
001 SERVICENOW INC.'S EXHIBIT 1007

Kenn Scribner

Mark C. Stivevr

‘*'I'_Ifi».E -exg:er.inarit:& fhaf
Mark aanuad Kenn

with fiewlm

malfly s=hi:n.re5 thmugh in

their wrEti;i1»g,:, thaew"i»r
-an-ptma:=is;mfi-5, and fiheeir

-en§nmp=|.es» This hfnmilés

a great fm.I-n=-
-fim-inn -u@m_-w§1:'nc'.h- tu-

btaiilvd gmur unu.du5e~4r+

stanfiing Q? humw $643?
was-fits wfithim .N.ET.“‘

»--——-Sealzt swig, _
Mfiflw‘ z4:=.*c£3m‘t2£Eus'n'&F

Samw. 3‘-—’e-wt?

Q-§

Q

I’

Ing

APP

MLWebS
egrviices

2.

Imp

001

002 SERVICENOW INC.'S EXHIBIT 1007

Applied SIJAP: Implementing

.NET XML WEI] Services

Kenn Scribner and Mark C. Stiver

sAMs
201 West I03rd St., Indianapolis, Indiana, 46290

002 ‘ SERVICENOW lNC.'S EXHIBIT 1007

003 SERVICENOW INC.'S EXHIBIT 1007

:.»‘;;::°:.«;;..<,E-'_,-__3:..5.

W4....;;:L__-.,,_§*.-51».3;‘:;3eTf'._Q',;._._.;‘.t).

K......,,.,V'3-.__.__¢‘Lag’.._, ~—-—%»+:—‘..
,..';.:;

Applied SOAP: Implementing
.NET XML Web Services

Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in the preparation

of this book, the publisher and author assume no responsibility for errors or

omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32111-4

Library of Congress Catalog Card Number: 00-110536

Printed in the United States of America

First Printing: October 2001

04 03 02 01 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be

regarded as affecting the validity of any trademark or service mark.

Windows, Windows 2000, Windows XP, .NET, Visual Studio .NET, .NET
Framework, Passport, and Hailstorm are registered trademarks of Microsoft
Corporation.

Java is a registered trademark of Sun Microsystems, Inc.

Websphere is a registered trademark of IBM, Inc.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the pro-
grams accompanying it.

AssocIATE PUBLISHER

Linda Engelman

ACQUISITIONS EDITOR

Linda Scharp

DEVELOPMENT EDITOR
Laurie McGuire

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Leah Kirkpatrick

COPY EDITOR

Krista Hansing

INDEXER

Larry Sweazy

PROOFREADER

Wendy 0tt

TECHNICAL EDITOR

Scott Seely

TEAM COORDINATOR

Lynne Williams

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Gary Adair

PAGE LAYOUT
Gloria Schurick

003 SERVICENOW |NC.'S EXHIBIT 1007

IV

004 SERVICENOW INC.'S EXHIBIT 1007

> 4;

Overview

Introduction 1

PART I

UI-I>UJl\)
PART II

PART IV

COW

Foundations of Web Services

Web Service Fundamentals 9

.NET Architecture and Web Services Components 49

Web Services and XML 75

.NET Web Services and SOAP 123

Web Service Description and Discovery 163

Implementing Web Services

Web Services in ASP.NET 193

Consuming .NET Web Services 245

More Advanced Web Services

.NET Remoting 287

Extreme Web Services 301

.NET and Web Service Security 329

Appendixes

Example .NET Web Service 357

Using ATL Server to Create Web Services 373

XML Protocol and SOAP 385

.NET Web Service Resources 395

Index 401

004 SERVICENOW |NC.'S EXHIBIT 1007

005 SERVICENOW INC.'S EXHIBIT 1007

'!§.‘¥.".._,_--.§‘A,5;._'Z'’_'_..‘%
...6’A},-:1',""'IQ:-i‘r.C2f's'__-.._._‘.*‘

,,_,“'.k’ ...,A

_.;::A f’
7‘V L.£-,-.._E4

FE:

.Q-_fz PART I

-3

Contents

Introduction 1

Foundations of Web Services

Web Service Fundamentals 9

What Are Web Services?1O

The Poor Man’s Web Service10

XML Messages 13

Syntax Versus Semantics13

Web Service Terminology14
The Road to Web Servicesl5

Waves of the Internet15

Internet Standards 16

Uses for Web Services2l

Business-to-Business21

Exposing Functionality to Customers22

Integrating Heterogeneous Systems23

Rapid Development Environment23

Web Service Properties24
Performance24

Simplicity26

Security26

Reliability and Availability27

Consistency27

Creating a Web Service in Visual Studio .NET28

Creating the Service .. .L28

Creating the Client.. ..32

Tracing Messages on the Network38

Interface Design Tips40

Learning from the Past40

What Is an Interface?... ..41

Using SOAP to Encode Information42

Interface Versioning42

Interface Complexity45

Summary48

.NET Architecture and Web Services Components 49

Motivation for Creating .NET5O

The Benefits and Limits of COM50

Other Microsoft Technology Considerations51

A Better Model52n

005

SERVICENOW lNC.'S EXHIBIT 1007

006 SERVICENOW INC.'S EXHIBIT 1007

The .NET Framework53

The Common Language Runtime...................................... ..53

Microsoft Intermediate Language54
Just-in-Time Compiling57

Common Type System58

Assemblies and Managed Code ..67

Security68

The System Namespace.. ..68

Web Services.. ..73

Discovery73

Description... ..73

Protocols74

Summary74

3 Web Services and XML 75

XML as a Wire Representation76

XML and Loose Coupling.. ..78

XML and Interoperability78

Querying XML Elements Using XPath79
Essential XML80

Documents, Elements, and Attributes80

Entity References and CDATA83

URIs and XML Namespaces84

URLs and URNs84

XML Namespaces85
XML Schemas87

Understanding XML Schemas87
.NET Web Services and XML Schemas92

XPath Drilldown93

XPath Operators96
XPath Intrinsic Functions97

Identifying XML Elements Using XLink................................. ..99
XML Transformationsl01

XSLT Drilldown102

XSL Templates 106
.NET’s XML Architecture107

Reading XML Data107

Writing XML Data108

Navigating XML with .NET1 12

Pulling XML Element Information with .NET1 13
.NET and XPath114

.NET and XLink1 17

.NET and XSL118

Summary120

006 SERVICENOW lNC.'S EXHIBIT 1007

007 SERVICENOW INC.'S EXHIBIT 1007

,.w—,z_q__'«

D.,1"‘“°‘'''.9§.$L~r'_,_______§Ga.
-\.

':’_‘fi.0_'f

i vi APPLIEDEBXPI IMPLEMENTING .NMiEu:PY'|\/ii>|.:”\‘I_\M/‘EB SERVICES ‘

4 .NET Web Services and SOAP 123

Why Is SOAP Needed?124
Why Do You Need to Understand SOAP?l25
The SOAP Advantage126

The SOAP XML Object Modell27

The SOAP Envelope127
SOAP encodingstyle Attribute128

The SOAP Header129

SOAP Header Attributes13l

The SOAP Body133

SOAP Body Serialization Terminologyl34

SOAP Body Attributes 136
SOAP Remote Method Serialization137

SOAP Serialization of Simple Datatypes140

SOAP Serialization of Compound Data Types145
SOAP struct Serialization145

SOAP Array Serialization148
SOAP Faults153

.NET SOAP Classes155

The .NET soapFormatter Class155

.NET SOAP Framing Classes159

Summary 160

5 Web Service Description and Discovery 163

Web Service Description Languagel64
The Abstract and the Concrete

The Client’s Point of View

Universal Description, Discovery, and Integration
What Is UDDI?

How UDDI Works

UDDI and Security
tModels

Query Patterns ..

Browsing

Drilling Down

Invoking

Publishing ..

Private Operations ..

Summary 190

007 SERVICENOW lNC.'S EXHIBIT 1007

008 SERVICENOW INC.'S EXHIBIT 1007

EKONIFENTS

Implementing Web Services

Web Services in ASP.NET 193

Web Service Processing in .NET194

ASP.NET Web Service Architecture195

.NET Remoting Versus .NET Web Services195

Web Services and Visual Studio .NETl97

The Visual Studio Web Service Project.. ..197

Moving Away from “Hello World”199

The WebMethod Attribute203

Controlling the SOAP Serialization Format205

SOAP Method Attributes205

Data Shaping209

Further Web Service SOAP Packet Customizations213

Adding SOAP Headers222

Header Processing222

Specifying SOAP Header Direction224
Additional SOAP Headers225

Adding a SOAP Extension225

Extension Stream Processing225

Modifying the XML231
Errors and the SOAP Fault231

Default .NET SOAP Fault Processing232

Customized SOAP Faults Using SoapException232

Web Service State Management232

Debugging and Deployment ..236

Debugging236

.NET Web Service Deployment238
Web Services and Best Practices ..242

Summary243

Consuming .NET Web Services 245

Visual Studio .NET Web Service Support246

Consuming Web Services248

Creating the Web Reference .. .253

Web Service Configuration Files268
SOAP Headers27l

Intercepting and Modifying SOAP Packets273

More Deployment and Debugging283

Summary283

008 SERVICENOW lNC.'S EXHIBIT 1007

009 SERVICENOW INC.'S EXHIBIT 1007

" T

Q‘ .
{ APPLIED SOAP: IMPLEMENTING .NET XML WEB SERVICES

. I .

