
Apple Exhibit 1115 Page 00001

United States Patent

Ginter et al.

[19]

U5005915019A

[11] Patent Number: 5,915,019

[45] Date of Patent: Jun. 22, 1999

[54] SYSTEMS AND METHODS FOR SECURE
TRANSACTION MANAGEMENT AND
ELECTRONIC RIGHTS PROTECTION

[75] Inventors: Karl L. Ginter, Beltsville; Victor H.
Shear, Bethesda, both of Md.; Francis
J. Spahn, El Cerrito; David M. Van
Wie, Sunnyvale, both of Calif.

Assignee: InterTrust Technologies C0rp.,
Sunnyvale, Calif.

Appl. No.:

Filed:

08/780,393

Jan. 8, 1997

Related US. Application Data

Division of application No. 08/388,107, Feb. 13, 1995,
abandoned.

Int. Cl.6 .. H04L 9/00

US. Cl. 380/4; 380/21; 380/49;
395/680; 705/26; 705/400

Field of Search 380/3, 4, 5, 21,
380/49; 395/680, 683; 705/26, 400

References Cited

U.S. PATENT DOCUMENTS

4/1971 Adams et al. .
9/1971 Blevins.

3,573,747
3,609,697

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

9 004 79
0 84 441
0128672

A0135422
0180460

0 370 146
0399822A2
0421409A2

0 456 386 A2

12/1984
7/1983

12/1984
3/1985
5/1986

11/1988
11/1990
4/1991

11/1991

Belgium .
European Pat.
European Pat.
European Pat.
European Pat.
European Pat.
European Pat.
European Pat.
European Pat.

Off. .
Off. .
Off. .
Off. .
Off. .
Off. .
Off. .
Off. .

(List continued on next page.)

@441.BU‘HNG

P71009155
\ /

METERWGRULES

1 CONTROLS 1

1 0

OTHER PUBLICATIONS

Applications Requirements for Innovative Video Program-
ming; How to Foster (or Cripple) Program Development
Opportunities for Interactive Video Programs Delivered on
Optical Media; A Challenge for the Introduction of DVD
(Digital Video Disc) (Oct. 19—20, 1995, Sheraton Universal
Hotel, Universal City CA).
Arneke, David, et al., News Release, AT&T, Jan. 9, 1995,
AT&T encryption system protects information services, 1
page.

AT&T Technology, vol. 9, No. 4, New Products, Systems and
Services, pp. 16—19, Undated.

Barassi, Theodore Sedgwick, Esq., The Cybernotary: Public
Key Registration and Certificaiton and Authentication of
International Legal Transactions, 4 pages, Undated.

Primary Examiner—Gilberto Barron, Jr.
Attorney, Agent, or Firm—Nixon & Vanderhye PC.

[57] ABSTRACT

The present invention provides systems and methods for
secure transaction management and electronic rights protec-
tion. Electronic appliances such as computers equipped in
accordance with the present invention help to ensure that
information is accessed and used only in authorized ways,
and maintain the integrity, availability, and/or confidentiality
of the information. Such electronic appliances provide a

distributed virtual distribution environment (VDE) that may
enforce a secure chain of handling and control, for example,
to control and/or meter or otherwise monitor use of elec-

tronically stored or disseminated information. Such a virtual
distribution environment may be used to protect rights of
various participants in electronic commerce and other elec-
tronic or electronic-facilitated transactions. Distributed and

other operating systems, environments and architectures,
such as, for example, those using tamper-resistant hardware-
based processors, may establish security at each node. These
techniques may be used to support an all-electronic infor-
mation distribution, for example, utilizing the “electronic
highway.”

101 Claims, 146 Drawing Sheets

Apple Exhibit 1115 Page 00001

Page 00002

5,915,019
Page 2

3,796,830
3,798,359
3,798,360
3,798,605
3,806,882
3,829,833
3,906,448
3,911,397
3,924,065
3,931,504
3,946,220
3,956,615
3,958,081
3,970,992
4,048,619
4,071,911
4,112,421
4,120,030
4,163,280
4,168,396
4,196,310
4,200,913
4,209,787
4,217,588
4,220,991
4,232,193
4,232,317
4,236,217
4,253,157
4,262,329
4,265,371
4,270,182
4,278,837
4,305,131
4,306,289
4,309,569
4,319,079
4,323,921
4,328,544
4,337,483
4,361,877
4,375,579
4,433,207
4,434,464
4,442,486
4,446,519
4,454,594
4,458,315
4,462,076
4,462,078
4,465,901
4,471,163
4,484,217
4,494,156
4,513,174
4,528,588
4,528,643
4,553,252
4,558,176
4,558,413
4,562,306
4,562,495
4,577,289
4,584,641
4,588,991
4,589,064
4,593,353
4,593,376
4,595,950
4,597,058

US. PATENT DOCUMENTS

3/1974
3/1974
3/1974
3/1974
4/1974
8/1974
9/1975

10/1975
12/1975

1/1976
3/1976
5/1976
5/1976
7/1976
9/1977
1/1978
9/1978

10/1978
7/1979
9/1979
4/1980
4/1980
6/1980
8/1980
9/1980

11/1980
11/1980
11/1980
2/1981
4/1981
5/1981
5/1981
7/1981

12/1981
12/1981
1/1982
3/1982
4/1982
5/1982
6/1982

11/1982
3/1983
2/1984
2/1984
4/1984
5/1984
6/1984
7/1984
7/1984
7/1984
8/1984
9/1984

11/1984
1/1985
4/1985
7/1985
7/1985

11/1985
12/1985
12/1985
12/1985
12/1985
3/1986
4/1986
5/1986
5/1986
6/1986
6/1986
6/1986
6/1986

Smith .
Feistel .
Feistel .
Feistel .
Clarke .

Freeny, Jr. .
Henriques .
Freeny, Jr. .
Freeny, Jr. .
Jacoby .
Brobeck et al. .
Anderson et al. .
Ehrsam et al. .

Boothroyd et al. .
Forman, Jr. et al. .
Mazur .

Freeny, Jr. .
Johnstone .
Mori et al. .
Best .
Forman et al. .
Kuhar et al. .

Freeny, Jr. .
Freeny, Jr. .
Hamano et al. .
Gerard .

Freeny, Jr. .
Kennedy .
Kirschner et al. .

Bright et al. .
Desai et al. .

Asija .
Best .
Best .

Lumley .
Merkle .
Best .
Guillou .
Baldwin et al. .
Guillou .

Dyer et al. .
DaVida et al. .
Best .
Suzuki et al. .

Mayer .
Thomas .
Heffron et al. .
Uchenick .

Smith, III .
Ross .
Best .
Donald et al. .
Block et al. .
Kadison et al. .
Herman .

Lofberg .
Freeny, Jr. .
Egendorf .
Arnold et al. .
Schmidt et al. .
Chou et al. .
Bond et al. .
Comerford et al. .

Guglielmino .
Atalla .
Chiba et al. .
Pickholtz .
Volk .

Lofberg .
Izumi et al. .

4,634,807
4,644,493
4,646,234
4,652,990
4,658,093
4,670,857
4,672,572
4,677,434
4,680,731
4,683,553
4,685,056
4,688,169
4,691,350
4,696,034
4,701,846
4,712,238
4,713,753
4,740,890
4,747,139
4,757,533
4,757,534
4,768,087
4,791,565
4,796,181
4,799,156
4,807,288
4,817,140
4,823,264
4,827,508
4,858,121
4,864,494
4,868,877
4,903,296
4,924,378
4,930,073
4,949,187
4,977,594
4,999,806
5,001,752
5,005,122
5,005,200
5,010,571
5,023,907
5,047,928
5,048,085
5,050,213
5,091,966
5,103,392
5,103,476
5,111,390
5,119,493
5,128,525
5,136,643
5,136,646
5,136,647
5,136,716
5,146,575
5,148,481
5,155,680
5,168,147
5,185,717
5,201,046
5,201,047
5,208,748
5,214,702
5,216,603
5,221,833
5,222,134
5,224,160
5,224,163
5,235,642
5,245,165

1/1987
2/1987
2/1987
3/1987
4/1987
6/1987
6/1987
6/1987
7/1987
7/1987
8/1987
8/1987
9/1987
9/1987

10/1987
12/1987
12/1987
4/1988
5/1988
7/1988
7/1988
8/1988

12/1988
1/1989
1/1989
2/1989
3/1989
4/1989
5/1989
8/1989
9/1989
9/1989
2/1990
5/1990
5/1990
8/1990

12/1990
3/1991
3/1991
4/1991
4/1991
4/1991
6/1991
9/1991
9/1991
9/1991
2/1992
4/1992
4/1992
5/1992
6/1992
7/1992
8/1992
8/1992
8/1992
8/1992
9/1992
9/1992

10/1992
12/1992
2/1993
4/1993
4/1993
5/1993
5/1993
6/1993
6/1993
6/1993
6/1993
6/1993
8/1993
9/1993

Chorley et al. .
Chandra et al. .
Tolman et al. .
Pailen et al. .
Hellman .
Rackman .

Alsberg .
Fascenda .
Izumi et al. .
Mollier .
Barnsdale et al. .
Joshi .

Kleijne et al. .
Wiedemer .
Ikeda et al. .
Gilhousen et al. .
Boebert et al.
William .
Taaffe .
Allen et al. .

Matyas et al. .
Taub et al. .
Dunham et al. .
Wiedemer .
ShaVit et al. .

Ugon et al. .
Chandra et al. .

Deming .
Shear .
Barber et al. .
Kobus .
Fischer .
Chandra et al. .

Hershey et al. .
Cina, Jr. .
Cohen .
Shear .
Chernow et al. .
Fischer .
Griffin et al. .
Fischer .
Katznelson
Johnson et al.
Wiedemer .
Abraham et al. .
Shear .

Bloomberg et al. .
Mori .
Waite et al. .
Ketcham .
Janis et al. .
Stearns et al. .
Fischer .
Haber et al. .
Haber et al. .

Harvey et al. .
Nolan, Jr. .
Abraham et al. .
Wiedemer .

Bloomberg .
Mori .

Goldberg et al. .
Maki et al. .
Flores et al. .
Fischer .
Flores et al. .
Hecht .
Waite et al. .
Paulini et al. .
Gasser et al. .
Wobber et al. .

Zhang .

................. 380/4 X

...................... 380/4
..................... 380/4

Page 00002

Page 00003

5,915,019

Page 3

5,247,575 9/1993 Sprague et al. . 5,633,932 5/1997 Davis et al. .
5,260,999 11/1993 Wyman . 5,634,012 5/1997 Stefik et al. .
5,263,158 11/1993 Janis .. 395/600 5,636,292 6/1997 Rhoads .
5,265,164 11/1993 Matyas et al. . 5,638,443 6/1997 Stefik et al. 380/4
5,276,735 1/1994 Boebert et al. . 596389504 6/1997 Scott et al- ~
5,280,479 1/1994 Mary . 5,640,546 6/1997 Gopinath et al. .
5,285,494 2/1994 Sprecher et al. . 576557077 8/1997 Jones 6‘ fiL ~
5,301,231 4/1994 Abraham . 5,687,236 11/1997 Moskow1tz et al. .
5311 591 5/1994 Fischer .. 380/4 576897587 “/1997 Bender et ‘11”
5,319,705 6/1994 Halter et al. . 596927180 “/1997 Lee '
5,337,360 8/1994 Fischer . 597109834 “1998 Rhf’ads ‘
5,341,429 8/1994 Strin er et al. . 597407549 “998 Remy et al' '7 7 g

5,343,527 8/1994 Moore . 5,745,604 4/1998 Rhoads .
5 347 579 9/1994 Blandford. 577487763 “998 Rhoads'
5,351,293 9/1994 Michener et al. . 577489783 “998 Rfoads ‘
5,355,474 10/1994 Thuraisngham et al. . 5,748,960 5/1998 Fischer 395/683
5 373 561 12/1994 Haber et al. . 577549849 “998 Dyer “81‘ ‘
5,390,247 2/1995 Fischer 380/25 5757914 5/1998 MCMamS ~
5’390’330 2/1995 Talati . 5,758,152 5/1998 LeTourneau .
5,392,220 2/1995 van den Hamer et al. . 597657152 “1998 Emkson '
5,392,390 2/1995 Crozier . 597687426 “998 Rhoads ~
5,394,469 2/1995 Nagel et al. . FOREIGN PATENT DOCUMENTS
5,410,598 4/1995 Shear .
5,412,717 5/1995 Fischer . 0 469 864 A2 2/1992 European Pat. Off. .
5,421,006 5/1995 Jablon . 0 565 314 A2 10/1993 European Pat. Off. .
5,422,953 6/1995 Fischer . 0 593 305 A2 4/1994 European Pat. Off. .
5,428,606 6/1995 Moskowitz . 0 651 554 A1 5/1995 European Pat. Off. .
5,438,508 8/1995 Wyman 380/4 X 0 668 695 A2 8/1995 European Pat. Off. .
5,442,645 8/1995 Ugon . 0 725 376 1/1996 European Pat. Off. .
5,444,779 8/1995 Daniele . 0 695 985 A1 2/1996 European Pat. Off. .
5,449,895 9/1995 Hecht et al. . 0 696 798 A1 2/1996 European Pat. Off. .
5,449,896 9/1995 Hecht et al. . 0715243A1 6/1996 European Pat. Off. .
5,450,493 9/1995 Maher . 0715244A1 6/1996 European Pat. Off. .
5,453,601 9/1995 Rosen . 0715245A1 6/1996 European Pat. Off. .
5,453,605 9/1995 Hecht et al. . 0715246A1 6/1996 European Pat. Off. .
5,455,407 10/1995 Rosen . 0715247A1 6/1996 European Pat. Off. .
5,455,861 10/1995 Faucher et al. . 0749081A1 12/1996 European Pat. Off. .
5,455,953 10/1995 Russell . 0 778 513 A2 6/1997 European Pat. Off. .
5,457,746 10/1995 Dolphin . 0 795 873 A2 9/1997 European Pat. Off. .
5,463,565 10/1995 Cookson et al. . 3803982A1 1/1990 Germany .
5,473,687 12/1995 Lipscomb et al. . 57—726 5/1982 Japan .
5,473,692 12/1995 DaVis . 62-241061 10/1987 Japan .
5,479,509 12/1995 Ugon . 01-068835 3/1989 Japan .
5,485,622 1/1996 Yamaki . 64-68835 3/1989 Japan .
5,491,800 2/1996 Goldsmith et al. . 02—242352 9/1990 Japan .
5,497,479 3/1996 Hornbuckle . 02—247763 10/1990 Japan .
5,497,491 3/1996 Mitchell et al. . 02—294855 12/1990 Japan .
5,499,298 3/1996 Narasimhalu et al. . 04—369068 12/1992 Japan .
5,504,757 4/1996 Cook et al. . 05—181734 7/1993 Japan .
5,504,818 4/1996 Okano 380/49 05-257783 10/1993 Japan .
5,504,837 4/1996 Griffeth et al. . 05—268415 10/1993 Japan .
5,508,913 4/1996 Yamamoto et al. . 06—175794 6/1994 Japan .
5,509,070 4/1996 Schull ... 380/4 06-215010 8/1994 Japan .
5,513,261 4/1996 Maher . 6225059 8/1994 Japan .
5,530,235 6/1996 Stefik et al. . 07—056794 3/1995 Japan .
5,530,752 6/1996 Rubin . 07-084852 3/1995 Japan .
5,533,123 7/1996 Force et al. . 07—141138 6/1995 Japan .
5,534,975 7/1996 Stefik et al. . 07—200317 8/1995 Japan .
5,537,526 7/1996 Anderson et al. . 07—200492 8/1995 Japan .
5,539,735 7/1996 Moskowitz . 07—244639 9/1995 Japan .
5,539,828 7/1996 DaVis . 08-137795 5/1996 Japan .
5,550,971 8/1996 Brunner et al. . 08—152990 6/1996 Japan .
5,553,282 9/1996 Parrish et al. . 08—185298 7/1996 Japan .
5,557,518 9/1996 Rosen 364/408 A2136175 9/1984 United Kingdom .
5,563,946 10/1996 Cooper et al. 380/4 2264796 9/1993 United Kingdom .
5,568,552 10/1996 DaVis . 2294348 4/1996 United Kingdom .
5,572,673 11/1996 Shurts . 2295947 6/1996 United Kingdom .
5,592,549 1/1997 Nagel et al. . WOA8502310 5/1985 WIPO .
5,606,609 2/1997 Houser et al. 380/4 WO 85/03584 8/1985 WIPO .
5,613,004 3/1997 Cooperman et al. . WO 90/02382 3/1990 WIPO .
5,621,797 4/1997 Rosen . WO92/06438 4/1992 WIPO .
5,629,980 5/1997 Stefik et al. . WO92/22870 12/1992 WIPO .

Page 00003

Page 00004

5,915,019
Page 4

WO93/01550 1/1993 WIPO .
WO94/01821 1/1994 WIPO .
WO94/03859 2/1994 WIPO .
WO9406103 3/1994 WIPO .

WO 94/16395 7/1994 WIPO .
W0 94/18620 8/1994 WIPO .
WO 94/22266 9/1994 WIPO .
WO 94/27406 11/1994 WIPO .
WO95/14289 6/1995 WIPO .

WO 96/00963 1/1996 WIPO .
WO 96/03835 2/1996 WIPO .
WO 96/05698 2/1996 WIPO .
WO 96/06503 2/1996 WIPO .
WO96/13013 5/1996 WIPO .
WO96/21192 7/1996 WIPO .
WO97/03423 1/1997 WIPO .
WO97/07656 3/1997 WIPO .
WO97/32251 9/1997 WIPO .

WO 97/48203 12/1997 WIPO .

OTHER PUBLICATIONS

Bruner, Rick E., PowerAgent, NetBot help advertisers reach
Internet shoppers, Aug. 1997 (Document from Internet).
CD ROM, Introducing . . . The Workflow CD—ROM Sam-
pler, Creative Networks, MCIMail: Creative Networks, Inc.,
Palo Alto, California, Undated.

Clark, Tim, Ad service gives cash back, www.news.com,
Aug. 4, 1997, 2 pages (Document from Internet).
Communications of the ACM, Jun. 1996, vol. 39, No. 6.

Cunningham, Donna, et al., News Release, AT&T, Jan. 31,
1995, AT&T, VLSI Technology join to improve info high-
way security, 3 pages.

Data Sheet, About the Digital Notary Service, Surety Tech-
nologies, Inc., 1994—95, 6 pages.

Dempsey, et al., D—Lib Magazine, Jul/Aug. 1996 The
Warwick Metadata Workshop: AFramework for the Deploy-
ent of Resource Description, Jul. 15, 1966.

Document from Internet, cgi@ncsa.uiuc.edu, CGI Common
Gateway Interface, 1 page, 1996.

Firefly Network, Inc., www.ffly.com, What is Firefly? Firefly
revision: 41.4 Copyright 1995, 1996.
Gleick, James, “Dead as a Dollar” The New York Times
Magazine, Jun. 16, 1996, Section 6, pp. 26—30, 35, 42, 50,
54.

Greguras, Fred, Softic Symposium ’95, Copyright Clear-
ances and Moral Rights, Nov. 30, 1995 (as updated Dec. 11,
1995), 3 pages.
Harman, Harry H., Modern Factor Analysis, Third Edition
Revised, University of Chicago Press Chicago and London,
Third revision published 1976.

Herzberg, Amir et al., Public Protection of Software, ACM
Transactions on Computer Systems, vol. 5, No. 4, Nov.
1987, pp. 371—393.

Holt, Stannie, Start—up promises user confidentiality in Web
marketing service, Info World Electric, Aug. 13, 1997
(Document from Internet).
HotjavaTM: The Security Story, 4 pages, Undated.
Invoice? What is an Invoice? Business Week, Jun. 10, 1996.

Javasoft, Frequently Asked Questions—Applet Security,
What’s Java”? Products and Services, Java/Soft News,
Developer’s Cornier,Jun. 7, 1996, 8 pages.

Jiang, et al, A concept—Based Approach to Retrieval from an
Electronic Industrialn Directory, International Journal of
Electronic Commerce, vol. 1, No. 1, Fall 1996, pp. 51—72.

Jones, Debra, Top Tech Stories, PowerAgent Introducts First
Internet ‘Infomediary’ to Empower and Protect Consumers,
Aug. 13, 1997 3 pages (Document from Internet).
Kohntopp, M., Sag’s durch die Blume, Apr.
marit@schulung.netuse.de.
Lagoze, Carl, D—Lib Magazine, Jul/Aug. 1996, The War-
wick Framework, A Container Architecture for Diverse Sets
of Metadata.

VIaclachlan, Malcolm, PowerAgent Debuts Spam—Free
VIarketing, TechWire, Aug. 13, 1997, 3 pages (Document
from Internet), Undated.
VIilbrandt, E., Stenanography Info and Archive, 1996.
VIossberg, Walter S., Personal Technology, Threats to Pri-
vacy On—Line Become More Worrisome, Wall Street Jour-
nal, Oct. 24, 1996.
\Iegroponte, Electronic Word of Mouth, Wired Oct. 1996, p.
218.

\Iews Release, Premenos Announces Templar 2.0—Next
Generation Software for Secure Internet EDI,
webmaster@templar.net, 1 page, Jan. 17, 1996.
\Iews Release, The Document Company Xerox, Xerox
Announces Software Kit for Creating Working Documents
with Dataglyphs, Nov. 6, 1995, Minneapolis, MN, 13 pages.
PowerAgent Inc., Proper Use of Consumer Information on
the Internet White Paper, Jun. 1997, Document from Inter-
net, 9 pages (Document from Internet).
PowerAgent Press Releases, What the Experts are Reporting
on PowerAgent, Aug. 13, 1997, 6 pages (Document from
Internet).
PowerAgent Press Releases, What the Experts are Reporting
on PowerAgent, Aug. 4, 1997, 5 pages (Document from
Internet).
PowerAgent Press Releases, What the Experts are Reporting
on PowerAgent, Aug. 13, 1997, 3 pages (Document from
Internet).
Premenos Corp. White Paper: The Future of Electronic
Commerce, A Supplement to Midrange Systems, Internet
webmaster@premenos.com, 4 pages, Undated.
Resnick, et al., Recommender Systems, Communications of
the ACIVI, vol. 40, No. 3, Mar. 1997,pp. 56—89.
Rothstein, Edward, The New York Times, Technology, Con-
nections, Making th eInternet come to you, through ‘push’
technology . . . p. D5, Jan. 20, 1997.
Rutkowski, Ken, PowerAgent Introduces First Internet
‘Infomediary’ to Empower and Protect Consumers, Tech
Talk News Story, Aug. 4, 1997 (Document from Internet).
Sager, Ira (Edited by), Bits & Bytes, Business Week, Sep. 23,
1996, p. 142E.
Schurmann, Jurgen, Pattern Classification, A Unified View
of Statistical and NeuralApproaches, John Wiley & Sons,
Inc., 1996.

Special Report, The Internet:Fulfilling the Promise The
Internet: Bring Order From Chaos; Lynch, Clifford, Search
the Internet; Resnick, Paul, Filtering Information on the
Internet; Hearst, Marti A., Interfaces for Searching the Web;
Stefik, Mark, Trusted Systems; Scientific American, Mar.
1997, pp. 49—56, 62—64, 68—72, 78—81.
Stefik, Mark, Introduction to Knowledge Systems, Chapter 7,
Classification, pp. 543—607, 1995 by Morgan Kaufmann
Publishers, Inc.

Templar Overview,: Premenos, Internet info@templar.net, 4
pages, Undated.
Templar Software and Services: Secure, Reliable, Stan-
dards—Based EDI Over the Internet, Prementos, Internet
info@templar.net, 1 page, Undated.

1996,

Page00004

Page 00005

5,915,019
Page 5

Voight, Joan, Beyond the Banner, Wired, Dec. 1996, pp. 196,
200, 204.

Vonder Haar, Steven, PowerAgent Launches Commercial
Service, Inter@ctive Week, Aug. 4, 1997 (Document from
Internet).
Weber, Dr. Robert, Digital Rights Management Technolo-
gies, A Report to the International Federation of Reproduc-
tion Rights Organisations, Oct. 1995,pp. 1—49.
Weber, Dr. Robert, Digital Rights Management Technolo-
gies, Oct. 1995, 21 pages.

Wepin Store, Stenography (Hidden Writing) (Common Law
1995).
World Wide Web FAQ, How can I put an access counter on
my home page?, 1 page, 1996.
Yellin, F. Low Level Security in Java, 8 pages, Undated.
IBM Technical Disclosure Bulletin, “Multimedia Mixed
Object Envelopes Supporting a Graduated Fee Scheme via
Encryption,” vol. 37, No. 03, Mar. 1994, Armonk, NY.
IBM Technical Disclosure Bulletin, “Transformer Rules for
Software Distribution Mechanism—Support Products,” vol.
37, No. 04B, Apr. 1994, Armonk, NY.
Suida, Karl, Mapping NewApplications onto New Technolo-
gies, “Security Services in Telecommunications Networks,”
Mar. 8—10, 1988, Zurich.

