

SFDC 1017

SFDC 1017

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ations

tion

ns and

or the

0

A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System

Glenn E. Krasner and Stephen T. Pope

ParcPlace Systems, Inc.

1550 Plymouth Street Mountain View, CA 94043 glenn@ParcPlace.com

Copyright © 1988 ParcPlace Systems. All Rights Reserved.

Abstract

This essay describes the Model-View-Controller (MVC) programming paradigm and

methodology used in the Smalltalk-80TM programming system. MVC programming is the

application of a three-way factoring, whereby objects of different classes take over the oper

related to the application domain, the display of the application's state, and the user interac

with the model and the view. We present several extended examples of MVC implementatio

of the layout of composite application views. The Appendices provide reference materials f

Smalltalk-80 programmer wishing to understand and use MVC better within the Smalltalk-8

system.

Contents

Introduction . 2

MVC and the Issues of Reusability and Pluggability 2

The Model-View-Controller Metaphor . 3

An Implementation of Model-View-Controller . 5

User Interface Component Hierarchy . 10

Program Development Support Examples . 13

View/Controller Factoring and Pluggable Views . 16

MVC Implementation Examples . 19

Counter View Example . 19

Hierarchical Text Organizer Example . 24

FinancialHistory Example . 28

Summary . 31

Appendices . 31

References . 34

Further Reading . 34
SFDC 1017f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

rg,

ontrol.

onents

eneral

tive

e and

erg

as

t easier

o

g

n

ivision

y the

in (the

odel

 put

hs of

 tools

 A goal

ng.

ation

ific

This

e is

ed, and

Introduction

The user interface of the Smalltalk-80 programming environment (see references, [Goldbe

1983]) was developed using a particular strategy of representing information, display, and c

This strategy was chosen to satisfy two goals: (1) to create the special set of system comp

needed to support a highly interactive software development process, and (2) to provide a g

set of system components that make it possible for programmers to create portable interac

graphical applications easily.

In this essay, we assume that the reader has basic knowledge of the Smalltalk-80 languag

programming environment. Interested readers not familiar with these are referred to [Goldb

and Robson, 1983] and [Goldberg, 1983] for introductory and tutorial material.

MVC and the Issues of Reusability and Pluggability

When building interactive applications, as with other programs, modularity of components h

enormous benefits. Isolating functional units from each other as much as possible makes i

for the application designer to understand and modify each particular unit, without having t

know everything about the other units. Our experiences with the Smalltalk-76 programmin

system showed that one particular form of modularity--a three-way separation of applicatio

components--has payoff beyond merely making the designer's life easier. This three-way d

of an application entails separating (1) the parts that represent the model of the underlying

application domain from (2) the way the model is presented to the user and from (3) the wa

user interacts with it.

Model-View-Controller (MVC) programming is the application of this three-way factoring,

whereby objects of different classes take over the operations related to the application doma

model), the display of the application's state (the view), and the user interaction with the m

and the view (the controller). In earlier Smalltalk system user interfaces, the tools that were

into the interface tended to consist of arrangements of four basic viewing idioms: paragrap

text, lists of text (menus), choice "buttons," and graphical forms (bit- or pixel-maps). These

also tended to use three basic user interaction paradigms: browsing, inspecting and editing.

of the current Smalltalk-80 system was to be able to define user interface components for

handling these idioms and paradigms once, and share them among all the programming

environment tools and user-written applications using the methodology of MVC programmi

We also envisioned that the MVC methodology would allow programmers to write an applic

model by first defining new classes that would embody the special application domain-spec

information. They would then design a user interface to it by laying out a composite view

(window) for it by "plugging in" instances taken from the predefined user interface classes.

"pluggability" was desirable not only for viewing idioms, but also for implementing the

controlling (editing) paradigms. Although certainly related in an interactive application, ther

an advantage to being able to separate the functionality between how the model is display
f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

hed to

t can

 the

ion

nts

work

vices

s.

f the

ter) or

bclass

be

and

rform

rview

 view of

e tool

evices

her

nt

e

the methods for interacting with it. The use of pop-up versus fixed menus, the meaning attac

keyboard and mouse/function keys, and scheduling of multiple views should be choices tha

be made independently of the model or its view(s). They are choices that may be left up to

end user where appropriate.

The Model-View-Controller Metaphor

To address the issues outlined above, the Model-View-Controller metaphor and its applicat

structuring paradigm for thinking about (and implementing) interactive application compone

was developed. Models are those components of the system application that actually do the

(simulation of the application domain). They are kept quite distinct from views, which display

aspects of the models. Controllers are used to send messages to the model, and provide the

interface between the model with its associated views and the interactive user interface de

(e.g., keyboard, mouse). Each view may be thought of as being closely associated with a

controller, each having exactly one model, but a model may have many view/controller pair

Models

The model of an application is the domain-specific software simulation or implementation o

application's central structure. This can be as simple as an integer (as the model of a coun

string (as the model of a text editor), or it can be a complex object that is an instance of a su

of some Smalltalk-80 collection or other composite class. Several examples of models will

discussed in the following sections of this paper.

Views

In this metaphor, views deal with everything graphical; they request data from their model,

display the data. They contain not only the components needed for displaying but can also

contain subviews and be contained within superviews. The superview provides ability to pe

graphical transformations, windowing, and clipping, between the levels of this subview/supe

hierarchy. Display messages are often passed from the top-level view (the standard system

the application window) through to the subviews (the view objects used in the subviews of th

view).

Controllers

Controllers contain the interface between their associated models and views and the input d

(keyboard, pointing device, time). Controllers also deal with scheduling interactions with ot

view-controller pairs: they track mouse movement between application views, and impleme

messages for mouse button activity and input from the input sensor. Although menus can b

thought of as view-controller pairs, they are more typically considered input devices, and

therefore are in the realm of controllers.
f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

l can

on and

odels

e sent

d with

enever

t to notify

ts), so

s to the

 takes

he

 its

the

f

 of the

Broadcasting Change

In the scheme described above, views and controllers have exactly one model, but a mode

have one or several views and controllers associated with it. To maximize data encapsulati

thus code reusability, views and controllers need to know about their model explicitly, but m

should not know about their views and controllers.

A change in a model is often triggered by a controller connecting a user action to a messag

to the model. This change should be reflected in all of its views, not just the view associate

the controller that initiated the change.

Dependents

To manage change notification, the notion of objects as dependents was developed. Views and

controllers of a model are registered in a list as dependents of the model, to be informed wh

some aspect of the model is changed. When a model has changed, a message is broadcas

all of its dependents about the change. This message can be parameterized (with argumen

that there can be many types of model change messages. Each view or controller respond

appropriate model changes in the appropriate manner.

A Standard for the Interaction Cycle

The standard interaction cycle in the Model-View-Controller metaphor, then, is that the user

some input action and the active controller notifies the model to change itself accordingly. T

model carries out the prescribed operations, possibly changing its state, and broadcasts to

dependents (views and controllers) that it has changed, possibly telling them the nature of

change. Views can then inquire of the model about its new state, and update their display i

necessary. Controllers may change their method of interaction depending on the new state

model. This message-sending is shown diagrammatically in Figure 1.
f
Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