‘ PART III More Advanced Web Services
4',‘ j 8 .NET Remoting 237
2 i .NET Remoting Architecture288
i i 5 Remoting Boundaries .. .289
wt Remoting Object Model290

Remoting Channels291
i Remotable Objects292

i Serializable Objects292
Marshaling Objects by Reference293

., Object Lifetimes294

ii . Configuring .NET Remoting296

} .NET Remoting Example297
"at Summary299

9 Extreme Web Services 301
' Embedded XML ..302

E Entity References.. ..302

CDATA Sections303
r ‘5 ‘ base64 Encoding304

.1" , Rich XML Messaging308

SOAP Messages with Attachments310
«." I»: SOAP and Attachments311

_ Direct Internet Message Encapsulation (DIME)313

:9 Transactions3 13
‘ i Transaction Authority Markup Language (XAML)314

I Applying Transactions to Web Services314

Debugging and Web Services315

95 Web Service Documentation318
I 1 Overview3l9

§ Design Approach319
3 API Summary322

I API Reference322
L. 5 Data Structures .. .323

Error Reference324
3, Test Environment324

j Sample Document324

JO: Summary327
2» 10 .NET and Web Service Security 329
I 4 ‘ Security Terms and Concepts33O
‘ Application-Level Security Versus System-Level Security332
Q Web Services and Security332

Breadth of Web Service Security333

Intranet Web Service Security Alternatives333 ‘

Internet Web Service Security Alternatives339

009 SERVICENOW lNC.'S EXHIBIT 1007

010 SERVICENOW INC.'S EXHIBIT 1007

PART IV

.NET Security353

.NET Evidence-Based Security354

COM+ Security356

Summary356

Appendixes

Example .NET Web Service 359

Tip of the Day Web Service in Visual Basic .NET360

finger Web Service in C#367

Using ATL Server to Create Web Services 375

ATL Server Architecture376

Attributed C++..377

When to Select ATL Server380

Example ATL Server Web Service381

XML Protocol and SOAP 387

The Birth of XML Protocol388

The XMLP Abstract Model388

Definitions ..388

An XMLP Walkthrough390

XMLP_UnitData391
SOAP v1.2394

No More Simple Object Access Protocol394

Bindings394

Namespace URIS394

encodingSty1e395
mustUnderstand Faults395

XMLP, SOAP, and the Future396

.NET Web Service Resources 397

XML General .. .398

General .NET Information398

General Web Service Information399

SOAP/XML Protocol399

Remoting ..399
UDDI. ..400

WSDL - - - . .-400

Transactions ..400

Tools40O

Security400
ebXML401

Sample Web Service401

Index 403

010 SERVICENOW lNC.'S EXHIBIT 1007

011 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

IN THIS CHAPTER

0 What Are Web Services? 10

0 The Road to Web Services 15

21

24

0 Uses for Web Services

0 Web Service Properties

v Creating a Web Service in

Visual Studio .NET 28

0 Interface Design Tips 40

011 SERVICENOW |NC.'S EXHIBIT 1007

012 SERVICENOW INC.'S EXHIBIT 1007

It’s pretty hard to pick up a trade magazine these days without seeing a headline about Web
Services. With phrases such as “a new paradigm" being proliferated, are we really witnessing

the genesis of a new technology?

Unfortunately, the answer isn’t black and white—a lot depends on your perspective. Web
Services can be used in a wide variety of ways, including these:

- Participating in business—to-business (B2B) transactions

0 Exposing software functionality to customers

- Integrating heterogeneous platforms and programming languages

- Providing a simplified platform for product development

What Are Web Services?

Web Services can be described as any functionality that is accessible over the Internet, gener-

ally (but not necessarily) using one or more eXtensible Markup Language (XML) messages in
the communications protocol- Web Services use the concept of an operation to represent the

association of a request message to zero or more response messages. When these operations

are combined to satisfy some particular purpose, they form an interface.

The Poor Man's Web Service

The Internet is already flooded with conventional types of Web Services, better known as Web

pages. Users are expected to interact with the functionality behind the Web page through typi-
cal user—interface widgets such as forms, buttons, and so on.

We already know how to reuse Web functionality by embedding other Web pages into our own

pages through frames and links. But this presentation—based approach severely limits the things

that you can accomplish. If you embed another Web site within a frame of your own, you gen-

erally have no control over the colors, graphics, or other aspects of the presentation. Another

problem is that any information entered by a user in the embedded page never gets back to

your controlling application. In other words, you’re out of the loop!

One way around this is for your application to act as a proxy for the user. Many developers

have already written simple applications that navigate to a particular URL, screen-scrape the
Web site’s HTML for information, and use that information to build new Web content.

Consider the following HTML that describes the current weather temperature:

<HTML>

<HEAD>

<TITLE>Today's Wea1:her<{TITLE>

<,'HEAD>

<BODY>

012 SERVICENOW |NC.'S EXHIBIT 1007

013 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals U

CHAPTER 1‘

<P>City: Los Angeles<!B><!P>

<P>State: Ca1ifornia<!B><fP>

<P>Temperature: 83<fB><!P>

<fBODY>

<!HTML>

In this case, it would be fairly simple to programmatically locate the temperature value within

the markup. However, over an extended period of time using this service, you can be sure that

the underlying Web page will change and ultimately break your application. It would be nearly

impossible to develop software that could automatically adjust to fluctuations in the type of

markup, as shown:

<HTML>

<HEAD>

<TITLE>Today's Weather<iTITLE>

<!HEAD>

<BODY>

<TABLE wIDTH="500” CELLPADDING=“1@" CELLSPACING=“15">

<TR>

<TD ALIGN="LEFT" VALIGN%“MIDDLE" WIDTH=“1@@">city<lB><!TD>

<TD ALIGN="LEFT" VALIGN="MIDDLE" WIDTH=“2@0“>Los Ange1es<!TD>
<lTR>

<TR>

<TD ALIGN="LEFT” VALIGN="MIDDLE“ WIDTH=“1@@">8tate<!B><lTD>

<TD ALIGN="LEFT“ VALIGN="MIDDLE“ WIDTH="2@@“>Ca1ifornia<!TD>

<{TR>

<Tn>

<TD ALIGN="LEFT" VALIGN=“MIDDLE" wIDTH="1@@">

Temperature<lB>

<;Tn>

<TD ALIGN="LEFT" VALIGN=“MIDDLE“ WIDTH=“20@“>83<!TD>

<TD ALIGN="LEFT" VALIGN="TOP“>

<!TD>

<lTR>

<lTABLE>

</BODY>

<rHTML>

Now consider integrating multiple systems using this approach. Recall that in the Web Services

paradigm, many systems likely could participate in some business process. Because HTML

content changes at such a fast pace, you likely will not ever be able to construct a reliable inte-

grated solution.

For example, consider one application that monitors the temperature Web site and another Web

site that posts the average speed of traffic on a nearby highway:

013 SERVICENOW |NC.'S EXHIBIT 1007

S'IV.l.NEllA|VClNl'l;| EDIAHSSHEM

014 SERVICENOW INC.'S EXHIBIT 1007

12
I Foundations of Web Services

<HTML>

<HEAD>

<TITLE>Interstate Traffic Report<!TITLE>

<!HEAD>

<BODY>

<CENTER>Average Speed<!CENTER>

<CENTER>67<iCENTER>

<!BODY>

<!HTML>

By relating these two axes of data, the application might be capable of determining whether
there is a correlation between sunny days and fast driving. Although it might be an interesting

problem to solve, the likelihood of the application working with 24x? reliability is extremely

low. The plain-and-simple fact is that relying on presentation-oriented data leads to a tightly

coupled and brittle system.

The question isn’t whether the concept of integrating Web content is valid; the problem lies
within the information that can be obtained from a source. Without rich content markup, pro-

grams don’t have much of a chance of locating pertinent information. Of course, this is where

XML markup makes an important difference. Given standardized markup that describes infor~

mation in a particular domain space, an application should always be capable of finding the

right data.

Taking the concept of standardized markup into account, Web Services can be better defined as

functionality that is accessed over the Web and that provides infonnation in a reliable and pre-

dictable manner. In many cases, this predictability will be realized through the use of XML

markup for describing information.

Although Web Services are not limited to the following technologies, you will find that a large

percentage of Web Service implementations are built upon the Hypertext Transfer Protocol
(HTTP), SOAP/XML as a messaging protocol, and Web Services Description Language

(WSDL) as a way to describe service interfaces.

The basic idea behind Web Services isn’t really new. in many ways, we are just reusing tech-

nologies that most of us have used for years. Surprisingly, many developers have already built

systems using Web Service techniques, but in a very ad hoc and proprietary way. The main
difference is that the industry is now supporting Web Services with standards, tools, and

implementations.

First reactions about Web Services usually revolve around performance. Most people recognize

that transmitting XML is not the most expeditious way for systems to communicate. So why

use XML? We use XML because it provides us with a predictable way to package information

that is structured, extensible, and yet still very easy to use—not something that can be said for

other packaging protocols. Let’s take a closer look.

014 SERVICENOW |NC.'S EXHIBIT 1007

015 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

CI.-lA|-’TER _

XML Messages

By nature, interface-based programming enables us to build loosely coupled systems, meaning

that the client and Web Service are independent of one another. This has been true in object-

oriented programming for many years, within the confines of a particular programming language.

Web Services reinforce loosely coupled systems by removing dependence upon a common

programming language or even a common platform. This is realized through the use of XML

messages, which define the operations inside a Web Service interface.

The importance of this feature is well understood by distributed application developers who

have been using systems such as CORBA and DCOM. Historically, building applications on

top of binary protocols and their associated runtimes results in a very tight dependency between

the client and the server. This forces developers to repeatedly build and distribute new interface

components (such as proxies and stubs), which is a very tedious and error—prone process. More

importantly, though, XML lets you focus on the interface semantics rather than having to

worry so much about synchronizing parameter lists of remote methods.

Syntax Versus Semantics‘

Recall that syntax is the detailed representation of information. It’s the way you organize

instructions in a programming language or arrange tags in an XML document.

Semantics, on the other hand, refers to the meanings or concepts behind a syntactical represen-

tation. Because semantics represents information from a logical standpoint, there might be sev-

eral ways to syntactically represent that information, all of which should convey the same

meaning to the information consumer.

To better contrast syntax and semantics, consider the following sample XML:

<ChargeCreditCard>

<amount>150.00<!amount>

<creditCardNumber>123456789<fcreditCardNumber>

<expirationDate>2003-01-31<!expirationDate>

<fChargeCreditCard>

In this case, the syntax is fairly simple—an XML message consisting of start and end tags,

structured with a single root element and its descendants. We could have just as easily used the

following text:

Please charge $150.00 to credit card number 123456789, which expires January

31, 2003.

Semantically, the information represented by both syntaxes allows you to bill someone’s credit

card, which is really what we’re interested in. Obviously, the latter syntax is more pleasing to

humans, and the former XML message is much more acceptable for application consumption.

015 SERVICENOW |NC.'S EXHIBIT 1007

&

S1V.I.N3WVONIH

EDIAHEIS83]“

016 SERVICENOW INC.'S EXHIBIT 1007

14 Foundations of Web Services

SOAP uses XML to define a syntax, which makes it very easy to represent information in a

structured form. However, SOAP also carries some important protocol semantics that allow

SOAP processors to serialize/deserialize data, handle faults, and mandate that certain informa-
tion be present in a message.

As the creator of a Web Service, you have the task of defining your own set of semantics for

your Web Service. Some simple semantics might be to get a stock quote or to retrieve the time
and temperature. A more advanced semantic might be to schedule a vacation, which includes

reserving a hotel room, airfare, and ground transportation. Arriving at a reasonable set of
semantics requires you to use standard software engineering practices such as working with

domain experts.

The long-term vision of Web Services is for developers to be able to construct applications by
integrating one or more units of functionality into a single service (as in the vacation example).
The most significant aspect of this model is that you can incorporate distinct units of function-

ality from a wide variety of sources and successfully complete some larger task or business
process. It is like code reuse, without the programming language compatibility problems.

To describe the interaction between Web Services and their clients, it’s important to define

some terminology that will be used in this context.

Web Service Terminology

The Web Services model uses several terms that help to identify the various roles in a typical

Web Service scenario.

