
Coe iS SJi 1is Kth iilsp I.ecvgiie Vhe Presidet hifoWard Publishing

/\ TT\\ ___ -7r .r
\\\

\\\

_I -_L _ /1 _J -tj

THE ESSEN1IALS OF
USER INTERFACE DESIGN

Eif oi
ree

ia1i Lthi1G5j HFi

0001 TDA 1018 (Part 1 of 4)
CBM of U.S. Patent No. 6,772,132

cI ____cJ_____c.J

____Co
If ________If

________If
________If
____ Co

Cl __________

0002

0

mmmqmmmmmww-~.mm-$%m-HZmm
N.

0002

Praise for Alan Coopers About Face..

Alan Cooper is software god With Visual Basic he designed

one of the key tools for designing new software Now hes

sharing his wisdom about how to make that software useable

This is landmark book
Stewart Alsop Editor in Chief Info World

About Face defines new interface design vocabulary that

speaks to programmers in their own terms We have come

long way from the time when there were just modal bad and

modeless good interfaces and this book reflects that

progress
Charles SimonyiChief Architect Microsoft Corp

Alan Coopers mind harbors deep compelling model of soft

ware-human interaction which he presents clearly and applies

systematically to real-world design problems in About Face

This book is fast-paced irreverent and no-nonsense would

recommend it to any software development executive or

designer
John Chishoim President Decisive Technology Corp

Columnist UNIX Review

0003

About Face introduces in common language many new ideas and pearls of wis

dom on how to design software that really is for the user It will help any software

designer or programmer understand how to make the user feel good about using

the product and at the same time maximize his/her productivity

Mike Maples EVP Worldwide Products Microsoft Corp

Alan Cooper popularized the idea of software design as separate and important

discipline In About Face he passes along both the Big Picture strategy of good

design as well as myriad examples that bring his principles to life For your sake

and the sake of your users dont leave the DOS prompt without it

Jesse Berst Columnist PCWeek Editorial Director

Windows Watcher Newsletter

About Face contains fresh ideas that are must for the toolset of anyone who is

creating an interactive productfrom software to interactive Web sites

Dave Carlick Senior EVP Poppe-Tyson Advertising

About Face has no fluff Cooper provides just the information necessary for soft

ware designer to improve their interfaces and programs right now The anecdotes

and examples are excellent and the axioms make it easy to remember specific

issues If this book doesnt help people improve their interfaces nothing will

Larry Marine Usability Engineer Intuitive Design Engineering

Alan Cooper is the Miss Manners of software design translating his deep exper

tise into practical information instantly useful to developers attempting to tame

the Windows interface My advice is to buy two copiesautograph the second

and send it to an engineer at Microsoft

Paul Saffo Director Institute for the Future

thoroughly enjoyed Coopers writing style Programmers and designers in all

business domains will find this book insightful

Ann Winblad Software Venture Capitalist

As Visual Basic consultant find Coopers practical design principles and goal-

directed approach have helped me improve the quality and usability of my user

interface designs and put the best face on my software

Deborah Kurata Author Consultant

About Face is concise and articulate explanation of user-centered design princi

ples This is the kind of information that takes years for user interface profession

als to accumulate on their own This book will surely become classic

Penny Bauersfeld Human Interface Design Consultant

Author Software by Design

0004

About Face
The Essentials of User Interface Design

Alan Cooper

Division of IDG Books Worldwide Inc

Foster City
CA Chicogo IL Indianapolis IN Brainlree MA Southlake TX

0005

About Face The Essentials of User Interface Design

Published by

IDG Books Worldwide Inc

An International Data Group Company
919 East Hilisdale Boulevard Suite 400

Foster City CA 94404

Copyright

Copyright 1995 by IDG Books Worldwide Inc All rights reserved No

part of this book including interior design cover design and illustrations

may be reproduced or transmitted in any form by any means electronic

photocopying recording or otherwise without the prior written permission

of the publisher For authorization to photocopy items for internal corporate

use personal use or for educational and/or classroom use please contact

Copyright Clearance Center 222 Rosewood Drive Danvers MA 01923

USA Fax 508-750-4470

Library of Congress Catalog Card No 95-7505

ISBN 1-56884-322-4

Printed in the United States of America

First Printing August 1995

10

Distributed in the United States by IDG Books Worldwide Inc

Limit of Liability/Disclaimer of Warranty

The author and publisher of this book have used their best efforts in prepar

ing this book IDG Books Worldwide Inc International Data Group Inc
and the author make no representation or warranties with respect to the accu

racy or completeness of the contents of this book and specifically disclaim any

implied warranties of merchantability or fitness for any particular purpose

and shall in no event be liable for any loss of profit or any other commercial

damage including but not limited to special incidental consequential or

other damages

Trademarks

All brand names and product names used in this book are trademarks regis

tered trademarks or trade names of their respective holders IDG Books

Worldwide Inc is not associated with any product or vendor mentioned in

this book

Published in the United States

0006

Welcome to the world of IDG Books Worldwide

.ABOI.JT IDG Books Worldwide Inc is subsidiary of International Data Group the worlds largest publisher of

computer-related information and the leading global provider
of information services on information

iechnology IDG was founded more than 25 years ago
and now employs more than 7700 people worldwide

IDG publishes more than 250 computer publications in 67 countries see listing below More than 70

million people read one or more IDG publications
each month

OOIS Launched in 1990 IDG Books Worldwide is today the publisher
of best-selling computer books in the

\VORLD WIDE United States We are proud to have received awards from the Computer Press Association in recognition

of editorial excellence and three from Computer Currents First Annual Readers Choice Awards and our

best-selling For Dummies series has more than 19 million copies in print
with translations in 28 languages

IDG Books Worldwide through joint venture with IDGs Hi-Tech Beijing became the first U.S publisher

to publish computer book in the Peoples Republic
of China In record time IDG Books Worldwide has

become the first choice for millions of readers around the world who want to learn how to better manage

their businesses

Our mission is simple Every one of our books is designed to bring extra value and skill-building instructions

to thc reader Our books are written by experts
who understand and care about our readers The knowledge

base of our editorial staff comes from years of experience
in publishing education and journalism

experience which we use to produce books for the 90s In short we care about books so we attract the

best people We devote special attention to details such as audience interior design use of icons and

illustrations And because we use an efficient process
of authoring editing and desktop publishing our

WINNER books electronically we can spend more time ensuring superior content and spend less time on the

technicalities of making books

Mnis1O.92
You can count on our commitment to deliver high-quality books at competitive prices on topics you want

to read about At IDG Books Worldwide we continue in the lOG tradition of delivering quality for more

than 25 years
Youll find no better book on subject than one from lOG Books Worldwide

John Kilcullen

President and CEO

lOG Books Worldwide Inc

IDG Books Worldwide Inc is subsidiary of International Data Group the worlds largest publisher of computer-related
tnformatton and the leading global

Pt
ovider of information services on information technology

International Data Group publishes over 250 computer publications in 67 countnes Seventy million

COiC read one or niore International Data Group publications each month International Data Groups publications tnclucle ARGENTINA Compuierworld

/itgcirina
GamePro Infoworld world Argentina AUSTRALIA Australian Macworld client/ServerJournal computer Living computerworlcl Dtgiial News

ctv.ork World PC World Publishing Essentials Reseller AUSTRIA compuierwelt TEST BELARUS World Bclarus BELGIUM Data News BRAZIL

AnouiriO dc Inform/tica computerworld Brazil connections Super
Game Power Macworld world Braztl Publish Brazil SUPERGAME BULGARIA

con-puterworld Bulgaria Networkworld/Bulgaria
MacWorld Bulgaria CANADA dO canada computerWorld canada Infocanada Network World

Canada Reseller World CHILE computerworld chile GamePro World chile COLUMBIA computerworld colombia GamePro World colombia

.1 COSTA RICA PC World Costa Rica/Nicaragua
THE CZECH AND SLOVAK REPUBLICS Computerworld Czechoslovakia Elektronila Czechoslovakia PC

World Czechoslovakia DENMARK Communications World Computerworld Danmark Macworld Danmark PC World Danmark PC World Danmark Supplements

TECH World DOMINICAN REPUBLIC PC World Republica Dominicana ECUADOR PC World Ecuador GamePro EGYPT Computerworld
Middle East

PC World Middle East EL SALVADOR PC World Centro America FINLAND MikroPC Tietoverkko Tietoviikko FRANCE Disinbutique Golden Info PC

Le Guide du Monde Informatique
Le Monde lnformatique Reseaux Telecoms GERMANY Computer Business coniputerwoche computerwoche Extra

_J Computerwoche Focus Electronic Entertainment GamePro I/M Information Management Macwelt PC Welt GREECE GamePro Macworld Publish

GUATEMALA PC World Centro America HONDURAS PC World Centro America HONG KONG Computerworld Hong Kong PCWorld Hong Kong Publish

WINNER in Asia HUNGARY ABCD CD-ROM computerworld
Szamitastechnika PC Mac World Hungary PC-X Magazine INDIA Computerworld India PC World

India Publish in Asia INDONESIA InfoKomputer PC World Komputek Computerworld Publish in Asia IRELAND ComputerScope PC Live ISRAEL PC

World 32 BIT People Computers ITALY Computersvorld Italia Computerworld Italia Special Editions Lotus Italia Macworld hahn Networking Italia PC

Shopping PC World hahn PC World/Walt Disney JAPAN Macworld Japan Nikkei Personal Computing SunWorld Japan Windows World Japan KENYA

Last African Computer News KOREA Hi-Tech Information/Computerworld
Macworld Korea PC World Korea MACEDONIA PC World Macedonia MALAYSIA

Compsicrvorld Malaysia PC World Malaysia Publish in Asia MEXICO Computerworld Mexico GamePro Macworld PC World Mexico MYANMAR PC

\Vorld Myaritoar
NETHERLANDS Computable Computer Totaal LAN Magazine Macworld Net Magazine NEW ZEALAND Computer Buyer Computerworld

hex Ze.land MTB Network World PC World New Zealand NICARAGUA PC World Costa Rica/Nicaragua NIGERIA PC World Africa NORWAY

Compuierworld Norge computerworhd Privat CW Rapport Klient/Tjener CW Rapport
Nettverk Telecom CW Rapport Offentlig Sektor IDGs KURSGUIDE

Macvorlcf Norge Multimedia World PC World Ekspress PC World Netiverk PC World Norge PC Worlds Produktguide
Windows Spesial PAKISTAN

Coinputersvorld Pakistan PC World Pakistan PANAMA GamePro PC World Panama PARAGUAY PC World Paraguay
OF CHINA China computerworld

Chitia Intoworld Computer Communication Electronic Product World Electronics Today Game Camp PC World China Popular Computer Week Software

Aorl/i lelecom Product World PERU Computerworhd Peru GamePro PC World Profesional Peru PC World Peru POLAND Computerworld Poland

Contputerworld Special Report Macworld Networld PC World Komputer PHILIPPINES Computerworld Philippines PC Digest Publish in Asia PORTUGAL

CcrebrofPC World Correio informatico/Computerworld
MacIn/PCIn Portugal

PUERTO RICO PC World Puerto Rico ROMANIA Computerworld Romania

____________ PC World Romania Telecom Romania RUSSIA computerworld Rossiya
Network World Russia PC World Russia SINGAPORE Computerworld Singapore

PC World Singapore
Publish in Asia SLOVENIA MONITOR SOUTH AFRICA Computing S.A Network World S.A Software World SPAIN Computerworld

Espafla COMUNICACIONES WORLD Dealer World Macworld Espana PC World Espana SWEDEN CAPDesign Computer Sweden Corporate Computing

hlacWorld Maxi Data MikroDatorn NOtverk Kommunikation PC/Aktiv PC World Windows World SWITZERLAND computerworld Schweiz Macworld

Schweiz Pdtip TAIWAN Computerworld Taiwan Macworld Taiwan PC World Taiwan Publish Taiwan Windows World THAILAND That Compuierworld

ubhish in Asia TURKEY Computerworld Monitor MACWORLD Turkiye
PC WORLD Turkiye UKRAINE Computerworld Kiev Computers Software

xlagazine PC World Ukraine UNITED KINGDOM Acom User Amiga Action Amiga Computing Amiga Appletalk CD Powerplay
CD-ROM Now Computing

BOOKS Connexion GamePro Lotus Magazine Macaction Macworld Open Computing Parents and Computers PC Home PC Works The WEB UNITED STATES

WORLDWIDE Cable in the Classroom CD Review ClO Magazine Computerworld Computerworld Client/Server Journal Digital Video Magazine DOS World Electronic

InfoWorld I-Way Macworld Maximize MULTIMEDIA WORLD Network World PC World PUBLISH SWATPro Magazine Video Event WebMaster URUGUAY

PC World Uruguay VENEZUELA Computerworld
Venezuela GameFro Pd World Venezuela and VIETNAM PC World Vietnam lO/17/95b

0007

For More Information

For general information on IDG Books Worldwides books in the U.S please

call our Consumer Customer Service department at 800-762-2974 For

reseller information including discounts and premium sales please call our

Reseller Customer Service department at 800-434-3422

For information on where to purchase IDG Books Worldwides books

outside the U.S contact IDG Books Worldwide at 415-655-3021 or

fax 415-655-3295

For information on translations contact Marc Jeffrey Mikulich Director

Foreign Subsidiary Rights at IDG Books Worldwide 415-655-3018 or

fax 415-655-3295

For sales inquiries and special prices for bulk quantities write to the address

above or call IDG Books Worldwide at 415-655-3200

For information on using IDG Books Worldwides books in the classroom or

ordering examination copies contact the Education Office at 800-434-2086

or fax 817-251-8174

For authorization to photocopy items for corporate personal or educational

use please contact Copyright Clearance Center 222 Rosewood Drive

Danvers MA 01923 or fax 508-750-4470

About Face The Essentials of User Interface Design is distributed in Canada by
Macmillan of Canada Division of Canada Publishing Corporation by

Computer and Technical Books in Miami Florida for South America and the

Caribbean by Longman Singapore in Singapore Malaysia Thailand and

Korea by Toppan Co Ltd in Japan by Asia Computerworld in Hong Kong
by Woodslane Pty Ltd in Australia and New Zealand and by Transword

Publishers Ltd in the U.K and Europe

0008

About the Author

Aan
Cooper the Father of Visual Basic is an award-winning user inter

face consultant and software designer His company Cooper Software mc has

worked with broad range of clients to improve their products and help them

create exciting and successful new software products His experiences in imple

menting his unique approach to creating better software through goal-directed

design led him to write this book

Since 1976 Alan Cooper has designed and developed software including

SuperProject Computer Associates MicroPhone II for Windows Software

Ventures and the visual programming interface for Visual Basic Microsoft

In 1976 he founded Structured Systems Group which Freiberger and Swaine

in their book Fire in the Valley credited with producing perhaps the first seri

ous business software for microcomputer

Bill Gates presented Cooper with Windows Pioneer award at the Windows

World conference in 1994 This rare and coveted award recognized how

Coopers part in the invention of Visual Basic contributed to the success of

Microsoft Windows

Alan Cooper is director of both the Association for Software Design and the

Software Entrepreneurs Forum He founded SEEs Windows SIG the largest

Windows developer group in the world He is also frequent opinionated and

engaging industry speaker and writer on the topics of user interface and con

ceptual software design

vii

0009

Credits

Senior Vice President Project Editor

and Group Publisher Elizabeth Rogalin

Brenda McLaughlin
Manuscript Editor

Publishing Director Karen Goeller

John Osborn
Technical Reviewer

Senior Acquisitions Manager Neil Rubenking

Arnorette Pedersen
Graphics Coordination

Managing Editor Gina Scott

Kim Field Angela Hunckler

Editorial Director Media/Archive Coordination

Anne Marie Walker Leslie Popplewell

Melissa Stauffer
Editorial Assistant

Jason Marcuson
Dan HilIdale

Production Page Layout
Production Director

Benchmark Productions Inc
Beth Jenkins

Elizabeth CÆrdenas-Nelson

Production Assistant
Pro ofreaders

Jacalyn Pennywell
Dwight Ramsey

Supervisor of Carl Saff

Project Coordination
Indexer

Cindy Phipps
Liz Cunningham

Supervisor of Page Layout
Book Cover Design

Kathie Schnorr
Donald Maurer Benchmark

Supervisor of Graphics and Design Productions Inc

Shelley Lea TonBo Design

Reprint Coordination

Tony Augs burger

Theresa Sanchez-Baker

Todd Kiemme

Blueline Coordinator

Patricia Reynolds

0010

To Sue

foryour love and patience

while was submerged

Acknowledgments

hose who have tackled big writing projects know that there are few other

tasks that require such single-minded non-stop outpouring of effort

Although this is my first book Ive written big software programs before so

am well-acquainted with the immense demands project of this scope makes

My friend Gary Kratkin says big solo writing project is like having hungry

and bad-tempered monster chained up in your basement You can go out and

have fun but eventually you must return home and feed the hungry beast

There are many people who have helped me feed this beast over the past year

who deserve my sincere thanks for their patience their contributions or both

Without doubt the people who sacrificed the most have been my family My

lovely wife and business partner Sue has supported me and reassured me and

read all of my drafts throughout the monster-feeding process Thank you for

lighting up my life My two sons Scott and Marty missed many nights and

weekends with me when was locked in my office writing instead of playing

with them Thank you and love you both beyond measure

Three of my colleagues at Cooper Software made material contributions to the

quality
and content of this book Wayne Greenwood talented software

designer carefully read all of the chapters and made many invaluable contribu

tions to the manuscript In many cases he was the first person to vet my terms

and theories He also helped with most of the illustrations Geetha Reddy

another skilled interface designer read many of the drafts and politely pointed

out my successes and failures Alice Blairs comments were also very useful in

straightening out some dodgy prose

ix

0011

ACKNOWLEDGMENTS

Several people read an early draft of the book and provided worthwhile com
ments and guidance that had major effect on the eventual shape of the man

uscript would like to deeply thank Deborah Kurata good luck on your own

book Mike Nelson your moderating voice culled some too-hot flames

Diana Nelson your insights were valuable throughout and Frank Cohen for

your unique viewpoint

Several other people read chapters sent email contributed ideas or generally

helped to shovel monster food Thank you Carl Quinn Andrew McCarthy
Geoff Faraghan Peter Rosberg Janell Bandy Liz Cunningham Nanci

Kavanagh Andrew Singer Mike Geary Fran Finnegan John Zicker Steven

List Cynthia Lewis Geoff Nicholls Jeff Prosise David Rygmyr Paul Yao Jim

Fawcette Gregg Irwin Ted Young Constance Petersen Rowan

Hutchinson Harmon Rogers Dan Barclay Evans Jr Joe McGinn Cam

Marshall Mark Pruett Dick Grier David Headley and my best friend David

Carlick for the March of Paradigms

At Programmers Press several individuals made enormous contributions to the

quality of the book Both Chris Williams and Trudy Neuhaus were the first to

see the potential of this book Anne Marie Walker stepped into this project at

the eleventh hour and injected much-needed dose of enthusiasm and energy

Amy Pedersen offered consistent support with the care and feeding of captive

monsters owe huge debt of thanks to my skilled editor Karen Goeller and

my technical editor Neil Rubenking Their comments and queries con
tributed materially to the final quality of the book They both kept me from

putting my foot in my mouth many times Any mistakes that slipped by them

are my responsibility Id also like to thank Bill Gladstone and Matt Wagner at

Waterside and John Kilcullen at IDG Books for helping to pull About Face out

of the ordinary mass of technical books

The publisher would like to give special thanks to Patrick McGovern without

whom this book would not have been possible

0012

Table of Contents

Introduction

Who should read this book

Why wrote this book

taxonomy of software design

Conventions used in this book

Lets design

part Ioa1

Chapter Goal-Directed Design 11

The users goals
12

The essence of user interface design 16

fresh look at features 18

Chapter Software Design
21

Software isnt designed 21

Conflict of interest
23

The profession of software design
24

Supporting software design disciplines
24

Chapter The Three Models 27

The manifest model 27

Bringing mechanical age models into the information age 35

Its worse on computer
39

xi

0013

xii CONTENTS

Chapter Visual Interface Design 41

Restucting the vocabulary 47

The Canonical Vocabulary 48

Designing for users 49

1art II TIi1ie 1orrii 51

Chapter Idioms and Affordances 53

The Myth of Metaphor 53

Manual affordances 64

Understanding what it means 65

Chapter An Irreverent History of Rectangles on the Screen .67

Xerox PARC 67

Chapter Windows-with-a-Small-w 73

Unnecessary rooms 73

Necessary rooms 75

Windows pollution 77

ehapter Lord of the Files 81

The tragedy of the file system 81

Designing software with the proper model 86

Unifi the file model 91

Document management 92

How did we get here 96

$hapter Storage and Retrieval Systems 101

Storing versus finding 101

It aint document-centric 107

jhapter
10 Choosing Platforms 113

Software is the expensive part 11

The half-life of desktop computer 114

Choosing development platform 116

Simultaneous Multiplatform Development 119

The Myth of Interoperability 121

Part III The Behavior 125

Chapter 11 Orchestration and Flow 127

Planing on the step 127

0014

CONTENTS Xii

Where were you on the night of the sixteenth 144

Sensible interaction 146

Chapter 12 Posture and State 151

Posture 151

Windows states 163

MDI 168

Chapter 13 Overhead and Idiocy 171

Overhead 171

Idiocy
178

Chapter 14 The Secret Weapon of Interface Design 183

Get memory
183

Task coherence 186

new way of thinking
190

PartIVThelnteraction 193

Chapter 15 Elephants Mice and Minnies 195

Why we use mouse instead of pen
195

Indirect manipulation
196

Mice are not here to stay
197

Mousing around 198

The left mouse button 200

Right mouse button 201

Middle mouse button 202

Things you can do with mouse 202

Up and down events 207

The cursor 208

Focus 212

Meta-keys
214

Chapter 16 Selection 217

Object-verb
217

Concrete and discrete data 219

Insertion and replacement
220

Additive selection 222

Group selection
223

Visual indication of selection 224

Chapter 17 Direct Manipulation
229

0015

xiv CONTENTS

Manipulating gizmos 231

Repositioning 238

Resizing and reshaping 239

Arrowing 244

Direct-manipulation visual feedback 245

Chapter 18 Drag-and-Drop 247

Whither drag-and-drop 247

Dragging where 249

Master-and-target 249

How master-and-target works 252

Tool- manipulation drag-and- drop 256

Bomb sighting 259

Drag-and-drop problems and solutions 260

PartVTheCast 269

Chapter 19 The Meaning of Menus 271

The command-line interface 271

The hierarchical menu interface 272

The Lotus 1-2-3 interface 274

Monocline grouping 276

The popup menu 277

The pedagogic vector 278

Chapter 20 Menus 283

Standard menus 283

The correct menus 285

Meanwhile back on Planet Earth 288

Optional menus 289

Menu item variants 291

The system menu 297

Chapter 21 Dialog Boxes 299

Suspension of normal interaction 299

Dialog box basics 302

Modal dialog boxes 302

Modeless dialog boxes 303

The modeless dialog problem 304

0016

CONTENTS XV

Two solutions
.305

more radical but better solution 307

Property dialog boxes 311

Function dialog boxes 313

Bulletin dialog boxes
313

Process dialog boxes 315

Chapter 22 Dialog Box Etiquette
319

You rang
319

The caption bar
320

Transient posture
322

Reduce excise
322

Terminating commands for modal dialog boxes 325

Keyboard shortcuts
328

Tabbed dialogs
328

Expanding dialogs
334

Cascading dialogs
335

Directed dialogs
337

Chapter 23 Toolbars
341

Visible and immediate 341

The toolbar freed the menu to teach 345

Beyond the buttcon
349

Toolbar morphing
350

Chapter 24 Roll the Credits Please 355

Your programs name 355

Your programs icon 357

Dependencies
357

About boxes
358

Splash screens
362

Easter eggs
364

art S%TI Iiznios 367

Chapter 25 Imperative and Selection Gizmos 369

Gizmo-laden dialog boxes 370

Gizmo liberation
370

The gizmos that Mother gives you
372

0017

xvi CONTENTS

Imperative gizmos 372

Selection gizmos 375

Combobox 391

Treeview gizmo 392

Chapter 26 Entry and Display Gizmos 393

Entry gizmos 393

Bounding 394

Unbounded entry fields 397

Validation 398

Using an edit field for output 403

Display gizmos 405

Those darned scrolibars 406

Chapter 27 New Gizmos 409

Directly manipulable tools 409

Extraction gizmos 412

Visual gizmos 416

Adding visual richness 419

PartVIITheGuardian 421

Chapter 28 The End of Errors 423

Eliminating the error message box 423

Bulletin Dialog Boxes 424

Stopping the proceedings 425

Positive feedback 433

Treat error messages like GOTOs 435

Exceptions 436

Do they work 437

What error message dialog boxes should look like 438

The end of errors 439

Chapter 29 Managing Exceptions 441

Alerts 441

Confirmations 444

Who are we protecting anyway 448

Audible feedback 454

Using your powers for good 457

0018

CONTENTS Xvii

Failing gracefully
462

Chapter 30 Undo 465

Assisting the exploration
465

The trouble with single undo 470

Redo
472

Special undo functions 473

Deleted data buffer
475

Other manifest models 476

Undo is global facility and should

not be managed by local controls 478

Undo-proof operations
478

PartVIIITheTeacher 481

Chapter 31 Good at What You Do 483

The time users spend
483

Command vectors
486

What beginners need 490

What perpetual intermediates need 492

What experts need 492

Idiosyncratically modal behavior 493

Commensurate effort
495

The typers versus the pointers
495

Standards

Online help
501

The inverted meta-question
504

Chapter 32 Installation Configuration and Personalization .507

Navigation is by reference to permanent objects
507

Pull at your own risk
510

The corporate look 513

Installation
515

Chapter 33 Shouldering the Burden 531

Lets put those idle cycles to work 533

Get our software talking to our hardware 541

Chapter 34 Where Do We Go from Her 543

Software sucks

0019

xviii CONTENTS

We know lot about old technology 545

Dont ask programmers to design while they code 547

Solving the problem 548

Im mad as hell and Im not gonna take it anymore 552

0020

Foreword

1876 saw the construction of many bridges and the completion of the

Brooklyn Bridge One out of every four of those new bridges however failed

It is hard for us now to imagine how the outcome of so basic construction

project could be so unpredictable It would be an extraordinary event for

bridge built today to fail But every aspect of our understanding of the world

begins with ignorance and uncertainty

For nearly half century new field of construction that of information

technology has been emerging Using the most insubstantial materials elec

tromagnetic fields and electrons and software the abstract description of

pure processes we can build structures for our minds to inhabit and create

fabulous tools that extend our mental reach But this field is still very much in

its infancy and in our ignorance many of the things we have built thus far fail

IIhat
tJ Likewise our inability to clearly understand

and express the purpose of particular tool or structure or to shape something

that fits the mind that must use it can make even the most elaborate construc

tion efforts worthless

Afflugh there have already been significant Lrts to undertnd and iprov
the ftc nty the engnerm of spftçare thus far n1y modest

atfentip4ias beeri ip1prov1ng its desiijn the process whereby it is given

form

xix

0021

xx FOREWORD

This book
represents one of the first attempts to address this problem As such

it constitutes an important contribution to the nascent literature on software

design especially as it is expressed in way that is useful to the practicing

designer rather than the theoretician

You may not agree with everything presented in this book but thoughtful soft

ware designers will undoubtedly find the issues raised to be relevant and sum

ulating Unlike number of books from the human-computer-interaction

HCI community it addresses issues like functionality that go beyond mere

interface design

In all likelihood Alan Cooper will always be known principally for his role in

the development of Visual Basic but think this book may be his greater con
tribution to our field For now it stands virtually alone on the software design

bookshelf

Andrew Singer

June 1995

Biography ofAndrew Singer

Andrew Singer is best known for his work on programming environments and work

group tools at Think Technologies company he co-founded in 1982 and whose

product development efforts he led until its acquisition by Symantec in 1987

He chairs the board of the Assqciation for Software Design non-profit professional

society he rganized in 1992 wifh Mitchell Kapor

Interval Research Corporation

1801 Page Mill Road

PaloAltoCA94304

singer@interval.com

0022

Introduction

This book is intended to provide you with effective and

practical tools for designing user interfaces These tools

come in two distinct varieties tactical and strategic

Tactical tools are hints and tips about using and creating

user interface idioms like dialog boxes and push buttons

Strategic tools are ways to think about user interface

idiomsin other words the ways in which the user and the

idiom interact

Although books are available that deal with either strategic

or tactical tools my goal has been to create book that

weaves the two together want to give you cornucopia

of insights about user interface design as whole While

helping you design more attractive and effective dialog

boxes this book will simultaneously help you understand

hOW the user comprehends and interacts with your soft

ware

beliee that integrating the tactical and the strategic

approaches is the key to designing effective software inter

faces For earnp1e there is no such thing as an objectively

good dialog boxthe quality depends on the situation

who the user is and what his background and goals are

0023

INTRODUCTION

Merely applying set of tactical dictums will make user interface creation

easier but it wont make the end result better Just thinking beautiful thoughts

about how users should interact with your system wont improve the soft

ware either What will work is maintaining strategic sensitivity for how users

interact with specific software This will enable you to correctly choose the

appropriate tactics to apply in particular situation

The first three parts of this book stress strategy but youll find tactics interwo

ven throughout

There are two steps to user interface design the synthesis of solution and the

testing of the validity of that solution The latter is discipline widely known
.\\ /LI

as usability while the tormer is referred to simply as user interface design

UALL There is significant and growing body of usability literature but there is very

little in print about user interface design synthesisthe invention of user inter

faces from direct analysis of the tasks the technology and the users goals

Accordingly will focus exclusively on the design of user interface solutions

and ignore the processes of testing those solutions However this is not slur

on usability You will always achieve the best results by combining the two dis

ciplines in harmonious relationslip

Who should read this book
wish could say this book is for user interface designers and lea it go at thlt

