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I. Introduction 

The era of "electronic mail" [10] may soon be upon 
us; we must ensure that two important properties of 
the current "paper mail" system are preserved: (a) 
messages are private, and (b) messages can be signed. 
We demonstrate in this paper how to build these 
capabilities into an electronic mail system. 

At the heart of our proposal is a new encryption 
method. This method provides an implementation of a 
"public-key cryptosystem", an elegant concept in- 
vented by Diffie and Hellman [1]. Their article moti- 
vated our research, since they presented the concept 
but not any practical implementation of such a system. 
Readers familiar with [1] may wish to skip directly to 
Section V for a description of our method. 

II. Public-Key Cryptosystems 

In a "public-key cryptosystem" each user places in 
a public file an encryption procedure E. That is, the 
public file is a directory giving the encryption proce- 
dure of each user. The user keeps secret the details of 
his corresponding decryption procedure D. These pro- 
cedures have the following four properties: 

(a) Deciphering the enciphered form of a message M 
yields M. Formally, 

D(E(M)) = M. (I)  

(b) Both E and D are easy to compute. 

(c) By publicly revealing E the user does not reveal an 
easy way to compute D. This means that in practice 
only he can decrypt messages encrypted with E, or 
compute D efficiently. 

(d) If a message M is first deciphered and then enci- 
phered, M is the result. Formally, 

E(D(M)) = M. (2) 

An encryption (or decryption) procedure typically 
consists of a general method and an encryption key. The 
general method, under control of the key, enciphers a 
message M to obtain the enciphered form of the 
message, called the ciphertext C. Everyone can use the 
same general method; the security of a given procedure 
will rest on the security of the key. Revealing an 
encryption algorithm then means revealing the key. 

When the user reveals E he reveals a very inefficient 
method of computing D(C): testing all possible mes- 
sages M until one such that E(M) = C is found. If 
property (c) is satisfied the number of such messages to 
test will be so large that this approach is impractical. 

A function E satisfying (a)-(c) is a "trap-door one- 
way function;" if it also satisfies (d) it is a "trap-door 
one-way permutation."  Diffie and Hellman [1] intro- 
duced the concept of trap-door one-way functions but 
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did not present any examples. These functions are 
called "one-way" because they are easy to compute in 
one direction but (apparently) very difficult to compute 
in the other direction. They are called "trap-door" 
functions since the inverse functions are in fact easy to 
compute once certain private "trap-door" information 
is known. A trap-door one-way function which also 
satisfies (d) must be a permutation: every message is 
the ciphertext for some other message and every ci- 
phertext is itself a permissible message. (The mapping 
is "one-to-one" and "onto"). Property (d) is needed 
only to implement "signatures". 

The reader is encouraged to read Diffie and Hell- 
man's excellent article [1] for further background, for 
elaboration of the concept of a public-key cryptosys- 
tem, and for a discussion of other problems in the area 
of cryptography. The ways in which a public-key cryp- 
tosystem can ensure privacy and enable "signatures" 
(described in Sections III and IV below) are also due 
to Diffie and Hellman. 

For our scenarios we suppose that A and B (also 
known as Alice and Bob) are two users of a public-key 
cryptosystem. We will distinguish their encryption and 
decryption procedures with subscripts: EA, DA, F_~, DB. 

III. Privacy 

Encryption is the standard means of rendering a 
communication private. The sender enciphers each 
message before transmitting it to the receiver. The 
receiver (but no unauthorized person) knows the ap- 
propriate deciphering function to apply to the received 
message to obtain the original message. An eavesdrop- 
per who hears the transmitted message hears only 
"garbage" (the ciphertext) which makes no sense to 
him since he does not know how to decrypt it. 

The large volume of personal and sensitive infor- 
mation currently held in computerized data banks and 
transmitted over telephone lines makes encryption 
increasingly important. In recognition of the fact that 
efficient, high-quality encryption techniques are very 
much needed but are in short supply, the National 
Bureau of Standards has recently adopted a "Data 
Encryption Standard" [13, 14], developed at IBM. 
The new standard does not have property (c), needed 
to implement a public-key cryptosystem. 

All classical encryption methods (including the NBS 
standard) suffer from the "key distribution problem." 
The problem is that before a private communication 
can begin, another private transaction is necessary to 
distribute corresponding encryption and decryption 
keys to the sender and receiver, respectively. Typically 
a private courier is used to carry a key from the sender 
to the receiver. Such a practice is not feasible if an 
electronic mail system is to be rapid and inexpensive. 
A public-key cryptosystem needs no private couriers; 
the keys can be distributed over the insecure commu- 
nications channel. 