Portland Software’s ZipLock, Internet information, Copy-
right Portland Software 1996—1997, 12 pages.
Dyson, Esther, “Intellectual Value,” Wired Magazine, Jul.
1995, pp. 136—141 and 182—184.
Argent Information Q&A Sheet, http://www.digital—water-
mark.com/, Copyright 1995, The Dice Company, 7 pages.
Guillou, L.: “Smart Cards and Conditional Access”, pp.
480—490 Advances in Cryptography, Proceedings of Euro-
Crypt 84 (Beth et al, Ed., Springer—Verlag 1985).
Rankine, G., “Thomas—A Complete Single—Chip RSA
Device,” Advances in Cryptography, Proceedings of Crypto
86, pp. 480—487 (A.M. Odlyzko Ed., Springer—Verlag
1987).
DSP56000/DSP56001 Digital Signal Processor User’s
Manual, Motorola, 1990, p. 2—2.
Dusse, Stephen R. and Burton S. Kaliski “A Cryptographic
Library for the Motorola 56000” in Damgard, I. M.,
Advances in Cryptology—Proceedings Eurocrypt 90,
Springer—Verlag, 1991, pp. 230—244.
Struif, Bruno “The Use of Chipcards for Electronic Signa-
tures and Encryption” in : Proceedings for the 1989 Con-
ference on VSLI and Computer Peripherals, IEEE Computer
Society Press, 1989, pp. 4/155—4/158.
Ryoichi Mori and Masaji Kawahara, The Transactions of the
EIEICE, V. “Superdistribution: The Concept and the Archi-
tecture,” E73 (Jul. 1990), No. 7, Tokyo, Japan.
Stefik, “Internet Dreams: Archetypes, Myths, and Meta-
phors, Letting Loose the Light: Igniting Commerce in Elec-
tronic Publication,” pp. 219—253, (1996) Massachusetts
Institute of Technology.
Stefik, Mark, “Letting Loose the Light, Igniting Commerce
in Electronic Publication,” (1994, 1995) Palo Alto, Califor-ma.

Shear, “Solutions for CD—ROM Pricing and Data Security
Problems”, pp. 530—533, CD ROM Yearbook 1988—1989
(Microsoft Press 1988 or 1989).
Press Release, “National Semiconductor and EPR Partner

For Information Metering/Data Security Cards” (Mar. 4,
1994).

“Electronic Publishing Resources Inc. Protecting Electroni-
cally Published Properties Increasing Publishing Profits”
(Electronic Publishing Resources, 1991).
“The Benefits of ROI For Database Protection and Usage
Based Billing” (Personal Library Software, 1987 or 1988).
ROI—Solving Critical Electronic Publishing Problems (Per-
sonal Library Software, 1987 or 1988).
Weber, “Metering Technologies for Digital Intellectual
Property, A Report to the International Federation of Repro-
duction Rights Organisations,” pp. 1—29; Oct. 1994, Boston,
MA, USA.

ROI (Personal Library Software, 1987 or 1988).
DiscStore (Electronic Publishing Resources 1991).
Yee, “Using Secure Coprocessors,” CMU—CS—94—149,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, Undated.
Tygar et al., “Dyad: A System for Using Physically Secure
Coprocessors,” School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA 15213 (undated).
Tygar et al., “Dyad: A System for Using Physically Secure
Coprocessors,” School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA 15213 (May 1991).
Maxemchuk, “Electronic Document Distribution,” AT&T
Bell Laboratories, Murry Hill, New Jersey 07974, Undated.
Choudhury, et al., “Copyright Protection for Electronic
Publishing over Computer Networks,” AT&T Bell Labora-
tores, Murray Hill, New Jersey 07974 (Jun. 1994).
Weingart, “Physical Security for the MABYSS System,”
IBM Thomas J. Watson Research Center, Yorktown Heights,
New York 10598 (1987).
White, “ABYSS: A Trusted Architecture for Software Pro-
tection,” IBM Thomas J. Watson Research Center, Yorktown

Heights, New York 10598 (1987).
Neumann, et al., “A Provably Secure Operating System: The
System, Its Applications, and Proofs,” Computer Science
Laboratory Report CSL—116, Second Edition, SRI Interna-
tional (May 1980).
Caruso, “Technology, Digital Commerce 2 plans for water-
marks, which can bind proof of authorship to electronic
works,” New York Times (Aug. 1995).
“Electronic Currency Requirements, XIWT (Cross Industry
Working Group),” no date.
“NII, Architecture Requirements, XIWT,” no date.
Arthur K. Reilly, Standards committee
TZ—Telecommunications, Input to the ‘International Tele-
communications Hearings,’ Panel 1: Component Technolo-
gies of the NII/GII, no date.
Dan Bart, Comments in the Matter of Public Hearing and
Request for Comments on the International Aspects of the
National Information Infrastructure, Aug. 12, 1994.
“Open System Environment Architectural Framework for
National Information Infrastructure Services and Standards,
in Support of National Class Distributed Systems,” Distrib-
uted System Engineering Program Sponsor Group, Draft
1.0. Aug. 5, 1994.
“Information Infrastructure Standards Panel: N11 ‘The Infor-

mation Superhighway’,” NationsBank—HGDeal—ASC
X9, 15 pages, Undated.
Jud Hofmann, “Interfacing the N11 to User Homes,” Elec-
tronic Industries Association, Consumer Electronic Bus
Committee, 14 slides, no date.
“Framework for National Information Infrastructure Ser-

vices,” NIST, Jul. 1994, 12 slides.

Claude Baggett, “Cable’s Emerging Role in the Information
Superhighway,” Cable Labs, 13 slides, Undated.

Page 00005

Page 00006

5,915,019
Page 6

“IISP Break Out Session Report for Group No. 3, Standards
Development and Tracking System,” no date.
“XIWT Cross Industry Working Team,” 5 pages, Jul. 1994.
“Computer Systems Policy Project (CSSP), Perspectives on
the National Information Infrastructure: Ensuring Interop-
erability (Feb. 1994),” Feb. 1994.
“Framework for National Information Infrastructure Ser-

vices,” Draft, US. Department of Commerce, Jul. 1994.
“EIA and TIA White Paper on National Information Infra-
structure,”published by the Electronic Industries Associa-
tion and the Telecommunications Industry Association,
Washington, DC, no date.
Michael Baum, “Worldwide Electronic Commerce: Law,
Policy and Controls Conference,” program details, Nov. 11,
1993.

Bruce Sterling, “Literary freeware: Not for Commercial
Use,” remarks at Computers, Freedom and Privace Confer-
ence IV, Chicago, Mar. 26, 1994.
“The 1:1 Future of the Electronic Marketplace: Return to a
Hunting and Gathering Society,” 2 pages, no date.
D. Linda Garcia, testimony before a hearing on science,
space and technology, May 26, 1994.
Wired 1.02, “Is Advertising Really dead?, Part 2,” 1994.
Hugh Barnes, memo to Henry LaMuth, subject: George
Gilder articles, May 31, 1994.
Daniel J. Weitzner, A Statement on EFF’s Open Platform
Campaign as of Nov., 1993, 3 pages.
“Serving the Community: A Public—Interest Vision of the
National Information Infrastructure,” Computer Profession-
als for Social Responsibility, Executive Summary, no date.
Steven Schlossstein, International Economy, “America: The
G7’s Comeback Kid,” Jun./Jul. 1993.
Lance Rose, “Cyberspace and the Legal Matrix: Laws or
Confusion?,” 1991.
“Cable Television and America’s Telecommunications

Infrastructure,” National Cable Television Association, Apr.
1993.

Adele Weder, “Life on the Infohighway,” 4 pages, no date.
T. Valovic, Telecommunications, “The Role of Computer
Networking in the Emerging Virtual Marketplace,” pp.
40—44, Undated.
Dr. Joseph N. Pelton, Telecommunications, “Why Nicholas
Negroponte is Wrong About the Future of Telecommunica-
tion,” pp. 35—40, Jan. 1993.
Nicholas Negroponte, Telecommunications, “Some
Thoughts on Likely and expected Communications sce-
narios: A Rebuttal,” pp. 41—42, Jan. 1993.
Tom Stephenson, Advanced Imaging, “The Info Infrastruc-
ture Initiative: Data SuperHighways and You,” pp. 73—74,
May 1993.
Steve Rosenthal, New Media, “Mega Channels,” pp. 36—46,
Sep. 1993.
News Release, The White House, Office of the President,
“Background on the Administration’s Telecommunications
Policy Reform Initiative,” Jan. 11, 1994.
Steve Rosenthal, New Media, “Interactive Network: Viewers
Get Involved,” pp. 30—31, Dec. 1992.
Steve Rosenthal, New Media, “Interactive TV: The Gold
Rush Is On,” pp. 27—29, Dec. 1992.
EFFector Online vol. 6 No. 6, “A Publication of the Elec-
tronic Frontier Foundation,” 8 pages, Dec. 6, 1993.
Mike Lanza, electronic mail, “George Gilder’s Fifth
Article—Digital Darkhorse—Newspapers,” Feb. 21, 1994.
Steven Levy, Wired, “E—Money, That’s What I Want,” 10
pages, Dec. 1994.

Kevin Kelly, Whole Earth Review, “E—Money,”pp. 40—59,
Summer 1993.

Green paper, “Intellectual Property and the National Infor-
mation Infrastructure, a Preliminary Draft of the Report of
the Working Group on Intellectual Property Rights,” Jul.
1994.

Communications of the ACIVI, “Intelligent Agents,” Jul.
1994, vol. 37, No. 7.

“Encapsulation: An Approach to Operating System Secu-
rity,” Bisbey, II et al., Oct. 1973, pp. 666—675.

“Encryption Methods in Data Networks,” Blom et al., Eric-
sson Technics, No. 2, 1978, Stockholm, Sweden.

First CII Honeywell Bull International Symposium on Com-
puter Security and Confidentiality, Jan. 26—28, 1981, Con-
ference Text, pp. 1—21.

Codercard, Spec Sheet—Basic Coder Subsystem, No date
given.

“Micro Card”—Micro Card Technologies, Inc., Dallas,
Texas, No date given.
“A Method of Software Protection Based on the Use of

Smart Cards and Cryptographic Techniques,” Scnaumuel-
ler—Bichl et al., No date given.

I “The New Alexandria” No. 1, Alexandria Institute, pp.
1—12, Jul.—Aug. 1986.

Denning et al., “Data Security,” 11 Computing Surveys No.
3, Sep. 1979.

Kent, “Protecting Externally Supplied Software In Small
Computers” (MIT/LCS/TR—255 Sep. 1980).

Proceedings of the IEEE, vol. 67, No. 3, Mar. 1979, “Privacy
and Authentication: An Introduction to Cryptography,”
Whitfield Diffie and Martin E. Hellman, pp. 397—427.

Digest of Papers, VLSI.‘ New Architectural Horizons, Feb.
1980, “Preventing Software Piracy With Crypto—Micropro-
cessors,” Robert M. Best, pp. 466—469.

IEEE Transactions on Information Theory, vol. 22, No. 6,
Nov. 1976, “New Directions in Cryptography,” Whitfield
Diffie and Martin E. Hellman, pp. 644—651.

Low, et al., “Anonymous Credit Cards,” AT&T Bell Labo-
ratories, Proceedings of the 2nd ACM Conference on Com-
puter and Communication Security, Fairfax, Virginia, Nov.
2—4, 1994.

Tygar et al., “Cryptography: It’s Not Just For Electronic
Mail Anymore,” CMU—CS—93—107, School of Computer
Science Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, Mar. 1, 1993.

Smith, et al., “Signed Vector Timestamps: ASecure Protocol
for Partial Order Time,” CMU—93—116, School of Computer
Science Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, Oct. 1991; version of Feb. 1993.

Kristol et al., “Anonymous Internet Mercantile Protocol,”
AT&T Bell Laboratories, Murray Hill, New Jersey, Draft:
Mar. 17, 1994.

Low et al., “Document Marking and Identification using
both Line and Word Shifting,” AT&T Bell Laboratories,
Murray Hill, New Jersey, Jul. 29, 1994.

Low et al., “Anonymous Credit Cards and its Collusion
Analysis,” AT&T Bell Laboratories, Murray Hill, New Jer-
sey, Oct. 10, 1994.

Page 00006

Page 00007

5,915,019Sheet 1 of 146Jun. 22, 1999US. Patent

Mme—>Omm4<_oz<z_n_Hzmozmmmoz
mOI._.D<EmEDmZOo

053.5ZOFODQOKQOm9>

mo_>mmm>mm>3moZO_._.<_>_mOuz_

orm

EEFDzO_._.<s_MOn_z_

3N

—..0.”—

DDDDmmnOI02.19.5an

Page 00007

Page 00008

5,915,019Sheet 2 of 146Jun. 22, 1999US. Patent

OONC._.=._.DZO_l_r<_>_mOn_Z_

mo<¢o._.m$582w._.zm._.zom.

7m0h<mmo.EOnEm

 sz0<OZ_ZO~ww_S_mmm

uOON

Iut>>m

mOmmmoommZO_HU<wZ</n_._.

mmZmommFmOmwm

.IIIzFz<n__U:.m<n_mD>OFrkz<n:o_._.m<n_wO>OF(P.0—l
Page 00008

Page 00009

US. Patent

108

/

chTE
ELECTRONIC .

CONTENT
HIGHWAY

Jun. 22, 1999 Sheet 3 of 146

FIG. 2

102

VDE CONTE NT

CREATOR

RULES &
CONTROLS

14

: VDE RIGHTS

IIT DISTRIBUTOR REPORTS
<——-— AND

PAYMENTS

110\

RULES &

CONTROLS

VDE CONTENT
USER

REPORTS PAYMENTS

120

FINANCIAL
CLEARINGHOUSE ._...,...,-_,.___._._

AND ———_—>
VDE ADMINISTRATOR

BILLS

5,915,019

100

J

 118

Page 00009

Page 00010

5,915,019US. Patent

FIG. 2A

H//////.////Alllv

.-.lm.I.-.l——.o...-.-._..m-------------------\\\\\\\\\\\V\\\\\\\\\\\\\\\\\\Amg;

Page 00011

US. Patent Jun. 22, 1999 Sheet 5 of 146 5,915,019

REQUEST

FIG. 3

USAGE

REPORT

406

BILL/REPORT4____ ‘ BILLING

408

_. _ — —> OVER BUDGET

T
SUPPLY CONTENT TO USER

Page 00011

Page 00012

5,915,019Sheet 6 of 146Jun. 22, 1999US. Patent

.523m0.500\&wx\\1oz:s$>.\:o<wmmmw

wJOmHZOUmmJDmOZEmHmE

v.OEFMOmmmO...zmI>>
mmpmmmommH,,,.A//

Page 00012

Page 00013

US. Patent Jun. 22, 1999 Sheet 7 of 146 5,915,019

FIG. 5A

300

CONTENT 302

CONTAINER

INFORMATION CONTENT

.391.

PERMISSIONS RECORD

99.9

BUDGETS

£033

OTHER METHODS

1000

Page 00013

Page 00014

5,915,019Sheet 8 of 146Jun. 22, 1999US. Patent

ZO_.r<EmOmz_FZmFZOo.wmmooma.mmOSKMm.mmDommOFZEnEMOZE.mwkmamm.DmmémFo<mFXm.wmmoo<Fn_>momoFm>mozmEOD<.OZ_.._.=m.mmkmEoooerOIkmEmmIHO

coo?moo—+52mmIHO

m>m¥
wZOrEODOI‘rmE

mkzmzmmsomm00:52mkmooam292522.22II.2959590mom“0%:omoommmzoamimmm.meEVII
vow

8womoommszmmEmm.Hzmkzoozo_h<2mou_z_
mmz_<._.zoo._.Zm_._.zoo

\\
oom

mag/towde>.05259.«onFZMPZOOZO_._..<S_mOn_Z_

ICEJOmFZOom>EmOm023.:mIb>>Dmkéwwkzmmmt.awkm2<m<a>232yrcmaomw2_mmD>232m0mzoOH>4aa<ww_._._>_._.o<ZOwZOF<t23wonmkmwonm
mm.9"—

Page 00014

Page 00015

US. Patent Jun. 22, 1999 Sheet 9 of 146 5,915,019

510

APPLIANCE LINK

I_________
I

i
I 502

\ FIRMWARE Ii

I .

\ 504I I
. I
I I

505
I
I

' I
I SECEREPEEEEES'E'EEE‘QREEMEEIEEE_____ J

R TAMPER
FIG. 6 RESISTANT

BARRIER

Page 00015

Page 00016

5,915,019Sheet 10 of 146Jun. 22, 1999US. Patent

mw<m<k<aOwommflomw
cowm02<_._n_n_<QZOKHOMIE

mZO_._.OZDn_Emkm>mOZ_._.<W_Mn_OMMIFO

Emhm>mOZFEmEOZEDD<QZ<9.19m

O_
__

4.:5u_.2555:_

$2920:ngmmm:ZOEZOOOmmmo_O>

vmm

<0?mmzz<0m
wmm

.mZOFOZDmm0>

“NEW._SEQ/m_
r||ll

_Oqummaof_mEo?_

Page 00016

Page 00017

US. Patent Jun. 22, 1999 Sheet 11 of 146 5,915,019

FIG. 8

\ 659

POWER
SUPPLY

653
670

@§
Mom

612,614 ®é@

KEYBOARD/ BACKUP
DISPLAY STORAGE

SYSTEM

BUS

COMMUNICATIONS
CONTROLLER

I/O

CONTROLLER

SECONDARY STORAGE

OTHER
INFORMATION

673

APPLICATION PROGRAMS

608

VDE AWARE NON—VDE
6083 AWARE 608b

RIGHTS OPERATING SYSTEM (“ROS")

SECURE OTHERVDE
DATABASE OPERATING

FUNCTIONS SYSTEM
604 FUNCTIONS 606

VDE OBJECTS
300

602

610

Page 00017

Page 00018

5,915,019Sheet12 0f146Jun.22,1999US. Patent

V.....................!
‘§:\§._X

m.9”—
2<m>z§<m..Im<JE__\Eommmm

nvmmvmmmvmm
wa 083.952:moEmmEmamowmm

ommmOmmmoommomozz

mmmmwjomkzoo<20

“Ammx

i...‘..........JmoEmmdui3%m05.25%h«mmmzazmm0250::“2mMFk<m“

Nmmmz_02m._.n_>momoFm>m02m

Page00018

Page 00019

5,915,019Sheet 13 of 146Jun. 22, 1999US. Patent

momNEE/«m

553%$125.mm<>>am<x/o—.mg”—
_ommm8mm<20oz_mmmoomn_mébfim

<._.<DmDO0

imam?.............mFzmzogoo“
mzmmx“3mH_«8

I"Emommfiz\“18Emogmomzov8mm"z9rwA_.mn_m..:zmzzom_>2mmmkzm>m“Ozamgoma"m8%kzm>m$536wm-bmfimfl1..........................mu.------------Hfimnmnuuu.-----.....................Ezmzoazoomu"mkzm>mm023395N.mEgmooo_.mmE<Q<Ez|_wmmmkziaI.H592mm?dzmmx“__”.5002.lS.OHrmmm:mommmmwwDOEL“51:;m8“motzozll":Luzmfizwa/zwbzww$.0waEwbw-+.m.om.L
&am<0m>mxl

vnmmm_mm<m._.Z<Fm_wmmwin—24Fmm<>>._.u_0m

{3-8%moEmEZzoEmoxM\zoEoEfiozmmma

.AmvmmomEmmom

mmmw<z<22<Iwwmm>EQ

zO_.H.<o_._an_<,_ nmom
zZO_._.<O_._an_<wzo:<o_._&.TII'I

Page 00019

Page 00020

5,915,019Sheet14 0f146Jun. 22, 1999US. Patent

mom

29.523“.mommeo
m44<o

zopozaumzoPozsummIHOmD>
oz<mo>

_a<mmm3ackomgomm

___-..___..w.A-___-_--_.______.w________.__._____-______II
IIII
III
III
IIIIII
IIII
I
IIIII
IIII
IIIIIIIIIII
L

mj<oZOFQZDmwOmMIFO
€38zofi<oja¢<mm$s<-mo>“VF.V.mu_n_

m0mmIkO

szofiozau"mommmxko

mwzofiozau
mo>W

KNIFODz<mo)
Acmmom

Fmj<oZOFUZDumD>

mOHommamm
mj<0ZOFOZDumommIHO

nmomZOF<OSam<mm<>><mD>-202m:.OE

ZO_._.<0_.En_<mm<>><-mD>

<2..0_..._

m_20_._.023u

Page00020

Page 00021

US. Patent Jun. 22, 1999 Sheet 15 of 146 5,915,019

 FIG. 11D

691

 ‘1:
NW?

1100(2)
1100(3)

FIG. HG
Page 00021

Page 00022

US. Patent Jun. 22, 1999 Sheet 16 of 146 5,915,019

1202(1)

FIG. 11H

Page 00022

Page 00023

Sheet 17 of 146 5,915,019Jun. 22, 1999US. Patent

Page 00023

Page 00024

US. Patent Jun. 22, 1999 Sheet 18 of 146 5,915,019

Page 00024

Page 00025

5,915,019Sheet 19 of 146Jun. 22, 1999US. Patent

owmqmzmmx

<z<_>_

mmmwx.mI!EwWooMmQ._E|:s_m:mmRe>mozm2Fomwmo

vmmmOHomEQm—m

mmNNawhn
 meu

mmFDOM
mmnmmgmxfi.OZ_Domon

ownnmmm

KNEEMWSE

.Z_S_D<OZ:>_OOZ_

om:.............1ESt

moEmsz:mmo<z<z“z/mEmTQmwume><>>mk<0.:<>_"EIOF_>>mFomfimo_wOmFOMme
__

vmm0<z<2

m>8>m. mmo<z<2mo$830$323).$25EotwonmmA0239*xmozpmzmemanatmg”FomamooZOokao

mm0<Z<_>_mm>5

.2200NR
-wmmmhmmo<z<2mmo<z<280.5%85%

3.5%Jnlullszmbm
nmnm

mm0<z<2ww<m<k<o

moEmmFZmmw<z<zs_<mE.mmmzzpzooFzmozmnmozmvwmmmi.

mIo<o$5863;moEmEZ

pasaofimoEmmEZOF<0EFO

Nmnmww<z<§0am
 ZOEumoxwoz<ovnmo_>mmmZO_H<_FOZ,

Page 00025

Page 00026

5,915,019Sheet20 0f146Jun.22,1999US. Patent

HomwmomQ>

oom

:FZMIHIZOO:ommrZOEODKkaOoHomwmo

 8.vaSm;
mum:

ovmr

mfiuZOF<MD®EZOOHomfimo(NF.9...

Evt

ommw207:2.meHomfimo F3m2_mmw:

Page00026

Page 00027

5,915,019Sheet 21 of 146Jun. 22, 1999US. Patent

08szmmxmomZOKEOH

mmo_>mmwmmIFO

Amvmzmso

FmDmmmkEmeFDOm
>m<mm3

Nnm

vammJDZ/xI\FaDEEmFZ_mEJ
4<me.r2_

0%592%$9232EmmmoSmmmEosms.Ema/«9.msm:2,3M23E;“samoomav-.1meEm~650mes:mm0<z<2mmo<z<§mmo<z<2Eozmzwa20.50me
5:00229J||l|lllllllL

NmmmeOH<mm_OJmzmwx

 mm0<z<§mOk<mmszmmmEDzEOQz<m

0mmmw0<z<20am mm0<z<§mm0<z<2mm0<z<§mm0<z<2mm30.5%05mm<mmanommdzz<xowExm2:

mm0<2<2

mm0<z<2mmo<z<§
mmo_>mmw>m<s=>5m

232200mmDUmm\mm0<z<2‘IFD<

Hat/momoPm>mozm

 0mm

2‘.0.“—

Page 00027

Page 00028

US. Patent Jun. 22, 1999 Sheet 22 of 146 5,915,019

FIG. 14A
J

DEVICE FIRM WIRE LOW LEVEL
SERVICES 582

TIME BASE MANAGER 554

ENCRYTIONIDECRYPTION MANAGER 556
INITIALIZATION

POST PK
DOWNLOAD BULK
CHALLENGE/RESPONSE AND

AUTHENTICATION KEY AND TAG MANAGER 558

RECOVERY KEY STORAGE IN EEPROM

EEPROM/FLASH MEMORY

MANAGER KEY LOCATOR
KERNEL/DISPATCHER 552 KEY GENERATOR

INITIALIZATION CONVOLUTION ALGORITHM

TASK MANAGER 576

(SLEEP/AWAKE/CONTEXT SWAP)

INTERRUPT HANDLER 584

(TlMER/BIU/POWER FAILNVATCHDOG
TIMER/ENCRYPTION COMPLETED)

BIU HANDLER 586

MEMORY MANAGER 578

WITT‘ZA'T‘IO‘N (SETTING MMU

SUMMARY SERVICES MANAGER 560

EVENT SUMMARIES

BUDGET SUMMARIES

DISTRIBUTER SUMMARY SERVICES

m

CHANNEL HEADERS

TABLES CHANNEL DETAILS

ALLOCATE LOAD MODULE EXECUTION SERVICES

DELLOCATE §§8AUTHENTICATION MANAGER/SECURE
COMMUNICATION MANAGER 564

DATABASE MANAGER 566

MANAGEMENT FILE SUPPORT

TRANSACTION AND

SEQUENCE NUMBER SUPPORT
SRN/ HASH

DTD INTERPRETER 590

VIRTUAL MEMORY MANAGER 580

SWAP BLOCK PAGING

EXTERNAL MODULE PAGING

MEMORY COMPRESS

RPC AND TABLES 550

INITIALIZATION
LIBRARY ROUTINES 574

MESSAGING CODE ISERVICES *—

. ARE PROBABLY

SEND/RECE'VE LIBRARY ROUTINES
STATUS . - . u
RPC DISPATCH TABLE

 METHODS

METER LOAD MODULE(S)

BILLING LOAD MODULE(S)

BUDGET LOAD MODULE(S)

“AUDIT LOAD MODULE(S)

RPC SERVICE TABLE

READ OBJECT l ()AI) MODULETSF

WRI I‘E OBJECT LOAD MODULms)

OPEN OBJECT LOAD MODULE(S)

CLOSE OBJECT LOAD MODULEIS)

Page 00028

Page 00029

US. Patent Jun. 22, 1999 Sheet 23 of 146 5,915,019

FIG. 14B

PUBLIC KEY AND PRIVATE KEY, SYSTEM ID,

AUTHENTICATION CERTIFICATE,VDE SYSTEM PUBLIC

KEY, PRIVATE DES KEY

TOP LEVEL KEYS FOR OBJECTS

TOP LEVEL BUDGET INFO

METER SUMMATION VALUES

KEY RECORDS FOR BUDGET RECORDS, AUDIT

RECORDS, STATIC MANAGEMENT RECORDS, UPDATED

MANAGEMENT RECORDS, ETC.