Most user interfaces are still designed by programmers an incrising number

of whom are growing uneasy as they glimpse the gulf between the skill set

needed firec6nsfructin and the iUneeded for softwaie design

Documentation writers trainers and technical support people increasingly

share this same worry It is for this growing community of design-aware devel

opers that this book is written

Eighty years ago the automobile industry came to understand that well-

engineered car is less appealing
ancless

IIthan aIthat rboth ceii

iiied nd wef ng1nee1 Until the software industry comes to the same

conclusion the burden of quality design will fall largely on conscientious soft

ware engineers

To the industrys credit small but growing cadre of software and user inter

face designers is beginning to make its presence felt It is finally possible for

software developers to hire people trained in the art of software design both in

the cauldron of industry and in forward-thinking universities Eventually we

0024

INTRODUCTION

will see bifurcation in the industry Designers will design the software and

engineers will build it This is currently considered luxury by those develop

ment shops that havent realized the fiscal and marketing advantages that come

with professional software design

Why wrote this book

Since 1976 have been creating successful software for personal computers In

the early days of the industry invented designed coded documented mar

keted sold supported and revised retail products including accounting word

processing spreadsheet project management and visual programming lan

guages During the 1980s was an independent software authormuch like

freelance inventor identified problems and created innovative software solu

tions for them Then working alone or with small team completed them

for sale to software publisher who brought them to market For all these

years designed my software without reflecting much on the process More

recently have offered my services as software design consultant helping

other companies to design new products and improve their existing ones

When became consultant discovered that had to articulate to my clients

the reasons why certain design solution was better knew the answer but

had no words with which to say it In response to my own needs began to

fQrmulate the axioms ideas and terms that are in this book Many of my clients

and people Iave spoken with have requested that record my thinking in

book About Face is the result

My twenty years of software design and development have taught me that the

task of usei intel tace design is fundamentallyrdiffef fitfft1ffi software engineer

ing Most of the writing available on user interface
desin approaches it from

an engineering or user-testing point of view There is little on the shelves that

addresses the creation of user interface design directly frqthe statement of

the pioblem The tools ot the engineer aie excellent

design which isnt an engineering problem and cant be well-defined in those

terms

This book is based on my personal experiences not on studies of published

works in the area of human-computer interaction usability cognitive psychol

ogy or eigonomics All of the opinions terms axioms tips
and chlusions

contained in this book derive from my own observations Where have know

ingly adopted the thinking of others have said so in the text Where my

0025

INTRODUCTION

thinking may seem to echo the work of others without credit it is because we
have independently arrived at similar views and am ignorant of their work It

does not represent desire to appropriate their vision or to negate their efforts

taxonomy of software design
Webster defines taxonomy like this

Tax.on.o.my \tak- san-e-mee\ ii the study of the general principles of

scientific classification CLASSIFICATION specif orderly classification of

plants and animals according to their presumed natural relationships

Biologists anthropologists and natural scientists of all stripes use taxonomy
as their primary tool both for their ease in communicating concepts and as

mental model of the purposes and relationships of things in the real world

Although taxonomy is more formal dialect within broader language all

language is taxonomic Our perceptions of the way the world works are colored

and influenced by the structure and usage of our language

Physical scientists spend extravagant amounts of time learning the terms spe
cific to their discipline These terms not only illuminate the specific process or

object at hand but they influence how we think about them in relationship to

life Doctors must learn the names of every bone muscle nerve and organ in

the human body as well as terms that indicate their direction orientation and

condition in health trauma or illness How else could one doqor express to

another question concern or discovery thorough taxonomy is the cor

nerstone of each science from the study of spiders to the behavior of printing

presses

The computer industry is no exception We have rich and complex language

to describe the nuances of the fieldwords like concurrency recursion
hexadecimal and raster scan But the completeness and effectiveness of this

programming terminology is really just sham The language of programming
is too new and evolving too fast to yet have firm foundation While the nat

ural taxonomy of plants and animals was developed over hundreds of years the

computer taxonomy has grownout of controlfor less than fifty There is

certainly small core of commonly agreed-upon terms like RAM and ROM
but there is an ocean of words that either have no meaninglike virtual real

bug-free and artificial intelligenceor that have meanings so

bowdlerized so bastardized as to be useful only for resumes and bull-sessions

0026

INTRODUCTION

around the water coolerwords like standard object-oriented rnaro
and client/server

Ive heard and read countless discussions about the relative efficiency or

elegance of some software artifact But when someone speaks of an effi

cient user interface is he referring to the code to the gizmo-count to the

ease of programming ease-of-learning ease-of-use Certainly these are real

words with real meanings that conjure up useful imagery in the minds ofintel

ligcnt technical people But arc these terms well-enough defined to base

million-dollar decisions on What would you think if your doctor said some

thing like Well it seems youve got swollen thingy on the front part of your

arm Well have to cut it off Cut what offi The swollen thingy or my arm

Get that quack away from me

All of this brings us to user interface design Our discipline is less than half the

age of the computer science field Little of our work has been tested in the

modern crucible of personal computing in which for the first time the major

ity of computer-human interaction is with noi-computer-professionals

The terms we have to work with are so weak and ill-defined that they make the

computer science taxonomy seem robust by comparison In user interface

design we are dealing with so man new conceptsconcepts than hare no

parallel in the non-digital worldthat there are no terms to borrow from We

find ourselves performing functions daily that we could never imagine before

we had personal computers

The lack of consistent specific terminology in the world of software design

frustrates interface designers enormously Without precise terminology we are

forced to speak in vague generalities and hand-waving Without clearly differ

entiated terms we accidentally group things in the wrong places overlook

significant facts and inadvertently mistake the bad for the good

Language defines our perceptions The words we use influence our mental pic

ture of the world around us To design effective software for the information

age we must have vocabulary that accurately describes the goals we seek the

tools we use to achieve them and the side effects of our journey Software

design will not become real science or art or craft until we create our own tax

onomy It will not become successful practice until we develop accurate ways

of thinking and talking about what we do until we develop taxonomy

0027

INTRODUCTION

To eo1ogze means to invent words and many of todays computer practi

tioners are reluctant to neologize They imagine that having more words com

plicates things and makes communications more difficult When speaking of

familiar things in the familiar world this is true but in the mostly new world

of computer-human interaction old ambiguous or inaccurate words hurt us

more than they help Our mental images also color our thinking

pc3 Any discipline that wants to be practiced seriously and effectively must develop

powerful descriptive and discriminative language User interface design is

jrime example of this imperative Not only can wenot function effectively but

our credibility to the outside world particularly to the world of software engi

neering is threatened unless we can agree on terms to describe what we do
what we care about and how to judge our relative success at achieving our

goals In this spirit try to continuously fill the vacuum with neologisms

words that have created to describe common ideas things principles actions

or conditions that relate to our practice

Conventions used in this book

The tlatform

This took is about user interface design using MicrosofiWindows The major

ity of todays PCs run Windows and as result that is where the greatest

need exists for an understanding of how to create effective goal-directed user

interfaces

Having said that believe that most of the material in this book transcends

platforms It is equally applicable to all desktop platformsMacintosh Motif

NeXT OS/2 and othersand the majority of it is relevant even for more

divergent platforms such as kiosks handhelds embedded systems and more.

As write this Microsoft is preparing Windows 95 for release This is the fifth

major release of Windows in its decade of life and it promises to ratchet the

industry forward another much-needed notchl Because of the newness of

Windows 95 some of my examples come from the older Windows 3.x

However the principles of user interface design transcend the artifacts of any

particular release or platform

The examples

use several programs as examples Mostly Ive used the Microsoft Office suite

of Word Excel and PowerPoint little Adobe Illustrator and some

0028

INTRODUCTION

CompuServe Navigator because these are the programs use most hae tried

to stay with mainstream programs for most examples for two reasons First

most readers will likely be at least slightly familiar with the examples Second

its important to show that the user interface design of even the most finely

honed products can be significantly improved with goal-directed approach

Pronouns

It is my sincere desire to be norf-sexist in my writing have wrestled with

clumsy constructions like s/he she/he and his or her which seem like

inkspots or thumbprints on the page to meI have therefore abandoned

them also tried the dreaded genderless plurals they their and them

In this case the cure seemed worse than the disease to me

The solution finally adopted was to use feminine pronouns exclusively and

that was how the manuscript was originally drafted Many focus groups and

reviews later my editor and publisherboth femaleinsisted that return to

the masculine form so as to avoid offending my readers want to change the

world of user interface design not rattle the world of book publishing so

reluctantly agreed apologize for the male pronouns and sincerely hope that

you will read them merely as placeholders for intelligent and capable people of

either sex

Special notations

As study software design find it powerful and effective to encapsulate my

discoveries as axioms These brief aphorisms encapsulate great deal of wisdom

and are easy to remember In this booka5n arejçeral principJes of soft

Each one represents guiding principle

that is aiay trU Pose these axioms to yourself as design tests when you find

yourself stuck on tough problems A1l of theaxiom have beenhighligled
in

the text as shown here

IIIIIip
II1Ic

Buy low sell high

0029

INTRODUCTION

Some aphorisms arent as general as axioms but theyre just as useful in their

specific area When you are working with particular design element the

design tips
from that area can help to unstick your creative mind complete

listing of all axioms and design tips can be found in the Reference Section at

the back of the book

When mentioned for the first time terms with specific meanings for the user

interface design practitioner are highlighted in the text in o1d Most of

these terms are my own neologisms but many of them were coined by others

or are in common use If the term is one of my own will introduce it by

saying call this... All of the design terms are mentioned in the index with

the page number where they are first mentioned indicated

Lets design

hope this book informs you and intrigues you but most of all hope it makes

you think about software design in new ways The practice of user interface

design is not only constantly changing it is also big and varied enough to seem

different to disparate observers If you have different opinion or just want to

discuss things with me Id like to hear from you at alan@cooper.com

Thats enough preliminary stuff lets design

0030

Part The Goal

Designing for Users

Technology is the engine that drives user interface

design This synergy is two edged sword because

even as the power of the technology frees us to per

form great feats of invention it simultaneously

ties us to ways of thinking that are contrary to the

natural direction of human behavior Almost all

of the problems with modern software user inter

face design originate from well-intentioned

intelligent and capable people focusing on the

wrong things Instead of technology and tasks we

must focus our gaze on the goals toward which

users strive even if they themselves are sometimes

unaware of them

0031

Goal-Directed Design

Tis
book has simple premise If achieving the users

goals is the basis of our user interface design then the user

will be satisfied and happy If the user is happy he will

gladly pay us money and then we will be successful

Most software isnt designed Rather it emciges from the

development team like zombie emerging from bubbling

vat of Research and Development juice When discipline

is hugging the ragged edge of technology this might be

expected but much of todays software is comprised of

mostly and very little

The little sof.vare that is consciously designed is usually

designed from the point of view of the programmersome

times the marketing department and occasionally from the

users point of view None of these points of view reflect

the users goals The programmer has different set of

imperatives typically centering on technology and pro

gramming methodology The marketing department is

likely focused on what seems to create the loudest hubbub

in the industry And users tend to focus on their everyday

taskscontrary to what you might suspect few users are

consciously aware of their goals

11

0032

12 PART THE GOAL

Software that meiely enables users to perform their tasks wifi rarely be success

ful If the fask is to enter 5000 names and addresses into database

smoothly functioning data-entry program wont satisfy
the user nearly as much

as an automated system that extracts the names from tle invoicing system

While it is the users job to focus on tasks the designers job is to look beyond

the task to identify the users goals Therein lies the key to creating the most

effective software solutions

The well-tempered software designer must be sensitive to and aware of the

users goals amid the pressures and chaos of the software development process

This isnt as hard as you might think as long as you know how but it certainly

isnt formulaic

Keep in mind the old saying If you give man fish you feed him for day

If you teach him how to fish you feed him for life In this book Im going to

teach you how to fish in these waters

We will talk lot about the techniques and tools of interaction but no natter

how far we stray we will always return to the users goals Jhey are the bedrock

upon which all good design is founded

So what are the users goals How can we identify them How do we know that

they are real Are they the same for all users Do they change over time

The users goals

The users goals are often very different from what we might guess them to be

For example we might think that an accounting clerks goal is to process

invoices efficiently This is probably not true Efficient invoice processing is

more likely the goal of the company or the clerks boss The clerk more

likely concentrating on goalslike

Not looking stupid

Not making any big mistakØ

Getting an adequate

Having fun or at least not being t7 bored

If you think about it those are pretty common goals Regardless of the work

we do and the tasks we must accomplish most of us share those very basic

0033

CHAPTER GOAL-DIRECTED DESIGN 13

simple goals Even if you have much higher aspirations they are still more per

sonal than work-related

Be the best at what do

Get onto the fast track and wbigpromotion

Learn all there is to knoI1Ied
Be paragon of ethics modesty and trust

Even for the sociopath goals dont diverge from the focus on the individual

Learn the bosss password

Embezzle million dollars

Hide my perfidy

Discover the original recipe
for bcCola

However many of the books on user interface that Ive read assume that the

users goals have something to do with the programs business purpose

Software designed to achieve purely business goals will fail but if it is designed

with the personal goals of the user in mind it will also achieve its business

goals Of course the program must satisfy the business problem at hand but

the people who use it cannot and will not behave like invoices database records

or modules of code

If you examine most conimercially available oftware today you will find user

interfaces that are particularly adept at several things

Making the ruse look std

Causing the user to make big tnistakes

MC

Slowing the user so he doesnt gf.iiadequate amount of work done

Preventing fun and boring the us

Most of that same software is equally bad at achieving its business purposes

Invoices dont get processed all that well Customers dont get serviced on

time Decisions dont get properly supported see connection here

0034

14 PART THE GOAL

This is sad and preventable situation but not surprising one because the

authors of these packages are focusing on the wrong things Most of us pay far

too much attention to the technology used to implement computer solutions

which distracts us from the user When we do focus on the user We pay too

much attention to the tasks that users engage in and not enough attention to

their goals Software can be technologically superb and perform each business

task with diligence yet still be critical and commercial failure To create suc

cessful effective software we must see that it achieves the users goals We cant

ignore technology or tasks but these elements are like salt on meal they make

it palatable but they dont nourish all by themselves

Let me give you some examples of the results of focusing on technology and

tasks instead of on the user and his goals

öftW tha fiid

Software is often rude to the user It blames the user for making that

are not the users fault or should not be Error message boxes like the one in

Figure 1-1 pop up like weeds announcing that the user has performed yet

another dunderheaded stunt The mcssges then all dcmand that the user

acknowledge their failure by saying OK

Iiii 1tI

edoijPiyIibrary

Figure 1-1

Thank you so much for sharing that pithy observation with us Why didnt you notify the

library What did you want to notify it about Why are you telling me What do care

Maybe youd like to comment on what Im wearing too And besides what am

OKing It is not OK with me that this failure occurred

Software too frequently assumes that its user is computer-literate For example

when user is finished editing document he closes it and the program asks

0035

CHAPTER GoAL-DIRECTED DESIGN 15

if he wants to save it The technology behind this issue is not trivialit has to

do with the ability of the CPU to directly address information stored on rotat

ing memorybut how is the novice user to know that

Software frequently interrogates the user peppering him with string of terse

questions that he is neither inclined nor prepared to answer Where did you

hide that file What interrupt request line is free

It is difficult for the user to concentrate on the task at hand when bombarded

by tangential interruptions that require acknowledgment by managing dialog

boxes that forget what he did just moments ago or by forcing him to go

through unnecessary steps

Patronizing questions 1ike Are you sure and Did you really want to delete

that file or did you have some other reason for pressing the delete key are

equally irritating

Software that is obscure

Software is frequently obscure hiding meaning intentions and actions from

the user Programs often express themselves in incomprehensible jargon that

cannot be fathomed by normal users How many stop bits and sometimes

even by experts Please specify IRQ.

Features are hidden behind veil of menus and dialogs and windows How can

the user know that the answer lies in the help system if he cant find the help

system Even when the user finds the right dialog he might find it populated

with terse abbreviations Obscure commands and inscrutable icons

More Erequently than you might think sofiware demands that its users answer

tough 4uestlolis before telling them the effects their answers might have For

example how can user possibly decide between full installation custom

installation and laptop installation if he isnt told what each of them means in

terms of functionality as well as disk space

Software with inappropriate behavior

If most 1O-ear-olds behaved like some of these software programs theyd find

3Ethemselves grounded for week Programs forget to shut doors behind theni

selves leave shoes in the middle of the living room floor and cant remember

what you told them only five minutes earlier In rapid sequence save docu

ment print it then try to close it but the program asks me if want to save it

0036

16 PART THE GOAL

first Evidently the act of printing caused the program to think had changed

it Sorry Mom didnt hear you

Programs often require us to step out of the main flow of tasks to pkforrn func

tions that should fall immediately to hand Dangerous instructions though are

right up front where they can be accidentally triggered and frighten unsuspect

ing users

The overall appearance of many programs is an exercise in window pollution

withpopping up all over and making navigation difficult

Another irritant is the settings that programs offer for our confirmation

without allowing us to change the values we disagree with Were forced to

leave the task at hand and fight our way through thickets of dialog boxes and

approvals to get to where we can enter the new values

Lets go back to our earlier list of user goals We can reliably say that we will

make the user look stupid if we let him make big mistakes keep him from

getting an adequate amount of work done or boring him Stating this axiomat

ically

Dont make the

This is In the cours of this

book we will examine numerous ways in
hijh

existing software makes the user

look stupid and explore ways to avoid that trap

The essence of user interface design

The practice of user interface design is not formulaic There is no such thing as

good user interface just as there is no such thing as good furniture

arrangement furniture arrangement can only be judged within the context

of its intended use An aesthetically pleasing arrangement of sofa endtable and

lamp is bad when placed in bathroom By the same token toilet and sink in

the living room would be somewhat uncomfortable and inappropriate

0037

CHAPTER GOAL-DIRECTED DESIGN 17

The only true test of the quality of user interface is in context How will the

software be used Who will use it How frequently For how long How impor

tant are considerations of data integrity Learnability Portability The answers

to these questions vary widely and are not consistent from application to appli

cation The first task of the software designer hasnt much to do with software

it is seeking and finding answers to these and other user-centered questions

The source for determining whether or not feature should be included in

product shouldnt rest solely on the technological underpinnings of that fea

ture The driving force behind the decision should not be that we have the

technical capability to do this The primary factor should always be the goals

of the user

Let me illustrate One of my clients sells an automated call-distribution system

The people who use their product are paid based on how many calls they

handle not by the hour Their most important consideration is not ease of

learning but the efficiency with which calls can be routed to the answerer and

the rapidity with which they can be completed Ease of learning is important

as it affects the happiness and ultimately the turnover rate of employees so

both ease and throughput should be accommodated where possible But there

is no doubt that throughput is the dominant demand placed on the system and

if necessary ease of learning takes the back seat program that walks the user

through step-by-tep will merely frustrate him once hes learnedgthe ropes

We assume that making things easier is the target But if all we waiit is easy wei

could stay in bed all day user interface designer who proclaims Eaeof

earrnhg is the most important consideration is fooling himself This statement

iiay be true but it
1also

the oJqf th us If you

test this phone-call distribution product with dozen first-time users youll

find ways to improve the learnability of the product However if you test the

more-learnable version with dozen experienced users youll find them impa

tient with the intermediate steps You cant create good design by following

rules disconnected from the goals of the user

more concise way to state this is to say good design ma es the user more effe

This takes into account the universal goal of not lookingstupid along

with an particular goals of business throughput or ease of use that are relevant

in this situation

0038

18 PART THE GOAL

kiS
The goal of all software users

is to be more effective

It is up to you as designer to determine how effectiveness manifests itself

in the circumstances If the software is kiosk in corporate lobby helping vis

itors find their way around ease of use for first-time users is clearly the goal If

the software is threat-detection and monitoring display on board an AWACS

radar airplane operated by highly trained soldier ease of use for first-timers is

distant second consideration The design of this is moot if the soldier cannot

clearly and easily distinguish hostile aircraft from sky crowded with com

mercial and friendly aircraft The recent incident in the Mid-East where

controllers aboard an AWACS plane directed jet fighters to shoot down two

friendly helicopters is evidence that their support software failed them and that

some software designer wasnt focusing on the users goal Whatever the soft

ware on board that plane was it wasnt effective

fresh look at features

Most software that we run on our personal computers today is feature-entric

crather than goal-centric wildly successful program like Microsoft Word for

Windows offers me hundreds of functions Im writing this book with it It

offers functions like paragraph formatting field insertion page layout view and

toolbar configuration could easily be considered an expert user of Word and

know how to use each of thesc tools in creating the many different documents

needed in my writing and my business But none of the functions are goal-cen

tered If want to write letter the program comes with template for busi

ness letter but what if want to write personal letter to my Aunt Mary Lee

Rather than canned template Id like to see dialog box like the one in

Figure 1-2

With this dialog box wouldnt have to worry about finding the right template

nor would have to fret over the margins typeface clip art and other aspects

of the letter Id just say what had to say to Aunt Mary Lee and the pr6gram

would take care of the rest would tell the program mygoals and it would tell

each little feature how to behave to achieve them

0039

CHAPTER GOAL-DIRECTED DESIGN 19

mol

aIity

1e er

Figure 1-2

This is goal-directed dialog box It doesnt give me tools it gives me answers get to

select the amount of formality humor and cleverness in the presentation of the letter Im

typing It would govern such things as the typeface its regularity its style and its arrange-

ment on the page It would have an effect on the margins the spacing the colors and addi

tional visual elements like rules and clip art Sure could control each aspect individually

and get the same result but thats what programmers like to do not what users like to do