How can Bob send a private message M to Alice in 
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a public-key cryptosystem? First, he retrieves lEA from 
the public file. Then he sends her the enciphered 
message EA (M). Alice deciphers the message by com- 
puting DA (EA (M)) = M. By property (c) of the public- 
key cryptosystem only she can decipher EA(M). She 
can encipher a private response with Ea, also available 
in the public file. 

Observe that no private transactions between Alice 
and Bob are needed to establish private communica- 
tion. The only "setup" required is that each user who 
wishes to receive private communications must place 
his enciphering algorithm in the public file. 

Two users can also establish private communication 
over an insecure communications channel without con- 
suiting a public file. Each user sends his encryption key 
to the other. Afterwards all messages are enciphered 
with the encryption key of the recipient, as in the 
public-key system. An intruder listening in on the 
channel cannot decipher any messages, since it is not 
possible to derive the decryption keys from the encryp- 
tion keys. (We assume that the intruder cannot modify 
or insert messages into the channel.) Ralph Merkle has 
developed another solution [5] to this problem. 

A public-key cryptosystem can be used to "boot- 
strap" into a standard encryption scheme such as the 
NBS method. Once secure communications have been 
established, the first message transmitted can be a key 
to use in the NBS scheme to encode all following 
messages. This may be desirable if encryption with our 
method is slower than with the standard scheme. (The 
NBS scheme is probably somewhat faster if special- 
purpose hardware encryption devices are used; our 
scheme may be faster on a general-purpose computer 
since multiprecision arithmetic operations are simpler 
to implement than complicated bit manipulations.) 

IV. Signatures 

If electronic mail systems are to replace the existing 
paper mail system for business transactions, "signing" 
an electronic message must be possible. The recipient 
of a signed message has proof that the message origi- 
nated from the sender. This quality is stronger than 
mere authentication (where the recipient can verify 
that the message came from the sender); the recipient 
can convince a "judge" that the signer sent the mes- 
sage. To do so, he must convince the judge that he did 
not forge the signed message himself! In an authenti- 
cation problem the recipient does not worry about this 
possibility, since he only wants to satisfy himself that 
the message came from the sender. 

An electronic signature must be message-depend- 
ent, as well as signer-dependent. Otherwise the recipi- 
ent could modify the message before showing the 
message-signature pair to a judge. Or he could attach 
the signature to any message whatsoever, since it is 
impossible to detect electronic "cutting and pasting." 

To implement signatures the public-key cryptosys- 
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tem must be implemented with trap-door one-way 
permutations (i.e. have property (d)), since the decryp- 
tion algorithm will be applied to unenciphered mes- 
sages. 

How can user Bob send Alice a "signed" message 
M in a public-key cryptosystem? He first computes his 
"signature" S for the message M using I)a: 

S = D~(M). 

(Deciphering an unenciphered message "makes  sense" 
by property (d) of a public key cryptosystem: each 
message is the ciphertext for some other  message.) He 
then encrypts S using EA (for privacy), and sends the 
result EA(S) to Alice. He need not send M as well; it 
can be computed from S. 

Alice first decrypts the ciphertext with DA to obtain 
S. She knows who is the presumed sender of the 
signature (in this case, Bob);  this can be given if 
necessary in plain text attached to S. She then extracts 
the message with the encryption procedure of the 
sender, in this case F-u (available on the public file): 

M =  F~(S). 

She now possesses a message-signature pair (M, S) 
with properties similar to those of a signed paper 
document.  

Bob cannot later deny having sent Alice this mes- 
sage, since no one else could have created S = DB (M). 
Alice can convince a " judge"  that Eu(S) = M, so she 
has proof  that Bob signed the document.  

Clearly Alice cannot modify M to a different ver- 
sion M' ,  since then she would have to create the 
corresponding signature S' = I ~ ( M ' )  as well. 

Therefore  Alice has received a message "signed" 
by Bob, which she can "prove"  that he sent, but which 
she cannot modify. (Nor can she forge his signature for 
any other  message.) 

An electronic checking system could be based on a 
signature system such as the above. It is easy to imagine 
an encryption device in your home terminal allowing 
you to sign checks that get sent by electronic mail to 
the payee. It would only be necessary to include a 
unique check number  in each check so that even if the 
payee copies the check the bank will only honor  the 
first version it sees. 

Another  possibilityarises if encryption devices can 
be made fast enough: it will be possible to have a 
telephone conversation in which every word spoken is 
signed by the encryption device before transmission. 

