (or

synonymously, COMMIT WORK or simply COMMIT) is issued. This is true even
if all the statements in the batch have executed: you must issue a COMMIT in a

subsequent batch before any Work is made permanent.

Error Checking in Transactions
One of the most common mistakes that developers make with SQL Server is to

assume that any error within a transaction will cause the transaction to automati-

cally roll back. If conditional action should result from a possible error, your
multistatement transactions should check for errors by selecting the value of

@@ERROR after each statement. If a nonfatal error is encountered and you do

not take action on it, processing moves on to the next statement. Only fatal errors

cause the batch to be automatically aborted.

*-.:'§:"h.-' '_ l Neither a query that finds no rows meeting the criteria of the WHERE
clause nor a searched UPDATE statement that affects no rows is an

error, and @@ERROR is not set to a nonzero value for either case. If

you want to check for ”no rows affected,” use @@ROWCOUNT, not
@@ERROR.

Syntax errors will always cause the entire batch to be aborted, as will references

to objects that don’t exist (for example, a SELECT from a table that doesn’t ex~

ist). Typically, you’ 11 work out syntax errors and correct references to objects before

you put an application into production, so these Won’t be much of an issue.

However, a syntax error on a statement dynamically built and executed using

EXECUTE('sm'1zg') cannot be caught until execution, so this type of syntax er-

ror does not abort the batch and processing proceeds to the next statement.

Errors that occur in a production environment are typically resource errors that

should be encountered infrequently, especially if you have sufficiently tested to

make sure that your configuration settings and environment are appropriate. Out-
of—resource errors occur when the system runs out of locks, when there is not

enough memory to run a procedure, and so on. For these types of fatal errors,
conditional action based on @@ERROR is moot since the batch will automatically
be aborted.

l0 Balches,TronsacHon; Skwed Procedure; and Tfiggers

The following errors are common:

Lack of permissions on an object

Constraint violations

Duplicates encountered While trying to update or insert a row

Deadlocks with another user

NOT NULL violations

Illegal values for the current datatype

Following is a SQL Server chat group posting from a user who encountered a
nonfatal execution error and assumed that the entire transaction should have been

automatically aborted. When that didn’t happen, the user assumed that SQL Server

must have a grievous bug. Here’s the posting:

Using SQL 6.5 in the example below, the empty tables b and c each
get an insert within one train. The insert into table c is fine, but the
insert to b fails a DRI reference, but the table c still has a row in it.

Isn’t this a major bug?! Should the tran not have been rolled back
implicitly!?

——Kéfib

create table a (

a char(1) primary key)

create table b (
b char(1) references a)

create table c (

c char(1))
90

Create proc test as
begin transaction
insert c values (‘X')

Insert b values (‘X') --Fails reference
commit transaction

go

exec test

go

select *

from c --Returns ‘X' 1!

453

PART 3 Uswc MICROSOFT SQL SERVER

454

The Statements, however, are performing as expected; the bug is in the way the
user wrote the transaction. The transaction has not checked for errors for each

statement and zmconditionally commits at the end. So even if one statement fails

with a nonfatal execution error like a constraint or permissions violation, execution
proceeds to the next statement. Ultimately the COMMIT is executed, so all the
statements without errors are committed. T/oars exactly what theprocedure has
been told to do. If you want to roll back a transaction if any error occurs, you
must check @@ERROR or use SET XACT_ABORT.

Here is an example of the procedure rewritten to perform error checking, with
a branch to perform a rollback if any error is encountered:

CREATE PROC test as
BEGIN TRANSACTION

INSERT c VALUES (‘X’)

IF (@@ERROR <> 0) GOTO on_error

INSERT b VALUES (‘X’) -- Fails reference
IF (@@ERROR <> 0) GOTO on_error

COMMIT TRANSACTION
RETURN(0)

on_error:

ROLLBACK TRANSACTION
RETURN(1)

This simple procedure illustrates the power of Transact—SQL. The global variable
@@ERROR is set for the connection after each statement. A value of 0 for @@ER-

ROR means no error occurred. Given the data the user provided, the INSERT
statement on table 19 will fail with a foreign key violation. The error message for
that type of failure is error 547, with text such as this:

INSERT statement conflicted with COLUMN FOREIGN KEY constraint

'FK_b_b_723BFC65'. The conflict occurred in database ‘pubs’,
table 'a', column 'a'

Consequently, @@ERROR would be set to 547 following that INSERT statement.
Therefore, the IF (@@ERROR <> 0) statement evaluates as TRUE, and execution
follows the GOTO to the on_error.- label. Here, the transaction is rolled back. The
procedure terminates with a return code of 1 because the RETURN(1) statement
was used. Had the branch to on_error: not been followed (by virtue of @@ERROR
not being 0), the procedure would have continued line—by—line execution. It would
have reached COMMIT TRANSACTION} and then it would have returned value
0 and never made it all the way to the on_error.- section.

As you do with most programming languages, you should make sure that a status

is returned from a procedure to indicate success or failure (and/or other possible
outcomes) and that those return status codes are checked from the calling rou-

l0 Batches, Transactions, Stored Procedures, and Triggers

tines. In Keith’s original code, an “EXEC test” invoked the procedure. This ap-
proach is perfectly legal and could be done equally well with a procedure that
returns 0 for SUCCESS and 1 for FAILURE. However, simply using “EXEC test”

will not directly provide information about whether the procedure performed as
expected. A better method is to use a local variable to examine the return code

from that procedure:

DECLARE @retcode int
EXEC @retcode=test

Following execution of the test procedure, the local variable @retcode will have
the value 0 (if no errors occurred in the procedure) or 1 (if execution branched
to the on_error.- section).

We added the SET XACT_ABORT option in version 6.5 to help users like Keith. If

this option is set, any error, not just a fatal error (equivalent to checking @@ERROR
<> 0 after every statement), will terminate the batch. Here is another way to
ensure that nothing is committed if any error is encountered:

CREATE PROC test AS

SET XACT_ABORT ON
BEGIN TRANSACTION
INSERT C VALUES ('X')

INSERT b VALUES (‘X’) " Rails reference
COMMIT TRANSACTION
G0

EXEC test
G0

SELECT * FROM C

The output:

(0 rows affected)

Note that the name of the XACT_ABORT option is a bit of a misnomer because

the current batch, not simply the transaction, will be immediately aborted if an

error occurs, just as it is when a fatal resource error is encountered. This has
consequences that might not be immediately apparent. For example, if you is-
sued two transactions within one batch, the second transaction would never be

executed because the batch would be aborted before the second transaction got

a chance to execute. More subtly, suppose that I Wanted to use good program-

ming practice and check the return status of the procedure above. (Note that even
though it does not explicitly do a RETURN(), every procedure has a return status
by default, with 0 indicating SUCCESS.)

455

PART 3 USING MICROSOFT SQL SERVER

4515

I’d write a batch like this:

DECLARE @retcode int
EXEC @retcode=test
SELECT @retcode

Yet there is a subtle but important problem here. If the procedure has an error,
the SELECT @RETCODE statement will never be executed: the entire batch will

be aborted by virtue of the SET XACT_ABORT statement. This is why I recom-
mend checking @@ERROR instead of using SET XACT_ABORT. Checking @@ER-
ROR after each statement is a bit more tedious, but it gives you finer control of
execution in your procedures.

No doubt, error handling will be improved in future releases. Unfortunately, error
handling in SQL Server 6.5 can be somewhat messy and inconsistent. For ex-
ample, there is no way to install a routine that means “Do this on any error” (other
than SET XACT_ABORT, which aborts but does not let you specify the actions
to be performed). Instead, you must use something similar to the preceding
examples that check @@ERROR and then do a GOTO. In addition, there is cur-
rently no easy way to determine in advance which errors might be considered
fatal so that the batch can be aborted, versus which errors are nonfatal so that

the next statement can be executed. In most cases, an error with severity level
of 16 or higher is fatal and the batch will be aborted. But syntax that refers to
nonexistent functions are level 15 errors, yet the batch is still aborted. Although
you can use an @@ERROR to return the specific error number, no global variable
such as @@SEVERITY is available to indicate the error’s severity level. Instead,
you must subsequently select from the sysmessages table to see the severity level
of the last error. To further complicate matters, some level 16 errors are not fatal.
Following is a list of the most common nonfatal level 16 errors:

Error Error Message

515 Attempt to insert the value NULL into column ’%.'5’, table ’%.*s’; column
does not allow nulls. %s fails.

544 Attempt to insert explicit value for identity column in table ’%.*s’ when
IDENTITY_INSERT is set to OFF.

547 0/65 statement conflicted with %s %s constraint ’%.*s’. The conflict occurred
in database ’%.*s’, table ’%.*'s’%s%."s%s.

550 The attempted insert or update failed because the target view either specifies
WITH CHECK OPTION or spans a View which specifies WITH CHECK
OPTION and one or more rows resulting from the operation did not qualify
under the CHECK OPTION constraint.
 m__

I0 Batches, Transactions, Stored Procedures, and Triggers

Admittedly, the rules are hardly consistent, and this area is ripe for some atten-
tion in future releases. As you write your procedures, you should keep in mind
that they could be automatically aborted due to an unexpected fatal error or you
can cause them to abort With a nonfatal error. In many applications, you should

add retry logic to your error handler to attempt to reexecute a command if it is
aborted due to a deadlock (error 1205).

Transaction Isolation Levels

The isolation level at which your transaction runs determines your application’s

sensitivity to changes made by others, and consequently it also determines how
long your transaction will need to hold locks to potentially protect against changes
made by others. SQL Server 6.5 offers three isolation—level behaviors (although
syntactically four options are available, if REPEATABLE READ is included):

I READ UNCOMMITTED (dirty read)

I READ COMMITTED (default———READ COMMITTED is equivalent to the

term CURSOR STABILITY, which is used by several other products such
as IBM DB/2)

I SERIALIZABLE

Your transactions will behave differently depending on which isolation level is

set. The saying “Not to decide is to decide” applies here, because every trams-
actioii /9015 cm isolation level wlaetberyoiflve specified it or not. It makes sense for

you to understand the levels and choose the one that best fits your needs.

The syntactical options listed above correspond to the SQL standard
. isolation levels, which are discussed in detail in the Chapter 3 sec-

tion entitled ”The Transaction Manager." In this section, I will discuss
only information that wasn't covered earlier. See Chapter 3 it you
need to refresh your memory.

When using the READ UNCOMMITTED option, keep in mind that you should
deal with inconsistencies that might result from dirty reads. Because share locks
are not issued and exclusive locks of other connections are not honored (that is,

the data pages can be read, even though they are supposedly locked), it is pos-
sible to get some spurious errors during execution when using the READ UNCOM-
MITTED option. A moment later, reexecuting the same command is likely to work
Without error. To shield your end users from such errors, your applications us-

ing isolation level 0 (dirty read) should be prepared to retry due to spurious 605,
606, 624, or 625 errors. One of these errors might get raised to falsely indicate

457

PART 3 USING MICROSOFT SQL SERVER

that the database is inconsistent. In such a case, what frequently happens is that
an update or insert has been rolled back along with its page allocations, so you’ve
read data pages that no longer exist and logically never did. Ordinarily, locking
will prevent such inconsistencies, but READ UNCOMMITTED takes some short-

cuts and the errors can still occur. The retry logic should be identical to the logic
that would be used to retry on a deadlock condition (error 1205).

Of course, you don't have to add retry logic, but without it the com-
mand will be aborted and your end user might see a scary and con-
fusing message. Adding a good error handler can make your
application much better behaved by enabling an automatic retry,
and the user will never know when such an error is raised.

Phantoms

SQL Server allows you to specify REPEATABLE READ, but this is currently sim-
ply a synonym for SERIALIZABLE. As currently implemented in SQL Server, both
the SERIALIZABLE and REPEATABLE READ options prevent phantoms from
occurring. (As you’ll recall from Chapter 3, phantoms occur when updated rows
suddenly appear in data when it is revisited during a query or another transac-
tion.) I wouldn’t use SERIALIZABLE and REPEATABLE READ as interchangeable
terms, however. A future SQL Server release will likely loosen the consistency
characteristics of REPEATABLE READ and phantoms will be possible. I recom-
mend instead that you specify the isolation level that best fits your current needs.

In some operations, REPEATABLE READ might be all you require, and protect~
ing against phantoms might incur an additional and unnecessary penalty on
concurrency in the future.

Suppose that you’re working with Jane Doe’s records, and when you issue a
requery you need to ensure that only her records haven’t been changed. In fu-
ture releases, it might be possible to lock the range of records with the Jane Doe
key (called a /eey range). This would be a preferable situation if SQL Server had
to scan data to solve a join, for example. The scan wouldn’t have to place locks
that would prevent other transactions from inserting new rows into the ranges
they scanned indirectly.

In version 6.5, all the scanned data would have to be kept locked and new rows
could not be inserted. The current locking is more coarse than you might require,
and thus concurrency is reduced more than is necessary. Because this situation
is likely to change in a future release, you should be aware that the semantics

of REPEATABLE READ might allow phantoms in the future.
j

M153

‘I0 Batches, Transactions, Stored Procedures, and Triggers

Nothing illustrates the differences and effects of isolation levels like seeing them

for yourself with some simple examples. I urge you to run the following examples.

To do so, you’ll need to establish two connections to SQL Server. Remember that

each connection is logically a different user, even if both connections use the

same login ID. (Locks made by one connection affect the other connection, even

if both are logged in as the same user.) In case you can’t run these examples,

I’ll show the SQL scripts and output here.

F. E ._ .,'7-=';4}-_1'-—_'g'§,1.'Jt,:iT. __1'.-4’_~‘=l«E’-j-*.'-"-‘__;--

This example shows a dirty read. A simple command file on the accompanying

CD—ROM, RUN_ISOLATION1.CMD spawns two simultaneous ISQL.EXE sessions,

running the scripts ISOLATION_CNX1.SQL and ISOLATION_CNX2.SQL. Follow-

ing are the scripts and the output (in bold) as contained in the output files
ISOLATION_CNX1.0UT and ISOLATION_CNX2.0UT.

§‘-liillzvliifi/e“I_. The procedures sem_set and sem_wait provide a simple synchroni-
zation mechanism between the two connections. They do nothing
more than set a value and then poll for a value—a handy technique.
You can create these procedures by running the SEMAPHORESQL
script, which is included on the companion CD-ROM.

But this mechanism won't always do the job as it does in this case.
For example, if I put set_sem within a transaction, it could be aborted
or rolled back. Also, for illustration purposes, I sometimes use simple
delays here to coordinate the two scripts. Relying on timing like this
creates the potential for a race condition, and it's not how you'd want
to program a production application.

1SOLATION_CNX2.SQL

USE pubs
GO

EXEC sem_wait 1 -- wait until other connection says can start
BEGIN TRAN

UPDATE authors SET au_lname='Smith'

-- Give other connection chance to read uncommitted data
WAITFOR DELAY "@@0:6@:2@"

ROLLBACK TRAN

EXEC sem_set 0 -- Tell other connection done

(23 rows affected)

459

PART 3 USING MICROSOFT SQL SERVER

~- ISOLATION_CNXl.SOL

-- ITTustrate Read Uncommitted (aka "Dirty Read")

USE pubs
GO

EXEC sem_set 0 -- CTear semaphore to start
G0

-- First verify there's onTy one author named ‘Smith’
SELECT au_Tname FROM authors WHERE au_Tname='Smith'
G0

au_Tname

(1 row affected)

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

-- SignaT other connection that it's ok to update, and then wait

~— for it to proceed. (Obvious possibTe race condition here
-— this is just for iTTustration.)

EXEC sem_set 1

-- wait 10 secs for other connection to update
NAITFOR DELAY "0O@:@0:10"

-- Check again for authors of name ‘Smith’. Now find 23 of them,
-- even though the other connection doesn't COMMIT the changes.
SELECT au_Tname FROM authors WHERE au_Tname='Smith'

au_Tname

460

10 Batches, Transactions, Stored Procedures, and Triggers

Smith
Smith
Smith

Smith
Smith
Smith

Smith
Smith
Smith
Smith

(23 rows affected)

IF (@@R0wCOUNT > 0)
PRINT ‘Just read uncommitted data I!’

Just read uncommitted data ll

-- Now the other connection will roll back its changes:
EXEC sem_wait 0

-- Now check again for authors of name 'Smith'.

-- Find only one now, because other connection did a rollback.
SELECT au__1name FROM authors WHERE au_1name=‘Smith'

au_1 name

(1 row affected)

The scripts above, running simultaneously, illustrate that by setting the isolation
level to READ UNCOMMITTED, you can read data that logically never existed

(a dirty read). The update to Smith was never committed by the ISOLATION-
_CNX2.SQL script, yet the other connection read it. Not only did the connection

read the update, it did so immediately and did not have to wait for the exclusive
lock of the second connection updating the data to be released. In this example,

concurrency is Very high, but consistency of the data is not maintained. By chang-
ing the isolation level back to the default (READ COMMITTED), the same scripts
would never see more than one row containing Smith. But with READ COMMIT-

TED, the connection reading the data must wait until the updating transaction

is done, and this is the tradeoff: higher consistency is achieved (the uncommit-

ted rows are not seen by others), but concurrency is reduced.

46‘!

PART 3 USING MICROSOFT SQL SERVER

462

This example illustrates the semantic differences between selecting data under

the default isolation level of READ COMMITTED (cursor stability) and under the
isolation level of SERIALIZABLE. Use the command file RUN_ISOLATION5.CMD

to run these two scripts simultaneously. Output will be written to ISOLATION3—
_CNX1.0UT and ISOLATION3_CNX2.0UT.

-- ISOLATION3_CNX2.SQL

USE pubs
GO

-- wait untii other connection says can start, then sleep 10 secs
EXEC sem_wait 1

NAITFOR DELAY "00D:0@:10"
G0

UPDATE authors SET au_1name='Smith'
G0

(23 rows affected)

EXEC sem_set 0
EXEC sem_wait 1

-- Teil other connection done with first part
-- wait untii other connection says can start,

-- then sieep 10 secs
GO

WAITFOR DELAY "@00:0@:10"
G0

UPDATE authors SET au_1name='Jones'
G0

(23 rows affected)

-- ISOLATION3_CNXl.SQL

—- Iiiustrate Read Repeatabie/Seriaiizabie (aka Tevei 2 & 3)
USE pubs
G0

UPDATE authors SET au_lname='Doe'

(23 rows affected)

-- Make sure no Smith or Jones

EXEC sem_SET 0
G0

-- Clear semaphore to start

-- First verify there are no authors named ‘Smith’
SELECT au_1name FROM authors WHERE au_lname='Smith'
G0

I0 Batches, Transactions, Stored Procedures, and Triggers

au_1name

(0 rows affected)

SET TRANSACTION ISOLATION LEVEL READ COMMITTED
G0

-- S1'gna1 other connection it's ok to update, then wait for it to

-— proceed. (Obvious poss1'b1e race condition here - this is just
-- for 1'11ustrat1'on.)

EXEC sem_SET 1
GO

BEGIN TRAN

SELECT au_1name FROM authors WHERE au_1name='Sm1'th'
G0

au_1name

(0 rows affected)

WAITFOR DELAY "0@0:00:15"

SELECT au_1name FROM authors WHERE au_Iname='Sm1'th‘

au_1name

463

PART 3 USING M|CRQ5oFT SQL SERVER

464

Smith

Smith
Smith
Smith
Smith

(23 rows affected)

COMMIT TRAN
G0

EXEC sem_wait 0

EXEC sem_SET 1
G0

—- Now do the same thing, but with SERIALIZABLE isoiation

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
GO

BEGIN TRAN

SELECT au_Tname FROM authors WHERE au_Tname='Jones'
G0

au_1name

(0 rows affected)

—— Wait for other connection to have a chance to make and commit
—- its changes
WAITFOR DELAY "@@0:@@:15"

SELECT au_Tname FROM authors WHERE au_Tname='Jones'

au_Tname

(0 rows affected)

COMMIT TRAN
G0

-- Now notice that Jones updates have been done
SELECT au_Tname FROM authors WHERE au_1name='Jones'
GO

l0 Batches, Transactions, Stored Procedures, and Triggers

au_1 name

(23 rows affected)

EXEC sem_SET 0 -- Te11 other connection done

As you can see, when the isolation level was set to READ COMMITTED, doing
the same SELECT twice Within a transaction yielded totally different results: first

no Smiths were found, and then 25 of them appeared. If this were a banking

transaction, these results would be unacceptable. For applications that are less

sensitive to minor changes, or when business functions guard against such in-

consistencies in other ways, this behavior might be acceptable.

