SFDC 1016

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ACTIVE DATABASE MANAGEMENT SYSTEMS

Umeshwar Dayal*

Computer Corporation of America
4 Cambridge Center
Cambridge, MA 02142 USA

ARFANET: dayal@cca.ceacom

Abstract

Conventional passive database management systems are inadequate for ime-constrained
applications, because they either do not provide timely response to critical situations or
compromise modularity. Active database management sysiems attempt o provide both
modularity and timely responze, by allowing event-condition-action rules 1o be specified
declaratively; when events of interest occur, they efliciently evaluate the corresponding
conditions, and if these conditions are satisfied, they trigger the corresponding actions.
The development of active dalahase management systems requires the solution of a num-
ber of research problems in the areas of knowledge modelling, execution modelling, con-
dition monitoring, scheduling, system architecire, and performance evaluation. This pa-
per describes the principal research issues in each of these arcas, surveys the approaches
being taken in a number of rescarch projects on active DBMSs, and emphasizes the ap-

proaches we are taking in the HIPAC (High Performance ACiive DEMS) project.

1. INTRODUCTION

Traditional datobase management sysiems (DBMSs) are
passive: they exccute querics or transactions only when
explicilly requested 1o do so by a user or application
program. Many applications, such as computer inte-
grated manufactoring (CIM), office workMow control,
process control, program trading, batlle manasgement,
and network management, which require timely re-
sponse to critical situations, arc not well served by
these passive DBMSs. For these rime-constrained ap-
plications, it is important to monitor conditions defined
on stales of the database, and then, once these
conditions occur, W invoke specificd actions, subject o
some timing constraints. For exampie, inventory con-

This work was supporiad by the Defense Advanced Research
Projects Agency and by the Rome Air Development Center
under Contract No. F30602-87-C-0029, The views and
conclusions contzined in this report are those of the suthor and
do not mecessarily represent the official policies of the Defense
Advanced Research Projects Agency, the Rome Air
Development Center, or the U5, Government,

* This paper reports work done by the HiIPAC projeer team,
which includes, besides the author, Barbara Blaustein, Alex
Buchmann, Upen Chakravasthy, Meichun Hsu, Rivka Ladin,
Dennis MeCarthy, and Amon Hosenthal of OCA, snd Michail
Carey, Miron Livny, and Rajeev Janhari of the Univeristy of
Wisconsin, Madisen.

DOCKET

_ ARM

150

trol in an automated factory requires that the quantity
on hand of each item be monitored; if the quantity on
hand falls below a threshold for some item, then a
reorder procedure may have to be initizted before the end
of the working day. A situation assessment

requires that various targets be tracked; if one is
discovered to be within a critical distance, then an alert
mdcmu}rhamwbcdupluwdmﬂmmnmmdu'l
screen with the highest possible priority. For these
applications, the comrectness of a result depends not
only on the correciness of & compuiation or on the
proper interleaving of operations, but also on the ime-
lincss of the result.

With a passive DBMS, two approaches to mecting the
requirements of time-constrained applications are pos-
sible, but neither is satisfactory. The first approach is
to write a special application program that polls
(periodically queries) the database 1o determing if the
situation being monitored has occumred. However, if the
program polls too slowly, it runs the risk of missing
the response time window; if it polls oo frequently, it
runs the risk of Mooding the system with queries that
usually return an empty answer. The second approach is
1o augmeni each program that updates the dambase 1o
check the situmion being monitored, and to invoke the
action if the sitwation tums out to be true.
Unfortunately, software moduolarity is now com-
promised: any modification to the situations being
monitored or to the comesponding actions will require

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Evanis Conditions Actions

Update > Digplay status code
Diagnosis
Report Reorder() >
- DB
Clock
Signal >
EVENT: update Quantity_on_Hand (item)
CONDITION: Quantity_on_Hand (itern) + Quantity_on_Order (ffem) <
Threshold (fterm)
ACTION: reorder (item)

Figure 1.1 Active DBMS Example

maodifying every application program that updates the
database,

Active DBMSsg attempt to provide both modularity and
timely response. Siluations, actions, and timing re-
quirements are all specified declaratively to the system.
The system now monitors the situations, triggers the

ing actions when the simations become troe,
and schedules tasks to mect the timing requirements,
without user or application intervention.