When encryption is used for signatures as above, it 
is important that the encryption device not be "wired 
in" between the terminal (or computer)  and the com- 
munications channel, since a message may have to be 
successively enciphered with several keys. It is perhaps 
more natural to view the encryption device as a "hard- 
ware subroutine" that can he executed as needed.  

We have assumed above that each user can always 
access the public file reliably. In a "computer  network"  
this might be difficult; an " int ruder"  might forge 
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messages purporting to be from the public file. The 
user would like to be sure that he actually obtains the 
encryption procedure o f  his desired correspondent  and 
not, say, the encryption procedure of the intruder. This 
danger disappears if t h e  public file "signs" each mes- 
sage it sends to a user. The user can check the signature 
with the public file's encryption algorithm F_~v. The 
problem of "looking up"  F-er itself in the public file is 
avoided by giving each user a description of F_~r when 
he first shows up (in person) to join the public-key 
cryptosystem and to deposit his public encryption pro- 
cedure. He then stores this description rather than ever 
looking it up again. The need for a courier between 
every pair of users has thus been replaced by the 
requirement  for a single secure meeting between each 
user and the public-file manager when the user joins 
the system. Another  solution is to give each user, when 
he signs up, a book (like a telephone directory) con- 
taining all the encryption keys of users in the system. 

V. Our Encryption and Decryption Methods 

To encrypt a message M with our method,  using a 
public encryption key (e, n) ,  proceed as follows. (Here 
e and n are a pair of positive integers.) 

First, represent the message as an integer between 
0 and n - 1. (Break a long message into a series of 
blocks, and represent each block as such an integer.) 
Use any standard representation. The purpose here is 
not to encrypt the message but only to get it into the 
numeric form necessary for encryption. 

Then,  encrypt the message by raising it to the e th 
power modulo n .  That  is, the result (the ciphertext C) 
is the remainder when M e is divided by n .  

To decrypt the ciphertext, raise it to another  
power d ,  again modulo n .  The encryption and decryp- 
tion algorithms E and D are thus: 

C -- E(M) -= M e (mod n ), for a message M. 
D(C) = C ~ ( m o d n ) ,  for a ciphertext C. 

Note that encryption does not increase the size of a 
message; both the message and the ciphertext are 
integers in the range 0 to n - 1. 

The encryption key is thus the pair of positive 
integers (e, n). Similarly, the decryption key is the pair 
of positive integers (d, n). Each user makes his encryp- 
tion key public, and keeps the corresponding decryp- 
tion key private. (These integers should properly be 
subscripted as in hA, eA, and dA, since each user has 
his own set. However ,  we will only consider a typical 
set, and will omit the subscripts.) 

How should you choose your  encryption and de- 
cryption keys, if you want to use our  method? 

You first compute n as the product  of two pr imesp 
and q : 

n = p * q .  

These primes are very large, " r andom"  primes. AI- 
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though you will maken  public, the factorsp andq will 
be effectively hidden from everyone else due to the 
enormous difficulty of factoring n .  This also hides the 
way d can be derived from e.  

You then pick the integer d to be a large, random 
integer which is relatively prime to (p - 1) * (q - 1). 
That is, check that d satisfies: 

g c d ( d , ( p -  1 )*  ( q -  1 ) )=  1 
("gcd" means "greatest common divisor"). 

The integer e is finally computed from p,  q, and d 
to be the "multiplicative inverse" of d ,  modulo (p - 1) 
• (q - 1). Thus we have 

e * d ~ -  l ( m o d ( p -  1 ) * ( q -  1)). 

We prove in the next section that this guarantees 
that (1) and (2) hold, i.e. that E and D are inverse 
permutations. Section VII shows how each of the 
above operations can be done efficiently. 

The aforementioned method should not be con- 
fused with the "exponent ia t ion" technique presented 
by Diffie and Hellman [1] to solve the key distribution 
problem. Their  technique permits two users to deter- 
mine a key in common to be used in a normal crypto- 
graphic system. It is not based on a trap-door one-way 
permutation. Pohlig and Hellman [8] study a scheme 
related to ours, where exponentiation is done modulo 
a prime number.  

VI. The Underlying Mathematics 

We demonstrate the correctness of the deciphering 
algorithm using an identity due to Euler  and Fermat 
[7]: for any integer (message) M which is relatively 
prime to n ,  

M ¢tn) -- 1 (modn) .  (3) 

Here  ~0(n) is the Euler  totient function giving the 
number of positive integers less than n which are 
relatively prime to n .  For prime numbers p ,  

~(p) = p - 1. 