After changing the isolation level to SERIALIZABLE, I got the same result (no
Joneses) with both SELECT statements. Immediately after the transaction has

committed, the other connection updated all the names to Jones. So when I again

selected for Jones (immediately after the transaction was committed), the update

took place———but at some cost. In the first case, the other connection was able to
do the update as soon as the first SELECT was processed. It did not have to Wait
for the second query and subsequent transaction to complete. In the second case,
that second connection had to wait until the first connection completed the trans-

action in its entirety. In this example, concurrency was significantly reduced but

consistency was perfect.

465

PART 3 USING MICROSOFT SQL SERVER

Additional Characteristics of Transactions

In addition to isolation levels, it is important to understand the following char-
acteristics of transactions’.

First, a single UPDATE, DELETE, or INSERT/SELECT statement that affects mul-
tiple rows is always an atomic operation and must complete without error or it
is automatically rolled back. For example, if you did a single UPDATE statement
that updated all rows, but one row failed a constraint, the operation would be
terminated with no rows updated. Because there is no way to do error checking
for each row within such a statement, any error rolls back the statement. How-
ever, the batch is not aborted. Execution proceeds to the next available statement

in the batch. This will occur even in INSERT operations that are based on a
SELECT statement (INSERT/SELECT or SELECT INTO).

Like the statements mentioned above, modifications made by a trigger are always
atomic with the underlying data modification statement. For example, if an up-
date trigger attempts to update data but fails, the underlying data modification
operation is rolled back. Both operations must succeed or neither does.

It might not be obvious, but Example 2 (the SERIALIZABLE example) shows that
a transaction can affect pure SELECT operations in which no data is modified.

The transaction boundaries define the statements between which a specified
isolation level will be assured. Two identical SELECT statements might behave
differently if they were executed while wrapped by BEGIN TRAN/COMMIT
TRAN with an isolation level of REPEATABLE READ than they would behave if
they were executed together in the same batch, but not within a transaction.

Finally, another point that might not seem obvious: the SET TRANSACTION
ISOLATION LEVEL setting applies to the entire batch, no matter where or in what

order it appears in the batch. For example, if you have been operating with
REPEATABLE READ, but you want to change the setting to READ COMMITTED,
it would seem natural to put the READ COMMITTED statement at the end of
your batch. However, doing so would change the entire batch to READ COM-
MITTED—including the statements that appeared before it.

Stored Procedures

Now that you’ve learned about batches and transactions, it’s time to discuss
another important capability of Transact—SQL. Storedprocedures enable you to
cache commands at the server for later use. To create a stored procedure, you
take a batch and wrap it inside a CREATE PROCEDURE proc_name AS statement.
After that, you use Transact—SQL with nothing special except for declaring what
parameters will be passed to the procedure.

l0 Batches, Tronsociions, Stored Procedures, and Triggers

To demonstrate how easy it is to create a stored procedure, I’ve written a simple

procedure called get_author that takes one parameter, the ozutl9or__z'd, and re-

turns the names of any authors that have IDs equal to whatever character string

is passed to the procedure.

CREATE PROC get_author @au_id varchar(11)
AS

SELECT au_lname, au_fname
FROM authors

WHERE au_id=@au_id

This procedure can be subsequently executed with syntax like this:

EXEC get_author '172-32-1176'

EXEC get_author @au_1'd='172-32-1176'

You can see that the parameters can be passed anonymously by including val-
ues in order, or the parameters can be explicitly named so that the order in which

they are passed is not important.

If the procedure is the first statement in the batch, using EXEC is optional. How-
ever, I think it’s always best to use EXEC so that later you won’t wind up scratch-

ing your head with confusion, wondering why your procedure won’t execute
(only to realize later that it is no longer the first statement of the batch).

In practice, you’ll probably want a procedure like the one above to be a bit more

sophisticated. Perhaps you’d want to search for author names that begin with a
partial ID that you pass. If you choose not to pass anything, rather than give you
an error message stating that the parameter is missing, the procedure should show

all authors. And maybe you’d like to return some value as a variable, distinct from

the result set returned and from the return code, that you would use to check
for successful execution.

You can do this by passing an output parameter, which has a pass-by reference

capability. Passing an output parameter to a stored procedure is similar to pass—

ing a pointer when calling a function in C. Rather than passing a value, you pass
the address of a storage area in which the procedure will cache a value. That value

is subsequently available to the SQL batch after the stored procedure has executed.
For example, I might want an output parameter to tell me the number of rows
returned by a SELECT statement. While the @@RO\X/COUNT global Variable has
this information, it is maintained only for the last statement executed. If the stored

procedure executed many statements, I’d need to put this value away for safe-
keeping. An output parameter provides an easy way to do this.

467

.2» .3. W». b

PART 3 USING MICROSOFT SQL SERVER

Here’s a simple procedure that selects all the rows from the authors table and

all the rows from the titles table. It also sets an output parameter for each table

based on @@RO\X/COUNT. This value is subsequently available to the calling
batch by checking the variables passed as the output parameters.

CREATE PROC count_tabies @authorcount int OUTPUT,
@t1tTecount int OUTPUT
AS

SELECT * FROM authors

SELECT @authorcount=@@ROwCOUNT
SELECT * FROM titles

SELECT @titlecount=@@R0wCOUNT

RETURN(O)

The procedure would then be executed like this:

DECLARE @a_count int, @t_count int

EXEC count_tabIes @a_count OUTPUT, @t_count OUTPUT

‘ T '|lI_"- - Variables are always local, so I could have used the same names For
both the variables in the procedure and those passed by the batch
as output parameters. In Fact, this is probably the most common way
to invoke them. I chose not to do this here to make it clear that the

variables don't need to have the same name. Even with the same

name, they are in tact dilterent variables because their scoping is
different.

This procedure will return all the rows from both tables. In addition, the vari-
ables @a_coLmt and @t_count will retain the row counts from the authors and

titles tables, respectively.

SELECT authorbcount=@a_count, t1't1ecount=@t_count

Here’s the output:

authorcount titlecount

When creating a stored procedure, you can reference a table, a View, or another

stored procedure that does not currently exist. (In the latter case, you’ll get a
warning message informing you that a referenced object does not exist. As long
as the object exists at the time the procedure is executed, all will be fine.)

ll

Nested Stored Procedures

Stored procedures can be nested and can call other procedures. A procedure
invoked from another procedure can also then invoke yet another procedure. In
such a transaction, the top—level procedure has a nesting level of 1. The first

subordinate procedure has a nesting level of 2. If that subordinate procedure

subsequently invokes another stored procedure, the nesting level will be 3, and
so on, to a limit of 16 nesting levels. If the 16—level limit is reached, a fatal error

will result, the batch will be aborted, and any open transactions will be rolled

back. The nesting—level limit prevents stack overflows that can result from pro-
cedures recursively calling themselves infinitely. The limit allows a procedure to

recursively call itself only 15 subsequent times (for a total of 16 procedure calls).
To determine how deeply a procedure is nested at runtime, you can select the

global variable @@NESTLEVEL.

Unlike nesting levels, SQL Server has no practical limit on the number of stored
procedures that can be invoked from a given stored procedure. For example, a
main, stored procedure could invoke hundreds or more subordinate stored pro-
cedures. If the subordinate procedures don’t invoke other subordinate procedures,

the nesting level never reaches a depth greater than 2.

An error in a nested (subordinate) stored procedure is not necessarily fatal to the

calling stored procedure. When invoking a stored procedure from another stored
procedure, it’s a good idea to use a RETURN statement and check the return value
in the calling procedure. In this way, you can conditionally work with error situ-
ations (as shown in the factorial example below).

Recursion in Stored Procedures

Stored procedures can perform nested calls to themselves, a technique known
as recursion. Only powerful programming languages such as C—and Transact-
SQL—support recursion. Recursion is a technique by which the solution to a
problem can be expressed by applying the solution to subsets of the problem.
Programming instructors usually demonstrate recursion by having students write
a factorial program using recursion to display a ‘table of factorial values for 0./
through 10/. Recall that a factorial of a positive integer n, written as 11/, is the
multiplication of all integers from 1 through 71. For example:

8! =8X7X6X5X4X3X2X1=4032@

(Zero is a special case—0./ is defined as equal to 1.)

I can write a stored procedure that computes factorials, and I can do the recur-
sive programming assignment in Transact—SQL.

469

10 Batches, Transactions, Stored Procedures, and Trlxgcgersyl

PART 3 USING MICROSOFT SQL SERVER

470

~‘*§''. _; I'm not saying recursion is the best way to solve this problem. An
iterative (looping) approach is probably better. This example is simply
tor illustration purposes.

Use Transact*SQL to recursiveiy caiculate factorial
of numbers between 0 and 12

Parameters greater than 12 are disailowed as result
overflows the bounds of an int

CREATE PROC factoriai @param1 int
AS

DECLARE @one_1ess int, @answer int

IF (@param1 < 0 OR @param1 > 12)
BEGIN

—- Ittegai parameter vatue. Must be between 0 and 12.
RETURN -1

END

IF (@param1=0 or @param1=1)
SELECT @answer=1

ELSE

BEGIN

SELECT @one_less=@param1 - 1

EXEC @answer=factoriaI @one_less —- Recursiveiy call itself
IF (@answer: -1)

BEGIN

RETURN -1
END

SELECT @answer=@answer >I< @param1
IF (@@ERROR <> 0)

RETURN -1
END

RETURN(@answer)

Note that when the procedure is initially created, a warning message like the one
shown below will indicate that the procedure is referencing a procedure that
doesn’t currently exist (which is itself in this case):

Cannot add rows to Sysdepends for the current stored procedure
because it depends on the missing object ‘factorial’. The stored
procedure will stili be created.

Once the procedure exists, I can use it to display the standard factorial table that
students generate in C programming classes:

l0 Batches, Transactions, Stored Procedures, and Triggers

DECLARE @answer numeric, @param int
SELECT @param=0
WHILE (@param <= 12)
BEGIN EXEC @answer=factoriaT @param IF (@answer= -1) BEGIN

RAISERROR('Error executing factorial procedure.', 16, -1) RETURN END

SELECT CONVERT(varchar, @param) + 'l = ' + CONVERT(varchar, @answer)
SELECT @param=@param + 1
END

Here’s the return table:

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24

5! = 120
6! = 720
7! = 5040
8! = 40320
91 = 362880
10! = 3628800
11! = 39916800

12! = 479001600

I stopped at 12/ in the factorial procedure because 13/ is 6,227,020,800, which
exceeds the range of a 32-bit (4—byte) integer. However, even without the range

limit, I could have gone only to 15/ because I’d have reached the maximum

nesting depth of 16, which includes recursive calls. The procedure would have
then terminated with error 217:

Maximum stored procedure nesting Tevel exceeded (limit 16)

Notice too that I return -1 if the procedure results in an error or is passed an

illegal parameter. This return code can then be checked for an error.

In C, you need to be sure that you don’t overflow your stack when you use
recursion. Using Transact—SQL shields you from that concern, but it does so by
steadfastly refusing to nest calls more than 16 levels deep. You can also watch
@@NESTLEVEL and take appropriate action before reaching the hard limit. As

is often the case with a recursion problem, an iterative solution could be per-

formed without the restriction of nesting or worries about the stack.

Here is an iterative approach. To illustrate that there is no restriction of 16 levels
since it is simple iteration, I take this exercise further, to 33/. The value from a
RETURN statement, however, is always an int. 80 this version uses an output

parameter declared as numerz‘c(38,0) instead of mt. (This example also illustrates
that a numeric datatype with scale of 0 can be used as an alternative to ml‘ for

471

PART 3 USING MICROSOFT SQL SERVER

472

integer operations that require Values larger than the 4—byte int can handle.) I

stop at 33/ because 34/ would overflow the precision of a numerz'c(38,0) vari-

able. (Note that SQL Server must be started with the -p38 flag to increase the

maximum precision to 38 digits instead of the default of 28.) Here’s the iterative
solution: ’

-— Alternative iterative solution does not have the restriction

-— of 16 nesting levels

CREATE PROC factorialz @paraml int, @answer NUMERIC(38,0) OUTPUT
AS
DECLARE @counter int

IF (@paraml < 0 OR @paraml > 33)
BEGIN

RAISERROR (‘Illegal Parameter Value. Must be between 0 and 33',
16, -1)

RETURN -1
END

SELECT @counter=1, @answer=1

NHILE (@counter < @paraml AND @paraml <> 0)
SELECT @answer=@answer * (@counter + 1), @counter=@counter + 1

RETURN
GO

DECLARE @answer numeric(38, 0). @param int
SELECT @param=0
NHILE (@param <= 33)
BEGIN

EXEC factorialz @param, @answer OUTPUT
SELECT CONVERT(varchar(45). @param) + '1 = '

+ CONVERT(varchar(45). @answer)

SELECT @param=@param + 1
END

And here’s the output table:

0! = 1
1! = 1
2! = 2
3! = 6

4! = 24
5! = 120
6! = 720

7! = 5040
8! = 40320
9! = 362880

l0 Batches, Transactions, Stored Procedures, and Triggers

10! 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000

20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000

26! = 403291461126605635584000000
27! = 10888869450418352160768000000
28! = 304888344611713860501504000000
29! = 8841761993739701954543616000000
30! = 265252859812191058636308480000000

31! = 8222838654177922817725562880000000
32! = 263130836933693530167218012160000000
33! = 8683317618811886495518194401280000000

Nested Transaction Blocks

It is syntactically acceptable for blocks of BEGIN TRANSACTION followed by
COMMIT or ROLLBACK to be nested within other such blocks. This kind of

nesting can also be done with calls to nested stored procedures. However, the

semantics of such a formulation might not be what you would expect if you think

that the transactions are truly nested: they are not. But the behavior is reason-

able and predictable. A ROLLBACK rolls back all levels of the transaction, not

only its inner block. A COMMIT TRAN does nothing to commit the transaction

if the statement is not part of the outermost block, in which case it commits all
levels of the transaction. So the behavior of a COMMIT or a ROLLBACK is not

too orthogonal when the transaction blocks are nested. Only the outermost

COMMIT is able to commit the transaction, but any ROLLBACK will roll back the
entire transaction at all levels. If this were not true, a ROLLBACK in an outer

transaction would not be able to perform its job, because the data would have

already been committed. This behavior allows stored procedures "(and triggers)

to be executed automatically and in a predictable way without your needing to

check the transaction state. A nested stored procedure that does a ROLLBACK

will roll back the entire transaction, including work done by the top~leVel pro-

cedure. At this point, you will get a message similar to the one on the following

page that warns of a mismatch of transaction blocks.

473

PART 3 USING MICROSOFT SOL SERVER

494

Msg 266, Level 16, State 1 V

Transaction count after EXECUTE indicates that a COMMIT or ROLLBACK

TRAN is missing. Previous count = 1. Current count = 0.

In addition, the blocks of BEGIN TRAN and COMMIT or ROLLBACK are deter-

mined only by what actually executes, not by what is present in the batch. If
conditional branching occurs (via IF statements, for example) and one of the
statements doesn’t execute, the statement is not part of a block.

A common misconception about ROLLBACK is that it changes the flow of con-
trol, causing, for example, an immediate return from a stored procedure or a batch.
However, flow of control continues to the next statement, which, of course, could
be an explicit RETURN. ROLLBACK affects only the actual data; it does not af-
fect local variables or SET statements. If local Variables "are changed during a
transaction or if SET statements are issued, those variables and options do not
revert to the values they had before the transaction started. Variables and SET
options are not part of transaction control.

The global variable @@TRANCOUNT keeps count of the depth of executed
BEGIN TRAN blocks. You can think of the behavior of COMMIT and ROLLBACK
in this way: ROLLBACK performs its job for all levels of transaction blocks when-

ever @@TRANCOUNT is 1 or greater. A COMMIT commits changes only when
@@TRANCOUNT is 1.

1“

Beginning on page 476, I'll show you several examples of nesting
transaction blocks. For illustration, I've noted the value oI @@TRAN-

COUNT in the comments. II this discussion isn't totally clear to you, I
suggest that you work through these examples by hand to understand
why the value of @@TRANCOUNT is what it is, why it changes, and
why the behavior of COMMIT or ROLLBACK acts in a way that de-
pends on the @@TRANCOUNT value.

Executing a BEGIN TRAN statement always increments the Value of @@TRAN-

COUNT. If no transaction is active, @@TRANCOUNT is 0. Executing a COMMIT
TRAN decrements the value of @@TRANCOUNT. Executing a ROLLBACK TRAN
rolls back the entire transaction and sets @@TRANCOUNT to 0. Executing either
a COMMIT or a ROLLBACK when there is no open transaction (@@TRANCOUNT
is 0) results in error 3902 or 5905, which states that the COMMIT or ROLLBACK
request has no corresponding BEGIN TRANSACTION. In this case, @@TRAN-
COUNT is not decremented, so it can never go below 0.

Other errors, not of your making, are fatal as well——for example, out of memory,
out of locks, or termination due to a deadlock. Such errors cause an open trans-
action to automatically roll back. If that occurs, @@TRANCOUNT is set to 0, sig-
naling that no open transaction exists. The following incidents cause fatal errors:

10 Batches, Transactions, Stored Procedures, and Triggers

The system runs out of resources such as locks.

The log runs out of space.

Deadlock conditions exist.

Protection exceptions occur (that is, sufficient permissions are unavail-

able on an object).

A stored procedure cannot run (for example, it is not present or you

don’t have privileges).

I Reading or writing a stored procedure or trigger from the sysprocedures

table or the cache is not possible because the system is out of memory

or a procedure cache is too small.

I The maximum nesting level of stored procedure executions has been
reached.

You can’t plan precisely for all of these situations, and even if you could, a new

release could likely add another one. In a production environment, fatal errors
should be few and far between. But as is true in nearly all programming, it’s up

to you to decide whether you want to try to plan for every conceivable problem

that could happen and then deal with each specifically, or whether you will accept

the system default behavior. In SQL Server, the default behavior would typically
be to raise an error for the condition encountered and then, when the COMMIT

or ROLLBACK is executed, raise another that says it has no corresponding trans-

action. For my program, I would probably consider writing some retry logic in

my ODBC or DB—Library application to deal with a possible deadlock condition.

For the other error conditions, I’d probably go with the default error behavior. If

I deploy my application with proper system management, such errors should be

nonexistent or rare. I could also check @@TRANCOUNT easily enough before

executing a ROLLBACK or COMMIT to ensure that a transaction on which to

operate is open.

The nesting of transaction blocks provides a good reason for you not to name
the transaction in a ROLLBACK statement. If, in a rollback, any transaction other

than the top—level transaction is named, error 6401 will result:

Cannot rollback XXX - no transaction or savepoint of that name found.

It’s fine to name the transaction in the BEGIN TRAN block, however. A COM-

MIT can also be named, and it won’t prompt an error if it is not paired in the

top—level branch since it basically is a NOOP in that case anyway (except that it
decrements the value of @@TRANCOUNT). You might choose sometimes to

name the transaction so that you can see which transactions were automatically

rolled back and rolled forward at system startup if you set recoveryflags to 1 using

sp_configure. The error log and event log will then include useful messages
similar to those shown on the next page.

475

PART 3 USING MICROSOFT sot SERVER

96/11/06
96/11/06

96/11/06

96/11/06

96/11/06
96/11/06

10:
10:

10:
10:

52:10.04
52:10.20

l0:52:10.20
10: 52:10.44

52:10.53
52:10.53

spidl
spidl

spidl

spidl

spidl
spidl

Recovering database ‘pubs’.
Recovery dbid 4 ckpt (l039,20) o1dest
tran=(l044,12).

R011 forward transaction 'TRAN_B'
R011 back transaction 'TRAN_A' — was
aborted in dbid 4.