Active capabilities in DBEMSs can be wraced back to the
ON conditions of CODASYL [CODAT3). Triggers
were proposed for Sysiem R [ESWATS, ESWATA) asa
mechanism for enforcing iniegrity consirainis
("assertions™). The use of triggers for maintaining ma-
terialized views, snapshots, and derived ateribute values,
and some algorithms for implementing them have been
described in [BUNE?9, KOENS1, ROUSE2, MORGES,
BLAKSES, HUDSE6, LIND86, HANSET]. The term
"active databaze™ was psed in [MORGE3] to deseribe a
system that supports automatic update of views and
derived data as base data are updated. Simple triggers
(where the triggering conditions involve only a single
relation) are supported by some current commercial
relational DBMSs (e.g., [DARNET]). Time triggers,
where the triggering condition is a point in time (e.g.,
at 2:00:00 on 5/1/1988), have been described for office
| system applications in [ZLOOB2, BARBS5]. In
[STOMNB2, STONES), Stonchraker points out the
wtility of production (Le., siluation-action) rules as a
unifying mechanism for integrity control, access
control, and view processing, and for supporting
| inference via forward and backward chaining, Of course.
Al sysiems have long used prodoction rules [FORGTT],
| actors [HEWIT5], daemons, active objects [BOBRE3),

151

DOCKET

A R M Find authenticated court

and procedural attachment to slots of frames [MINSTS,
BOBR77, KEESS] as “active™ knowledge representation
and inference mechanisms. However, these
representations and their impleméntations assume gmall
numbers of objects (rules, facts) stored in main (or
virtual) memory, not in large databases on secondary
storage. Also, they typically assume a single thread of
exccution, and hence do not provide any concurrency
control over shared objects (as DBMSs do).

Recent work on active database management systems is
gimed at embedding rules in a DBMS ISTONSS
DAYASSab, KOTZEE, RASCEE, SELLER)."

Thl!pﬂpcrdambesnmkmmun HiPAC, an
active, obpct-qrmu-d database management system
under investigation at CCA [DAY ARBab). Central to
HIPAC is the concept of eveni-condition-action (ECA)
rules, which can be used 10 generalize many of the
DBMS functions previously implemented by special
purpose mechanisms. The event part of an ECA male
specifics database operations, lcmporal events, or
signals from arbitrary processes; the condition part
specifies a database query; and the action part specifics a
program. When the event occurs (is signalled), the
condition is evaluated; if the condition is sarisfied (i.e.,
if the query retums a non-cmpty answer), the action is
executed (see Figure 1.1). Note that the action part may

'Hnuthltumilihullngi.m bedy of work on
embedding deductive rules (vroally expressed as Hom clanse
logic programs) in database systems. This work is aimed at
enhancing the expressive power of the query language o
inclede some form of recursion [BANCES], rather than at
lmpn’:vmg the timeliness of the DEMS's response o eritical
situations.

documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

include database operations as well as extermal opera-
tions (e.g., the reorder procedure in]'gu:r.'. 1 may up-
date the Quanuty_On_Order of the item in guestion),

Elfective suppon for ECA rules in a DBMS requires
reseairch on the following major topics:

» Knowledge Model: extend conventional data
maodels to express ECA rules and their associated
execution and iming requirements in a database,

+ Execution Model: extend conventional transac-
tion models 1o specily the correct inerleaving of
system-trigpered actions in addition 10 usef- of
application-initinted transactions,

* Condition Monitoring: develop technigues for
efficiently evaluating seis of dynamic, overlap-
ping conditions,

* Scheduling: develop algorithms for scheduling
tasks o satisly concurrency and timing con-
straints,

= Architecuure: defing the functional components
of an active DBMS, and their interactions with
on¢ another and with the underlying operating
sysicm,

* Perdormance Evaluation: construct a testbed for
cvaluating alicrnative architectures and algo-
rithms for condition monitoring and scheduling.