A service provider is an entity that hosts a Web Service that exposes some functionality. The

service provider is responsible for defining the semantics of the service interface as well as
constructing the appropriate physical representation as depicted in a Web Service description
document.

The service provider can then publish the interface description to a service registry. Here,
information about the provider and the service are persisted for service discovery. The service

registry exposes its own set of interface semantics that allows others to create new entries,
update registry information, or query for specific registry parameters. For more detailed infor-
mation about service registries, refer to Chapter 5, “Web Service Description and Discovery.”

At some point after service publication, a service requester (sometimes referred to as the
client) can discover the Web Service and its interface description, and bind to this service to

fulfill the service requestor’s needs.

As you can see from Figure 1.1, three major processes take place. First, the service provider

publishes service information. Next, the service requestorfinds the service in the service

016 SERVICENOW |NC.'S EXHIBIT 1007

017 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals
CHAPTER 1

registry. Finally, the service requestor binds to the service to execute some functionality. This

publish, find, and bind model is consistent with other networking protocols such as DNS.

Publish

Service

Provider

Service

Requester

FIGURE 1.1

The Pubiish, Find, and Bind Model.

Now that you are familiar with the concept of Web Services, let’s take a quick tour of how

Web Services came about and why.

The Road to Web Services

Most things in software engineering happen for a very good reason—or, at least, we hope so.

This is how concepts such as abstraction and encapsulation have become mainstream. As with

any technology, we learn from past mistakes and capitalize upon our successes.

Web Services are no different. They have materialized from a variety of Web technologies that

have been proven to work in the widely distributed environment of the Internet. The Internet

itself has evolved over the years, spawning many new ideas and concepts that have contributed

to the Web Service approach.

Waves of the Internet

Since the beginning of the Internet, many changes have come about in networking technology,

security, system scalability, and many other areas of distributed computing. Overall, we believe

that the Internet has succumbed to four major waves of development.

The first wave of the Internet started around the 19705 with some very important government

research, specifically the Defense Advanced Research Projects Agency (DARPA). This is

017 SERVICENOW |NC.'S EXHIBIT 1007

s1vmawvaNn,1-‘ amassaam

018 SERVICENOW INC.'S EXHIBIT 1007

where Transmission Control Protocolflnternet Protocol (TCP/IP) was born. Its goal was to

interconnect computer systems through a complex architecture of networks and subnetworks.

Over the years, a variety of physical networks (such as Ethernet) and routing technologies

evolved to the point that, in 1990, more than 200,000 computers were interconnected on the
Internet.

Although Internet connectivity was one of the most significant achievements in computing, it

meant very little without applications to drive it. This is where the second wave of the Internet

began (roughly in the 19803). Tools such as FTP and Telnet gained in popularity by allowing

system users to remotely access other computers. Although the tools were crude, compared to

today’s standards, the underlying protocols that they used where quite elegant.

In the early 1990s, the Internet began to seep into more sophisticated applications and led to

the dawn of the Web, which marks the third wave. Browsers—and eventually Java applets—

allowed the general consumer to experience interconnected communities of users. Of course,

where there are consumers, there are vendors. This spawned more electronic business opportu-

nities, as evidenced by the plethora of electronic storefronts and shopping carts.

All this, of course, has brought about the fourth wave of the Internet, which is the focus of this

book—Web Services. Here, the goal is for multiple diverse applications to communicate so

that they can execute some task. Not only does this improve the user's experience, but it also

offers the ability for you to integrate functionality at a much lower cost than developing it all

yourself. From the uscr’s standpoint, all of this is orchestrated from a single application. But

behind the scenes, one or more additional applications will likely participate. The key is that

the applications work while remaining oblivious to vendor-specific technologies being used by

the participating services.

Looking back, each wave introduced new Internet standards that facilitated the next wave of

development.

Internet Standards

In April 1969, the first Request for Comments (RFC) was published at UCLA (RFC 1), and

thus began the process of sharing ideas in computing for a much greater cause. Then, in 1986,

the Internet Engineering Task Force (IETF) was officially created. Its charter was (and still is)

to evolve the architecture of the Internet using open contributions from the research and devel-

opment community.

After inventing the Web, Tim Berners-Lee decided to create the World Wide Web Consortium

(W3C) in October 1994. The W3C‘s purpose is to promote interoperability and open forum

discussions about the Web and its protocols.

These organizations have led the way to standardization, a process that has resulted in a strong
foundation for the Web Service infrastructure.

018 SERVICENOW |NC.'S EXHIBIT 1007

019 SERVICENOW INC.'S EXHIBIT 1007

, 17
CI-IAPTER1

Several standards are prevalent in current Internet development. Some have existed for years,

and others are relatively new, and not necessarily standards. This section summarizes these

technologies and shows how they apply to Web Services.

HTTP and SMTP

As stated before, TCP/IP is the foundation of Internet communication protocols. However,

TCP/IP without an application is a little like a car without a driver. How an application uses

TCPHP also determines the semantics of that app1ication’s protocol.

S1V.lN3WVC|Nn;|-‘ aauiuasaam
Application protocols such as HTTP and Simple Mail Transfer Protocol (SMTP) already have

predefined semantics and behavior that determine how they should be used. For HTTP, the

semantic implies a request/response model designed to serve Web resources such as HTML or

JPG files. SMTP, on the other hand, implies a one-way request/acknowledge semantic

designed to transmit text-based email messages in afire-and-forget manner.

Fire-and—forget is a military warfare term that has been overloaded for networking
purposes. We use it to describe the process of sending a message: The sender does

not require any acknowledgement that the recipient actually received the message.

In the context of Web Services, these application protocols are used to carry additional seman-

tics, such as those specified by SOAP. SOAP, in turn, provides a way for you to define your

application semantics that are also carried over these application protocols. This layering of

semantics just reemphasizes the flexibility of Web Service protocols.

Because HTTP is the dominant protocol being used for Web Services, let’s take a quick look at

the two most common aspects of HTTP being exploited, the GET and POST verbs.

The following is a sample HTTP GET request:

GET fdefaulthtm HTTP.-‘1.1

Accept: textf*

Host: www.mcp.com

{C3}{LF}

In this case, the client is requesting that the www.mcp.com server return the defaulthtm

resource. The client would like to use version 1.1 of the HTTP protocol in this transaction and

is willing to accept the resource as some form of text. Notice that the message is terminated by

the carriage retum/line feed pair following the message.

019 SERVICENOW |NC.'S EXHIBIT 1007

Web Service Fundamentals """"H "

020 SERVICENOW INC.'S EXHIBIT 1007

Foundations of Web _Services

Many times you need to provide application-specific information to the server that is not repre-

sented in the semantics of the HTTP protocol. For instance, you can pass parameters on the

URL, as shown:

GET Ieetstockouote.asp?symbol=MSFT HTTP;'1.1

Accept: text!*

Host: www.mcp.com

{CFIHLF}

Given this sample request for obtaining stock quote information, the symbol parameter and its

value are passed on the query string, and you can expect the server to respond with some form

of HTML, such as the following:

HTTP!1.1 200 OK

Content-type: textfhtml

<html><head><title>Microsoft stock Price</title><!head>

<body>
Microsoft: 8@.75<ib>

<fbody>

<1htm1>

The server’s response contains the HTTP version, a status code and message, and the content

type that is associated with the related payload following the carriage returnlline feed pair.

However, using the GET request is less than optimal when dealing with large and complex para-

meters. Certain HTTP implementations and older firewalls have been known to truncate URLs

based on poorly chosen size limits. URLs also undergo encoding for a large number of charac-

ters, which complicates processing procedures.

Instead, we can use the HTTP POST verb, which places information within the Body of the

request message:

POST iGetStock0uote.asp HTTP!1.1

Accept: text!*

Host: www.mcp.com

Content-type: textixml

Content-length: nnnn

<Symbol>MSFT¢!Symbol>

Similar to the GET verb, the POST verb also identifies a resource, the version of HTTP, and the

content that it expects to receive. However, two additional HTTP fields are provided—

Content -type and content -length. The two new fields refer to the remainder of the message,

which, in this case, happens to carry an XML message.

020 SERVICENOW |NC.'S EXHIBIT 1007

021 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

Here you can see that we are no longer bound by limitations of the URL. There is less charac-

ter encoding taking place, and we are able to transmit more complicated payloads—this is by

far the most helpful aspect of HTTP when used in the Web Service model.

Although we generally recommend that you use the POST method, in some situations

using GET might make sense. GET is best used for simple semantics that require only

minimal message structure and in situations when client applications don": have con-

trol over the POST payload.

An example of this is with the Visual Studio .NET test pages that are generated with

your Web Services. Because the browser's POST feature does not allow you to place

customized information in the message Body, the GET verb comes in very handy.

Also note that your test pages won't support complicated parameter types (same

goes for the W501. for HTTP GET or POST), so you'll be required to manually build a
client that can exercise your service in this case.

extensible Markup Language (XML)
Although XML has such a wide variety of uses, it makes a great foundation for Web Services

for many reasons:

- In a world where global business arrangements are becoming the norm, XML natively

supports different character sets through Unicode (UTF-8, UTF-16, and so on).

- XML promotes interoperability in a platform-agnostic way by promoting the conver-

gence of information to a common, vendor-neutral state.

0 Probably most importantly, XML is simple.

As we briefly mentioned before, XML is really just syntax for application semantics that you

must define. To define semantics and the associated XML syntax for your semantics, you need

to establish the appropriate structure and restrictions of your markup—you do this through a
schema.

XML Schemas

When you want to describe (and possibly validate) an XML document, you might use a

Document Type Definition (DTD), such as this one:

<1-- House DTD -->

<!ELEMENT house (address)>

<!ATTLIST house bedrooms CDATA #REGUIHED

bathrooms CDATA #HEQUIHED>

<!ELEMENT address (street, city, state, 2ip)>

021 SERVICENOW |NC.'S EXHIBIT 1007

S1V.lN3lNVdNn:|-‘ EDIAHHSHEM

022 SERVICENOW INC.'S EXHIBIT 1007

20
Foundations of Web Services

__ PART I

<!ELEMENT street (#PCDATA)>

<lELEMENT city (#PCDATA)>

<!ELEMENT state (#PCDATA)>

<lELEMENT Zip (#PCDATA)>

As you can see, though, D'I‘Ds are limited by their somewhat cryptic syntax and lack of type

checking.