1 transactions ro11ed forward in dbid 4.
1 transactions ro11ed back in dbid 4.

The following batch will result in an error. The statement ROLLBACK TRAN B
will fail, with error 6401. The subsequent ROLLBACK TRANA will succeed be-
cause it is the top—level transaction block:

-- To start with, verify @@TRANCOUNT is 0
SELECT @@TRANCOUNT
BEGIN TRAN A

-- Verify @@TRANCOUNT is 1
SELECT @@TRANCOUNT

-- Assume some real work happens here
BEGIN TRAN B

—— Verify @@TRANCOUNT is 2
SELECT @@TRANCOUNT

-- Assume some rea1 work happens here
ROLLBACK TRAN B

-- @@TRANCOUNT is sti11 2, because the previous ROLLBACK
-- failed due to error 6401

SELECT @@TRANCOUNT -- Assume some real work happens here
ROLLBACK TRAN A

-- This ROLLBACK succeeds, so @@TRANCOUNT is back to 0
SELECT @@TRANCOUNT

The following example is arguably an improvement over the previous attempt.
The first ROLLBACK will execute but will still result in an error. The second
ROLLBACK will fail, with error 3903:

-- The ROLLBACK transaction request has no corresponding BEGIN
-- TRANSACTION. The first ROLLBACK did its job and there is no open-- transaction. ’

-- To start with, verify @@TRANCOUNT is 0
SELECT @@TRANCOUNT
BEGIN TRAN A

-- Verify @@TRANCOUNT is 1
SELECT @@TRANCOUNT

-- Assume some rea1 work happens here
BEGIN TRAN B

-- Verify @@TRANCOUNT is 2
SELECT @@TRANCOUNT

-- Assume some rea1 work happens here

476

in dbid 4.

l0 Batches, Transactions, Stored Procedures, and Triggers

ROLLBACK TRAN -- Notice the tran is unnamed but works
-- That ROLLBACK terminates transaction. @@TRANCOUNT is now 0.

SELECT @@TRANCOUNT

-- The following ROLLBACK will fail because there is no open
-- transaction (that is, @@TRANCOUNT is O)
ROLLBACK TRAN

-- @@TRANCOUNT does not go negative. It remains at 0.
SELECT @@TRANCOUNT

In the following example, the second ROLLBACK will not execute because
@@TRANCOUNT is 0 following the prior ROLLBACK. If you syntactically nest
transactions, be careful not to nest multiple ROLLBACK statements in a way that
would allow more than one to execute. To illustrate that COMMIT behaves dif—

ferently than ROLLBACK, note that the following example will run without er-
ror. However, the statement COMMIT TRAN B does not commit any changes. It
does have the effect of decrementing @@TRANCOUNT, however.

-- To start with, verify @@TRANCOUNT is 0
SELECT @@TRANCOUNT
BEGIN TRAN A

-- Verify @@TRANCOUNT is 1
SELECT @@TRANCOUNT

-- Assume some real work happens here
BEGIN TRAN B

-- Verify @@TRANCOUNT is 2
SELECT @@TRANCOUNT

-— Assume some real work happens here
COMMIT TRAN B

-- The COMMIT didn't COMMIT anything, but does decrement
-- @@TRANCOUNT

-- Verify @@TRANCOUNT is back down to 1:
SELECT @@TRANCOUNT

-- Assume some real work happens here
COMMIT TRAN A

-— The COMMIT on previous line does commit the changes and
-- closes the transaction

-- Since there's no open transaction, @@TRANCOUNT is again 0
SELECT @@TRANCOUNT

In summary, nesting transaction blocks is perfectly valid, but you must under-
stand the semantics as I’ve discussed and shown above. If you understand when

@@TRANCOUNT is incremented, decremented, and set to 0, and you know the

simple rule for COMMIT and ROLLBACK, you can pretty simply produce the
effect you want.

477

PART 3 USING MICROSOFT SQL SERVER

4i"B

Savepoints

Often, users will nest transaction blocks, only to find that the behavior is not what
they want. What they really want is for a savepoint to occur in a transaction. A
savepoint provides a point up to which a transaction can be undone—it might
have been more accurately named a “rollback point.” A savepoint does not Com-
mit any changes to the database—only a COMMIT statement can do that.

SQL Server allows you to use savepoints via the SAVE TRAN statement, which
doesn’t affect the @@TRANCOUNT value. A rollback to a savepoint (not a trans-
action) does not affect the @@TRANCOUNT either. However, the rollback must
explicitly name the savepoint: using ROLLBACK without a specific name will roll
back the entire transaction.

In the first nested transaction block example shown on the preceding pages, a
rollback to a transaction name failed with error 6401 because the name was not
the top~level transaction. Had the name been a savepoint instead of a transac-
tion, no error would result, as this example shows:

--To start with, verify @@TRANCOUNT is 0
SELECT @@TRANCOUNT
BEGIN TRAN A

—— Verify @@TRANCOUNT is 1
SELECT @@trancount

-- Assume some real work happens here
SAVE TRAN B

-— Verify @@TRANCOUNT is still 1. A savepoint does not affect it.
SELECT @@TRANCOUNT ‘

-— Assume some real work happens here
ROLLBACK TRAN B

-— @@TRANCOUNT is still 1, because the previous ROLLBACK
-- affects just the savepoint, not the transaction
SELECT @@TRANCOUNT

-- Assume some real work happens here
ROLLBACK TRAN A

-- This ROLLBACK succeeds, so @@TRANCOUNT is back to 0
SELECT @@TRANCOUNT

Stored Procedure Parameters

Stored procedures take parameters, and you can give parameters default Values.
If you do not supply a default value, a specific parameter will be required. If you
do not pass a required parameter, an error like this will result:

Msg 201, Level 16, State 2

Procedure sp_passit expects parameter @param1, which was not supplied.

l0 Batches, Transactions, Stored Procedures, and Triggers

You can pass values by explicitly naming the parameters or by furnishing all the
parameter values anonymously but in correct positional order. You can also use

the keyword DEFAULT as a placeholder in passing parameters. NULL can also

be passed as a parameter (or defined to be the default). Here’s a simple example
with results in bold:

CREATE PROCEDURE pass_params

@param0 int=NULL, -- Defaults to NULL
@param1 int=1 , -- Defaults to 1
@param2 tnt=2 -- Defaults to 2
AS

SELECT @param0, @param1, @param2
GO

EXEC pass_params -— PASS NOTHING ~ ALL Defaults
(null) 1 2

EXEC pass_params 0, 10. 20 -- PASS ALL, IN ORDER
0 10 20

EXEC pass_params @param2=200. @param1=NULL

-- Explicitly identify last two params (out of order)
(null) (null) 200

EXEC pass_params 0. DEFAULT, 20
-- Let paraml default. Others by place.
0 1 20

Executing Batches, or
What's Stored About a Stored Procedure?

Typically, when a batch of Transact—SQL commands is received from a client
connection, the following high—level actions are performed:

Step 1: Parse commands and create the sequence tree. The command parser
checks for proper syntax and translates the Transact—SQL commands into an

internal format that can be operated on. The internal format is known as a se-

quence tree or query tree. The command parser handles these language events.

Step 2: Compile the batch. An execution plan is generated from the sequence
tree. The entire batch is compiled, queries are optimized, and security is checked.

The execution plan contains the necessary steps to check any constraints that
exist. If a trigger exists, the call to that procedure is appended to the execution

plan. (Recall that a trigger is really a specialized type of stored procedure. Its plan
is cached, and the trigger does not need to be recompiled every time data is
modified).

479

PART 3 USING MICROSOFT SQL SERVER

JED

The execution plan includes:

I The complete set of necessary steps to carry out the commands in the
batch or stored procedure

The steps needed to enforce constraints (for example, for a foreign key,
this would involve checking values in another table)

I A branch to the stored procedure plan for a trigger, if one exists

Step 3: Execute. During execution, each step of the execution plan is dispatched
serially to a “manager” that is responsible for carrying out that type of command.
For example, a data definition command (in DDL), such as CREATE TABLE, is
dispatched to the DDL Manager. DML statements, such as SELECT, UPDATE,
INSERT, and DELETE, go to the DML Manager. Miscellaneous commands, such

as DBCC and WAITFOR, go to the Utility Manager. Calls to stored procedures
(for example, EXEC sp_Who) are dispatched to the Stored Procedure Manager.
A statement with an explicit BEGIN TRAN interacts directly with the Transaction
Manager.

Contrary to what many people think, stored procedures do not permanently store
the execution plan of the procedure. (This is afeozture———the execution plan is
relatively dynamic.) Think for a moment about why it is important for the ex-
ecution plan to be dynamic. As new indexes are added, preexisting indexes are
dropped, constraints are added or changed, and triggers are added or changed;
or as the amount of data changes, the plan can easily become obsolete.

So, wbafs stored about at storedprocedure?

The sequence tree and the SQL statements that were used to create the proce-
dure are stored, eliminating the need to reparse the Transact—SQL statements and
re—create the sequence tree. The first time a stored procedure is executed after
SQL Server was last restarted, the sequence tree is retrieved and an execution

plan is compiled. The execution plan resides in the portion of memory known
as the procedure cache. The execution plan is then cached, and it remains in the

procedure cache for possible reuse until it is forced out in a least recently used
(LRU) manner. Hence, a subsequent execution of the stored procedure can skip
not only Step 1, parsing, but also Step 2, compiling, and go directly to Step 3,
execution. Steps 1 and 2 always add some overhead. and sometimes can be as

costly as actually executing the commands. Obviously, if you can eliminate the
first two steps in a three—step process, you've done well. That’s what stored
procedures let you do.

As I mentioned above, the execution plan of a stored procedure resides inthe

portion of SQL Server’s cache known as the procedure cache. The procedure
cache must be big enough to store at least one copy of the biggest execution plan
you will execute. If it is not big enough, you will get an error stating that insuf-
ficient memory is available to run the procedure.

I0 Batches, Transactions, Stored Procedures, and Triggers

j‘._It_Lz'- ‘ 5 L The SQL Server cache is composed of the procedure cache, which
' keeps execution plans of stored procedures, and the data cache. The

amount of space that is allocated to each area is a function of the
sp_configure ‘procedure cache‘ setting, which is expressed as a
percentage of available cache rather than as a specific amount. The
remaining memory is then made available for data caching.

When you execute a stored procedure, if a valid execution plan exists in the

procedure cache, it will be used (eliminating the parsing and sequencing steps).
When the server is restarted, no execution plans will be in the cache, so the first

time the server is restarted a stored procedure will be compiled.

=-_l You can preload your procedure cache with execution plans for
stored procedures by defining a startup stored procedure that ex-
ecutes the procedures you want to have compiled and cached.

After a procedure executes, its plan remains in the procedure cache and is re-

used the next time any connection executes the same procedure. However, an

execution plan is not reentrant: that is, a copy of the plan must be available for

every connection attempting to execute the procedure. So if you expect 10 dif-

ferent connections to simultaneously execute a stored procedure, you should

expect 10 copies of the execution plan to be in memory (provided that you have

sufficient space in the procedure cache).

Figures 10-1 and 10-2 show execution with and without a stored procedure:

EXECUTE Stored Procedure

Compile ->Execute —>Execute -> Execute

Figure 10-1. Execution is more efficient with a storedprocedure.

EXECUTE Batch (Without Stored Procedure)

Parse -> Compile —> Execute

Parse l-> Compile -> Execute

Parse -> Compile -> Execute

Figure 10-2. Execution is less efficient without a stored procedure.

48'!

PART 3 USING MICROSOFT SQL SERVER

482

Step 4: Recompile execution plans. By now it should be clear that sequence trees
persist in the database but execution plans do not. Execution plans are cached

in memory (in the procedure cache). But sometimes they can be invalidated and
a new plan generated.

So, when is a new execution plan compiled?

When a copy of the execution plan is not available in memory.

When an index on a referenced table is dropped.

When a table referenced in the procedure is altered using ALTER TABLE.

This includes adding datatypes or adding, changing, or dropping con— .
straints. Any changes to the table results in the schema column of the

sysobjects table being incremented. If the schema value changes after
the execution plan is created, the plan will be invalidated at runtime
and then re—created.

When a rule or default is bound to the table or column. This is basically
the same as altering a table. Binding a rule or default increments the

schema column of sysobjects for the given table, invalidating the plans
of any procedures that reference the table.

When the table has been specifically identified, using sp_recompile, to
force recompilation of any stored procedures referencing it. The system
procedure sp_recompile increments the schema column of sysobjects
for a given table. This invalidates any plans that reference the table, as

described in the examples above. You do not specify a specific proce-
dure to be recompiled—instead, you simply supply the name of a table

to sp_recompile and all execution plans or procedures referencing the
table will be invalidated. If you add a new index or update statistics on
the data, it is a good idea to execute sp_recompile if you want the new

options or information to be considered. (If its practical to do so, you
can simply restart SQL Server. All stored procedures will then get new
execution plans the next time they are run.)

When the stored procedure was created using the WITH RECOMPILE
option. A stored procedure can be created using WITH RECOMPILE to

ensure that its execution plan will be recompiled for every call and will
never be reused. Using WITH RECOMPILE is not common, but it can be

useful if the procedures take parameters and the values of the parameters
differ widely, resulting in a need for different execution plans to be for-
mulated. For example, if a procedure is passed a value to be matched

in the WHERE clause of a query, the best way to carry out that query
can depend on the value passed. SQL Server keeps a page of sample
data for each index as a histogram to help it decide whether the index

is selective enough to be useful.

l0 Batches, Transactions, Stored Procedures, and Triggers

For a given value, while an index might be highly selective, distribution sta-

tistics might indicate that only 5 percent of the rows have that value. Although
the index would need to be visited, it would exclude many pages of data from

having to be visited. Using the index would still be a good strategy. Using
another Value, the index might not be so selective. Rather than use only the

index to visit most of the data pages (ultimately doing more 1/0, since you’re

reading both the index and the data), you’d be better off simply scanning the

data and not reading the index.

For example, suppose that I have an index on the color column of my auto-

mobile table. Forty percent of the cars are blue, 40 percent are red, and 5

percent each are yellow, orange, green, and purple. It is likely that a query

based on color should table scan if the color being searched on is blue or red;

but it should use the index for the other colors. Without using the WITH

RECOMPILE option, the execution plan created and saved would be based

on the color value the first time the procedure was executed. So if I passed

blue to the procedure the first time ‘it executed, I would get a plan that table

scanned. Subsequently, if I pass yellow, I might be able to use the previous

plan that was created for blue. In this case, however, I’d be doing a table scan,

when I’d be better off using the index. In such a case, when there is a lot of

Variance in the distribution of data and execution plans are based on the

parameters passed, it makes sense to- use the WITH RECOMPILE option.

This example should also make it clear that two execution plans for the same

procedure can be different. Suppose that I am not using WITH RECOMPILE,

and I execute the procedure for both blue and green simultaneously from two

different connections. Assume for a moment that no plan is cached (each will

generate a new plan, but one plan will use the index and the other will not).

When a subsequent request for red arrives, the plan it would use is a matter

of chance. And if two simultaneous calls come in for red and each plan is

available, the two equivalent requests will execute differently because they’ll

use different plans. If, as you’re processing queries, you see significant devia-

tions in the execution times of apparently identical procedures, think back

to this example.

When the stored procedure is executed using the WITH RECOMPILE

option. This case is similar to the preceding one, except that here the

procedure isn’t created with the option, but rather the option is specified

when the procedure is called. The WITH RECOMPILE option can always

be added on execution, forcing a new execution plan to be generated.

The new plan is then available for subsequent executions (not using

WITH RECOMPILE). Executing using the WITH RECOMPILE option

can be appropriate if there are significant deviations in parameters being

passed or if you want a new plan to be generated because the histo-

gram of distribution was updated (UPDATE STATISTICS) or new indexes

that you think might help were added.

483

PART 3 USING MICROSOFT SQL SERVER

4811

Storage of Stored Procedures
With each new stored procedure, a row is created in the sysobjects table, as occurs

for all database objects. Information about the sequence tree that is used inter-

nally by SQL Server is stored in the sysprocedures table. The actual binary rep-
resentation of the sequence tree is not exposed as part of the table—think of it

as a hidden column of sysprocedures. The text of a stored procedure (including
comments) is stored in syscomments, which is typically useful. This allows pro-
cedures like sp_helptext to display the source code of a stored procedure so
that you can understand what’s going on, and it allows stored procedure editors
and debuggers to exist.

For most users and developers, the fact that the full text of a procedure is stored

in English text is clearly a feature of SQL Server. But this text storage can also
become the factor limiting how big a procedure can be. Prior to version 6.0, if

you hit a size limit for your procedure, the execution plan was likely the cause.
The execution plan was limited to 64 pages (128 KB, given 2-KB pages). Ver-
sion 6.0 eliminated that limit, and as long as the procedure cache is big enough
to hold one copy of the plan, it can execute. However, the size of a stored pro-
cedure might still be constrained due to the amount of text that can be stored

in syscomments for a given stored procedure. '

In the syscomments table, a throwback to the days before the text datatype ex-
isted, the text of procedures is kept in a column named text—but the text col-

umn is defined as :/arcl9ar(255). Any given procedure can have many rows in
syscomments, with comment chunks in lengths of up to 255 characters, and those

chunks are sequenced by the calm’ field. But coltd was rather shortsightedly
defined as a tmymt to ostensibly save a byte. Because the maximum value a
tmyint can take is 255, up to 255 chunks of text can be included, each of which
can be up to 255 bytes in size. Hence, the maximum size of the text used to create

a stored procedure is 255 X 255, or 65,025 bytes (roughly 64 KB).

Remember that comments are also stored—so in a pinch, you can strip the
comments from your procedures. A better solution, though, is to break up your
stored procedure into multiple stored procedures, since procedures can call other
procedures. Not only does this get you past the 64—KB text limit, but it makes

your code more maintainable since smaller, more discreet modules are prefer-
able to a single huge module.

Encrypting Stored Procedures

With the rollout of version 6.0, we learned somewhat painfully that some users
did not appreciate as a feature the ability to store the text of stored procedures.
Several independent software vendors (ISVs) had already built integrated solu-

.. _,,,,.,V

I0 Batches, Transactions, Stored Procedures, and Triggers

tions or tools that created stored procedures to use with earlier versions of SQL

Server. In most cases, these solutions were sophisticated applications, and the

ISVs viewed the source code as their proprietary intellectual property. They had
correctly noticed that the text of the procedure in syscomments didn’t seem to

do anything. If they set the text field to NULL, the procedure still ran fine—so

that’s what these ISVs did. In this way, they wouldn’t be publishing their proce-
dure source code with their applications. Unfortunately, when it came time to

upgrade a database to version 6.0, this approach exposed a significant problem
for their applications. The internal data structures for the sequence plans had

changed between versions 4.2 and 6.0. ISVs had to re—create procedures, triggers,
and views to generate the new structure. Although our Setup program was de-

signed to do this automatically, it accomplished the tasks by simply extracting

the text of the procedure from syscomments and then dropping and re-creating

the procedure using the extracted text. It’s no surprise that this automatic ap-

proach failed for procedures in which the creator had deleted the text.

The truth is that we were simply not aware of the number of ISV application

designers who had deleted the text in this way. When we learned of this prob-

lem after we released our beta version, we immediately understood why devel-

opers had felt compelled to delete the text. Nonetheless, we could not undo the

work that had already been done. Developers with these ISVs had to dig out their

original DDL scripts and manually drop and re—create all their procedures. While

perhaps possible, it wasn’t really practical for us to create a converter program

that would operate purely on the internal data structures used to represent pro-

cedures and views. Attempting this would have been like developing a utility to

run against an executable program and have it backward engineer the precise

source code (more than a disassembly) that was used to create the binary. The

SQL source code compilation process is designed to be a descriptive process that

produces the executable, not an equation that can be solved for either side.

Following the 6.0 beta release, but before the final release of version 6.0, we added

the ability to encrypt the text stored in syscomrnents for stored procedures, trig-

gers, and views. This allowed programmers to protect their source code, with-

out making it impossible for our upgrade process to re—create stored procedures,

triggers, and views in the future. You can now protect your source by simply
adding the modifier WITH ENCRYPTION to CREATE. No decrypt function is

exposed (which would defeat the purpose of hiding the textlike source code).