DEVICE DATA TABLE

SITE ID

TIME

ALARMS

TRANSACTION/SEQUENCE #'S

MISCELLANEOUS

MEMORY MAP

MAP METERS

LM/UDT TABLE

TASK MANAGER 576

CHANNEHS)

SUMMARY SERVICES 560

SECURE DATABASE TAGS

SRN ENTRIES

HASH ENTRIES

Page 00029

Page 00030

US. Patent Jun. 22, 1999 Sheet 24 of 146 5,915,019

FIG. 14C

CHANNEL SWAP BLOCK

CHANNEL LM

IHANNEL HEADER & DI

CONTROL SWAP BLOCK

CONTROELM

CONTROLD1

COMMHLM

COMMIT D1, D2, D3

EVENT SWAP BLOCK

AP TABLE (SINGLE) D1

METER SWAP BLOCK

METER LM

METER UDE DELTADELTA'

METER TRAIL LM
METER TRAIL UDE

DELTA,DELTA‘

BUDGET SWAP BLOCK

METER LM
METER UDE DELTA,DELTA'

METER TRAIL LM

METER TRAIL UDE

DELTA,DELTA'

BILLING LM

METER UDE

BUDGET UDE

BILLING TABLE UDE

BILLING TRAIL LM

BILLING TRAIL UDE DELTA'

BILLING SWAP BLOCK
Page 00030

Page 00031

5,915,019Sheet 25 of 146Jun. 22, 1999US. Patent

2.

.0_u_gmzz<IommIFOZ<OF

momw>4m§mmw<FZMZOaEOo

Fomw>4m§mmw<HZMZOAEOO
8mm8mm8mm88bmzmmm<>._ms_mmm<stmmm<Emsmm?FzmzonéoohzmzonzzooFzmzoEookzmzogoo

mmmmmo<mIqmzz<Io

vmmqmzz<Io

__

moeromEmsm

_lllllllllllllllll N.wmIMIMHKZM‘EIMumuQDmummIHwnzPaw—:0nnnnnn

zmskmmk2m>m

Page 00031

Page 00032

US. Patent Jun. 22, 1999 Sheet 26 of 146 5,915,019

W 597m

OBJECT ID 597(3)

RIGHT ID/REF. 597(4)

CHANNEL 597(5)
HEADER EVENT QUEUE _

595 EVENT CODE 1/PTR. TO CDR(1) I
598(1) ‘ EVENT CODE 2/PTR TO CDR(2)

598(N) EVENT CODE NIPTR TO CDR(N)

599 ‘ JUMP/REFERENCE TABLE

CHANNEL DETAIL RECORD (1)

CDRI CONTROL METHOD LOAD MODULE REF.
594(1) URT REF

REF TO OTHER DATA STRUCTURE(S)

CHANNEL DETAIL RECORD (2)

LM(1) REF.

CDR2

594(2) REF. TO DATA STRUCTURE(S)
LM(2) REF

REF, TO DATA STRUCTURE(S)

REF. TO DATA STRUCTURE(S)

Page 00032

Page 00033

US. Patent

FIG. 153

Jun. 22, 1999 Sheet 27 of 146

OPEN CHANNEL

(OBJECT, USER, RIGHT)

ALLOCATE

"AVAILABLE"

CHANNEL ,

1125

ACCESS

"BLUEPRINT"
1127

WRITE TO 1129

CHANNELHEADER "///

OBTAIN CONTROL 1131
METHOD

"BIND" CONTROL

METHOD TO “33
CHANNEL

PASS "INIT" EVENT 1135 TO CHANNEL

 ACCESS

COMPONENTS

1137

"BIND" COMPONENTS TO

CHANNEL BY CONSTRUCTING

CHANNEL DETAIL RECORD(S)
FOR EACH EVENT

WITHIN "RIGHT”

1139

END

5,915,019

Page 00033

Page 00034

5,915,019Sheet 28 of 146Jun. 22, 1999US. Patent

co:mun—3005.D<On_
mmvMum:wmvme«wewomoommZO:.<mDOEZOU

DOONFmeDO__>_<z>n_nwomrmun—2O:>_<Z>D9.009mmmooU:>_<Z>D

vawnmoommmmo_>mwwmE<z

o5mm<m<H<DNMDmeor.0.”—

moomrmun:2.2kmmmomwmezOrr/«kmNoon:wmmooo_._.<._.w
ooovmDOIkmE

03.mgmdcrOZ_>_mOmmvvvmjmdFOZEEIwN300.—._.Zm_>mm>_._.<m._.w_z§o<vowm..m<.rwkIOEmum:vamZmS.Powwmamowvm4m<kzO_._.<Em_®mmPowwmo>m._.w_0mmFomfimo

\+

mmnm0<mOFwPowwmo
\\

\\

Page 00034

Page 00035

US. Patent Jun. 22, 1999 Sheet 29 of 146 5,915,019

302

K 800
I “D

PUBLIC HEADER

PRIVATE HEADER

PRIVATE BODY

(METHODS 1000)

PERMISSIONS RECORDS

KEY BLOCK(S)

DATA BLOCK

DATA BLOCK

DATA BLOCK

812D

CONTENT

812C

Page 00035

Page 00036

US. Patent Jun. 22, 1999 Sheet 30 of 146 5,915,019

850 \

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION

ELEMENTS FROM PUBLIC PR'VATE
PRIVATE HEADER HEADER HEADER

804 KEY
(1 OF MANY)

PRIVATE BODY(OBJECT LOCAL METHODS, PRIVATE BODY
AN DE

LOAD MODULES, D u 5) KEY (IN PERC)
806

CONTENTS

CONTENT 812a DATA BLOCK 1 KEY 1
(IN PERC)

CONTENTS

KEY D
ATA B

D LOCK " (IN PERC)

FIG. 18

Page 00036

Page 00037

US. Patent Jun. 22, 1999 Sheet 31 of 146 5,915,019

860

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION

ELEMENTS FROM PUBLIC PR'VATE
PRNATEHEADER HEADER HEADER

804 9 KEY
(1 OF MANY)

KEY BLOCKS 810

PRIVATE BODY(OBJECT METHODS,

LOAD MODULES, AND UDES)
806

PRIVATE BODY

KEY (IN PERC)

CONTENTS

KEY 1

(IN PERC)
CONTENT 8128 DATA BLOCK 1

CONTENTS

DATA BLOCK n KEY “
(IN PERC)

FIG. 19

Page 00037

Page 00038

US. Patent Jun. 22, 1999 Sheet 32 of 146 5,915,019

880

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION

ELEMENTS FROM PUBLIC PRIVATE
PRIVATE HEADER HEADER HEADER

804 KEY
(1 OF MANY)

PRIVATE BODY(OBJECT LOCAL METHODS,
LOAD MODULES, AND UDES)

PRIVATE BODY

806 KEY (IN PERC) CONTENTS

CONTENT 812a DATA BLOCK I KEY 1
(IN PERC)

ADMINISTRATIVE

OBJECT

EMBEDDED

CONTENT

OBJECT

CONTENTS

812D DATA BLOCK n KEY IT
(IN PERC)

FIG. 20

Page 00038

Page 00039

US. Patent Jun. 22, 1999 Sheet 33 of 146 5,915,019

870

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION PRIVATE
ELEMENTS FROM PUBLIC

PRIVATE HEADER HEADER HEADER
804 KEY

(1 OF MANY)

PRIVATE BODY(OBJECT LOCAL METHODS,
LOAD MODULES. AND UDEs)

PRIVATE BODY

806 KEY (IN PERC)

CONTENT 812 CONTENTS
KEY

872a ADMINISTRATIVE INFORMATION (IN PERC)

FIG. 21

Page 00039

Page 00040

US. Patent Jun. 22, 1999 Sheet 34 of 146 5,915,019

FIG. 22

1000'

PUBLIC HEADER 802 CLEAR
TEXT

PRIVATE HEADER 804 COPY OF IDENTIFICATION
ELEMENTS FROM PUBLIC HEADER

EVENT 1 1012(1)

1014 1012(2)

SITE

PERCI SPECIFIC
EVENT 4 LM REF. METHODKEY

1006 1012(4)
EVENT 5

EVENT 6

--

--
SPECIFIC

METHOD LOCAL DATA AREA METHOD
(MDEs, UDEs, DTDs OR PORTIONS THEREOF, KEY

OR REFERENCES THERETO)

1012(5)

1012(6)

1012(7)

1012(N)

1008 SITE

Page 00040

Page 00041

US. Patent Jun. 22, 1999 Sheet 35 of 146 5,915,019

FIG. 23

1100

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION SITE SPECIFIC
ELEMENTS FROM PUBLIC LM KEY

PRIVATBEOI-JEADER HEADER

SITE SPECIFIC

ENCRYPTED EXECUTABLE BODY LM KEY
1106

SITE SPECIFIC

LM KEY

SITE SPECIFIC

LM KEY

Page 00041

Page 00042

US. Patent Jun. 22, 1999 Sheet 36 of 146 5,915,019

FIG. 24

1200, 1202

PUBLIC HEADER 802 CLEAR

COPY OF IDENTIFICATION

ELEMENTS FROM PUBLIC

PRIVATE HEADER HEADER
804

DATA AREA

SITE SPECIFIC

1206 UDE KEY

(MAY REFERENCE ONE OR MORE DTDS)
Page 00042

Page 00043

US. Patent Jun. 22, 1999 Sheet 37 of 146 5,915,019

FIG. 25A

ELEMENT REPRESENTING PAST

USAGE OF ONE ATOMIC ELEMENT OF
BIT MAP

USAGE OBJECT

RECORDING

NUMBER
Page 00043

Page 00044

US. Patent Jun. 22, 1999 Sheet 38 of 146 5,915,019

FIG. 25C

USAGE PAID FOR 5 MONTHS AGO

USAGE PAID FOR 4 MONTHS AGO
USAGE PAID FOR 3 MONTHS AGO

USAGE PAID FOR 2 MONTHS AGO
USAGE PAID FOR IN PRIOR MONTH

USAGE PAID FOR IN CURRENT MONTH

404

WIDE BITMAP f,

r METER METHOD
406

BILLING METHOD /

Page 00044

Page 00045

US. Patent Jun. 22, 1999 Sheet 39 of 146 5,915,019

900 FIG. 26 902 r 808 904

PERO HEADER

RIGHTS RECORD HEADER 1 RIGHT KEYS

908a 912a

906a

920(a)(1)(I) CONTROL SET HEADER 1 916(6)“) CONTROL METHOD 918(a)(1)

914aII) REQUIRED METHOD HEADER 1 922(a)(1)(i)

924(a)(1)(i)IA) I 924(aIIIIIIIIB) I
METHOD OPTION I METHOD OPTION I ' ' '

920(aIII)(ii) REQUIRED METHOD HEADER 2 922(aIIIIIII)

924(8IIIIIIIIIA)
METHOD OPTION

924(a)(1)(ii)(B) I
METHOD OPTION I ' ' '

CONTROL SET HEADER 2 916(a)(2) CONTROL METHOD 918I3II2I

0 .
92 (a)(2)(l) REQUIRED METHOD HEADER 1 922(a)(2)(I)
914(a)(2)

924(8IIZIIIIIA) I 924(a)(2)(I)(B)
METHODOPTION I METHODOPTION - - -

REQUIRED METHOD HEADER 2 922(a)(1)(ii)

920 a 2 ii)
(X II 924(8IIZIIIIIIA)

METHOD OPTION
924(8IIZIIIIIIB)

METHOD OPTION

RIGHTS RECORD HEADER 2 RIGHT KEYS

906D 908b 912b

916(b)(1) 916(b)(2)

914(b)(1) CONTROL SET HEADER 1 CONTROL METHOD

Page 00045

Page 00046

US. Patent Jun. 22, 1999 Sheet 40 of 146 5,915,019

FIG. 26A

,, _ 7 ,7 , _ 808

HEADER 900 i)
925 _ _ SIIE RECORD NUMBER

928 LENGTH OF PRIVATE BODY KEY BLOCK

930 I LENGTH OF THIS RECORD
EXPIRATION DATE/TIME FOR THIS RECORD 932

LAST MODIFICATION DATE/TIME 934

ORIGINAL DISTRIBUTOR ID 936

LAST DISTRIBUTOR ID 938
940 OBJECT ID

942 I CLASS OR TYPE OF PERMISSIONS RECORD/INSTANCE ID
FOR RECORD CLASS

NUMBER OF RIGHTS RECORDS 944
VALIDATION TAG FOR THE RECORD 943

KEY BLOCKS FOR THE PRIVATE BODYIeg, METHODS) IN OBJECT 950
CONTROL SET RECORD 0 — COMMON TO ALL RIGHTS

LENGTH OF THIS RECORD ,952

914(0) NUMBER OF REQUIRED METHOD RECORDS 954
ACCESS TAG TO CONTROL MODIFICATION OF THIS RECORD 956
REQUIRED METHOD RECORD 1

924(c)(a) LENGTH OF THIS RECORD 958

NUMBER OF METHOD OPTION RECORDS 960

ACCESS TAG TO CONTROL MODIFICATION OF THIS RECORD 952

924(c)(3)“ METHOD OPTION RECORD 1
LENGTH OF THIS RECORD 954

LENGTH OF DATA AREA 966

METHOD ID (TYPE/OWNER/CLASS/INSTANCE) 958

CORRELATION TAG FOR CORRELATION WITH REQUIRED METHOD 970

ACCESS TAG TO CONTROL MODIFICATION OF THIS RECORD 972

METHOD SPECIFIC ATTRIBUTES 974

DATA AREA 976

924(0)(a)(2) CHECK VALUE 978
METHOD OPTION RECORD 21

920(c)(b) I WORD2
CHECK VALUE

906a RIGHTS RECORD 1

905,) RIGHTS RECORD 2

CHECK VALUE _ 980

Page 00046

Page 00047

US. Patent Jun. 22, 1999 Sheet 41 of 146 5,915,019

FIG. 263

906a

9033 HEADER

982 LENGTH OF KEY BLOCK

LENGTH OF THIS RECORD 984

EXPIRATION DATEfTIME FOR THIS RECORD 986

RIGHT ID 988

NUMBER OF CONTROL SETS FOR THIS RIGHT 990

ACCESS TAG TO CONTROL MODIFICATION OF 992
THIS RECORD

CONTROL SET FOR RIGHT 910

KEY BLOCK FOR USE WITH THIS RIGHT 912

914(a)(1)

914(a)(2)

994

CHECK VALUE

Page 00047

Page 00048

US. Patent Jun. 22, 1999 Sheet 42 of 146 5,915,019

FIG. 27

444A(1)

I

4/ 444

SITE RECORD NUMBER

USER (GROUP) ID

REF. TO "FIRST" COMPLETED OUTGOING SHIPPING RECORD

444A(2)

444A(3)

444A(4)

444A(5)

 REF. TO "LAST" COMPLETED OUTGOING SHIPPING RECORD

REF. TO "FIRST" SCHEDULED OUTGOING SHIPPING RECORDHEADER

444A REF. TO "LAST" SCHEDULED OUTGOING SHIPPING RECORD 444A(6)

VALIDATION TAG FROM NAME SERVICES RECORD 444A(7)

VALIDATION TAG FOR "FIRST" OUTGOING SHIPPING RECORD(S) 444A(8)

CHECK VALUE 444A(9)

REF. TO ENTRY IN ADMINISTRATIVE EVENT LOG 445(1)(F)

REF. TO NAME SERVICES RECORD NAMING RECIPIENT 445(1)(G)

PURPOSE OF SHIPMENT 445(1)(H)

nggg'gg STATUS OF SHIPMENT 445(1)“)

REF. TO "NEXT" OUTGOING SHIPPING RECORD 445(1)(K)

VALIDATION TAG FROM IIEADER 445(1)(L)

VALIDATION TAG TO ADMINISTRATIVE EVENT LOG 445(1)(M)

VALIDATION TAG TO NAME SERVICES RECORD 445(1)(N)

VALIDATION TAG TO NEXT RECORD 445(1)(P)

CHECK VALUE 445(1)(Q)

SHIPPING RECORD N 445(1)(R)

Page 00048

Page 00049

US. Patent Jun. 22, 1999 Sheet 43 of 146 5,915,019

FIG. 28

446A(1)

I_ 445I

SITE RECORD NUMBER

USER (GROUP) ID 446A(2)

REF. TO "FIRST" COMPLETED INCOMING RECEIVING RECORD 446A(3)

REF. TO "LAST" COMPLETED INCOMING RECEIVING RECORD 446A(4)

HEADER REF. TO "FIRST" SCHEDULED INCOMING RECEIVING RECORD 446A(5)

446A REF. TO "LAST" SCHEDULED INCOMING RECEIVING RECORD 446A(6)

VALIDATION TAG FROM NAME SERVICES RECORD #446A(7)

VALIDATION TAG FOR "FIRST" INCOMING RECEIVING RECORD(S) 446A(8)

CHECK VALUE 446A(9)

SITE RECORD NUMBER 447(1)(A)

FIRST DATErTIME FOR SCHEDULED RECEPTION 447(1)(B)

LAST DATErrIME FOR SCHEDULED RECEPTION 447(1)(C)

ACTUAL DATErrIME OF COMPLETED RECEPTION 447(1)(D)

OBJECT ID OF ADMINISTRATIVE OBJECT (TO BE) RECEIVED 447(1)(E)

REF. TO ENTRY IN ADMINISTRATIVE EVENT LOG 447(1)(F)

Egg/$9 REF. TO NAME SERVICES RECORD NAMING SENDER 447(1)(G)
447(1) PURPOSE OF RECEPTION 447(1)(H)

REF. TO "PREVIOUS" INCOMING RECEIVING RECORD 447mm

REF. TO "NEXT" INCOMING RECEIVING RECORD 447(1)(K)

VALIDATION TAGS 447(1)(L)

CHECK VALUE 447(1)(M)

447(2)RECEIVING RECORD N

Page 00049

Page 00050

US. Patent Jun. 22, 1999 Sheet 44 of 146 5,915,019

442

ADMINISTRATIVE EVENT LOG RECORD 1 442(1)

ADMINISTRATIVE EVENT LOG RECORD 2 442(2)

SITE RECORD NUMBER

RECORD LENGTH

ID OF ADMINISTRATIVE OBJECT __

NUMBER OF EVENTS

VALIDATION TAG FROM SHIPPING OR

RECEIVING TABLE

443A(1)

__ 443A(2)

443A(3)

443A(4)

HEADER

443A
_/

443A(5)

CHECK VALUE 443A(6)

SUBRECORD LENGTH

DATA AREA LENGTH

EVENT ID

RECORD TYPE

442(J)(1)(a)

ADMIN.

EVENT LOG

RECORD

442(J)

442(J)(1)(b)

442(J)(1)(C)

442(J)(1)(d)

442(J)(1)(e)

442(J)(1)(f)

442(J)(1)(g)

RECORD ID

DATA AREA

CHECK VALUE

SUBRECORD

442(J)(1)

442(J)(N)SUBRECORD N

1442(N)ADMINISTRATIVE EVENT LOG RECORD N -

Page 00050

Page 00051

5,915,019Sheet 45 of 146Jun. 22, 1999US. Patent

LlN02345NthQDmrkmwoamnO

N$52rt03<F02345

N._._QD<rsz>mNkzm>wrmmFmEooorwDOIFmE

38m8:“?Evmvvmv

Somfimovmommomma

C880.mmwa39¢mEoEmmw:

komwmsw

eDmoommkomwmnwpomfimo.mmwamgmg.kommem

NDmoommZOF<me_0mmPowwmorDmOmeZO_.r<m._.m_OmmPom—do€vaC83939?zofistmammBmao
omvomGE

>motm0mmmkomamo

Page 00051

Page 00052

US. Patent Jun. 22, 1999 Sheet 46 of 146 5,915,019

460

466(1) SITE RECORD NUMBER

466(2) OBJECT TYPE

466(3) CREATOR ID

466(4)
TO OBJECT ID

OBJECT

466(5) POINTER INTO SUBJECT TO SUBJECT
TABLE 462 TABLE RECORO(S)

460(N)

466(6) ATTRIBUTE(S)

465(7) MINIMUM REGISTRATION INTERVAL

466(8) TAG TO SUBJECT TABLE
RECORD

466(9) CHECK VALUE\

FIG. 31

Page 00052

Page 00053

US. Patent Jun. 22, 1999 Sheet 47 of 146 5,915,019

. 462

FIG. 32 - '1
SITE RECORD NUMBER 468(1)

CREATOR ID 468(2)
462(M)

468(i/
LAST DISTRIBUTOR ID 468(4)

OBJECT ID 468(5)

ORIGINAL DISTRIBUTOR ID

"HE:6%ER" REF, TO "FIRST" SUBJECT 468(6)RECORD 47o

TAG FROM OBJECT REGISTRATION 468 7
TABLE RECORD (

TAG TO "FIRST" SUBJECT RECORD 468(8

CHECK VALUE 468(9)

SITE RECORD NUMBER
472(1)

USER (USER GROUP) ID 472(2)

USER (USER GROUP) ATTRIBUTES 472(3)
TO URT

REF. INTO USER RIGHTS TABLE 472(4) RECORDIS)

REF. TO "NEXT" SUBJECT / 472(5)

SUBJECT RECORD
RECORD

470(1) TAG FROM HEADER 472(6)

TAG TO USER RIGHTS TABLE RECORD 472(7)

TAG TO "NEXT" SUBJECT RECORD 472(8)

CHECK VALUE 472(9)

Page 00053

Page 00054

US. Patent

FROM
SUBJECT

TABLE

\> URT
HEADER

474

RIGHTS
RECORD
HEADER

476

Jun. 22, 1999

FIG. 33

SITE RECORD NUMBER

Sheet 48 of 146

NUMBER OF RIGHTS RECORDS

REF. TO "FIRST" RIGHT RECORD

TAG FROM SUBJECT TABLE

TAG TO RIGHTS RECORD

CHECK VALUE

SITE RECORD NUMBER FOR THIS
RIGHTS RECORD

RIGHT ID

POINTER TO "NEXT" RIGHTS RECORD

POINTER TO "FIRST" SET OF USER
CHOICE RECORDS

TAG FROM URT HEADER

TAG TO "FIRST" SET OF USER
CHOICE RECORDS

CHECK VALUE

SET
OF

USER

CHOICE
RECORD

478

SITE RECORD NUMBER FOR THIS
USER CHOICE RECORD

USE R(USER GROUP) ID

ATTRIBUTES

REF. TO "NEXT" SET OF USER CHOICE RECORDS

NUMBER OF USER CHOICES

TAG FROM RIGHTS RECORD HEADER

USER CHOICE RECORD 1

USER CHOICE RECORD 2

USER CHOICE RECORD N

CHECK VALUE

5,915,019

 474(2)

474(3) 464(K)

I474<4)/
474(5)

474(6)

476(1)

476(2)

476(3)

476(5)

476(6)/

478(1)

478(2)

478(3)

:478(4)

/478(5)

478(6)

_ 480(1)

__480(2)

480 N)

Page 00054

Page 00055

US. Patent Jun. 22, 1999 Sheet 49 of 146 5,915,019

FIG 34 460

482 SITE RECORD TABLE REGlSTRTlIaTE-—
452SITE RECORD 1

SITE RECORD 2 SUBJECT—TABLE —J
SITE RECORD 3

SITE RECORD 4

SITE RECORD 5

SITE RECORD 6

SITE RECORD 7

SITE RECORD 8

SITE RECORD 9

SITE RECORD 10

SITE RECORD 11

SITE RECORD 12

\ METHODS1000

METER 1

METER 2

EVENT 1

EVENT 2

O

BILLING 1

AUDIT 1

AUDIT 2

B DGET 1

BUDGET 2

BILLING 2

"

GROUP RECORD 1

GROUP RECORD 2

; 486

GROUP RECORD N

GROUP RECORD
TABLE

Page 00055

Page 00056

US. Patent Jun. 22, 1999 Sheet 50 of 146 5,915,019

482

482(J)

TYPE OF RECORD 484(1)

OWNER OR CREATOR OF RECORD 484(2)

CLASS - 484(3)

INSTANCE 484(4)

TYPE SPECIFIC DESCRIPTOR (9.9., OBJECT ID) ASSOCIATED 484(5)
WITH RECORD

TABLE IN WHICH THE RECORD IS LOCATED 484(6)

POINTER - OFFSET, WITHIN THE TABLE, T0 WHERE 484(7)
THE RECORD BEGINS

RECORD LENGTH 484(8)

484(9)
VALIDATION TAG FOR RECORD

CHECK VALUE 484“”)

Page 00056

Page 00057

US. Patent Jun. 22, 1999 Sheet 51 of 146 5,915,019

FIG. 34B

486

STERECORDNUMBER 48m1)

NUMBER OF REFERENCE SUBRECORDS 488(2)

VALIDATION TAG FOR GROUP OF RECORDS 488(3)

REFERENCESUBRECORDI 48m4)

REF.(SITE RECORD NUMBER 1) FOR IST RECORD IN 49000,)
GROUP

VALIDATION TAG FOR RECORD 490(8)

REFERENCE SUBRECORD 2 488(5)

REF.(SITE RECORD NUMBER 2) FOR 1ST RECORD IN 490(0)
GROUP

VAUDAHONTAGFORRECORD 49WD)

CHECKSUM(CRC) 48w6)

Page 00057

Page 00058

US. Patent Jun. 22, 1999 Sheet 52 of 146 5,915,019

”SON FIG. 35

APPLIANCE CALLS CLEARINGHOUSE

APPLIANCE AND CLEARINGHOUSE AUTHENTICATE ONE
ANOTHER AND AGREE ON A MESSAGE KEY

DOES APPLIANCE HAVE
K’ AUDIT INFO TO SEND?