In our case, we have by elementary properties of the 
totient function [7]: 

~0(n) = ~0(p) • ~p(q), 
= ( p -  1 ) * ( q -  1) (4) 
= n - ( p + q ) +  l. 

Since d is relatively prime to ~o(n), it has a multipli- 
cative inverse e in the ring of integers modulo ~o(n) : 

e *d  - 1 (mod ~0(n)). (5) 

We now prove that equations (1) and (2 )  hold 
(that is, that deciphering works correctly ife and d are 
chosen as above). Now 

D(E(M))------ (E(M))a ~ (Me) a ~  M e*a (moOn) 

E(D(M))  ~ (D(M)) e ~ (Ma) e ~ M e*a (mod n) 

and 
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1VI e*a --= M ~*~")+a (mod n) (for some integer k ). 

From (3) we see that for all M such that p does not 
divide M 

M p-1 --- 1 (mo dp)  

and since (t9 - 1) divides ~p(n) 

IVl ~*~"~+1 --- M ( m o d p ) .  

This is trivially true when M -= 0(mod p ) ,  so that this 
equality actually holds for all M. Arguing similarly for 
q yields 

M ~*¢(n)+l ~ M ( m o d q ) .  

Together these last two equations imply that for all M, 

M e~ -- M k*~n)+l ---- M (mod n).  

This implies (1) and (2) for all M, 0 -- M < n .  
Therefore E and D are inverse permutations. (We 
thank Rich Schroeppel for suggesting the above im- 
proved version of the authors '  previous proof.)  

VII. Algorithms 

To show that our method is practical, we describe 
an efficient algorithm for each required operation. 

A. How to Encrypt and Decrypt Efficiently 
Computing M e (mod n)  requires at most 2 * log2(e) 

multiplications and 2 • log2(e) divisions using the 
following procedure (decryption can be performed 
similarly using d instead of e ): 

Step 1. Let  ehek-i • • • ele0 be the binary representa- 
tion o f e .  
Step 2. Set the variable C to 1. 
Step 3. Repeat  steps 3 a a n d  3b f o r i  = k , k  - 1, 
. . . , O :  

Step 3a. Set C to the remainder of C 2 when 
divided by n .  
Step 3b. Ifei  = 1, then set C to the remainder 
of C * M when divided by n .  

Step 4. Halt.  Now C is the encrypted form of M. 

This procedure is called "exponentiat ion by re- 
peated squaring and multiplication." This procedure is 
half as good as the best; more efficient procedures are 
known. Knuth [3] studies this problem in detail. 

The fact that the enciphering and deciphering are 
identical leads to a simple implementation. (The whole 
operation can be implemented on a few special-purpose 
integrated circuit chips.) 

A high-speed computer  can encrypt a 200-digit 
message M in a few seconds; special-purpose hardware 
would be much faster. The encryption time per block 
increases no faster than the cube of the number of 
digits in n .  

B. How to Find Large Prime Numbers 
Each user must (privately) choose two large ran- 
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dom prime n um ber s p  and q to create his own encryp- 
tion and decryption keys. These numbers must be 
large so that it is not computationally feasible for 
anyone to factor n = p * q .  ( R e m e m b e r  that n ,  but 
not p or q ,  will be in the public file.) We recommend 
using 100-digit (decimal) pr ime numbers  p and q ,  so 
that n has 200 digits. 

To find a 100-digit " r a n d o m "  prime number ,  gen- 
erate (odd) 100-digit random numbers  until a prime 
number  is found. By the pr ime number  theorem [7], 
about (In 101°°)/2 = 115 numbers  will be tested before 
a prime is found. 

To test a large number  b for primality we recom- 
mend the elegant "probabil is t ic" algorithm due to 
Solovay and Strassen [12]. It  picks a random number  
a from a uniform distribution on {1, . . . , b - 1}, and 
tests whether  

gcd(a, b) = 1 and J(a, b) -= a~b-1)/2(mod b), (6) 

where J(a, b) is the Jacobi symbol [7]. I fb  is pr ime (6) 
is always true. If  b is composi te  (6) will be false with 
probability at least 1/2. If  (6) holds for 100 randomly 
chosen values of  a then b is almost certainly prime; 
there is a (negligible) chance of one in 2 l°° that b is 
composite.  Even if a composite  were accidentally used 
in our system, the receiver would probably detect this 
by noticing that decryption didn' t  work correctly. 
When b is odd,  a -< b ,  and gcd(a, b) = 1, the Jacobi 
symbol J(a, b) has a value in { - 1 ,  1} and can be 
efficiently computed  by the program: 

J(a, b) = ifa = 1 then 1 else 

i fa is even then J(a/2,  b) * ( -  1) tb2-1)/8 

else J(b(mod a), a) * ( -  1) <a-1)~b-1)/4 

(The computat ions of J(a, b) and gcd(a, b) can be 
nicely combined,  too.)  Note  that this algorithm does 
not test a number  for primality by trying to factor it. 
Other  efficient procedures for testing a large number  
for primality are given in [6, 9, 11]. 