This example is purposefully overstated but regardless of what all of us

control-freak-programmer-types think about it if someone created letter-

writing-specific word processor with dialog boxes like this one it would be

big success Goal-directed design is compelling to everyone even those who

arent intrigued by technology

To those who are intrigued by the technology which includes most of us pro-

grammer types we share strong tendency to think in terms of functions and

features This is only natural as this is how we build software function by

function The problem is that this isnt how users want to use it Developers are

fi equently it requires us to think in an unfamiliat way

but after the initial strangeness wears off goal-directed design is boonit is

powerful tool for answering the most important questions that crop up dur

ing the design phase

0040

20 PART THE GOAL

What should be the form of the program

How will the user interact with the program

How can the programs functions be most effectively organized

How will the piogram intro4ef to fist-time users

How can the program puandable and controllable face on

technology

How can the piogiam deal with rblems

How will the program help infrequent users become more expert

How can the program provide sufficient depth for expert users

We will answer these questions and more in the remainder of the book

0041

Software Design

WhCfl we think about complex mechanical devices we

take for granted that they have been carefully designed and

engineered Software is usually far more complex than

most mechanical objects but is rarely consciously

designed

Software isnt designed

We are just leaving what is called the mechanical age an

era in which the objects of value are manufactured

We are entering an era called the information age in

which the objects of value are merely digital representa

tions of things movies music databases and programs

Most manufactured objects are quite simple and even the

more complex manufactured products are immensely sim

pler than most digital objects particularly programs

first-release software program might contain 40000

lines of code not including the millions of lines of sup

porting code in the third-party libraries and operating sys

tern needed to run it typical shrink-wrapped business

application program say Microsoft Excel running on

typical desktop computer has considerably more than

21

0042

22 PART THE GOAL

1000000 lines of code including many thousands of variables conditions and

comparisonsthe software equivalent of moving parts Compare this to

mechanical artifact of almost overwhelming complexity like the Navys swing-

wing supersonic F-14 fighter jet That jet probably has about 10000 parts

and only about 1000 of them might be moving parts

Most artifacts of the mechanical age are designed by professionals Our cars are

designed by trained professional automobile designers not by mechanical

engineers Our houses are designed by professionally trained and certified

building designersarchitectsnot by structural engineers Our toys and

clothes and bookcases are designed by toy designers clothes designers and

industrial designers

The process of determining what software will do and how it will communicate

with the user is closely intertwined with its construction Most software is built

like crazy Mrs Winchesters house who thought that shed die if she ever

stopped building Rooms and stairs and cupboards and walls are added in manic

confusion as the need and opportunity presents itself during construction

Programmers deep in their thoughts of algorithms and coding arcana design

user interfaces the way miners design the landscape with their cavernous pits

and enormous tailing piles The software design process alternates between the

accidental and the non-existent

As we move deeper into the information age the overwhelming majority of

manufactured artifacts will be software Since our future will be dominated

by vast amounts of software the idea that it isnt consciously and conscien

tiously designed by trained professionals generates some justifiable unease

Software creators have been policing their own profession since programming

began Some of us have been warning of the inevitability of the regulation of

our industry Possibly because of the libertarian leanings of many in the pro

gramming community these warnings are widely ignored Unfortunately the

consumer market wont tolerate this lack of order for very long

The Intel Pentium bug scandal of 1995 made headlines and became rich fod

der for talk-show monologues The fact that there were equally serious bugs in

the 286 386 and 486 processors lulled Intel into false sense of security The

difference was that the Pentium was the first CPU widely advertised on prime

time TV Intel failed to realize that when you sell directly to consumers they

apply their own standards which are often enormously different from those of

0043

CHAPTER SoFTWARE DESIGN 23

industry insiders The family of programmers will forgive minor bugs in CPU

chip because they know how complex it is and understand what the potential

impact of the bug will be The consumer doesnt care He expects perfection

and in todays litigious consumer-advocate climate will get it

Another story in the news lately tells of parents who purchased CD-ROM-

equipped computers for their families only to learn firsthand of the

nightmarish difficulties getting them to work as advertised Assembling bi

cycles on Christmas Eve was cakewalk compared to getting The Lion King

CD-ROM to work

This state of affairs cannot continue for long Either the software industry will

regulate itself like doctors and architects do or the government will regulate it

like hairdressers and taxi-drivers The choice is in the industrys hands

Gonflict of interest

There is conflict of interest in the world of software development because the

people who build it are also the people who design it If carpenters designed

houses they would certainly be easier or more interesting to build but not

necessarily better to live in The architect besides being trained in the art of

what works and what doesnt is an advocate for the client for the user

equivalent role in the world of software has not fully developed yet although

several groups are eyeing it jealously

Many software tools are available to describe software but almost all of them

double as programming tools There is real danger in using programming

tools as design tools Programming has life of its own and once something

has been set into code even if its just hack code in prototyping tool it tends

to exhibit powerful inertia Any code even prototype code tends to never be

thrown away Its as though the scaffolding is so labor-intensive that the urge

to incorporate it into the finished house is irresistible If designers give coding

tools wide berthincluding prototyping toolsthey will avoid the conflict

of interest between the practices of design and development

All of the designers at my company work on paper with pencil We also use

computers but only word processors and drawing programs Prototyping is

useful for design verification but we are very wary of mixing the design process

with the prototyping process

0044

24 PART THE GOAL

The profession of software design

Thankfully there is growing awareness of this conflict in the software indus

try More and more developers are thinking about design and viewing it as

separate discipline from programming Many observers of digital technology

sense the increasing pervasiveness-of software in every aspect of our lives They

are also beginning to see the need for professional software designers and this

trend is very encouraging

There is some confusion over the correct terminology to refer to those who

design software The term software architect is good one and it benefits

from the fairly accurate analogy with building architects However that term

has long been appropriated by the software engineers who build system inter

nals The term software designer is the one and many others have settled

on including the Association of Software Design Unfortunately this term

also is losing some of its value because it is widely used as boutique term fdr

senior
programmer%

define as that portion of the developient process that is

responsible for determining how the program will acieve the users goals The

questions answered by this phase include

What the software program will do

What it will look like

How it will communicate with the user

is subset of software design that encompasses items

and although it is often difficult to separate them from item This book

focuses on user interface design so it emphasizes interactive visual communi

cations more than application problem solving

Supporting software design disciplines

Members of another rapidly growing group call themselves usability profes

sionals These people do not necessarily come from the ranks of programmers

Rather they specialize in the study of how people interact with software They

primarily conduct interviews and focus groups with users observe them using

software and then evaluate the quality of user interfaces and make recommen

dations Their efforts are great help in both weeding out bad user interfaces

0045

CHAPTER SOFTWARE DESIGN 25

and in raising the awarenessinside and outside the industryof the crisis in

software design

Another discipline called variously human factors engineering human-

computer interaction or ergonomics researches the behavior of people as

they interact with computers and other technological artifacts It provides

significant insight into the nuances of how we relate to our technical devices

Another growing academic specialty is cognitive psychology popularized at the

University of California San Diego by Donald Norman This discipline looks

at how people think and understand the world around them particularly the

technical artifacts they work with

0046

The Three Models

eople in the computer industry frequently toss around

the term computer literacy They talk about how some

people have it and some dont about how those who have

it will succeed in the information age and those who lack it

will fall between the social and economic cracks of the new

age But computer literacy is nothing more than

euphemism for making the user stretch to reach an infor-

mation age appliance rather than having the appliance

stretch to meet the user

The manifest model

Any given machine has method for accomplishing its pur

pose motion picture projector for example uses com

plicated sequence of intricately moving parts to create its

illusion It shines very bright light through translucent

miniature image for fraction of second It then blocks

out the light for split second while it moves another

miniature image into place Then it unbiocks the light again

for another moment It repeats this process with new

image twenr-four times per second The actual method of

how device works is what call its implementation

model

27

0047

28 PART THE GOAL

From the movie-goers point of view it is easy to forget the nuance of

sprocket holes and light-interrupters while watching an absorbing drama The

viewer imagines that the projector merely throws onto the big screen pic

ture that moves This is what is called the users oi sometimes

his 131ifel

People dont need to know all of the details of how some complex process actu

ally works in order to use it so they create mental shorthand for explaining

it one that is powerful enough to cover all instances but that is simple and

easy For example many people imagine that when they plug their vacuums and

blenders into outlets in the wall electricity travels up to them through little

black tubes This mental model is perfectly adequate for using all household

appliances The fact that the implementation model of household electricity

involves nothing actually travelling up the cord or that there is reversal of

electrical potential 120 times per second is irrelevant to the user although the

power company needs to know these details

In the digital world however the differences between users mental model

and an actual implementation model may be stretched far apart We ignore

the fact that cellular telephone might swap connections between dozen

different cell antennas in the course of two-minute phone call Knowing this

doesnt help us to understand how to work our car phones This is particularly

true for computer software where the complexity of implementation can make

it nearly impossible for the user to see the connections between his action and

the programs reaction When we use the computer to digitally edit sound or

display video effects like morphing we are bereft of analogy to the mechanical

world so our mental models are necessarily different from the implementation

model Even if the connections were visible they would remain inscrutable

Computer software has behavioral face it shows to the world one made up by

the programmer or designer This posture is not necessarily an honest repre

sentation of what is really going on inside the computer although it frequently

is This ability to represent the computers functioning independent of its

true actions is far more pronounced in software than in any other medium It

allows clever designer to hide some of the more unsavory facts of how the

software is really getting the job done This disconnection between what is real

and what is offered as explanation gives rise to third model in the digital

fworld which call the It is the way the program represents

bits functioning to the user

0048

CHAPTER THE THREE MODELS 29

In the world of software programs manifest model can be quite divergent

from the actual processing structure of the program For example an operat

ing system can make network file server look as though it were local disk

The fact that the physical disk drive may be miles away is not made manifest by

the model This concept of the manifest model has no widespread counterpart

in the mechanical world The relationship between the three models is shown

in Figure 3-1

Implementation
Worse Belier Mentol Model

Model reflects
Closer to Implementation

Closer to Mentol
reflects users

technology Model Model
ViSOfl

Manifest Models

Figure 3-1

The way the engineer must build the program is usually given We call this the imple

mentation model The way the user perceives the program is usually beyond our control

He will conjure up likely image that we call the mental model The way the designer

chooses to render the program we call the manifest model this is the one aspect
of the

program that we can change significantly If we use logic and reason to make the manifest

model follow realitythe implementation modelshown on the left we will create bad

interface On the other hand if we abandon logic and make the manifest model follow

the users imaginationthe mental modelshown on the right we will create good

interface

Although software developers have absolute control over programs manifest

model considerations of efficiency will strongly dictate their choice Designers

on the other hand have considerable leeway in their choice of manifest model

The closer our manifest model comes to the users mental model the easier he

will find the program to use and to understand Generally offering manifest

model that closely follows the implementation model will reduce the users

ability to use and learn the program

0049

30 PART THE GOAL

We tend to form mental models that are simpler than reality so creating mani

fest models that are simpler than the actual implementation model can help the

user achieve better understanding Pressing the brake pedal in your car for

example may conjure mental image of pushing lever that rubs against the

wheels to slow you down The actual mechanism includes hydraulic cylinders

tubing and metal pads that squeeze on perforated disk but we simplify all of

that in our minds creating more effective albeit less accurate mental model

In software we imagine that spreadsheet scrolls new cells into view when

we click on the scrolibar Nothing of the sort actually happens There is no

sheet of cells out there but tightly packed heap of cells with various pointers

between them and the program synthesizes new image from them to display

in real-time

The ability to tailor the manifest model is powerful lever that the software

designer can use positively or negatively If the manifest model takes the trou

ble to closely represent the implementation model the user can get confused

by useless facts Conversely if the manifest model closely follows likely men

tal model it can take much of the complexity out of user interface

When we interact with computer software we tend to create anthropomorphic

mental models My program reads what type in and answers me back

with an appropriate response It doesnt really do anything of the sort but this

mental model is still very effective tool to manage the complexity of system

If the software manifests this same anthropomorphic model it will be easier for

the user to relate to

Even hard-core propeller-heads anthropomorphize computers in order to

better understand them This mental model isnt real but it is analogically

and symbolically valid and very practical Programmers often curse at their

recalcitrant computers even though they know they arent listening We do this

partly because our bodies have mechanical structure Our limbs hands and

fingers are levers so we think of automobile suspension systems as arms or

ankles even though they are much more complex than that

mental model doesnt necessarily have to be true or accurate but it enables

the user to work effectively with the modeled process For example most non

technical computer users imagine that their video screen is the heart of their

computer This is only natural because the screen is what they stare at all the

time and is the place where they see what the computer is doing If you point

out that the computer is actually little chip of silicon in that big steel box

0050

CHAPTER THE THREE MODELS 31

sitting under their desk they will probably shrug and ignore this pointless fac

toid The fact that the CPU isnt actually in the video display doesnt help them

think about how they work with their computer even though it is more tech

nically accurate concept The industry doesnt invest lot of effort in disabus

ing people of this mental model because it so clearly helps and it doesnt seem

to get in anybodys way

Môsoftwarconfo tornppJemeptationi models

interfac are often designed by entheer who know exactly

how the software works the result is software with manifest model very con

sistent with its implementation model This is logical and truthful but not very

effective The user doesnt care all that much about how program is actually

implemented Of course he cares about any problems that arise because of the

difference between the models but the difference itself is of no particular

interest There is real communication gap between technical people who

understand implementation models and non-technical users who think purely

in terms of mental models Any time user telephones software companys

technical support hotline he will probably fall into that gap

Understanding how software actually works will always help someone to use it

but this understanding usually comes at significant cost The manifest model

allows software creators to solve the problem by simplifying the apparent way

the software works The cost is entirely internal and the user never has to

know User interfaces that abandon implementation models to follow mental

models more closely are better

In Adobe PhotoShop the user can adjust the color balance of an illustration

small dialog box instead of offering numeric settingthe implementation

modelshows series of small sample images each with different color

balance The user can click on the image that best represents the desired color

setting Because the user is thinking in terms of colors not in terms of num

bers the dialog more closely follows his mental model

interfaces that conform to

implementation models are bad

0051

32 PART THE GOAL

prime example of user interface conforming to the implementation model

instead of to the users mental model can be found in Delrinas WinFax LITE

product Every step of the process is agonizingly wrought in discrete steps that

the user must laboriously control and none of which are necessary from the

users point of view The interaction with the user is rendered in perfect con

formance with the internal logic of the software Every possible user action is

duly represented by separate dialog box You can see some of this in Figure

3-2 The user is prompted for information when itis convenient for the pro

gram to receive itnot when it is natural for the user to provide it The mani

fest model of the WinFax program closely follows the implementation model

and ignores the users mental model Instead of imagining the steps the user

might take to create and send fax the designer imagined what the program

had to do This is typical of user interface designed by programmers

Recipient

Ia Annette Server

Number 555-1212

Prefix

ETime to send Date to send

08 28 55 07 25 91

-Resolution rEiles

High 200X200 EJ Sae to fiIe _______________________________

OLow100X201J LAttuch

Qover Page Entry added to phonebook

Cover..

Figure 3-2

Delrinas WinFax LITE is great study in aggravating users Even in an application as

simple as this one they cant seem to resist adding complications For most people on this

planet there are only two options selecting an existing number or entering new one
They have to ask for both options explicitly and both options force secondary dialog
Even though you can add new number to the phonebook in place they force com
pletely extraneous dialog box on you just to make sure that any ease-of-use you might be

experiencing is destroyed

0052

CHAPTER THE THREE MODELS 33

When want to send fax it will either be to person whose name havent

yet eiitered into the program or one already have The code that performs

these functions is encased in separate modules inside the program so the pro

gram encases these functions in separate dialog boxes To either select or enter

names have to sidestep the main program even though selecting and enter

ing names is the programs primary function Similar logic in automobile

design would have us manually setting the spark advance lever as we accelerated

and manually flipping the brake light switch when we decelerated

Heres better way to manage the WinFax problem Whenever enter new

fax name and number the program should automatically record it WinFaxs

main window should display list of the names of previous fax recipients allow

ing me to quickly choose one from the list if want

Even Windows 95 misses this point The Explorer attempts to show all of the

storage devices on the computer as unified system but to successfully com

municate that to the user their behavior must also be unified Instead their

behavior depends on the physical nature of the particular storage device If you

drag file between directories on the same hard drive the program interprets

this as MOVE that is the file is removed from the old directory and added to

the new directory closely following the mental model However if you drag

file from hard drive to hard drive the action is interpreted as COPY that

is the file is added to the new directory but not removed from the old

directory This is consistent with the implementation modelthe way the

underlying file system actually works When the operating system moves file

from one directory to another on the same drive it merely relocates the files

entry in the disks table of contents It never actually erases and rewrites the

file But when it moves file to another physical drive it must physically copy

the data onto the new drive To conform to the users mental model it should

then erase the original even though that contradicts the implementation

model Microsofts programmers evidently couldnt bring themselves to mani

fest it in any terms other than the physical ones Actually this behavior can be

desirable especially when copying files from hard drive to floppy drive so

many people arent aware that it is just terrifically inconsistent side effect As

computers mature and logical volumes represent more than just physical

drives the side effects stop being useful and become merely irritating because

you have to memorize the idiosyncratic behavior

0053

34 PART THE GOAL

Mathematical thinking

The interface designer must shield the user from the implementation models

that the software engineer used to solve the internal problems of the software

Just because certain tool is well-suited to attacking problem in software con

struction doesnt necessarily mean that it is well-suited as mental model for

the user In other words just because your house is constructed of two-by-four

studs and sixteen-penny nails it doesnt mean that you should have to be

skilled with hammer to live there

Most of the data structures and algorithms used to represent and manipulate

information in software are logic tools based on mathematical models All

programmers are fluent in these models including such things as recursion

hierarchical data structures and multi-threading The problem arises when the

user interface manifests the concepts of recursion hierarchical data or multi-

threading

Mathematical thinking is an implementation model trap that is particularly easy

for programmers to fall into They solve programming problems by thinking

mathematically so they naturally see these mathematical models as appropriate

terms for inventing user interfaces Nothing could be further from the truth

irIuiiiu
For example one of the most durable and useful tools in the programmers

toolbox is Boolean algebra It is compact mathematical system that

conveniently describes the behavior of the strictly on-or-off universe that exists

inside all digital computers There are only two main operations AND and OR
The problem is that the English language also has an and and an or and

they are usually interpretedby non-programmersas the exact opposite of

the Boolean AND and OR If the program expresses itself with Boolean notation

the user can be expected to misinterpret it

For example this problem crops up frequently when querying databases If

want to extract from file of employees those who live in Arizona along with

those who live in Texas would say in English get employees in Arizona and

Texas To say that properly in Boolean algebraic terms would say get

employees in Arizona OR Texas No employee lives in two states at once so

saying get employees in Arizona AND Texas is nonsensical in Boolean and will

always return the empty set as an answer If you want to extract from that

0054

CHAPTER THE THREE MODELS 35

database all of the employees who started work between January 1st and

February 28th it seems natural to say in English get employees with start

dates of January and February In Boolean you would say get employees

with start dates of January OR February

database query programor any other program for that matterthat inter

acts with the user in Boolean is doomed to suffer severe user interface prob

lems It is unreasonable to expect users to penetrate the confusion They

are well-trained in English so why should they have to express things in an

unfamiliar language thatannoyinglyredefines key words

Bringing mechanical age

models into the information age

We are experiencing an incredible transformation from mechanical age to an

information age The change has only begun and the pace is accelerating rap

idly The upheaval that society underwent as result of industrialization will be

dwarfed by that associated with the information age

It is only natural for us to drag the imagery and taxonomy of the earlier era into

the new one As the history of the Industrial Revolution shows the fruits of

new technology can often only be expressed at first with the language of an ear

lier technology For example we called railroads iron horses automobiles

horseless carriages and radio wireless Unfortunately this imagery and

taxonomy colors our thinking more than we might admit

Importing linguistic or mental images directly from the pre-digital world is an

example of what call

We use old representations in the new environment Sometimes the usage is

valid since the function is identical even if the underpinning technology is dif

ferent For example when we translate the process of typewriting with type

writer into word processing on computer we are doing mechanical-age

modeling of common task Typewriters used little metal tabs to slew the car

riage rapidly over several spaces and come to rest on particular column The

process as natural outgrowth of the technology was called tabbing or set

ting tabs Word processors also have tabs because their function is the same

whether you are working on paper rolled around platen or on images on

video screen you need to rapidly slew to particular margin offset

0055

36 PART THE GOAL

Sometimes however the mechanical-age model cant make the cut into the

digital world We dont use reins to steer our cars or even tiller although

both of these older models were tried in the early days of autos It took many

years to develop an idiom that was unique to and appropriate for the car

When technology changes dramatically we often find that the nature of the

tasks we perform generates what call

These are tasks processes or concepts that arise solely because the new tech

nology makes them possible for the first time With no reason to exist in the

non-digital version they were not conceived of in advance When the tele

phone was first invented for example it was touted solely as business tool Its

use as personal tool wasnt conceived of until it had been in use for 40 years

Today of course the phone is used at least as much for personal reasons as it is

for business When your teenage son spends an hour on the phone it is usage

model that was invisible from the older world

New conceptual models are not exclusive to the digital world they are part of

any rapidly shifting context and technology is our current context Digital

technology is the most rapidly shifting context humankind has witnessed so far

so new and surprising information-age models are and will be plentiful

An interesting thing about information-age models is that we have hard time

seeing them with our mechanical-age mindset Often the real advantages of the

software products we create remain invisible until they have sizable popula

tion of users For example the real advantage of e-mail isnt that its faster mail

but rather the flattening and democratization that it promotes in the modern

business organizationthe information-age advantage The real advantage of

making it possible for everybody to communicate online isnt cheaper and

more-efficient communicationsthe mechanical-age viewpoint Instead it is

the creation of virtual communitiesthe information-age advantage that was

revealed only after it materialized in our grasp

The language we bring to the new environment creates problem because it is

always derived from mechanical-age models Forty years ago the computer was

envisioned as big collating machine and we applied the collation model to it

We saw it as unit-record device for 80-column-wide keypunch cards Today
when computers are ubiquitous personal productivity machines we still find

vestigial indications of that 80-column unit-record world

0056

CHAPTER THE THREE MODELS 37

The taxonomy of the mechanical-age model tends to obscure the recognition

of information-age models The mechanical taxonomy hinders invention and

goal-directed design by focusing our thinking on old-paradigm goals For

example in the non-digital world calendars are made of paper and are usually

divided up into one-month-per-page format This is reasonable compromise

based on the size of paper file folders briefcases and desk drawers

Now that we have desktop computers we frequently see programs with

graphic representations of calendars and they almost always show one month

at time Why Paper calendars showed single month because they were lim

ited by the size of the paper and month was convenient breaking point

Computer screens are not so constrained but they copy the mechanical-age

artifact faithfully On computer the calendar could easily be continuously

scrolling sequence of days weeks or months as shown in Figure 3-4 rather than

series of discrete pages as in Figure 3-3 Scheduling something from April

28th to May 4th would be simple if weeks were contiguous instead of broken

up by the arbitrary monthly division

-1DicI

how Iairn pto ep

223 PM Tuesday April 25 1995

April1995

10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 26 27 28 29

30

Figure 3-3

The ubiquitous calendar is so familiar that we rarely stop to apply our information-age

design sensibilities to it but that old calendar was designed for small pieces of paper not

for computer screens The one shown here is from the Calendar in Windows 3.1 How
would you redesign it What aspects of the calendar are artifacts of its old mechanical-age

platform

0057

38 PART THE GOAL

19 20 21 22 23 24 25

26 27 28 29 30 31

11111111 UI AUII 171 ___

Figure 3-4

Scrolling is an idiom extremely familiar to computer users Why not add scrolling to the

calendar to create better one This perpetual calendar can do everything the old one

can and it also solves the mechanical-age problem of scheduling things across monthly
boundaries Why drag old limitations onto new platforms just out of habit What other

improvements can you think of

Similarly the grid pattern in digital calendars is almost always of fixed size

Why couldnt the width of columns of days or the height of rows of weeks be

adjustable like spreadsheet Certainly youd want to adjust the sizes of your

weekends to reflect their relative importance over your weekdays Likewise

your vacation-week calendar would demand more space than working week

The idioms are as well known as spreadsheetsthat is to say universalbut the

mechanical-age models are so firmly set in our taxonomy that we rarely see soft

ware publishers deviate from the trajectory of the past We have the tools we

just dont have the language

The designer of the software thought of calendars as canonical imageone
that couldnt be altered from the familiar This calendar software often exhibits

interesting new information-age features like the ability to page instantly for

ward and backward months or years at time or to add graphic representations

of holidays to the little day rectangles These same calendars rarely break the

one-month-per-screen archetype though and it is this one thing that really

holds digital calendars back Surprisingly most time-management software

0058

CHAPTER THE THREE MODELS 39

probably handles time internallyits implementation modelas continuum

and only renders it as discrete months in its user interfaceits manifest model

Sometimes people counter that the one-month-per-page calendar is better

because it is familiar and unthreatening to users doubt it Most peoples

mental models dont break time into monthly chunks but rather see it as

continuum of days Nor do people find it difficult to adapt to newer simpler

manifestations of familiar systems We adapted to electric from gas stoves with

out hitch Similarly the transition from manual transmissions to automatics

from AM radio to FM from conventional to microwave ovens and from vinyl

records to compact discs was simple and painless

All of those paper-style
calendars on various personal information managers

PIMs and schedulers are mute testimony to how our taxonomyour lan

guageinfluences our designs If we depend on words from the mechanical

age we will build software from the mechanical age Better software is based

on information-age thinking

Its worse on computer
We encounter another big problem when we bring our familiar mechanical-age

models over to the computer Simply put mechanical-age processes are lot

worse when computerized Procedures are easier by hand than they are with

computers Try to type someones address on an envelope with computer

The only time it gets easier is if you have 500 envelopes to address

Transliterated mechanical models

are always worse on computers

Another example name and address list on computerif it is faithfully ren

dered like little bound bookwill be much more complex inconvenient and

difficult to use than the actual book The name and address book for example

stores names in alphabetical order by last name but what if you want to find

someone by his first name The mechanical-age artifact doesnt help you you

have to scan the pages manually So too does the computerized version it

cant search by first name either The difference is that on the computer screen

you lose many subtle visual cues offered by the paper-based book The

0059

40 PART THE GOAL

scroilbars and dialog boxes are harder to use to visualize and to understand

than flipping pages They are rocks thrown at your feet

Whenever you take mechanical process and put it on computer the user of

that process will suffer The only situation where transliterated processes yield

an advantage is if the sheer quantity of items to be processed is large enough to

justifi doing the task en masse Early data-processing systems did this with

applications like invoicing and billing Most of our desktop computing jobs

dont involve sufficiently large quantities of information for this to remain true