Internally, SQL Server can read this encrypted text and upgrade the sequence

trees when necessary. Because the text is not used at runtime, no performance

penalty is associated with executing procedures created using WITH ENCRYPTION.

485

PART 3 USING MICROSOFT SQL SERVER

cleartext 364528332

486

You give up some capabilities when you use WITH ENCRYPTION. For
example, you can no longer use the sp_helptext stored procedure or
object editors that display and edit the text of the stored procedure,
and you cannot use a source-level debugger For Transact-SQL, like the
one available in Microsoft Visual C++ Enterprise Edition. Unless you
are concerned about someone seeing your procedures, you shouldn't
use the WITH ENCRYPTION option.

If a procedure, trigger, or View is created using WITH ENCRYPTION, the texttype

column of syscomments will have its third bit set to ON. (It will be OR’ed with

decimal number 4.) For now, this simply means that the decimal Value of texttype

would be 6—the only other bit to be set would be the second one (decimal 2),

indicating that the text in that procedure resulted from a CREATE statement and

not a user~supplied comment. If you want to programmatically determine whether

a procedure is encrypted, it is safer to check the value of the third bit by AND’ing

it with 4 than it is to look for the Value of 6. New bits could get added in the

future, and the Value of 6 might no longer be accurate.

To illustrate their effects on syscomments, two procedures—one encrypted and

one not—are created in the following example:

CREATE PROCEDURE cleartext
AS
SELECT * FROM authors
GO

CREATE PROCEDURE hidetext WITH ENCRYPTION
AS
SELECT * FROM authors
GO

SELECT sysobjects.name, syscommentsnr FROM syscomments, sysobjects
WHERE sysobjects.id=syscomments.td AND
(

sysobjects.1'd=OBJECT_ID('hidetext') OR
sysobjects .1'd=0BJ ECT_ID(‘cl ea rtext')
)

Here’s the output:

number

1

colid texttype

CREATE PROCEDURE
cleartext

AS
SELECT * FROM
authors

l0 Batches, Transactions, Stored Procedures, and Triggers

hidetext 380528389 1 1 6 8 Lysavuooéf:3j"mE/
@aEAx+"z%Ux36t2Da

&U04ltRh]ANnZ“

-2Zc‘>{'6lUvv,D“

To find created objects that have encrypted text, you can use a simple query:

—- Find the names and types of objects that have encrypted text
SELECT name, type FROM syscomments, sysobjects
WHERE sysobjects.id=syscomments.1d

AND texttype & 4 > 0

Here’s the output:

hidetext P6

If you try to run sp_helptext against an encrypted procedure, it will return a

message stating that the text is encrypted and cannot be displayed:

EXEC sp_he1ptext 'h1‘detext'

The object's comments have been encrypted.

Temporary Stored Procedures
Temporary stored procedures allow a sequence tree to be set up and an execu-

tion plan to be cached, but the object’s existence, the sequence tree, and the text

of the procedure are stored in the temporary database (tempdb) system tables———

in sysobjects, sysprocedures, and syscomments. Recall that tempdb is re—created

every time the server is restarted, so these objects do not exist after SQL Server

is shut down. During a given SQL Server session, you can reuse the procedure

without permanently storing it. If you are familiar with the PREPARE/EXECUTE

model used by several other products, especially with the Embedded SQL pro-

gramming paradigm, you’ll know that temporary procedures use a similar model.

The SQL Server ODBC driver, in fact, creates and executes temporary stored

procedures when SQLPrepare and SQLExecute are performed.

Typically, you’ll use a temporary stored procedure when you want to regularly

execute the same task several times in a session, although you might use differ-

ent parameter values, and you don’t Want to permanently store the task. You could

conceivably use a permanent stored procedure and drop it when you are finished,

but you’d inevitably run into cleanup issues if a stored procedure was still hanging

around and the client application terminated without dropping the procedure.

Because temporary stored procedures are deleted automatically when SQL server

is shut down (and tempdb is created anew at startup), cleanup is not an issue.

(And if you explicitly drop your temporary objects when you’re finished with

them, you might be able to keep tempdb at a smaller size.)

487

PART 3 USING MICROSOFT SQL SERVER

433

Just as SQL Server has three types of temporary tables, it also has three types of

temporary stored procedures: private, global, and those created from direct use
of tempdb.

Private temporary stored procedures .
By adding a single pound sign (#) at the beginning of the stored procedure name
(for example, CREATE PROC #get_autbor AS. . .), you can create the procedure

from within any database as a private temporary stored procedure. Only the
connection that created the procedure can execute it, and you cannot grant privi-
leges on it to another connection. The procedure exists for the life of the creat-

ing connection only; that connection can explicitly use DROP PROCEDURE on

it to clean up sooner. Because the scoping of a private temporary table is spe-
cific only to the connection that created it, you will not encounter a name col-

lision should you choose a procedure name that’s used by another connection.
As with local variables, you use your private version and what occurs in other
connections is irrelevant.

Global temporary stored procedures
By prefixing two pound signs (##) to the stored procedure name (for example,
CREATE PROC ##get_autlaor AS...), you can create the procedure from within

any database as a global temporary stored procedure. Any connection can sub-

sequently execute that procedure without EXECUTE permission being specifi-
cally granted. Unlike private temporary stored procedures, only one copy of a
global temporary stored procedure exists for all connections. If another connec-

tion created a procedure with the same name, the two names will collide and

the CREATE PROCEDURE statement will fail. A global temporary stored proce-
dure exists until the creating connection terminates and all current execution of

the procedure completes. Once the creating connection terminates, however, no

further execution is allowed. Only those connections that have already started
executing are allowed to finish.

Procedures created from direct use of tempdb
Realizing that tempdb is re—created every time SQL Server is started, you can create
a procedure in tempdb that fully qualifies objects in other databases. Procedures

created in tempdb in this way can exist even after the creating connection is

terminated, and the creator can specifically grant and revoke execute permissions
to specific users. To do this, the creator of the procedure must have CREATE

PROCEDURE privileges in tempdb. Privileges in tempdb can be set up in one of

two ways: you can set your privileges in model (the template database) so that

they will be copied to tempdb when it is created at system restart, or you can
set up an cmtostart procedure to set the tempdb privileges every time SQL Server

is started; Here’s an example of creating a procedure in tempdb and then execut-
ing it in the pubs database:

l0 Batches, Transactions, Stored Procedures, and Triggers

USE tempdb
GO

CREATE PROC testit AS

SELECT * FROM pubs.dbo.authors
G0

-- Executing the procedure created above from the pubs database
USE pubs

EXEC tempdb..testit

While we’re on the subject of temporary objects, keep in mind that a private
temporary table created within a stored procedure is not visible to the connec-

tion after the creating procedure completes. It is possible, however, to create a

local temporary table before executing a stored procedure and make the table

visible to the stored procedure. The scoping of the temporary table extends to
the current statement block and all subordinate levels.

L" You can use the @@NESTLEVEL global variable to check For the visi-
bility oi temporary tables. A temporary table created at nest level 0
will be visible to all further levels on that connection. A table created

within a procedure at nest level i, tor example, will not be visible
when execution returns to the calling block at nest level 0. A global
temporary table, or a table directly created in fempc/b without using
either # or ##, will be visible no matter what the nesting level.

System Stored Procedures and the Special sp_ Prefix
SQL Server installs a large number of system stored procedures that are used

mostly for administrative and informational purposes. In many cases, these are

called behind the scenes by the SQL—DMO objects used by SQL Enterprise Man-

ager and other applications. But the system stored procedures can also be called

directly, and only a few years ago, doing so was the primary mechanism by which

SQL Server was administered. Old—time SQL Server users (like me) were indoc-

trinated into using system stored procedures, and I confess that my primary

administration tool for SQL Server remains using these system stored procedures

directly, even though I recognize that the administration tools of today make

things much easier. (I have made some headway into the modern era though. I

now use the more graphical ISQLWEXE instead of the character—based ISQLEXE!)

With the great tools and interfaces that are a core part of SQL Server today, there

is not much reason to work with these system stored procedures directly any-

more. But it’s good to be familiar with them—understanding them can help you

understand the operations that occur on the system tables and can take much

of the mystery out of what’s going on behind the scenes with the graphical tools.

489

PART 3 USING MICROSOFT SQL SERVER

490

All of the system stored procedure names begin with sp_, and most exist in the
master database. This is more than just a convention. A procedure created in the

master database that begins with sp_ is uniquely able to be called from any other

database without the necessity of fully referencing the procedure with the data-

base name. This can be useful for procedures you create as well. The sp_ magic

works even for extendedstoredprocedures, which are user—written calls to dynamic

link libraries (DLLs). By convention, extended stored procedure names begin with

xp_, but the sp_ prefix and its special property can be applied to them as well

(but only when added to the master database). In fact, some extended proce-
dures that are supplied as part of the product, such as those used to create

Automation objects (for example, sp_OACreate), use the sp_ prefix so that they

can be called from anywhere, although they are actually functions in a DLL, not

a Transact—SQL stored procedure.

If you look carefully through the SQL Server system tables, you will find proce-

dures beginning with sp_ that are not among the documented system stored

procedures. Typically, these procedures exist to be called by some other system

stored procedure that is exposed; to support some SQL Server utility, such as SQL

Enterprise Manager; or to provide statistics to the Windows NT Performance

Monitor. These procedures are not documented for direct use because they exist

only to support functionality exposed elsewhere—they do not provide that func-

tionality independently. There is nothing secret about these procedures, and their

text is exposed clearly in syscommerzts. You are welcome to explore them to see

what they do and use them if you want. But unlike the documented stored pro-

cedures, maintaining system stored procedures or striving to make them exhibit

exactly consistent behavior is not a commitment in future releases. Of course, if

your applications were to become dependent on one of these procedures, you

could certainly maintain your own version of it to perform exactly as you specify,

or you could use one of them as a starting point and customize it to suit your
needs (under a different name).

The SQL Server Transact—SQL Reference explains the specifics of each system

stored procedure, so there is no need to restate those specifics here. I’ll just

categorize and enumerate most of them to give you a general understanding of

the types and number of procedures that exist. The name of the procedure usually

reveals its purpose. But first, I'll show you how to autostart stored procedures.

Autostart Stored Procedures

Version 6.0 introduced the handy ability to mark a stored procedure as autostart.

Autostart stored procedures are useful if you regularly want to perform house—

keeping functions or if you have a background daemon procedure that is expected
always to be running. Another handy use for an autostart procedure is to have

it assign some privileges in tempdb. Or the procedure can create a global tem-

I0 Batches, Trcmsaclions, Stored Procedures, and Triggers

porary table and then- sleep indefinitely using WAITFOR. This will ensure that

such a temporary table will always exist, because the calling process is the first

thing executed and it never terminates.

It is simple to make a stored procedure start automatically—you use the system

stored procedure sp_makestartupprocmzme and pass the name of the proce-
dure you want to start. You can remove the autostart attribute using sp_un-

makestartup, or you can use sp_helpstartup to enumerate which procedures
have been so marked. A procedure that is autostarted runs in the context of the

SA (system administrator) account. (The procedure can use SETUSER to imper-
sonate another account.) An autostarted procedure is launched asynchronously,
and it can execute in a loop for the entire duration of the SQL Server process.

This allows several such procedures to be launched simultaneously at startup.
While a startup procedure is active, it consumes one of the configured user

connections (from sp_configure).

A single startup procedure can nest calls to other stored procedures, consum-

ing only a single user connection. Such execution of the nested procedures is

synchronous, as would normally be the case. (That is, execution in the calling

procedure does not proceed until the procedure being called completes.) Typi-

cally, a stored procedure that is autostarted will not generate a lot of output. Errors,

including those raised with RAISERROR, will be written to the SQL Server error

log, and any result sets generated will seemingly vanish. If you need the stored

procedure to return result sets, you should use a stored procedure that calls the

main stored procedure with INSERT/EXEC to insert the results into a table.

If you want to prevent a procedure marked as autostart from executing, you can

start the server using trace flag 4022 or as a minimally configured server using

the -f switch to SQLSERVR.EXE. (Add -T4022 or -f as a parameter to SQL Server

using the Setup program’s Server Options dialog box.) These safeguards allow

you to recover from problems. (Consider the perhaps absurd but illustrative ex-

ample of someone including a procedure that executes the SHUTDOWN command.

If such a procedure were marked for autostart, SQL Server would immediately shut

itself down before you could do anything about it!)

The following sections discuss the broad categories for grouping stored proce-
dures: System, Catalog, SQL Executive, Replication, and Extended.

System Stored Procedures
System stored procedures aid in the administration of your system, and they

sometimes modify the system tables. You should not configure the system to allow

direct modification of the system tables, since a mistake can render your data-

base useless. That’s why direct modification of system tables is prohibited by

default. If modification is necessary, a system stored procedure is provided that

491

PART 3 USING MICROSOFT SQL SERVER

492

is known to do the job correctly. Below are the SQL Server system stored proce-
dures. Each procedure’s name gives you a clue as to its function.

sp_addalias

sp_addextendedproc

sp_addgroup

sp_add1anguage

sp_addlogin

sp_addmessage

sp_addremotelogin

sp_addsegment

sp_addserver

sp_addumpdevice

sp_adduser

sp_altermessage

sp_bindefault

sp_bindrule

sp_certify_removable

sp_change_users_login

sp_changedbowner

sp_changegroup

sp_check_removable

sp_coalesce_f1-agments

sp_configure

sp_create_removable

sp_dbinstall

sp_dboption

sp_dbremove

sp_db_upgrade

sp_defaultdb

sp_defaultlanguage

sp_depends

sp_devoption

sp_diskdefault

sp_dropalias

sp_dropartic1e

sp_dropdevice

sp_dropextendedproc

sp_dropgroup

sp_droplanguage

sp_d1-oplogin

sp_dropremotelogin

sp__dropsegment

sp_dropse1-ver

sp_droptype

sp_dropuser

sp_dropwebtask

sp_extendsegment

sp_fallback_activate_svr_db

sp_fa1lback_deactivate_svr_db

sp_fa1lback_enroll_svr_db

sp_fallback_help

sp_fallback_permanent_svr

sp_fallback_upd_dev_drive

sp_fallback_withdraw_svr_db

sp_help

sp_helpconstraint

sp_helpdb

sp_helpdevice

sp_he1pextendedproc

sp_helpgroup

sp_helpindex

sp_helplanguage

sp_helplog

sp_helplogins

sp_helpremotelogin

sp_helprotect

sp_helpsegment

sp_helpserver

sp_helpsort

sp_helpsql

sp_he1psta1-tup

sp_helptext

sp_helpuser

sp_lock

sp_lock2

sp_lockinfo

sp_logdevice

sp_makestartup

sp_makewebtask

sp_monitor

sp_objcheck

sp_objectsegment

sp_password

sp_placeobject

sp_recompile

sp_1-emoteoption

sp_rename

sp_renan1edb

sp_runwebtask

sp_server_info

sp_serveroption

sp_setlangalias

sp_setnetname

sp_spaceused

sp_special_columns

sp_sproc_columns

sp_unbindefault

sp_unbindrule

sp_unmakestartup

sp_who

sp_who2

l0 Batches, Transactions, Stored Procedures, and Triggers

Catalog Stored Procedures
Applications and development tools commonly need access to information about

table names, column types, datatypes, constraints, privileges, and configuration

options. All this information is stored in the system tables (system catalogs). But

system tables might require changes between releases to support new features,

so your directly accessing the system tables could result in your application break-

ing from a new SQL Server release. For this reason, SQL Server provides catalog
stored procedures, a series of stored procedures that extract the information from

the system tables, providing an abstraction layer that insulates your application.
If the system tables are changed, the stored procedures that extract and provide

the information will also be changed to ensure that they operate consistently from

an external perspective from one release to another. Many of these procedures

also map nearly identically with an ODBC call. The SQL Server ODBC driver

calls these procedures in response to those function calls. While it is fine to

directly query the system catalogs for ad hoc use, if you are deploying an appli-
cation that needs to get information from the system tables, use these catalog

stored procedures:

sp_column_privileges sp_special_columns

sp_columns sp_sproc_columns

sp_databases sp_statistics

sp_datatype_info sp_stored_procedures

sp_fkeys sp_table_privileges

sp_pkeys sp_tables

sp_server_info

SQL Executive Stored Procedures

SQL Executive stored procedures are used by SQL Enterprise Manager to set up

alerts and to schedule tasks for execution. If your application needs to carry out

tasks like these, the following procedures can be called directly. They must be
called from the msdb database.

Here are the alert stored procedures:

sp_addalert sp_helpalert

sp_addnotification sp_helpnotification

sp_addoperator sp_he1poperator

sp_dropalert sp_updatealert

sp_dropnotification sp_updatenotification

sp_dropoperator sp_updateoperator

493

PART 3 USING MICROSOFT SQL SERVER

494

And here are the scheduling stored procedures:

sp_addtask

sp_droptask

sp,helptask

sp_pu1-gehistory

sp_helphistory sp_updatetask

Replication Stored Procedures

Replication stored procedures are used to set up and manage publication and sub-
scription tasks. SQL Enterprise Manager typically provides a front—end to these,

but you can also call them directly. SQL Server has many replication stored pro-
cedures, and frankly it is hard to manually use replication with these procedures.
(It can be done though, if you’re bound and determined.) Everything SQL En—
terprise Manager does (and makes it easy to do) ultimately uses these system
stored procedures. Especially for replication, I urge you to use SQL Enterprise
Manager or SQL—DMO if you need to customize replication administration into

your application. Following are the replication stored procedures, by function. First,
here are the server configuration and replication monitoring stored procedures:

sp_addpublisher sp_MSkill_job

sp_addsubscriber sp_replcleanup

sp_changesubsc1-iber sp_replcmds

sp_dboption sp_replcounters

sp_distcounters sp_repldone

sp_dropsubscriber sp_replica

sp_helpdistributor sp_replsync

sp_helpserver sp_repltra11s

sp_he1psubscriberinfo

Here are the publication stored procedures:

sp_articlecolumn sp_helppublication

sp_changearticle sp_helppublicationsync

sp_changepublication sp_helpreplicationdb

sp_droparticle sp_replflush

sp_droppublication sp_rep1status

sp_enumfullsubscribers

And these are the subscription stored procedures:

sp_addsubscription sp_help1-eplicationdb

sp_changesubsc1-iption sp_helpsubscription

sp_changesubstatus sp_subsc1-ibe

sp_dropsubscription sp_unsubscribe

l0 Batches, Transactions, Stored Procedures, ond Triggers

Extended Stored Procedures

Extended stored procedures allow you to create your own external routines in

a language such as C and have SQL Server automatically load and execute those

routines just like a regular stored procedure. As you can with stored procedures,

you can pass parameters to extended stored procedures and they can return

results and/or return status. This allows you to extend the capabilities of SQL
Server in powerful ways. Many features in the SQL Server product that have been

introduced in the last couple of years have been implemented using extended
stored procedures. These features include additions to SQL Enterprise Manager,
the ability to send or receive e—mail messages, login integration with Windows

NT domain security, and the ability to create a Web page based on a query.

Extended stored procedures are DLLs that SQL Server can dynamically load and

execute. Extended stored procedures are not separate processes spawned by SQL

Server—they run directly in the address space of SQL Server. The DLLs are cre-

ated using the Open Data Services API, which SQL Server also uses.