In February 2001, the XML Schema specification was promoted to Recommendation status by

the W3C. XML schemas not only encapsulate the same feature-function as DTDS, but they

also offer complex type checking, all wrapped up in an XML language. This makes XML

schemas the preferred method of describing all forms of XML documents, including XML

messages. The same example is shown in XML schema format, as follows:

<!-- House XML Schema -->

<xsd:schema xmlns:xsd="http:l!www.w3.org!2001!XMLSchema">

<xsd:comp1exType name="AddressType">

<xsd:sequence>

<xsd:e1ement name=”street" type=“xsd:string” !>

<xsd:e1ement name=“city" type="xsd:string“ !>

<xsd:element name=“state“ type=“xsd:string" I>

<xsd:element name="zip" type="xsd:decima1“ l>

<!xsd:sequence>

<xsd:attribute name=“bedrooms” type=“xsd:positivelnteger“ use=“required“ }>

<xsd:attribute name="bathrooms" type=“xsd:positiveInteger" use="required"I>

<!xsd:comp1exType>

<xsd:element name=“house“ type="AddressType” !>

</xsd:schema>

SOAP

Although SOAP isn’t officially an Internet standard, it has been widely adopted by the Internet

community, including the Electronic Business XML (ebXML) organization, for its transport

and routing layer.

To summarize SOAP in a single word, packaging is the most appropriate description. Many

developers have created ad—hoc approaches for sending XML messages between their applica-

tions. The creators of XML-RPC took the concept to the next level by exposing a publicly

available specification for XML messaging. Taking XML-RPC a step further, SOAP basically

defines a standard yet extensible way to wrap information in XML so that both ends of the

connection (and potentially everything in between) can understand how to open this package.

Let’s take a quick look at a SOAP request message:

<SOAP - EIW : Envelope

xmlns : SOAP -ENV=“nttp: Hschemas . xmlsoap.orglsoaplenvelopef "

022 SERVICENOW |NC.'S EXHIBIT 1007

023 SERVICENOW INC.'S EXHIBIT 1007

SOAP-ENV:encodingSty1e=“http:Ifschemas.xmlsoap.orgfsoaplencoding;“>
<SOAP-ENV:Header>

<t:transId xm1ns:t=“http:{!www.mop.com!trans”>
87654

<!t:transId>

<!SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetStockQuote xmlns:m="http:!fwww.mcp.com[stock">

<Symbol>MSFT<lSymbo1>

<fm:GetStockQuote>

<lSOAP-ENV:Body>

<lSOAP-ENV:Envelope>

This simple message shows the general packaging of a SOAP message. The Envelope contains

an optional Header and a mandatory Body. The Header is used for out-of-band information

that doesn't necessarily apply to the semantics of the message Body. The Body is used to carry

the application-specific message content. This is definitely not all that SOAP represents, but it

captures the spirit of what SOAP set out to accomplish. We’ll leave it to Chapter 4, “NET

Web Services and SOAP,” to provide the gory details about the remainder of the SOAP

protocol.

WSDL and UDDI

WSDL is the description language that is used to describe how software must interact with a

particular Web Service. Clients use WSDL documents to understand the logical structure and

the syntax of a Web Service. WSDL also provides message-exchange patterns, service bind-

ings, and references to the location of a service.

Growing in popularity, Universal Description, Discovery, and Integration (UDDI) is one way

for the publish, find, and bind process to be accomplished. UDDI servers allow WSDL to be

published and propagated across the Internet so that clients can ultimately consume a given

service.

Although neither WSDL nor UDDI has been standardized, the industry is giving both the most

attention of any similar mechanisms. A great deal more about WSDL and UDDI will be

explained in Chapter 5.

Uses for Web Services

At the beginning of this chapter, we briefly mentioned several areas where Web Services can

have an impact on the solutions that you build. Let’s look at a few of these areas a little closer.

Business—to—Business

One area that clearly deserves attention is in the business-to-business (B2B) paradigm. Most

companies today still operate on paper systems. This is due in part to the simplicity and low

023 SERVICENOW |NC.'S EXHIBIT 1007

Web Service Fundamentals in

CHAPTER 1'”:___w_j

S'IV.LN3lNVGNn;|-‘ aamuas-aam

024 SERVICENOW INC.'S EXHIBIT 1007

Foundations of Web ServicesPART 1

cost of entry into paper-based systems. For more than two decades, developers have been

trying to integrate business processes using a combination of software and communication

protocols.

Electronic Data Interchange (EDI) has been the technology of choice for many years.

Unfortunately, EDI has been a technology that only large corporations could afford to leverage.

Not only was EDI expensive, but it also could require years of effort to become fully integrated

into a business process. Although the intentions were good, the complexity of the underlying

technologies was not cost—effective for many companies.

When XML took center stage, it became apparent that XML could facilitate the low-cost and

simplistic approach that was necessary for the B2B task.

Right around the advent of SOAP, the Organization for the Advancement of Structured

Information Standards (OASIS) formed a group to design an XML—based technology that

could become the de facto standard for business communication. This effort is known as

Electronic Business XML (ebXML) and is sponsored by OASIS and the United Nation’s

Center for Trade Facilitation and Electronic Business (UN/CEFACT).

Because most of the ebXML group has been working with EDI for years, it had a clear idea of

how to build a global electronic marketplace. Initially, the ebXML team set a course to deliver

a framework within 18 months of the group’s forming. In May 2001, the group did just that.

What was so significant about ebXML was that the ebXML Transport, Routing, and Packaging

team began developing an XML-based protocol that did not involve SOAP. Fortunately, before

the release in May 2001, the TRP team reevaluated the SOAP specifications and eventually

incorporated SOAP and its use with Multipart MIME.

Exposing Functionality to Customers

Although this is a similar topic, don’t confuse this type of service with standard B2B opera-

tions as addressed by ebXML. Here we’re talking about something like a billable service or a

deliverable that you expose to a customer through a Web Service.

An example might be the history report of a car—but not just any report, especially not one

that is displayed in a Web page. Rather, this information must be provided in XML so that

a car dealer can build a used-car evaluation system that automatically approves or rejects

trade—ins.

Consumer-related services such as the Hailstorm services being developed by Microsoft pro-

vide the capability to store documents, calendar information, and even your favorite Web sites

in a common repository.

024 SERVICENOW |NC.'S EXHIBIT 1007

025 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals J
CHAP‘rsitT

Integrating Heterogeneous Systems

It’s normal for companies to have computing systems dispersed across multiple platforms. This

can be the result of system evolution, cost reduction, or varying developer experience. Commonly,

it’s the result of architectural disagreements between developers that prefer one platform to
another.

The typical RPC-like protocols have never proved to be a satisfactory solution to this problem.

While it’s possible to get disparate systems to communicate, the time involved in doing so usu-

ally outweighs the benefits. Why is it so difficult to get disparate systems to communicate?

One reason is that vendors choose to deviate from standards to squeeze more performance out

of their platforms. Interpretation of standards is another cause of protocol incompatibility,

mostly because specifications are complex and have areas of ambiguity that aren't easily

resolved without vendor cooperation.

If you can reduce the development time to a manageable amount and remove the vendor-

specific protocols, you can capitalize on Web Services in the enterprise in many ways.

We won’t try to convince you that Web Service performance is on par with binary protocols-—
the additional overhead in text processing alone suggests that they’re not. But we can tell you

that it takes less than a week to get two dissimilar systems communicating using XML and

HTTP. And with network and processor speeds rapidly improving, ease of development may be

more beneficial than raw speed. Ultimately, you’ll have to decide which type of performance

means the most to you.

Rapid Development Environment

Web Services can make your project development environment operate faster, for several
reasons.

As mentioned before, heterogeneous systems can be hooked together to build a solution. This

enables developers to work in their preferred environment, while still allowing them to produce

an integrated solution. If at some point you decide to move a service from one platform to

another, clients will be unaware of the change, as long as you maintain the same interface. A

platform-independent programming environment such as .NET adds to this capability by

reducing the amount of code that actually needs to be rewritten.

Web Services also force you to think in terms of interfaces. You don't have to worry about

compiling another developer’s source code or linking in libraries. Stack traces and memory

dumps are partially replaced by traces of XML messages.

This usually has the positive side effect of breaking down services into logical subcomponents.

You can then isolate functionality and test it accordingly. Because of this, Web Services can be

025 SERVICENOW |NC.'S EXHIBIT 1007

23

l1

lJ

—'I

S'|V.lN3WVC|Nfl;|

amassaam

026 SERVICENOW INC.'S EXHIBIT 1007

easier to test. You can fairly easily trace Request messages and save them in text files so that

later they can be played back to regression test your interfaces.

Web Services can offer such an improved development environment because of the fundamen-

tal Web Service properties. We’ll take a look at these next.

Web Service Properties

Many times we become so enamored with new technologies that we don’t always realize the

benefits and costs of using them. It’s important to explore these so that you can make informed

decisions about the systems you are building.

Performance

Although there are many types of performance, we are specifically referring to raw communi-

cations performance at this point. This type of performance always seems to be one of the first

topics that come up in discussions of Web Services. It’s a perfectly reasonable concern because

we're talking about using a text-based protocol (such as SOAP and XML).

Losses Versus Gains

The fact is, when using XML and HTTP, you definitely sacrifice network performance when

compared to binary protocols such as CORBA. Various unofficial tests have shown perfor-

mance degradation at five times slower (or worse) than a binary protocol. Although most of the

performance cost can be attributed to XML parsing, character encoding and socket setup and

teardown costs also have an impact. However, as we’ve already mentioned, network and

processor speed improvements will eventually make these concerns nonissues.

But consider what you gain from this loss in performance. First, you gain native Unicode sup-

port. By default, XML is designed to accommodate most forms of languages, making it a truly

global protocol. This might not be important to you now, but in an Internet economy that has

no physical borders, globalization will play an important part in future B2B efforts.

You also gain loose coupling between systems. This is by far one of the most positive aspects

about Web Servicesmand SOAP, in particular. Developers are constantly challenged to work

with different operating systems, runtime platforms, programming languages, and so on. Loose

coupling enables you to hide the implementation details of a service from the service requestor,

giving both parties a great deal of flexibility and choice. This leads to the topic of another type

of performance: developer performance. Because Web Services are agnostic to implementation

details, programmers have the opportunity to choose the programming environment that makes

them the most productive. In a multi—Web Service environment, loose coupling also allows

developers to work independently on these services. This helps to improve parallel develop-

ment efforts.

026 SERVICENOW |NC.'S EXHIBIT 1007

027 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals 25

Finally, you gain an extensible protocol that can grow over time. With so many changes occur-

ring in the Internet, you cannot afford to stagnate. Systems must be capabie of adapting faster
and faster. Built-in mechanisms for extensibility (as demonstrated in SOAP) are necessary to
protect systems from becoming brittle.

Improving the Performance of Web Services

But don't go away feeling that all performance is lost. You can do a few things to improve the
overall performance of your application.

One of the most significant ways is to be aware of how you define your interfaces. We tend to

think in terms of standard distributed RPC architectures. With these systems, we usually have a
distributed runtime that is managing state and maintaining an open connection at all times.

RPC architectures do this because setup and teardown of connections takes a significant amount

of time. When using protocols such as HTTP for Web Services, you have to plan on connec-
tions coming and going to" achieve high scalability.

To account for this, you must maximize the amount of information that you transmit on each

call. However, this is not always an easy task because you can’t afford to change the semantics

of an interface just to improve performance. You will need to spend a great deal of design time

determining the best way to convey your semantics in the fewest number of messages possible.