But there is another bigger problem with transliterated mechanical models

The old mechanical method will always have the strengths and weaknesses of

its medium like pen and paper Software has completely different set of

strengths and weaknesses yet when those old models are brought across with

out change they combine the weaknesses of the old with the weaknesses of the

new In our address book example the computer could easily search for an

entry by first name but by storing the names in the same paradigm as the

mechanical artifact we deprive ourselves of new ways of searching We limit

ourselves to not much more than what we could do in the world of paper and

ink but this time we have to do it through dialog boxes and menus

When designers rely on mechanical-age paradigms to guide them they are

blinded to the far greater potential of the computer to do information man

agement tasks in better albeit different way

0060

Visual Interface Design

ThC
commonly accepted wisdom of the post-Macintosh

era is that graphical user interfaces or GIJIs are better than

character-based user interfaces This is generally true State

ment but while there are certainly GUI programs that

dazzle us with their ease of use the vast majority of GUI

programs irritate and annoy us in spite of their graphic

nature Why is this

Visual Software

Its not merely the graphic nature of an interface that makes

it better Using bit-mapped system to render the lines and

characters of character-mode program doesnt change the

essential nature of the program Its very easy to create

program with graphical user interface that has the

same extreme difficulty-of-use as CP/M DOS or UNIX

application

ualities that make user interface good are user-centric

technolo-centric Graphicalness is technology

en concept There are two really important user-centric

qualities the visualness of the software and the programs

vocabulary

41

0061

42 PART THE GOAL

Most humans process information better visually than they do textually Sure

we learn by reading but we learn much more much faster by seeing things

whole and in context In order to realize the advantages of the technology the

interaction with the user must become visual The issue isnt the graphic nature

of the program its the visualness of the interaction Instead of GUI its

visual user interfacea VUIthat we are looking for Software that recognizes

this is called When done well VUI has feelmg of

fluency of moving along smoothly and effortlessly towards the users goals

without hitching or stopping on confusing little problems of comprehension

Visual processing

The human brain is superb pattern-processing computer It uses this strength

to make sense of the dense quantities of visual information we are bombarded

with from the moment we open our eyes in the morning The acuity of the

human eye is tremendous and if our brain couldnt impose some management

system on what our eyes report we would collapse from overload Look out the

window See the trees the water the waves the clouds the people the win

dows the people in the windows the guy carrying the box the name printed

on the box the letters in the name.. If we had difficult time with visual com

plexity the sheer quantity of visual information we take in when we look out

the window would put us in state of shock But we clearly arent bothered by

this visual complexity When we look out the window our eyes encompass

huge scene filled with constantly changing terabytes of complex information

Our brain manages the input by unconsciously discerning patterns and by

using these patterns to manage what we are looking at Our brains establish

system of priorities for the things we see that allow us to consciously analyze

the visual input

Text when viewed from distance forms recognizable pattern and shape that

our brains categorize This is different act from reading where we scan the indi

vidual words and interpret them Even then we use pattern-matching more than

we actually sound out each syllable
the way we did as children Each word has

recognizable shape and this is why WORDS TYPED IN ALL CAPITAL LET

TERS ARE HARDER TO READ than upper/lower caseour familiar pattern-

matching hints are absent in all capitals so we must pay much closer attention to

decipher what is written This same pattern-processing talent explains why body

text in books is always in relatively standard serif typeface like the one you are

looking at now Iowever if
tkis lrook were prikttect tsitg gtg serif fo4 or fott

wftt

tLsciI Vroj2ortiots yo wohd fitci it vLot sfrc4 OVL tke eyes tt strc4t ovL tke

0062

CHAPTER VISUAL INTERFACE DESIGN 43

When we look at the complex scene out the window our brain gathers big

chunks of the view into manageable piecesbuilding street ocean skyand

lets our conscious processes grapple with higher-level issues

If for example we find ourselves taking second look at one person in the

crowd on the street below it is because our subconscious pattern-matching

equipment got hit We next study the persons face searching for details in

order to make positive identification We go through the identical process

when we read documents Our unconscious mind is constantly reducing visual

input to patterns and our conscious mind is constantly ordering those patterns

into hierarchies When our eye-brain-pattern system reports an envelope our

brain-hierarchy system isolates it and examines it for our name The pattern sys

tem detects the envelope pattern then the conscious system disambiguates that

pattern into either letter for us or letter for someone else

..ru Visually show what

Textually show which

If our unconscious mind could not classifi the pattern as an envelope we would

have to get our conscious mind involved in the preliminary processing It is

much faster when our unconscious mind provides the first cut because pattern-

matching is so much faster and more efficient than having to think about it

Visual patterns

If our conscious mind had to grapple with every detail of what our eyes saw we

would be overwhelmed with meaningless detail The ability of our unconscious

mind to group things into patterns based on visual cues is what allows us to

process visual information so quickly and efficiently Understanding and apply

ing this model of how the human mind processes visual information is one of

the key elements of visual interface design The philosophy is to present the

programs components on the screen as recognizable visual patterns with

accompanying text as descriptive supplement The user can choose on

purely pattern-matching unconscious level which objects to consider

consciously The accompanying text only comes into play once the user has

decided its important

0063

44 PART THE GOAL

You build an effective visual interface from visual patterns Notice that did not

say pictures or images or icons Representational images are useful but patterns

are the engine of unconscious recognition For the user to discern particular

icon from screenful of similar but different icons is just as difficult as dis

cerning particular word from screenful of similar but different words Icons

that must be consciously recognized or deciphered are no betterand possibly

much worsethan plain text

visual interface is based

on visual patterns

The pecking order of visual understanding always regards visual pattern-

matching as superior to verbal or pictographic reading Pattern-matching is

unconscious and reading is conscious Our visual user interface must create

readily recognizable patterns It will certainly include text but only in sec

ondary role of distinguishing between objects with similar patterns

We create patterns in very simple ways Possibly the simplest is by creating

recognizable graphic symbols and giving them value by association As you

drive down the highway you read all of the signs you see After while you

begin to notice pattern Every time the highway you are on is identified its

number is accompanied or even enclosed by the symbol You probably

dont pay much attention to this trivial detail and why should you You are

usually well aware of what highway you are on Your unconscious mind filters

out the signs Then one day you are on an unfamiliar highway and you want

to know exactly which one you are oii Your conscious mind wants to know

this so your unconscious mind alerts you to the presence of each it sees

Your conscious mind then reads the numbers on the sign to separate it from all

of the other Os you have seen The is not representational It is not

metaphoric It is idiomatic you learn the shape from the context in which it is

used and from then on it represents its context

This is exactly what you do with visual interface design You create symbols for

the objects in the interface If the program you are creating manages restaurant

0064

CHAPTER VISUAL INTERFACE DESIGN 45

for example you will find that tables checks orders specials and waitpersons

are the fundamental elementsthe building blockswith which you must

create the interface In other words these are the objects that the users will

manipulate to achieve their goals What you need to do is create recognizable

visual symbol for each of these primary types

Tables

Checks

Orders

Specials

Waitpersons

The symbols dont have to be representational but it doesnt hurt If you do

choose representational image dont kid yourself about its value as teach

ing tool On the other hand dont ignore the value of mnemonics Each user

can form his own mental cues to help him remember what the symbols repre

sent factories and tables both produce value ducks and waitpersons both fly

from place to place

In order to drive home the connection between symbol and object you must

use the symbol everywhere the object is represented on the screen Whether the

object is an item in listbox an entire dialog box mention in text or gizmo

on the toolbar it must be accompanied by the visual symbol You dont have

to spell this out to the user you are teaching it to his unconscious mind and

its presence alone over time is sufficient to do that call this

If you have list of waitpersons prefix each one with the symbol as in

Figure 4-1

The power of this technique is even greater
if you have listbox filled with

heterogeneous objects Imagine similar listbox filled with both tables and

orders as shown in Figure 4-2

Our minds differentiate each lineeach objectby its visual symbol and once

we have identified the type we are interested in we read the text to separate it

from its siblings We dont have to read about objects we are not interested

in This type of processing is very natural to humans and we can perform it

rapidly and with little effort

0065

46 PART THE GOAL

Jennifer

Wally

RaouI

Sally

Quenlin

Randy

Margarita

Figure 4-1

This listbox is filled with several objects of one type You can see that unconsciously

because your mind discerns the identical symbols associated with each entry It will proba
bly take some additional reading to disambiguate which object is which but without the

symbols wed have to read them all just to know what they are and that they are all the

same type Symbols should always be associated with text in visual user interfaces

31

II
31 lipI

II38
41
42 hi

42 III

46

Figure 4-2

This listbox is filled with objects of two different types Without the symbols to differen

tiate between tables and orders it would be impossible to make sense of the list We would
have to label each entry with text Table 31 Order 31 and so on The symbols are

much faster letting our unconscious minds recognize the patterns before our relatively

slow conscious minds even have to pay attention

0066

CHAPTER VISUAL INTERFACE DESIGN 47

Restricting the vocabulary

When graphical user interfaces were first invented they were so clearly

superior that many observers credited their success to their graphics This was

natural reaction but it was only part of the story One of the most important

reasons why those first GUTs were better was that they were the first user inter

faces to restrict the range of their vocabulary for communicating with the user

In particular the input they could accept from the user went from virtually

unrestricted command line to tightly restricted set of mouse-based actions In

command line interface the user can enter any combination of characters in

the languagea virtually infinite number In order for the users entry to be

correct he needs to know exactly what the program expects He must remem

ber the letters and symbols with exacting precision The sequence can be

important The capitalization can be vital

In the GUI the user can point to images or words on the screen with the

mouse cursor Using the buttons on the mouse the user can click double-click

or click-and-drag That is it The keyboard is used for data entry not for com

mand entry or navigation Instead of 26 letters 10 digits and couple of dozen

other keys available in an infinite number of combinations in the command line

interface the user has just three basic actions to choose from The number of

atomic elements in the users input vocabulary dropped from millions to just

three even though the range of tasks that could be performed by GUI pro

grams wasnt restricied any more than that of command-line systems

The more atomic elements there are in communications vocabulary the more

time-consuming and difficult the learning process is Vocabularies like the

English language take at least ten years to learn thoroughly and its complexity

requires constant use to maintain fluency Of course English is fantastically

expressive language and in the hands of an artist can be most compelling

medium Our users arent artists though and they shouldnt have to invest

that much effort in becoming effective with our software Merely restricting

the number of elements in the vocabulary reduces the expressiveness of it so

that alone is not the solution The answer lies in the way we build our vocabu

lariessome parts are restricted in size while others can be huge

properly formed vocabulary is shaped like an inverted pyramid All easy-to-

learn communications systems obey this pattern It is so fundamental that call

it the IIIIEZiL You can see picture of it in Figure 4-3

0067

48 PART THE GOAL

The Canonical Vocabulary

Idioms

Delete Create
Application specific

commands and feedback
Scrollin1 Sorting

Draw Dialogs

Compounds

Double Click S\ Generic input and output Edit fields Checkhoxes

Buttonclick
actions and symbols Highlighting

Selechon ______________/

/////

lick Drag 11i
and

fedack Cursor

Keypress Text

Input Oulput

Figure 4-3

The main reason GU1s are so much easier to use is that they were the first platform to

enforce canonical vocabulary It has very little to do with graphics All vocabularies

follow this archetypal form

At the lowest level is set of primitives from which all else is constructed Generally the

set of primitives shouldnt exceed four elements The middle layer consists of more com
plex constructs built from combinations of the primitives The upper-level idioms are

compounds with the addition of domain knowledge

The bottom segment contains what call the the atomic elements

of which everything in the language is comprised

Paraphrasing Albert Einstein this set should be as small as possible but no

smaller In GUI it consists of pointing clicking and dragging set of

primitives of two to four items is about right More than that leads to trouble

The middle trapezoid contains what call the

These are more complex constructs created by combining one or more of the

primitives Nothing else is added they are built exclusively from elements below

them in the pyramid In GUI it contains such actions as double-clicking

click-and-dragging and manipulable objects like push-buttons and checkboxes

0068

CHAPTER VISUAL INTERFACE DESIGN 49

The uppermost layer of the pyramid contains what call the idioni Idioms

combine compounds with knowledge of the problem under consideration

known as domain knowledge Domain knowledge is information related to

the users application area and not specifically to the computerized solution

The set of idioms opens the vocabulary to information about the particular

problem the program is trying to address In GUI it would include things

like OK buttons caption bars listboxes and file icons

Any language that does not follow the canonical form will be very hard to learn

Many effective communications systems outside of the computer world follow

canonical vocabularies Street signs follow simple pattern of shapes and

colors Yellow triangles are cautionary red octagons are imperatives and green

rectangles are informative

Our telephone system has tiny set of primitives consisting of simple audio

tones Hearing buzza dial tonemeans the system is available When the

buzz alternates with silence it means the number is busy warble means the

phone is ringing Silence means we have failed to enter valid numbers or there

is some other problem and we should try again

Designing for users

Successful user interfaces are those that focus on the users goals even if they

have to ignore the technology of the implementation Professional software

designers are the primary group today acting as advocates for the user

To create effective visual interfaces designers must create interaction from

canonically formed vocabulary that is expressed visually This vocabulary fol

lows the users mental model even if it diverges from the physically correct

model As Frederick Brooks says The sits at the focus of forces

which he must ultimately resolve in the users interest

0069

Part II The Form
The March of Paradigms

User interface design begins well-below the sur

face of our systems and applications Imagining

t-hat we can create good user interface for our

programs after the programs internals have been

constructed is like saying that good coat of

paint will turn cave into mansion Software

designers must fully understand why our comput

ers work the way they do They must make

informed judgments about what to keep because

its good and what to discard even though it is

familiar But getting intimate with the tech

niques of software development is seduction that

designers must resist It is all too easy to become

sympathetic to the needs of the computer which

are almost always in direct opposition to the needs

of the user

0070

Idioms and Affordances

There
is nothing in the world of software development

that is quite as frightening as an empty screen When we

begin designing the user interface we must first confront

that awful whiteness and ask ourselves What does good

software look like

The Myth of Metaphor
Software designers often speak of finding the right

metaphor upon which to base their interface design ihey

imagine that filling their interface with images of familiar

objects from the real world will give their users pipeline

to easy learning So they create an interface masquerading

as an office filled with desks file cabinets telephones and

address books or as pad of paper or street of buildings

And if you too search for that magic metaphor you will

be in august company sonic of the best and brightest

designers in the interface \vorld put metaphor selection as

one of their first and most important tasks

Searching for that magic metaphor is one of the biggest

mistakes you can make in user interface design Searching

for an elusive guiding metaphor is like searching for the

53

0071

54 PART II THE FORM

correct steam engine to power your airplane or searching for good dinosaur

on which to ride to work

Basing user interface design on metaphor is not only unhelpful it can often

be quite harmful The idea that good user interface design relies on metaphors

is one of the most insidious of the many myths that permeate the software com

munity

Metaphors offer tiny boost in learnability to first-time users but at tremen

dous cost By representing old technologies most metaphors firmly nail our

conceptual feet to the ground forever limiting the power of our software They

have host of other problems as well including the simple facts that there

arent enough metaphors to go around they dont scale well and the ability
of

users to recognize them is questionable

The three interface paradigms

There are three dominant paradigms in the design of user interfaces call these

thiee the the and the

The technology paradigm is based on understanding how things

worka difficult proposition The metaphor paradigm is based on intuiting

how things worka risky method The idiomatic paradigm however is based

on learning how to accomplish thingsa natural human process

The field of user interface design has progressed from an orientation focused

on technology into one that focuses overmuch on metaphor We are just now

becoming aware of idiomatic design There is ample evidence of all three para

digms in contemporary software design even though the metaphor paradigm

is the only one that has been named and described We pay metaphors lots of

lip service and all too often hamper the creation of really good interfaces by

following their false trail

The technology paradigm

The of user interface design is simple and incredibly

widespread in the computer industry The technology paradigm merely means

that the interface is expressed in terms of its constructionof how it was built

In order to successfully use it the user must understand how the software

works Following the technology paradigm means user interface design based

exclusively on the implementation model

0072

CHAPTER IDIOMS AND AFF0RDANCES 55

There was genre of building architecture popular in the 1960s called

Metabolist In Metabolist architecture the elevator shafts air conditioning

ducts cable runs steel beams and other construction impedimenta are left

uncovered and visible The muscles bones and sinews of the building are

exposedeven emphasizedwithout any hint of modesty The idea was that

the building is machine for living and its form should follow its implementa

tion details The overwhelming majority of software programs today are

Metabolist in that they show us without any hint of shame precisely how they

are built There is one button per function one function per module of code

and the commands and processes precisely echo the internal data structures and

algorithms

We can see how technology program ticks merely by learning how to run it

The problem is that the reverse is also true We must learn how it ticks in order

to run it

Users would rather be successful

than knowledgeable

Engineers want to know how things work so the technology paradigm is very

satisfying to them which of course is why so much of our software follows it

Engineers prefer to see the gears
and levers and valves because it helps them

understand what is going on inside the machine That those artifacts needlessly

complicate the interface seems small price to pay Engineers may want to

understand the inner workings but most users dont have either the time or

desire Theyd much rather be successful than be knowledgeable state that is

often hard for engineers to understand

The metaphor paradigm

In the 1970s the modern graphical user interface was invented at Xerox Palo

Alto Research Center PARC It has swept the industry but what exactly is

it The GUIas defined by PARCconsisted of many things windows but

tons mice icons metaphors pull-down menus Some of these things are good

and some are not so good but they have all achieved kind of holy stature in

the industry by association with the empirical superiority of the ensemble

0073

56 PART II THE FORM

In particular the idea that metaphors are firm foundation for user interface

design is very misleading proposition Its like worshipping 5.25 floppy

diskettes because so much good software once came on them

The first commercially successful implementation of the PARC GUI was the

Apple Macintosh with its desktop wastebasket overlapping sheets of paper

and file folders The Mac didnt succeed because of these metaphors however

but because it was the first computer that defined tightly restricted vocabu

larya canonical vocabulary based on very small set of mouse actionsfor

communicating with users It also offered richer visual interaction The

metaphors were just nice paintings on the walls of well-designed house

Metaphors dont scale very well metaphor that works well for simple

process in simple program will often fail to work well as that process grows in

size or complexity File icons were good idea when computers had floppies or

10 MB hard disks with only couple of hundred files but in these days of multi-

gigabyte hard disks and thousands of files file icons can get pretty clumsy

When we talk about metaphors in the user interface design context we really

mean visual metaphors picture of something used to represent that thing

Users recognize the imagery of the metaphor and by extension can under

stand the purpose of the thing Metaphors range from the tiny images on tool

bar buttons to the entire screen on some programs They can be tiny scissors

on button indicating cut or full-size checkbook in Quicken We under

stand metaphors intuitively Websters defines intuition like this

in.tu.i.tion \in-tu-wi-shen\ quick and ready insight immediate

apprehension or cognition knowledge or conviction gained by intuition

the power or faculty of attaining direct knowledge or cognition without

evident rational thought and inference

The dictionary highlights the magical quality of intuition but it doesnt say how

we intuit something Intuition works by inference where we see connections

between disparate subjects and learn from these similarities while not being dis

tracted by their differences We grasp the meaning of the metaphoric controls

in an interface because we mentally connect them with other processes or

things we have already learned This is an efficient way to take advantage of the

awesome power of the human mind to make inferences something that CPUs

are incapable of But this method also depends on the creaky cantankerous

idiosyncratic human mind which may not have the requisite language

0074

CHAPTER IDIOMS AND AFF0RDANCES 57

knowledge or inferential power necessary to make the connection Metaphors

are not dependable in the way that understanding is Sometimes the magic

works sometimes it doesnt

Metaphors rely on associations perceived in similar ways by both the designer

and the user If the user doesnt have the same cultural background as the

designer it is easy for metaphors to fail Even in the same or similar cultures

there can be significant misunderstandings Does picture of an airplane mean

send via airmail or make airline reservations

The relies on intuitive connections in which there is no

need to understand the mechanics of the software so it is step forward from

the technology paradigm but its power and usefulness has been inflated to

unrealistic proportions

Recall from our definition of intuition that no rational thought is evident in the

process think it is silly to imagine that we can base good user interface design

on kind of mental magic that thumbs its nose at thinking In the computer

industry and particularly in the user interface design community the word

intuitive is often used to mean easy-to-use or easy-to-understand Im big fan

of easy-to-use but it doesnt promote our craft to attribute its success to meta

physics Nor does it help us to devalue the precise meaning of the word There

are very real reasons why people understand certain interfaces and not others

There are certain sounds smells and images that make us respond without any

previous conscious learning When small child encounters an angry dog she

instinctively knows that bared fangs are sign of great danger even without any

previous learning The encoding for such recognition goes deep Instinct is

hard-wired response that involves no conscious thought Intuition is one step

above instinct because although it also requires no conscious thought it is

based on web of knowledge learned consciously

Examples of instinct in human-computer interaction include the way we are

startled and made apprehensive by gross changes in the image on the screen or

react to sudden noises from the computer or the smell of smoke rising from the

CPU

Intuition is middle ground between having consciously learned something

and knowing something instinctively If we have learned that things glowing

red can burn us we tend to classifi all red-glowing things as potentially dan

gerous until proven otherwise We dont necessarily know that the particular

0075

58 PART II THE FORM

red-glowing thing is danger but it gives us safe place to begin our

exploration

What we commonly refer to as intuition is actually mental comparison

between something and the things we have already learned You instantly intuit

how to work wastebasket icon for example because you once learned how

real wastebasket works thereby preparing your mind to make the connection

years later But you didnt intuit how to use the original wastebasket It was

just an extremely easy thing to learn This brings us to the third paradigm

which is based on the fact that the human mind is an incredibly powerful

learning machine and that learning isnt hard for us

The idiomatic paradigm

The idiomatic method of user interface design solves the problems of both of

the previous two call it the because it is based on the

way we learn and use idioms or figures of speech like beat around the bush

or cool

These idiomatic expressions are easily understood but not in the same way

metaphors are There is no bush and nobody is beating anything We under

stand the idiom simply because we have learned it and because it is distinctive

not because we understand it or because it makes subliminal connections in our

minds

This is where the human mind is really outstanding learning and remembering

idioms very easily without relying on comparisons to known situations or an

understanding of how they work This is necessity because many idioms dont

have any metaphoric meaning at all and the stories behind most others were

lost ages ago

Most of the elements of GUI interface are idioms Windows caption bars

close boxes screen-splitters and drop-downs are things we learn idiomatically

rather than intuit metaphorically

We are inclined to think that learning is hard because of our conditioning from

the technology paradigm Those old interfaces were very hard to learn because

you also had to understand how they worked Most of what we know we learn

without understanding things like faces social interactions attitudes the

arrangement of rooms and furniture in our houses and offices We dont

understand why someones face is composed the way it is but we know his

face We recognize it because we have looked at it and automatically and

easily memorized it

0076

CHAPTER IDIOMS AND AFFORDANCES 59

The familiar mouse is not metaphoric of anything but rather is learned

idiomatically There is scene in Star Trek IV where Scotty returns to

twentieth-century Earth and tries to speak into mouse It is one of the few

parts of that movie that is not fiction There is nothing about the physical

appearance of the mouse that indicates its purpose or use nor is it comparable

to anything else in our experience so learning it is not intuitive However

learning to point at things with mouse is incredibly easy Someone probably

spent all of three seconds showing it to you the first time and you mastered it

from that instant on We dont know or care how mice work and yet even small

children can operate them just fine That is idiomatic learning

Not only can you not intuit an idiom neither can you reason it out Our lan

guage is filled with idioms that if you havent been taught them make no

sense If say my Uncle Joe kicked the bucket you know what mean even

though there is no bucket or kicking involved You cant know this because you

have thought through the various permutations of smacking pails
with your

feet You can only learn this from context in something you read or by being

consciously taught it You remember this obscure connection between buckets

kicking and dying only because humans are good at remembering stuff like this

UI1 All idioms must be learned Good

idioms only need to be learned once

The key observation about idioms is that although they must be learned good

ones only need to be learned once It is quite easy to learn idioms like neat

or politically correct or the lights are on but nobodys home or in

pickle or inside the Beltway or take the red-eye or grunge The human

mind is capable of picking up idioms like these from single hearing It is sim

ilarly easy to learn idioms like check-boxes radio buttons push-buttons close

boxes puildown menus icons tabs comboboxes keyboards mice and pens

Branding

Marketing professionals
know this idea of taking simple action or symbol and

imbuing it with meaning After all synthesizing idioms is the essence of prod

uct branding whereby company takes product or company name and

0077

60 PART II THE FORM

imbues it with desired meaning Tylenol is by itself meaningless word an

idiom but the McNeil company has spent millions to make you associate that

word with safe simple trustworthy pain relief Of course idioms are visual

too The golden arches of McDonalds the three diamonds of Mitsubishi the

five interlocking rings of the Olympics even Microsofts flying window are

non-metaphoric idioms that are instantly recognizable and imbued with

common meaning The example of idiomatic branding shown in Figure 5-1

illustrates its power

Ironically many of the familiar GUI elements that are often thought of as

metaphoric are actually idiomatic Artifacts like window close boxes resizable

windows infinitely nested file folders and clicking and dragging are non-

metaphoric operationsthey have no parallel in the real world They derive

their strength only from their easy idiomatic learnability

The showstoppers

If we depend on metaphors to create user interfaces we encounter not only the

minor problems already mentioned but also two more major problems

metaphors are hard to find and they constrict our thinking

Figure 5-1

Here is randomly chosen idiomatic symbol that has been imbued with meaning from use

rather than from any inherent metaphoric value For anyone who grew up in the 50s or

60s this otherwise meaningless symbol has the power to cause small shiver of fear to

touch our backs Idioms are just as powerful as metaphors The power comes from how

we use them and how we associate them rather than from any innate imagery

0078

CHAPTER IDIOMS AND AFFORDANCES 61

It may be easy to discover visual metaphors for physical objects like printers and

documents It can be difficult or impossible to find metaphors for processes

relationships services and transformationsthe most frequent uses of soft

ware It can be extremely daunting to find useful visual metaphor for buying

ticket changing channels purchasing an item finding reference setting

format rotating tool or changing resolution yet these operations are pre

cisely the type of processes we use software to perform most frequently

The most insidious problem with metaphors the real showstopper is that they

tie our interfaces to mechanical age artifacts It is easy to intuit how to use the

clipboard for example because it is metaphor But if we adhere strictly to the

clipboard metaphor the facility is incredibly weak It wont hold more than one

thing it doesnt have memory of what it held before it cant identify where

the images came from it cant show you thumbnails of what it holds and it

doesnt save its contents from run to run All of these actions are non-

metaphoric and have to be learned Following the metaphor gives users

momentary boost the first time they use the clipboard but it costs them

greatly after that in the arbitrary weakness of the facility

Another really outrageous example is MagiCap communications interface

from General Magic It relies on metaphor for every aspect of its interface As

you can see in Figure 5-2 you metaphorically walk down street lined with

buildings representing services You enter building to begin service which

is represented as walk down hallway that is lined with doors representing

functions This heavy reliance on metaphor means that you can intuit the basic

functioning of the software but its downside is that the metaphor restricts all

navigation to very rudimentary linear path You must go back out onto the

street to go to another service This may be normal in the physical world but

there is no reason for it in the world of software Why not abandon this slavish

devotion to metaphor and give the user services they cant get out on the

Street

For all the limitations of metaphors there is nothing bad about using one if it

fits the situation If see twenty-dollar bill lying on the sidewalk of course

Ill pick it up Id be fool not to But Id be bigger fool if decided to make

my living finding misplaced twenty-dollar bills Metaphors are like that use em

if you find em but dont bend your interface to fit some arbitrary metaphoric

standard

0079

62 PART II THE FORM

Downtown Wednesday June 15 1994 IL Hallway

ATT

Directory

EILEE

Figure 5-2

This is the MagiCap interface from General Magic It is the acme of the expression of the

metaphoric paradigm Nothing in the program is done without thorough metaphoric

rationalization am in awe of its designers the program is tour de force of metaphor-

finding above and beyond the call of duty All of the interaction has been subordinated to

the maintenance of these metaphors Im sure it was lot of fun to design Ill bet it is

real pain to use Once you have learned that the substantial-looking building with the big