Writing an extended stored procedure sounds harder than it really is, which is

probably why these procedures are somewhat underused. But writing one can

be as simple as writing a wrapper around a C function. For example, consider
the formatting capabilities in SQL Servers PRINT statement, which are limited

and do not allow parameter substitution. The C language provides the sprintf

function, which is powerful for formatting a string buffer and includes param-

eter substitution. It is easy to wrap the C sprintf function and create an extended

stored procedure that calls it, resulting in the procedure xp_sprintf. To show

« you how easy this is, below is the entire source code for the procedure xp-

_sprintf. Note that most of this code is setup code, and at the heart is the call

to the C run—time function sprintf():

// XP_SPRINTF
//

// Format and store a series of characters and values into an

// output string using sprintf
//
// Parameters:

// srvproc - the handle to the client connection
//
// Returns:

// XP_NOERROR or XP_ERROR
//

// Side Effects:
//
//

495

PART 3 USING MICROSOFT SQL SERVER

SRVRETCODE xp_sprintf(SRV_PROC * srvproc)
{

int numparams;

int paramtype;
1'nt1';

char string [MAXSTRLEN];
char format[MAXSTRLEN];

char values[MAXARGUMENTS][MAXSTRLEN];
char szBuffer[MAXSTRLEN];

// Get number of parameters
//

numparams=srv_rpcparams(srvproc);

// Check number of parameters
//

if (numparams < 3)
{

// Send error message and return

//

LoadStr1ng(hModu1e, IDS_ERROR_PARAM, szBuffer,
s1zeof(szBuffer));

goto ErrorEx1t;
}

paramtype=srv_paramtype(srvproc, 1);
if (paramtype != SRVVARCHAR)
{

// Send error message and return
//

LoadStr1ng(hModu1e, IDS_ERROR_PARAM_TYPE, szBuffer,
s1zeof(szBuffer));

goto ErrorExit;
}

if (!srv_paramstatus(srvproc, 1))
{

// Send error message and return
//

LoadStr1ng(hModu1e, IDS_ERROR_PARAM_STATUS, szBuffer,
s1zeof(szBuffer));

goto ErrorEx1t;
}

496

I0 Batches, Transactions, Stored Procedures, and Triggers

for (1 = 2; 1 <= numparams; 1++)
{

paramtype=srv_paramtype(srvproc, 1);

1f (paramtype != SRVVARCHAR)
{

// Send error message and return
//

LoadStr1ng(hModu1e, IDS_ERROR_PARAM_TYPE, szBuffer,
s1zeof(szBuffer));

goto ErrorEx1t;
}

}

for (1=@; 1 < MAXARGUMENTS; 1++)
{

memset(va1ues[1], 0, MAXSTRLEN);

srv_bmove(srv_paramdata(srvproc, 1 + 3),
va1ues[1],

srv_param1en(srvproc, 1 + §));
}

memset(str1ng, 0, MAXSTRLEN);

srv_bmove(srv_paramdata(srvproc, 2), format,
srv_param1en(srvproc, 2)):

format[srv_param1en(srvproc, 2)]='\@';

// This 15 the heart of the funct1on -- 1t s1mp1y wraps spr1ntf
// and passes back the str1ng
spr1ntf(str1ng, format,

va1ues[@], va1ues[1], va1ues[2], va1ues[3], va1ues[4],
va1ues[5], va1ues[6], va1ues[7], va1ues[8], va1ues[9],
va1ues[10], va1ues[11], va1ues[12], va1ues[13], va1ues[14],
va1ues[l5], va1ues[16], va1ues[17], va1ues[18], va1ues[19],
va1ues[20], va1ues[21], va1ues[22], va1ues[23], va1ues[24],
va1ues[25], va1ues[26], va1ues[27], va1ues[28], va1ues[29],
va1ues[30], va1ues[31]. va1ues[32], va1ues[33], va1ues[34],
va1ues[35], va1ues[36], va1ues[37], va1ues[38], va1ues[39].
va1ues[40], va1ues[41]. va1ues[42], va1ues[43], va1ues[44],

va1ues[45], va1ues[46], va1ues[47], va1ues[48], va1ues[49]);

srv_paramset(srvproc, 1, str1ng, str1en(str1ng));

return XP_NOERROR;

497

PART 3 USING MICROSOFT SQL SERVER

-WE

ErrorExit:

srv_sendmsg(srvproc.
SRV_MSG_ERROR.
SPRINTF_ERROR.

I SRV_INFO,
' (DBTINYINT) 0,

NULL,
0.
0.
szBuffer.

SRV_NULLTERM):

return XP_ERROR{
} _

Because extended stored procedures run in the same address space as SQL Server,

they can be efficient; however, although unlikely, a badly behaved extended stored

procedure could theoretically crash SQL Server. A server crash would more likely
result from someone’s maliciousness rather than carelessness. But this is a defi-

nite area for concern, and you should understand the issues that I’l-l discuss in
the rest of this section. A

An extended stored procedure.runs on the thread that called it. Each calling
thread executes using the Windows NT structured exception handling constructs

(most notably try—except). When a thread is badly written and does a bad thing,

such as trying to reference memory outside its address space, it is terminated.

But only that single connection is terminated, and SQL Server remains unaffected.

Any resources held by the thread, such as locks, are automatically released.

In actual usage, I’ve seen that extended stored procedures do not introduce sig-

nificant stability issues into the environment. Nonetheless, it certainly is theo-

retically possible for an extended stored procedure to twiddle some data structure

within SQL Server (which it would have access to since the procedure is part of

the SQL Server’s address space) that could disrupt SQL Server’s operation or

conceivably even corrupt data. This could happen as a chance occurrence as a

result of a bug in the extended stored procedure if you’re unlucky, but it is more
likely that the procedure would cause an access violation and have its thread

terminated with no ill effects. A malicious procedure could conceivably cause data

corruption, but such data structures are not exposed publicly so it would not be S

easy to write a malicious procedure. Itlis possible, however, and given the pro-
pensity of some social misfits to create viruses, I wouldn’t rule out this problem

(although I don’t know of a single instance of this happening). The ultimate re-

sponsibility for protecting your data has to rest with your SA, who has control

over which, if any, extended stored procedures can be added to the system.

l0 Batches, Transactions, Stored Procedures, and Triggers

Only the SA can register an extended stored procedure with the system (using
sp_addeXtendedproc), and only the SA can grant others permission to execute

the procedure. Extended stored procedures can be added only to the master

database (eliminating their ability to be transferred simply to other systems via

dump/load of databases, for example). The SA should allow use of only the
procedures that have been thoroughly tested and proven to be safe and nonde-

structive. Ideally, the SA could also have access to the source code and build

environment of the extended stored‘ procedure to Verify that it bears no malicious

intent. (Some people have told me that they don’t even want their SA to be able

to do this—because the SA might not be trustworthy. If that’s the case, you have
bigger problems. If you can’t trust your SA, you’d better get a new one.)

Even without extended stored procedures, the SA can disrupt a SQL Server en-
vironment in many ways. (Munging the system tables would be a good start.)
Of course, you can decide that extended stored procedures will never be added

to your system. That’s certainly a safe approach, but you give up powerful ca-
pability by taking this route. (It’s kind of like decidingnever to ride in a car to

avoid having an accident.) Even if you prohibit foreign extended stored proce-
dures from your system, you should not go overboard and make this a sweep-

ing rule that would prevent use of even the procedures "provided by Microsoft

to implement new features. Could one of these procedures have a bug that could

disrupt SQL Server? Sure, but it’s no more likely to occur than if the code for them

had simply been statically linked into the SQLSERVR.EXE file rather than imple-
mented as a DLL and loaded on demand. (Of course, the Microsoft procedures

are thoroughly tested before their release. The chance of a catastrophic bug is

pretty low.) The fact that these are extended stored procedures in no way in-

creases the risk of bugs. It’s an engineering decision, and a smart one, that al-

lows additional features to be added to the product in a way that doesn’t require

extra change to the core product nor additional resource use by environments
that don’t call these features.

By convention, most of the extended stored procedures provided as part of the

product begin with zip... Unlike the sp_ prefix, no special properties are asso-

ciated with xp_. In fact, several extended stored procedures begin with'sp_ (for

example, EXEC sp_name), which allows them to be called from any database

without being fully qualified (for example, EXEC master. dbo.xp_name). To

ascertain whether a procedure is a regular stored procedure or an extended stored

procedure, you shouldn’t rely on the name’s prefix. Instead, check the type col-
umn of sysobjects, which will show P for stored procedures or X for extended

stored procedures. ‘

As was the case with stored procedures, some extended stored procedures that

are installed are not documented for direct use. These procedures exist to sup-

port functionality elsewhere, especially for SQL Enterprise Manager, SQL—DMO,

and replication, rather than to provide features directly themselves.

. 499

PART 3 USING MICROSOFT SQL SERVER

Following are the extended stored procedures that are provided and documented

for direct use. First, here are the general extended stored procedures:

xp_cmdshell

xp_sprintf

xp_sscanf

Here are the administration and monitoring extended stored procedures:

xp_logevent

xp_msver

xp_snmp_getstate

xp_snmp_1-aisetrap

xp_sqlinventory

xp_sqltrace

These are the integrated security related extended stored procedures:

xp_enumgroups

xp_grantlogin

xp_loginconfig

xp_logininfo

xp_revokelogin

And finally, the SQL mail—related extended stored procedures:

xp_de1etemail

xp_findnext1nsg

xp_readmail

xp_sendmail

xp_startmail

xp_stopmail

Triggers
A trigger is a special type of stored procedure that is fired on an event—driVen

basis rather than by a direct call. Here are some common uses for triggers:

I To maintain data integrity rules that extend beyond simple referential
integrity

I To keep running totals updated

I To keep a computed column updated

500

IO Batches, Transactions, Stored Procedures, and Triggers

I To implement a referential action, such as cascading deletes

I To maintain an audit record of changes

I To invoke an external action, such as begin a reorder process if inven~

tory falls below a certain level or send e—mail or a pager notification to

someone who needs to perform an action because of data changes

A trigger can be set up to fire when data is changed in some way—that is, Via
an INSERT, an UPDATE, or a DELETE statement. Only one trigger can be de-
fined for each event, although a trigger can invoke many stored procedures and
different actions can be specified by evaluating the values of a given column of

data. While it is true that a table is “limited” to three triggers, because of the ability
to call an almost unlimited number of stored procedures, this should not really
be a limitation in any way. (The nesting depth limit is still 16, however.) In fact,

some might consider having the three triggers a feature because it forces you to

properly think through and specify the ordering of the actions. Rather than simply
defining, say, five stored procedures that should fire given a data change, this
“limitation” also ensures that the order of trigger firing is exactly specified, which,
of course, can greatly affect the results of the trigger.

A single trigger can be created to execute for any or all of the INSERT, UPDATE,

and DELETE actions, which modify data. Currently, SQL Server offers no trigger
on a SELECT statement, since SELECT does not modify data. In addition, trig—
gers can exist only on base tables, not on views. (Of course, data modified on a

view does cause a trigger on the underlying base table to fire.)

A trigger is executed once for each UPDATE, INSERT, or DELETE statement,

regardless of the number of rows it affects. Although it is sometimes thought that
a trigger is executed once per row or once per transaction, neither of these as-

sumptions is correct, strictly speaking. However, if a statement affects only one
row or is a transaction unto itself, the trigger will exhibit the characteristics of

per—row or per—transaction execution. For example, if a WHILE loop were set up
to perform an UPDATE statement repeatedly, an update trigger would execute

each time the UPDATE statement was executed in the loop.

A trigger fires after the data modification statement has performed its work but

before that work is committed to the database. Both the statement and any
modifications made in the trigger_are implicitly a transaction (whether or not an

explicit BEGIN TRANSACTION was declared). Therefore, the trigger can roll back
the work. A trigger has access to the before image and after image of the data
via the special pseudotables inserted and deleted. These two tables have the same

set of columns as the underlying table being changed. You can check the before

and after values of specific columns and take action depending on what you
encounter. These tables are not physical structures—SQL Server constructs them

501

PART 3 USING MICROSOFT SQL SERVER

5111!

from the transaction log. This is why an unlogged operation such as a bulk copy
or SELECT INTO does not cause triggers to fire’. For regular logged operations,
a trigger will always fire if it exists. A trigger cannot be circumvented (short of
dropping it).

The inserted and deleted pseudotables cannot be modified directly because they
don’t actually exist. As I mentioned earlier, the data from these tables can be

queried only. The data they appear to contain is based entirely on modifications
made to data in an actual, underlying base table. The inserted and deleted pseudo-
tables will contain as many rows as the INSERT, UPDATE, or DELETE statement

affected. Sometimes it is necessary to work on a row—by—row basis within the
pseudotables, although, as usual, a set—based operation is generally preferable
to row—by—row operations. You can perform row—by—row operations by execut-
ing the underlying INSERT, UPDATE, or DELETE in a loop so that any single
execution affects only one row, or you can perform the operations by opening
a cursor on one of the inserted or deleted tables within the trigger. The need to
reconstruct the inserted and deleted pseudotables from the log is the primary
reason why an update on a table having an update trigger always needs to gen-
erate delete and insert log records—and why update—in—place is not possible when
an update trigger exists. '

Rolling Back a Trigger
Executing a ROLLBACK from within a trigger is different from executing a ROLL-
BACK from within a nested stored procedure. In a nested stored procedure, a
ROLLBACK will cause the outermost transaction to abort, but the flow of con-
trol continues. However, if a trigger results in a ROLLBACK (whether because of

a fatal error or from an explicit ROLLBACK command), the entire batch is aborted.

In the final release of version 6.5, a ROLLBACK in a trigger did -not
abort the batch and flow of control continued. This was dueito a bug, I
not an intentional change. You could argue that the ”buggy” behav-
ior is more desirable than the expected behavior, but the expected
behavior was added back in Service Pack l to provide backward
compatibility. In Service Pack 1 and all subsequent service packs, a
rollback in the transaction aborts the batch as it always did in re-
leases earlier than version 6.5.

Suppose that the following pseudocode batch is issued from ISQL.EXE:

begin tran
delete....

update....

insert.... -- This starts some chain of events that fires a trigger
-- that rolls back the current transaction

10 Boiches,Transochons,Stored Procedure; and Tflggers

update.... -- Execution never gets to here - entire batch is

~— aborted because of the roiiback in the trigger
if....commit -- Neither this statement nor any of the following

-- will be executed
e1se....ro11back

begin tran....
insert....
if....commit

e1se....roi1back

G0 -- isqi batch terminator oniy

seiect ... -- Next statement that will be executed is here

As you can see, once the trigger in the first INSERT statement aborts the batch,

A SQL Server not only rolls back the first transaction but skips the second transac-

tion completely and continues execution following the GO.

Misconceptions about triggers include the belief that the trigger cannot do a
SELECT statement that returns rows and that it cannot execute a PRINT state-

ment. Although you can use SELECT and PRINT in a trigger, doing these opera-

tions is usually dangerous practice unless you control all the applications that will

work with the table that includes the trigger. Otherwise, applications not writ-

ten to expect a result set or a print message following a change in data might

fail because that unexpected behavior occurs anyway.

Be aware that if a trigger modifies data on the same table on which the trigger

exists, that trigger does not fire again. (This could easily lead to an infinite loop.)
However, if separate triggers exist for INSERT, UPDATE, and DELETE statements,

one trigger on a table could cause a different trigger on the same table to fire

(but only if sp__configuration ‘nested triggers’ is set to 1, as I’ll discuss in a
moment).

A trigger can also modify data on some other table. If that other table has a trigger,

whether or not that trigger also fires depends on the current sp_configuration

value for the nested triggers option. If that option is set to 1 (TRUE), which is

the default setting, triggers will cascade to a maximum chain of 16. If an opera-
tion would cause more- than 16 triggers to fire, the batch will be aborted and any

transaction will be rolled back. This prevents an infinite cycle from being encoun-

tered. If your operation is hitting the limit of 16 firing triggers, you should prob-
ably look at your design—you’ve reached a point atwhich there are no longer
any simple operations, so you’re probably not going to be ecstatic with the per-

formance of your system. If your operation truly is so complex that you need to
perform further operations on 16 or more tables to modify any data, you could
call stored procedures to perform the actions directly rather than enabling and
using cascading triggers. Although valuable, overused cascading triggers can make
your system a nightmare to maintain.

503

PART 3 USING MICROSOFT SQL SERVER

Debugging Stored Procedures and Triggers
By now, it should be obvious that stored procedures and triggers can represent
a significant portion of your applications code. Even so, for a long time, no decent
debugger support existed for "stored procedures. (The typical debugging tool was
the liberal use of PRINT statements.) Some ISVs jumped in and helped by add-
ing some “pseudo—debugging” products—but these products didn’t have access
to the actual SQL Server execution environment. They typically added debug-
ging support by doing tricks behind the scenes, such as adding additional PRINT
statements or adding SELECT statements to get the current values of variables.

Although some of these products were helpful, they had significant limitations:
typically, they couldn’t step into nested stored procedures orinto triggers. A
Transact—SQL debugger was always prominent on the wish list of SQL Server
customers. I know firsthand how frustrating it was not to have a proper debugger,
and I’ve spent many late nights putting PRINT statements into stored procedures.

Still, it didn’t make sense for us to write a new SQL Server—specific debugger
because there were already too many debuggers on the market. If you’re like most
programmers, you want to do your work in one development environment. For
example, if you are a C programmer, you probably want to use the same debugger
on your SQL code that you use on your C code. Or if you program in Microsoft
Visual Basic, you probably. want to use the Visual Basic development environ-
ment for debugging. Fortunately, this environment—specific debugging capabil-
ity now exists and its availability is rapidly expanding. If you are a developer in
Microsoft Visual C++, Microsoft Visual]++, or Visual Basic, you can now debug
Transact—SQL using the same debugger you use in those environments.

To accomplish this, we defined a DLL and a set of callbacks that SQL Server 6.5
would load and call at the beginning of each SQL statement. In essence, we
defined a set of debug events that would allow us to control the execution on a
statement—by—statement basis within SQL Server. This has come to be known as
the SQL Server Debug Interface, or SDI. The interface that shipped with the
version 6.5 release was a work in progress. SDI’s first customer was Visual C++

version 4.2. SQL Server 6.5 shipped several months before Visual C++ 4.2, and,
of course, we didn’t get the interface quite right. Specs are never perfect, and
they nearly always get tweaked—at a minimum—during implementation. This
was certainly true for SDI, so to use it with Visual C++ version 4.2 and later you
need SQL Server version 6.5 with Service Pack 1 or later. We debugged the de-
bugging interface using the Visual C++ team as guinea pigs, and now other
development tools are also adding support for SDI. By the time you read this, I
expect SDI to be available with Visual C++, Visual Basic, Visual J++, and other
development tools from Microsoft. (The exact packaging is always subject to
change, but in general, the debugger support for Transact—SQL is availableonly
in each product’s Enterprise Edition.) ‘

-. K 10 Batches, Transactions, Stored Procedures, and Triggers

Although the interface is quite likely to change in future releases, it is also made

available via a technical note to ISVS that want to add SQL Server debugger sup-

port. SDI is a specialized interface that is of interest only to those writing ‘debuggers,

so it is not considereda general feature of SQL Server.

With the existence of SDI, and using the Microsoft Developer Studio debugging
environment of Visual C++ Enterprise Edition, you now have a real debugging A
environment for Transact-SQL. For example, as a C/C++ developer using Devel-
oper Studio (Visual C++ Enterprise Edition), you can:

I Do line—by—line debugging of all your Transact—SQL code.

I Step directly from your C code executing on your client machine into
the Transact—SQL code executing remotely at the SQL Server machine.

I "Remotely debug your, procedures, with the actual execution of the pro-

cedures happening at the SQL Server machine and your debugging en—

vironment happening locally. (Or if you prefer, you can do it all from
one machine.)

I Set breakpoints anywhere in your SQL code.

I Watch the contents of SQL local and global variables. You can even watch

global variables that are not used in your SQL code: for example, you

can watch current status codes using @@ERROR or the number of rows

"selected using @@RO\X/COUNT.

I Modify the values of most variables in a watch window, testing condi-

tional logic in your code more easily. (Note that variables with datatypes
for which there is no direct mapping in C cannot be edited in a watch
window.)

I Examine the values of parameters passed to stored procedures.

I Step into or over nested procedures. And if a statement causes a trigger
to fire, you can even step into the trigger.

I Use Microsoft Developer Studio to edit your procedures and save them
to the server. This makes it easy to fix bugs on the fly. SQL keywords

and comments in your code are color coded, as they would be in C, to
make them easier to spot.

