

SFDC 1015

SFDC 1015

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The JANUS Application Development
Environment—Generating More than

the User Interface

Helmut Balzert, Frank Hofmann, Volker Kruschinski,
and Christoph Niemann

Lehrstuhl für Software-Technik, Ruhr-Universität Bochum, Universitätstraße,
150, D-44780 Bochum, Germany

Phone: +49-(0)234-700-{6880, 6791, 5918, 7982}
Fax: +49-(0)234-700-6914

E-mail: {hb, hofmann, krusch, niemann }@swt.ruhr-uni-bochum.de,
janus@swt.ruhr-uni-bochum.de

WWW:http://www.swt.ruhr-uni-bochum.de/forschung/veroeffentlichungen.html

Abstract

The increasing pressures of competition demand greater productivity and quality in
the development of software. These goals are attainable by generating as much as
possible and programming as little as necessary. Beginning with an OOA modeling
of the problem domain component, this article will show how the user interface as
well as the linkage to data keeping can be generated through an integrated ap-
proach. In addition, a client/server configuration is also possible. A OOA model
upon which two generator systems are installed is the basis for generating.

Keywords
User interface generation, OOA model, object oriented database, rapid prototyp-
ing, application framework.

Introduction
The ever increasing demands on the productivity and quality of software develop-
ment necessitates extensive automated support for application development. If one
examines object oriented application development (figure 1), the way from the
problem domain to an object oriented analysis model (OOA model) cannot be
automated. This step shall continue to belong to one of the most ambitious tasks
of software development.

If an OOA model is created, it forms the basis for any additional steps of devel-
opment. The concepts available today describing an OOA model (class, inheri-
tance, association, aggregation, object life cycle, interaction diagrams, subsystems,
see also [Coad91a, Booch94, Rumbaugh91]) allow close to real-world situation
modeling of the problem domain.

SFDC 1015f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

184 Computer-Aided Design of User Interfaces

N o v. 93 Be nk

G UI C li e nt-
Se r v e r

O O A

O O D

O O P

Pr obl em

D o m ai n

S er vi ces

H el p D at a-
k eepi n g

Syst em

D esig n e d b y th e
Syst e m a n a lyst

G e n e r a tin g th e
A p p li c a tio n

Fr a m e

Figure 1. The way to an application starting at the problem domain

The following must be done to obtain a usable application from a OOA model:
• Integration into the system software of the target system.
• Design and connection of the user interface to the problem domain compo-

nents.
• Connection to the desired data base management system (DBMS).
• Design and connection of the help system.
• Creation and connection of various services (e.g., multiple user administration,

client administration, etc.).

Analyzing the jobs to be completed, one ascertains that a large part of these tasks
can be automated by generators. The term "automated" is intentionally used in-
stead of "automatic". Automated is intended to express that generating does not
run fully automatically, but rather that the developer retains the possibilities to in-
tervene and make decisions during the generating process.

Therefore, the optimal goal consists of generating nearly all additional necessary
tasks from an OOA model. The semantics of a problem domain component are
principally incapable of being generated, i.e., the technical semantics have to be im-
plemented by the software developer. He uses the desired programming language
(inner column of figure 1).

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 The JANUS Application Development Environment-Generating More than the User Interface 185

Even in this area, however, much can be generated. Today’s OOA/OOD tools al-
low the corresponding program frameworks to be generated from the OOA
model, e.g., the tools Together/C++, Paradigm Plus and ObjectiF. To have a prac-
tical benefit of generating system components the developer needs an integrated
system which will combine all fragments.

Furthermore, it is not enough to generate all components from the same starting
point (e.g., an OOA-model) an integration of all generated parts can be done auto-
mated. Therefore we have developed the JANUS Application Development Frame-
work (JADE1). It is a further development of the JANUS-system [Balzert93, Balzert-
94, Balzert95a, Balzert95b]. The JANUS-system was capable of generating and ani-
mating a graphical user interface from an OOA model using the capabilities of an
UIMS.

The advanced system now produces the user interface, the code frame for the ap-
plication domain, the database schema, further services (e.g., a help system, print-
ing facility) and ‘last but not least’ the connection between all these parts. The start-
ing point is still an OOA-Model. JANUS requires the model in a well defined input
language, the JDL (JANUS Definition Languages) which is an extension of ODL
and IDL. To avoid that the user has to code his OOA model using this language
directly, we have built interfaces to some popular OO CASE tools. Currently JDL
can be exported by the case tools Paradigm Plus and Together C++.

The result of the generation process is a ready-to-work-with application offering
basic functionality. The user is able to create and modify objects of classes defined
in OOA by using entry forms. If a corresponding relationship (association or ag-
gregation) exists in the OOA model the user can establish links between objects,
too. Additionally a list view of all objects that have been created for each class is
provided.

Functionality for sorting and deleting objects is also generated. All data entries are
kept persistent in an underlying database. Until now the software developer has not
written a single line of code. The only work that has been done was defining an ex-
act OOA model of the application’s problem domain.

The generated program will however be the fundamental frame of a final system. A
programmer will have to complete the application. He has to implement the opera-
tions defined in the OOA model to provide the application’s core functionality.
Additional features—especially regarding the GUI—can be added to the generated
code. To ease this JANUS generates C++ source code for all parts of the program.
These can be edited and compiled the normal way. This paper describes the con-
cepts of integrating all parts. It gives examples of the transformation process and
its results.

1 This JADE system has nothing in common with JADE [VanderZanden90] but the name. It seems
that we have no luck in choosing the right name for our system.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

186 Computer-Aided Design of User Interfaces

1 As to the Situation

The situation today is characterized by increasing attempts to automate separate ar-
eas of the software development process. Class libraries in combination with a
graphical editor are used today in the development of GUIs. GUI class libraries are
hierarchically organized and provide predefined interface objects at higher abstrac-
tion levels. The activation of the underlying window system is undertaken by inter-
nal operations and remains hidden from the developer. The design of the GUI us-
ing this technique leads to two results:

x A code frame will be generated in the desired programming language (usually
C++). The combined interface objects can be created dynamically using this
code. The I/O operations of these objects have to be manually linked to the
OOA model.

x Characteristics of interface objects such as position, size, labeling, and shape
will be placed in resource files. Each resource object contains an identification
through which the connection to the objects implemented in the programming
language is made. A special resource translator transforms the resources into
object code, which will later be linked to the application.

It was shown under the JANUS system [Balzert93, Balzert94, Balzert95a, Balzert-
95b] that a GUI can be generated and subsequently animated from an OOA model
based upon expert knowledge of software ergonomics.

However, the linkage to data keeping in particular is missing in order to attain a us-
able application. When using an object oriented database (OODB), the object
model is defined in an Object Definition Language (ODL). The developer sepa-
rates the declaration (data and interfaces) of an application from the implementa-
tion. A declaration preprocessor for the ODL takes over the following tasks:

x The ODL is transformed into a declaration conforming to a programming lan-
guage which then can be translated by a compiler together with the implementa-
tion of the application.

x A database with the database schema obtained from the ODL declaration is
created in which the object model of the application is also established as a
meta schema.

The implementation of the technical semantics of the OOA model occurs in the
selected programming language. To handle persistent objects, an Object Manipula-
tion Language (OML) is provided by an external library. This library comes with
the chosen database management system. With this, the programmer can manipu-
late persistent objects with the same concepts (pointer, list,...) known from the
programming language as usual.

The declarations transformed in the programming language and the implementa-
tion are translated by the compiler into object code. The runtime system ODBMS
is added to the object code during linkage so that the finished application can ac-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