ATT on its facade is the phone company you must forever live with going in and out

of that building to call people This most-modern information-age software drags all of

the limitations of the mechanical age into the future and forces us to live with them yet

again Is this progress

Never bend your interface

to fit metaphor

On design project for library management system we had to present

screen with multiple parts Some gizmos were common to all of the parts while

others came and went depending on the active part We made part of the screen

look like wire-bound notebook The pages could flip like notebook while

the rest of the screen remained stationary The gizmos on the flipping pages

came and went while the gizmos outside of the notebook stayed still and

worked globally The notebook metaphor drew the users attention to the dif

ference and offered some visual help in understanding the scope of the

controls The metaphor fit naturally into the design of the overall product so

we used it

0080

CHAPTER IDIoMS AND AFF0RDANCES 63

General Magics interface relies on what is called global nietaphor This is

single overarching metaphor that provides framework for all of the

other metaphors in the system The desktop of the original Macintosh is also

considered global metaphor

hidden problem of global metaphors is the mistaken belief that other little

daughter metaphors consistent with them enjoy cognitive benefits by associa

tion The temptation is irresistible to stretch the metaphor beyond simple func

tion recognition That little software telephone also lets you dial with

buttons just like those on our desktop telephones We see software that has

address books of phone numbers just like those in our pockets and purses

Wouldnt it be better to go beyond these confining technologies and deliver

some of the real power of the computer Why cant our communications

software allow multiple connections or make connections by organization or

affiliation or just hide the use of phone numbers altogether

It may seem clever to represent your dial-up service with picture of tele

phone sitting on desk but it actually imprisons you in bad design The orig

inal makers of the telephone would have been ecstatic if they could have

created one that let you call your friends just by pointing to pictures of them

They couldnt because they were restricted by the dreary realities of electrical

circuits and Bakelite moldings On the other hand today we have the luxury of

rendering our communications interfaces in any way we pleaseshowing

pictures of our friends is completely reasonableyet we insist on holding these

concepts back with little pictures of obsolete technology

There are two snares here one for the user and one for the designer Once the

user depends on the metaphor for recognition he expects consistency This

causes the snare for the designer who will now be tempted to render the soft

ware in terms of the mechanical-age metaphor As we saw in Part transliter

ating mechanical processes Onto the computer just makes them worse than they

were before

Brenda Laurel says in her book Computers as Theatre Addison-Wesley 1991

Interface metaphors rumble along like Rube Goldberg machines patched

and wired together every time they break until they are so encrusted with the

artifacts of repair that we can no longer interpret them or recognize their ref

erents It amazes me that software designers who can finally create that

dream-phone interface give us the same old telephone simply because they were

taught that strong global metaphor is prerequisite to good user interface

0081

64 PART II THE FORM

design Of all the misconceptions to emerge from Xerox PARC the global

metaphor myth is the most debilitating and unfortunate

Idiomatic design is the future of user interface design Using this paradigm we

depend on the natural ability
of humans to learn easily and quickly as long as

we dont force them to understand how and why There is an infinity of idioms

waiting to be invented but only limited set of metaphors waiting to be dis

covered Metaphors give first-timers pennys worth of value but cost them

many dollars worth of problems as they continue to use the software It is

always better to design idiomatically only using metaphors when one falls in

our lap

Manual affordances

Donald Norman in The Psychology of Everyday Things Basic Books 1988

has given us the fine term which he defines as the perceived and

actual properties of the thing primarily those fundamental properties that

determine just how the thing could possibly be used

This definition is fine as far as it goes but it omits the key connection how do

we know what those properties offer us If you look at something and under

stand how to use ityou comprehend its affordancesyou must be using some

method for making the mental connection

would alter Normans definition by omitting the phrase and actual By

doing this affordance becomes purely cognitive term referring to what we

think the object can do rather than what it can actually do If push-button is

placed on the wall next to the front door of residence its affordances are

100% doorbell If when we push it it causes trapdoor to open beneath us and

we fall into it it turns out that it wasnt doorbell but that doesnt change its

affordance as one

So how do we know its doorbell Simply because we have learned about

doorbells and door etiquette and push-buttons from our complex and lengthy

socialization and maturation process We have learned about this class of push

able things by exposure to electrical and electronic devices in our environs and

becauseyears agowe stood on doorsteps with our parents learning how to

approach another persons abode

But there is another force at work here too If we see push-button in an

unlikely place like the hood of car we cannot imagine what its purpose is but

0082

CHAPTER IDIOMs AND AFF0RDANCES 65

we can recognize that it is finger-pushable object How do we know this

dont think we know it instinctively because small child wouldnt necessarily

recognize it as such certainly not the way she would recognize claws or fangs

believe that we recognize it as pushable object because of our tool-manip

ulating nature We as species genus actually see things that are finger-

sized placed at finger-height and we automatically push them We see things

that are long and round and we wrap our fingers around them and grasp them

like handles think this is what Norman was getting at with his affordance

For clarity though call this instinctive understanding of how things are

manipulated with our hands When things are clearly

shaped to fit our hands or feet we recognize that they are directly manipulable

and we need no written instructions

In fact Norman makes much of how affordances are much more

compelling than written instructions typical example he uses is door that

must be pushed open with metal bar for handle The bar is just the right

shape height and position to be grasped by the human hand The manual affor

dances of the door scream pull me No matter how often someone uses this

diabolical door he will always attempt to pull it open because the affordances

are strong enough to drown out any number of signs affixed to the door say

ing PUSH
There are only few manual affordances We pull handle-shaped things with

our hands and if they are small we pull them with our fingers We push flat

plates with our hands or fingers If they are on the floor we push them with our

feet We rotate round things using our fingers for small oneslike dialsand

both hands on larger ones like steering wheels Such manual affordances are

the basis for much of our visual user interface design

The popular three-dimensional design of systems like Windows 95 NeXT and

Motif rely on shading and highlighting to make screen images appear to pop

out These images offer manual affordances of button-like images that say

push me to our tool-manipulating natures

Understanding what it means

What is missing from manual affordance is any idea of what the thing really

does We can see that it looks like button but how do we know what it will

accomplish when we press it For that we begin to rely on text and pictures but

most of all we rely on previous learning The manual affordance of the scroll

bar clearly shows that it is manipulable but the only things about it that tell us

0083

66 PART II THE FORM

what it does are the arrows which hint at its directionality In order to know

that scroilbar controls our position in document we have to either be

taught or learn by ourselves through experimentation

In the canonical vocabulary described in Chapter manual affordances have

no meaning in the uppermost tief in idioms This is why gizmos must have

writing on them to make sense If the answer isnt written directly on the

gizmo we can only learn what it does by one of two methods experimentation

or training Either we try it to see what happens or someone who has already

tried it tells us We get no help from our instinct or intuition We can only rely

on the empirical

Fulfilling the contract

In the real world thing does what it can do saw can cut wood because it

is sharp and flat and has handle However in the digital world thing does

what it can do because some programmer imbued it with the power to do

something Our tool-using nature can tell us lot about how saw works

merely by inspection and it cant easily be fooled by what it sees On com

puter screen though we can see raised three-dimensional rectangle that

clearly wants to be pushed like button but this doesnt necessarily mean that

it should be pushed We can be fooled because there is no natural connection

as there is in the real worldbetween what we see on the screen and what lies

behind it In other words we may not know how to work saw and we may

even be frustrated by our inability to manipulate it effectively but we will never

be fooled by it It makes no representations that it doesnt manifestly live up

to On computer screens canards and false impressions are very easy to create

When we render button on the screen we are making contract with the user

that that button will visually change when we push it that it will appear to

depress when the mouse button is clicked over it Further the contract states

that the button will perform some reasonable work that is accurately described

by its legend This may sound obvious but am constantly astonished by the

number of programs see that offer bait-and-switch visual affordances This is

relatively rare for push-buttons but extremely common for text fields

0084

An Irreverent History

of Rectangles on

the Screen

An book on Windovs user interface design must devote

considerable space to windows-with-a-lower-case-w con

sider it necessary to place these omnipresent rectangles in

some historical perspective to keep the reader from imbuing

too much intrinsic value in them

Xerox PARC
Microsofts Windows derives its appearance either from the

Apple Macintosh or from the Alto an experimental desktop

computer system developed in the late 70s at Xerox PARC

This is however distinction without difference since the

Macintosh was derived directly from the Alto

Xerox PARC and the Alto contributed many significant

innovations to the vernacular of desktop computing These

include several things we now regard as commonplace the

mouse the rectangular window the scrolibar the push

button the desktop metaphor object-oriented program

ming pu.lldown menus and Ethernet

PARCs effect on the industry and contemporary computing

was profound Both Ste\re Jobs and Bill Gates chairmen of

67

0085

68 PART II THE FORM

Apple Computer and Microsoft respectively saw the Alto at PARC and were

indelibly impressed

Xerox tried to commercialize the Alto with computer system called Star but

it was expensive complex agonizingly slow and commercial failure The brain

trust at PARC realizing that Xerox had blown an opportunity of

legendary proportions began an exodus that greatly enriched other software

companies particularly Apple and Microsoft

Steve Jobs and his PARC refugees immediately tried to duplicate the Alto/Star

with the Lisa In many ways they succeeded including copying the Stars

failure to deal with reality The Lisa was remarkable accessible exciting too

expensive and frustratingly slow Even though it was decisive commercial fail

ure it ignited the imagination of many people in the small but booming micro

computer industry

Bill Gates was less impressed by the sexy graphicalness of the Alto/Star than

he was by the more systemic advantages of an object-oriented presentation and

communication model Software produced by Microsoft in the early eighties

notably the spreadsheet Multiplan the forerunner of Excel reflected this

thinking

Steve Jobs wasnt deterred by the failure of the Lisa He was convinced that its

lack of success was due to compromises in its design and that PARCs vision of

truly graphical personal computer was an idea whose time had come He

added to his cadre of PARC refugees by raiding Apples various departments for

skilled and energetic individuals then set up skunk works to develop

commercially viable incarnation of the Alto The result was the legendary

Macintosh machine that has had enormous influence on our computing tech

nology design and culture The Mac single-handedly brought an awareness of

design and aesthetics to the industry It not only raised the standards for user-

friendliness but it also enfranchised whole population of skilled individuals

from disparate fields who were previously locked out of computing because of

the industrys self-absorption in techno-trivia

The almost-religious aura surrounding the Macintosh was also associated with

many aspects of the Macs user interface The pull-down menus metaphors

dialog boxes rectangular overlapping windows and other elements all became

part of the mystique Unfortunately because its design has acquired these

heroic proportions its failings have often gone unexamined

0086

CHAPTER AN IRREVERENT HISTORY OF RECTANGLES ON THE SCREEN 69

PARCs Principles

One of the ideas that emerged from PARC was the visual metaphor At PARC

the global visual metaphor was considered critical to the users ability to under

stand the system and thus critical to the success of the product and its concept

In the last chapter wrote at length about the problems of such metaphoric

design

Modes

Another principle associated with the modern GUI is the notion that modes are

bad is state the piogram can entei wheie the effects of users action

changes from the normessentially behavioral detour

For example older programs would demand that you shifted into special state

to enter records then shift into another state to print them out These behav

ioral states are modes and they can be extremely confusing and frustrating

Former PARC staffer and current Chief Scientist at Apple Larry Tesler was an

early advocate of eliminating modes from software and was pictured in an influ

ential magazine wearing T-shirt with the bold legend Dont mode me in

His license plate reads NOMODES In command-line environment modes

are indeed poison However in the object-verb world of GUI they arent

inherently bad Unfortunately the dont-mode-me-in principle has become an

unquestioned part of our design vernacular

Arguably the most influential program on the Macintosh was MacPaint pro

gram with thoroughly modal interface This program enables the user to draw

pixel-by-pixel on the computer screen The user selects one tool from palette

of dozen or so and then draws on the screen with it Each tool is mode

because it restricts the program to behave in one way When tool is selected

the behavior of the program conforms modally to the attributes of that tool

Of course the PARC researchers werent wrong just misunderstood The user

interface benefits of MacPaint compared with contemporary programs were

great but they didnt accrue from its imagined modelessness Rather they

resulted from the ease with which the user could see which mode the program

was in and the effortlessness of changing that mode

Generally modes based on the implementation model are confusing modes

Edit mode versus Print mode is convenient only for the program not the

user But modes based on the users mental model are often harmless The

Spray can mode or the Paint brush mode for example

0087

70 PART II THE FORM

Overlapping Windows

Another Mac fundamental that emerged from PARC and which has metasta

sized in Microsoft Windows is the idea of overlapping rectangular windows

The rectangular theme of modern GUIs is so dominating and omnipresent that

it is somehow seen as vital to the success of visual interaction Actually it is

by-product of the technology of our TV-screen-like video display terminals

They are excellent devices for showing rectangles but much less efficient for

manipulating non-orthogonal shapes Rectangles are an effect rather than

cause of GUI design

Overlapping windows demonstrated clearly that there are other and better

ways to transfer control between concurrently running programs than typing in

obscure commands

Overlapping rectangular windows were intended to represent overlapping

sheets of paper on the users desktop Okay Ill buy that but why The stated

reason is that it makes it easy to see which programs are running and to shift

between them but if this were true Microsoft wouldnt be offering us the

button-lined program-changer tool called the Startbar in Windows 95 The

overlapping window concept is good but its execution is impractical in the real

world The number of pixels on todays video screens is way too small and users

cant afford to waste them Leaving an edge of one applications rectangle

peeking out from behind the active window is an egregious waste of precious

pixels

The overlapping-sheets-of-paper metaphor starts to suffer when you get three

or more applications on the screenit just doesnt scale up well The idiom has

other problems too user who clicks the mouse just one pixel away from

where he thought he was can find his program disappearing to be replaced by

another one User testing at Microsoft has shown that typical user might

launch the same word processor several times in the mistaken belief that he has

somehow lost the program and must start over

Part of the confusion regarding overlapping windows comes from several other

idioms that happen to be implemented using an overlapping window The

familiar dialog box is one as are all menus and tool palettes Such overlapping

within single application is completely natural and well-formed idiom It

even has faint metaphoric trace that of your faithful secretary handing you an

important note

0088

CHAPTER AN IRREVERENT HISTORY OF RECTANGLES ON THE SCREEN 71

We have windows largely because rectangular objects are very easy to draw and

to manage on raster scan devicea video screen We have rectangular win

dows because they are the easiest to program not because they offer cognitive

superiority or information-management leverage

In the grand tradition of focusing on trivial aspect of the new PARC GUI Bill

Gates named his hastily cobbled together response to the Macintoshs success

Windows Ever since then the eponymous rectangle has dominated the

development of our commercial products It has been taken for granted in

many circles that would otherwise be questioning such accidental dominance

Tiling

The first version of Microsoft Windows diverged somewhat from the pattern

established by Xerox and Apple Instead of using overlapping rectangular

windows to represent the overlapping sheets of paper on ones desktop

Windows 1.0 relied on what was called tiling to allow the user to have more

than one application on screen at time Tiling meant that applications would

divide up the available pixels in uniform rectilinear tessellation evenly pars

ing out the available space to running programs suspect that tiling was

invented as an idealistic way to solve the orientation and navigation problems

caused by overlapping windows Navigation with tiled windows is much easier

than with overlapped ones but the cost in pixels is horrendous Tiling died as

mainstream idiom although it can still be found in the most interesting

places try right clicking on the Windows 95 Startbar No doubt tiling will stage

comeback when computer screens grow to six feet square and cost $50

Overlapping windows fail to make it easy to navigate between multiple

running programs so other vendors continue to search for new ways For

example the virtual desktop on the UNIX-based OpenWindows platform

extends the desktop to six times the size of the visible window In the upper left

corner of the screen is small superimposed black-and-white image of all six

desktop spaces all of which can be running different things simultaneously and

each of which can have many open windows You switch between these virtual

desktops by clicking on the one you want to make active

Microsoft braved double-barreled breach-of-contract and patent infringe

ment lawsuit from Apple to add overlapping to Windows 2.0 In all of this con

troversy the basic problem seems to have been forgotten How can the user

easily navigate from one program to another Multiple windows sharing small

0089

72 PART II THE FORM

screenwhether overlapping or tiledis not good solution We are moving

rapidly to world of full-screen programs Each application occupies the entire

screen when it is at bat tool like the Startbar borrows the minimum quan

tity of pixels from the running application to provide visual method of chang

ing the lineup This solution is much more pixel-friendly and the day of the

overlapping main window is waning fast

Much contemporary software design begins with the assumption that the user

interface will consist of series of overlapping windows without modes

informed by global metaphor The PARC legacy is strong one Most of what

we know about modern graphical user interface design came from these ori

gins whether right or wrong But the well-tempered designer will push

the myths aside and approach software design from fresh viewpoint using

history as guide not as dictator

0090

_tic

Windows -with

a-Small-w

Our
programs arc constructed of two kinds of windows

main windows and subordinate windows like documents

and dialog boxes Determining which windows to use for

program is primary step in determining its look and feel If

we expect to create an effective user interface we cannot

simply guess at which windows to use We must choose them

carefully and understand why we make our choices

Unnecessary rooms
If we imagine our program as house we can picture each

window as separate room The house itself is represented

by the programs main window and each room is docu

ment window or dialog box In real life we dont add room

to our house unless it has purpose that cannot be served by

other rooms Similarly we shouldnt add windows to our

program unless they have special purpose that cant or

shouldnt be served by existing windows

Purpose is goal-directed term It implies that using

room is associated with goal but not necessarily with

particular task or function For example you might shake

73

0091

74 PART II THE FORM

someones hand at your front door but it will probably have quite different con

notations or goals than shaking someones hand in the kitchen or bedroom

If held out my hand and asked you to shake you would certainly think it odd

if suddenly jerked it away and said Wait Lets go into this other room to

shake It doesnt matter what roOm we are in since we both understand the

motivations behind the handshake but having to move to another room to do

it is incongruous There can be no good reason for changing rooms just to

shake hands because regardless of where we are the task can be performed just

as well It is especially ridiculous if after shaking in the other room we trudge

back into the first room to continue what were doing

If you think of dialog boxes as rooms you can easily find examples of programs

that change rooms to shake hands The WinFax program you saw back in

Figure 3-2 is one When use the program it is certain that am going to send

fax but it sends me to another room to select previously recorded fax num
ber and to yet another room to record new fax number WinFax LITE is

one-room program but it divides its interface into several unnecessary rooms

dialog box is another room
Have good reason to go there

In most drawing programs for example the depth of drop-shadow is usually

set by selecting menu item that triggers dialog box winder text field or

similar gizmo on the dialog then sets the shadow depth After the setting is

made the program returns to the main screen that contains the drawing This

sequence is so commonplace that it is completely unremarkable and yet it is

undeniably bad design In drawing program changing the image is the pri

mary task The image is in the main window so thats where the tools that

affect it should be also Setting the depth of drop-shadow isnt tangential

task but one quite integral to the drawing process If the drawing were being

done with pencil on paper the artist might bring new tool to bearan

eraserbut he would not shift to different table or sheet of paper just to

change the depth of the drop-shadow The drop-shadow depth could be set

with gizmo right on the toolbar for example orbetter yetthe user could

click on the shadow with the mouse and just drag it to new position

0092

CHAPTER WINDOWS-wITH-A-SMALL-W 75

Putting functions in dialog box emphasizes their separateness from the main

task Putting the drop-shadow adjustment in dialog box works just fine but

it creates an interaction that is stilted and rough Going into an adjacent room

to shake hands works fine too but it is distracting waste of effort

From the programmers point of view changing the drop-shadow is separate

function so it seems natural to treat it like one From the users point of view

however it is an integral function and should be integrated into the main

window

4i iiiiiiiti ri trii iiif--hrtfr1-cd

L-jJ JLJ/ LL\JLjL1 VL1L..4/ VV

This is one of the most frequently violated tips in user interface design Because

the construction of programs is so function-centric the user interface is often

constructed in close parallel Combine this with the incredible ease with which

we can build dialog boxes and the result is one or more dialog box per func

tion Our modern GUI-building tools tend to make dialogs easy to create but

adding gizmos to the surface of document window or creating direct-

manipulation idioms is generally not supported by these handy tools The

developer who wants to create better user interface often must roll-his-own

without much help from the tool vendors

Necessary rooms
When it is time to go swimming youll think it odd if offer you the crowded

living room to change your clothes Decorum and modesty are excellent

reasons for you to want separate room in which to change It is entirely inap

propriate for me not to provide separate room when one is needed

When want to perform function that is out of the normal sequence of events

for particular program that program should provide special place in which

to perform it For example purging database is not normal activity It

involves setting up and using features and facilities that are not part of the nor

mal operation of the database program The more prosaic parts
of the program

will support daily tasks like entering and examining records but erasing records

en masse is not an everyday occurrence The purge facility correctly belongs in

separate dialog box It is entirely appropriate for the program to shunt me

into separate rooma windowto handle that function

0093

76 PART II THE FORM

Using goal-directed thinking we can examine each function to good effect If

the user is using graphics program to develop drawing his goal is to create

an appealing and effective image All of the drawing tools are directly related to

this goal but the various pencils and sprayers and erasers are the most tightly

connected functions These tools should be intimately integrated into the

workspace itself in the same way that the conventional artist will arrange his

pencils pens knives tweezers erasers and other drawing equipment right on

his drawing board close at hand The tools are ready for immediate use with

out having to reach far let alone having to get up and walk into the next room

In the program equivalent drawing tools should be arrayed on the edges of the

drawing space available with single click of the mouse The user shouldnt

have to go to the menu or to dialog boxes to accomplish these tasks The new

Version of Fractal Design Painter arranges artists tools in trays and lets you

move the things that you use frequently to the front of the tray While you can

hide the various trays and palettes if you want they appear as the default and

are part of the main drawing window They can be positioned anywhere on the

window as well And if you create brush that is for example thin charcoal in

particular shade of red that youre going to need again you simply tear it

off the palette and place it wherever you want on your workspacejust like

laying that charcoal in the tray on your easel This tool selection design closely

mimics the way we manipulate tools while working with most software

If the user decides to import piece of clip art the function is still closely

related to the goal of ending up with good drawing but the tools to be used

are different and somewhat unrelated to drawing Clip art is usually held in

directory of pre-recorded art and may include facility for previewing and

selecting the desired piece The clip art directory is clearly not congruent with

the users goal of drawingit is only means to an end The conventional artist

probably does not keep book of clip art right on his drawing board but you

can expect that it is close by probably on bookshelf adjacent to the drawing

board and available without even getting up In the program the clip art facil

ity
should be very easy to access but because it involvesa whole suite of tools

that arent normally needed should be placed in separate facility dialog

box

When the user is done creating the artwork he has now achieved his initial goal

of creating an effective image At this point his goals change His new goal is

to preserve the picture protect it and communicate with it The need for pens

and pencils is over The need for clip art is over Leaving these tools behind now

0094

CHAPTER WINDOWS-WITH-A-SMALL-W 77

is no hardship The conventional artist would now unpin the drawing from his

board take it into the hail and spray it with fixative then roll it up and put it

in mailing tube He purposely leaves behind his drawing toolshe doesnt

want them affected by fixative overspray and doesnt want accidents with paint

or charcoal to mar the finished work Mailing tubes are used infrequently and

are sufficiently unrelated to the drawing process that he stores them in closet

In the software equivalent of this process the user ends the drawing program

puts away his drawing tools finds an appropriate place on the hard disk to store

the image and sends it to someone else via electronic mail These functions are

clearly separated from the drawing process by the goals of the user and are well-

suited to residing in their own dialog box

By examining the users goals we are naturally guided to an appropriate form

for the program Instead of merely putting every function in dialog box we

can see that some functions shouldnt be enclosed in dialog at all others

should be put into dialog that is integral to the main body of the interface

and still other functions should be completely removed from the program

Windows pollution

Some designers take the approach that each dialog box should embody single

function It is unclear to me why they think this What they end up with is what

some call

Achieving many user goals involves executing series of functions If there is

single dialog box for each function things can quickly get visually crowded and

navigationally confusing The CompuServe Navigator Version 1.0.1 pro

gram shown in Figure 7-1 is case in point

Adding squirt of oil to my bicycle makes it pedal easier but it doesnt mean

that dumping gallon of oil all over it will make it pedal itself It seems to me

as though the designer of Navigator was on mission to put more windows in

our lives in the mistaken belief that windows are inherently good He certainly

......

gallon of oil wont make

bicycle pedal itself

0095

78 PART II THE FORM

IC

e.0y550 Settiugs

Session Settings Rnhs laTh flu

CompuServe lleIpFIIE Qpro PICc m.IO.1.12271

Cr CSNuv-Win Support CumpuServc Mxii

DaveNet .. Create Mull Meouann or Sc

enrpluyce .- -c-..--- .-i..-_ ._ dote Hril

ame ri0o
Marl

Gume Publi Dead 0al 00 Mk 0.1.0

riiiiT Molt luke mutters into your own Peter Lan stun 12122

VE General Cur
funny

humor Moth The Fnrflneer vs Architect flehnrnh Krrrnte niii
All i4rI

mudeless tc

ModelNet

Os

jonrrrIComputinI
Fre

thrnndo/Meir
045t1227 erC

llonewmeort

Ho.an lend 1i tC0 iTTAFJST O.0 u_s cm lee ll/t/ 7.41

.11 Sconputer prograr.ner happens acruss Frog in the road The Frog pipes

gTarnNot Forum up really beautiful princess and IF you hiss ne Ill stay tritur

TkreudIMea you Fur week Tile prugranner shrugs his strnhders and puts the Frug in

his pocket

Menage Send

Few minutes later the Frug says DII DII if
you

kiss me Ill give you

Model1ct Foam great sen For week The programmer nods and puts the Frug back in his

pocket

Normwmoua1n- Few minutes later Torn me bock into princess and Ill gioe yuu great
MnjrScnd sex For whole year The programner smiles and walks on