I Optionally send results of your SQL statements to the result window di-

rectly in Developer Studio. ' »

The SDI is implemented via the pseudo—extended stored procedure sp_sdi-
debug. (The sp_ convention was used so that the procedure could be called from

any database without being fully qualified.) Bypseudo, I mean that, like a normal

505

PART 3 USING MICROSOFT SQL SERVER

5045

extended stored procedure, you will see an entry in the sysobjects table of type
X for sp_sdidebug. But unlike a normal extended stored procedure, the code
for sp_sdidebug is internal to the SQL Server and does not reside in a separate
DLL. This is true for a few other procedures as well, such as the remote cursor

calls made by ODBC and DB~Library cursor functions. This was done so that we
could add a new capability to the server without having to “Change the tabular
data stream (TDS) protocol that describes result sets back to the client applica-
tion. It also eliminates the need for new keywords (potentially breaking a few
applications) when the commands are of the sort that would not be executed

directly by an application anyway.

You should never call sp_sdidebug directly. The procedure exists to load a DLL
that the provider of the debugger would write and to toggle debugging on and
off for the specific SQL Server connection being debugged. The debug DLL for
Visual C++ is SQLSDI.DLL. When debugging is enabled, SQLSDI.DLL is given
access to internal state information for the SQL Server connection being debugged.
All of the APIs defined in the interface are synchronous calls, and they are called-
in the context of the thread associated with the connection, which allows for
callbacks to SQL Server to occur in the context of the client’s thread. The inter-

nal Process Status Structure (PSS) holds status information for the connection
being debugged, and the DLL is then able to read this structure to determine local

variable, parameter, global variable, and symbol information.

The debugging support in Visual C++ Enterprise Edition seems pretty normal if
you are already familiar with the environment. Typically, the biggest problem
people have with debugging Transact—SQL is getting it configured in the first place.
Here are some tips that might help to you in debugging Transact—SQL from
Developer Studio:

I You must use the Enterprise Edition of Visual C++ 4.2 or later, not the

Professional or Standard edition. You must have run Setup from Visual
C++ to install the SQL Server debugging components. Setup also installs
SQL Server version 6.5 Service Pack 1 (SP1), and this version or a later

one is also required for debugging support. '

You must use the SP1 or later components of DB~Library and/or the SQL
Server ODBC driver to be able to step from your C++ or Java source code
to stored procedure code and back. For DB—Library, you need version
6.50.212 or later; for the ODBC driver, you need version 2.50.0212 or later.

I recommend that you use Windows NT 4.0. If you use Windows NT

3.51, you must apply Windows NT 351 Service Pack 4. You can debug
from Windows 95 as well, but you must use remote debugging because
SQL Server does not currently run on Windows 95.

l0 Batches, Transactions, Stored Procedures, and Triggers

Run SQL Server under a user "account, not as Local System. (You can

change this in the Services applet of the Windows NT Control Panel.) If

SQL Server is running under the local account, breakpoints are ignored.
When debugging on a machine also running SQL Server, you should run

SQL Server under the same user context used for running the debugger.
(Make sure that you can run SQL Server from the command line rather

than as a service——for example, C.-\MSSQL\BINN\SQLSERVER.EXE —c.)

Extended error information regarding debugging can be written to the

Windows NT event log. The events are written to the application log
under MSDEVSDI. For example, Event ID 11, which relates directly to
the previous tip (running SQL Server under a user account), will be

4 written there:

Event ID #11: SQL Server when started as service must not log
on as System Account. Reset to logon as user account using
Control Panel.

. SQL Server Debugging must be enabled in Developer Studio. To enable

this option in Developer Studio 97, from the Tools menu, select Options.

In the Options dialog box, click on the Data View tab, and then click

the SQL Server Debugging check box.

Text, numeric/decimal, and float datatypes cannot be edited in a watch
window.

Do not debug on a production server. Due to the added overhead and

break—in nature of the debugging product, you could adversely affect
other users.

String and text values larger than 255 bytes are shown as NULL in the
watch window.

Right~click the mouse, and then click the Refresh option to obtain ob-

ject‘ changes in DDL from other clients.

If you delete all characters from a string in the watch window, the value

will show NULL. If the variable does not allow NULL, the next step op-

eration will reset the value to its previous value.

Only the first 64 bytes of a text column are displayed in the output win-
dow, even if more data is contained in the actual column.

For simple debugging, you might find yourself still using PRINT; for tougher

problems, you might come to regard the new debugging capabilityas a lifesaver.

I demonstrated this capability at the SQL Server Professional Developer Conference

507

PART 3 USING MICROSOFT SQL SERVER

in September 1996, and this 5-minute sidebar of my 2-hour presentation seemed

to generate more interest than anything else I covered!

Execute(”any string")
The ability to formulate and then execute a string dynamically in SQL Server is

a subtle but powerful capability. Using this capability, you can avoid additional

round—trips to the client application by formulating a new statement to be exe-

cuted directly on the server. You can pass a string directly, or you can pass a local

variable of type char or Uarcbar This capability is especially useful if you need

to pass an object name to a procedure or if you want to build an SQL statement
from the result of another SQL statement. For example, suppose that I had par-

titioned my database to have multiple tables similar to the authors table. I could

write a procedure like the one shown below to pass the name of the table I want
to insert into. The procedure would then formulate the INSERT statement by

concatenating strings, and then it would execute the string it formulated:

CREATE PROC add_author
@au_1'd char(11). '
@au_1name varchar(20).
@au_fname varchar(20).
@tabname varchar"(30) AS

BEGIN

DECLARE @1'nser't_stmt varchar‘(255)

SELECT @1'nsert_stmt="INSERT " + @tabname + " (au_1'd.

au_1name, au_fname, contract) ‘VALUES ("' + @au_1'd +
"',"' + @au_1name + "','" + @au_fname + "‘. l)"

EXECUTE (@1'nsert_stmt)
END

EXEC adci_author '999-99-1234', 'Soukup', ‘Ron’. ‘authors’

Working with Text and Image Data

508

SQL Server provides binary large object (BLOB) support via the text and image

datatypes. If you work with these datatypes, you might want to use the additional

statements provided by SQL Server along with the standard SELECT, INSERT,
UPDATE, and DELETE statements. Because a single text column can be as large

as 2 GB, you frequently need to work with text data in chunks, and these addi-

tional statements (which I’ll discuss in a moment) can help. (I might have dis-
cussed this topic earlier, when I discussed Transact—SQL programming. However,
because you need some knowledge of isolation levels, transactions, and consis-

tency issues to understand this topic, I decided to wait until after.I had covered
those issues.)

l0 Batches, Transactions, Stored Procedures, and Triggers

For simplicity’s sake, I’ll frame this discussion mostly in terms of the text datatype.
But everything here is also relevant to the image datatype. These two datatypes
are essentially the same internally. Recall that text and image datatypes are unique
in that they are not stored on the same data page as the rest of the row. Instead,
a pointer to a separate chain of pages for the text/image data is stored in the row.

A separate chain of pages exists for each text (or image) column, and these pages
are not shared when several such columns are present. This means that an en-

tire 2—KB page must be used to store the first single byte of data plus the 16-
byte text pointer that is written on the data page. If another row with 1 byte of
text were added, another entire 2—KB page would be needed ‘to store the data.
An initially NULL text column (occurring either by omission of the column in the

INSERT statement or by specifying NULL in the VALUES clause) does not require
an entire page for storage, so until data is written to the text column, no storage
for it is consumed. Although you can think of text and image as variable—length
datatypes, their storage size is a step function. The effective storage size can be
0 bytes if the value is implicitly NULL, but then storage increases in 2—KB incre-
ments as each new page is required. (Plus, when the column is not NULL, an

additional 16 bytes is required for the text pointer. About 1800 bytes of data can
actually be stored per page.)

Clearly, the space required by text and image for small amounts of data is inef-

ficient. But there are also functional drawbacks. Although you can indeed use
standard INSERT, UPDATE, DELETE, and SELECT statements with a text or image
column, some significant restrictions apply. In a WHERE clause, you can search
on the text column only with the LIKE operator or with a function such" as PAT-

INDEXO. Text and image variables cannot be manipulated. You can declare a

parameter in a stored procedure to be of type text or image, but you can’t do
much besides pass a" value to the procedure initially. For example, you cannot_
subsequently assign different values to the parameter. Because of the space us—
age and functional drawbacks, you’ll want to use text or image only when an-
other datatype isn’t a reasonable option. If a varc/9ar(255) column can work for

you, you can use it and avoid text altogether. But if you absolutely need a memo
field, for example, and 255 characters are not enough, you’ll need to use text (or
denormalize and use multiple z/arc/Jar columns).

If a text column makes the most sense for you despite its drawbacks, you need
to understand how to work effectively with text. When you ca-n, it is easiest to
work with text/image datatypes using standard SELECT, INSERT, UPDATE, and
DELETE statements. But if your text data gets large, you’re going to run into issues,

such as how big a string your application can pass, that might make it necessary
for you to deal with chunks of data at a time instead of the entire column.

The special statements for working with text data are WRITETEXT, READTEXT,
and UPDATETEXT. Both READTEXT and UPDATETEXT let you work with chunks
of a text column at a time. The WRITETEXT statement does not let you deal with

509

PART 3 USING MICROSOFT SQL SERVER

510

chunks but rather with the entire column only. WRITETEXT and UPDATETEXT

will not log the text operations by default, although they can be instructed to log
them. (The database must have the select into/bulkcopy option enabled for

nonlogged operations.) An INSERT, UPDATE, or DELETE statement will always
be logged, but these special text statements can be run without" logging.

I don’t encourage nonlogged operations for general use because they can com-
promise your database backup strategy. The situation is similar to nonlogged bulk

copy. Nonlogged operations cannot be recovered at startup. A terminated non-

logged operation will leave the database in the state it was in before the opera-
tion began because logging (and hence rollback) of extent allocations still occurs.

But the biggest downside to this is that in the face of a failure after a nonlogged
operation, your database is only as good as your last full backup and transac-
tion dumps up to the issuance of the nonlogged operation. You can’t do further

transaction dumps after a nonlogged operation is performed. So think carefully
about the appropriateness of nonlogged text and image operations. Also, if you
use SQL Server replication to replicate text or image columns, the operations must
be logged because the replication process looks for changes based on the trans-
action log.

The WRITETEXT, READTEXT, and UPDATETEXT statements all work with a text
pointer. A text pointer is a unique varbinam/(J6) value for -each text or image
column of each row.

WRITETEXT

WRITETEXT completely overwrites an existing text or image column. You pro-
vide the column name (qualified by the table name), the text pointer for the
specific column of a specific row, and the actual data to be written. The WITH

LOG clause is optional, although I will always use it in the examples presented
here. It might seem like a catch-22 when using WRITETEXT immediately, be-
cause you need to pass it a text pointer—but if the column is initially NULL, there
is no text pointer. So how do you get one? You SELECT it with the TEXTPTRO

function. But if the text column has not been initialized, the TEXTPTR() func-

tion returns NULL. To initialize a text pointer for a column of a row with text or
image data, you can do some variation of the following:

I Explicitly insert a non—null value in the text column when you use an
INSERT statement. Recognize that WRITETEXT will completely over-
write the column anyway, so the Value can always be something like A
or a blank space.

‘Define a default on the column with a non—null value like A. Then when

you do the insert, you can specify DEFAULT or omit the column, which

will result in the default value being inserted and the text pointer being
initialized.

l0 Batches, Transactions, Stored Procedures, and Triggers

I Explicitly update the row after inserting it, and then set the column to
NULL (or to anything else).

No matter how you initialize the text pointer, as soon as you do it, at least one

data page will be consumed for the column of that row, even if you initialize the

value to NULL or to a single character.

You then select the text pointer into a Variable declared as 2/arbinary(16) and

pass that to WRITETEXT. You can’t use SELECT statements or expressions in the

WRITETEXT statement. This means that the statement is limited to being exe-
cuted one row at a time (although it can be done from within a cursor). The

SELECT statement that gets the text pointer should be known to return only one

row, preferably by using an exact match on the primary key value in the WHERE
clause, because that will ensure that at most one row can meet the criteria. You

can, of course, use @@ROWCOUNT to check this if you are not absolutely sure

that the SELECT statement can return only one row. Before using the WRITETEXT

« statement, you should also ensure that you have a valid text _pointer. If you find
a row with the criteria you specified and the text pointer for that row was ini-
tialized, it will be valid. You can check it as a ‘separate statement using the

TEXTVALID() function. Or you can check that you do not have a NULL value

in your variable that was assigned the text pointer, as I’ll show in the following

example. Make sure that you don’t have an old text pointer value from a previ-

ous use, which would make the IS NOT NULL check be TRUE. In this example,‘

I do one variable assignment and the variable starts out NULL, so I am sure that

a non—null value means I have selected a Valid text pointer:

-~ WRITETEXT with an unprotected text pointer
DECLARE @mytextptr varb1‘nary(16)
SELECT @mytextptr=TEXTPTR(pr_1‘nfo)

FROM pub_1'nfo WHERE pub_1'd='9999'
IF @mytextptr IS NOT NULL ,

WRITETEXT pub_1‘nfo.pr_1'nfo @mytextptr WITH LOG ‘Hello Again’

In this example, the text pointer is not protected from changes made by others.

Therefore, it is possible that the text pointer will no longer be valid by the time

the‘ WRITETEXT operation is performed. Suppose that you get a text pointer for

the row with pub_i'd=’9999’. But before you use it with WRITETEXT, another

user deletes and reinserts the row for publisher 9999. In that case, the text pointer

you are holding will no longer be valid. In the example above, the window for

this happening is small, since I do the WRITETEXT immediately after getting the

text pointer. But there is still a window. In your application, the window may be

wider. If the text pointer is not valid when you do the WRITETEXT operation,

you will get an error message like this: A

Msg 7123. Level 16, State 1

Invalid text pointer value 000000000253f380.

5'll

PART 3 USING MICROSOFT SQL SERVER

You can easily see this for yourself if you add a delay (for example, WAITFOR
DELAY ”00:00.-15") after getting the text pointer and then delete the row from
another connection. You’ll get error 7123 when the WRITETEXT operation exe-
cutes. If you think the chances of getting this error are slim, you can choose to

simply deal with the error when and if it occurs. Frankly, because this seems to

be what most applications that use text do, text columns are used in mostly low-

concurrency environments. But even so, I don’t think it’s good practice. (More

likely, this is the general. usage because we haven’t sufficiently explained the

concurrency issue.)

I recommend that you instead use transaction protection to ensure that the text

pointer will not change from the time you read it until you use it, and to serial-

ize access for updates so that you do not encounter frequent deadlocks. Many

applications use TEXTVALID() to check right before operating—that’s the right

idea, but it’s hardly foolproof. There is still a window between the TEXTVALIDO

operation and the use of the text pointer, during which the text pointer may be

invalidated. The only way to close the window is to make both operations part

of an atomic operation. This means using a transaction and having SQL Server

protect the transaction with a lock. (For more about locking, see Chapter 13. You

I might want to read that chapter and then return to this section.)

Byvdefault, SQL Server will operate with Read Committed isolation and release

a share (READ) lock after the page has been read. So simply putting the pointer

in a transaction With the READ COMMITTED isolation level, which is SQL Server’s

default, is not enough. You need to ensure that the lock is held until the text

pointer is used. You could change the isolation level to Repeatable Read, which

is not a bad solution, but this changes the isolation behavior for all operations

on that connection and so it might have a more widespread effect than you in-

tend. (Although you could, of course, then change it right back.) But even this

is not ideal. This approach doesn’t guarantee that you will subsequently be able

to get the exclusive lock required to do the WRITETEXT operation; it ensures

only that when you get to the WRITETEXT operation, the text pointer will still

be valid. You won’t be sure that you’re not in the lock queue behind another

connection waiting to update the same row and column. In that case, your trans-

action and the competing one would both hold a share lock on the same page

and would both need to acquire an exclusive lock. Since bothvtransactions are
holding a share lock, neither can get the exclusive lock, and a deadlocle results

in one of the connections having its transaction automatically aborted. (In Chapter

13, you’ll see that this is an example of a conversion deadlock.) If multiple pro-

» cesses are intending to modify the text and all transactions first request an up-

512

date lock in a transaction when selecting the text pointer, conversion deadlocks

will be avoided because only one process will get the update lock and the oth-

ers will queue for it. But those users’ transactions that need only to read the page

will not be affected, since an update lock and a share lock are compatible.

I0 Batches, Tronsoctions, Stored Procedures, and Triggers

Using the update lock on the text pointer is good for serializing access to the
actual text pages, even though the lock on the text page is distinct from the lock
or the text pointer. In this case, you essentially use the update lock on a text

pointer as you’d use an intent lock for the text page. This is conceptually simi-
lar to the intent locks that SQL Server uses on a table when a page—locking op-
eration for that table will take place. That operation recognizes that pages and
tables have an implicit hierarchy. You can think of text pointers and text pages
as having a similar hierarchy and use the update lock on the text pointer to protect
access to the associated text pages. Following is the improved version that pro-
tects the text pointer from getting invalidated and also reserves my transaction’s
spot in the queue so that it will get the exclusive lock that’s necessary to change
the column. This approach will avoid conversion deadlocks on the text pages:

—- NRITETEXT with a properly protected text pointer
BEGIN TRAN

DECLARE @mytextptr varb1nary(16)

SELECT @mytextptr=TEXTPTR(pr_1nfo)

FROM pub_1nfo (UPDLOCK) WHERE pub_1d='9999'
IF @mytextptr IS NOT NULL

NRITETEXT pub_info.pr_info @mytextptr WITH LOG ‘Hello Again’
COMMIT TRAN

READTEXT

READTEXT is used in a similar way to WRITETEXT, except that READTEXT

allows you to specify a starting position and the number of bytes to read. Here
is its basic syntax:

READTEXT [[database.]owner.]table_name.column_name

text_ptr offset size [HOLDLOCK]

Unlike with WRITETEXT, with READTEXT I do not need to work with the en-

tire contents of the data. I can specify the starting position (offset) and the number
of bytes to read (size). READTEXT is often used with the PATINDEXC) function

to find the offset at which some string or pattern exists, and it’s also used with
DATALENGTH() to determine the total size of the text column. But these func-

tions cannot be used as the offset parameter directly. Instead, you must execute

them beforehand and keep their values in a local variable, which you then pass.
As mentioned in the discussion of WRITETEXT, you’ ll want to protect your text
pointer from becoming invalidated. In the next example, you’ll read text with-
out updating it. So you can usethe HOLDLOCK lock hint on the SELECT state

ment for the text pointer (or set the isolation level to Reapeatable Read).

Sometimes people think that transactions are used only for data modifications,

but notice that in this case you use a transaction to ensure read-repeatability (of
the text pointer) even though you are not updating anything. You can optionally

513

PART 3 USING MICROSOFT SQL SERVER

514

add HOLDLOCK to the READTEXT statement to ensure that the text doesn’t

change until the transaction has completed. But in the example below, I read the
entire contents with just one read and I will not be rereading the contents, so

there is no point in using HOLDLOCK here. This example finds the pattern
Washington in the pr_mfo column for pub_z'd 0877 and returns the contents of

that column from that point on:

-- READTEXT with a protected text pointer
BEGIN TRAN"

DECLARE @mytextptr varbinary(16), @sizeneeded int, @pat_offset int
SELECT @mytextptr=TEXTPTR(pr_info).

@pat_offset=PATINDEX('%Nashington%',pr_info) - 1.
@sizeneeded=DATALENGTH(pr_info) -

PATINDEX('%Nashington%',pr_info) - 1

FROM pub_info (HOLDLOCK) NHERE pub_id='0877'

IF @mytextptr IS NOT NULL AND @pat_offset >= 0 AND
@sizeneeded IS NOT NULL

READTEXT pub_info.pr_info @mytextptr @pat_offset @sizeneeded

COMMIT TRAN

The offset returned by PATINDEX() and the offset used by READTEXT unfor-

tunately are not consistent. READINDEX treats the first character as offset 0. (This
makes sense to me since I thinkof an offset as how many characters you have

to move to get to the desired position——to get to the first character, you don’t
need to move at all.) But PATINDEXO returns the value in terms of position, not

really as an offset, and so the first character for it would be 1. (I’d call this a minor

bug. But people have adapted to it, so changing it would cause more problems

than it would solve at this point. You should assume that this acts as intended

and adjust for it.) You need to fix this discrepancy by taking the result of PAT-
INDEX() and subtracting I from it. PATINDEX() returns —-1 if the pattern is not

found. Since I subtract 1 from the value returned by patindex(), if the pattern

were not found, the variable @pat_offset would be -2. I simply check that @pat-
_offset is not negative.