Sections 3-8 of this paper will discuss the important
issues in each of thase areas, and the approaches undar
investigation in the HIPAC project. Interested readars
are referred o [DAYABSD] for more details. To un-
derstand the requirements for modelling and
implementing ECA rules, we examing in Section 2 the
various applications of these rules in an active DBMS.

2. APPLICATIONS OF ECA

RULES

Rules can be uscful both 1o extemal applications and as
a convenient mechanism for implementing a DBMS's
functions beyond simple storage, retrieval, and update
of data. Some examples of DBMS functionalily that
can be implemented in a unified way using rules are
described in this section,

Alerters: Many application domains have the need for
tracking changes in the database and taking action if
some condition over the database iz mer. Wastelul
polling by the application can be avoided if the DBMS
monitors events of interest (e.g., changes to the rele-
vant object classes or instances), evaluates the condi-
tion only when a potentially impacting change occurs,

DOCKET

_ ARM

and initiates the corresponding action. This is the
canonical application of ECA rules.

In addition to database operations, the events that cause
rules 1o fire may be clock signals (e.g., the balance in
all bank accounts should be checked ar 5 p.m. every
dery) or any user- or application-generated signal (e.g., a
Tailure signal from a diagnostic routine on a hardware
companent).

The conditions 10 be monitored may be complex, and
may be defined not only on single data valves or indi-
vidual database siates, but also on sets of data objects
(e.g., the wotal of employees' salaries exceeds the de-
partmental budget), transitions between states (¢.g., the
new position of the target is closer than the old
positeon}, trends and historical data {e.g., the output of
the sensor increased monotonically over the last hour).

For some applications, in order to provide timely re-
sponse Lo eritical events, it is important to evaluate the
condition immediately after the event, and to execute
the action part immediately after the condition evalua-
tion. In this immediate mode of execution, the pro-
cessing of the rempining steps of the original transac-
tion (which caused the event 1o occur) is suspended
until the fired rule has been completely processed. Long
delays can result in completing the processing of the
original transaction, especially if the action part of the
rule causes the cascaded firing of other rules.

limes and concurrency can be improved if the condition
evaluation or action exccution are detached from the
original transaction (i.¢., run in a separaté transaction).
For example, in a sitation assessment application, the
transactions that append position reports of ships into
the database should be committed independently from
any triggered transactions that evaluate distances
between the ships and potential targets, and from trans-
actions that cause alens or countermeasunes 1o be inili-
ated. Similarly, in our inventory conwrol example, it
may he desirable to delay the reordering action to the
end of the day, just in case a previous order is flled
during the day and the quaniity on hand goes back
above the threshold.

When conditions or actions are detached, parameter
bindings from the original transaction may have 1o be
propagated 1o them. For example, the identifier of the
item whose quantity on hand was updated must be
passed to avoid checking the condition for alf items in
the inventory, OF course, if the action is detached from
the condition evaluation, it may need to re-gvaluate the
condilion for the identified stem when it executes,
becaunse the state of the database may have changed be-
tween the transactions.

‘Whether the conditions and the actions are immediately
coupled or detached, they olten have to be executed
within tight timing constraints, once the firing evemt
has occurred. For example, a program trading system
has 1o spot price differences in different markets and has

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to take the corresponding actions (placing buy and sell
orders) under timing constraints. Considerable losses
can occur if these constraints cannot be declared and the
actions are execuled arbitrarily late. Instead of hard
deadlines (which are very dilficult to satisfy in a
database system), soft constraints such as value func-
tions and relative task prioritiesfurgencies may be
specified.

Finally, a mechanism for activating and deactivating
individual rules or sets of rules is ofien needed. For ex-
ample, once an item in the inventory has been placed
on order, it may be necessary to deactivate the role that
evaluates the threshold condition, until the order is
filled (lest the rule keep firing at every update, cansing
multiple orders 1o be written). The selective activation
and deactivation of rules is also wseful in providing a
conicxt mechanism 1o restrict the number of rules that
must be searched. For example, once the threshold for
an item has been crossed, a different set of rules might
be applicable: if the item is critdeal (Le., it could canse
unacceptable production delays), then requests for it
must be filled (until it is depletad), but all managers of
projects requiring the item must be notified every day
of the current quantity on hand, These rules need not be
activated, however, until the threshold has been crossed.
Similarly, the set of mles being evaloated while a plane
is taxiing must be deactivated the moment it becomes
airboene, and a different context activaied.