QDiconrrecrnx at Finally the Frog says tihat crony with you me promised you

lb r.s--Io great sex For year Frun treautiful princess and you wont even kiss

Dcc Fr Frogt progranner he replies dont kane time Fur

sen.. glut talking Frog is pretty neat

Figure 7-1

Version 1.0.1 of CompuServe Navigator suffers from tragic windows pollution Just

normal downloading of my mail requires that three windows be open To examine filed

message demands that open three more windows in turn First get the Filing

Cabinet then call up the GENERAL window Finally can open particular mail

message in its own separate window This is all one integral function and should occupy
one integral window But the worst is yet to come must put each window away
separately in the reverse order of opening them

succeeded in putting lots of windows in my life but he didnt make things any

better

From the users point of view examining saved piece of email is not three

functions but one One dialog would not only be perfectly sufficient to accom

plish this task it would also more closely correspond to the users goal of

viewing an email It would also correspond more closely to the users men
tal model of what is happening inside the computer The designer has instead

faithfully rendered the actual processing to the user sort of like forcing the

driver to turn two steering wheels one for each front wheel instead of com

bining the two functions into single conceptual whole

0096

CHAPTER WINDOwS-WITH-A-SMALL-W 79

much better solution to the Navigator problem would have been to create

single mail box with tools strategically positioned along the top rowa

toolbar would be perfectfor managing searches Intermediate results of the

search could be shown in the window along with the final message itself One

goalfinding and reading messageshould be implemented as one dialog

box

There is no way to show the connections between lots of windows so dont

create lots of windows Modal dialogs however always get you back immedi

ately to the point of departure so they dont count against you This is

particularly annoying problem with Visual Basic VB where it is easy to create

forms Forms are independent top-level windows In terms of behavior they

are the same as modeless dialog boxes Creating applications as collections of

several modeless dialog boxes is questionable strategy that was never very

common until VB made it easy to do And as Ive said before just because its

easy to do doesnt mean it is good design

Each added window contributes more to the users burden of window man

agement excise This overhead can grow to be really obnoxious if the program

is used daily If your program has couple of dozen windows because you

honestly feel that each of those windows moves the user towards that many dif

ferent goals then you should divide up your program into several smaller ones

each one true to its own goal program shouldnt have more than two or

three goals which means it shouldnt have more than two or three windows

VB programmer once explained to me proudly that his program was

especially difficult to design because it had 57 forms No program can be used

effectively with 57 forms Each form may be excellent in its own right but col

lectively its simply too many Its like saying youre going to taste 57 vintage

Chardonnays at sitting or test-drive 57 sedans on Saturday

0097

Lord of the Files

you have ever tried to teach your Mom how to use

computer you will know that difficult doesnt really do

the problem justice Things start out all right you fire up the

word processor and key in letter Shes with you all the way

When you are finally done you press the Close button and

up pops that mutant ninja turtle of dialog box asking Do

you want to save changes and you and Morn hit the wall

together She looks at you and asks What does this mean

What changes Is everything OK How can you answer her

The tragedy of the file system
The part of modern computer systems that is the most diffi

cult to understand is the file system the facility that stores

programs and data files on disk Telling the uninitiated about

disks is very difficult The difference between main mem

ory and disk storage is not clear to most people

Unfortunately the way we design our software forces

userseven your Momto know the difference Every pro

gram exists in two places at once in memory and on disk

The same is true of every file but many users never quite

grasp the difference When that Save Changes dialog box

81

0098

82 PART II THE FORM

shown in Figure 8-1 comes up they just suppress twinge of fear and confu

sion and press the YES button out ofhabit dialog box that is always answered

the same way is redundant dialog box that should be eliminated

The Save Changes dialog box is based on bad assumption The very presence

of the dialog assumes that saving and not saving are equally probable The dia

log gives equal weight to these two options even though the YES button is

pressed orders of magnitude more frequently than the NO button As discuss

in Chapter 11 this is case of putting might on will The user might say no
but the user will almost always say yes

Figure 8-1

This is the question Word asks me when close file after have edited it Yes of course

want to save it otherwise wouldnt have made the changes in the first place The on-

gin of this dialog box is not the users mental model but rather the programmers mani
festation of the implementation model In other words the physical characteristics of the

disk system are imposed on the users work habits This dialog is so unexpected for new
users that they often

say No inadvertently

There is another odd thing about the dialog and Mom will probably wonder

about it Why does it ask about saving changes when you are all done Why
didnt it ask when you actually made them The connection between closing

document and saving changes isnt all that natural even though we power
users have gotten quite familiar with it

Mom is thinking Xf didnt want those ciaanges wduld have undone them

long agoY To her the question is absurd The program issues the dialog box

when the user requests CLOSE or QUIT because that is the time when it has to

reconcile the differences between the copy of the document in memory with

0099

CHAPTER LORD OF THE FILES 83

the copy on disk The way the technology actually implements the facility asso

ciates changes with the CLOSE and QUIT operations but the user doesnt natu

rally see the connection When we leave room we dont consider discarding

all of the changes we made while we were there When we put book back on

the shelf we donçfirst erase any comments we wrote in the margins

Computer geeks are very familiar with the connection between saving changes

and closing or quitting They dont want to lose this ability because it is famil

iar to them bufa reallyb di ionaie We dont want to

keep repairing our car just because we are familiar with the shop We dont want

to keep getting root canals just because we are familiar with the drill

As experienced users we have learned to use this dialog box for purposes for

which it was never intended There is no other easy way to undo massive

amounts of changes so we just use the Save Changes dialog and answer it with

NO If you discover yourself making big changes to the wrong file you use

this dialog as kind of escape valve to return things to the status quo

The problems caused by disks

The computers file system is the tool it uses to manage data and programs

stored on disk This means the big hard disks where most of your information

resides but it also includes your floppy drives and your CD-ROM if you have

one The File Manager program in Windows 3.x and the Explorer in Windows

95 graphically represent the file system Without doubt the file systemand

the disk storage facility it managesis the primary cause of disaffection with

computers for non-computer-professionals

Disks and files make users crazy

Even though the JJs an all rights

enf because the influence of the file

system on the interface of most programs is very deep The most intractable

problems facing user interface designers usually concern the file system and its

demands It affects our menus our dialogs even the procedural framework of

0100

84 PART II THE FORM

our programs and this influence is likely to continue indefinitely unless we

make concerted effort to stop it

Currently most software treats the file system in much the same way that the

operating system shell does Explorer File Manager This is tantamount to

you aJi ithTiifitliŁ Even though this

approach is tragically bad it is an established de facto standard and there is

considerable resistance to improving it

iiPk

Following the implementation model

Before go any further let me make clear that the file systems on modern per
sonal computer operating systems like Windows 95 are technically excellent

have no gripe with the way they are implemented The problem stems from

the simple mistake of rendering that implementation model to the user

The implementation model of the file system runs contrary to the mental

model almost all users bring to it In other words they picture files or docu

ments as typical documents in the real world and they imbue them with the

behavioral characteristics of those real objects In the simplest terms users

visualize two salient facts about all documents First there is only one docu

ment and second it belongs to the user The file systems implementation

model violates both of these rules There are always at least two copies of the

document and both belong to the program

Saying that someone is computer literate is really euphemism meaning that

he has been indoctrinated and trained in the irrational and counter-intuitive

way that file systems work and once you have been properly subverted into

thinking like computer nerd the obvious ridiculousness of the way the file

system presents itself to the user doesnt seem so foolish

Every data file every document and every program whIle in use by the com

puter exists in minimum of two places at once on disk and in main memory
The user though imagines his document as book on shelf Lets

say it is

journal he is keeping Occasionally it comes down off the shelf to have some

words added to it There is only one journal and it either resides on the shelf

or it resides in the users hands On the computer the
4sk

Urive is the shelf

and main memory is the place where editing takes place equivalent to the

users hands But in the computer world the journal doesnt come off the

shelf Instead copy is made and that copy is what resides inside the comput
er As the user makes changes to the document he is actually making changes

0101

CHAPTER LORD OF THE FILES 85

to the in-memory copy while the original remains untouched on disk When

the user is done and closes the document the program is faced with decision

It must decide whether to replace the original on disk with the changed copy

from memory From the programmers point of view equally concerned with

all possibilities this choice could go either way From the softwares imple

mentation model point of view the choice is the same either way However

from the users point of view there is rarely decision to be made at all He

made his changes already now he is just putting the document away If this

were happening with paper journal in the phsical world the user would have

pulled it off the shelf pencilled in some additions and is now replacing it on

the shelf Its as if the shelf suddenly spoke up asking if he really wants to keep

those changes

Right now the seriously computer-holic readers are beginning to squirm in

their seats They are thinking that Im treading on holy ground and pristine

copy on disk is wonderful thing and that had better not be advocating get

ting rid of it Relax As said before there is nothing wrong with our file sys

tems am only advocating that we hide its existence from the user We can still

offer to him all of the advantages of that extra copy on disk without exploding

his mental model Ill show you how

Dispensing with the disk model

If we begin to render the file system according to the users mental model we

achieve significant advantage The primary one is that we can all teach our

Moms how to use computers We wont have to answer her challenging ques

tions about the inexplicable behavior of the interface We can show her the

program and explain how it allows her to work on the document and upon

completion she can store the document the disk as though

nal on shelf Our sensible explanation wont be interrupted by that Save

changes dialog Not to put too fine point on this but Im just using Mom

as surrogate representing the mass market of computer buyers

The other big advantage is that software user interface designers wont have to

incorporate clumsy file-system awareness into their products We can structure

the commands in our programs according to the goals of the user instead of

according to the needs of the operating system

We no longer need to call the left-most menu the File menu This older

nomenclature is bold reminder of how the technology pokes through the

facade of our programs We can label this menu after the type of document we

0102

86 PART II THE FORM

are processingfor example we can call it Spreadsheet Invoice or

Picture Alternatively we can give it more generic name like Document
which is reasonable choice for horizontal programs like word processors or

spreadsheets

Changing the name and contents- of the File menu violates an established

standard recognize the impact of this proposal and dont make it lightly

have tremendous respect for standards unless they are wrong This one is

wrong and its existence makes life more difficult than it has to be for every

user of computers particularly newcomers and casual users The benefits will

far outweigh any dislocation the change might cause There will certainly be an

initial cost as experienced users get used to the new presentation but it will be

far less than you might suppose This is because these power-users have already

shown their
ability and tolerance by learning the implementation model For

them learning the better model will be slam-dunk and there will be no loss

of functionality

The advantage for new users will be immediate and big computer profes

sionals forget how tall the mountain is once weve climbed ii but everyday

newcomers approach the base of this Everest of knowledge we sit atop and are

severely discouraged Anything we can do to lower the height can make big

difference and this step removes considerable obstacle

Designing software with the proper model

Properly designed software will always treat documents as single instances

never as copy on disk and copy in memory call this the 14no4Ł1

Saving

One of the most important functions every computer user must learn is how to

save Invoking this function means taking whatever changes the user has

made to the in-memory copy and writing them onto the on-disk copy of the

document In the unified model we abolish all user-interface recognition of

the two copies so the save function disappears completely from the main

stream interface Of course that doesnt mean that it disappears from the pro

gram It is still very necessary operation

The program will automatically save the document At the very least when the

user is done with the document and requests the close function the program

will merely go ahead and write the changes out to disk without stopping to ask

for confirmation with the Save Changes dialog box

In perfect world that would be enough but computers and software can

crash power can fail and other unpredictable catastrophic events can conspire

0103

CHAPTER LORD OF THE FILES 87

to erase your work If the power fails before you have pressed CLOSE all of your

changes will be lost as the memory containing them scrambles The original

copy on disk will be all right but hours of work can still be lost To keep this

from happening the program must also save the document at intervals during

the user session Ideally the program will save every single little change as soon

as the user makes it In other words after each keystroke For most programs

on modern computers this is quite feasible Only certain programsword

processors leap to mindwould find difficulty with this level of saving but the

solution would still not be impossible Most documents can be saved to the

hard disk in just fraction of second so generally this is not problem Still

this is sensitive area because the program will hesitate noticeably in very dis

turbing way Word has facility for automatically saving files to disk and

never use it for that reason The problem is caused by the save facilitys logic

not because the principle of automatic saving is bad Word automatically saves

the file according to countdown clock and you can set the delay to any num

ber of minutes If you ask for save every two minutes for example after

precisely two minutes the program stops accepting your input to write your

changes out to disk regardless of what you are doing at the time If you are

typing when the save begins it just clamps shut in very realistic and discon

certing imitation of broken program It is avery unpleasant experience If the

algorithm would pay attention to the user instead of the clock the problem

would disappear Nobody types continuously Everybody stops to gather his

thoughts or flip page or take sip of coffee All the program needs to do is

wait until the user stops typing for couple of seconds and then save

This automatic saving every few minutes and at CLOSE time will be adequate for

everybody except the really twisted computer-freaks who have been using com

puters since Bill Gates was just thousandaire include myself in this group

Im so paranoid about my computer crashing and losing data that habitually

press
the CTRL-S key after every paragraph type and sometimes after every

sentence Pressing CTRL-S is the keyboard accelerator for the SAVE function

Ill typically save documentlike chapter in this bookmore than 1000

times before its done There is no way in the world would even use pro

gram that didnt provide such manual save capabilities and all programs should

have them just dont think that my compulsive behavior should be forced on

new or occasional users who are writing the occasional letter or spreadsheet and

havent begun writing book yet

Using the revision number feature of Microsoft Word print the exact number of

saves at the bottom of all of my drafts Im not exaggerating

0104

88 PART II THE FORM

Right flow in Word the SAVE function is prominently placed in-your-face on the

primary program menu The SAVE dialog is forced on all users when they ask to

close the document or to QUIT or EXIT the program These artifacts must go

away but the SAVE functionality can remain in place exactly as it is now

Closing

There is no inherent connection between closing and saving in my unified

model because there is no concept of saving

We computer geeks are conditioned to think that CLOSE is the time and place

for abandoning unwanted changes if we made some error or were just what-if

ing This is not correct though because the proper time to reject changes is

when the changes are made We even have well-established idiom to support

this The UNDO function is the proper facility for eradicating changes We have

bent and contorted our thinking so much to accommodate the implementation

model that often hear people bleat in protest over losing the ability to refuse

request to save changes

In Chapter 30 Undo Ill talk about some more sophisticated variants of

undo that allow us to create multiple versions of document Currently savvy

computer users who understand the technology can accomplish this by work

ing cleverly with the file system better interface could offer these desirable

features directly and explicitly

When you answer YES to the Save changes dialog virtually every program then

presents you with the Save As dialog box typical example is shown in

Figure 8-2

Neither the typical user nor the unified file model recognizes the concept of

manual saving so from their point of view the name of this dialog box doesnt

make much sense Functionally this dialog offers the user two things It lets

you name your file and it lets you choose which directory you wish to place it

in Both of these functions demand intimate knowledge of the file system The

user must know how to formulate file name and how to navigate through the

directory tree know of many users who have mastered the name portion but

who have completely given up on understanding the directory tree They put

all their documents in whatever directory the program chooses for default All

of their files associated with particular program are stored in single directory

Occasionally some action will cause the program to forget its default directory

and these users must call in an expert to find their files for them My next door

neighbor Bill calls me about every six months to help him find his Lotus 1-2-3

0105

CHAPTER LORD OF THE FILEs 89

File Name Directories

loths.doc ccooper

cçjjj cancel

e2dor
Li artwork

L.9--
etvceadoc

bksc.ns Network.

scrices doe brochure

LtibiOtdOC compendw help

email
--

Drives

gkLIeOC _I
toxic

Save File as j.ype

IWord Document L11

Figure 8-2

The Save As dialog box offers two functions It lets you name your file and it lets you

place it in the directory of your choice From the users perspective remember he has no

concept of saving so the name of this dialog is incorrect Also if dialog enables me to

name and place document shouldnt it also allow me to rename and replace the docu

ment certainly think so

files The first time he called asked him where he normally keeps his spread

sheets He answered innocently In 1-2-3 Bills mental model is very differ

ent from the softwares implementation model and ultimately Bill is right

The Save As dialog needs to decide what its purpose is If it exists to name and

place files then it does very bad job of it Once the user has named and placed

file he cannot then change its name or directory At least he cant with this

dialog that purports to offer naming and placing privileges Nor with any other

tool in the application itself

Beginners are out of luck but experienced users learn the hard way that they

can close the document change to the Explorer rename the file return to the

application summon the Open File dialog and reopen the document In case

you were wondering the Open File dialog doesnt allow renaming or reposi

tioning either

Forcing the user to go to the Explorer to rename the document is minor hard

ship but therein lies hidden trap its teeth sharp and its spring strong The

0106

90 PART II THE FORM

bait is the fact that Windows easily supports several applications running

simultaneously Attracted by this feature the user tries to rename the file in the

Explorer without first closing the document in the application This very rea

sonable action triggers the trap and the steel jaws clamp down hard on his leg

He is rebuffed with rude error message box shown in Figure 8-3 He didnt

first close the documenthow would he know Trying to rename an open file

is sharing violation and the operating system summarily rejects it with truly

frightening and unhelpful error message box

Cannot rename Ab1 Acress is denied

Make sure the disk is not 1u11 or \riteprotected

and that the lile is not currently in use

Figure 8-3

If the user attempts to rename file using the Explorer while it is still being edited by

Word the Explorer is too stupid to get around the problem and make it work It is also

too stupid to figure out what happened so it can report it correctly It is also too rude to

be nice about it and it puts up this frightening error message box Rebuffed by both the

program and the Explorer it is
easy

for new user to imagine that document cannot be

renamed at all

The innocent user is merely trying to name his document and he finds himself

lost in an archipelago of operating-system arcana Ironically the one program

that has both the authority and the responsibility to change the documents

name while it is still open is the application itself yet it refuses to even try

Archiving

There is no explicit function for making copy of or archiving document

The user must accomplish this with the Save As dialog and doing so is as clear

as mud Even if there were Copy command users visualize this function in

different ways If we are working for example on document called Alpha

0107

CHAPTER LoRD OF THE FILES 91

some people imagine that we would create file called Copy of Alpha and

store it away Others imagine that we put Alpha away and continue work on

Copy of Alpha

suspect
that the latter option will only occur to those who are already experi

enced with the implementation model of file systems That is of course how

we would do it today with the Save As dialog you have already saved the file as

Alpha then you explicitly call up the Save As dialog and change the name

Alpha will be closed and put away on disk and the new copy will be the version

being edited This action makes very little sense from the single-document

viewpoint of the world and it also offers really nasty trap for the user

Here is the completely reasonable scenario that leads to trouble Lets say that

have been editing Alpha for the last twenty minutes and now wish to make an

archival copy of it on disk so can make some big but experimental changes

to the original call up the Save As dialog box and change the file name to

New Alpha The program puts Alpha away on disk leaving me to edit New

Alpha Ahhh but Alpha was never Saved so it gets written to disk without

the changes macic in the last twenty minutes Those changes only exist in the

New Alpha copy that is currently in memoryinthe program As begin

cutting and pasting in New Alphatrusting that my handiwork is backed up by

AlphaI am actually trashing the sole copy of this information

Everybody knows that you can use hammer to drive screw or pliers to bash

in nail but any skilled craftsperson knows that using the wrong tool for the

job will eventually catch up with you The tool will break or the work will be

hopelessly ruined The Save As dialog is the wrong tool for making and man

aging copies and it is the user who will eventually have to pick up the pieces

caused by the developers laziness

Unify the file model

The application program refuses to rename and reposition the file out of

respect for the file system The file system is the facility whose job it is to man

age information that is not in main memory and it does so by maintaining

second copy on disk This method is correct but it is an implementation detail

that only confuses the user Application software should conspire with the file

system to hide this unsettling detail from the user

If the file system is going to show the user file that cannot be changed because

it is in use by another program the file system should indicate this to the user

0108

92 PART II THE FORM

Showing the file name in red or with special icon next to it would be suffi

cient new user might still get that awful message in Figure 8-3 but at least

some visual clues would be present to show him that there is reason why that

error cropped up

Not only are there two copies of all data files but when they are running there

are two copies of all programs When go to the Startbars Start menu and

launch my word processor button corresponding to Word appears on the

Startbar But if return to the Start menu Word is still there From the users

point of view have pulled my hammer out of my toolbox only to find that

my hammer is still in my toolbox

Im not saying that this should not be the case After all one of the great

strengths of the computer is its ability to have multiple copies of software run

ning simultaneously do think that the software should help the user to under

stand this very non-intuitive action however Maybe the Start menu could

make some reference to the already-running program

Document management
The established standard suite of file management for most applications con

sists of the Save As dialog the Save Changes dialog and the Open File dialog

Collectively these dialogs are as Ive shown confusing for some tasks and

completely incapable for others Here is how would design an application that

really managed documents according to the users mental model

Besides rendering the document as single entity there are several goal-directed

functions that the user may need and each one should have its own

corresponding function

Creating copy of the document

Creating milestone copy of the document

Naming and renaming the dociment

Placing and repositioning thejiçuthient

Specifying the stored foimat oth document

Reversing some changes

Abandoning all changes

0109

CHAPTER LORD OF THE FILES 93

Creating copy of the document

This should be an explicit function called Make Snapshot Copy The word

snapshot makes it clear that the copy is identical to the original while also

making it clear that the copy is not tied to the original in any way That is sub

sequent changes to the original will have no effect on the copy The new copy

should be given name with standard form like Copy of Alpha where

Alpha is the name of the original document If there is already document

with that name the new copy should be named Second Copy of Alpha The

copy should be placed in the same directory as the original

It is very tempting to envision the dialog box that accompanies this command

but there should be no such interruption The program should take its action

quietly and efficiently and sensibly without badgering the user with silly ques

tions Make copy In the users mind it is simple command If there are

any anomalies the program should make constructive decision on its own

authority

Naming and renaming the document

The name of the document should be shown right on the applications toolbar

If the user decides to rename the document he can just click on it and edit it

in place What could be simpler and more direct than that

Placing and repositioning the document

Most documents that are edited already exist They are opened rather than

created from scratch Thi means that their position in the file system is already

established Although we think of establishing the home directory for docu

ment at either the moment of creation or the moment of first saving neither of

these events is particularly meaningful outside the implementation model The

new file should be put somewhere reasonable where the user can find it again

If the user wants to explicitly place the document somewhere in the file-system

hierarchy he can request this function from the menu relative of the Save As

dialog appears with the current document highlighted The user can then move

the file to any desired location Essentially all files are placed automatically by

the program and this dialog is used only to reposition them

0110

94 PART II THE FORM

Specifying the stored format of the document

There is an additional function implemented on the Save As dialog in Figure 8-2

The combobox at the bottom of the dialog allows the user to specifr the phys

ical format of the file This function should not be located here By tying the

physical format to the act of saving the user is confronted with additional

unnecessary complexity Saving should be very simple act In Word if the user

innocently changes the format both the save function and any subsequent

close action are accompanied by frightening and unexpected confirmation

box

From the users point of view the physical format of the documentwhether

it is rich text ASCII or Word format for exampleis characteristic of the

document rather than of the disk file so speciing the format shouldnt be

associated with the act of saving the file to disk It belongs more properly in

Document Properties dialog

Overriding the physical format of file is rare occurrence Saving file is

very common occurrence These two functions should not be combined

The physical format of the document should be specified by way of small dia

log box callable from the main menu This dialog box should have cautions

built into its interface to make it clear to the user that the function can involve

significant data loss

Reversing some changes

If the user inadvertently makes changes to the document that must be reversed

the tool already exists for correcting these actions undo The file system should

not be called in as surrogate for undo The file system may be the mechanism

for supporting the function but that doesnt mean it should be rendered to the

user in those terms The concept of going directly to the file system to undo

changes merely undermines the undo function

The milestone function description follows tells how file-centric vision of

undo can be implemented so that it works well with the unified file model

Abandoning all changes

It is not uncommon for the user to decide that he wants to discard all of the

changes he has made since opening or creating document so this action

should be explicitly supported Rather than forcing the user to understand the

file system to achieve his goal simple Abandon function on the main menu

0111

CHAPTER LORD OF THE FILES 95

would suffice Because this function involves significant data loss it should be

protected by clear warning signs Additionally making this function undoable

for week or two would be relatively easy to implement and appreciated more

than you might imagine

Creating milestone copy of the document

Making milestone is very similar to using the copy command

The difference between them is that the milestone copy is managed by the

application after it is made The user can call up Milestone dialog box that

lists each milestone copy along with various statistics about it like the time it

was recorded and its length With click the user can select milestone copy

and by doing so immediately return to it as the active document The version

that was current at the time of the reversion will be milestoned itself for exam

ple under the name Displaced by Milestone of Alpha 12/17/97 1353

The new menu

Our new File menu now looks like the one shown in Figure 8-4

New

Open..

Close

ename/Repositiori..

Make Snapshot Copy

Make Milestone

Revert to Milestone.

Document Properties..