NO

1158

\

APPLIANCE SENDS ADMINISTRATIVE OBJECT(S)
CONTAINING AUDIT INFO

CLEARINGHOUSE SENDS RESPONSIVE ADMIN. OBJECT(S)

1162 APPLIANCE UPDATES SECURE DATABASE
BASED ON OBJECTS RECEIVED

1164

k— APPLIANCE SENDS ADMINISTRATIVE OBJECT(S)
REQUESTING BUDGETS AND/OR PERMISSIONS

1166

CLEARINGHOUSE SENDS RESPONSIVE
ADMINISTRATIVE OBJECT(S)

“58 APPLIANCE UPDATES SECURE DATABASE BASED
ON OBJECTS RECEIVED

Page 00058

Page 00059

5,915,019Sheet53 0f146Jun. 22, 1999US. Patent

vwor
wm<m<k<ommDOMmOHZ_Emt.Eme

mmamégawka>mozmDZ<0,3.

FXMFZZIE

Nmor

<H<Q<H<oomEEozm_ 072.9
mi52

Fa>mozm

owor

mwovmHmMHmmDF<ZO_m._<H_O_DDZ<m34<>xomIO>m>tm0wkz_Fzmfimfimxoonnm>0mam<
mmm:

<55Qz<ExHomwmo.z__>_o<
Hm>momo

chow 5852i

mm.9“—

mszmwmm

mm<m<k<oO._.Z_mEmtmewZO._.ZOF<NEOIFD<mmw:xomIO

mat.oz<Eva?

m0_>mmmZOC.<NEOI._.D<3.9,

mw<m<h<0manommOkz_awkmmmZmm9.Emtm9>Omm

HmmDOmm

Page 00059

Page 00060

5,915,019Sheet 54 of 146Jun. 22, 1999US. Patent

wwow
mm<m<k<omm30mwOkz_2wF_FKMmZ_

meFwO<F
Nmor<20

w<I QwOZ<IOHzmfimqmkszMJMDmoommm
<55Qz<Ex

QmEEozmmjmHo:
omor

omor

Hm>mozm

mm:wmmoommmmofi

w>mxwmmoo<
wmowoz<

ZOCzjmmmOo

O<FZOFDtFWmDm
.

mw<m<k<ommDomw

ma<>xomxo20EXOMIOEWED<mm
OE.

4<zmmkz_<58
zoEEozm.Cmfizfimoz<ExijHzmzmo<z<2

wmoeFm>mowo
mmor

NM.07.

Page 00060

Page 00061

US. Patent Jun. 22, 1999 Sheet 55 of 146 5,915,019

 STORE ITEM IN
SECURE DATABASE

FIG. 38

1086

GENERATE NEW KEY

ENCRYPT RECORD 1088/
WITH NEW KEY

1090

ROOM

YES
FOR NEW

KEY?

N0
1092

READ AND DECRYPT /
OTHER RECORD(S)

FROM SECURE
DATABASE

USING OLD KEY S

1094

RE—ENCRYPT SAID —-«

OTHER RECORD(S)
USING NEW KEY

1096

DISCARD OLD KEY(S)

SAVE NEW KEY 1097
/

1098
STORE ENCRYPTED

RECORD(S)
IN SECURE DATABASE

END

Page 00061

Page 00062

US. Patent Jun. 22, 1999 Sheet 56 of 146 5,915,019

BACKUP
1250

1252

FIG. 39 WERATE
BACKUP KEY(S)

1254 READ AND DECRYPT
ITEM

1256
ENC RYPT ITEM WITH

BACKUP KEY(S)

1258 W"R‘I‘T‘ E‘ E’ CR’VPTED
- ITEM TO BACKUP

STORE

1260 YES

1262
ENCRYPT SUMMARY

SERVICES AUDIT INFO.

WITH BACKUP KEY(S),
WRITE TO

BACKUP STORE

1254 ENCRYPT BACKUP

KEY(S) AND OTHER ID
INFO.

WITH PUBLIC KEY;
WRITE TO

BACKUP STORE

12

66 ENCRYPT BACKUP
KEY(S) WITH ADMIN.

KEY; WRITE TO
BACKUP STORE

DONE

Page 00062

Page 00063

US. Patent

FIG. 40

1268

Jun. 22, 1999 Sheet 57 of 146

START

ESTABLISH 127°
SECURE __/

COMMUNICATIONS

EXTRACT 1272
'WORK IN PROGRESS"

AND SUMMARY VALUES

1274

REQUEST CURRENT ,/
BACKUP FROM SPU

1276

RESET SUMMARY

VALUES AND COUNTERS

CONSISTENT WITH LAST
BACKUP

RESTORE SECURE DB 1278
FROM BACKUP

COMPUTE BILLS BASED 1280
ON RECOVERED

VALUES

1282

PERFORM OTHER

ACTIONS TO RECOVER
FROM SPU DOWNTIME

5,915,019

Page 00063

Page 00064

US. Patent Jun. 22, 1999 Sheet 58 of 146 5,915,019

moo-—

:—-
1452

\Event and
optional information

METHODI=
FIG. 41a

Page 00064

Page 00065

US. Patent Jun. 22, 1999 Sheet 59 of 146 5,915,019

VDE Node 1454

1469 Event and

optional information

Event and

600A optional information

 Request-1

FIG. 41b

Page 00065

Page 00066

US. Patent Jun. 22, 1999 Sheet 60 of 146 5,915,019

600C FIG. 41C

1464 Event
Event and

and optional
optional information

BOOB information

‘l-l
k Request-2

1459 Event and
optional information

Event and

600A optional information

Request-1

Page 00066

Page 00067

US. Patent Jun. 22, 1999 Sheet 61 of 146 5,915,019

102 FIG. 41d

Content object creator VDE node
1484A

k Request

_
More More

Grant Budget Budget

Content object distributor VDE node
1484B

1474BC Request

More More

Grant Budget Budget

Content use VDE node

Request

BUDGET_
Reply

Page 00067

Page 00068

US. Patent Jun. 22, 1999 Sheet 62 of 146 5,915,019

Start BUDGET Method 2250
Use Process

Atomic Element,
Event Count

2254

 BUDGET Audit

Trail UDE

Prime BUDGET

Audit Trail Write

2258

DTD for

BUDGET UDE

Obtain DTD

for BUDGET Read

2262

Obtain BUDGET Read BUDGET UDE

 2266

2268

BUDGET Method

Failed

BUDGET

Audit date expired

(time)?

Commit

BUDGET Failure

Audit Record

Yes

No
2270 2272

Update BUDGET

using AE and count Write BUDGET UDE

2276

 Save BUDGET

Use Audit Record

BUDGET Method

Succeeded

BUDGET Audit

Trail UDE

 FIG. 42a

Page 00068

Page 00069

US. Patent Jun. 22, 1999 Sheet 63 of 146 5,915,019

Start BUDGET Method

Administrative

Request Process
/2250

BUDGET

Administrative

Audit Trail

2280 2282

Prime BUDGET

Administrative

Audit Trail

Write

2284
2286

Queue Request

for Administrative

Processing
of BUDGET

BUDGET

Administrative

Request

Write

2288 2290

BUDGET

Write ——> Administrative
Audit Trail

Save BUDGET
Administrative

Audit Trail

Some time later

2292 2294

Prime

communications

audit trail

Communications

WM audit trail

2298

2296

 BUDGET UDE,
BUDGET Audit

Trail UDE(s),
and BUDGET
Administrative

Request

Record(s)

Write BUDGET

Administrative

Request into
Administrative

Object

Read End BUDGET Method
Administrative

Request Process

Communications

audit trail

communications

audit trail

FIG. 42b

Page 00069

Page 00070

US. Patent Jun. 22, 1999 Sheet 64 of 146 5,915,019

/2250

Communications

and Response
Audit Trail

Start BUDGET Method

Administrative

Response Process

2306 2308

 Prime BUDGET

Communications and

Response Audit Trail

Write

2310

 Unpack Admin.
Object and retrieve

BUDGET

request(s), audit
traii(s) and record(s)

BUDGET

Administrative

Request, Budget
records, and

audit information

2312

Write

2314

Retrieve request and
determine the response

method to run to

process the request

Administrative 2315
<— Read Request

Send event(s)
contained in

Request record(s)
to the Response

Method and

generate

Response records
and Response

request

2318

BUDGET Request 2320
and Response

records

Read/Write

BUDGET UDE
and BUDGET
Administrative

Response

Record(s)

Write BUDGET

Administrative

Response records
into Administrative

End BUDGET Method

Administrative

Response Process

Communications

and response
processing
audit trail

Save communications

and response

processing audit trail

 FIG. 420

Page 00070

Page 00071

US. Patent Jun. 22, 1999 Sheet 65 of 146 5,915,019

2250
Start BUDGET Method

Administrative

Reply Process

2332

BUDGET
Administrative and

Communications

Audit Trail

Prime BUDGET

Administrative and

Communications

Audit Trail

2334

Write

2336

Extract Response Records
and Requests lrom

Administrative Object and
write Reply records to
the secure database

BUDGET Reply 2338
Records and

Requests

Write

2355

Save BUDGET 2340 BUDGET 2341
Administrathe and , Administrative and . .

Communications Write a Communications AUdlt Trail UDE
Audit Trail Audit Trail

Some time later 2342 Write

Prime audit trail . . . 2343 Prime audit trail
(if required) Wnte AUd't Trail UDE (it required)

2346

Retrieve Reply record
and determine method Read BUDGET Reply
required to process it Record(s)

End BUDGET

Method

Administrative

Send event(s) Reply Process
contained in Reply 2348 2350

record(s) to the 2356
Reply Method ReadNVrite BUDGET Records

and

generate/update
database records

2352 2353

Delete Reply record(s)
from database — Delete BUBSCETdRSeipIy

Page 00071

Page 00072

US. Patent Jun. 22, 1999 Sheet 66 of 146 5,915,019

Start REGISTER

Method Use Process /2400 FIG . 43a
REGISTER Event

2402

Prime REGISTER Write REGISTER 2404
Audit Trail Trail UDE

2405 2408

Object
Already Yes REGISTER Method

Registered completed
?

No
2410

2412

Extract REGISTER PERC and/or

record set from PERC <— Read — REGISTER MDE

Of REGISTER MDE (catalog)

2420
2416

All

required pieces
available

?

REGISTER

Request
Record

No Read
Queue REGISTER

request record

REGISTER Method

Suspended

2424

2418 2432

Write REGISTER

Audit Record

User selects

registration options
from method

options in PERC

2434 Wilts
REGISTER

Trail UDE
Validate user selected

NO registration options
REGISTER

Method

Completed

All

selections
validated

?

Write URT

containing user
selections to

database

Page 00072

Page 00073

US. Patent Jun. 22, 1999 Sheet 67 of 146 5,915,019

FIG. 43b

/2400
2442

Communications

audit trail

Start REGISTER

Method Administrative

Request Process

Prime communications

audit trail

 2440

Write
2446

2444

Determine site

configuration as
permitted by Read STOFEd data
privacy tiiter

2448 2450

Write REGISTER

Administrative

Request into
Administrative

Object

REGISTER

Administrative

Request
Record(s)

Read

 2454

Communications

audit trail

Save communications

audit trail Write

2456

 End REGISTER

Method Administrative

Request Process

Page 00073

Page 00074

US. Patent Jun. 22, 1999 Sheet 68 of 146 5,915,019

2400

/ FIG. 43c

Start REGISTER

Method Administrative

Response Process

2460

Prime REGISTER Communications 2452
Communications and Write and Response
Response Audit Trail Audit Trail

2464

Unpack Admin. REQSTEB
Object and retrieve W 't administrative 2466

request(s) information

2468

 Retrieve request

and determine the

response method to
run to process

the request

. . . 2470

Read __ Administrative Request

2472 2474

User

provided
enough information

to register the

Write failure

response record
to database

No

2476

2478

REGISTER

Request and
Read/Write» Response records

(response records,
PERC, UDE(s))

record(s)

Response Method
and generate

Response records
and Response

Request

2480 2482

PERC, UDE(s)
Methods and
REGISTER

Administrative

Response Records

 Write REGISTER 2488
Administrative

Response records
into Administrative

Object

 Read End REGISTER

 Method Administration

Response Process

2484

Communications

and response

processing
audit trail

 save communications 2486

and response

processing audit trail Write

Page 00074

Page 00075

US. Patent Jun. 22, 1999 Sheet 69 of 146 5,915,019

Start REGISTER
Method Administrative

Reply Process
2400

/ FIG. 43d
REGISTER

Administrative and

Communications

Audit Trail

2490

Prime REGISTER

Administrative and

Communications
Audit Trail

2492

 Write

2494

Extract Response

Records and Requests
from Administrative

Object and write
Reply records to

the secure database

REGISTER

Reply Records
and Requests

2496

 Write

2498

 Save REGISTER REGISTER 2500

Administrative and Write Administrative and 2513
Communications Communications

Audit Trail Audit Trail
Audit trail records

Some time later
2501

. . . 2502

Pr'me Audit Tm" Write Audit trail records
(it requrred) Write

2503 2504
Retrieve Re I record . . .

and determirgeymethod Read REGISTER Reply Write Audit Trail
required to process it records ('f requrred)

2506 2512

Send event(s) REGISTER secure
contained in Reply . database records End REGISTER

record(s) to the Read/Write» (Methods, Load Method Administration
Reply method and Modules, MDE. Reply Process
generate/update UDE)
database records 2514

2508

2510

2511

Delete Reply record(s) Delete REGISTER
Reply Record(s)from database

Page 00075

Page 00076

US. Patent Jun. 22, 1999 Sheet 70 of 146 5,915,019

Start AUDIT Method FIG- 443!
. . . 2520

Administrative

Request Process

2522

Prime AUDIT AUDIT 2524

Administrative Write Administrative
Audit Trail Audit Trail

Queue Request for
Administrative . ND”. 2528

Processing of AUDIT Write Administrative
Request

2530

Save AUDIT AUDIT 2532

Administrative Write
Audit Trail

Administrative

Audit Trail

Some time later

2534 2536

Prime . .
communications Write Communications

audit trail audit trail

2538 2540 2546

Specific UDE,
Audit Trail UDE(s),
and Administrative

Request
Record(s)

W , Communications 2544
”t9 audit trail

Write AUDIT

Administrative

Request(s) into
Administrative

Object

End AUDIT Method

Administration

Request Process

Save communications
audit trail

Page 00076

Page 00077

US. Patent Jun. 22, 1999 Sheet 71 of 146 5,915,019

FIG. 44b
Start AUDIT Method

Administrative

Response Process /2520
2550

Communications

and Response
Audit Trail

Prime AUDIT 2552

Communications and Write

Response Audit Trail
2554

AUDIT

Administrative

Request, Budget
records, and audit

information

Unpack Admin.
Object and retrieve
AUDIT request(s) Write
audit trail(s) and

record(s)

2556

2558

Retrieve request and
determine the

response method to Read
run to process”

the request

. . _ 2560
Administrative

Request

2562

Send event(s)
contained in

Request record(s)
to the Response

Method and generate

Response records
and Response

request

2564

AUDIT Request
and Response

records
Read/Write

2574
2566 2568

Write AUDIT

Administrative

Response records
into Administrative

Object

End AUDIT Method

Administration

Response Process

AUDIT UDE(s),
and Administrative

Response

Record(s)

Read
2570

Communications

and response

processing
audit trail

Save communications 2572

and response Write
processing audit trail

Page 00077

Page 00078

US. Patent Jun. 22, 1999 Sheet 72 of 146 5,915,019

FIG. 44cStart AUDIT Method

 Administrative 2520
Reply Process

2580

AUDIT

Administrative
Communications

Audit Trail

Prime AUDIT
Administrative and Write

Communications

Audit Trail

2582

2584

Extract Response
Records and

Requests from Write
Administrative Object

and write Reply to
the secure database

AUDIT Reply
Records and

Requests

2586

2588

Save AUDIT Save AUDIT 2590
Administrative and Write Administrative and

Communications Communications

Audit Trail Audit Trail

Some time later

2594
2592

Retrieve Reply record
and determine method

required to process it

Read AUDIT Reply
records

2599

2595

Send event(s) 2596
contained in Reply End AUDIT Method

record(s) to the Read/Write secure database Administration
Reply method and records Reply Process
generate/update
database records

 Delete Reply record(s)
from database Delete

AUDIT Reply
Record(s)

Page 00078

Page 00079

5,915,019

P2305?Dmfinzm>mDm0m<om5m0

____fl____”omkzmzmmomoEooam“omfimEm>m”BEES.Em>m_32:30Em>m___________ _6 _4___
f

0nu_3292582.29258;_H.55Gooam“4250235“20.2.58;mmEz_w_fl0%____fl____
< ammwmoommommmEs.”flmmmOoz:.__mEmaEms/Bo$5802,mwfismm500$02:555%

2.Emkzoo
m

«8JwowNov29:58;zofi<2m0mz_kwoosmZOF<§mOuZ02345K292582.Ems.43EEms.m20558;5003o?
eton”

. mv0E
S.U

Page 00079

Page 00080

US. Patent Jun. 22, 1999 Sheet 74 of 146 5,915,019

FIG. 46

SYSTEM EVENT

OCCURS

CONTROL 410

03:35:22? J

BUDGET

DECREMENTED

BY

EVENT BILLED

MAPPED EVENT EVENT AMOUNT
TO ATOMIC MAPPED METERED
ELEMENT TOATOMIC

ELEMENT
#n

EVENT EVENT BILLING
METERED BILLED PROCESSED

OR

DISCARDED 404 406 \ 405
EVENT METER BILLING BUDGET

METHOD METHOD METHOD METHOD

402 METER UDE BUDGETUDE

METER TRAIL BUDGET UDE
UDE METER UDE EBEGET TRAIL

BILLING UDE

Page 00080

Page 00081

5,915,019Sheet 75 of 146Jun. 22, 1999US. Patent

mDD429:.FmO-Dm

mo:HmOQDm

wow.001.5202345

._.ZDO_>_<Qmjdm>mkazmémmomo.rmODDm

me:@2345mm:mmhmfimo:FmODDm

mOD.:<m._.023.:m
mowDOIFME

DOIFmEmh<0mmoo<

__Qm._.=mHzm>m
__*

mo:
.=<m._.KMFME

New

Dmom<omam0QmmmkmfiHzm>mEv..0_u_

E“HZmEmjmO_EOH<OFmini/:2Hzm>m

 DOIFMEII'I
._.Zm_>m

Nov

Fzmimfim92054O._.DmmmSzHzm>m
mmDoookzm>mEmkm>w

Page 00081

Page 00082

5,915,019Sheet 76 of 146Jun. 22, 1999US. Patent

mo:NuFmOODma

mo:NunmkmE883%
N%81sz

5008«n00152
$52

was.__<E02135H
mm:.__<Ean500308a

,/mo:35:N“$52
cuEmsmjm00:52Emmi:2352OFEmsm,02345kzm>momlEmgzkzm>mI|Lmo:K5003me:EE5:/

4N2
me:@2135.

me:$52igo:_ms.m5:583E00:525008«EB:0235noFfmmov.rzmoZmnEQZmMFMEmm:wk<m<mmwHmvov
mo:.=<N:.in.5095FZDOSZQmfifim>mDmkszmmomDHwODDm
_____.

”EdaEma
___a

mo:.=<m._.E“mmeEDmom<om5m0QmmmkmEFzm>m

Fzmsmfiw0:20.;0%DmnE/izkzm>m
QOIFmEAllmmDooO._.zm>m_EMHm>wmV.9”—

Page 00082

Page 00083

US. Patent Jun. 22, 1999 Sheet 77 of 146 5,915,019

Start of OPEN

Method Process

OPEN Event

/1500

OPEN Event

Atomic Element and Count

1504

 Atomic Element and Count

Meter Value

‘502 CONTROL Method
Meter Value

Create Read Channel Bl'ling Amount
and establish read/

use controls

Billing Value

Budget Value

1506

BILLING

Read Channel Method

End of OPEN

Method Process

Secure

Database

FIG. 49

Page 00083

Page 00084

1520

Determine

identification

of object and user
to be opened.

Open Event, Object ID, User ID

Call the

1524 1522 REGISTER

ls Method for

UPIT, PERC for the Object the Object.
Read registered for this No Restart the

(object, user) user? OPEN Method
once the

registration

Yes is complete.

1528

Is

the Object
already open for

this user?

1532

OPEN Method Create channel and

Elements -
Read bind OPEN control Yes

(Method core, elements to it
LM, UDE, MDE)

Open Event, Object ID, User ID, Channel ID

1534

Prime Audit

(if required)

Start Secure

Database Transaction

Audit UDE Write

1536

US. Patent Jun. 22, 1999 Sheet 78 of 146 5,915,019

1500 Start of OPEN
Method Process 1502

Open Event

CONTROL Method

FIG. 49a

Page 00084

Page 00085

US. Patent

EVENT Method
Succeeded?

Yes, Pass
Jun. 22, 1999 Sheet 79 of 146 5,915,019

Prime EVENT EVENT Method

Audit Trail Audit Trail UDE
(It requrred)

Map OPEN
Event to Atomic

Element # and EVENT Method

event count using Map MDE
Map MDE

Event, Event Count, Atomic Element #, Object ID, User ID

Write EVENT

Audit Trail

(it required)

EVENT Method

Audit Trail UDE

Atomic Element #, Event Count

l

Atomic Element
Selected?

1550

N0, Fail EVENT Method EVENT Method

Roll back secure

database OPEN Method Failed
transaction

CONTROL Method (cont’d)

FIG. 49b

Page 00085

Page 00086

US. Patent Jun. 22, 1999 Sheet 80 of 146 5,915,019

Prime METER METER Method

Audit Trail Audit Trail UDE
(it reqUIred)

Add EVENT ' METER
Count to Read/Write Method UDE

Meter Value (the Meter)

Write METER

Audit Trail

(it required)

METER Method

Audit Trail UDE

METER Value

l
Meter

Yes Pass Increment
' Succeeded?

NO, Fail METER Method METER Method

Roll back secure

METER Method database OPEN Method Failed

Succeeded? transaction

CONTROL Method (cont’d)

/’—~‘\\ ///"\‘ FIG. 49C\ /

Page 00086

Page 00087

US. Patent Jun. 22, 1999 Sheet 81 of 146 5,915,019

Prime BILLING BILLING
Audit Trail Method Audit

(it required) Trail UDE

Map Atomic
Element #, Count, BILLING
and Meter Value to Method Map

Billing Amount MDE (Price list)
using Map MDE

Billing Amount

Write BILLING BILLING

Audit Trail Method Audit
(If requrred) Trail UDE

Billing Amount

I

Yes, Pass Billing Amount
Selected?

1590

N0, Fall BILLING Method BILLING Method

Roll back secure

BILLING Method database OPEN Method Failed
SUCCBBdEd? transaction

CONTROL Method (cont’d)

FIG. 49d

Page 00087

Page 00088

US. Patent

Yes, FAILS

BUDGET

Method returns

OK?

Jun. 22, 1999

Prime BUDGET
Audit Trail

(it required)

Add Billing
Amount to

Budget Value

Write BUDGET

Audit Trail

(if required)

BUDGET

value out of

range?