Storage server for rule-based inferencing:
Large-scale rule-based expernt systems require the storage
and retrieval of a vast number of rules and facts, Al
systems, however, typically have an inference engine
component that cycles sequentially through all the
rules, and hence would be incfficicnt and inadequate for
large applications [FORGT7, WATETS). Structuring
the rules and facts around contexis is important both
for performance and for improving understandability,
and hence maintainability, of the knowledge base.

Additional performance improvements result from us-
ing database storage, indexing, and retrieval techniquas
for rules and facts, and smart query processing tech-
niques for evaluating rules (some of these techniquas
are described in [SELLSS, TZVIES)), instead of relying
solely on the RETE structures prevalent in Al systems
[FORGT9].

Most expert systems cannot handle asynchronous up-
dntes: they allow the database to be updated only at the
end of an inference cycle, thus restricting concurrency
and delaying response to critical events, Using database
concuwrrency control mechanisms will obviate this re-
striction,

Concurrency condrol also provides an alternative to
conflict resolution policies. Because Al sysicms are
single-threaded, conflict resolution is needed 1o select
one rule to fire out of all the candidates that can be fired
in an inference cycle. In an active DBMS, all firable
rules can be executed concurrently and serializably; the

DOCKET

_ ARM

153

serialization order may be influenced by specilying pri-
orities or iming constraints.

Finally, the combination of the event, context, amnd
concurrency control mechanisms supporis a more
structured problem solving paradigm than that prevalent
in existing expert systems. Insiead of cycling se-
quentially through a collection of rules, the problem
solving process is initiated by signalling an event (e.g.,
patient arrives), and, thereafter, proceeds by firing rules
as and when their ¢vents are signalled. The context
mechanism allows the rule base w be structured in ac-
cordance with the phases of the problem solving strat-
egy (e.g.. diagnose ailment; prescribe treatment);
switching between contexts is accomplished by
activating and deactivating rules or by signalling spe-
cial events. Concurrency contral allows all this activity
to run concurrently with other activity (including
updates) over the database and knowledge base (e.g.,
detected new symptom, consulted different specialist's
knowledge base).

Constraint management: One of the early
applications of triggers was the definition and en-
forcement of integrity constrainis. Examples are the
assertions of SEQUEL/Sysiem R [ESWATS, 76] and
the constraint equations of [MORGS3). ECA mules
provide more flexibility than simple triggers in speci-
fying the events that initiate constraint checking and
the actions to be performed if some constrainis &re vio-
Lated.

Some constraints need to be evaloated immediely after
an updats event occurs (e.g., value within range). Oth-
ers need to be deferred 1o the end of the transaction in
which the update cvent occurs (g.g., customer’s ac-
counts should balance after a transfer of funds from cne
to another), Also, when constraint evaluation is deferred
to the end of a transaction, it is usually necessary to
fire the integrity checking rule only once, no matter
how many times the update event occurred during the
transaction. This means that the mechanism for passing
bindings between the event and the condition evaluation
must aggregate the effects of the multiple occurrences
uf the update event. These options exist in most

d constraint mechanisms (e.g., [ESWATS, 76],
[MGRGS?-] [KOTZEE], [CASAZS]).

More powerful capabilities are often needed when trying
to enforce consistency constraints in some "non-tradi-
tional” application environments, For example, in a
CAD environment, the nced has been identified for de-
layed (detached) evaluation of constraints (c.g., at the
end of a design phase insicad of aficr every transacion);
for evaluation of constraints on explicil user request;
and for specifying comext-dependent actions when a
constraint is violated (c.g., an updaie that causes some
physical law w0 be violated must be disallowed, but an
update that causes some contractual constraint may
require notification o the designer and logging for
future negotiations). A wish-list of rule handling
capabilities in design environments can be found in

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