Just remember, you’re better off sending a little too much information than not sending enough
and requiring additional round trips.

It’s also important to understand the needs of your service’s typical service requestor and

adjust the interface appropriately. For instance, if you know that a client will typically ask for

A and then almost immediately ask for B, maybe your interface should always return B with

A, saving that additional round trip. This is a simple but common example in distributed sys-
tems development.

You should also be aware that how a service requestor is implemented could make a significant

difference in the service requestor’s performance. Although you shouldn’t care about the ser-

vice requestor’s implementation——and, in most situations, it’s out of your control—the fact

remains that poor implementations can be directly attributed to lousy performance. A common

improvement can be found by using SAX parsers over DOM parsers. There are certainly

advantages to each, but, in many cases, SAX will help your applications get faster. Don’t be

overly discouraged by parsing speed, though; vendors are developing new ways to improve

parse times, as you've already seen in newer generations of XML parsers.

User Perceptions

Another client-related area that you might have control over deals with perceived performance.

This type of performance is directly related to the end user's experience. You can identify these

027 SERVICENOW |NC.'S EXHIBIT 1007

&

S'|V.lN3WVGNfl;]

azumiasslam

028 SERVICENOW INC.'S EXHIBIT 1007

26 H Foundations of Web Serviceswi
PART I

areas for improvement when your XML messages have a direct effect on a user interface. In

this case, it might be possible to provide partial user feedback before all transactions in a busi-

ness process complete. This is similar to the way Web pages are rendered in a browser—-as a

user, it’s helpful to see the first screen of a document while the remainder is downloaded in the

background. Be careful when architecting your systems around presentation—on'ented behav-

ior—you want to avoid sacrificing semantics for performance whenever possible.

Simplicity

Compared to many of the distributed systems currently in the industry, Web Service dwarfs the

others when it comes to simplicity.

Granted, some of the technologies surrounding Web Services have their share of complexities,

but XML and HTTP generally are not very difficult to use. Plenty of software is available to

use XML and HTTP, not to mention the growing number of SOAP implementations that are

freely available (see Appendix D, “NET Web Service Resources”).

Building software to use a Web Service is also very easy. When you understand the semantics

of the Web Service, constructing the code to interact with the service is usually straightfor-

ward. This is because the programming model for Web Service is fairly simple. It forces you to

separate interface from implementation, a concept that is well understood by the object-oriented

programming community.

Security

The Internet has brought security to the forefront of everyone’s minds. Viruses, hackers, and

the like all lead to concerns from both a consumer and a developer standpoint. The question of

whether Web Services make you more susceptible to security risks doesn’t have a clear answer.

On one hand, Web Services don’t introduce any new technologies, but they do introduce yet

another application of existing technologies that can be attacked.

The Secure Socket Layer (SSL) is one level of security that encrypts SOAP messages at the

HTTP transport layer, usually referred to as HTTPS. Without the proper SSL certificate infor-

mation, an interceptor would have no way of knowing the actual contents of the underlying

HTTPS message.

In addition to SSL, a lot of interest has arisen in extending SOAP’s security prospects. This has

led to a W3C submission called SOAP Security Exrensions.- Digital Signature. In a nutshell,

this promotes a standard way to use digital signatures in XML to sign SOAP messages. Although

this does not prevent others from peering into your messages or replaying messages to your

applications, it does allow you to verify the integrity of the message as well as its origin. To

accomplish this, the specification proposes using the SOAP Headers to carry digital signatures

that relate to some other portion of the SOAP Envelope.

028 SERVICENOW |NC.'S EXHIBIT 1007

029 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

ciiiiiaren 1'""____

At this point, the major aspects of security that you should concentrate on are authentication,

authorization, and encryption. You can perform authentication in several ways, including using

Microsoft’s Passport, using client certificates, or implementing your own authentication

scheme. In the latter case, SSL remains the definitive mechanism for securing a connection so

that you can perform your authentication work.

-A

S'lV.LN3Ii‘llVClNn;| anlnuas93M
Reliability and Availability

How many times have you attempted to point your browser to a Web page, only to find noth-

ing but a sleepy status bar followed by that ominous and yet oh—so-familiar HTTP 404 error?

When you consider the amount of network traffic that the Internet carries today and the num-

ber of complex systems that must work together to keep the Internet running, it’s amazing that

this type of error doesn’t occur more often. However, for many business processes (such as a

financial transaction), even a minor hiccup in the network can cause great damage.

The best way to solve this problem is to use a transport protocol that guarantees delivery. For

instance, a message queue that supports ACID transactions can ensure that messages arrive at
their destination.

Recall that ACID stands for Atomic (interrupted work can be undone), Consistent

(resource integrity is preserved), Isolated (it works independent of other transactions),

and Durable (the results are permanent).

For many people, this level of reliability is not worth the incompatibilities of message-queuing

systems. This is why we’re using Web Services in the first p1ace—-so that we don’t force both

ends of a connection to share some proprietary protocol.

Until more sophisticated and standardized systems are put in place, the best recommendation

that we can make is to build your systems with the most atomic interfaces possible. This mini-

mizes the sequencing of requests, thus reducing the risk of taking a particular message out of

context. And as any distributed application programmer knows, you program defensively for

communication problems and deal with exceptions in the most robust way possible, trying to

eliminate the possibility of leaving your system in an unstable state. This suggests that, at a

bare minimum, you build in mechanisms so that changes can be backed out.

Consistency

Although this can be related to reliability and availability, we refer to consistency as the capa-

bility of a service requestor to faithfully expect the interface to perform in a manner similar to

029 SERVICENOW |NC.'S EXHIBIT 1007

030 SERVICENOW INC.'S EXHIBIT 1007

Foundations of Web Services

past requests. In other words, you can’t arbitrarily change the semantics or syntax of a pub-

lished interface without potentially causing problems for clients. And if you are charging for

your service, you can be sure that customers will not find change very pleasing.

We mentioned that you shouldn’t change the syntax of an interface, and to some extent that’s

true. However, as discussed earlier, syntax is normally the part of a message that computers

can understand. Thus, it’s not overly unreasonable to expect SOAP infrastructures to eventually

be capable of automatically adjusting for small syntactic changes, assuming that the semantics
remain the same.

You’ve read a lot about Web Services and many of the issues surrounding them. Now it's time

to dive into some code and see a Web Service in action.

Creating a Web Service in Visual Studio .NET
In this section, you will see how Visual Studio .NET helps you generate a Web Service, as well

as build a consumer application of that service. You will see how WSDL plays a critical part

in bringing together the service requestor and the service provider. Finally, you will have an

opportunity to use a network-tracing application to analyze request and response SOAP

messages.

Creating the Service

In this example, you will create a Persistence application that allows a client to store name!

value pairs on the server. Although this implementation of a property bag is far from full-fea-

tured, you can see how a simple Web Service can bridge the gab between heterogeneous sys-

tems wanting to share state information. The following steps walk you through creating a

Persistence application:

1. Start a new ASP.NET Web Service project called ChlWebService—in this case, using C#.

2. Select http://localhost for the location of your service. (This step assumes that you are

running a local copy of HS with the appropriate server extensions.)

3. Look under your system’s wwwroot folder (by default located in C:\inetpub\wwwroot), for

a folder with the Ch lWebService project name. Within that folder there are several hidden

folders and a bin folder that, at this point, should be empty. After you build the project, the

bin folder will be populated with the necessary files for your service to execute.

Hidden files can be seen by enabling this option under the Tools, Folder Options

menu, under the View tab in Windows Explorer.

030 SERVICENOW |NC.'S EXHIBIT 1007

031 SERVICENOW INC.'S EXHIBIT 1007

CHAPTER 1 !__

Go back to the ChlWebService project folder. Among the many files available, there is a

Service1.asmx file that is the entry point into your Web Service. You might want to take

a look at the contents of this file to see how it is organized.

. Looking at the Solution Explorer in Visual Studio .NET, note that Service1.asmx is also

listed under the ChlWebService project. To change the name of your service, you must

alter the properties of the Service1.asmx file and change it to Persistenceasmx. You will

also need to change the contents of this file so that the C1ass= value reflects the new

Persistence service name in this assembly. Finally, you must change the name of the
Service1 class in the source code.

. Press F5 (Debug mode) to see Visual Studio .NET build your project and launch a browser

window showing a sample Web page. At the top of the page, you will see a hyperlink to

the service description of your service. Notice that there isn’t much here because you

haven't created any Web-enabled methods yet. You will also see a warning on the page
about the default namespace being used; we will assign a real namespace to the service
shortly.

. Close the browser window. Visual Studio NET should exit Debug mode.

. Enter the service code. Listing 1.1 shows the final code that will be used for this example.

LISTING 1 .1 Form1.cs

using

using

using

using

using

using

using

names

{

If

if

if

System;

System.Col1ections;

Sy5tem.ComponentMode1;

System.Data;

System.Diagnostics;

System.Web;

System.Web.Services;

pace Ch1WebServiee

I <summary>

E Summary description for Persistence.

I <}summary>

[webservice(Namespace="http:Ilwww.mop.orglwebservices!Persistence")]
pu

{

blic class Persistence : System.Web.Services.WebService

public Persistence{)

{

//CODEGEN: This call is required by the ASP.NET Web Services Designer

Initia1izeComponent();

}

031 SERVICENOW |NC.'S EXHIBIT 1007

29

‘

S'lV.l.N3lA|VGNn;-|

Web Service Fundamentals U """""" u l ""

amassslam

032 SERVICENOW INC.'S EXHIBIT 1007

Foundations of Web Services

LISTING 1 .1 Continued

#region Component Designer generated code

(I! <summary>

fl! Required method for Designer support - do not modify

III the contents of this method with the code editor.

If; <{summary>

private void InitializeComponent()

{

}

#endregion

//X <summary>

I}! clean up any resources being used.

If! <!summary>

protected override void Dispose(bool disposing)

{

}

[WebMethod]

public string Get(string myName)

{

string 5;

try

{

/I Retrieve the named value from the Application property

s = App1ication[myName].ToString();

}

catch (Exception e)

{

s = e.Message;

}

return 3;

}

[WebMethod]

public void Put(string myName, string myvalue)

{

try

{

If Assign the named value to the Application property

Application[myName] = myvalue;

}

catch (Exception)

032 SERVICENOW |NC.'S EXHIBIT 1007

033 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals : I 31

_ ___ ___.________.._.__.. ._._. . . _ ._._ _.______.T.. .._.. , 1 , _ _ ___

LISTING 1.1 Continued 1

{ "I1
N do nothing g 5

1+ g E
return; 3 Q

} 5 i‘---| ._

} 5 Q

Listing 1.1 takes advantage of the Application state—management facilities provided through

.NET. This allows you to store name/value pairs across multiple sessions of the service. Of

course, this is really only a simulation of persistence and would be better implemented by

actually storing the information in a database. With the current code base, the state is simply

lost when the IIS service stops executing.