Roll back secure
database

transaction

Sheet 82 of 146 5,915,019

BUDGET

Method Audit

Trail UDE

BUDGET

Method UDE

(the Budget)

BUDGET

Method Audit

Trail UDE

BUDGET Method

OPEN Method Failed

CONTROL Method (cont’d)

Page 00088

Page 00089

US. Patent Jun. 22, 1999 Sheet 83 of 146 5,915,019

/ \ ,’ \
\\\ //
\ x 1502

1620

1618 Write OPEN Audit Write Audit UDE
Trail (if required)

1624

Establish channel

for READ Event

Processing

1622 UFlT, PERC for

(object, user)

Channel lD
1628

1630

1626 R llb k0 ac secure

NO database OPEginithod
transaction

READ Channel
Established

Yes

1532 Commit secure
database

transaction

Tear down

1634 channel for open
processing
(optional)

CONTROL Method (cont’d)

“336 FIG. 49f
OPEN Method Process

Completed

Page 00089

Page 00090

US. Patent Jun. 22, 1999 Sheet 84 of 146 5,915,019

Start of READ

Method Process

READ Event

 /1650

READ Event

Atomic Element and Count

1654

 Atomic Element and Count

Meter Value

1652

Meter Value

CONTROL Method Billing Amount

Decrypt, fingerprint _ _
and obscure content Billing Value

Budget Value

1660 1658 1656

BUDGET BILLING METER

Decrypted Content Method MGthOd Method

End of READ

Method Process

610

Secure
Database

FIG. 50

Page 00090

Page 00091

US. Patent Jun. 22, 1999 Sheet 85 of 146 5,915,019

Start of READ

Method Process

READ Event

Determine

identification of

object and user ID
for read

READ Event, Object ID, User ID
Call the
OPEN

ls Method for
the Object the Object.

open for this N0 Restart the
 READ Method

once the

registration

is complete.

user?

1672

Prime Audit

(it required)

Start Secure

Database Transaction

 Audit UDE Write

 CONTROL Method

FIG. 50a

Page 00091

Page 00092

US. Patent Jun. 22, 1999

Prime EVENT
Audit Trail

(it required)

Map READ
Event to Atomic

Element # and

event count using
Map MDE

Sheet 86 of 146 5,915,019

EVENT Method
Audit Trail UDE

EVENT Method

Map MDE

Event, Event Count, Atomic Element #, Object ID, User lD

EVENT Method

Succeeded?

Write EVENT

Audit Trail

(if required)

EVENT Method

Audit Trail UDE

Atomic Element #, Event Count

l

Atomic Element

Selected?

Roll back secure

database

transaction

 1686

EVENT Method

OPEN Method Failed

CONTROL Method (cont’d)

Page 00092

Page 00093

US. Patent Jun. 22, 1999

Yes, Pass

METER Method

Succeeded?

Prime METER
Audit Trail

(if required)

Add EVENT

Count to
Meter Value

Write METER

Audit Trail

(if required)

METER Value

l

Meter Increment

Succeeded

No, Fail METER Method

Roll back secure
database

transaction

FIG. 50c

Sheet 87 of 146

Read/Write

5,915,019

METER Method

Audit Trail UDE

METER

Method UDE

(the Meter)

METER Method

Audit Trail UDE

METER Method

READ Method Failed

CONTROL Method (cont’d)

Page 00093

Page 00094

US. Patent Jun. 22, 1999 Sheet 88 of 146 5,915,019

Prime BILLING BILLING
Audit Trail Method Audit

(if required) Trail UDE

Map Atomic
Element #, Count, BILLING
and Meter Value to Method Map

Billing Amount MDE (Price list)
using Map MDE

Billing Amount

Write BILLING BILLING

Audit Trail Method Audit
(If requrred) Trail UDE

Billing Amount

I

Billing Amount
Selected?

1726

No, Fall BILLING Method BILLING Method

Roll back secure

BILLING MBIhOd database READ Method Failed
Succeeded? transaction

CONTROL Method (cont’d)

Page 00094

Page 00095

US. Patent Jun. 22, 1999 Sheet 89 of 146 5,915,019

Prime BUDGET BUDGET
Audit Trail Method Audit

(it required) Trail UDE

Add Billing BUDGET
Amount to Read/Write Method UDE

Budget Value (the Budget)

Write BUDGET BUDGET

Audit Trail Method Audit
(it required) Trail UDE

BUDGET

Yes, FAlLS value out of

range?

N0. PASS BUDGET Method

BUDGET Roll back secure
Method returns database

OK? transaction

READ Method Failed

CONTROL Method (cont'd)

r’“\ x"\ FIG. 50e

Page 00095

Page 00096

US. Patent Jun. 22, 1999

Sheet 90 of 146

5,915,019

.5or

1652

1754 Write OPEN Audit . . 1755

Trait (if required) wme AUd‘t UDE

Determine key to

1758 use to decrypt Read (oEjEEtCufger) 1760content ’

1762 Obtain encrypted
content usmg

ACCESS
Method

1764 Decrypt content

usmg DECHYPT CONTROL Method (cont’d)method

1768

1766 . . Call 1774
F'"ge’p"“‘ FiNGERPFtINT
 desired

Method

t 1772

1770
Cali

Obscure

desired Yes OBSCURE
Method

No

Commit
secure

database
transaction

1776

READ Method

Process Completed

Page 00096

Page 00097

US. Patent Jun. 22, 1999 Sheet 91 of 146 5,915,019

Start of WRITE

Method Process

WRITE Event

 /1780

WRITE Event

Atomic Element and Count

1784

 Atomic Element and Count

Meter Value

1782

Meter Value

CONTROL Method Billing Amount

Encrypt content and _ .
update event 3|"an Value

Budget Value

1790 1788 1786

BUDGET BILLING METER

Encrypted Content MGthOd M9th0d Method

End of WRITE

Method Process

610

Secure

Database

FIG. 51

Page 00097

Page 00098

US. Patent Jun. 22, 1999 Sheet 92 of 146 5,915,019

1792
Start of WRITE

Method Process

1780
— WRITE Event 1782

Determine

identification of

object and user [D
for read

WRITE Event, Object ID, User iD
 Call the

OPEN

Method for

the Object.
Restart the

WRITE Method
once the

registration

is complete.

Is

the Object

open for this
user?

No

 1804

Audit UDE Write

 Prime Audit

(it required)

Start Secure

Database Transaction

 CONTROL Method

FIG. 51a

Page 00098

Page 00099

US. Patent Jun. 22, 1999 Sheet 93 of 146

Prime EVENT

Audit Trail

(if required)

Map WRITE
Event to Atomic

Element # and

event count using

Map MDE

5,915,019

EVENT Method

Audit Trail UDE

EVENT Method

Map MDE

Event. Event Count, Atomic Element #, Object lD, User ID

Yes, Pass

EVENT Method

Succeeded?

Write EVENT

Audit Trail

(if required)

Atomic Element #, Event Count

l

Atomic Element
Selected?

1818

PASS it update succeeded. FAIL otherwise

Roll back secure
database

transaction

EVENT Method

Audit Trail UDE

Update EVENT
Method Map

MDE to reflect
new data

EVENT Method

WFllTE Method Failed

CONTROL Method (cont'd)

FIG. 51b

Page 00099

Page 00100

US. Patent

Yes, Pass

Jun. 22, 1999

Prime METER

Audit Trail

(if required)

Add EVENT

Count to

Meter Value

Write METER

Audit Trail

(if required)

METER Value

l
Meter

Increment

Succeeded

No, Fail METER Method

METER Method
Succeeded?

Roll back secure

database
transaction

FIG. 51c

Sheet 94 of 146

Read/Write

5,915,019

METER Method

Audit Trail UDE

METER

Method UDE

(the Meter)

METER Method

Audit Trail UDE

METER Method

WRITE Method Failed

CONTROL Method (cont’d)

Page 00100

Page 00101

US. Patent Jun. 22, 1999 Sheet 95 of 146 5,915,019

Prime BILLING BILLING
Audit Trail Method Audit

(it required) Trail UDE

Map Atomic
Element #, Count, BILLING
and Meter Value to Method Map

Billing Amount MDE (Price list)
using Map MDE

Billing Amount

Write BILLING BILLING

Audit Trail Method Audit
(if requrred) Trail UDE

Billing Amount

I

Billing Amount
Selected?

1862

' h
No, Fall BILLING Met od BILLING Method

Floll back secure

BILLING Method database WRITE Method Failed
Succeeded? transaction

CONTROL Method (cont’d)

/"\ /”\ FIG. 51d

Page 00101

Page 00102

US. Patent Jun. 22, 1999 Sheet 96 of 146 5,915,019

Prime BUDGET BUDGET

Audit Trail Method Audit

(it required) Trail UDE

Add Billing BUDGET

Amount 10 Read/Write Method UDE

Budget Value (the Budget)

Write BUDGET BUDGET

Audit Trail Method Audit
(If requtred) Trail UDE

BUDGET

YeS, FAILS value out of

range?

BUDGET Method

BUDGET Roll back secure '
Method returns database WRITE Method Failed

OK? transaction

CONTROL Method (cont'd)

r"‘\ x’”‘~ FIG. 51e

Page 00102

Page 00103

US. Patent Jun. 22, 1999 Sheet 97 of 146 5,915,019

\\ ,, 1782

1890 I Write 1892
WHITE Audit Write Audit UDE

Trail (if required)

Determine key to
1894 use to encrypt Read

content

 PERC for 1896

(object, user)

 1898 Encrypt content
using ENCRYPT

method

CONTROL Method (cont’d)

Write content to

1900 object using 1904
ACCESS

method

Commit secure

database transaction
Update container

1902 TOC and related
information

1906

WHITE Method

FIG- 51f

Page 00103

Page 00104

US. Patent Jun. 22, 1999 Sheet 98 of 146 5,915,019

Start CLOSE Method 1920
Process

1922 1924

Prime Audit Trail - -

(if required) Write Audit UDE

1926

Destroy channel
and

release resources

1928 1930

Write Audit Trail Write Audit UDE
(it required)

End CLOSE Method

Process FIG. 52

Page 00104

Page 00105

US. Patent Jun. 22, 1999

EVENT Method Start

EVENT, Event Count,
Event Parameters

1 1942

Prime EVENT

Audit Trail

(if required)

Load MAP MDE DTD

Map Event to Atomic
Element # and event

count using Map MDE

Event, Event Count, Atomic Element #,

Object ID. User lD

Write EVENT Audit

Trail (if required)

Atomic Element #,
Event Count

1974

Atomic Element

Selected?

EVENT Method

Succeeded

No

1978

Read

Read

Write —>

Sheet 99 of 146 5,915,019

/1940

EVENT Method

Audit Trail UDE

1948

EVENT Method

Map DTD

1952

EVENT Method

Map MDE

EVENT Method

Audit Trail UDE
1976

EVENT Method

failed

FIG. 53a

Page 00105

Page 00106

US. Patent Jun. 22, 1999 Sheet 100 of 146 5,915,019

Start of MAP

Process

Event, Event Count, AE #,

Object ID, User ID

Look up event in MDE

1 958

End of EVENT Map
Process

Yes

Compare event range
to AE translation table

and determine AE #

and optional count

AE#

 1 964

End of EVENT Map
Process

1962

AE#

determined? No
Yes

1966

Calculate AE count

from event range

End of EVENT Map
Process

1 968

FIG. 53b

Page 00106

Page 00107

US. Patent Jun. 22, 1999 Sheet 101 of 146 5,915,019

BILLING MethodS-art /1980
Meter‘Value

1982

Prime BILLING
_ . . BILLING Method

Audlt Trail We” AuditTrailUDE
(if required)

1986

 BILLING Method

Map DTD Load MAP MDE DTD Read

1989

Map meter value to
billing amount using

BILLING Method

Map MDE (and Read Map MDE (and
possibly database optionally others)

elements)

Billing Amount

I 1990

 BILLING Method

Audit Trail UDE
Write BILLING Audit

Trail (it required)

1996

BILLING Method

failed

Billing Amount N
Selected? 0

Billing Amount

BILLING Method

Succeeded

1998

FIG. 53c

Page 00107

Page 00108

US. Patent Jun. 22, 1999 Sheet 102 of 146 5,915,019

2000

ACCESS Method Start /

Prime ACCESS

Audit Trail

(it required)

ACCESS Method

Audit Trail UDE
2008

ACCESS MethodLoad ACCESS Method
DTDMDE DTD

Read

2012

Load encrypted
content source and

routing information

ACCESS Method

Read MDE

Location of Content
2016

2018

ACCESS Method

Failed

Connection
to content

available

?

Open connection to, Failure
the content servrce.

2020

Obtain encrypted
content

2024

Write ACCESS Audit

Trail (if required)

End of ACCESS

Method

ACCESS Method

Audit Trail UDE

Page 00108

Page 00109

US. Patent Jun. 22, 1999 Sheet 103 of 146 5,915,019

Start DECRYPT 2030
Method

Block to decrypt

2032

Select key number
from key block

2034 2036

LOagggygmm Read PERC

2038

Convolute key

(if required)

2040

Decrypt block

Decrypted Block

End of DECRYPT

Method

2042

FIG. 55a

Page 00109

Page 00110

US. Patent Jun. 22, 1999 Sheet 104 of 146 5,915,019

Start ENCRYPT 2050
Method

Block to Encrypt

2052

Determine key to

use from key
block

2054 2056

Load key from PERC
or <— Read/Write PERC

Add key to PERC

2058

Convolute key

(if required)

2060

Encrypt block

Encrypted Block

End of ENCRYPT

block

2062

FIG. 55b

Page 00110

Page 00111

US. Patent Jun. 22, 1999 Sheet 105 of 146 5,915,019

/2070

Securely read
information from

container

(according to

synopsis algorithm)
and produce

synopsis

Start CONTENT

Method

Content

description derived
from contents or

static value?

2078

Read content

information from

object

 Object container

Release content 2076
description

End of CONTENT

Method
FIG. 56

Page 00111

Page 00112

US. Patent Jun. 22, 1999 Sheet 106 of 146 5,915,019

Start EXTRACT

Method Process 2080

Object ID. Source /

container ID

2082

_ 2084
Prime Audit Read Audit UDE

Call BUDGET
method to check 2086

extract budget for

original object

2088 2090 2092

Write Failure End of EXTRACT

Audit record Method
Budget permits

extraction?
No

Yes

Create copy of
extracted object

with specified
controls (this is a
call to a method

that controls

the copy)

2094

User specifies new 2106
orchanged

controls and calls a

method to create a

new PEFtC that

reflects these

controls

User

Input

Control changes

permitted by
extract rights?

2100

Audit UDEWrite Audit

End of EXTRACT

Process

FIG. 57a
Page 00112

Page 00113

US. Patent Jun. 22, 1999 Sheet 107 of 146 5,915,019

Start EMBED

Method Process 2110

Object ID. Destination /

container ID

2112

. 2114
Prime Audit Write Audit UDE

Cali BUDGET
method to check 2116
embed budget for
destination object

2118 2120 2122

Write Failure End of EMBED
Audit record Method

Budget permits
embedding?

No
Yes

Write object into 2124
desfinafion

container, abstracting

controls (calling a
method to abstract or

change the controls)

User specifies new
orchanged

controls and calls a

method to create a

new PERC that

reflects these

controls

2130

 User

input
Control changes

permitted by
embed rights?

No

2134

Write Audit

End of EMBED FIG- 57b

Page 00113

Page 00114

US. Patent Jun. 22, 1999 Sheet 108 of 146 5,915,019

2140

Start OBSCURE

Method

Call EVENT 2142
Method to /

determine if

content is in range
to be obscured

2146

End of OBSCURE

Method

Was content in No
range for obscure?

Yes

First time in for

this method?

Load obscure

formula and

patterns

OBSCURE

Method MDE(s)

No

Apply transform

2156

End of OBSCURE

Method
FIG. 58a

Page 00114

Page 00115

US. Patent Jun. 22, 1999 Sheet 109 of 146 5,915,019

Start FINGERPRINT

Method

Call EVENT

Method to

determine if

content is in range

to be fingerprinted

2160

/

2162
/

 2166

End of FINGERPRINT

Method

Was content in

range for fingerprint? N0

Yes

First time in for

this method?

Load fingerprint
formula and

patterns

FINGERPRINT

Method MDE(s)

No

Apply transform

2176

End of FINGERPRINT

Method
FIG. 58b

Page 00115

Page 00116

5,915,019Sheet110 0f146Jun.22,1999US. Patent

Amvrmrm

szkzooDmho<mFXm

0mm.OE
OQrNDOIFmE

FZmHZOoawkm>mozm

00m

Page00116

Page 00117

US. Patent Jun. 22, 1999 Sheet 111 of 146 5,915,019

Start or DESTROY 2180

Method /
2182 2184

Call ACCESS 2186
Method to write /

garbage at head
of object

2188 2190

Mark URT or other

control structures Write

as damaged

 URT or other

control structures
2192 2194

2196

End Of DESTROY

FIG. 59

Page 00117

Page 00118

US. Patent Jun. 22, 1999 Sheet 112 of 146 5,915,019

2200
Start of PANIC

Method /
2202 2204

Call CLOSE

Method to close

the channel

 2206
/

2210

Write um, PERC(s)

2212 2214

Mark controls

as damaged

Write Audit Write Audit UDE

2216

End of PANIC

Method
FIG. 60

Page 00118

Page 00119

US. Patent Jun. 22, 1999 Sheet 113 of 146 5,915,019

Atomic Element,
Event Count

Start METER Method

/
2222

Prime METER
Audit Trail

METER Audit

Trail UDE
Write —>

2228

DTD for METER

UDE
Obtain DTD for

METER

Obtain METER

2234

Read

2232

Read METER UDE

2236

2238

METER Method

Failed

 METER

Audit date expired
(time)?

Commit METER

Yes Failure Audit Record

N0 2239 2240

Update METER using
Atomic Element

and count

Write METER UDE

2244

Save METER Use

Audit Record

METER Method

Succeeded

METER Audit

WW3 _’ Trail UDE
2246

FIG. 61

Page 00119

Page 00120

US. Patent Jun. 22, 1999 Sheet 114 of 146 5,915,019

FIG. 62

SECRETKEY

CONVOLUTKMJSEED

/// 2821

SWEID

2871

RTC 528

PHGHBHS

CURRENT

CONVOLUTHON

KEY

2,4/2862

 ACTUAL

CONTENT

KEY
 2863

 CONTENTKEYFROM

PERC mm

2872

Page00120

Page 00121

5,915,019Sheet 115 of 146Jun. 22, 1999US. Patent

moqumom0mNmOhm

mm.OEANVerNm>40>zoo

m0k<mm0ANVNmmN

 m>JO>ZOOm>n_O>ZOO
onrnmm

w>JO>ZOO
8:.me

m>._O>ZOo
Amvrumm

w>.._O>ZOO
A<vrnmm

onrwmm
0km

Page 00121

Page 00122

US. Patent Jun. 22, 1999 Sheet 116 of 146 5,915,019

FIG. 64

#2813, 2814
II LM CERT. Pun KEY(S)

DOWNLOAD PUB I<EY(S)

2811
MFG SITE CERT

PUB KEY

IIIl|llIll I II 1 I
_I

2812 I PPE EXTENSION TO I
GEN SITE CERT

DURING MFG

(OPTIONAL)

MFG SITE CERT
PRIV KEY

2823

SITE ID
CERT

VDE

CERTIF,
DB

MFG CERT. GEN

(PK SIGN)

l
I
I
I
|
|
I
I
I
I
I
I
I
I
I
I
l
I
I
I
I

_.l

2804 2803
SITE ID AND

CHARACTERISTICS

2821,2822

I‘__“‘*———————-——*-----~~-—- —--_--___________ __ ___ ___ _______1I I
I I

I I
I I
' I
I I
I STEPUBKEY :I I

I SECURE :I NON-VOLATILE I
' 8 6

I 2 I KEY i
I SHEIHNVKEY ______________. STORAGE I
I I
I 2817 I
I I

I SFHEDBKEYS ____,__~_________ I
I II I
I I
I I
I I
I I

I I
'L I

Page00122

Page 00123

US. Patent Jun. 22, 1999 Sheet 117 of 146 5,915,019

FIG. 65

2831

PRIV HDR KEYS -

 2834

2813 _

VDE SITE PUB KEYLL
CEgg'F FROM SITE CERT: EE/

2823 :_ __,__ __~ _}

2804

Ir"—"""““" “‘“ "““ “"‘ ”“““"""“"“""""1————————————————————— 1 v 2816

I 2842\II_ SITE PRI KEY
: : PK DECRYPT' 1

I I______________________I
I

I
l SECURE

I NONvVOLATlLE
I KEY

: STORAGE
I|
I
l
i _I
I
I
I

I

I PPEGSOI

Page 00123

Page 00124

US. Patent Jun. 22, 1999 Sheet 118 of 146 5,915,019

FIG. 66 W“ " A _ _ _-,
PPE 650

SECURE NON-
VOLATILE KEY

STORAGE
2802

SECURE DB KEY
2817

I
I
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I PRIV IIDR KEY
I
l
I
I
I
I

ADMHIOBJECfl """""

(CONTROLS):870
ENCRYPT

 DECRYPT

PRIVATE BODY
KEY FROM
PERC 810

STATIONARY

I
l
I
I
I
l
l
I
I
I
l
I

OBJECT I
I
I
I
I
l
I
I
I
I
I
I

CONTENT

850

" DECRYPT
SECURE

DATABASE
610

2845

CONTENT

Page00124

Page 00125

US. Patent Jun. 22, 1999 Sheet 119 of 146 5,915,019

PPE650 r - ~ — ~ — _.___,
I I
I l
I I
I I
I I
I I
I I
| II

I SECURENVKEY 2mm .
I STORAGE I
I I
I I
I I
I I
I I
I SECUREFmE/ I

: KEY2831 :
I I
I I

I 2844 II
I k I
I ENCRYPT I
I
I

TRAVEUNG I PERC

860 I PRIVATE BODY KEY
DECRYPT FROMPERC81O

ENCRYPTED
CONTENT

2843

I
I
I
I
I
I
I

l DECRYPT
I
I
|
I
I
l

SECURE DB
610

FIG. 67 CONTENT

Page 00125

Page 00126

US. Patent Jun. 22, 1999 Sheet 120 of 146 5,915,019

1370

k
1372

FIG. 68

1374

ESTABLISH
SECURE

COMMUNICATIONS

UPDATE 1376

SPU INTERNAL ’/
BOOTSTRAP

137s

DOWNLOAD

FIRMWARE

INTO SPU

DOWNLOAD

UNIQUE DEVICE
ID INTO SPU

DOWNLOAD/INIT.

KEYS, TAGS
AND CERTIFICATES

INITIALIZE 1384
SPU

REAL TIME CLOCK

1386

INITIALIZE
SUMMARY

VALUES

INITIALIZE
SECURE

DATABASE

Page 00126

Page 00127

US. Patent Jun. 22, 1999 Sheet 121 of 146 5,915,019

1392

\ FIRMWARE
ITEM

RECEIVE

1394 NO

DOE

ITEM DECRYPT

PROPERLY?

YES

1396
NO

CHECKSUM

COMPARE?

YES

1398

CALCULATE DIGITAL

SIGNATURE

1400

DOES

DIGITAL SIGNATURE
COMPARE ?

YES

1402

 FIRMWARE TO B

STORED IN THE

YES

1404
STORE IN SPU

NON—VOLATILE

MEMORY

NO

1401

FAIL

NO (STORE IN SECURE DB)

1406

TAG

FIRMWARE

1408

ENCRY TAND

STORE IN SECURE
DB

END

Page 00127

Page 00128

US. Patent Jun. 22, 1999 Sheet 122 of 146 5,915,019

2630 __ __ _. __ __ __

______________2—6 34(1) :

saufl 2632(1) .653(1)A

: 658(2) 656(2) 500(2)

l ____________________________________

614\ 654(3)————————————— 4——————————

s DISPLAY R
600(3)I MECHANISM p CONTROLLE

K: 653(3)
'13
: BUS

: mI

| 658(3) 656(3) 500(3)
1 ____________________________________

C

' o

622 .

600(N) \ 654““ 2632(N) .
7“” __ _ _ __ __ _\1 2640 PRINT

¥MECHANISM

 CTRL

BUS

m RAM SPU
HQ 70: 658W 656(N) 500(N) '

Page 00128

Page 00129

5,915,019Sheet 123 of 146Jun. 22, 1999US. Patent

mo<mKMF2_mam4<zmmkxm

Nomm

_

”Eozms..m4m<m0<4mmmflm4m<>osmm
w_

L

§<m

>mmhk<m

Page 00129

Page 00130

US. Patent Jun. 22, 1999 Sheet 124 of 146 5,915,019

LOGINUSERINTERFACE

 [:] LOGHJATSTARTUP

FIG. 72A

FIG. 723

2660

YOU HAVE REQUESTED THESE CANCEL

f: PROPERTIES:

2662

PROPERTY INFO Your Cost: $7.50 MORE OPTIONS :

2664

Page 00130

Page 00131

US. Patent Jun. 22, 1999 Sheet 125 of 146 5,915,019

FIG. 72C

SET LIMITS:

SESSION DOLLAR LIMIT: $

TRANSACTION DOLLAR LIMIT $
2668

CANCEL

TIME LIMIT (IN MINUTES): 50 \2670

UNIT LIMIT:
HELP!

2672

Page 00131

Page 00132

5,915,019Sheet 126 of 146Jun. 22, 1999US. Patent

.1d.l.

