

SFDC 1011

SFDC 1011

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

04554.00001/6142705.1

Chart

Claim Chart of Bederson et al., Pad++: A Zoomable Graphical Sketchpad For Exploring

Alternate Interface Physics, Journal of Visual Languages and Computing (1996) (“Bederson I”)

and

Bederson et al., A Zooming Web Browser, in Proceedings of SPIE Conference on Multimedia
Computing and Networking, 1996 (“Bederson II”) (collectively “Pad++”)

as prior art to

Asserted Claims of U.S. Patent No. 7,356,482 (“the ‘482 Patent”)

‘482 Patent PAD++

Claim 1

A system for providing a
dynamically generated
application having one or
more functions and one or
more user interface
elements; comprising:

To the extent that this preamble is construed to be limiting, PAD++
discloses a system for providing a dynamically generated
application having one or more functions and one or more user
interface element. See, e.g.:

BEDERSON I, at 4: “The beginnings of an interface like this sheet
exists today in a program we call Pad ++. We don’t really stretch a
huge rubber-like sheet , but we simulate it by zooming into the
data. We use what we call portals to simulate lenses, and a notion
we call semantic zooming to scale data in non-geometric ways.
The user controls where they look on this vast data surface by
panning and zooming. Portals are objects on the Pad++ data
surface that can see anywhere on the surface, as well as filter data
to represent it differently than it normally appears. Panning and
zooming allow navigation through a large information space via
direct manipulation. By tapping into people’s natural spatial
abilities, we hope to increase users’ intuitive access to
information. Conventional computer search techniques are also
provided in Pad++, bridging traditional and new interface
metaphors. Figure 1 depicts a sequence of views as we pan and
zoom into some data .”

BEDERSON I, at 5-6: “Pad++ is a general-purpose substrate for
creating and interacting with structured information based on a
zoomable interface . It adds scale as a first class parameter to all
items , as well as various mechanisms for navigating through a
multiscale space. It has several efficiency mechanisms which help
maintain interactive frame-rates with large and complicated
graphical scenes .

SFDC 1011f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

04554.00001/6142705.1

‘482 Patent PAD++

While Pad++ is not an application itself , it directly supports
creation and manipulation of multiscale graphical objects , and
navigation through spaces of these objects . It is implemented as a
widget in Tcl / Tk [24] (described in a later section) which
provides an interpreted scripting language for creating zoomable
applications. The standard objects that pad++ supports are colored
text , graphics , images , portals and hypertext markup language
(HTML) . Standard input widgets (buttons , sliders , etc.) are
supplied as extensions .

One focus in the current implementation has been to provide
smooth zooming within very large graphical datasets. The nature
of the Pad++ interface requires consistent high frame-rate
interactions , even as the dataspace becomes large and the scene
gets complicated . In many applications , speed is important , but
not critical to functionality. In Pad ++ , however , the interface
paradigm is inherently interactive. One important searching
strategy is to visually explore the dataspace while zooming
through it , so it is essential that interactive frame rates be
maintained .

A second focus has been to design Pad ++ to make it relatively
easy for thirparties to build applications using it . To that end , we
have made a clear division between what we call the ‘substrate’
and applications . The substrate , written in C ++ , is part of every
release and has a well-defined API . It has been written witcare to
ensure efficiency and generality . It is connected to a scripting
language (currently Tcl , but we are exploring alternatives) that
provides a fairly high-level interface to the complex graphics and
interactions available . While the scripting language runs quite
slowly , it is used as a glue language for creating interfaces and
putting them together. The actual interaction and rendering is
performed by the C++ substrate . This approach allows people to
develop applications for Pad++ while avoiding the complexities
inherent in this type of system. (See the Implementation section
for more information on this.)”

BEDERSON I, at 7: “PadDraw has a primitive Graphical User
Interface (GUI) builder that is in progress. Among other things , it
allows the creation of active objects . Active objects can animate
the view to other locations (a kind of hyperlink) or move other
objects around on the surface .”

BEDERSON I, at 11: “For example , we implemented a digital

SFDC 1011f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

04554.00001/6142705.1

‘482 Patent PAD++

clock that at normal size shows the hours and minutes . When
zooming in , instead of making the text very large , it shows the
seconds , and then eventually the date as well . Similarly ,
zooming out shows just the hour . An analog clock (implemented
as a lens that can be positioned over a digital clock) is similar—it
does not show the second hand or the minute markings when
zoomed out.”