As you develop a service, you might find yourself wanting to use the Session feature

of .NET to maintain state for a specific client.

This is easy enough to do: Just use the [weblwethod (true)] attribute on each Web

method to enable session state, and use Session in place of Application.

But be warned—Session relies upon HTFP cookies in the transport protocol. When

testing with the browser (using HTTP GET), your application will perform exactly as

you expected because IE will automatically pass cookies back and forth for you.

However, client applications like the one you are about to build wiil not automati-

cally support cookies. Thus, the application will not be capable of maintaining state

across Web Service methods because each request will be considered a new session.

Overall, you should avoid using transport-level facilities such as cookies that bleed

into application behavior. In other words, cookies don't appear anywhere in the

SOAP message, but they can have a significant impact on the behavior of your appli-

cation. instead, you should create your own state-management values that are con-

tained within the interface (ideally the SOAP Header) so that, regardless of the

transport you choose, clients can always be sure of proper system behavior. Chapter 4

provides more information about modifying the SOAP Header.

Now that you’ve built a fully functional Web Service, you need to create a client that will

access the service through the SOAP protocol.

033 SERVICENOW |NC.'S EXHIBIT 1007

034 SERVICENOW INC.'S EXHIBIT 1007

Foundations.of._liVe.b Services
PARTI

Creating the Client

You’ve already seen the standard test Web client that Visual Studio .NET automatically creates

for your project. This example shows you how to build a simple Windows application that can

interact with your service.

1. Start by creating a new project. This time, though, you want to create a Windows appli-

cation in C#. Call the project Ch1Client.

Place two buttons (named Get and Put) and two text boxes (named myName and

myValue) on your form.

Next, right-click on References in the Solution Explorer window, and select Add Web

Reference from the menu. '

Click on the Web References on Local Web Server hyperlink, which displays all avail-

able services on your machine.

Click the Ch1WebService link in the right pane, which displays two additional hyper-

links, View Contract and View Documentation. If you click on the View Contract hyper-

link, the WSDL for this service will be displayed. We'll cover this shortly.

Click on the Add Reference button to inject the Web Service description into your client

project.

In addition to the code that is generated by Visual Studio NET, add the Web Service-spe-

cific code fragment as shown in Listing 1.2.

LISTING 1 .2 Form1.cs

private void Get_Click(c-bject sender, System.EventArgs e)

{

1oca1host.Persistence p = new 1ocalhost.Persistence();

System.Windows.Forms.MessageBox.Show(p.Get(this.myName.Text));

}

private void Put_Click(object sender, System.EventArgs e)

{

1ocalhost.Persistence p = new 1ocalhost.Persistence();

p.Put(this.myName.Text, this.myVa1ue.Text);

this.myName.Clear();

this.myVa1ue.Clear();

}

034 SERVICENOW |NC.'S EXHIBIT 1007

035 SERVICENOW INC.'S EXHIBIT 1007

Adding the Web reference to your project (see Step 7) enables you to instantiate a

1ocalhos1:.Per‘sistence object within the application code. When adding a Web Reference,

you are physically including the WSDL file into your application. The compiler also creates a
folder in the project (under Web References) called localhost, which includes a .CS file that

contains a proxy for the service. If the Web Service changes at some point, you can simply

right-click on the localhost folder and select Update Web Reference option. Be aware that

you also might need to update your application code to conform to any new interface changes.
However, the compiler will most likely catch these as well.

While we’re on the topic of WSDL, take a quick look at the WSDL file shown in Listing 1.3.

LIs'rlNG 1.3 Persistencewsdl________.__

<?xml version="1.0“ encoding=“utf-8"?>

<definitions xmlns:s="http:!!www.w3.org!20@1IXMLSchema"

xmlns:http="http:Ilschemas.xm1soap.orgfwsd1lhttpf"

xmlns:mime=“http:{!schemas.xmlsoap.orgiwsdlxmimef”

xmlns:tm=“http:limicrosoft.comIwsdllmime/textmatchingi"

xm1ns:soap=“http:Ilscnemas.xmlsoap.orglwsd1!soap!“

xmlns:soapenc="http:/fschemas.xmlsoap.org!s0aplenc0dingl"

xmlns:s0="www.mcp.orglwebservicesfPersistence"

targetNamespace=”www.mop.orgiwebservices{Persistence"

xmlns=”http:!ischemas.xmlsoap.org!wsdl/">
<types>

<s:schema attributeFormDefault="qualified" e1ementFormDefault="qualified”
targetNamespace="www.mcp.org!webServices{Persistence">

<s:e1ement name="Get“>

<s:complexType>

<s:sequence>

<s:e1ement min0ccurs=“1“ max0ccurs="1“ name="myName"

ni1lable=”true" type="s:string“ ;>

<!s:sequence>

<fs:comp1exType>
<!s:element>

<s:element name=“GetResponse”>

<s:comp1exType>

<s:sequence>

<s:e1ement min0ccurs="1"

nillable=“true“ type=“s:string" !>

<fs:sequence>

</S:c0mplexType>
<!s:element>

<s:element name=“Put">

<s:comp1exType>

<s:sequence>

max0ccurs="1" name="GetResult“

035

Web Service Fundamentals

CHAPTER 1

SERVICENOW |NC.'S EXHIBIT 1007

i

S'|VJ.N!|NV(]Nfl;|

IJIMHSHEM

036 SERVICENOW INC.'S EXHIBIT 1007

34 _ F0undati_c_)E$ of We_1_;__§§f_\zices _ i __ '
__“PARTI

LISTING 1 .3 Continued

<s:e1ement minOccurs=”1" max0ccurs=“1" name=“myName"

nillable="true" type="s:string" />

<s:element min0ccurs="1“ max0ccurs=“1‘ name="myValue"

nillable="true" type="s:string" />

<!s:sequence>

<!s:comp1exType>

<ls:e1ement>

<s:element name=“PutResponse“>

<s:complexType f>

<{s:e1ement>

<s:e1ement name=“string" nillable="true“ type="s:string" />

<!s:schema>

<ltypes>

<message name="GetsoapIn“>

«part name="parameters" element="s0:Get" !>

<!message>

<message name=“GetSoap0ut">

<part name=“parameters“ e1ement=“s@:GetResponse“ l>

<!message>

cmessage name="PutSoapIn">

<part name="parameters“ element="s@:Put" l>

<Imessage>

<message name="PutSoap0ut“>

<part name=“parameters" element=“s0:PutResponse" ;>

</message>

<message name=”GetHttpGetIn">

<part name="myName“ type="s:string“ />

<!message>

<message name=“GetHttpGet0ut“>

<part name="Body“ element=“s0:string" />

<imessage>

<message name=“PutHttpGetIn">

<part name="myName" type="s:5tring" I>

<part name="myVa1ue" type="s:string" !>

<!message>

<message name=“PutHttpGet0ut" l>

<message name=“GetHttpPostIn">

<part name=“myName" type=“s:string“ !>

<!message>

<message name="GetHttpPost0ut">

<part name="Body“ element=“s@:string" !>

</message>

<message name="PutHttpPostIn">

<part name="myName" type=“s:string" !>

036 SERVICENOW |NC.'S EXHIBIT 1007

037 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

LI5T!NG 1 .3 Continued

<part name=“myVa1ue" type="s:string” !>

</message>

<message name=“PutHttpPost0ut" l>

<portType name="PePsistenceSoap">

<operation name=“Get“>

<input message=“s@:GetSoapIn" f>

<output message="s@:GetSoapOut“ !>

<foperation>

<operation name="Put“>

<input message=“s0:Put8oapIn“ !>

<output message="s@:PutSoap0ut” !>

</operation>

<iportType>

<portType name="PersistenceHttpGet“>

<operation name=“Get">

<input message="s@:GetHttpGetIn" !>

<output message="s@:GetHttpGet0ut” !>

</operation> '

<operation name="Put">

<input message=“s@:PutHttpGetIn” ;>

<output message="s@:PutHttpGet0ut" />

<loperation>

<!portType>

<portType name="PersistenceHttpPost">

<operation name=“Get">

<input message="s0:GetHttpPostIn" !>

<output message=“s@:GetHttpPost0ut" f>

<loperation>

<operation name=“Put“>

<input message="5@:PutHttpPo5tIn“ !>

<output message="s0:PutHttpPost0ut” />

<loperation>

<!portType>

<binding name="PersistenceSoap” type=“s@:PersistenceSoap">

<soap:binding transport=”http:Ifschemas.xml5oap.org!soaplhttp"
style="document" />

<operation name=“Get">

<soap:operation soapAction=”www.mcp.orgfwebserviceslPersistencefGet"

style=“document“ !>

<input>

<soap:body use="litera1” l>

<finput>

<output>

<soap:body use="litera1" !>

037

‘ CHAP'I;fi 1"!

SERVICENOW |NC.'S EXHIBIT 1007

A

S'IV.lN3INVGNl"|;]

35

e_____,_J

aamaasaa-M

038 SERVICENOW INC.'S EXHIBIT 1007

36 Foundations ofuweb Sgrvices
: PARTI-

LISTING 1 .3 Continued

<{output>

<!operation>

<operation name="Put">

<soap:operation soapAction="www.mcp.org/Webservices/Persistence{Put“

sty1e="document“ i>

<input>

<soap:body use="literal“ l>

<!input>

<output>

<soap:body use=“literal" f>

<foutput>

<foperation>

<£binding>

<binding name="PersistenceHttpGet“ type="s@:PersistenceHttpGet">
<http:binding verb="GET" l>

<operation name=“Get“>

<http:operation location=”lGet" f>

<input>

<http:ur1Encoded !>

<{input>

<output>

<mime:mimeXml part="Body" f>

<loutput>

</operation>

<operation name=“Put”>

<http:operation location="iPut” l>

<input>

<http:urlEncoded />

<;input>

<output />

</operation>

<fbinding>

<binding name=“PersistenceHttpPost” type="s@:PersistenceHttpPost">
<http:binding verb=“POST" ;>

<operation name="Get“>

<http:operation location="/Get" />

<input>

<mime:content type="applicationlx-www-form-urlencoded“ f>

<finput>

<output>

<mime:mimeXm1 part="Body“ i>

<Ioutput>

<!operation>

<operation name=“Put">

038 SERVICENOW |NC.'S EXHIBIT 1007

039 SERVICENOW INC.'S EXHIBIT 1007

LISTING 1.3 Continued

<http:operation 1ocation=";Put” f>

<input>

<mime:content type=“applicationIx-www-form-urlencoded“ f>
<linput>

<output !>

<loperation>

<lbinding>

<service name=“Persistence">

<port name=“PersistenceSoap" binding="s0:PersistenceSoap">
<soap:address location=“http:Iflocalhost!Ch1WebService{Persistence.asmx" ;>

<iport>

<port name=“PersistenceHttpGet" binding=“s@:PersistenceHttpGet“>
<http:address location=“http:IIlocalhostfch1webService!Persistence.asmx" l>

<lport>

<port name=“PersistenceHttpPost“ binding="s@:PersistenceHttpPost">
<http:address 1ocation="http:IXlocalhostfCh1WebServicefPersistence.asmx" !>

</port>

<fservice>

<!definitions>

Starting at the bottom of the file, the service is exposed through three different WSDL ports
listed under the <service> element. One port operates on HTTP GET requests; another operates
on HTTP POST requests. Most importantly, the third supports the SOAP protocol.