Abandon changes

it

Figure 8-4

The revised File menu now reflects the users mental model instead of the programmers

implementation model There is only one file and the user owns it If he wants he can

clone it discard any changes he has made to it or change its format He doesnt have to

worry about the copy in RAM and the copy on disk

0112

96 PART II THE FORM

New and Open function as before but Close will just quietly close the

document without dialog box or any fuss after assuring that it is completely

saved Rename/Reposition.. brings up small dialog box that lets the user

rename the current file and/or move it to another directory Make Snapshot

Copy quietly creates new file that is copy of the current document Make

Milestone does the same thing except that the program manages these copies

by way of the dialog box summonable with the Revert to Milestone item

Document Properties also brings up dialog box that lets the user change

the physical format of the document The final item is Abandon Changes and

it discards all changes made to the document since it was opened or created

File menu

Of course now that we are manifesting monolithic model of storage instead

of the bifurcated implementation model of disk and RAM we no longer need

to call the left-most menu the File menu This older nomenclature is bold

reminder of how the technology has been inflicted on the user instead of the

users model being reflected in the technology There are two pretty good alter

natives to solving this problem

As said earlier we can label the menu after the type of document we are pro

cessing For example spreadsheet might label its left-most menu Sheet An

invoicing program might label it Invoice designed patent management

program for client and in that program we called it Patent

Alternatively we can give the left-most menu more generic label like

Document This is certainly reasonable choice for broad programs like

word processors and spreadsheets but is less appropriate for narrower pro

grams like the patent manager

Conversely those few programs that do represent the contents of disks as

filesgenerally operating system shells and utilitiesshould have File

menu because they are addressing files with studied ignorance of their con

tents

How did we get here
If you are still not convinced that disks and their file system are the cause of

great user interface confusion Id like to show how our disks came to have such

profound effect on our software

0113

CHAPTER LORD OF THE FILES 97

From the users point of view there is no reason for disks to exist From the

computer engineers point of view there are three

Disks are cheaper than solid-state memory

Once written to disks dont forget when the power is off

Disks provide physical means of moving information from one computer

to another

Reasons number two and three are certainly useful but are not the exclusive

domain of disks Other technologies work as well or better There are varieties

of RAM that dont forget their data when the power is turned off CMOS

memory is solid state yet it retains its setting without external power

Networks and phone lines can be used to physically transport data to other

sites often more easily than with removable disks

Reason number onecostis the real reason why disks exist CMOS is lot

more expensive than disk drives Reliable high-bandwidth networks havent

been around as long as removable disks and they are still more expensive

Disk drives have many drawbacks when compared to RAM Disk driFØ have

always been much slower than solid-state memory They are much less reliable

too since they depend on moving parts They consume more power and can

take up more space as well The real whammy when it comes to disks though

is that computers the actual CPU cant really read or write to them Data must

first brought into main solid-state memory by the CPUs helpers before the

CPU can work with it When the processor is done the helpers must once again

step in to move the data back out to the disk This means that all processing

involving disks is necessarily orders of magnitude slower and more complex

than working in plain RAM

Disks are hack
not design feature

The time and complexity penalty for using disks is so severe that nothing short

of enormous cost-differential could compel us to rely on them Disk drives are

0114

98 PART II THE FORM

cost-saving hack Mind you there is nothing wrong with using this sophisti

cated technology to save money but keep in mind that the technology isnt

there to provide us with services we couldnt get in other ways This means that

any changes we make to 6ur interfaces to adjust to the disk technology are

likely to be inappropriate from goal-directed point of view

So we can see that they aie not architectuial fea

tures that ial cöniutefs bter more powerful faster or easier to use

Instead they make computeis weaker slower and more complex Tlyça
dilution an adulteration corruption of the pure architecture

of digital computers If early computer designers could have economically used

RAM instead of disks they would have done so without hesitation Whatever

other problems RAM exhibited could have been overcome with technologies

simpler than the complexity of disk drives

The difference between RAM and disk is merely matter of economics much

like the way you go to lending library instead of personally owning copies of

every book This means that wherever disk technology has left its mark on the

design of our software it has done so purely for implementation purposes and

not for any goal-directed design rationale While this difference should be of

interest only to programmers in reality it is imposed on nearly every program

and users are forced to master it Any constructiontlat supports disks is for the

convenience of the programmer and the computer and not to help the aser

The pervasivØness of the file system in our thinking and our design of software

is as though refrigeration technology dominated the design of every rom in

our houses Certainly the invention of cheap mechanical refrigeration affected

our domestic lives but we dont turn our houses into shrines to Freon Yet this

is largely what we have done on our desktop computers

It is one thing to weave technology invisibly into our lives It is another thing

altogether to allow our lives to be dominated by that technology Refrigeration

plays big part in our lives in many ways including food preparation the pro
duction and storage of some medicines and air conditioning yet we dont

usually find ourselves expressing our desires in terms of it We dont go into

restaurant and say Ill have the salmon Its been refrigerated hasnt it We

dont say Youll love working here its air conditioned Omnipresent tech

nologies dont have to intrude on our conscious thoughts to work well for us

Unfortunately this realization hasnt yet dawned on the computer industry

and we remain sadly dependent on the file-system model

0115

CHAPTER LORD OF THE FILES 99

The lasl gasp

There are only two arguments that can be mounted in favor of application soft

ware implemented in the file-system model Our software is already designed

and built that way and users are used to it

Neither of these arguments holds water though The first one is irrelevant

because new programs written with unified file model can freely coexist with

the older implementation model applications The underlying file system doesnt

change at all In much the same way that toolbars have invaded the interfaces

of most Windows applications in the last few years accompanied only by cheers

and encouragement the unified file model could also be implemented

The second argument is more insidious because its proponents are placing the

user community in front of them like shield Whats more if you ask the users

themselves they will reject the new solution because they abhor change par

ticularly when that change affects something they have already worked hard to

masterlike the file system In the Os the Chrysler company showed car-

buyers early sketches of dramatically new automobile design the minivan

The buyers were asked if they would be interested in this new vehicle and the

public uniformly gave thumbs-down to the new design Chrysler went ahead

and produced the Caravan anyway convinced that the design was superior

They were right and those same people who rejected the design have not only

made the Caravan the best-selling minivan but have made the minivan the

most popular new automotive archetype since the convertible

People will gladly give up painful poorly designed software for easier better

software even if they dont understand the explanations After all users arent

software designers and they cannot be expected to visualize the larger effect of

the change Saying that users want to keep their familiar file-system model is

like saying you want to break your leg again so you can return to the hospital

because the food was so good the last time you were in there

0116

Storage and

Retrieval Systems

he document is well-established concept in the

mechanical world It is an object that can be read by those

who care to and it often can be manipulated with writing or

drawing instruments Beyond that document can be trans

ported owned and stored These latter qualities exist even if

the former do not In other words can hold or own book

on calculus even though have never learned calculus Our

disk file systems are not so forgiving program can do lit

tle with PowerPoint file for example unless it is intimately

familiar with how to process PowerPoint slides Our

document-centric systems are really just file-centric systems

and are harder to understand and useand in some ways less

power.ftilthan our manual systems

Storing versus finding

In the physical world storing and retrieving an item are

inextricably linked putting an item on shelf storing it

also gives us the means to find it later retrieving it In the

digital world the only thing linking these two concepts is

our faulty thinking Gomputers will enable remarkably

sophisticated retrieval techniques if only we break our think

ing Out of its traditional box

101

0117

102 PART II THE FORM

storage system is tool for placing goods into repository for safekeeping

It is composed of physical container and the tools necessary to put objects in

and take them back out again

reti4eval sysiem is method for finding goods in repository It is logical

system that allows the goods to be located according to some abstract value

like its name position or some aspect of its contents

As we saw in the last chapter disks and files are usually rendered in implemen

tation terms rather than in accord with the users mental model of how infor

mation is stored This is even more true in the methods we use for finding

information after it has been stored This is extremely unfortunate because the

computer is the one tool capable of providing us with significantly better

methods of finding information than is physically possible from mechanical

systems

In the real world of books and paper on library shelves we have at least three

indices author subject and title Although our desktop computers can handle

hundreds of different indices we ignore this capability and have no indices at

all pointing into the files stored on our disks Instead we have to remember

where we put our files and what we called them before we can find them again

This omission is one of the most destructive backward steps in modern software

design This failure can be attributed to the interdependence of files and the

organizational systems in which they exist an interdependence that doesnt

exist in the mechanical world

We can own book or hammer without giving it name or permanent place

of residence in our houses book can be identified by characteristics other

than namea color or shape for example Even if we do assign proper

place for physical tool it often resides away from that place for stretches of

time volume may properly reside on our bookshelf but when it is being

read it may be left on night stands and coffee tables or stuffed into briefcases

or purses and it still serves us well Of course these places merely act as tem

porary locations for the book

For the book or the hammer it is important that there be proper place for

them because that is how we find them when we need them We cant just

whistle and expect them to find us we must know where they are then go there

and fetch them In the physical world the actual location of thing is the

means to finding it In the real world where the systems of storage and retrieval

are the same remembering where we put somethingits addressis vital both

0118

CHAPTER SToRAGE AND RETRIEVAL SYSTEMS 103

to putting it away and to finding it again When we want to find spoon for

example we go to the place where we keep our spoons We dont find the

spoon by referring to any inherent characteristic of the spoon itself Similarly

when we look for book we either go to where we left the book or we guess

that it is stored with other books We dont find the book by association That

is we dont find the book by referring to its contents

LT -c G---

Retrieval methods

There are three fundamental ways to fin document You cn find it by

remembering where you left it which iu
can find

it by iemembering its identifying name which call The

thud method which call se on to

search for document based on some inherent quality of the document itself

For example if wanted to find book with red cover or one that discusses

light rail transit systems or one that contains photographs of steam locomo

tives or one that mentions Theodore Judah the method must use is

associative

Both positional and identity retrieval are methods that also function as storage

systems Associative retrieval is the one method that is not also storage sys

tem If our retrieval system is based solely on storage methods we deny our

selves any associative searching and we must depend on the users memory He

must know what information he wants and where it is stored in order to find it

To find the spreadsheet in which he calculated the amortization of his home

loan he has to know that he stored it in the directory called home and that

it was called amorti If he doesnt remember either of these factoids finding

the document can become quite difficult

The document and the system it lives in

In the physical world complex case like library might have many thousands

or millions of objects to store To handle this we assign books proper places

somewhere on the shelves and then concoct other schemes for finding them

based on some associative value characteristic of the book itself

book doesnt have to have place on shelf in order to exist Books and the

physical systems we store them in shelves are not physically dependent on each

other The book can just as easily exist without participating in any storage

system

0119

104 PART II THE FORM

file on disk on the other hand is not separate from the organizational

structure of its filing system What defines that file is not its contents but its

presence in the
filing system disk file cannot exist outside of the filing system

in which it lives

We can own read and pass book between us without ever entering it into

book filing system such as the Dewey Decimal system or specific library In

order to own read or pass on computer document it must first be entered

into the computers file system

There is no such concept as collection of dataa documentother than as

participant in the host file system The file systems in Windows DOS
Macintosh and UNIX are the same in this respect None support the existence

of independent documents only the existence of files tied intimately to their

storage systems

An independent book or document in the physical world doesnt need to have

any identifying information its physical presence is sufficient Usually each

book or document is given title but this is not requirement for its existence

In order to be stored in manual or electronic filing system however it must

have unique identifier usually its name though bigger collections require

more specific identifiers

Indexing

In libraries where names can be too disparate or insufficiently unique or oth

erwise confusing each book is also assigned unique serial number called

Dewey Decimal number The book is then stored in sequence according to this

number This numbering scheme is very convenient for storing the books but

by itself doesnt help in their retrieval For that we need separate index the

traditional card catalog

Libraries usually provide three indices author subject and title Each index is

associative allowing the user to find the book according to an inherent prop

erty of the book other than its identifying number or its location on the shelf

When the book is entered into the library system and assigned number three

index cards are created for the book including all particulars and the serial

number Each card is headed by either the authors name the subject or the

title These cards are then placed in their respective indices in alphabetical

order When you want to find book you look it up in one of the indices and

find its number You then find the row of shelves that contain books with

0120

CHAPTER STORAGE AND RETRIEVAL SYSTEMS 105

numbers in the same range as your target by examining signs You then search

those particular shelves narrowing your view down by the lexical order of the

numbers until you find the one you want

You actually physically retrieve the book by participating in the system of stor

age but you conceptually logically find the book you want by participating in

system of retrieval The shelves and numbers are the storage system The card

indices are the retrieval system You identify the desired book with one and

fetch it with the other In typical university or professional library customers

are not allowed into the stacks As customer you identify the book you want

by using only the retrieval system The librarian then fetches the book for you

by participating only in the storage system The unique serial number is the

bridge between these two interdependent systems In the physical world both

the retrieval system and the storage system may be very labor intensive

Particularly in older non-computerized libraries they are both inflexible

Adding fourth index based on acquisition date for example would be pro

hibitively difficult in the library

Conversely its not all that hard to add an index in the computer Ironically in

system where easily implementing dynamic associative retrieval mechanisms

is at last possible we often dont implement any retrieval system Astonishingly

we dont use indices at all

In most of todays computer systems there is no retrieval system other than the

storage system If you want to find file on disk you need to know its name

and its place Its as if we went into the library burned the card catalog and

told the patrons that they could easily find what they want by just remember

ing the little numbers painted on the spines of the books We have put 100% of

the burden of file retrieval on the users memory while the CPU just sits there

idling executing billions of NOP instructions

An associative retrieval system

We have rendered the retrieval system in strict adherence to the implementa

tion model of the storage system ignoring the power and ease-of-use of sys

tem for finding files that is distinct from the system for keeping files

An associative retrieval system would enable us to find documents by their con

tents For example we could find all documents that contain the text string

superelevation For such search system to really be effective it should know

where all documents can be found so the user doesnt have to say Go look in

0121

106 PART II THE FORM

such-and-such directory and find all documents that mention supereleva

tion This system would of course know little bit about the domain of its

search so it wouldnt try to search the entire Internet for example for super

elevation unless we insisted

An associative retrieval system would also help the user create temporary or

permanent groups of documents and use them as the basis for searches For

example frequently like to search for passages in the manuscript for this book

which is stored as dozens of small text files would like to first search for all

documents containing the phrase About Face and have the program remem

ber that set of files as the book set Then when wanted to find the discussion

of associative file retrieval systems could search the book set for occurrences

of the phrase associative and gain the performance advantage of restricted

search without knowing anything about where my chapters were physically

stored

well-crafted associative retrieval system would also enable the user to browse

by synonym or related topics or by assigning attributes to individual docu

ments The user can then dynamically define sets of documents having these

overlapping attributes For example imagine consulting business where each

potential client is sent proposal letter Each of these letters is different and is

naturally grouped with the files pertinent to that client However there is def

inite relationship between each of these letters because they all serve the same

function proposing business relationship It would be very convenient if

user could find and gather up all such proposal letters while each one can still

retain its uniqueness and association with its particular client file system

based on placeon its single storage locationmust of necessity store each

document by single attribute rather than multiple characteristics

The system can learn lot about each document just by keeping its eyes and

ears open If the associative retrieval system remembered some of this informa

tion much of the setup burden on the user would be made unnecessary The

program could for example easily remember such things as

The program that created the doçuinent

The type of document words iibrs tables graphics

The program that last openedbument

If the document is exceptionallT 1ie or small

0122

CHAPTER STORAGE AND RETRIEVAL SYSTEMS 107

If the document has been untouched for long time

The length of time the document was last open

The amount of information that was added or deleted during the last edit

Whether the document has been edited by more than one type of program

Whether the document contains embedded objects from other programs

Whether the document was e4from scratch or cloned from another

If the document is fiequently edited

If the document is frequently viewed but rarely edited

Whether the document has been printed and where

How often the document has been printed and whether changes were

made to it each time immediately before printing

Whether the document has been faxed and to whom

Whether the document has been emailed and to whom

The retrieval system could find documents for the user based on these facts

without the user ever having to explicitly record anything in advance Can you

think of other useful attributes the system could remember

There is nothing wrong with the disk file storage systems we have created for

ourselves The only problem is that we have failed to create disk file retrieval

systems Instead we hand the user the storage system and call it retrieval sys

tem This is like handing him bag of groceries and calling it gourmet din

ner There is no reason to change our file storage systems The UNIX model is

fine Our programs can easily remember the names and locations of the files

they have worked on so they arent the ones who need retrieval system

Thats just for us human users

It aint document-centric

The purveyors of GUTs Microsoft Windows included often allow themselves

the conceit that we have document-centric view of the world It would be

more accurate to say that we have file-centric view of the world Our

so-called documents behave exactly like files and not much like documents

0123

108 PART II THE FORM

When software vendors claim to have document-based product interpret

it to mean that their software supports documents independent of the sup

porting file system None of the software have seen does this

Some programs like those in Microsofts Office suite implement an associative

searching system that operates outside of and in parallel to the normal file sys

tern but it doesnt replace the need to work within the file system Microsofts

solution is weak because it still demands so much advance effort by the user

In document-centric world documents are naturally at the center of things

and are independent of any particular program Instead of Word documents or

WordPerfect documents or 1-2-3 documents we would have generic documents

that could be worked on by any spreadsheet or word processor program

Of course vendors have developed myriad of proprietary file formats that

make exchanging data problematic But the divergence of file formats is an

effect not cause of the failure of docurnent-centricity The file systems of our

popular operating systems have so punted on the issue of retrieval and man

agement of documents that vendors felt unconstrained to use any kind of

common form or format .. even on UNIX which actually did have common

format ASCII The only elements that remain common from file to file are

those two lowest common denominator retrieval tools that are part of the stor

age system too iiame and position

It isnt even necessary for company to abandon its own custom file formats

In just the same way that can hold and own book written in Germaneven

though cant read GermanWordPerfect should be able to own and hold

1-2-3 file without necessarily having the ability to read it

In document-centric world applications would be less monolithic Instead of

giant word processor with hundreds of built-in functions wed have pro

grams with more tightly targeted feature sets chartwriters and graphwriters

and tablewriters and CADwriters and animationwriters In fact we would find

that programs could get even smaller and more specialized yet still work well

together Imagine heterogeneity of inventive tools like pencils inks erasers

animators sound recorders fonts undo-ers margin controllers spraypainters

and rubber stamps that could be freely applied to any of our documents We

wouldnt have to wait for Microsoft or WordPerfect to think of it and decide to

include it in the next release of their program Nor would we be constrained to

work on words in one program and images in another We could combine these

tools in one program based on our work habits rather than on one vendors

0124

CHAPTER STORAGE AND RETRIEVAL SYSTEMS 109

specialties We would buy each tool from different vendor choosing the one

whose product was best for the desired function The result would be pro

gram containing all of our favorite tools all working together the way we want

them to We wouldnt be forced to use the tools from someone elses toolbox

utopian vision

For this happy situation to occur wed have to have standard document for

mat independent of any one particular program This would mean that the

industry would have to reach general agreement on the characteristics of

documentnot an easy task in our competitive buisness world where each

player thinks the world should rally around its particular flag SGML is an

emerging standard that many vendors have adopted It is gaining momentum

as common format and this is significant contribution to the industry It

may even grow into the utopian vision someday Actually we have an excellent

model of an independent document standard in the UNIX world where stream

ing ASCII files are considered generic common file format that hundreds of

programs know how to read process and write

In UNIX any program can read or write an ASCII file regardless of which pro

gram created the file The format of the file is common rather than proprietary

UNIX is justifiably famous for the benefits of this standard Programs are

smaller and more powerful because they can concentrate on the function they

do best The system is egalitarian and open and the suite of available tools

comes from wide variety of sources both commercial and non-profit

Streaming ASCII files on UNIX are model of what true document-centric

environment can produce

Unfortunately streaming ASCII is pretty weak file format It is lowest-

common-denominator format lacking an internal structure of any kind

Vendors in their endless quest to achieve market edge with their product

abandon standards and create files in proprietary format but this has the

effect of removing them from the ranks of open systems From that point on

if they want to add functionality to their system they must do it themselves and

they will not be able to count on competitors adapting to their format They

have pretty-much closed off the avenue for third party add-ons

The bottom line is whether vendor owns the file format or if it is common

format owned by no one in particular If the format is common

document-centric architecture exists If the format is proprietary it is not

document-centric The issue hinges on the ownership of files If program

0125

110 PART II THE FORM

owns file because of its format the system is closed According to this def

inition only SGML ranks as document-centric design Almost every applica

tion currently running on Windows uses proprietary file formats including all

of those from Microsoft We have seen over the years how open systems thrive

The only closed systems that avoid swift and painful death in the open mar

ketplace are those which can offer significantly better value than the competi

tion This is why Microsoft is working towards common document architec

ture with its OLE standard

Unfortunately OLE is just baby-step in this direction and it comes with

some significant flaws In particular OLE doesnt address the file-ownership

problem With OLE other objects can be embedded in document or it can

be embedded in others but it remains strictly cast according to its typeits

owner OLE attempts to create an interchange standard by defining complex

methods for programs to talk and work with each other instead of defining

common document architecture and letting the programs do as they please

Instead of creating network of roads OLE tries to connect everybodys

houses with one long hallway

There are other problems with the file-centric model besides file ownership

There are countless cases where user wants to organize his information in

groups other than documents For example this book is document but it

is composed of dozens of smaller documents each represented by file The

word processor that used to create each document in the book understands

how to deal with each one but it is quite weak when it comes to handling the

bigger document the book itself There are no global commands so cant

change the phrase abysmally bad design to dunderheaded design through

out the book by using single command Neither is there way to tell what-

number this page will have when it is part of the full book Microsoft is aware

of the problem but cant seem to solve it decently The Master Document

feature in Word is game attempt but anyone who has used it on large doc

ument will immediately see how inadequate it is Of course my point isnt that

word processor manufacturers cant solve this problem Programs like Interleaf

or FrameMaker can handle it It is just that our file-centric vision tends to blind

us to cross-file or multi-file problems and they usually dont receive the atten

tion they deserve

System designers dont seem to be aware of these tradeoffs and consequently

many of our most cherished notions about system design are based on tradition

0126

CHAPTER SToRAGE AND RETRIEVAL SYSTEMS 111

rather than on sensible design We have been doing files the same way for so

long that nobody questions our methods And these methods shape our think

ing and ultimately shape our user interfaces

0127

Choosing Platforms

he very first strategic choice you will wrestle with as

designer will probably concern platforms You must decide

whether to write for UNIX the Macintosh or the

Intel/Microsoft platformor for all of them You also must

decide whether to support the older weaker hardware out

there These decisions are very difficult because they com

bine the messy uncertainties of real-world considerations

with the clean pure world of software construction If you

apply physical-world logic to these decisions you will usual

ly get left behind by the technology If you use pure software

logic for them you will upset and alienate your customers

The correct answer is to blend the two remaining aware that

the proper proportions of each change daily Here are my

thoughts on resolving the platform issues expect you will

temper them with the demands of your particular situation

Software is the expensive part

Modern desktop computers arc consumables like paper clips

and stationery rather than fixed assets or durable goods like

buildings or desks The problem isnt that computers cant

perform or arent valuable after year or two but that

the technology moves ahead so rapidly that the resulting

113

0128

114 PART II THE FORM

interaction problems detract significantly from productivity Keeping older

desktop computers in critical roles in your mainstream business environment

any longer than appropriate is like making your employees take the bus on

their cross-country business trips instead of flying it is penny-wise and pound-

foolish

Every aspect of software is more expensive than hardware You might think this

isnt true because you have 1000 computers but only have to develop an appli

cation once Lets say it takes $350000 to develop program and those com

puters cost $3000 each for total of $3000000 it seems like your point is

proven But the comparison is not really between $350000 and $3000000

Yes the cost of the hardware is $3000000 but the cost of the software also

includes the cost of installing training and supporting 1000 users of it It may

take week to get each person up to speed on the program If we assume that

each employee makes $200 per day their combined salary for the week is

$1000000 Then you add about $500 per user for the teaching costs Now

dont forget the opportunity cost While each person is learning about the pro

gram he is not generating income for the company If each employee

normally generates $5000 worth of business for the company each week that

revenue is lost So far the cost of implementing the software is hovering around

$6500 per user You can get pretty classy computer for that much money

The software cost of installing our 1000 computers is now $6500000

The half-life of desktop computer
Much of todays business wisdom regarding computers was learned in the óOs

and 70s in the data-processing centers with their giant mainframes Those

machines were large long-term corporate assets tended to by dozens of tech

nicians The technicians came and went but the mainframe was permanent

The modern desktop computer is architecturally very similar to the mainframe

but in every other respect is quite different animal

The desktop PC is to the mainframe as wild lion is to house cat The capa

bility and flexibility of the PC make it the king of the jungle while the main

frame was weak as pussycat unless it had hordes of technicians working to

keep it purring They share many physical characteristics but one is domesti

cated animal and the other is savage beast To treat them the same would be

dangerous The desktop PC came from different branch of the evolutionary

tree than mainframes did and it has dramatically different purposes goals

usage and responsibilities Those who treat PCs as durable goods are persisting

0129

CHAPTER 10 CHOOSING PLATFORMS 115

in thinking of them as little mainframes as permanent investments that support

operations or generate revenue But desktop PCs are as Ive said before con

sumables not investments To be economically efficient they must be treated

as such Im not suggesting that you wrangle with the IRS over it although

someone should but this is the way you should consider computers in your

planning

Think of your desktop PCs the way that Hertz thinks of their cars certainly cars

are fundamental part of their business but Hertz doesnt get sentimental

about them Instead they do the math The half-life of the price of fleet car

is about two years That is car that cost $20000 new can be resold for

$10000 in 24 months would guess that modern desktop PC that can be

purchased for $3000 today can be sold for $1500 within 12 months because

the pace of computer technology is faster than automotive technology Hertz

sells off the bulk of its fleet before they have reached their price half-life yet

most businesses wont sell off their personal computers for as long as four years

400% of their price half-life Are desktop computers less important for con

ducting your business than Hertzs cars are to them doubt it

That Hertz or Avis sells its fleet cars after year isnt an accident These com

panics have performed detailed financial studies to determine the optimum

amount of time to keep their cars so that their yield from resale is best with

respect to the amount of rental revenues they can generate from each one Just

because Hertz sells off their fleet cars after year doesnt mean that you cant

get ten or more good years out of your family car but it takes considerable

amount of care and attention to do so Care and attention is expensive in

business and in todays service economy they are more effectively lavished on

customers than on inanimate objects Similarly you can keep your familys old

86/16 with 640x480x16 VGA monitor going for several years past its prime

and it will still serve you well You can devote the time and attention to it that