Emmozmmmummm4.3j<._rmz_Dani/moo>100._.Z_mm\Cojaw—Qbingo\,Edge\/§m_>mmn_
oodoommmmwmwomkwome000%ome09mmoomwEZDPmOOozmmme

Howwmo41ng\szszquSmSBom4<_0mmwrSaws.>>mzmmzm<>>mxomm532:2ox<5m2>>mzmmzm<>>92$Fzmommn.om<6m2>>mzmmzm<>>mxommmOhomwONV<_Dm_>_>>mzmmzm<>>memNomoommmm<5m=2>>mzmmzm<>>ms:DmOommor<_Dm_>_>>m2mmzm<>>ms:DmOOmmr(Em—2>>mzmmzm<>>ms:wtmxSams—>>mzmmzm<>>mxmmmHwtz:F2305?Hv..m=.#m_.dm5n_MNEomfim"kaUmDO> {Mmumzék.:>m0.rm_I..Fm003mmm500<mFmOQDm>>OIm{WEEDhmm
€qubemmzph>m2004_..In_<moo_m025m4M2EDDF_mm<m6.030AEm<m00_m>mm><XE....<N_OO_mOZmemmNEu...Oma7>zznmwoamEOmn=1>ZZDmwODm...mm7>zznmmODmDE<moo_mmmzowx0310H>..Emn_oma0mz_Emmmomm

m>omnE<BENZMZHE.>m2004”mm—kmmmommmmmTE.awkmMDOm—mm><I30>
Own.9”.

Page 00132

Page 00133

US. Patent

300

8063

806b

806d

8066

Jun. 22, 1999 Sheet 127 of 146 5,915,019

/
FIG. 73 3000

PUBLIC HEADER 802

PRIVATE HEADER
804

PRIVATE BODY 806

3002

300y

300x

300w

RULES

FOR RULES ——’ 806‘:
FOR RIGHTS FOR

RULES ., 806f
FOR

CONTAINER CONTAINER 300y CONTAINER 3002
300x

CONTENT RULES

OBJECT FOR ¥,300d1)
AGENT

EXECUTION

SOFTWARE AGENT / 3002(2)

CONTENT RULES
OBJECT FOR

INFORMATION _ 300“”
SEARCH

INFORMATION (ROUTING) , 300m,
LOCATIONS AND RELATED DATA

CONTENT RULES

OBJECT FOR 300x(1)
INFORMATION

RETRIEVED

INFORMATION RETRIEVED , 300“”

ADMIN. RULES

OBJECT FOR / 300w“)
AUDrT

AUDIT HISTORY OF RETURNED

AGENT
300w(2)EXECUTION

Page 00133

Page 00134

US. Patent Jun. 22, 1999

FIG. 74

SOFTWARE

DESCRIPTION

LIST

DATABASE

VDE SITE WITH AGENT
EXECUTION SERVICE AND
SOFTWARE DESCRIPTION

301 ' LIST DATABASE

Sheet 128 of 146 5,915,019

SOFTWARE

DESCRIPTION

LIST

DATABASE 3020

VDE SITE WITH AGENT
EXECUTION SERVICE AND
SOFTWARE DESCRIPTION

LIST DATABASE

 SMART OBJECT
SEND TO SECOND VDE

SITE AFTER FAILURE ON
FIRST VDE SITE

INFORMATION

LOCATOR

DATABASE

SMART OBJECT

SENT TO VDE SITE
DESIRED SERVICES

VDE SITE WITH
INFORMATION LOCATOR

SERVICE

3012

SMART OFJECT SENT TO DETERMINE
LOCATION OF DATABASE TO USE

3014

SMART OBJECT
WITH DESIRED
INFORMATION
RETURNS TO

SENDER

USER VDE SITE
Page 00134

Page 00135

US. Patent Jun. 22, 1999 Sheet 129 of 146 5,915,019

FIG. 75A

3104 3106 3100

PRIVATE
C

PERC HEADER 30 BODY KEYS

USE RIGHT HDR CSR KEYS
3118

- - v I CGNTROLSET

(USE W/O INFO. PASSBACK) CONTROL METHOD (VEND'NG) 3102a

REQUIRED METHOD, BUDGET

ETHOD OPTION:
METHOD OPTION: METHOD OPTION: M

VISA MASTERCARD AMEX

REQUIRED METHOD, BILLING ($100 FIXED, ONE TIME) ‘

| DESIRED CONTROL SET CONTROL METHOD (VENDING

3120

(USE WITH INFO. PASSBACK) WITH "RESPONSE CARD") 3102b

REQUIRED METHOD. BUDGET :‘METHOD 0PT|0N;‘ METHOD OPTION: UETHOD OPTION:MASTERCARD AMEXVISA

I FIELDS

II | REQUIRED METHOD, BILLING ($25 FIXED, ONE TIME

REQUIRED METHOD, AUDIT (COLLECTION
PERSONAL INFORMATION)

REQU'RED DESIRED FIELDS-L

Page 00135

Page 00136

US. Patent Jun. 22, 1999 Sheet 130 of 146 5,915,019

3125

PRIVATE
cso

PERC HEADER BODY KEYS

3127 USE RIGHT HDR KEYS

3129

3142 DESIRED METHOD, BUDGET

METHOD OPTION: ' ' ' 'I =
VISA MYVISABUDGET 3143

. /

‘- REQUIRED METHOD, BILLING (<$150 FIXED, ONE TIME)
3133

DESIRED CONTROL SET CONTROL METHOD (VENDING

3131a (USE WITH INFO. PASSBACK) WITH "RESPONSE CARD")

' .l- .‘ I.I". II 3135
I (COLLECTION PERSONAL INFORMATION)PERMITTED

3137 FIELDS -l

I REQUIRED METHOD, BILLING (<530. FIXED. ONE TIME) 3139PERMITTED CONTROL SET I 3141
3131b (USE W’O INFO PASSBACKJ CONTROL METHOD (VENDING)

Page 00136

Page 00137

US. Patent Jun. 22, 1999 Sheet 131 of 146 5,915,019

3150

PRIVATE
cso

PERC HEADER BODY KEYS

NEGOTIATE

RIGHT HDR 05“

3‘52 PERMITTED CONTROL SET 0 ‘ - o I - o n /
3154a (TRUSTED NEGOTIATOR) (NEGOTIATE)

1 7 REQUIRED UDE ’ REWRED UDE: 3157b
3 5 a PERC1 PERC2

3158

PERM'TTED CONTROL SET CONTROL METHOD (NEGOTIATE) /
(MULTIPLE NEGOT. PROCESSES)

I 3156
REQUIRED METHOD: NEGOTIATE1 '

REQUIRED UDE:
3154b PERC1

REQUIRED METHOD: NEGOTIATE2 3153

REQUIRED UDE:
PERCZ

Page 00137

Page 00138

US. Patent Jun. 22, 1999 Sheet 132 of 146

3162

3164

3166\

3170

FIG. 750

DIGITAL

URT HEADER SIGNATURE

USE
RIGHT HDR

CO ‘ T ' 0 SET(I S ' IT' CONTROL METHOD(VENDING
INFO. PASSBACK) WITH "RESPONSE CARD")

REQUIRED METHOD, BUDGET

METHOD OPTION: DESIRED UDE:
VISA MYVISABUDGET

RETJ‘L‘HR'E‘ D' W'IE'T'HOD, AUDIT (COLLECTION
PERSONAL INFORMATION)

PER‘M‘fiTED
FIELDS

REQUIRED METHOD, BILLING($25, FIXED, ONE TIME) I

5,915,019

3160

Page 00138

Page 00139

US. Patent Jun. 22, 1999 Sheet 133 of 146 5,915,019

| CLAUSE 1 J _
CLAUSE 2

CLAUSE N

DIGITAL DIGITAL

SIGNTURE SIGNATURE

3204(1) 3204(M)

ELECTRONIC

CONTRACT

FIG. 75E

3202(1)

3202(2)

3200

3202(N)

3208(1)

FIG. 75F3208(2)

3208(3)

3208(4)

3208(5)

Page 00139

Page 00140

US. Patent Jun. 22, 1999 Sheet 134 of 146 5,915,019

FIG. 76A

808n

808a

RULESSET1 RULESSETN

SHAREDNEGOHAHON
PROCESS

3172

NEGOHAWON
PROCESSRULES

ANDCONTROLS

ELECTRONKZCONTRACT1 ELECTRONKECONTRACTZ

PERCflJRT'N

31603

Page 00140

Page 00141

US. Patent Jun. 22, 1999 Sheet 135 of 146 5,915,019

FIG. 76B

3150: 8083.
NEGOTIATION

PROCESS RULES
AND CONTROLS

 PERC 1

 NEGOTIATION
PROCESS RULES
AND CONTROLS

 RULES SET 1

RULES SET N

NEGOTIATION
PROCESS N

NEGOTIATION

3172A PROCESS 1

ELECTRONIC CONTRACT 1 ELECTRONIC CONTRACT 2

Page 00141

Page 00142

US. Patent Jun. 22, 1999 Sheet 136 of 146 5,915,019

FIG. 77

102 100

VDE CONTENT

: 3 1

- I 1 CREATOR
: 3 g ._______
. 9 5
: - 1
. ~ 1. I

108 I . g
‘ . g 104

i
!
I
!
I
I

I

1 VDE RIGHT/
. I

ELECTRONIC i REPORTS

CONTENT CONTENT <— AND
HIGHWAY PAYMENTS

 CLIENT

ADMINISTRATOR

112(1)

REPORTS

REPORTS “2 PAYMENTS
120

“4 116a

FINANCIAL
CLEARINGHOUSE

VDE

1 16b ADMINISTRATOR

Page 00142

Page 00143

5,915,019Sheet 137 of 146Jun. 22, 1999US. Patent

Eumo:5<
f3:88

AZIKOIPD<
Azrmomm

motom

>m0twOn—mm.2004

22”zgmém:
omnnEmhm>m.EDD<wwnnEmkm>mzo..~0<mz<m._.

.vmnmSmkm>mmmzonwmmm

Emkm>mw_m>4<z<

«manEmhw>w023.:m

38N3">m<mm388Em._.m>wmmnkoamkmmmEémjkszmmmmeE405.200whims—wk
H58mmoEb<mmT—mjmaa

Ewkw>mZOF<N_MOI._.D<
muommEm.~m>wmmDOIGZEfiJU

comm
\88088

UKOIFD<€28mww:02m

€23

385mm3,88mm3‘8<8325965.59659.965.559:6z<z_.._EEG.Em:0memum/Ehzmkzoo._<_okzmhzoo

mnnm.vunnZOF<M._.w_0mmEw.z<:ums_mOIFD<EmmDIom<mw

 mnmn

:mMmm.5kaEmomm20:06.35:
onnnEm...w>m025n=Iw >10tw0mmmwo>

88..”wk.musl\«83<«9:3

mmommmmOIHD<

vnnm«nanMm0<¥o<mmm0<x0<nmmz_<._.200mqomkzoo

mmnnmnmnmmozmmwn—mmNOEOHmkzmkzookzmkzoo Nunnonnm004<h<oZOFgQOmmhzmkzooMOT—knfimmmn

Page 00143

Page 00144

US. Patent Jun. 22, 1999 Sheet 138 of 146 5,915,019

FIG. 79

CREATOR A CREATOR B CREATOR C

CREATOR D

CREATOR

DISTRIBUTOR A DISTRIBUTOR B E

CLIENT
ADMINISTRATOR

 DISTRIBUTOR C

 USER!
DISTRIBUTOR A

 USERI

DISTRIBUTOR
C

USERI

USER A DISTRIBUTOR B
USER C USER E

Page 00144

Page 00145

US. Patent Jun. 22, 1999 Sheet 139 of 146 5,915,019

FIG. 80

 CREATOR A

CA

 DISTRIBUTOR A

DA(CA)

USER B

UB(DA(CA))

USER A

UA(DA(CA))

USER/DISTRIBUTOR A

UDA(DA(CA))

USER/DISTRIBUTOR B

UDB(UDA(DA(CA)))

USER B

UB(UDB(UDA(DA(CA))))

Page 00145

Page 00146

5,915,019Sheet 140 of 146Jun. 22, 1999US. Patent

Emovoemozeooaoa
a$8

62%:mEm:

v

Eamovoo

Eczema/ave:0$8

A
2

oemozovo:amum:

Same

Emovoemozovoo:omoSeEmaEmw:

EmovoemozomOH<m._.w_z=>_o<._.zm_._o

«gamma;mEm:

Eadie

EmozoioamoammoSeEmaEmm:

(gamma;mEm:

A5

2

 3195<Em:

A

$0196:<55252953

23523:mmoSeEmaEmw:

Eczemam85253

Among<moSeEma

$95:

30o

0$9595.20<mOHDmEkm—DEmm:

mo
m$855

Page 00146

Page 00147

5,915,019Sheet 141 of 146Jun.22,1999US. Patent

22093290025ommw:

EogmazovogomOHDEmeE\mmmn

£08320va:8vammmw:

200395$252252Emso

100vammoSeEma
22090955}mEm:<20:

ommw:

2209091952:amum:
zoovmozgo:D$3

000$055

22033139330:ommw:

220909329030moSeEmaEma:

“Eoeoemozovo:0$8

Eoeoemozo$252252kzmso

£0800vavam$2.

20209;mmosmasa

gooomoSeEma
mm.07.

Page00147

Page 00148

US. Patent Jun. 22, 1999 Sheet 142 of 146 5,915,019

CREATOR D

CD

CREATOR B DISTRIBUTOR C CREATOR C

CB DC(CBCCCD) CC

DISTRIBUTOR B CREATOR E

DB(DC(CBCCCD)CE) CE

USER B

UB(DC(CBCCCD))

CLIENT ADMINISTRATOR USER E

CA(DB(DC(CBCCCD)CE)) UE(DB(DC(CBCCCD)CE))

USER B

UB(DB(DC(CBCCCD)CE))

USER C USER/DISTRIBUTOR c

UC(CA(DB(DC(CBCCCD)CE))) UDC(CA(DB(DC(CBCCCD)CE)))

USER D USER E

UD(CA(DB(DC(CBCCCD)CE))) UE(CA(DB(DC(CBCCCD)CE)))

USER D

UD(UDC(CA(DB(DC(CBCCGD)CE))n

Page 00148

Page 00149

5,915,019Sheet 143 of 146Jun. 22, 1999US. Patent

AVEmmmm:ozm
E23

BE2Mum:02m
283

€83
Gown

mmImijm.wmOFUdEFXmwe:

QImmum:sz
€23

HIE>m<mm30.034.
2%3m

 >mOtmOn—mmhmzm#2.

.vEmma02mNEmma02mascan.

aQQ@Enmum:Dzmvmmwa02mas:5

E23

<MmeimDmm0k<0mm00<

2.83
 @@®®>m<mm3Own:>#93N03”

Wm.OE

Page 00149

Page 00150

US. Patent Jun. 22, 1999 Sheet 144 of 146 5,915,019

300(3)FIG. 85

BUDGET =

$8,000

DISTRIBUTE
BUDGET —

$22,000
PRINT

W

3450

CLIENT ADMINISTRATOR

3452(1) ‘ 3452(2)

‘ ("HW‘ PLANNING _
ADMINISTRATOR ADMINISTRATOR

DISPLAY DISPLAY
0,5,,“ - ED” ___

3452(K)

RESEARCH 8. DEVELORMENT
ADMINISTRATOR

—PRINT m
BUDGET : _ = . . = BUDGET =BUDGET = BUDGET —

“00° 3 000 $10 000 $5,000
DISTRIBUTE 5 . ‘ DISTRIBUTE

DISTRIBUTEDISTRIBUTE

3454(1) 3454(2)

DISPLAY
EDIT

520° =$1ooo

3454(3) 3454(4) 3454(5)

PRINT

BUDGET 22:33)“
=$5oo

DISPLAYDISPLAY

BUDGET

=$1000
BUDGET =

$100

3454(5)
_,/

DISPLAY M
BUDGET = BUDGET = TEXTRACT‘

$400 $100 8566??
$1000

Page 00150

Page 00151

5,915,019Sheet 145 of 146Jun. 22, 1999US. Patent

_Nrrmum:

xmrv

mum:wzoamimmm
mo<w3

cur?

 mJOszoommwmeJDm"mn2062mmmmmmm:>motw0mmm"mm:unu“Fzmkzoomnm.meoummmummm?)mmzwwwficammn.mmmm:mmw:L"zofia>mozm“m40w.0EmEotwonmmmngwwimmmmo<m3w"szhzoomFszzoommbéolmoomzoawimmn.“Eotmonmmu.ENE--5----------zo._+-pm._m.F-w-_-o.wm:--mEwan»?.\.-wzoamimwmmeowwzoamimmn.

zofiDEmpgomm
zQSmeaaEmkzoo

20692meL2mkzoo zofiagmkwaFzmkzooomku>mozm-
qawe?Normmm:moqumoow:aw:wzoMmSmmmmum:mum:

HZmFZOOU m(m3omEEozmz:zoamimmamo<w3.8mmmm0....—
Page 00151

Page 00152

5,915,019Sheet 146 of 146Jun. 22, 1999US. Patent

mOHDmEkmEHZMPZOOcomm

3,20?romo._bm_m5_ommFzmkzoo

nm.0.“—

m0k<mmokzmhzoommz_<.rzoo200354<3._.m_>

md>mj2okas3<zo_EoVmmmm:hzmjo

Page 00152

Page 00153

5,915,019

1
SYSTEMS AND METHODS FOR SECURE

TRANSACTION MANAGEMENT AND
ELECTRONIC RIGHTS PROTECTION

This is a divisional of application Ser. No. 08/388,107,
filed Feb. 13, 1995, abandoned.

FIELD(S) OF THE INVENTION(S)

This invention generally relates to computer and/or elec-
tronic security.

More particularly, this invention relates to systems and
techniques for secure transaction management. This inven-
tion also relates to computer-based and other electronic
appliance-based technologies that help to ensure that infor-
mation is accessed and/or otherwise used only in authorized
ways, and maintains the integrity, availability, and/or con-
fidentiality of such information and processes related to suchuse.

The invention also relates to systems and methods for
protecting rights of various participants in electronic com-
merce and other electronic or electronically-facilitated trans-
actions.

The invention also relates to secure chains of handling
and control for both information content and information

employed to regulate the use of such content and conse-
quences of such use. It also relates to systems and techniques
that manage, including meter and/or limit and/or otherwise
monitor use of electronically stored and/or disseminated
information. The invention particularly relates to
transactions, conduct and arrangements that make use of,
including consequences of use of, such systems and/or
techniques.

The invention also relates to distributed and other oper-
ating systems, environments and architectures. It also gen-
erally relates to secure architectures, including, for example,
tamper-resistant hardware-based processors, that can be
used to establish security at each node of a distributed
system.

BACKGROUND AND SUMMARY OF THE

INVENTION(S)
Telecommunications, financial transactions, government

processes, business operations, entertainment, and personal
business productivity all now depend on electronic appli-
ances. Millions of these electronic appliances have been
electronically connected together. These interconnected
electronic appliances comprise what is increasingly called
the “information highway.” Many businesses, academicians,
and government leaders are concerned about how to protect
the rights of citizens and organizations who use this infor-
mation (also “electronic” or “digital”) highway.

Electronic Content

Today, virtually anything that can be represented by
words, numbers, graphics, or system of commands and
instructions can be formatted into electronic digital infor-
mation. Television, cable, satellite transmissions, and
on-line services transmitted over telephone lines, compete to
distribute digital information and entertainment to homes
and businesses. The owners and marketers of this content

include software developers, motion picture and recording
companies, publishers of books, magazines, and
newspapers, and information database providers. The popu-
larization of on-line services has also enabled the individual

personal computer user to participate as a content provider.
It is estimated that the worldwide market for electronic

information in 1992 was approximately $40 billion and is

10

15

20

25

30

35

40

45

50

55

60

65

2

expected to grow to $200 billion by 1997, according to
Microsoft Corporation. The present invention can materially
enhance the revenue of content providers, lower the distri-
bution costs and the costs for content, better support adver-
tising and usage information gathering, and better satisfy the
needs of electronic information users. These improvements
can lead to a significant increase in the amount and variety
of electronic information and the methods by which such
information is distributed.

The inability of conventional products to be shaped to the
needs of electronic information providers and users is
sharply in contrast to the present invention. Despite the
attention devoted by a cross-section of America’s largest
telecommunications, computer, entertainment and informa-
tion provider companies to some of the problems addressed
by the present invention, only the present invention provides
commercially secure, effective solutions for configurable,
general purpose electronic commerce transaction/
distribution control systems.

Controlling Electronic Content

The present invention provides a new kind of “virtual
distribution environment” (called “VDE” in this document)
that secures, administers, and audits electronic information
use. VDE also features fundamentally important capabilities
for managing content that travels “across” the “information
highway.” These capabilities comprise a rights protection
solution that serves all electronic community members.
These members include content creators and distributors,
financial service providers, end-users, and others. VDE is
the first general purpose, configurable, transaction control/
rights protection solution for users of computers, other
electronic appliances, networks, and the information high-
way.

Afundamental problem for electronic content providers is
extending their ability to control the use of proprietary
information. Content providers often need to limit use to
authorized activities and amounts. Participants in a business
model involving, for example, provision of movies and
advertising on optical discs may include actors, directors,
script and other writers, musicians, studios, publishers,
distributors, retailers, advertisers, credit card services, and
content end-users. These participants need the ability to
embody their range of agreements and requirements, includ-
ing use limitations, into an “extended” agreement compris-
ing an overall electronic business model. This extended
agreement is represented by electronic content control infor-
mation that can automatically enforce agreed upon rights
and obligations. Under VDE, such an extended agreement
may comprise an electronic contract involving all business
model participants. Such an agreement may alternatively, or
in addition, be made up of electronic agreements between
subsets of the business model participants. Through the use
of VDE, electronic commerce can function in the same way
as traditional commerce—that is commercial relationships
regarding products and services can be shaped through the
negotiation of one or more agreements between a variety of
parties.

Commercial content providers are concerned with ensur-
ing proper compensation for the use of their electronic
information. Electronic digital information, for example a
CD recording, can today be copied relatively easily and
inexpensively. Similarly, unauthorized copying and use of
software programs deprives rightful owners of billions of
dollars in annual revenue according to the International
Intellectual Property Alliance. Content providers and dis-
tributors have devised a number of limited function rights

Page 00153

Page 00154

5,915,019

3

protection mechanisms to protect their rights. Authorization
passwords and protocols, license servers, “lock/unlock”
distribution methods, and non-electronic contractual limita-
tions imposed on users of shrink-wrapped software are a few
of the more prevalent content protection schemes. In a
commercial context, these efforts are inefficient and limited
solutions.

Providers of “electronic currency” have also created pro-
tections for their type of content. These systems are not
sufficiently adaptable, efficient, nor flexible enough to sup-
port the generalized use of electronic currency. Furthermore,
they do not provide sophisticated auditing and control
configuration capabilities. This means that current electronic
currency tools lack the sophistication needed for many
real-world financial business models. VDE provides means
for anonymous currency and for “conditionally” anonymous
currency, wherein currency related activities remain anony-
mous except under special circumstances.

VDE Control Capabilities
VDE allows the owners and distributors of electronic

digital information to reliably bill for, and securely control,
audit, and budget the use of, electronic information. It can
reliably detect and monitor the use of commercial informa-
tion products. VDE uses a wide variety of different elec-
tronic information delivery means: including, for example,
digital networks, digital broadcast, and physical storage
media such as optical and magnetic disks. VDE can be used
by major network providers, hardware manufacturers, own-
ers of electronic information, providers of such information,
and clearinghouses that gather usage information regarding,
and bill for the use of, electronic information.

VDE provides comprehensive and configurable transac-
tion management, metering and monitoring technology. It
can change how electronic information products are
protected, marketed, packaged, and distributed. When used,
VDE should result in higher revenues for information pro-
viders and greater user satisfaction and value. Use of VDE
will normally result in lower usage costs, decreased trans-
action costs, more efficient access to electronic information,
re-usability of rights protection and other transaction man-
agement implementations, greatly improved flexibility in the
use of secured information, and greater standardization of
tools and processes for electronic transaction management.
VDE can be used to create an adaptable environment that
fulfills the needs of electronic information owners,
distributors, and users; financial clearinghouses; and usage
information analyzers and resellers.

Rights and Control Information
In general, the present invention can be used to protect the

rights of parties who have:

(a) proprietary or confidentiality interests in electronic
information. It can, for example, help ensure that
information is used only in authorized ways;

(b) financial interests resulting from the use of electroni-
cally distributed information. It can help ensure that
content providers will be paid for use of distributed
information; and

(c) interests in electronic credit and electronic currency
storage, communication, and/or use including elec-
tronic cash, banking, and purchasing.

Protecting the rights of electronic community members
involves a broad range of technologies. VDE combines these
technologies in a way that creates a “distributed” electronic
rights protection “environment.” This environment secures
and protects transactions and other processes important for
rights protection. VDE, for example, provides the ability to

10

15

20

25

30

35

40

45

50

55

60

65

4

prevent, or impede, interference with and/or observation of,
important rights related transactions and processes. VDE, in
its preferred embodiment, uses special purpose tamper resis-
tant Secure Processing Units (SPUs) to help provide a high
level of security for VDE processes and information storage
and communication.

The rights protection problems solved by the present
invention are electronic versions of basic societal issues.

These issues include protecting property rights, protecting
privacy rights, properly compensating people and organiza-
tions for their work and risk, protecting money and credit,
and generally protecting the security of information. VDE
employs a system that uses a common set of processes to
manage rights issues in an efficient, trusted, and cost-
effective way.