When running the Visual Studio NET debugger, you’ve probably already figured out that the
test pages generated for your service use the HTTP GET port.

Be aware that Visual Studio .NET does not generate test pages for complex interface
types. Therefore, you are responsible for manually constructing a test client.

You will also find at the top of the WSDL file an XML schema that describes the logical struc-
ture of your Web Service messages. Note that there is only one logical structure for each mes-

sage, but each port represents a potentially different syntactical representation of each message.

Chapter 5 provides extensive coverage of WSDL, but it’s helpful for you to see the types of
information that a client application needs to communicate with the service.

039 SERVICENOW |NC.'S EXHIBIT 1007

A

S1V.lN3lNVON|'I;|

aainuasaam

040 SERVICENOW INC.'S EXHIBIT 1007

At this point, you have learned how the service requestor and service provider are constructed
and how they ultimately interoperate. Now let's take a closer look at the actual SOAP transac-
tions that are transmitted over the wire.

Tracing Messages on the Network
When debugging your Web Service in Visual Studio NET, you might have noticed that the

generated test page displays sample messages for SOAP and HTTP GET/POST. At times, you
will find it very helpful to see the actual messages that are being sent back and forth between

endpoints.

The trace utility (MSSOAPTEXE), provided with the SOAP Toolkit 2.0 binaries, is a favorite

tool. For the trace to work, you need to start a new trace that will listen to a port (usually 8080)

and forward requests to port 80, where your local IIS copy should be listening.

You then need to configure your client application to point to the newly created 8080 port. To

do this in the sample client that you just created, open the WSDL file that is listed under the

Solution Explorer window.

Rather than changing the WSDL file, you may prefer to change your code by modify-
ing the p.Ur1 (from Listing 1.2) to point to the new location.

Edit the WSDL file so that the three ports’ address value references 1ocalhost:8B80, as

follows:

<service name="Persistence">

<port name="PersistenceSoap” binding=“s@:PersistenceSoap">

<soap:address

holocation="http:Illocalhost:B08B!Ch1Webservice{Persistence.asmx" />

<!port>

<port name=”PersistenceHttpGet" binding="s0:PersistenceHttpGet">
<http:address

H-location="http:Iilocalhost:8aBo{ch1webServicefPersistence.asmx" !>

<rport>

<port name=”PersistenceHttpPost" binding=“s@:PersistenceHttpPost">

<http:address

-location="http:Iflocalhost:8080lchtwebservice{Persistence.asmx" !>

<fp0rt>

<fService>

040 SERVICENOW |NC.'S EXHIBIT 1007

041 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals I 39
H CHAPTER 1 ':____

You don't necessarily have to modify the location of all three bindings. Generally,

you're probably interested only in the SOAP binding.

‘

Rebuild and execute your project, and you will see the trace utility capture both the request

and the response messages. For example, using the operations that you just built will result in

the traces shown in Listings 1.4-1.7.

LISTING 1.4 PUT Request

<?xml version=“1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http:/Ischemas.xmlsoap.orgfsoap}envelope!"

xmlns:xsi=“http:llwww.w3.org!20@1lXMLSchema-instance"

xm1ns:xsd="http:{!www.w3.org!20@1!XMLSchema">

<soap:Body> ‘

<Put xmlns="www.mop.orglwebservicesiPer5istence“>

<myName>phone<fmyName>

<myValue>555-1234<fmyValue>

<!Put>

<!soap:Body>

<lsoap:Envelope>

Lrsrma 1.5 PUT Response

<?xm1 version="1.@" encoding=“utf-8"?>

<soap:Enve1ope xmlns:soap="http:ffschemas.xmlsoap.org!soaplenvelopel“

xmlns:xsi="http:!Iwww.w3.orgi2@@1!XMLSchema-instance"

xmlns:xsd=”http:!!www.w3.orgl2@@1/XMLSchema">

<soap:Body>

<PutResponse xm1ns="www.mcp.orgiwebservicesiPersistence" !>

<!soap:Body>

<lsoap:Enve1ope>

LISTING 1.6 GET Request

<?xml version=“1.0“ encoding="utf-8"?>

<soap:Enve1ope xmlns:soap="http:flschemas.xmlsoap.org!soap!envelopef"

xmln5:xsi=“http:![www.w3.org/2001lXMLSchema-instance"

xm1ns:xsd="http:!Iwww.w3.org!2@@1lXMLSchema">

<soap:Body>

<Get xmlns=“www.mop.orgfWebServicesfPersistence">

041 SERVICENOW |NC.'S EXHIBIT 1007

S'lV.l.NElwvanng aamuasaam

042 SERVICENOW INC.'S EXHIBIT 1007

I I Foundations of Web Services

LISTING 1 .6 Continued

<myName>phone<!myName>

<!Get>

<lsoap:Body>

<!soap:Enve1ope>

LISTING 1.7 GET Response

<?xml version=”1.@” encoding="utf-8"?>

<soap:Envelope xmlns:soap="http:l!schemas.xmlsoap.orgisoapfenvelopef"

xmlns:xsi="http:I!www.w3.org!2@@1/xMLSchema-instance"

xmlns:xsd="http:I!www.w3.org!2e@1!XMLSchema">

<soap:Body>

<GetHesponse xmlns="www.mcp.orglwebservices!Persistence">
<GetResult>555-1234<!GetHesult>

<!GetHesponse>

<{soap:Body>

<!soap:Enve1ope>

This is clearly the only way that you can debug interoperability problems. Sometimes the

unfonnarred trace also will be more appropriate because it shows the entire HTTP message,

including the Header and the Body.

If you already have some experience with SOAP, you might have noticed that these messages

are encoded using the literal form of an XML schema rather than SOAP’s special encoding

format (see Section 5 of the SOAP specification). This is the default behavior of a Visual

Studio .NET—generated Web Service, but it can easily be switched using a Web Service

attribute. More about this will be covered in Chapter 6, “Web Services in ASP.NET."

Interface Design Tips

You’ve already been introduced to interface semantics and the underlying concepts. Hopefully

you came away with a clear understanding about the differences between syntax and seman-

tics, and how semantics play such a critical part in building valuable Web Services.

This section presents a few practices that will help you build better Web Service interfaces.

Learning from the Past

It didn’t take the software development community very long to figure out that interfaces are

one of the best ways to decouple complex systems. This technique has been used for many

years, especially in the electronics industry.

042 SERVICENOW |NC.'S EXHIBIT 1007

043 SERVICENOW INC.'S EXHIBIT 1007

For example, consider the RCA jacks on a television. Most people know that there are three

separate connectors—one for right channel audio, one for left channel audio, and one for the

video signal. Each has a standard color-coding scheme, which makes it very easy to connect

components.

You can take away several ideas from this example:

- Ease of use—Like the colors on connectors, interfaces should be easily recognizable and
understood.

- Distribution of functionality—You need to strike a balance between having too many

interfaces and having one overly complex and monolithic interface. One wire is easier

for a consumer to connect, but if technical challenges of combining signals into a single

connector force you to charge $10,000 for your DVD player, nobody wins.

- Compatibility and overloading—New components need to maintain compatibility with

older interfaces, and new interfaces should be created when old ones no longer meet

your needs. This is analogous to the creation of component-video output for DVD play-

ers. We needed higher—quality video, but the existing RCA jacks couldn’t support the

technology. Conversely, just as you wouldn’t try to run power to your television through

the cable jack, you shouldn’t force an interface to accommodate something that it wasn’t

designed to handle. In the world of electronics, you know when you've done something

wrong when smoke billows from your equipment. But with software, the consequences

might not be so obvious. You might not realize the problems that you’ve created until

much later, when it is more costly to fix.

Before getting too far into the nuts and bolts of interfaces, we need to come to terms on what

an interface really is.

What Is an Interface?

Webster defines an interface as follows:

Interface.‘ (rt): A point at which independent systems interact.

However, an interface should be a multitude of things—some are obvious, while others are

somewhat intangible.

Naturally, an interface should be interesting to users. This can be done with the content that

your interface provides, the speed at which the interface performs, or simply because you offer
a reliable service.

The other side of the coin is that a poorly designed interface can interfere with its potential for

use. Many good things have fallen to the wayside just because users found it difficult to learn
how to make them work.

043 SERVICENOW |NC.'S EXHIBIT 1007

Web Service Fundamentals W
CHAPTER 1 §__

—'I

S'|V.l.N3|NVONn:| JJIAHSSHEM

044 SERVICENOW INC.'S EXHIBIT 1007

Foundations Web _
PART I

The bottom line is, proper design of interfaces is a huge responsibility—the interface becomes

your storefront and establishes how users view your Web Service.

Let’s take a moment to slightly modify Webster’s definition of an interface. You might suggest

that an interface is a logical point at which independent systems interact. Why logical? It’s log-

ical because, as you've already seen, there could be more than one physical representation of
an interface. There's no reason why an interface should change just because a developer

chooses to use SMTP rather than HTTP.

Another property of your interfaces that you can control is the way that SOAP packages your

messages. Deciding whether to use SOAP encoding could have an impact on the capabilities of

your interface.

Using SOAP to Encode Information
SOAP defines an encoding style (see Section 5 of the SOAP v1.1 specification) for serial-izing

an information graph as XML. This is an important feature of SOAP that is extremely useful for
RPC serialization; it is denoted by using the encodingSty1e=" http: Hschernas . xmlsoap . org!

soaplencodingf " attribute within the Envelope contents. By using SOAP's encoding style, you

get some of the following benefits:

- Serialization of objects by value and by reference

' Array serialization, including multidimensional arrays

- Partially transmitted and sparse array serialization

Although you can describe type information using XML schemas, in some cases, you might
want to use an XML schema to validate messages entering or leaving your system. Section 5

allows for so many different variations of encoding information, so you will find that it’s diffi-

cult to generate a schema that covers the exhaustive list of possibilities.

Rather than use the encoding mechanisms as defined by SOAP, you can define message struc-

tures that are completely describable in an XML schema.

The UDDI framework (as described in Chapter 5) uses the message-based encoding

style rather than Section 5 encoding as defined by SOAP.