To gain additional protect ion against sophisticated 
factoring a lgor i thms,p and q should differ in length by 
a few digits, both (p - 1) and (q - 1) should contain 
large pr ime factors, and gcd(p - 1, q - 1) should be 
small. The latter condition is easily checked. 

To find a pr ime number  p such that (p - 1) has a 
large pr ime factor, generate  a large random prime 
number  u ,  then le tp  be the first prime in the sequence 
i * u  + 1, f o r i  = 2, 4, 6, . . . . (This shouldn' t  take 
too long.) Addit ional  security is provided by ensuring 
that (u - 1) also has a large pr ime factor. 

A high-speed computer  can determine in several 
seconds whether  a 100-digit number  is prime, and can 
find the first pr ime after a given point in a minute or 
two. 

Another  approach to finding large pr ime numbers  
is to take a number  of known factorization, add one to 
it, and test the result for primality. If  a pr ime p is 
found it is possible to prove  that it really is prime by 

using the factorization of p - 1. We omit a discussion 
of this since the probabilistic method is adequate.  

C. H o w  to Choose  d 
It is very easy to choose a number  d which is 

relatively pr ime to ~o(n). For example,  any prime 
number  greater  than max(p, q) will do. It  is important  
that d should be chosen f rom a large enough set so 
that a cryptanalyst cannot find it by direct search. 

D .  H o w  to Compute  e from d and ,p(n) 
To compute  e ,  use the following variation of Eu- 

clid's algorithm for computing the greatest  common  
divisor of  ~o(n) and d .  (See exercise 4.5.2.15 in [3].) 
Calculate gcd(~o(n), d) by computing a seriesx0, xl ,  x2, 
. . . , wherex0 = 9(n), X 1 = d ,  andxi+l - -x i_ l (modxi ) ,  
until anxk equal to 0 is found. Then gcd(x0, xa) = xk-a. 
Compute  for each xi numbers  ai and b, such that xi = 
ai * x0 + bi * x~. If  xk-1 = 1 then bk-1 is the 
multiplicative inverse of xl (mod x0). Since k will be 
less than 2 * log~(n), this computat ion is very rapid. 

I f e  turns out to be less than log~(n), start over  by 
choosing another  value of d .  This guarantees that 
every encrypted message (except M = 0 or M = 1) 
undergoes some "wrap-around"  (reduction modulo n).  

VIH. A Small Example  

Consider the ca sep  = 47, q = 59, n = p * q = 47 
• 59 = 2773, and d = 157. Then ~o(2773) = 46 * 58 = 
2668, and e can be computed  as follows: 

x0  =2668 ,  a0  = 1, b 0 = 0 ,  
x 1= 157, a l = 0 ,  b l = l ,  
x 2 = 156, a 2 = 1 ,  bz = - 1 6  (since 2668 

=157  .16  + 1 5 6 ) ,  
x 3 = 1, a a= - 1 ,  b3 = 17 (since 157 = 1 

• 156 + 1). 

Therefore  e = 17, the multiplicative inverse (mod 
2668) of d = 157. 

With n = 2773 we can encode two letters per  
block, substituting a two-digit number  for each letter: 
b l a n k =  00, A =  0 1 , B  = 0 2 , . . .  , Z =  26. Thus the 
message 

ITS ALL GREEK TO ME 

(Julius Caesar,  I, ii, 288, paraphrased)  is encoded: 

0920 1900 0112 1200 0718 
0505 1100 2015 0013 0500 

Since e = 10001 in binary, the first block (M = 920) 
is enciphered: 

M 17 - (((((1) z * M)2)2)2) 2 * M -= 948 (mod 2773). 

The whole message is enciphered as: 

0948 2342 1084 1444 2663 
2390 0778 0774 0219 1655. 

The reader  can check that deciphering works: 948 TM 

------ 920 (mod 2773),  etc. 
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