You also need to specify how many bytes you want to read. If you want to read

from that point to the end of the column, for example, you can take the total

length as returned from DATALENGTH() and subtract the starting position, as

shown in the example above. You cannot simply specify a buffer that you know

is large enough to read the rest of the Column into; that will result in error 7124:

The offset and length specified in the READTEXT command is greater
than the actuai data length of %d.

If you Could always perform a single READTEXT to handle your data, you’d

probably not use it; instead, you could use SELECT. You need to use READTEXT

l0 Batches, Transactions, Stored Procedures, and Triggers

when a text column is too long to reasonably bring back with just one statement.

For example, the text size of the pr_z'nfo field for publisher 1622 is 18,518 bytes.
I can’t select this value in a program like ISQL/W because it’s longer than the
maximum expected row length for a result set, so it would be truncated. But I

can set up a simple loop to show the text in pieces. To understand this process,
you need to be aware of the global variable @@TEXTSIZE, which is the maxi-

mum amount of text or image data that you can retrieve in a single statement.
(Of course, you need to make sure that the buffer in your application will also be
large enough to accept the text.) You can read chunks smaller than the @@TEXT-

SIZE limit, but not larger.

You can change the value of @@TEXTSIZE for your connection by using SET
TEXTSIZE n. The default Value for @@TEXTSIZE is 64 KB. I suggest that you read
chunks whose size is based on the amount of space available in your applica-
tion buffer and based on the network packet size so that the text will fit in one

packet, with an allowance for some additional space for metadata. For example,
with the default network packet size of 4192 bytes (4 KB), a good read size would
be about 4100 bytes, assuming that your application could deal with that size.

You should also be sure that @@TEXTSIZE is at least equal to your read size. You

can either check to determine its size or explicitly set it as I do in the example
below. Also notice the handy use of the CASE statement for a Variable assign-
ment to initialize the @readsize variable to the smaller of the total length of the,
column and the Value of @@TEXTSIZE. (In this example, I make my read size
only 100 characters so that it displays easily in an ISQL/W or in a similar query
window. But this is too small for most applications and is used here for illus-
tration only.) A

-- READTEXT in a loop to read chunks of text
-- Instead of using HOLDLOCK, use SET TRANSACTION ISOLATION LEVEL

-- REPEATABLE READ (equivalent). Then SET it back when done but
—- be sure to do so in a separate batch. '
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

SET TEXTSIZE 100 -- Just for illustration. Too small for
-- real world. 4000 would be a better value.

BEGIN TRAN

DECLARE @mytextptr varbinary(16), @totalsize int,
@lastread int, @readsize int

SELECT

@mytextptr=TEXTPTR(pr_info), @totalsize=DATALENGTH(pr_inf0),
@lastread=0.

-- Set the readsize to the smaller of the @@TEXTSIZE setting
-- and the total length of the column

@readsize=CASE NHEN (@@TEXTSIZE < DATALENGTH(pr_info)) THEN
@@TEXTSIZE ELSE DATALENGTH(pr_info) END

FROM pub_info WHERE pub_id='1622'

515

PART 3 USING MICROSOFT SQL SERVER

IF @mytextptr is NOT NULL AND @reads1'ze > 0
WHILE (@Tastread < @totaIsize)
BEGIN

READTEXT pub_1nfo.pr_1nfo @mytextpt
IF (@@error <> 0)

BREAK -- Break out of Ioop if an error on read
-- Change offset to Iast char read
SELECT @1astread=@Iastread + @readsize

-- If read size would go beyond end, adjust read size
IF ((@readsize + @Iastread) > @tota1s1ze)

SELECT @reads1ze=@totaIs1ze - @Iastread

r @l astread @reads1' ze

END

COMMIT TRAN

‘G0

516

-- Set it back, but in a separate batch
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

Notice that in this example I need to ensure not only that the text pointer is still

valid when I get to READTEXT but also that the column did not get changed

between iterations of READTEXT. (If another connection simply updated the text

in place, the text pointer would still be valid, although my read would be messed

up since the contents and length were changed.) I could use HOLDLOCK both

on the READTEXT statement as well as for protecting the text pointer. But for

illustration, I instead chose to change the isolation level to REPEATABLE READ.

UPDATETEXT

UPDATETEXT, added in Version 6.0, is a big improvement to text processing. In

earlier versions, you were stuck with only WRITETEXT, which meant that to make

even a minor change, you needed to completely rewrite the entire column.

UPDATETEXT -lets you work with text in pieces to insert, overwrite, or append

data. Or you can copy data from another text column and append it or overwrite

the column with it. Because of its additional capability and flexibility, the syn-

tax for UPDATETEXT is a bit more complex:

UPDATETEXT tabTe_name.dest_coIumn_name dest_text_ptr
offset deIete_Iength [NITH LOG] [1'nserted_data |
table_name.src_coIumn_name src__text_ptr J

The destination column name and text pointer parameters point to the column

that you will be updating; these parameters are always used. Like you would with
WRITETEXT, you should use the UPDLOCK hint to protect the text pointer from

becoming invalid and to serialize access to the text pages to prevent a conver-

sion deadlock. The source column name parameters are used only when you are

copying data from another text column. Otherwise, you directly include in that

spot the data you’ll be adding or you omit the parameter if you are deleting data.

10 Batches, Transactions, Stored Procedures, and Triggers

The ofifset is the position at which you start your data modification. It should be

NULL if you are appending to the current contents and 0 if you are starting from

the beginning of the column. The delete_lengt/9 parameter tells you how many
bytes to delete (if any) starting from the offset parameter. Use NULL for this

parameter if you will delete all contents from the offset up to the end of the

column, and use 0 if you will delete no bytes. As with READTEXT, the first
character of the column is considered to have a 0 offset.

UPDATETEXT can do everything, and it can do much more than WRITETEXT

can do. So you might choose to use only READTEXT and UPDATETEXT and

forget about WRITETEXT. (WRITETEXT existed in versions before UPDATETEXT

appeared, so the former is maintained for backward compatibility, but there isn’t
much need for it now.) i

Following are some examples that will illustrate the use of UPDATETEXT bet-

ter than further explanation.

,- ‘It :

Use UPDATETEXT to completely replace the contents of a column:

—— Use UPDATETEXT to completely overwrite a text column.
-- Alternative to NRITEIEXT.

DECLARE @mytextptr varbinary(16)
BEGIN TRAN

SELECT @mytextptr=TEXTPTR(pr_info) FROM pub_info (UPDLOCK) WHERE
pub_id='9999'

IF @mytextptr IS NOT NULL

UPDATETEXT pub_info.pr_info @mytextptr 0 NULL WITH LOG
"New text for 9999"

COMMIT TRAN

Use UPDATETEXT to delete characters off the end; first notice that publisher 0877,

Binnet, has the following contents in the text column pr_mfo:

This is sample text ‘data for Binnet & Hardley. Publisher 0877_in
the pubs database. Binnet & Hardley is located in Washington,
D.C.

This is sample text data for Binnet & Hardley, publisher 0877 in
the pubs database. Binnet & Hardley is located in Washington.
D.C.

517

PART 3 USING MICROSOFT SQL SERVER

518

This is sample text data for Binnet
the pubs database. Binnet & Hardley
D.C.

This is sample text data for Binnet

the pubs database. Binnet & Hardley
D.C.
This is sample text data for Binnet

the pubs database. Binnet & Hardley
D.C.

& Hardley, publisher 0877 in
is located in Washington,

8. Hardley. publisher 0877 in
is located in Washington,

& Hardley, publisher 0877 in
is located in Washington,

Because the text is repeated several times, I want to delete all characters that
follow the first occurrence of D.C. Here’s how:

DECLARE @mytextptr varbinary(16). @pat_offset int
BEGIN TRAN

SELECT @mytextptr=TEXTPTR(pr_info).

@pat_offset=PATINDEX('%D.C.%', pr_info)-1+4
-- For offset. subtract 1 for offset adjust but add 4 for

-- length of "D.C."

FROM pub_info (UPDLOCK) WHERE pub_id='0877'

IF @mytextptr IS NOT NULL AND @pat_offset >= 0
UPDATETEXT pub_info.pr_info @mytextptr @pat_offset NULL WITH LOG

COMMIT TRAN

The column now has these contents (only):

This is sample text data for Binnet & Hardley, publisher @877 in
the pubs database. Binnet & Hardley is located in Washington, D.C.

_..&.|. .‘A. _n.u.. "n. .-. . ,

With the small amount of text here, it Wouldn’t be bad to simply rewrite the

column with new text. But if this were a large text column (you could literally

store the contents of War and Peace in a single text column), it would be ex~

tremely inefficient to rewrite the entire column just to make a minor change. In

this example, I Want to add the text “Mary Doe is president of the company.” to

the current contents. l’ll use UPDATETEXT to append text to the column:

DECLARE @mytextptr varbi nary(16)
BEGIN TRAN

SELECT @mytextptr=TEXTPTR(pr_info) FROM pub_info (UPDLOCK)
WHERE pub_id='@877'

I0 Batches, Transactions, Stored Procedures, and Triggers

IF @mytextptr IS NOT NULL

UPDATETEXT pub_info.pr_info @mytextptr NULL NULL WITH LOG
"Mary Doe is president of the company."

COMMIT TRAN

And the result:

This ‘is sampie text data for Binnet & Hardley. pubiisher 0877 in
the pubs database. Binnet & Hardiey is Tocated in Washington,
D.C.Mary Doe is president of the company.

That Worked exactly as I specified, but I really Wish I had skipped a line and
then included a tab before adding the new sentence. I can easily add both a
vertical and a horizontal tab, as you can see in Example 4.

Use UPDATETEXT to insert some characters:

DECLARE @mytextptr varbinary(l6), @pat_ofi*set int,
@mystr'ing char(2)

BEGIN TRAN
SELECT

@mystring=char(l3) + CHAR(9), —- Verticai tab is code point 13.
-- Tab is 9.

@pat_offset=PATINDEX('%Mary%', pr_info)-1.

@mytextptr=TEXTPTR(pr_info) FROM pub_info (UPDLOCK)
WHERE pub_id='0877' ‘

IF @mytextptr IS NOT NULL AND @pat_offset >= 0

UPDATETEXT pub_info.pr_info @mytextptr @pat_offset 0 WITH LOG
@mystring

COMMIT TRAN

And the result:

This is sample text data for Binnet & Hardleynpubiisher 0877 in
the pubs database. Binnet & Hardiey is Tocated in Washington,
D.C.

Mary Doe is president of the company.

Oops! I just learned that the president is Marie Dow, not Mary Doe. I need to
fix that.

519

PART 3 USING MICROSOFT SQL SERVER

Use UPDATETEXT for search and replace:

-- UPDATETEXT for Search and Replace
DECLARE @mytextptr va'r'b1'nary(16). @pat__offset int,

@o1dstring varchar(255). Qnewstring varchar‘(255).
@s1‘zeoId int

BEGIN TRAN

SELECT @oldstring="Mary Doe", @newstr'1'ng="Mar1'e Dow"

SELECT @s1'zeold=DATALE‘NGTH(@0ldstr‘ing).
@pat_offset=PATINDEX('%' + @oIdstr1'ng + ‘$6’,

@mytextptr='TEXTPTR(pr'_1'nfo)

FROM pub_1'nfo (UPDLOCK) WHERE pub_1'd='0877'

pr_1'nfo)—1,

IF @mytextptr IS NOT NULL AND @pat_offset >= 0

UPDATETEXT pub_1'nfo.pr_1'nfo @mytextptr @pat_offset @s1’zeo'Id
WITH LOG @newstr1'ng ‘

COMMIT TRAN

And the result:

This is sample text data for Binnet 8. Hardley. Publisher 0877 in
the pubs database_.vB1'nnet & Hardley is located in Washington,
D.C.

Marie Dow is president of the company.

I used variables above and figured lengths and offsets using SQL Server’s built-
in functions. By doing this, I ensured that the procedure is pretty generic and
that it can deal with changing the string to another string that is either longer or
shorter than the original.

. _ 5,4‘ {P ':.

Suppose that I want to append the contents of the text for publisher Scootney
(pub_z'd 9952) to the text for Binnet (pub__id 0877). IfI did not have this option
in UPDATETEXT, it would be necessary to bring all that text back to the client
application, append it, and then send it back to the server. Over a slow network

like the Internet, this would not be practical if the text columns were large. But
with UPDATETEXT, the Whole operation is done on the server. In this example,
notice that I protect the text pointer for the target with UPDLOCK, since I’ll be
updating that row, but I use HOLDLOCK for the source row since I am reading
it only and I want to ensure that it hasn’t changed.

520 '

l0 Batches, Transactions, Stored Procedures, and Triggers

I’ll use UPDATETEXT to copy and append one text column to another:

-- UPDATETEXT to copy and append another text column

DECLARE @target_textptr varb1'nary(16).
@source_textptr varb1'nary(16)

BEGIN TRAN

SELECT @target_textptr=TEXTPTR(pr_tnfo) FROM pub_1'nfo (UPDLOCK)
NHERE pub_1‘d='O877' ’
SELECT @source_textptr=TEXTPTR(pr_1nfo) FROM pub_1'nfo (HOLDLOCK)

WHERE pub_1'd='9952' '

IF @target_textptr IS NOT NULL AND @source_textptr IS NOT NULL
UPDATETEXT pub_1'nfo.pr'__1'nfo @target_textptr‘ NULL NULL

NITH LOG pub_1‘nfo.pr_1'nfo @source_textptr

COMMIT TRAN

Environmental Concerns

To finish this discussion of Transact—SQL programming, I’ll introduce some of
the environmental concerns that you need to be aware of in your prograr'nming~——

for example, case sensitivity, which can greatly affect your applications. I’ll also

discuss nullability issues and ANSI compatibility.

Case Sensitivity
Various options and settings affect the semantics of your Transact-SQL statements.

You must be sure that your Transact—SQL code can work regardless of the set-
ting, or you must control the environment so that you know what the setting is.

Case sensitivity is by far the most common environmental problem, and it is

simple to avoid. I recommend that you do most of your development in a case-

sensitive environment, even if you will deploy your application mostly in a case-

insensitive environment. The reason is simple: nearly all operations that work in

a case-sensitive environment will also work in a case—insensitive environment,

but the converse is not true. For example, if I Write the statement select *from

authors in the pubs database of a case-sensitive environment, it will work "equally

well in a case—insensitive environment. On the other hand, the statement SELECT
* FROMAUTHORS will work fine in a case—insensitive environment but will fail

in a case-sensitive environment. The table inpubs is actually named authors, which

is lowercase. The only instance I can think of that would work in a case-sensitive
environment but would fail in a case—insensitive environment is in the declara-

tion of an object name, a column name, or a variable name. For example, with

the statement declare @myz2ar mt, using @MYVAR mt would work fine in a case-
sensitive environment because the two names are distinct, but it would fail in a case~

insensitive environment because the names would be considered duplicates.

521 ’

PART 3 USING MICROSOFT SQL SERVER

522

The easiest way to determine whether your environment is case—sensitive is to

do a SELECT statement with a WHERE clause that compares a lowercase letter
with its uppercase counterpart—you wouldn’t need to access a table to do this.
The following simple SELECT statement returns 1 if the server is case—sensitive
and 0 if the server is case—insensitive:

SELECT CASE

WHEN ('A'='a') THEN 0
ELSE 1

END

Case sensitivity is just one of the issues surrounding the character set used by
SQL Server. The character set choice will affect both the rows selected and their

ordering in the result set for a query such as this:

SELECT au_lname, au_fname FROM authors

WHERE au_lname='_José'
ORDER BY au__lname, au_fname

If you never use characters that are not in the standard ASCII character set, case
sensitivity is really your primary issue. But if your data has special characters like
the é in this example, be sure that you understand character—set issues. (For more
information, see Chapter 4, “Planning for and Installing SQL Server.”) I

Nullability and ANSI Compliance Settings
In order to pass the NIST test suite for ANSI SQL—92 compliance, various options
had to be enabled in version 65 because of subtle differences in semantics be-

tween the traditional SQL Server behavior and what is mandated by ANSI. I have
discussed the majority of these issues in earlier chapters. To preserve backward
compatibility, the prior behavior couldn’t simply be changed. So we added op-
tions (or in a few cases, previous options were toggled on) to change the seman-
tics to comply with the ANSI SQL requirements. These options are summarized
below. (I’ve also listed the statement used to change the behavior.)

I Disable SQL Server's = NULL extension (SETANSLNULLS ON).

I Automatically display a warning if a truncation would occur because

the target column is too small to accept a value. By default, SQL Server
truncates without any warning (SETANSLWARNINGS ON).

Always right—pad char columns, and don’t trim trailing blanks that were
entered in varc/am’ columns, as SQL Server would do by default (SET
ANSLPADDING ON).

Make statements implicitly part of a transaction, requiring a subsequent
COMMIT Or ROLLBACK (SETIMPLICIT TRANSACTIONS ON).

l0 Batches, Transactions, Stored Procedures, and Triggers

I Terminate a query if an overflow or divide—by—zero error occurs (SET

ARITHABORT ON). By default, SQL Server returns NULL for these op-

erators, issues a warning message, and proceeds.

I Close any open cursors upon COMMIT of a transaction. By default, SQL

Server keeps the cursor open so that it can be reused without incurring

the overhead of reopening it (SET CURSOR_CLOSE_ON_COMMIT ON). _

I Allow identifier names to include SQL Server keywords if the identifier

is included in double quotation marks, which by default is not allowed.

This causes single and double quotation marks to be treated differently
(SET QUOTED_IDENTIFIER ON).

I By default, create as NOT NULL a column in a CREATE TABLE state-

ment that is not specified as NULL or NOT NULL. SET/1NSI_NULL—

_DFLT_ON ON toggles this so that the column can be created with NULL.

(I recommend that you always specify NULL or NOT NULL so that this

setting option is irrelevant.) The nullability of a column not explicitly

declared is determined by the setting at the time the table was created,

which could be different from the current setting.

All of the above options can be set individually, but I’d avoid doing that because

there are 256’(2”) permutations to consider. You might want to set a few of the

options individually, such as SETARITHABORT or SETARITHIGNORE. But by

and large, I’d either leave them all at their default settings (my preference) or

change them as a group to the ANSI SQL—92 behavior. These options can be

enabled as a group by setting SETANSLDEFAULTS ON.

The ability to set these options on a per—connection basis makes life “interest—

ing” for you as a SQL Server application programmer. Your challenge is to rec-

ognize and deal with the fact that these settings will change the behavior of your

code. Basically, that means that you need to adopt some form of the following

four strategies:

I The Optimistic Approach. Hope that none of your users or the person
doing database administration will change such a setting. Augment your

optimism by educating users not to change these settings.

I The Flexible Approach. Try to write all your procedures as to accom-

modate all permutations of the settings of all the various options (usu—

ally not practical).

I The Hard—Line Approach. Explicitly set your preferences at startup and

periodically recheck them to determine that they have not been subse-

quently altered. Simply refuse to run if the settings are not exactly what

you expect.

523

PART 3 USING MICROSOFT SQL SERVER

524

I The Clean Room Approach. Have a “sealed” system that prevents any-
one from having direct access to change such a setting.

Whichever of these approaches you take is your choice, but recognize that if you
don’t think about the issue at all, you have basically settled for the Optimistic
Approach. This approach is certainly adequate for many applications for which
it’s pretty clear that the user community would have neither the desire nor the
ability to make environmental changes. But if you are deploying an application
and the SQL Server will be accessed by applications that you do not control, it
is probably an overly simplistic approach. Philosophically, the Flexible Approach
is nice, but I don’t think it’s realistic unless the application is quite simple.