Interface Versioning

Versioning interfaces requires a syntactical approach to encoding messages. In the case of
SOAP, consider the following service example, which retrieves the temperature for a location

based on its ZIP code:

044 SERVICENOW |NC.'S EXHIBIT 1007

045 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals

CHAPTlER ‘I

POST fGetTemperature.asmx HTTP!1.1

Host: www.mcp.com

Accept: textf*

Content-type: textlxml; charset=utf-8

Content-length: nnnn

SOAPAction: "http:/Iwww.mop.com!Temperature;GetTemperature"
{CFIHLF}

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http:lfschemas.xmlsoap.orgisoapfenveloper">
<SOAP-ENV:Body>

<GetTemperature xmlns="http:!{www.mcp.comlTemperature">
<ZipCode>12345<!ZipCode>

<iGetTemperature>

<fSOAP-ENV:Body>

<;SoAP-ENV:Envelope>

In this case, the URI http: I ;’www.mcp. comflemperature is used as the mechanism for identi-

fying an interface from other interfaces. By using XML namespaces, the URI scopes the oper-
ation GetTemperature to that interface. In the case of HTTP, the SOAPAction field may also
reflect this URI to verify the intent of the message. If SOAPAction is left empty, the HTTP
message declares the intent of the request.

Now consider changing the temperature service to accept a citylstate pair rather than a ZIP
code. You have several options for exposing this new operation.

Creating a New Interface

The first approach that you can take is to create a new URI that represents a completely new
interface, as follows:

POST lGetTemperature.asmx HTTP;1.1

Host: www.mcp.com

Accept: text!*

Content-type: textfxml; charset=utf-8

Content-length: nnnn

SOAPAction: “http:Xiwww.mcp.comITemperaturezlGetTemperature“
{CR}{LF}

<SOAP-ENV:Enve1ope

xm1ns:SOAP-ENV=“http:I/schemas.xm1soap.org!soap!envelope!">
<SOAP-ENV:Body>

<GetTemperature xmlns=“http:lrwww.mcp.com!Temperature2">
<City>San Jose<lCity>

<State>CA<fState>

<!GetTemperature>

<fSOAP-ENV:Body>

<lSOAP-ENV:Envelope>

045 SERVICENOW |NC.'S EXHIBIT 1007

43

.—‘L

S'lVJ.N3lNVGNl'I_-;| JJIAHEISHEM

046 SERVICENOW INC.'S EXHIBIT 1007

44

Here, the URI http: Hwwunmcp . cornlTemperature2 has been applied to the XML narnespace

and SOAPAct ion field appropriately. This requires you to build a completely new WSDL

description and XML schema to describe this new URI.

Adding an Operation to an Existing Interface
The next approach that you can take is to create a new operation name under an existing URI:

POST !GetTemperature.asmx HTTPf1.1

Host: www.mcp.com

Accept: text!*

Content-type: textlxml; charset=utf-8

Content-length: nnnn

SOAPAction: "http:llwww.mcp.com;Temperature!GetTemperatureBycity"

{CH}{LF}

<SOAP-ENV:Enve1ope

xmlns:SOAP-ENV=”http:I!schemas.xmlsoap.orgisoapienvelopef">

<SOAP-ENV:Body>

<GetTemperatureBycity xm1ns=“http:!lwww.mcp.com!Temperature">

<City>San dose<fCity>

<State>CA</State>

<iGetTemperatureByCity>

<iSOAP~ENV:Body>

<lSOAP-ENV:Enve1ope>

Rather than change the URI http: Hwwv.-:.mcp . com!Temper-ature, you only need to add a new

operation for the given WSDL description and XML schema. Because you won’t change any

of the existing operations in your WSDL file, existing clients will be unaware of the new
interface.

Modifying an Existing Operation
Finally, you have the option of modifying an existing operation to facilitate the new functionality.

POST !Houter.pl HTTP!1.1

Host: www.mcp.com

Accept: text!*

Content-type: textfxml

Content-length: nnnn

SOAPAction: "http:Ilwww.mcp.com/Temperature;GetTemperature"

{CR}{LF}

<SOAP-ENV:Enve1ope

xm1ns:SOAP-ENV="http:lfschemas.xmlsoap.orgfsoap!envelope!“

SOAP-ENV:encodingSty1e=“http:IIschemas.xmlsoap.orglsoap!encoding!">

<SOAP-ENV:Body>

<m:GetTemperature xm1ns:m=“http:I/www.mcp.com!Temperature“>

<City>San Jose<!City>
<State>CA<!State>

046 SERVICENOW |NC.'S EXHIBIT 1007

047 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals """""
CHAPTER 1

...|

<fm:GetTemperature>

<!SOAP-ENV:Body>

<!SOAP-ENV:Enve1ope>

This can be a more difficult approach than the previous options because your service code

must be capable of interpreting the intention of incoming parameters. At times it can be diffi-

cult resolving ambiguity in requests.

Using the temperature example, what happens if your service receives a message that has a

city, state, and ZIP code. Which parameters take precedence over others? Should you fail the

request altogether? What happens when you start mixing mandatory and optional fields? These

are all questions that you must answer when you start to change an existing operation.

All these questions lead to the topic of interface complexity.

Interface Complexity

Measuring complexity is a difficult task because it’s one of those concepts that is purely based

on your perspective. Unfortunately, this- means that there’s no silver bullet, no recipes that you

can apply to guarantee a simple interface.

The following section provides an example to get you thinking about the issues at hand and the

options that you have.

Additional Operations Versus Additional Parameters

It is often difficult to determine the best way to expose your system’s functionality. Should you

create a collection of small, succinct operations? Or possibly create a single, all-inclusive inter-

face that offers a wide variety of parameters? In either case, you can probably fulfill the system
requirements. So does it really matter which direction you choose?

Consider the example XML fragment showing a simple request to place an order:

<P1aceUrder>

<partNumber>EVH515@<!partNumber>

<accountNumber>317<!accountNumber>

<quantity>8<!quantity>

<rP1ace0rder>

This is followed by a typical response containing an order number:

<Place0rderResponse>

<orderNumber>67@221<!orderNumber>

<!PlaceOrderResponse>

When a customer has placed an order, it’s reasonable to assume that the customer will want to

periodically check the status of the order, as shown in the following request:

047 SERVICENOW |NC.'S EXHIBIT 1007

A

S'W.l.NBINVCINI1;| HDIAHHSHEM

‘U

048 SERVICENOW INC.'S EXHIBIT 1007

<CheckStatus>

<orderNumber>670221<!orderNumber>

<ICheckStatus>

The client can expect a standard status response message:

<CheckStatusResponse>

<status>submitted<fstatus>

<fCheckStatusResponse>

However, one alternative to having separate operations (and requiring two round trips) is to

combine the two operations into a single request:

<P1ace0rderAndCheckStatus>

<partNumber>EVH515@<!partNumber>
<accountNumber>86753@9<laccountNumber>

<quantity>7<iquantity>

<!PlaceorderAndCheckStatus>

The semantics seem simple. The customer is interested in knowing whether the order was auto-

matically shipped at the time it was placed. The response message seems innocent:

<Place0rderAndCheckStatusResponse>

<orderNumber>670221<!or‘derNumber>

<status>submitted<istatus>

<lPlaoeorderAndCheckStatusResponse>

Here, we have made a 100% improvement in performance by reducing the process to a single

round trip. Therefore, this must be the correct way to design this interface. But wait—-what

happens when the user needs to check the order status again? Well, you could change the

Placeordemndcheckstatus operation so that it can accept optional parameters. This allows

two types of messages to be valid:

<P1ace0rderAndCheckStatus>

<par‘tNumber>EVH515@<;'par-tNumber'>

<ac:countNumber>8675309<,»'accountNumber>

<quantity>7<!quantity>

<i'PlaceordemndcheckStatus>

and

<P1ace0rder'AndCheckStatus>

<or-der*Nurnber>67@221<!or-derNumber‘>

<fPlaceorder'AndCheckStatus>

But because the interface semantics are becoming confusing, what happens if someone tries to

place a new order and check the status of an existing order in the same request?

048 SERVICENOW |NC.'S EXHIBIT 1007

049 SERVICENOW INC.'S EXHIBIT 1007

Web Service Fundamentals ________________ H
CHAPTER 1

<P1ace0rderAndcheekStatus>

<partNumber>EVH515@<!partNumber> /

<accountNumber>8675309<laccountNumber>

<quantity>?<fquantity>

<orderNumber>670221<!orderNumber>

</Place0rderAndCheckStatus>

Should you process the new order and then check status for the second order‘? Which status do

you return? Possibly both? If so, how does the client know which status goes with a particular

operation?

<Place0rderAndCheckStatusFlesponse>

<orderNumber‘>67@221<1or*der*Number>

<status>submitted<!status>

<status>back order<!status>

<IPlaceorderAndCheckStatusResponse>

Better yet, instead of allowing this ambiguity to creep into the interface, what if you just deny

requests of this nature and inform the client of the poorly formed request? But should you

really force clients to discover the interface semantics through trial and error? Generally, if you

want a wide audience to use your service, your best bet is to keep the interface simple and

spend less time worrying about performance. In cases where performance needs do exist, you

should provide good documentation that explains exactly how your interface works and why.

The problem with making the blanket statement that you should be minimizing round trips is

that you could end up requiring clients to receive information that they never intended to use.

Under normal circumstances, a little bit of extra information is better than the overhead of

requiring extra round trips. In some pathological situations in which the payload is extremely

large, however, this might not be a fair trade.

Criteria for Managing Complexity
To summarize from the preceding example, here are some general questions that you should

ask yourself before you make your final interface decisions:

- How difficult will it be for me to validate an operation’s syntax?

'' How complex will the server logic need to be for this request to be processed and a intel-

ligible response to be sent?

- Will clients be able to quickly understand the semantics behind this operation?

- How much unrelated information is a client receiving that doesn’t pertain to the request?

- How easy will it be for clients to upgrade to newer versions of my interface?

- How many round trips will the client need to make before getting the desired information?

049 SERVICENOW |NC.'S EXHIBIT 1007

47

1

S1V.I.N3INVClNl'I:| EDIAHSS93]“

050 SERVICENOW INC.'S EXHIBIT 1007

48 Foundations of Web Services

____J PART I

Summary

We’ve covered a lot of ground in this chapter, touching on many aspects of Web Services to set

the stage for the remainder of the book.

By now you should have a better understanding of why semantics are so important to Web

Services and what properties contribute to a valuable service. You've also learned about many

of the Internet protocols that play a big part in the Web Service paradigm.

You’ve been introduced to Visual Studio .NET and have seen a working demonstration of its

Web Service tools for both clients and servers. It's pretty clear that .NET provides a flexible

and robust environment for building and consuming services.

Finally, you explored Web Service interfaces and some of the issues surrounding their develop-
ment, maintenance, and use.

In the next chapter, you will learn about the Microsoft .NET Framework and how it applies to

Web Services. This will provide you with a better understanding of the facilities that NET pro-

vides and will reinforce the topics that were discussed in this chapter.

050 SERVICENOW |NC.'S EXHIBIT 1007