BEDERSON I, at 11: “We are exploring several different types of
interactive visualizations within Pad++, some of which are
described briefly here . Each takes advantage of the variable
resolution available for both representation and interaction .
Layout of graphical objects within a multi-resolution space is an
interesting problem , and is quite different than traditional fixed-
resolution layout . Deciding how to visually represent an arbitrary
graph on a non-zoomable surface is extremely difficult . Often it is
impossible to position all objects near logically related objects . In
addition , representing the links between objects often requires
overlapping or crossing edges . Even laying out a tree is difficult
because , generally speaking , there are an exponential number of
children that will not fit in a fixed size space . Traditional layout
techniques use sophisticated iterative , adaptive algorithms for
laying out general graphs , and still result in graphs that are hard to
understand . Large trees are often represented hierarchically with
one sub-tree depicted by a single box that references another tree .
Using an interactive zoomable surface , however , allows very
different methods of visually representing large data structures .
The fact that there is always more room to put information
‘between the cracks’ gives many more options . Pad++ is
particularly well suited to visualizing hierarchical data because
information that is deeper in the hierarchy can be made smaller .
Accessing this information is accomplished by zooming .”

BEDERSON I, at 12: “We built a zoomable directory browser as
another exploration of multiscale layout . The directory browser
provides a graphical interface for accessing the directory structure
of a filesystem (see Figure 6). Each directory is represented by a
folder icon and files are represented by solid squares colored by
file type . Both directories and files show their filenames as labels
when the user is sufficiently close to be able to read them . Each
directory has all of its subdirectories and files organized
alphabetically inside it . Searching through the directory structure
can be done by zooming in and out of the directory tree , or by
using the content based search mechanisms described above .
Zooming into a file automatically loads its text or image inside the

SFDC 1011f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

04554.00001/6142705.1

‘482 Patent PAD++

colored square and it can then be annotated . At any particular
view , typically three levels of the hierarchy are visible .”

BEDERSON II, at 3: “We are exploring dynamic multiscale
techniques to support focus and context during navigation of large
information spaces. To accomplish this we are building a
zoomable web browser using Pad++, a substrate for building
multiscale dynamic user interfaces [2][3][27][28]. Pad++ provides
an extensive graphical workspace where dynamic objects can be
placed at any position and at any scale. Pad++ supports panning
and zooming. Zooming can involve simple geometric scaling or
what we term semantic zooming, in which rendering of objects can
vary based on factors in addition to scale, such as context of the
task or complexity of the information being displayed. Pad++ is
built as a widget for Tcl/Tk, a scripting language and user-
interface library [26][33]. Pad++ allows WWW pages to remain
visible at varying scales while they are not specifically being
visited, so the viewer may examine many pages at once. In
addition, Pad++ allows the user to zoom in and out of pages,
enabling explicit control of how much context is viewed at any
time. To orient themselves, users can simply zoom back to view a
number of web pages. To get more detailed views of a particular
page they can zoom in. We think this variable scale contextual
display of web pages can provide important support for
navigation. We are currently exploring a tree layout system that
permits users to dynamically add to and reorganize a tree of web
pages. Using our Pad++ web browser, users navigate a space filled
with familiar objects, not iconified representations of those
objects. Our dynamic Pad++ tree browser combines a basic focus-
driven layout with automatic zooming and panning to support
navigation. The software allows the user to select a focus page.
That selection animates the page to occupy a larger section of the
display. Pages farther from the focus page get increasingly
smaller, resulting in a graphical fisheye view [30]. See Figures 1
and 2 for snapshots of the Pad++ web browser during
reorganization.”

BEDERSON II, at 7: “Currently there are a number of efforts to
create more interactive WWW documents. The primary approach
is to write code in a programming language, instead of HTML,
that can be downloaded into a browser equipped to interpret the
language. Sun’s Hot-Java project uses the Java language [18],
Cygnus Support’s GNU Remote Operations Web (GROW)
proposes to use GNU’s Guile extension language [17], and
Microsoft’s Blackbird will use dynamically loadable object files

SFDC 1011f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

