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Abstract

This essay describes the Model-View-Controller (MVC) programming paradigm and 

methodology used in the Smalltalk-80TM programming system. MVC programming is the 

application of a three-way factoring, whereby objects of different classes take over the oper

related to the application domain, the display of the application's state, and the user interac

with the model and the view. We present several extended examples of MVC implementatio

of the layout of composite application views.  The Appendices provide reference materials f

Smalltalk-80 programmer wishing to understand and use MVC better within the Smalltalk-8

system.
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Introduction

The user interface of the Smalltalk-80 programming environment (see references, [Goldbe

1983]) was developed using a particular strategy of representing information, display, and c

This strategy was chosen to satisfy two goals: (1) to create the special set of system comp

needed to support a highly interactive software development process, and (2) to provide a g

set of system components that make it possible for programmers to create portable interac

graphical applications easily.

In this essay, we assume that the reader has basic knowledge of the Smalltalk-80 languag

programming environment. Interested readers not familiar with these are referred to [Goldb

and Robson, 1983] and [Goldberg, 1983] for introductory and tutorial material.

MVC and the Issues of Reusability and Pluggability

When building interactive applications, as with other programs, modularity of components h

enormous benefits.  Isolating functional units from each other as much as possible makes i

for the application designer to understand and modify each particular unit, without having t

know everything about the other units.  Our experiences with the Smalltalk-76 programmin

system showed that one particular form of modularity--a three-way separation of applicatio

components--has payoff beyond merely making the designer's life easier. This three-way d

of an application entails separating (1) the parts that represent the model of the underlying

application domain from (2) the way the model is presented to the user and from (3) the wa

user interacts with it.

Model-View-Controller (MVC) programming is the application of this three-way factoring, 

whereby objects of different classes take over the operations related to the application doma

model), the display of the application's state (the view), and the user interaction with the m

and the view (the controller). In earlier Smalltalk system user interfaces, the tools that were

into the interface tended to consist of arrangements of four basic viewing idioms: paragrap

text, lists of text (menus), choice "buttons," and graphical forms (bit- or pixel-maps). These

also tended to use three basic user interaction paradigms: browsing, inspecting and editing.

of the current Smalltalk-80 system was to be able to define user interface components for 

handling these idioms and paradigms once, and share them among all the programming 

environment tools and user-written applications using the methodology of MVC programmi

We also envisioned that the MVC methodology would allow programmers to write an applic

model by first defining new classes that would embody the special application domain-spec

information. They would then design a user interface to it by laying out a composite view 

(window) for it by "plugging in" instances taken from the predefined user interface classes. 

"pluggability" was desirable not only for viewing idioms, but also for implementing the 

controlling (editing) paradigms. Although certainly related in an interactive application, ther

an advantage to being able to separate the functionality between how the model is display
f 
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the methods for interacting with it. The use of pop-up versus fixed menus, the meaning attac

keyboard and mouse/function keys, and scheduling of multiple views should be choices tha

be made independently of the model or its view(s).  They are choices that may be left up to

end user where appropriate.

The Model-View-Controller Metaphor

To address the issues outlined above, the Model-View-Controller metaphor and its applicat

structuring paradigm for thinking about (and implementing) interactive application compone

was developed.  Models are those components of the system application that actually do the 

(simulation of the application domain). They are kept quite distinct from views, which display 

aspects of the models. Controllers are used to send messages to the model, and provide the 

interface between the model with its associated views and the interactive user interface de

(e.g., keyboard, mouse). Each view may be thought of as being closely associated with a 

controller, each having exactly one model, but a model may have many view/controller pair

Models

The model of an application is the domain-specific software simulation or implementation o

application's central structure. This can be as simple as an integer (as the model of a coun

string (as the model of a text editor), or it can be a complex object that is an instance of a su

of some Smalltalk-80 collection or other composite class. Several examples of models will 

discussed in the following sections of this paper.

Views

In this metaphor, views deal with everything graphical; they request data from their model, 

display the data.  They contain not only the components needed for displaying but can also

contain subviews and be contained within superviews. The superview provides ability to pe

graphical transformations, windowing, and clipping, between the levels of this subview/supe

hierarchy. Display messages are often passed from the top-level view (the standard system

the application window) through to the subviews (the view objects used in the subviews of th

view).

Controllers

Controllers contain the interface between their associated models and views and the input d

(keyboard, pointing device, time).  Controllers also deal with scheduling interactions with ot

view-controller pairs: they track mouse movement between application views, and impleme

messages for mouse button activity and input from the input sensor. Although menus can b

thought of as view-controller pairs, they are more typically considered input devices, and 

therefore are in the realm of controllers.
f 
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Broadcasting Change

In the scheme described above, views and controllers have exactly one model, but a mode

have one or several views and controllers associated with it. To maximize data encapsulati

thus code reusability, views and controllers need to know about their model explicitly, but m

should not know about their views and controllers.

A change in a model is often triggered by a controller connecting a user action to a messag

to the model.  This change should be reflected in all of its views, not just the view associate

the controller that initiated the change.

Dependents

To manage change notification, the notion of objects as dependents was developed. Views and 

controllers of a model are registered in a list as dependents of the model, to be informed wh

some aspect of the model is changed. When a model has changed, a message is broadcas

all of its dependents about the change. This message can be parameterized (with argumen

that there can be many types of model change messages. Each view or controller respond

appropriate model changes in the appropriate manner.

A Standard for the Interaction Cycle

The standard interaction cycle in the Model-View-Controller metaphor, then, is that the user

some input action and the active controller notifies the model to change itself accordingly. T

model carries out the prescribed operations, possibly changing its state, and broadcasts to

dependents (views and controllers) that it has changed, possibly telling them the nature of 

change. Views can then inquire of the model about its new state, and update their display i

necessary. Controllers may change their method of interaction depending on the new state

model. This message-sending is shown diagrammatically in Figure 1.
f 
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