You can change the SQL Server default values for the server as a whole by us-
ing sp_configure ‘user options‘. A specific user connection can then further
refine the environment by issuing one of the specific SET statements discussed
above. The global variable @@OPTIONS can then be queried by any connection
to see the current settings for that connection. The @@OPTIONS variable and
the value to be set using sp_configure 'user options’ are a bit mask with the
following values:

 >Decimal Hex Option and
Value Value Description

1 OxOOO1 DISABLE_DEF_CNST_CHK. Controls interim constraint
checking.

2 0x0002 IMPLICIT_TRANSACTIONS. Controls whether a transaction
‘ is started implicitly when a statement is executed.

4 OXOOO4 CURSOR_CLOSE_ON_COMMIT. Controls behavior of cursors
_ once a commit has been performed.

8 0x0008 ANSI_\X/ARNINGS. Controls truncation and NULL in aggre-
gate warnings. . -

16 OxO01O T ANSI_PADDING. Controls padding of variables.

32 OXOOZO ANSI_NULLS. Controls NULL handling by using equality
operators.

64 Ox0O40 ARITHABORT. Terminates a query when an overflow or
divide-by-zero error occurs during query execution.

128 OxOO8O ARITHIGNORE. Returns NULL when an overflow or divide-
by-zero error occurs during a query.

256 OxO1OO QUOTED_IDENTIFIER. Differentiates between single and
double quotation marks when evaluating an expression,
allowing object names to include characters that would other-
wise not conform to naming rules ‘or would collide with a
reserved word or a keyword.

l0 Batches, Transactions, Stored Procedures, and Triggers

:

Decimal Hex Option and
Value Value Description

512 0x020O NOCOUNT. Turns off the message returned at the end of
each statement that states how many rows were affected by
the statement.

1024 0xO400 ANSI_NULL_DFLT_ON. Alters the session’s behavior to use

ANSI compatibility for nullability. New columns defined
without explicit nullability will be defined to allow NULLs.

2048 Ox08OO ANSI_NULL_DFLT_OFF. Alters the session’s behavior to not

use ANSI compatibility for nullability. New columns defined
without explicit nullability will be defined not to allow
NULLS.

By default, none of these options is enabled. So in a brand~new SQL Server 6.5
installation, the run value for sp_configure ‘user options’ will be 0. The SA

can set this so that all connections have the same initial default settings. If you

query the value of @@OPTIONS from an application that has not modified the
environment, the value will also be 0. However, be aware that many applications,

or even the SQL Server ODBC driver that the application uses, might have changed

the environment. For example, if you use ISQL\W.EXE, you may well see a value

of 512 for @@OPTIONS if you have the No Count Display option checked un-

der Query Options. If you are using an ODBC—based application, you might have ‘

options 256 (QUOTED_IDENTIFIER) and 16 (ANSI_PADDING) set.

To change the default behavior, simply set the corresponding bit by doing a

bitwise OR with the previous value. For example, suppose that your run value
is 512, which indicates that NOCOUNT is the only option turned on. You want

to leave NOCOUNT enabled, but you also want to enable option number 1, which

turns off the ability to deal with interim constraint violations. You’d simply pass

the decimal value 513 (or 0x201) to sp_configure ‘user options‘, which is the

result of doing a bitwise OR between the two options (for example, SELECT 1 I 512).

You can examine current options that have been set using DBCC USER OPTIONS.

The output is similar to this:

Set Option Value

textsize 64512

language us_english
dateformat mdy
datefirst 7
arithabort SET
nocount SET

525

PART 3 USING MICROSOFT SQL SERVER

526

This DBCC Command shows only options that have been set—it doesn’t show

all the current settings for sp_configure 'user options‘. But you can also de-
code your Current Connection settings pretty easily from @@OPTIONS using
something like this:

SELECT "DISABLE_DEF_CNST_CHK" AS "OPTION",
"SETTING"=CASE NHEN (@@OPTIONS & @x@@@1 > 0) THEN 'ON' ELSE 'OFF'
END

UNION

SELECT "IMPLICIT TRANSACTIONS", CASE NHEN
(@@OPTIONS & @x@@02 > e) THEN 'ON' ELSE 'OFF'

UNION

SELECT "CURSOR_CLOSE_ON_COMMIT", CASE NHEN

(@@OPTIONS & @x0@@4 > 0) THEN 'ON' ELSE 'OFF' END
UNION

SELECT "ANSI_wARNINGS",CASE NHEN (@@OPTIONS & @x@0@8 > 0) THEN

END

'ON' ELSE 'OFF' END
UNION

SELECT "ANSI_PADDINGS", CASE NHEN (@@OPTIONS & 0X001@ > 0) THEN
'ON' ELSE 'OFF' END

UNION

SELECT "ANSI_NULLS", CASE WHEN (@@OPTIONS & OXOOZO > 0) THEN 'ON'
ELSE 'OFF' END

UNION

SELECT "ARITHABORT", CASE NHEN (@@OPTIONS & @XO04@ > 0) THEN 'ON'
ELSE 'OFF' END

UNION

SELECT "ARITHIGNORE", CASE WHEN (@@OPTIONS & OXOOBO > 0)
THEN 'ON' ELSE 'OFF' END

NION

ELECT "QUOTED_IDENTIFIER", CASE NHEN (@@OPTIONS & OXOIOO > 0)
THEN 'ON' ELSE 'OFF' END

NION

ELECT "NOCOUNT",
ELSE 'OFF' END

U ION

SELECT "ANSI_NULL_DFLT_ON", CASE NHEN (@@OPTIONS & 0xO40@ > 0)
THEN 'ON' ELSE 'OFF' END

UNION

SELECT "ANSI_NULL_DFLT_OFF", CASE NHEN (@@OPTIONS & OXOBOO > 0)
THEN 'ON' ELSE 'OFF' END

ORDER BY "OPTION"

U

S

U

S CASE NHEN (@@OPTIONS & OXOZOO > 0) THEN 'ON'

10 Batches, Transactions, Stored Procedures, and Triggers

Here’s the result:

OPTION SETTING

ANSI_NULL_DFLT_0FF OFF

ANSI_NULL_DFLT_0N OFF
ANSI;NULLS OFF

ANSI_PADDINGS ' OFF
ANSI_NARNINGS OFF
ARITHABORT OFF
ARITHIGNORE OFF
CURSOR;CLOSE_0N_COMMIT OFF

DISABLE_DEF;CNST_CHK ON

_IMPLICIT TRANSACTIONS OFF
NOCOUNT ON

QUOTED_IDENTIFIER OFF

Locale-Specific SET Options
Beware of the loca1e—specific SET options. SETDATEFORMAT and SETDATE—

FIRST change the recognized default date format. If DATEFORMAT is changed

to dmy instead of the (U.S.) default mdy, a date such as '12/10/96’ will be inter-

preted as October 12, 1997. I think a good strategy for dates is to always use the

ANSI format yyyy.mm.dd, which is recognized no matter what the setting is of
[lXTEF()RDA£(R

DATEFIRST affects what is considered the first day of the week. By default (in

the U.S.), it has the value 7 (Sunday). Date functions that work with the day—of—

week as a value between 1 and 7 will be affected by this setting. These day~

of—weel< values can be confusing, since their numbering depends on the DATE-

FIRST Value; but the Values for DATEFIRST don’t change. For example, as far as

DATEFIRST is considered, Sunday’s Value is always 7. But having then designated

Sunday (7) as DATEFIRST, if you did a SELECTDATEPART(dw, GETDATEO) and

your date falls on a Sunday, the statement will return 1. You just defined Sunday

to be the first day of the week, so 1 is correct.

Transact—SQL. statements can be grouped together in batches, they can persist in

the database, they can repeatedly execute as stored procedures, and they can be

made to automatically fire as triggers. It is essential that you understand the dif-

ferences between these functions and that you understand that their actions are

not mutually exclusive.

527

PART 3 USING MICROSOFT SQL SERVER

528

Transact—SQL stored procedures can be quite complex, and they can become a
significant portion of your application’s source code. Fortunately, Microsoft De—
‘veloper Studio provides debugging support for SQL Server stored procedures.

Programming effectively with Transact—SQL also requires that you understand
transactional topics, such as when transactions will be committed and when they
can be rolled back. Since you’ll likely be working in a multiuser environment, it

is vital that you make the appropriate concurrency and consistency choices to

suit the isolation level for your environment. Understanding isolation levels is also
important for Working with BLOBS in SQL Server using the special operators

READTEXT, WRITETEXT, and UPDATETEXT. And no matter what task you are

performing, it is important to realize that you must plan for various environmental

options that will affect the behavior and semantics of your Transact—SQL code.

PART 3 USING MICROSOFT SQL SERVER

200

Naming Conventions

Many organizations and multiuser development projects adopt standard nam-

ing conventions, which are a good thing, in general. For example, assigning a
standard moniker of cust_z'd to represent a customer number in every table makes
it obvious that all the tables have data in common. If, instead, several moni-
kers were used in the tables to represent a customer number, such as cust_z'd,
cust_num, customennumbeig and customer_#, it would not be so obvious that

these monikers represented common data. One convention I see occasionally
and recommend against using is Hungarian-style notation for column names.
(Hungarian notation is a widely used practice in C programming, whereby vari-
able names include information about their datatypes. Its name is attributed to
its use by legendary Microsoft programmer Charles Simonyi, who is of Hungar-
ian ancestry.) Hungarian—style notation uses names such as sz'nt_1m_cusmum to

represent that the custnum column is a small integer (smallmt of 2 bytes) and is
NOT NULL (does not allow nulls). Although this practice makes good sense in
C programming, it defeats the datatype independence that SQL Server provides.

Suppose it is discovered, for example, that the cusmum column requires a 4—byte
integer (int) instead of a 2—byte small integer. It is relatively simple to re—create
the table with the column as an int instead of a smallmt. In SQL Server, stored
procedures will deal with the different datatype automatically. Applications us-
ing DB—Library or ODBC that bind the retrieved column to a character or inte-

ger datatype will be unaffected. The applications would need to change if they
bound the column to a small integer variable, as the variable’s type would need
to be larger. For this reason, it is best to try not to be overly conservative with
variable datatypes, especially in your client applications. You should be most
concerned with the type on the server side; the type in the application can be
larger and will automatically accommodate smaller values. By overloading the
column name with datatype information, which is readily available from the
system catalogs, the insulation from the underlying datatype is compromised.
(You could, of course, change the datatype from a smallmt to an mt, but then
the Hungarian-style name would no longer accurately reflect the column defi-
nition. Changing the column name would then result in the need to change
application code or stored procedures or both.)

Datatypes

SQL Server provides a large number of datatypes, as shown in Table 6-1 on pages
202-03. Choosing the appropriate datatype is simply a matter of mapping the
domain of values you need to store to the corresponding datatype. In choosing
datatypes, you want to avoid wasting storage space while allowing enough space
for a sufficient range of possible values over the life of your application.

6 Tables

Datatype synonyms
SQL Server syntactically accepts as datatypes both the words listed as synonyms
and the base datatypes shown in Table 6-1, but it uses only the type listed as
the datatype. For example, a column can be defined as cbaractefll), Cbaracten
or cbar(1), and SQL Server will accept all these as valid syntax. Internally, how-

ever, the expression is considered clmr(1), and subsequent querying of the SQL
Server system catalogs for the datatype will show it as cbar(1), regardless of the
syntax that was used when it was created.

Nullable columns are variable-length
Before deciding to use an ostensibly fixed—length datatype such as cbar instead
of a variable-length one such as vozrcbm; it is important that you understand
nullabilfiy: all datatypes, with the exception of bit, can be declared either NULL
or NOT NULL (that is, they can allow or disallow a null entry). Internally, de-
claring a column to allow a null entry makes that column a variable-length col-
umn. For example, a column declared as cbar(5) NULL is internally identical to
one declared varcbar(5) NULL. In both cases, if a null value is entered, no stor-

age is consumed. If only 3 bytes are entered, then only 5 bytes of storage are
used, even for the fixed—length type.

There is an exception to this. The command SET ANSLPADDING
ON instructs SQL Server to physically store spaces in the remaining
2 bytes of the c/1ar(5) type, in which case 5 bytes of storage would
be used. This setting conforms to the ANSI SQL-92 standard.

Variable-length vs. fixed-length datatypes
Deciding to use a variable-length or a fixed—length datatype is not always straight-
forward or obvious. As a general rule, variable-length datatypes are most appro-

priate when you expect significant variance in the size of the data for a column
and the data in the column will not be frequently changed.

Using variable-length datatypes can yield important storage savings. Choosing
them can sometimes result in performance loss (as I will explain in a moment)
and at other times can result in improved performance. A row with variable—1ength
columns (including supposed fixed—length columns that allow NULLs) requires
special offset and adjust entries to be internally maintained. These entries keep
track of the actual length of the column. Calculating and maintaining the offsets
requires slightly more overhead than a pure fixed—length row, which needs no
such offsets at all. This is a CPU task of a few addition and subtraction opera-

tions to maintain the offset value. However, the extra overhead of maintaining

these offsets is generally inconsequential, and I have not seen a system in which
this alone made a significant difference. A more significant performance differ~
ence might arise from the method by which updates are processed.

201

PART 3 USING MICROSOFT SQL SERVER

>.om.mvm.:N2m3m.m§.Em-E0»;.mm:_o>cwtau20$2_uom:__ou_n.~.7ouo_n__oE_umv50:ES0_o£wcom:o..__.8.mac2>uo5uuo£_>>m._mnE:ZnomnNbx8QmouNmm.mNo0.wowKkV~WwO.mONNmm.NN%IEo._.wm.5_c>ucotsu92»2van:=ou_m..7muo_Q_oE._uw_u.50:E50.0_._%com:o_.:.:w_2.62>uoSuuo£<>w._m£EDZ

mminV

>._Ew:o<<

$.62

m....z>o_w

.wmo._o_mmeamcou.0:20fl2uEo_._u_uwm::=Sm_um.ouoo._uw_o.m.m.uEo;u.32A_

§9%?.65

.39.52.gflunzocu E.m:w_m_no_._o>V
._w._UO._Cr_U

.........

mm.0._UG._DUwmr2mc_®r_~%«OQafl?TO£UgO>
>3.u2o:m_movno.2~09.LU

2:55._u_m_“_._m_uo._o.._u_._0o.m:oE\Eoc>m2._37.£58:aSo£_.>>.m_u9ooi5090:...4:mzuogocu

.....

%mm:c:
>__o_toQ::m>m._u.6»umw

_
C.w.uo._o_._u_0Q6.L

2_m$_nee.

~0w._w_uEcUmEma.0._O.C

;_o__.5_.2356
bywflocmfimvno.22uo._o;uwmm2Q3

Procu

mmmovxmn2mmnmmfil59.2m>_.EmoZ.wmovm22mm....%S_..;._._8._.mnmO.v%.
mmmovtmlE0:203:5:wemco__oE_x9g<

N_uco_cmoimn?o_m_uo._n_=m_.v.bW23Vm_:m_m_._>>acruot.F9

momm_om._..0..momlmmwdl.mm:o._o>=omoZmommom_QmomlmmuNmmco.m>:_mom
momwoknr0.

Eo¢m._0LF_DCLOwr_0_—nvC.__.XCh
:0.Ba03:003vacw:D0>Z0£

.u_._oE:cxoaaov

m_:o._m;»>.330:

_co_m_um_n_:mfi.n:

.Eon_mc__.co_u_

Bo:

3.3m

.:oa_uo..“.0émfiN>..m>oanvm::_uw._m_mwc._2mmo33_\mm9m>o_:0356mm2omen:coo”

£023&Eo_.m_umwn_wmfiumam.$92com.%§.%mmtfn_.|N.mmo_IE0;9535::_oco:u_9__.0m_o;>>9A__mmm20E9;€maE:cm_o;>>momam0,.wokflmlE9;2822.m_oc_>>.\. %o.mm§3.NO.wfiomm?NVTNIE0;2mnE:co_o_._>>

Vi_uE_umw..u:mE_.EU93.7yUt®E3C._oE_um_uvmxuom
U0?

SQL Server supplies many dazatypes.

Emmt:_om2.__

msxcocxm_250.00omom.080weR5.
Table 6-1.

35mmEo_.mWc_aEoo\mmco~_

SIDE

6 Tables

=.mm._H5%eflmnm%._.,m%.q_.mH.23_33:5__.mcE:_oo.5;2:0.«.o_._m_29:=.mm9o....Ho2A_mm:232oeom9.:Ho2E:_ou.5.wdoze:mic.mEom9:Ho...:E=_ouan.650.53

23o90;»332%:m_._oo.3cofloomcumwocamfimnVOEHomenHHHmm_.N55m:...o.__:¢o._:F_:_OUH.HHoOE..o.x2oc_vm._m=._w23HHHH035»<._uw.=u..HmmmBccou....mmmoammoE._Hoco.xw.F.£m$_H.HH_c2uumH92.».2vm.._:Um._EuH.£m_._oHH39.mv_.N>:oE.m>m>»o._Ho_nc_.._u>m>o>>_n.0.58.32%mmoE__u:oHHH31smogBow9.:covmm:HHxfl9:..m0N2an22...buc_.m.omoE_HHH»_.2c_on_2.3.2o__a_...0:H.HdoN2as2%.2uEo_._UHim»HHmmoE..vacE2HmOE\.x29.3
wow:,6:Snvw._o_umm.80%._oHwmo._o.mOZfio._o_m

mwtfwnw2Q:.E_mcm_m_no_._o>H >__o2uo3:3Ho.0352:9:.Auc._w=oa.5.:o_.2:wmm._aw._50:5>c<Hm:.v¢c>50:5?H\Co:.5.6>>:u:_m. mmacoW313wnm2anHHHA.959:H»__o_:8m_:Hmcm>m%m§n_:H?:¢=.aso:co=2:mmm._n_m._bani>c<WW?Hx.8:.5W_H_xmo:wHm w.o_u:m>_m9.:Ho39:38.35m3355Ho._0£E:ZEco.®F:.._.o.B~.z2.ow2oo2.z<2o.tca28.co.z2cmmm:29::1:52o_uvocjeouHmmtfVmE.:&ob=cEm 20¢cm>_mor:.0=_m_%_amus;mwcoumEHo._mnE:ZfunmE_._.

&&.uwo._m2>.z<2oion.28H.32%mi:95E<.w.9on_omm>o_._Ho:mwo_u.w>.wm._0m.co_..2$$_%_wE=_ucoflow39.5800Hno.3wmE.=&£uHmE_._.Hugo200 um.mumomo._o.mMcHoEoQ\Qmcox.mE.€o.._\,wW950.0003m.H..o..oa.._o25
203

mspress.n1icrosoft.oilm

6.5

The authoritative inside story— @
with practical advice from the
ultimate insider.

This comprehensive guide, written by Microsoft insider and SQL

guru Ron Soukup, provides an authoritative conceptual and
architectural overview and advice on installation, administration,

and programming with SQL and Transact-SQL. Inside you'll find:

Ii
1

\'i
.ll

_n‘

A historical overview of the features, capabilities, and

architecture of the SQL Server product

Detailed SQL programming topics, including databases

and devices; querying and modifying data; programming

with Transact—SQL; using batches, transactions, stored

procedures, and triggers; locking data; data replication;

SQL Server database administration; and much more

New SQL Server internals information for advanced

performance optimizing and troubleshooting

Examples and brainteasers for testing your knowledge

of Transact-SQL

' System performance and tuning considerations, _

including system design and querying, plus how to ' -. ,2
configure and monitoryour applications performance

in

‘'~-._'-.

Soukup also provides examples and candid answers to frequently

asked questions gleaned from his years of service as general

manager of the SQL Server development group at Microsoft.

This book is for MIS professionals in large companies, vertical

applications developers, custom solution providers, and anyone

else working with mid—level to high-end relational databases.
In fact, it’s a must—read for all those who want to understand

Microsoft SQL Server from the inside out. U-5-A- 549-99
U.K. £46.99 [V.A.T. included]
Canada $69.99

[Recommended]

III I lIlIIlIIlIIlI III IIII II I III II I l I II III Programming/SQL Server
XOOUNNSDVD '

inside Microsoft SQL Server...crosofl Programming Series)

New Microsoft Press