it needs In the business environment however you cant afford to lavish that

time and attention on your office equipment Opportunity cost is extremely

expensive in modern business and while you are baby-sitting

cantankerous hardware your competition is out stealing your market share

Personal computers are not cars and the dislocation involved in upgrading

from one model to another is much greater than just buying new carits

more akin to buying new officeso the analogy isnt precise The point

though is that we must begin to regard our desktop computers more like fleet

cars and less like mainframes

0130

116 PART II THE FORM

PCs are not little mainframes they are unique business tools that dont age

gracefully There are enormous costs associated with keeping computers

beyond their useful and most productive times The main costs arise from inter

action problems typical PC will have dozens of major hardware and software

components and the probability for incompatibilities between them grows

exponentially as the system ages and new components are added When you

buy brand-new computer you start the clock ticking again at zero and the

probability for interaction problems is reduced again to manageable level

The potential for error inside given modem for example is really small Most

hardware vendors are reputable and test their product well However the odds

that the particular brand of modem you own is fully tested with particular ser

ial communications chip and particular serial communications driver software

decreases as these three products diverge in time

Almost any mouse sold in 1995 will work with almost any computer sold in

1995 But the chances of strange unpredictable interaction problems between

that mouse and an otherwise perfectly functional computer sold in 1992 are

quite high Even the standard plugs for mice have changed between 1992 and

1995 from seven pin DIN connector to five-pin mini-DIN How much will

it cost your company in lost productivity to have an executive stopped from

doing her job while technician hunts down the proper connector Is it more

or less than the cost to replace her computer with more modern one

If the cost of keeping older desktop PCs in service is higher than their replace

ment cost it makes good business sense to upgrade them If based on resale

value the optimal sell-off date for computer is 10 months you can expect

that the residual value will reach zero sometime before four years have elapsed

contend that the optimal interval to keep computer before replacing it is

roughly 24 to 30 months from the initial purchase Before that you pay too

much in disruption After that you pay too much in obsolescence

Choosing development platform

The computer industry often makes further miscalculation that makes keep

ing old computers around past their prime seem harmless by comparison Im

referring of course to the decisions regarding target platforms for software

development Many development teams create software that will accommodate

all existing hardware Their management usually colludes in this error by

encouraging them to support the five- six- or seven-year-old computers that

0131

CHAPTER 10 CHoOSING PLATFORMS 117

are still ticking away in corporate offices arguing that it would be too expen

sive to replace all of those computers This ignores the fact that the cost of

developing software to support both old and new hardware is generally

significantly greater than the cost of purchasing and supporting the more pow-

erful new hardware This means that if the software is written to accommodate

those old computers it will save money on the hardware just to spend it on the

software resulting in much stupider software at greater cost It should be the

responsibility of management to assure that the computers on desktops

throughout the company are as modern as can be when the new software is

ready

To develop software for modern platforms you must design for hardware that

will beHj eadily available six to twelve months after the product first ships Dont

forget that it might take year to develop the software and another six months

for it to penetrate your organization and the state-of-the-market computers

will be even more powerful than today

DesigætipTh program iou1d perform optimally on
hardware that doesnt exist yet

If you develop software for target hardware platform that is any older than

next years standard you are firmly anchoring your business in the past If any

of your competitors make the more intelligent choice you will be quickly over

taken The cost of programming is extremely high compared to the cost of

hardware but you will have to accept this development cost regardless of the

hardware platform you write for so this isnt the real problem Instead the

problem lies in the desire to fully amortize the investment in the software by

assuring that it covers all platforms The trap is that by covering all existing

platforms you reach backwards shutting yourself out of future platforms And

only the future platforms have well future

Just like the desire to fully amortize your investment in the hardware caused the

problem it also compounds the problem by forcing you into building weaker

less-effective software and then insisting on getting your moneys worth from

it too The unsuspecting businessperson can be trapped by his own parsimony

into weakening the companys ability to perform its fundamental business

The insight here is to never let software decisions be swayed significantly by the

limitations of existing hardware The software should of course be able to run

on state-of-the-art computers when it is released but it should have to stoop

0132

118 PART II THE FORM

bit to do so The product should be designed to behave optimally with the

hardware that will be state-of-the-art to 12 months after the software is first

released

This is lot less important for operating system software OSs or language

compilers where the performance leverage is enormous and always works

against you But in the world of applications where user interaction is intense

and performance is usually measured by how productive users feel rather than

by more objective measures dont compromise software for hardware

Controlling the hardware

If you are creating specialized software or vertical-market programs that will be

sold to customers for several thousands of dollars or more you can certainly

dictate the hardware it should run on larger proportion of the users budget

will go for software than for hardware

Users will inevitably argue this point Since the beginning of the microcom

puter revolution no axiom has been truer yet more frequently violated than

this one

Purchase the right software then

buy the computer that runs it

Most users will buy computer and then look for software that solves their

problem andby the wayalso runs on their computer hardware This atti

tude is carryover from the mainframe days and often informs the thinking of

software developers as much as it influences software buyers To make sale

developers are quick to adapt to specific hardware platform Yes the realities

of business sometimes dictate such choices and an adulteration of our practices

but this doesnt for minute mean that these decisions make for good design

Software is the key not the hardware In few more years when the cost of

computing machinery drops by another couple of orders of magnitude this

natural order will be apparent to all Good designers will anticipate it

0133

CHAPTER 10 CHOOSING PLATFORMS 119

Simultaneous Multiplatform Development
As tantalizing as it is to want to kill two birds with one stone dont do simul

taneous multiplatform development It isnt worth it Instead develop only for

your primary market Then use the revenue from this product to port to your

secondary platforms

There are two ways to do simultaneous multiplatform development and

both of them are bad You can make the code more complicated or you can

homogenize the interface

Design tip Build the program to run on only one platform

at time

Anything that increases the complexity of source code should be avoided at all

costs It will magnify the time it takes both to write and to debug The main

job of the software development manager is to avoid uncertainty and delay

Simultaneous multiplatform development generates more uncertainty

and delay than any other tactic you might use The compromises and confusion

will ultimately result in the quality of your product suffering

In the quiet of the office it seems so harmless so easy to add few if-else

statements to the source code and magically reap the benefits of supporting

an extra hardware platform Dont be fooled Everything in the already-

problematic discipline of software development becomes harder and more com

plex Each design decision must now be made for two platforms Compromises

slip into the product to account for the disparity between the two If writing

for dual platforms increases the amount of code by only 5% it can increase the

time to market by third This is an incredibly costly bad decision that is

easily avoided

There are several commercially available libraries of code that will let you de

velop on multiple platforms simultaneously In order to do so they demand

that you design for generic GUI which the library then runs on each plat

form This may be good for the development team but the users will dislike it

intensely They will immediately detect the homogenization of the interface

and will not appreciate it Macintosh users prefer programs with Mac sensi

bility Windows users wont settle for anything but Windows application For

example Windows users are very comfortable with multiple complex toolbars

running horizontally across the top of the program just beneath the menubar

0134

120 PART II THE FORM

Many Mac aficionados consider this idiom to be about as desirable as shark in

swimming pool

The programming staff will probably be game to do multiplatform develop

ment They may even be the ones pushing for it They see it as an intellectual

challenge multiplatform developrhent is tournament in which to compete

and win Just remember that programmers frequently dont give hoot about

deadlinestheyre in it for the brain exercise

Finessing the problem

much simpler safer and more effective way to solve the problem is by devel

oping for single platform first your main market This will typically be

Windows the market leader by wide margin You completely avoid the com

plexities of multiplatform development finish the first version with the great

est possible speed and ship it to the largest possible market

Once youve finished the Windows version you are generating revenue while

you begin development for other platforms Development managers take note

This is your most compelling argument for convincing others that single-

platform development is the proper course to take The needs of secondary

markets shouldnt delay the needs of primary markets

Dont hamper primary markets

by serving secondary markets

This doesnt mean that you need to abandon the secondary market On the

contrary at this point you will have fully articulated working model of the

productrunning on Windowsto use as prototype for the versions to run

on other platforms You can hire team of programmers with proven skills on

the new platform and tell them go forth and clone When programmers are

working from clearly visible model the development time can be compressed

significantly because there is little time wasted going down blind design alleys

You can also hire programmers who are less experiencedand therefore less

expensiveto do clone-programming because there is less design work

involved Much of the code will likely
be reusable but you now treat this as

bonus rather than as an expectation

0135

CHAPTER 10 CHOOSING PLATFORMS 121

When say clone however mean clone functionality but not dialect The

Windows prototype will demonstrate how the program should interact with the

user but the Macintosh version must behave like Mac program at the detail

level For that you need local expertise The problem is conceptually similar to

localization

The Myth of Interoperability

Windows developers often face programs with legacies as successful DOS pro

grams Many applications are brought to Windows after they have had long

and lucrative run in DOS character-based command-line environment

Common wisdom holds that the Windows program should emulate the DOS

program as closely as possible Thousands of satisfied customers want to move

to Windows goes the logic and they will be sorely disappointed if the pro

gram is different from what they already know and love Besides Many of

our corporate users work in heterogeneous environments and they want the

Windows version to work the same way as their DOS-only systems

This concept is called interoperability Believers in mteroperability will tell

you that your DOS customers are faithful to your product because of the way

your program behaves because they have already learned your DOS product

and becaue they cant afford the retraining costs of moving their people to

new Windows version They will draw the irresistible word picture of the happy

user entering data at aDOS machine then cheerfully switching to the Windows

computer and performing an identical task

As compelling as this logic is it is dead wrong If you are going to create

Windows version of program go ahead and create Windows versiondont

implement DOS version on the Windows platform If you try for interoper

ability you will only hurt your product You will find that no one is happy least

of all you and the development staff Your job will become increasingly difficult

as you try to reconcile fundamentally irreconcilable differences

Simply stated Windows users use Windows because they like it and because

they dont like DOS On the other hand DOS users use DOS because they like

it and because they dont like Windows If your program acts like DOS on

Windows DOS users will be unhappy because theyd rather be using the gen

uine article on DOS and nothing you do to simulate DOS on Windows will

make them happy Conversely all of the Windows aficionados will turn up their

noses at the pathetic DOS-ness of your program and its lack of understanding

of how to behave appropriately in Windows world

0136

122 PART II THE FORM

Design tip The program should be designed expressly for the

target platform

Your DOS customers are faithful because your DOS version is sensitive to the

particular needs of DOS users They like it because it has adapted to the local

customs of the DOS environment Given the limitations of that environment

it is satisfactory solution It exhibits familiar DOS-like behavior that makes

users experienced in DOS environment feel warm and fuzzy Extrapolating

this to mean that the behavior of the program itself is warm and fuzzy can be

fatal when you move to another platform particularly when exercising para

digm shift as dramatic as moving from character-based to graphical

platform

Most Windows users like Windows because they were dissatisfied with the level

of usability available in DOS They are here because they want something dif

ferent and better not something similar and status quo They came here

because they wanted to leave the limitations of DOS behind and they want you

to have done the same

Windows users expect your program to conform to the local standards in ex

actly the same way that DOS users expected your DOS program to conform to

DOS standards Windows users will want your Windows version to look and act

like other Windows applications not like DOS applications They will expect

your program to take advantage of the tools provided by the new platform

They will expect your program to deliver something better to justify the dislo

cation they had to invest in order to move from DOS to Windows

Those people who clamor for interoperability are often motivated by fear They

are afraid of the new system of their ability to learn it and to adapt to it They

are afraid mostly of the learning curve They worked so hard and absorbed so

much pain to learn the DOS version that they fear going through the process

again on Windows By demanding interoperability they hope that they will be

able to take their hard-earned expertise straight across to the new system

The answer for these people of course is that it wont be anywhere near as diffi

cult to learn in Windows than it was in DOS They wont believe this so you

will just have to do the right thing despite their pleas Its like telling child

that tetanus shot is less painful than tetanusall the child can see is the

needle Extending the metaphor you must be the adult even if the frightened

users hold the purse strings It is not good career move to make your

0137

CHAPTER 10 CHoosING PLATFORMS 123

customer happy all through the development process only to eventually

deliver dud

Of course you have to deliver on your promises and make graphical user

interface that really is significantly easier to learn and use than the DOS version

have no doubt that you can do it as long as you abandon interoperable think

ing and become Windows native

Often the people who clamor the loudest for interoperability are the product

managers marketing managers and programmers who worked long and hard

on the DOS version They will insist that the Windows version be designed

in the image of the DOS version the companys cash cow have seen this

situation several times The DOS-centric forces-of-evil have the upper hand

because their product makes money for the company and for while at least

your product merely costs the company money They make their compelling

arguments to upper management who cant really be expected to know better

and the dictum is handed down Make it like the DOS version At this point

all of the really smart people quit the program is written haltingly to worship

twin operating-system gods and when it finally ships the market emits loud

yawn The DOS faithful remain faithful to DOS snickering all the while about

how they told you the Windows version would flop The Windows hopefuls are

very disappointed with the product because it retained its clunkiness in spite of

Windows Your competitor will release native Windows product that was

designed and written with when in Rome do as the Romans do attitude it

will begin robbing you of sales and your company will begin its long agoniz

ing slide into Chapter 11 Dont let this happen to you

The picture that have just painted of crossing the gulf from DOS to Windows

is also very true when going from the Macintosh platform to Windows In spite

of their numerous visual similarities Mac and Windows are different cultures

and moving from one to another is not the bed of roses you might expect If

you want to sell something to Mac users and have them appreciate it sell it to

them on the Mac Attempting to do it on PC will just irritate Windows peo

ple and generate yawn from the Mac folks Macintosh users believe deeply

that Macs are better than Windows There is not much that you can do on PC

that will impress the Mac crowd even if you adhere slavishly to Mac doctrine

The president of prominent Mac software company once told me that the

pixels on Mac are better than the pixels on PC He actually believed this

even though you can take typical Sony or NEC video screen and plug it into

either computer

0138

124 PART II THE FORM

Management will make the same arguments about interoperability they always

do but the fact remains that although companies may have thousands of Macs

teispeised with thousands of PCs spend tim

6k oibôtli You can examine the market and see for yourself that there

are few companies who make interoperable applications successful on both

platforms They generally have loyal customer base on only one platform

their native one while their customers on the other platform are just marking

time waiting for an easier-to-use product native to their platform

0139

Part III The Behavior

The Programs

Presentation of Self

Using much of todays software is like driving car

that has previously been rolled down cliff You have to

climb in through the window none of the lights seem to

work the engine makes suspicious clunking noise

great spans of sheet metal fly off at inopportune

moments Why does it seem to be rule that the manu

factured artifacts in our lives must become increasingly

harder to use and understand as they incorporate more

and more technology Most software designers wont

admit to themselves the scope of their collective igno

rance about what really works in the field of interface

design We have many noble experiments and many

successes and failures to observewe even have smat

tering of books to readbut we can barely agree on the

details let alone the larger issues The bulk of what

passes for user interface design today is either guesswork

or imitation The frustrating thing is it doesnt have

to be that way

0140

Orchestration and Flow

T0
make software more productive we must make its

users more productive To make users more productive we

have to get them into harmonious frame of mind After

all it is the users mental state that ultimately dictates how

effectively they are using our program

Planing on the step

Racers of lightweight sailboats seek out condition they

call planing racing dingy planes by accelerating to the

point that it actually rides on top of its own bow wake

planing hull displaces only fraction of the water it does

normally so the drag it generates is drastically reduced

This drag reduction can result in speeds increasing by as

much as 50% The transition between displacement sailing

and planing is sharp the planing boat will almost instantly

surge aheadsailors call it getting on the step and the

experience is exhilarating minute or two longer on the

step can spell the difference between winning and losing

race

Humans can plane on the step too when they really con

centrate on an activity The state is generally called flow

127

0141

128 PART III THE BEHAVIOR

Tom DeMarco and Timothy Lister in their book Peopleware Productive Projects

and Teams Dorset House 1987 define flow as condition of deep nearly

meditative involvement Flow often induces gentle sense of euphoria and

can make you unaware of the passage of time Most significantly person in

state of flow can be extremely productive especially when engaged in process-

oriented tasks such as engineering .design development and writing All of

these tasks are typically performed on computers while interacting with soft

ware Therefore it behooves us to create software interaction that promotes

and enhances flow rather than one that includes potentially flow-breaking or

flow-disturbing behavior

When sailor makes lubberly tackchanges the position of the sail clum

silythe dingy falls off the plane and slows like it hit wall The sailor now has

to carefully accelerate until the boat can once again get on the step Good

sailors tack so smoothly that the boat is undisturbed and the hull stays on the

step In the same way we want our programs interaction to be so smooth that

the user is undisturbed and can remain in the state of flow If the program rat

tles the user out of flow it may take several minutes to regain that productive

state

Techniques for inducing and maintaining flow

To create flow our interaction with software must become transparent There

are several excellent ways to make our interfaces recede into invisibility They

are

Follow mental models

Direct dont discuss

Keep tools close at hand

Give modeless feedback

There are other important tools for designing transparent interfaces that we

will discuss in the next couple of chapters These include not stopping the pro

ceedings with idiocy Chapter 13 and questions arent the same as choices

Chapter 14 Well tackle the others right here

Follow mental models

introduced the concept of mental models in Chapter Different users will

have different mental models of process but they will rarely visualize them in

0142

CHAPTER 11 ORCHESTRATION AND FLOW 129

terms of the detailed innards of the computer process Each user naturally

forms mental image of how the software performs its task The mind looks for

some pattern of cause and effect to gain insight into the machines behavior

Creators of race cars place gauges on their dashboards so they follow the dri

vers mental model which goes like this straight up is good Anything else is

bad The engineer twists the gauges in their mounts so that every needle

points straight up when everything is normal The gauges wont look right to

tyros but the racer understands her peripheral vision monitors the gauges eas

ily while staying in flow to drive If any needle deviates from the vertical it

demands the drivers conscious attention to the problem otherwise up means

OK just like that thumbs-up from her pit crew

Direct dont discuss

Many developers imagine the ideal interface to be two-way conversation with

the user However most users dont see it that way Most users would rather

interact with the software in the same way they interact with say their car

They open the door and get in when they want to go somewhere They press

on the accelerator when they want the car to move forward and the brake when

it is time to stop they turn the wheel when they want the car to turn

This ideal interaction is not dialogits more like using tool When car

penter hits nails she doesnt discuss the nail with the hammer she directs the

hammer onto the nail In car the driverthe usergives the car direction

when he wants to change the cars behavior The driver expects direct feedback

from the car and its environment in terms appropriate to the device the view

out the windshield the readings on the various gauges on the dashboard the

sound of rushing air and tires on pavement the feel of lateral g-forces and

vibration from the road The carpenter expects similar feedback the feel of the

nail sinking the sound of steel striking steel the heft of the hammers weight

The driver certainly doesnt expect the car to interrogate him with dialog box

nor would the carpenter appreciate one appearing on her hammer like the one

in Figure 11-1

One of the main reasons software often aggravates and upsets users is that it

doesnt act like car or hammer Instead it has the temerity to try to engage

us in dialogto inform us of our shortcomings and to demand answers from

us From the users point of view the roles are reversed it should be the user

doing the demanding and the software doing the answering

0143

130 PART III THE BEHAVIOR

Strikinci force out of bounds Nail fatally bent

OK

Figure 11-1

Just because programmers are accustomed to seeing messages like this doesnt mean that

people from other walks of life are Nobody wants their machines to scold them If we

guide our machines in dunderheaded way we expect to get dunderheaded response

Sure they can protect us from fatal errors but scolding isnt the same thing as protecting

With direct manipulation we can point to what we want If we want to move

an object from to we click on it and drag it there As general rule the

better more flow-inducing interfaces are those with plentiful and sophisticated

direct-manipulation idioms

Keep tools close at hand

Most programs are too complex for one mode of direct manipulation to cover

all of their features Consequently most programs offer set of different tools

to the user These tools are really different modes of behavior that the program

enters Offering tools is compromise with complexity but we can still do lot

to make tool manipulation easy and to prevent it from disturbing the flow

Mainly we must ensure that tool information is plentiful and easy to see and

attempt to make transitions between tools quick and simple

Tools should be close at hand preferably on palettes or toolbars This way the

user can see them
easily and can select them with single click If the user must

divert his attention from the application to search Out tool his concentration

will be broken Its as if he had to get up from his desk and wander down the

hail to find pencil And he should never have to put tools away manually

As we manipulate tools its usually desirable for the program to report on their

status and on the status of the data we are manipulating with the tool This

0144

CHAPTER 11 ORCHESTRATION AND FLOW 131

information needs to be clearly posted and easy to see without obscuring or

stopping the action

Modern jet fighter designers go the race car designers one better in cockpit

designthis is critically important when the job involves yanking and banking

40 tons of titanium at 600 miles per hour Jet fighters have heads-up display

or HUD that superimposes the readings of critical instrumentation onto the

forward view of the cockpits windscreen The pilot doesnt even have to use

peripheral vision but can read vital gauges while keeping her eyes glued on the

opposing fighter

Our software should display information like
jet fighters HUD The program

could use the edges of the display screen to show the user information about

the action in the center that is being directly manipulated

Modeless feedback

When the program has information or feedback for the user it has several ways

to present it The most common method is to pop up dialog box on the

screen This technique is modal it puts the program into mode that must be

dealt with before it can return to its normal state and before can

continue with his task better way to mfoim the user is with i4ii

Feedback is modeless whenever information for the user is built into the nor

mal interface and doesnt stop the normal flow of system activities and interac

tion In Word you can see what page you are on what section you are in how

many pages are in the current document what position the cursor is in and

what time it is modelessly just by looking at the status bar at the bottom of the

screen

If you want to know how many words are in your document however you have

to call up the Summary Info dialog from the File menu then you have to press

button to summon the Statistics dialog to see word count see Figure

11-2 refer to the word count figure frequently when write magazine arti

cles Its hard to get them short enough sure wish the word count were

offered modelessly

Orchestration

If the user could achieve his goals without the program he would By the same

token if the user needed the program but could achieve his goals without

0145

132 PART III THE BEHAVIOR

going through its user interface he would Interacting with software is not an

aesthetic experience It is pragmatic exercise that is best kept to minimum

Dont kid yourself about your sexy new multimedia interactive online social

point-and-click program The user would rather just snap his fingers or say

abracadabra No matter how cool your interface is less of it would be better

.1

File Name COS0EJtID0C OK
Directory C\C0 OPER\BROCHURE

TitI__ lr.nnneLSnf1waseJnr
Cancel

Statistics

File Name COSIJEG.DOC
Close HeI

Directory C\CCI0PER\RIJCHURE

Template- C\...\TEMPLATE\N0RML.D0T help

Title Cooper Software Inc

Created 02/02/95 1152 AM

Last Saved 02/02/95 407 FM

Last Saved By Alan Cooper

File Size 14.335 Bcte

Revision Number 54

Total Editing Time 172 Minutes

Last Printed 02/02/95 313 PM

Statistics

Pages

Words $25

Characters 2429

Paragraphs 17

Lines 87

Figure 11-2

In Word if you want to know the number of words in your document you must first

request the Summary Info dialog from the File menu Then by pressing the Statistics but

ton you call up the Document Statistics dialog box Down in the corner buried among
other useless for me numbers is the one want After Ive read it must press the Close

key and then the Cancel key. .or was it the other way around This is the opposite of mod
eless feedback and it brings whatever flow might have had going to screeching halt

Directing your attention to the interaction itself puts the emphasis on the side

effects of the tools rather than on the users goals user interface is an arti

fact not something directly related to the goals of the user Next time you find

yourself crowing about what cool interaction youve designed just remember

that the ultimate user interface is no interface at all

0146

CHAPTER 11 ORCHESTRATION AND FLOW 133

No matter how cool your interface

is less of it would be better

It looks to me like the dialog boxes in Figure 1-2 were written by two differ

ent programmers Maybe they didnt talk much with each other but can guar

antee you that they never spoke with designersomeone whose job it was to

coordinate all of the user interface elements The results look like what youd

get if the orchestra lacked conductor Each musician might know his part

well but when all seventy of them get together they wont sound in accord

It is vital that all of the elements work together towards single goal call this

process
of achieving coherent interface

Websters defines orchestration as harmonious organization very reason

able phrase for what we should expect from interacting with software

Harmonious organization doesnt yield to fixed rules You cant create guide

lines like five buttons on dialog box are good and seven buttons on dia

log box are too many Yet it is easy to see that dialog box with 35 buttons is

usually bad The major difficulty with such analysis is that it treats the problem

in vitro It doesnt take into account the problem being solved it doesnt

take into account what the user is doing at the time or what he is trying to

accomplish

Finesse

In many things the more there are the better things are In the world of inter

face design the contrary is true and we should constantly strive to reduce the

number of elements in the interface without reducing the power of the

program In order to do this we must do more with less this is where careful

orchestration becomes important We must coordinate and control all of the

power of our program without letting the interface become gaggle of win

dows and dialogs covered with scattering of unrelated gizmos

often see dialog boxes that are complex but not very powerful They typically

allow the user to perform single task without providing access to related tasks

For example most programs allow the user to name and save data file but

they never let him delete rename or make copy of that file while he is

at it The dialog leaves that task to the operating system It may not be

0147

134 PART III THE BEHAVIOR

trivial to add these functions to the program but isnt it better that the pro

grammer go through the non-trivial activities than for the user to be forced to

Today if the user wants to do something simple like edit new copy of file

foo he must go through non-trivial sequence of actions going to the shell

selecting foo requesting copy from the menu changing its name returning

to the program and then opening the new file Id much rather see the pro

grammer work harder and give the user break

Its not as hard as it looks actually Orchestration doesnt mean bulldozing

your way through problems It means finessing the problems wherever possi

ble Instead of adding the copy and rename functions to the File Open dialog

box of every application why not jus discard that same slightly retarded File

Open dialog box from every application and replace it with the shell program

itself When the user wants to open file the program calls the she1lwhicl

conveniently has all of those collateral file-munging functions built inand the

user can double-click on the desired document Thats pretty much what the

File Open dialog does except it doesnt do it so well

Yes the applications File Open dialog does show the user filtered view of files

like only .DOC files in Word but there are certainly ways to do that in the

shell can think of several ways to do it better and easier in the shell than that

old dialog does with its clunky combobox

Following on this logic we can also dispense with the Save As dialog which is

really
the logical inverse of the File Open dialog If every time we requested the

Save As.. function from our application it wrote our file out to temporary

directory under some reasonable temporary name and then transferred control

to the shell wed have all of those nice shell tools at our disposal to move things

around or rename them

Yes there are access problems but nothing thaf little inter-process commu

nicating wouldnt solve Yes there would be chunk of coding that program

mers would have to do but look at the upside Countless dialog boxes could

be completelydiscarded The user interfaces of thousands of programs would

become more isually and functionally consistent and all with single design

stroke That is orchestration

Invisibility

So much of todays software has stilted jerky and inappropriate interactions

There seems to have been little attempt at orchestration anywhere

0148