VDE can be used to protect the rights of parties who
create electronic content such as, for example: records,
games, movies, newspapers, electronic books and reference
materials, personal electronic mail, and confidential records
and communications. The invention can also be used to

protect the rights of parties who provide electronic products,
such as publishers and distributors; the rights of parties who
provide electronic credit and currency to pay for use of
products, for example, credit clearinghouses and banks; the
rights to privacy of parties who use electronic content (such
as consumers, business people, governments); and the pri-
vacy rights of parties described by electronic information,
such as privacy rights related to information contained in a
medical record, tax record, or personnel record.

In general, the present invention can protect the rights of
parties who have:

(a) commercial interests in electronically distributed
information—the present invention can help ensure, for
example, that parties, will be paid for use of distributed
information in a manner consistent with their agree-
ment;

(b) proprietary and/or confidentiality interests in elec-
tronic information—the present invention can, for
example, help ensure that data is used only in autho-
rized ways;

(c) interests in electronic credit and electronic currency
storage, communication, and/or use—this can include
electronic cash, banking, and purchasing; and

(d) interests in electronic information derived, at least in
part, from use of other electronic information.

VDE Functional Properties
VDE is a cost-effective and efficient rights protection

solution that provides a unified, consistent system for secur-
ing and managing transaction processing. VDE can:

(a) audit and analyze the use of content,

(b) ensure that content is used only in authorized ways,
and

(c) allow information regarding content usage to be used
only in ways approved by content users.

In addition, VDE:

(a) is very configurable, modifiable, and re-usable;

(b) supports a wide range of useful capabilities that may
be combined in different ways to accommodate most
potential applications;

(c) operates on a wide variety of electronic appliances
ranging from hand-held inexpensive devices to large
mainframe computers;

(d) is able to ensure the various rights of a number of
different parties, and a number of different rights pro-
tection schemes, simultaneously;

Page 00154

Page 00155

5,915,019

5

(e) is able to preserve the rights of parties through a series
of transactions that may occur at different times and
different locations;

(f) is able to flexibly accommodate different ways of
securely delivering information and reporting usage;
and

(g) provides for electronic analogues to “real” money and
credit, including anonymous electronic cash, to pay for
products and services and to support personal
(including home) banking and other financial activities.

VDE economically and efficiently fulfills the rights pro-
tection needs of electronic community members. Users of
VDE will not require additional rights protection systems for
different information highway products and rights
problems—nor will they be required to install and learn a
new system for each new information highway application.

VDE provides a unified solution that allows all content
creators, providers, and users to employ the same electronic
rights protection solution. Under authorized circumstances,
the participants can freely exchange content and associated
content control sets. This means that a user of VDE may, if
allowed, use the same electronic system to work with
different kinds of content having different sets of content
control information. The content and control information

supplied by one group can be used by people who normally
use content and control information supplied by a different
group. VDE can allow content to be exchanged “univer-
sally” and users of an implementation of the present inven-
tion can interact electronically without fear of incompat-
ibilities in content control, violation of rights, or the need to
get, install, or learn a new content control system.

The VDE securely administers transactions that specify
protection of rights. It can protect electronic rights
including, for example:

(a) the property rights of authors of electronic content,

(b) the commercial rights of distributors of content,
(c) the rights of any parties who facilitated the distribution

of content,

(d) the privacy rights of users of content,
(e) the privacy rights of parties portrayed by stored and/or

distributed content, and

(f) any other rights regarding enforcement of electronic
agreements.

VDE can enable a very broad variety of electronically
enforced commercial and societal agreements. These agree-
ments can include electronically implemented contracts,
licenses, laws, regulations, and tax collection.

Contrast With Traditional Solutions

Traditional content control mechanisms often require
users to purchase more electronic information than the user
needs or desires. For example, infrequent users of shrink-
wrapped software are required to purchase a program at the
same price as frequent users, even though they may receive
much less value from their less frequent use. Traditional
systems do not scale cost according to the extent or character
of usage and traditional systems can not attract potential
customers who find that a foxed price is too high. Systems
using traditional mechanisms are also not normally particu-
larly secure. For example, shrink-wrapping does not prevent
the constant illegal pirating of software once removed from
either its physical or electronic package.

Traditional electronic information rights protection sys-
tems are often inflexible and inefficient and may cause a
content provider to choose costly distribution channels that
increase a product’s price. In general these mechanisms
restrict product pricing, configuration, and marketing flex-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

ibility. These compromises are the result of techniques for
controlling information which cannot accommodate both
different content models and content models which reflect

the many, varied requirements, such as content delivery
strategies, of the model participants. This can limit a pro-
vider’s ability to deliver sufficient overall value to justify a
given product’s cost in the eyes of many potential users.
VDE allows content providers and distributors to create
applications and distribution networks that reflect content
providers’ and users’ preferred business models. It offers
users a uniquely cost effective and feature rich system that
supports the ways providers want to distribute information
and the ways users want to use such information. VDE
supports content control models that ensure rights and allow
content delivery strategies to be shaped for maximum com-
mercial results.

Chain of Handling and Control
VDE can protect a collection of rights belonging to

various parties having in rights in, or to, electronic infor-
mation. This information may be at one location or dispersed
across (and/or moving between) multiple locations. The
information may pass through a “chain” of distributors and
a “chain” of users. Usage information may also be reported
through one or more “chains” of parties. In general, VDE
enables parties that (a) have rights in electronic information,
and/or (b) act as direct or indirect agents for parties who
have rights in electronic information, to ensure that the
moving, accessing, modifying, or otherwise using of infor-
mation can be securely controlled by rules regarding how,
when, where, and by whom such activities can be per-
formed.

VDE Applications and Software
VDE is a secure system for regulating electronic conduct

and commerce. Regulation is ensured by control information
put in place by one or more parties. These parties may
include content providers, electronic hardware
manufacturers, financial service providers, or electronic
“infrastructure” companies such as cable or telecommuni-
cations companies. The control information implements
“Rights Applications.” Rights applications “run on” the
“base software” of the preferred embodiment. This base
software serves as a secure, flexible, general purpose foun-
dation that can accommodate many different rights
applications, that is, many different business models and
their respective participant requirements.

A rights application under VDE is made up of special
purpose pieces, each of which can correspond to one or more
basic electronic processes needed for a rights protection
environment. These processes can be combined together like
building blocks to create electronic agreements that can
protect the rights, and may enforce fulfillment of the
obligations, of electronic information users and providers.
One or more providers of electronic information can easily
combine selected building blocks to create a rights applica-
tion that is unique to a specific content distribution model.
A group of these pieces can represent the capabilities needed
to fulfill the agreement(s) between users and providers.
These pieces accommodate many requirements of electronic
commerce including:

the distribution of permissions to use electronic informa-
tion;

the persistence of the control information and sets of
control information managing these permissions;

configurable control set information that can be selected
by users for use with such information;

data security and usage auditing of electronic information;
and

Page 00155

Page 00156

5,915,019

7

a secure system for currency, compensation and debit
management.

For electronic commerce, a rights application, under the
preferred embodiment of the present invention, can provide
electronic enforcement of the business agreements between
all participants. Since different groups of components can be
put together for different applications, the present invention
can provide electronic control information for a wide variety
of different products and markets. This means the present
invention can provide a “unified,” efficient, secure, and
cost-effective system for electronic commerce and data
security. This allows VDE to serve as a single standard for
electronic rights protection, data security, and electronic
currency and banking.

In a VDE, the separation between a rights application and
its foundation permits the efficient selection of sets of
control information that are appropriate for each of many
different types of applications and uses. These control sets
can reflect both rights of electronic community members, as
well as obligations (such as providing a history of one’s use
of a product or paying taxes on one’s electronic purchases).
VDE flexibility allows its users to electronically implement
and enforce common social and commercial ethics and

practices. By providing a unified control system, the present
invention supports a vast range of possible transaction
related interests and concerns of individuals, communities,
businesses, and governments. Due to its open design, VDE
allows (normally under securely controlled circumstances)
applications using technology independently created by
users to be “added” to the system and used in conjunction
with the foundation of the invention. In sum, VDE provides
a system that can fairly reflect and enforce agreements
among parties. It is a broad ranging and systematic solution
that answers the pressing need for a secure, cost-effective,
and fair electronic environment.

VDE Implementation
The preferred embodiment of the present invention

includes various tools that enable system designers to
directly insert VDE capabilities into their products. These
tools include an Application Programmer’s Interface
(“API”) and a Rights Permissioning and Management Lan-
guage (“RPML”). The RPML provides comprehensive and
detailed control over the use of the invention’s features.

VDE also includes certain user interface subsystems for
satisfying the needs of content providers, distributors, andusers.

Information distributed using VDE may take many forms.
It may, for example, be “distributed” for use on an individu-
al’s own computer, that is the present invention can be used
to provide security for locally stored data. Alternatively,
VDE may be used with information that is dispersed by
authors and/or publishers to one or more recipients. This
information may take many forms including: movies, audio
recordings, games, electronic catalog shopping, multimedia,
training materials, E-mail and personal documents, object
oriented libraries, software programming resources, and
reference/record keeping information resources (such as
business, medical, legal, scientific, governmental, and con-
sumer databases).

Electronic rights protection provided by the present
invention will also provide an important foundation for
trusted and efficient home and commercial banking, elec-
tronic credit processes, electronic purchasing, true or con-
ditionally anonymous electronic cash, and EDI (Electronic
Data Interchange). VDE provides important enhancements
for improving data security in organizations by providing
“smart” transaction management features that can be far
more effective than key and password based “go/no go”
technology.

10

15

20

25

30

35

40

45

50

55

60

65

8

VDE normally employs an integration of cryptographic
and other security technologies (e.g. encryption, digital
signatures, etc.), with other technologies including:
component, distributed, and event driven operating system
technology, and related communications, object container,
database, smart agent, smart card, and semiconductor design
technologies.

I. Overview

A. VDE Solves Important Problems and Fills Critical
Needs

The world is moving towards an integration of electronic
information appliances. This interconnection of appliances
provides a foundation for much greater electronic interaction
and the evolution of electronic commerce. A variety of
capabilities are required to implement an electronic com-
merce environment. VDE is the first system that provides
many of these capabilities and therefore solves fundamental
problems related to electronic dissemination of information.

Electronic Content

VDE allows electronic arrangements to be created involv-
ing two or more parties. These agreements can themselves
comprise a collection of agreements between participants in
a commercial value chain and/or a data security chain model
for handling, auditing, reporting, and payment. It can pro-
vide efficient, reusable, modifiable, and consistent means for
secure electronic content: distribution, usage control, usage
payment, usage auditing, and usage reporting. Content may,
for example, include:

financial information such as electronic currency and
credit;

commercially distributed electronic information such as
reference databases, movies, games, and advertising;
and

electronic properties produced by persons and
organizations, such as documents, e-mail, and propri-
etary database information.

VDE enables an electronic commerce marketplace that
supports differing, competitive business partnerships,
agreements, and evolving overall business models.

The features of VDE allow it to function as the first trusted
electronic information control environment that can con-

form to, and support, the bulk of conventional electronic
commerce and data security requirements. In particular,
VDE enables the participants in a business value chain
model to create an electronic version of traditional business

agreement terms and conditions and further enables these
participants to shape and evolve their electronic commerce
models as they believe appropriate to their business require-
ments.

VDE offers an architecture that avoids reflecting specific
distribution biases, administrative and control perspectives,
and content types. Instead, VDE provides a broad-spectrum,
fundamentally configurable and portable, electronic trans-
action control, distributing, usage, auditing, reporting, and
payment operating environment. VDE is not limited to being
an application or application specific toolset that covers only
a limited subset of electronic interaction activities and

participants. Rather, VDE supports systems by which such
applications can be created, modified, and/or reused. As a
result, the present invention answers pressing, unsolved
needs by offering a system that supports a standardized
control environment which facilitates interoperability of
electronic appliances, interoperability of content containers,
and efficient creation of electronic commerce applications
and models through the use of a programmable, secure
electronic transactions management foundation and reusable
and extensible executable components. VDE can support a

Page 00156

Page 00157

5,915,019

9

single electronic “world” within which most forms of elec-
tronic transaction activities can be managed.

To answer the developing needs of rights owners and
content providers and to provide a system that can accom-
modate the requirements and agreements of all parties that
may be involved in electronic business models (creators,
distributors, administrators, users, credit providers, etc.),
VDE supplies an efficient, largely transparent, low cost and
sufficiently secure system (supporting both hardware/
software and software only models). VDE provides the
widely varying secure control and administration capabili-
ties required for:

1. Different types of electronic content,

2. Differing electronic content delivery schemes,

3. Differing electronic content usage schemes,

4. Different content usage platforms, and

5. Differing content marketing and model strategies.
VDE may be combined with, or integrated into, many

separate computers and/or other electronic appliances.
These appliances typically include a secure subsystem that
can enable control of content use such as displaying,
encrypting, decrypting, printing, copying, saving,
extracting, embedding, distributing, auditing usage, etc. The
secure subsystem in the preferred embodiment comprises
one or more “protected processing environments”, one or
more secure databases, and secure “component assemblies”
and other items and processes that need to be kept secured.
VDE can, for example, securely control electronic currency,
payments, and/or credit management (including electronic
credit and/or currency receipt, disbursement, encumbering,
and/or allocation) using such a “secure subsystem.”

VDE provides a secure, distributed electronic transaction
management system for controlling the distribution and/or
other usage of electronically provided and/or stored infor-
mation. VDE controls auditing and reporting of electronic
content and/or appliance usage. Users of VDE may include
content creators who apply content usage, usage reporting,
and/or usage payment related control information to elec-
tronic content and/or appliances for users such as end-user
organizations, individuals, and content and/or appliance
distributors. VDE also securely supports the payment of
money owed (including money owed for content and/or
appliance usage) by one or more parties to one or more other
parties, in the form of electronic credit and/or currency.

Electronic appliances under control of VDE represent
VDE ‘nodes’ that securely process and control; distributed
electronic information and/or appliance usage, control infor-
mation formulation, and related transactions. VDE can
securely manage the integration of control information pro-
vided by two or more parties. As a result, VDE can construct
an electronic agreement between VDE participants that
represent a “negotiation” between, the control requirements
of, two or more parties and enacts terms and conditions of
a resulting agreement. VDE ensures the rights of each party
to an electronic agreement regarding a wide range of elec-
tronic activities related to electronic information and/or

appliance usage.
Through use of VDE’s control system, traditional content

providers and users can create electronic relationships that
reflect traditional, non-electronic relationships. They can
shape and modify commercial relationships to accommodate
the evolving needs of, and agreements among, themselves.
VDE does not require electronic content providers and users
to modify their business practices and personal preferences
to conform to a metering and control application program
that supports limited, largely fixed functionality.

10

15

20

25

30

35

40

45

50

55

60

65

10

Furthermore, VDE permits participants to develop business
models not feasible with non-electronic commerce, for
example, involving detailed reporting of content usage
information, large numbers of distinct transactions at hith-
erto infeasibly low price points, “pass-along” control infor-
mation that is enforced without involvement or advance

knowledge of the participants, etc.
The present invention allows content providers and users

to formulate their transaction environment to accommodate:

(1) desired content models, content control models, and
content usage information pathways,

(2) a complete range of electronic media and distribution
means,

(3) a broad range of pricing, payment, and auditing
strategies,

(4) very flexible privacy and/or reporting models,
(5) practical and effective security architectures, and
(6) other administrative procedures that together with

steps (1) through (5) can enable most “real world”
electronic commerce and data security models, includ-
ing models unique to the electronic world.

VDE’s transaction management capabilities can enforce:

(1) privacy rights of users related to information regarding
their usage of electronic information and/or appliances,

(2) societal policy such as laws that protect rights of
content users or require the collection of taxes derived
from electronic transaction revenue, and

(3) the proprietary and/or other rights of parties related to
ownership of, distribution of, and/or other commercial
rights related to, electronic information.

VDE can support “real” commerce in an electronic form,
that is the progressive creation of commercial relationships
that form, over time, a network of interrelated agreements
representing a value chain business model. This is achieved
in part by enabling content control information to develop
through the interaction of (negotiation between) securely
created and independently submitted sets of content and/or
appliance control information. Different sets of content
and/or appliance control information can be submitted by
different parties in an electronic business value chain
enabled by the present invention. These parties create con-
trol information sets through the use of their respective VDE
installations. Independently, securely deliverable, compo-
nent based control information allows efficient interaction

among control information sets supplied by different parties.
VDE permits multiple, separate electronic arrangements

to be formed between subsets of parties in a VDE supported
electronic value chain model. These multiple agreements
together comprise a VDE value chain “extended” agree-
ment. VDE allows such constituent electronic agreements,
and therefore overall VDE extended agreements, to evolve
and reshape over time as additional VDE participants
become involved in VDE content and/or appliance control
information handling. VDE electronic agreements may also
be extended as new control information is submitted by
existing participants. With VDE, electronic commerce par-
ticipants are free to structure and restructure their electronic
commerce business activities and relationships. As a result,
the present invention allows a competitive electronic com-
merce marketplace to develop since the use of VDE enables
different, widely varying business models using the same or
shared content.

A significant facet of the present invention’s ability to
broadly support electronic commerce is its ability to
securely manage independently delivered VDE component
objects containing control information (normally in the form

Page 00157

Page 00158

5,915,019

11

of VDE objects containing one or more methods, data, or
load module VDE components). This independently deliv-
ered control information can be integrated with senior and
other pre-existing content control information to securely
form derived control information using the negotiation
mechanisms of the present invention. All requirements
specified by this derived control information must be satis-
fied before VDE controlled content can be accessed or

otherwise used. This means that, for example, all load
modules and any mediating data which are listed by the
derived control information as required must be available
and securely perform their required function. In combination
with other aspects of the present invention, securely, inde-
pendently delivered control components allow electronic
commerce participants to freely stipulate their business
requirements and trade offs. As a result, much as with
traditional, non-electronic commerce, the present invention
allows electronic commerce (through a progressive stipula-
tion of various control requirements by VDE participants) to
evolve into forms of business that are the most efficient,
competitive and useful.

VDE provides capabilities that rationalize the support of
electronic commerce and electronic transaction manage-
ment. This rationalization stems from the reusability of
control structures and user interfaces for a wide variety of
transaction management related activities. As a result, con-
tent usage control, data security, information auditing, and
electronic financial activities, can be supported with tools
that are reusable, convenient, consistent, and familiar. In
addition, a rational approach—a transaction/distribution
control standard—allows all participants in VDE the same
foundation set of hardware control and security, authoring,
administration, and management tools to support widely
varying types of information, business market model, and/or
personal objectives.

Employing VDE as a general purpose electronic
transaction/distribution control system allows users to main-
tain a single transaction management control arrangement
on each of their computers, networks, communication
nodes, and/or other electronic appliances. Such a general
purpose system can serve the needs of many electronic
transaction management applications without requiring
distinct, different installations for different purposes. As a
result, users of VDE can avoid the confusion and expense
and other inefficiencies of different, limited purpose trans-
action control applications for each different content and/or
business model. For example, VDE allows content creators
to use the same VDE foundation control arrangement for
both content authoring and for licensing content from other
content creators for inclusion into their products or for other
use. Clearinghouses, distributors, content creators, and other
VDE users can all interact, both with the applications
running on their VDE installations, and with each other, in
an entirely consistent manner, using and reusing (largely
transparently) the same distributed tools, mechanisms, and
consistent user interfaces, regardless of the type of VDE
activity.

VDE prevents many forms of unauthorized use of elec-
tronic information, by controlling and auditing (and other
administration of use) electronically stored and/or dissemi-
nated information. This includes, for example, commercially
distributed content, electronic currency, electronic credit,
business transactions (such as EDI), confidential
communications, and the like. VDE can further be used to
enable commercially provided electronic content to be made
available to users in user defined portions, rather than
constraining the user to use portions of content that were

10

15

20

25

30

35

40

45

50

55

60

65

12

“predetermined” by a content creator and/or other provider
for billing purposes.

VDE, for example, can employ:

(1) Secure metering means for budgeting and/or auditing
electronic content and/or appliance usage;

(2) Secure flexible means for enabling compensation
and/or billing rates for content and/or appliance usage,
including electronic credit and/or currency mechanisms
for payment means;

(3) Secure distributed database means for storing control
and usage related information (and employing vali-
dated compartmentalization and tagging schemes);

(4) Secure electronic appliance control means;

(5) A distributed, secure, “virtual black box” comprised of
nodes located at every user (including VDE content
container creators, other content providers, client users,
and recipients of secure VDE content usage
information) site. The nodes of said virtual black box
normally include a secure subsystem having at least
one secure hardware element (a semiconductor element
or other hardware module for securely executing VDE
control processes), said secure subsystems being dis-
tributed at nodes along a pathway of information
storage, distribution, payment, usage, and/or auditing.
In some embodiments, the functions of said hardware
element, for certain or all nodes, may be performed by
software, for example, in host processing environments
of electronic appliances;

(6) Encryption and decryption means;

(7) Secure communications means employing
authentication, digital signaturing, and encrypted trans-
missions. The secure subsystems at said user nodes
utilize a protocol that establishes and authenticates each
node’s and/or participant’s identity, and establishes one
or more secure host-to-host encryption keys for com-
munications between the secure subsystems; and

(8) Secure control means that can allow each VDE
installation to perform VDE content authoring (placing
content into VDE containers with associated control

information), content distribution, and content usage;
as well as clearinghouse and other administrative and
analysis activities employing content usage informa-
tion.

VDE may be used to migrate most non-electronic, tradi-
tional information delivery models (including
entertainment, reference materials, catalog shopping, etc.)
into an adequately secure digital distribution and usage
management and payment context. The distribution and
financial pathways managed by a VDE arrangement may
include:

content creator(s),

distributor(s),

redistributor(s),

client administrator(s),

client user(s),

financial and/or other clearinghouse(s),
and/or government agencies.

These distribution and financial pathways may also include:
advertisers,

market survey organizations, and/or

other parties interested in the user usage of information
securely delivered and/or stored using VDE.

Normally, participants in a VDE arrangement will employ
the same secure VDE foundation. Alternate embodiments

Page 00158

Page 00159

5,915,019

13

support VDE arrangements employing differing VDE foun-
dations. Such alternate embodiments may employ proce-
dures to ensure certain interoperability requirements are
met.

Secure VDE hardware (also known as SPUs for Secure
Processing Units), or VDE installations that use software to
substitute for, or complement, said hardware (provided by
Host Processing Environments (HPEs)), operate in conjunc-
tion with secure communications, systems integration
software, and distributed software control information and
support structures, to achieve the electronic contract/rights
protection environment of the present invention. Together,
these VDE components comprise a secure, virtual, distrib-
uted content and/or appliance control, auditing (and other
administration), reporting, and payment environment. In
some embodiments and where commercially acceptable,
certain VDE participants, such as clearinghouses that nor-
mally maintain sufficiently physically secure non-VDE pro-
cessing environments, may be allowed to employ HPEs
rather VDE hardware elements and interoperate, for
example, with VDE end-users and content providers. VDE
components together comprise a configurable, consistent,
secure and “trusted” architecture for distributed, asynchro-
nous control of electronic content and/or appliance usage.
VDE supports a “universe wide” environment for electronic
content delivery, broad dissemination, usage reporting, and
usage related payment activities.

VDE provides generalized configurability. This results, in
part, from decomposition of generalized requirements for
supporting electronic commerce and data security into a
broad range of constituent “atomic” and higher level com-
ponents (such as load modules, data elements, and methods)
that may be variously aggregated together to for control
methods for electronic commerce applications, commercial
electronic agreements, and data security arrangements. VDE
provides a secure operating environment employing VDE
foundation elements along with secure independently deliv-
erable VDE components that enable electronic commerce
models and relationships to develop. VDE specifically sup-
ports the unfolding of distribution models in which content
providers, over time, can expressly agree to, or allow,
subsequent content providers and/or users to participate in
shaping the control information for, and consequences of,
use of electronic content and/or appliances. A very broad
range of the functional attributes important for supporting
simple to very complex electronic commerce and data
security activities are supported by capabilities of the
present invention. As a result, VDE supports most types of
electronic information and/or appliance: usage control
(including distribution), security, usage auditing, reporting,
other administration, and payment arrangements.

VDE, in its preferred embodiment, employs object soft-
ware technology and uses object technology to form “con-
tainers” for delivery of information that is (at least in part)
encrypted or otherwise secured. These containers may con-
tain electronic content products or other electronic informa-
tion and some or all of their associated permissions (control)
information. These container objects may be distributed
along pathways involving content providers and/or content
users. They may be securely moved among nodes of a
Virtual Distribution Environment (VDE) arrangement,
which nodes operate VDE foundation software and execute
control methods to enact electronic information usage con-
trol and/or administration models. The containers delivered

through use of the preferred embodiment of the present
invention may be employed both for distributing VDE
control instructions (information) and/or to encapsulate and
electronically distribute content that has been at least par-
tially secured.

10

15

20

25

30

35

40

45

50

55

60

65

14

Content providers who employ the present invention may
include, for example, software application and game
publishers, database publishers, cable, television, and radio
broadcasters, electronic shopping vendors, and distributors
of information in electronic document, book, periodical,
e-mail and/or other forms. Corporations, government
agencies, and/or individual “end-users” who act as storers
of, and/or distributors of, electronic information, may also
be VDE content providers (in a restricted model, a user
provides content only to himself and employs VDE to secure
his own confidential information against unauthorized use
by other parties). Electronic information may include pro-
prietary and/or confidential information for personal or
internal organization use, as well as information, such as
software applications, documents, entertainment materials,
and/or reference information, which may be provided to
other parties. Distribution may be by, for example, physical
media delivery, broadcast and/or telecommunication means,
and in the form of “static” files and/or streams of data. VDE

may also be used, for example, for multi-site “real-time”
interaction such as teleconferencing, interactive games, or
on-line bulletin boards, where restrictions on, and/or audit-
ing of, the use of all or portions of communicated informa-
tion is enforced.

