

SFDC 1019

SFDC 1019

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

Events

In this chapter:
• Java 1.0 Event Model
• The Event Class
• The Java 1.1 Event

Model

This chapter covers Java’s event-driven programming model. Unlike procedural
programs, windows-based programs require an event-driven model in which the
underlying environment tells your program when something happens. For exam-
ple, when the user clicks on the mouse, the environment generates an event that it
sends to the program. The program must then figure out what the mouse click
means and act accordingly.

This chapter covers two different event models, or ways of handling events. In Java
1.0.2 and earlier, events were passed to all components that could possibly have an
interest in them. Events themselves were encapsulated in a single Event class. Java
1.1 implements a “delegation” model, in which events are distributed only to
objects that have been registered to receive the event. While this is somewhat more
complex, it is much more efficient and also more flexible, because it allows any
object to receive the events generated by a component. In turn, this means that
you can separate the user interface itself from the event-handling code.

In the Java 1.1 event model, all event functionality is contained in a new package,
java.awt.event. Within this package, subclasses of the abstract class AWTEvent rep-
resent different kinds of events. The package also includes a number of Event-
Listener inter faces that are implemented by classes that want to receive different
kinds of events; they define the methods that are called when events of the appro-
priate type occur. A number of adapter classes are also included; they correspond
to the EventListener inter faces and provide null implementations of the methods
in the corresponding listener. The adapter classes aren’t essential but provide a
convenient shortcut for developers; rather than declaring that your class imple-
ments a particular EventListener inter face, you can declare that your class
extends the appropriate adapter.

94

10 July 2002 22:18

SFDC 1019

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The old and new event models are incompatible. Although Java 1.1 supports both,
you should not use both models in the same program.

4.1 Java 1.0 Event Model
The event model used in versions 1.0 through 1.0.2 of Java is fairly simple. Upon
receiving a user-initiated event, like a mouse click, the system generates an
instance of the Event class and passes it along to the program. The program identi-
fies the event’s target (i.e., the component in which the event occurred) and asks
that component to handle the event. If the target can’t handle this event, an
attempt is made to find a component that can, and the process repeats. That is all
there is to it. Most of the work takes place behind the scenes; you don’t have to
worr y about identifying potential targets or delivering events, except in a few spe-
cial circumstances. Most Java programs only need to provide methods that deal
with the specific events they care about.

4.1.1 Identifying the Target
All events occur within a Java Component. The program decides which component
gets the event by starting at the outermost level and working in. In Figure 4-1,
assume that the user clicks at the location (156, 70) within the enclosing Frame’s
coordinate space. This action results in a call to the Frame’s deliverEvent()

method, which determines which component within the frame should receive the
event and calls that component’s deliverEvent() method. In this case, the process
continues until it reaches the Button labeled Blood, which occupies the rectangu-
lar space from (135, 60) to (181, 80). Blood doesn’t contain any internal compo-
nents, so it must be the component for which the event is intended. Therefore, an
action event is delivered to Blood, with its coordinates translated to fit within the
button’s coordinate space—that is, the button receives an action event with the
coordinates (21, 10). If the user clicked at the location (47, 96) within the Frame’s
coordinate space, the Frame itself would be the target of the event because there is
no other component at this location.

To reach Blood, the event follows the component/container hierarchy shown in
Figure 4-2.

4.1.2 Dealing With Events
Once deliverEvent() identifies a target, it calls that target’s handleEvent()

method (in this case, the handleEvent() method of Blood) to deliver the event for
processing. If Blood has not overridden handleEvent(), its default implementa-
tion would call Blood’s action() method. If Blood has not overridden action(),
its default implementation (which is inherited from Component) is executed and

4.1 JAV A 1.0 EVENT MODEL 95

10 July 2002 22:18
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

96 CHAPTER 4: EVENTS

Figure 4–1: deliverEvent

DeliverEvent

Panel 1

Panel 2

Fe

of an

Panel 3

Fi Fo Fum I Smell The Blood

Level 3

Level 1

Level 2

Englishman

deliverEvent

deliverEvent

deliverEvent

Figure 4–2: deliverEvent screen model

does nothing. For your program to respond to the event, you would have to pro-
vide your own implementation of action() or handleEvent().

handleEvent() plays a particularly important role in the overall scheme. It is really
a dispatcher, which looks at the type of event and calls an appropriate method to
do the actual work: action() for action events, mouseUp() for mouse up events,
and so on. Table 4-1 shows the event-handler methods you would have to override
when using the default handleEvent() implementation. If you create your own
handleEvent(), either to handle an event without a default handler or to process
events differently, it is best to leave these naming conventions in place. Whenever

10 July 2002 22:18
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

you override an event-handler method, it is a good idea to call the overridden
method to ensure that you don’t lose any functionality. All of the event handler
methods return a boolean, which determines whether there is any further event
processing; this is described in the next section, “Passing the Buck.”

Table 4–1: Event Types and Event Handlers

Event Type Event Handler

MOUSE_ENTER mouseEnter()

MOUSE_EXIT mouseExit()

MOUSE_MOVE mouseMove()

MOUSE_DRAG mouseDrag()

MOUSE_DOWN mouseDown()

MOUSE_UP mouseUp()

KEY_PRESS keyDown()

KEY_ACTION keyDown()

KEY_RELEASE keyUp()

KEY_ACTION_RELEASE keyUp()

GOT_FOCUS gotFocus()

LOST_FOCUS lostFocus()

ACTION_EVENT action()

4.1.3 Passing the Buck
In actuality, deliverEvent() does not call handleEvent() directly. It calls the
postEvent() method of the target component. In turn, postEvent() manages the
calls to handleEvent(). postEvent() provides this additional level of indirection to
monitor the return value of handleEvent(). If the event handler returns true, the
handler has dealt with the event completely. All processing has been completed,
and the system can move on to the next event. If the event handler returns false,
the handler has not completely processed the event, and postEvent() will contact
the component’s Container to finish processing the event. Using the screen in Fig-
ure 4-1 as the basis, Example 4-1 traces the calls through deliverEvent(),
postEvent(), and handleEvent(). The action starts when the user clicks on the
Blood button at coordinates (156, 70). In short, Java dives into the depths of the
screen’s component hierarchy to find the target of the event (by way of the
method deliverEvent()). Once it locates the target, it tries to find something to
deal with the event by working its way back out (by way of postEvent(), han-
dleEvent(), and the convenience methods). As you can see, there’s a lot of

4.1 JAV A 1.0 EVENT MODEL 97

10 July 2002 22:18
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