VDE provides important mechanisms for both enforcing
commercial agreements and enabling the protection of pri-
vacy rights. VDE can securely deliver information from one
party to another concerning the use of commercially dis-
tributed electronic content. Even if parties are separated by
several “steps” in a chain (pathway) of handling for such
content usage information, such information is protected by
VDE through encryption and/or other secure processing.
Because of that protection, the accuracy of such information
is guaranteed by VDE, and the information can be trusted by
all parties to whom it is delivered. Furthermore, VDE
guarantees that all parties can trust that such information
cannot be received by anyone other than the intended,
authorized, party(ies) because it is encrypted such that only
an authorized party, or her agents, can decrypt it. Such
information may also be derived through a secure VDE
process at a previous pathway-of-handling location to pro-
duce secure VDE reporting information that is then com-
municated securely to its intended recipient’s VDE secure
subsystem. Because VDE can deliver such information
securely, parties to an electronic agreement need not trust the
accuracy of commercial usage and/or other information
delivered through means other than those under control of
VDE.

VDE participants in a commercial value chain can be
“commercially” confident (that is, sufficiently confident for
commercial purposes) that the direct (constituent) and/or
“extended” electronic agreements they entered into through
the use of VDE can be enforced reliably. These agreements
may have both “dynamic” transaction management related
aspects, such as content usage control information enforced
through budgeting, metering, and/or reporting of electronic
information and/or appliance use, and/or they may include
“static” electronic assertions, such as an end-user using the
system to assert his or her agreement to pay for services, not
to pass to unauthorized parties electronic information
derived from usage of content or systems, and/or agreeing to
observe copyright laws. Not only can electronically reported
transaction related information be trusted under the present
invention, but payment may be automated by the passing of
payment tokens through a pathway of payment (which may
or may not be the same as a pathway for reporting). Such
payment can be contained within a VDE container created

Page 00159

Page 00160

5,915,019

15

automatically by a VDE installation in response to control
information (located, in the preferred embodiment, in one or
more permissions records) stipulating the “withdrawal” of
credit or electronic currency (such as tokens) from an
electronic account (for example, an account securely main-
tained by a user’s VDE installation secure subsystem) based
upon usage of VDE controlled electronic content and/or
appliances (such as governments, financial credit providers,
and users).

VDE allows the needs of electronic commerce partici-
pants to be served and it can bind such participants together
in a universe wide, trusted commercial network that can be
secure enough to support very large amounts of commerce.
VDE’s security and metering secure subsystem core will be
present at all physical locations where VDE related content
is (a) assigned usage related control information (rules and
mediating data), and/or (b) used. This core can perform
security and auditing functions (including metering) that
operate within a “virtual black box,” a collection of
distributed, very secure VDE related hardware instances that
are interconnected by secured information exchange (for
example, telecommunication) processes and distributed
database means. VDE further includes highly configurable
transaction operating system technology, one or more asso-
ciated libraries of load modules along with affiliated data,
VDE related administration, data preparation, and analysis
applications, as well as system software designed to enable
VDE integration into host environments and applications.
VDE’s usage control information, for example, provide for
property content and/or appliance related: usage
authorization, usage auditing (which may include audit
reduction), usage billing, usage payment, privacy filtering,
reporting, and security related communication and encryp-
tion techniques.

VDE extensively employs methods in the form of soft-
ware objects to augment configurability, portability, and
security of the VDE environment. It also employs a software
object architecture for VDE content containers that carries
protected content and may also carry both freely available
information (e.g, summary, table of contents) and secured
content control information which ensures the performance
of control information. Content control information governs
content usage according to criteria set by holders of rights to
an object’s contents and/or according to parties who other-
wise have rights associated with distributing such content
(such as governments, financial credit providers, and users).

In part, security is enhanced by object methods employed
by the present invention because the encryption schemes
used to protect an object can efficiently be further used to
protect the associated content control information (software
control information and relevant data) from modification.
Said object techniques also enhance portability between
various computer and/or other appliance environments
because electronic information in the form of content can be

inserted along with (for example, in the same object con-
tainer as) content control information (for said content) to
produce a “published” object. As a result, various portions of
said control information may be specifically adapted for
different environments, such as for diverse computer plat-
forms and operating systems, and said various portions may
all be carried by a VDE container.

An objective of VDE is supporting a transaction/
distribution control standard. Development of such a stan-
dard has many obstacles, given the security requirements
and related hardware and communications issues, widely
differing environments, information types, types of infor-
mation usage, business and/or data security goals, varieties

10

15

20

25

30

35

40

45

50

55

60

65

16

of participants, and properties of delivered information. A
significant feature of VDE accommodates the many, varying
distribution and other transaction variables by, in part,
decomposing electronic commerce and data security func-
tions into generalized capability modules executable within
a secure hardware SPU and/or corresponding software sub-
system and further allowing extensive flexibility in
assembling, modifying, and/or replacing, such modules (e.g.
load modules and/or methods) in applications run on a VDE
installation foundation. This configurability and reconfig-
urability allows electronic commerce and data security par-
ticipants to reflect their priorities and requirements through
a process of iteratively shaping an evolving extended elec-
tronic agreement (electronic control model). This shaping
can occur as content control information passes from one
VDE participant to another and to the extent allowed by “in
place” content control information. This process allows
users of VDE to recast existing control information and/or
add new control information as necessary (including the
elimination of no longer required elements).

VDE supports trusted (sufficiently secure) electronic
information distribution and usage control models for both
commercial electronic content distribution and data security
applications. It can be configured to meet the diverse
requirements of a network of interrelated participants that
may include content creators, content distributors, client
administrators, end users, and/or clearinghouses and/or
other content usage information users. These parties may
constitute a network of participants involved in simple to
complex electronic content dissemination, usage control,
usage reporting, and/or usage payment. Disseminated con-
tent may include both originally provided and VDE gener-
ated information (such as content usage information) and
content control information may persist through both chains
(one or more pathways) of content and content control
information handling, as well as the direct usage of content.
The configurability provided by the present invention is
particularly critical for supporting electronic commerce, that
is enabling businesses to create relationships and evolve
strategies that offer competitive value. Electronic commerce
tools that are not inherently configurable and interoperable
will ultimately fail to produce products (and services) that
meet both basic requirements and evolving needs of most
commerce applications.

VDE’s fundamental configurability will allow a broad
range of competitive electronic commerce business models
to flourish. It allows business models to be shaped to
maximize revenues sources, end-user product value, and
operating efficiencies. VDE can be employed to support
multiple, differing models, take advantage of new revenue
opportunities, and deliver product configurations most
desired by users. Electronic commerce technologies that do
not, as the present invention does:

support a broad range of possible, complementary rev-
enue activities,

offer a flexible array of content usage features most
desired by customers, and

exploit opportunities for operating efficiencies,
will result in products that are often intrinsically more costly
and less appealing and therefore less competitive in the
marketplace.

Some of the key factors contributing to the configurability
intrinsic to the present invention include:

(a) integration into the fundamental control environment
of a broad range of electronic appliances through
portable API and programming language tools that
efficiently support merging of control and auditing

Page 00160

Page 00161

5,915,019

17

capabilities in nearly any electronic appliance environ-
ment while maintaining overall system security;

(b) modular data structures;

(c) generic content model;

(d) general modularity and independence of foundation
architectural components;

(e) modular security structures;

(f) variable length and multiple branching chains of
control; and

(g) independent, modular control structures in the form of
executable load modules that can be maintained in one

or more libraries, and assembled into control methods
and models, and where such model control schemes
can “evolve” as control information passes through the
VDE installations of participants of a pathway of VDE
content control information handling.

Because of the breadth of issues resolved by the present
invention, it can provide the emerging “electronic highway”
with a single transaction/distribution control system that
can, for a very broad range of commercial and data security
models, ensure against unauthorized use of confidential
and/or proprietary information and commercial electronic
transactions. VDE’s electronic transaction management
mechanisms can enforce the electronic rights and agree-
ments of all parties participating in widely varying business
and data security models, and this can be efficiently achieved
through a single VDE implementation within each VDE
participant’s electronic appliance. VDE supports widely
varying business and/or data security models that can
involve a broad range of participants at various “levels” of
VDE content and/or content control information pathways
of handling. Different content control and/or auditing mod-
els and agreements may be available on the same VDE
installation. These models and agreements may control
content in relationship to, for example, VDE installations
and/or users in general; certain specific users, installations,
classes and/or other groupings of installations and/or users;
as well as to electronic content generally on a given
installation, to specific properties, property portions, classes
and/or other groupings of content.

Distribution using VDE may package both the electronic
content and control information into the same VDE

container, and/or may involve the delivery to an end-user
site of different pieces of the same VDE managed property
from plural separate remote locations and/or in plural sepa-
rate VDE content containers and/or employing plural dif-
ferent delivery means. Content control information may be
partially or fully delivered separately from its associated
content to a user VDE installation in one or more VDE

administrative objects. Portions of said control information
may be delivered from one or more sources. Control infor-
mation may also be available for use by access from a user’s
VDE installation secure sub-system to one or more remote
VDE secure sub-systems and/or VDE compatible, certified
secure remote locations. VDE control processes such as
metering, budgeting, decrypting and/or fingerprinting, may
as relates to a certain user content usage activity, be per-
formed in a user’s local VDE installation secure subsystem,
or said processes may be divided amongst plural secure
subsystems which may be located in the same user VDE
installations and/or in a network server and in the user

installation. For example, a local VDE installation may
perform decryption and save any, or all of, usage metering
information related to content and/or electronic appliance
usage at such user installation could be performed at the
server employing secure (e.g., encrypted) communications

10

15

20

25

30

35

40

45

50

55

60

65

18

between said secure subsystems. Said server location may
also be used for near real time, frequent, or more periodic
secure receipt of content usage information from said user
installation, with, for example, metered information being
maintained only temporarily at a local user installation.

Delivery means for VDE managed content may include
electronic data storage means such as optical disks for
delivering one portion of said information and broadcasting
and/or telecommunicating means for other portions of said
information. Electronic data storage means may include
magnetic media, optical media, combined magneto-optical
systems, flash RAM memory, bubble memory, and/or other
memory storage means such as huge capacity optical storage
systems employing holographic, frequency, and/or polarity
data storage techniques. Data storage means may also
employ layered disc techniques, such as the use of generally
transparent and/or translucent materials that pass light
through layers of data carrying discs which themselves are
physically packaged together as one thicker disc. Data
carrying locations on such discs may be, at least in part,
opaque.

VDE supports a general purpose foundation for secure
transaction management, including usage control, auditing,
reporting, and/or payment. This general purpose foundation
is called “VDE Functions” (“VDEFs”). VDE also supports
a collection of “atomic” application elements (e.g., load
modules) that can be selectively aggregated together to form
various VDEF capabilities called control methods and which
serve as VDEF applications and operating system functions.
When a host operating environment of an electronic appli-
ance includes VDEF capabilities, it is called a “Rights
Operating System” (ROS). VDEF load modules, associated
data, and methods form a body of information that for the
purposes of the present invention are called “control infor-
mation.” VDEF control information may be specifically
associated with one or more pieces of electronic content
and/or it may be employed as a general component of the
operating system capabilities of a VDE installation.

VDEF transaction control elements reflect and enact

content specific and/or more generalized administrative (for
example, general operating system) control information.
VDEF capabilities which can generally take the form of
applications (application models) that have more or less
configurability which can be shaped by VDE participants,
through the use, for example, of VDE templates, to employ
specific capabilities, along, for example, with capability
parameter data to reflect the elements of one or more express
electronic agreements between VDE participants in regards
to the use of electronic content such as commercially
distributed products. These control capabilities manage the
use of, and/or auditing of use of, electronic content, as well
as reporting information based upon content use, and any
payment for said use. VDEF capabilities may “evolve” to
reflect the requirements of one or more successive parties
who receive or otherwise contribute to a given set of control
information. Frequently, for a VDE application for a given
content model (such as distribution of entertainment on
CD-ROM, content delivery from an Internet repository, or
electronic catalog shopping and advertising, or some com-
bination of the above) participants would be able to securely
select from amongst available, alternative control methods
and apply related parameter data, wherein such selection of
control method and/or submission of data would constitute

their “contribution” of control information. Alternatively, or
in addition, certain control methods that have been expressly
certified as securely interoperable and compatible with said
application may be independently submitted by a participant

Page 00161

Page 00162

5,915,019

19

as part of such a contribution. In the most general example,
a generally certified load module (certified for a given VDE
arrangement and/or content class) may be used with many or
any VDE application that operates in nodes of said arrange-
ment. These parties, to the extent they are allowed, can
independently and securely add, delete, and/or otherwise
modify the specification of load modules and methods, as
well as add, delete or otherwise modify related information.

Normally the party who creates a VDE content container
defines the general nature of the VDEF capabilities that will
and/or may apply to certain electronic information. AVDE
content container is an object that contains both content (for
example, commercially distributed electronic information
products such as computer software programs, movies,
electronic publications or reference materials, etc.) and
certain control information related to the use of the object’s
content. A creating party may make a VDE container avail-
able to other parties. Control information delivered by,
and/or otherwise available for use with, VDE content con-

tainers comprise (for commercial content distribution
purposes) VDEF control capabilities (and any associated
parameter data) for electronic content. These capabilities
may constitute one or more “proposed” electronic agree-
ments (and/or agreement functions available for selection
and/or use with parameter data) that manage the use and/or
the consequences of use of such content and which can enact
the terms and conditions of agreements involving multiple
parties and their various rights and obligations.

A VDE electronic agreement may be explicit, through a
user interface acceptance by one or more parties, for
example by a “junior” party who has received control
information from a “senior” party, or it may be a process
amongst equal parties who individually assert their agree-
ment. Agreement may also result from an automated elec-
tronic process during which terms and conditions are “evalu-
ated” by certain VDE participant control information that
assesses whether certain other electronic terms and condi-

tions attached to content and/or submitted by another party
are acceptable (do not violate acceptable control information
criteria). Such an evaluation process may be quite simple,
for example a comparison to ensure compatibility between
a portion of, or all senior, control terms and conditions in a
table of terms and conditions and the submitted control

information of a subsequent participant in a pathway of
content control information handling, or it may be a more
elaborate process that evaluates the potential outcome of,
and/or implements a negotiation process between, two or
more sets of control information submitted by two or more
parties. VDE also accommodates a semi-automated process
during which one or more VDE participants directly,
through user interface means, resolve “disagreements”
between control information sets by accepting and/or pro-
posing certain control information that may be acceptable to
control information representing one or more other parties
interests and/or responds to certain user interface queries for
selection of certain alternative choices and/or for certain

parameter information, the responses being adopted if
acceptable to applicable senior control information.

When another party (other than the first applier of rules),
perhaps through a negotiation process, accepts, and/or adds
to and/or otherwise modifies, “in place” content control
information, a VDE agreement between two or more parties
related to the use of such electronic content may be created
(so long as any modifications are consistent with senior
control information). Acceptance of terms and conditions
related to certain electronic content may be direct and
express, or it may be implicit as a result of use of content

10

15

20

25

30

35

40

45

50

55

60

65

20

(depending, for example, on legal requirements, previous
exposure to such terms and conditions, and requirements of
in place control information).

VDEF capabilities may be employed, and a VDE agree-
ment may be entered into, by a plurality of parties without
the VDEF capabilities being directly associated with the
controlling of certain, specific electronic information. For
example, certain one or more VDEF capabilities may be
present at a VDE installation, and certain VDE agreements
may have been entered into during the registration process
for a content distribution application, to be used by such
installation for securely controlling VDE content usage,
auditing, reporting and/or payment. Similarly, a specific
VDE participant may enter into a VDE user agreement with
a VDE content or electronic appliance provider when the
user and/or her appliance register with such provider as a
VDE installation and/or user. In such events, VDEF in place
control information available to the user VDE installation

may require that certain VDEF methods are employed, for
example in a certain sequence, in order to be able to use all
and/or certain classes, of electronic content and/or VDE
applications.

VDE ensures that certain prerequisites necessary for a
given transaction to occur are met. This includes the secure
execution of any required load modules and the availability
of any required, associated data. For example, required load
modules and data (e.g. in the for of a method) might specify
that sufficient credit from an authorized source must be

confirmed as available. It might further require certain one
or more load modules execute as processes at an appropriate
time to ensure that such credit will be used in order to pay
for user use of the content. Acertain content provider might,
for example, require metering the number of copies made for
distribution to employees of a given software program (a
portion of the program might be maintained in encrypted
form and require the presence of a VDE installation to run).
This would require the execution of a metering method for
copying of the property each time a copy was made for
another employee. This same provider might also charge
fees based on the total number of different properties
licensed from them by the user and a metering history of
their licensing of properties might be required to maintain
this information.

VDE provides organization, community, and/or universe
wide secure environments whose integrity is assured by
processes securely controlled in VDE participant user instal-
lations (nodes). VDE installations, in the preferred
embodiment, may include both software and tamper resis-
tant hardware semiconductor elements. Such a semiconduc-

tor arrangement comprises, at least in part, special purpose
circuitry that has been designed to protect against tampering
with, or unauthorized observation of, the information and
functions used in performing the VDE’s control functions.
The special purpose secure circuitry provided by the present
invention includes at least one of: a dedicated semiconductor

arrangement known as a Secure Processing Unit (SPU)
and/or a standard microprocessor, microcontroller, and/or
other processing logic that accommodates the requirements
of the present invention and functions as an SPU. VDE’s
secure hardware may be found incorporated into, for
example, a fax/modem chip or chip pack, I/O controller,
video display controller, and/or other available digital pro-
cessing arrangements. It is anticipated that portions of the
present invention’s VDE secure hardware capabilities may
ultimately be standard design elements of central processing
units (CPUs) for computers and various other electronic
devices.

Page 00162

Page 00163

5,915,019

21

Designing VDE capabilities into one or more standard
microprocessor, microcontroller and/or other digital pro-
cessing components may materially reduce VDE related
hardware costs by employing the same hardware resources
for both the transaction management uses contemplated by
the present invention and for other, host electronic appliance
functions. This means that a VDE SPU can employ (share)
circuitry elements of a “standard” CPU. For example, if a
“standard” processor can operate in protected mode and can
execute VDE related instructions as a protected activity, then
such an embodiment may provide sufficient hardware secu-
rity for a variety of applications and the expense of a special
purpose processor might be avoided. Under one preferred
embodiment of the present invention, certain memory (e.g.,
RAM, ROM, NVRAM) is maintained during VDE related
instruction processing in a protected mode (for example, as
supported by protected mode microprocessors). This
memory is located in the same package as the processing
logic (e.g. processor). Desirably, the packaging and memory
of such a processor would be designed using security
techniques that enhance its resistance to tampering.

The degree of overall security of the VDE system is
primarily dependent on the degree of tamper resistance and
concealment of VDE control process execution and related
data storage activities. Employing special purpose semicon-
ductor packaging techniques can significantly contribute to
the degree of security. Concealment and tamper-resistance in
semiconductor memory (e.g., RAM, ROM, NVRAM) can
be achieved, in part, by employing such memory within an
SPU package, by encrypting data before it is sent to external
memory (such as an external RAM package) and decrypting
encrypted data within the CPU/RAM package before it is
executed. This process is used for important VDE related
data when such data is stored on unprotected media, for
example, standard host storage, such as random access
memory, mass storage, etc. In that event, a VDE SPU would
encrypt data that results from a secure VDE execution before
such data was stored in external memory.

Summary of Some Important Features Provided by VDE
in Accordance With the Present Invention

VDE employs a variety of capabilities that serve as a
foundation for a general purpose, sufficiently secure distrib-
uted electronic commerce solution. VDE enables an elec-

tronic commerce marketplace that supports divergent, com-
petitive business partnerships, agreements, and evolving
overall business models. For example, VDE includes fea-
tures that:

“sufficiently” impede unauthorized and/or uncompen-
sated use of electronic information and/or appliances
through the use of secure communication, storage, and
transaction management technologies. VDE supports a
model wide, distributed security implementation which
creates a single secure “virtual” transaction processing
and information storage environment. VDE enables
distributed VDE installations to securely store and
communicate information and remotely control the
execution processes and the character of use of elec-
tronic information at other VDE installations and in a

wide variety of ways;
support low-cost, efficient, and effective security archi-

tectures for transaction control, auditing, reporting, and
related communications and information storage. VDE
may employ tagging related security techniques, the
time-ageing of encryption keys, the compartmentaliza-
tion of both stored control information (including dif-
ferentially tagging such stored information to ensure
against substitution and tampering) and distributed

10

15

20

25

30

35

40

45

50

55

60

65

22

content (to, for many content applications, employ one
or more content encryption keys that are unique to the
specific VDE installation and/or user), private key
techniques such as triple DES to encrypt content,
public key techniques such as RSA to protect commu-
nications and to provide the benefits of digital signature
and authentication to securely bind together the nodes
of a VDE arrangement, secure processing of important
transaction management executable code, and a com-
bining of a small amount of highly secure, hardware
protected storage space with a much larger “exposed”
mass media storage space storing secured (normally
encrypted and tagged) control and audit information.
VDE employs special purpose hardware distributed
throughout some or all locations of a VDE implemen-
tation: a) said hardware controlling important elements
of: content preparation (such as causing such content to
be placed in a VDE content container and associating
content control information with said content), content
and/or electronic appliance usage auditing, content
usage analysis, as well as content usage control; and b)
said hardware having been designed to securely handle
processing load module control activities, wherein said
control processing activities may involve a sequence of
required control factors;

support dynamic user selection of information subsets of
a VDE electronic information product (VDE controlled
content). This contrasts with the constraints of having
to use a few high level individual, pre-defined content
provider information increments such as being required
to select a whole information product or product sec-
tion in order to acquire or otherwise use a portion of
such product or section. VDE supports metering and
usage control over a variety of increments (including
“atomic” increments, and combinations of different

increment types) that are selected ad hoc by a user and
represent a collection of pre-identified one or more
increments (such as one or more blocks of a preiden-
tified nature, e.g., bytes, images, logically related
blocks) that form a generally arbitrary, but logical to a
user, content “deliverable.” VDE control information

(including budgeting, pricing and metering) can be
configured so that it can specifically apply, as
appropriate, to ad hoc selection of different, unantici-
pated variable user selected aggregations of informa-
tion increments and pricing levels can be, at least in
part, based on quantities and/or nature of mixed incre-
ment selections (for example, a certain quantity of
certain text could mean associated images might be
discounted by 15%; a greater quantity of text in the
“mixed” increment selection might mean the images
are discounted 20%). Such user selected aggregated
information increments can reflect the actual require-
ments of a user for information and is more flexible

than being limited to a single, or a few, high level, (e.g.
product, document, database record) predetermined
increments. Such high level increments may include
quantities of information not desired by the user and as
a result be more costly than the subset of information
needed by the user if such a subset was available. In
sum, the present invention allows information con-
tained in electronic information products to be supplied
according to user specification. Tailoring to user speci-
fication allows the present invention to provide the
greatest value to users, which in turn will generate the
greatest amount of electronic commerce activity. The
user, for example, would be able to define an aggrega-

Page 00163

Page 00164

5,915,019

23

tion of content derived from various portions of an
available content product, but which, as a deliverable
for use by the user, is an entirely unique aggregated
increment. The user may, for example, select certain
numbers of bytes of information from various portions

24

information. Control information specified by content
providers may also specify which specific parties must
or may (including, for example, a group of eligible
parties from which a selection may be made) handle
conveyed information. It may also specify what trans-5

of an information product, such as a reference work, mission means (for example telecommunication carri-
and copy them to disc in unencrypted form and be ers or media types) and transmission hubs must or may
billed based on total number of bytes plus a surcharge be used.
on the number of “articles” that provided the bytes. A support flexible auditing mechanisms, such as employing
content provider might reasonably charge less for such 10 “bitmap meters,” that achieve a high degree of effi-
a user defined information increment since the user ciency of operation and throughput and allow, in a
does not require all of the content from all of the practical manner, the retention and ready recall of
articles that contained desired information. This pro- information related to previous usage activities and
cess of defining a user desired information increment related patterns. This flexibility is adaptable to a wide
may involve artificial intelligence database search tools 15 variety of billing and security control strategies such as:
that contribute to the location of the most relevant upgrade pricing (e.g. suite purchases),
portions of information from an information product pricing discounts (including quantity discounts),
and cause the automatic display to the user of infor- billing related time duration variables such as discount-
mation describing search criteria hits for user selection ing new purchases based on the timing of past
or the automatic extraction and delivery of such por- 20 purchases, and
tions to the user. VDE further supports a wide variety security budgets based on quantity of different, logi-
of predefined increment types including: cally related units of electronic information used
bytes, over an interval of time.

images, Use of bitmap meters (including “regular” and “wide”
content OVCI‘ time for 2111le 01‘ video, 01‘ any other 25 bitmap meters) to record usage and/0r purchase of

increment that can be identified by content provider information, in conjunction with other elements of the
data mapping efforts, SUCh as: preferred embodiment of the present invention,

sentences, uniquely supports efficient maintenance of usage his-
paragraphs, tory for: (a) rental, (b) flat fee licensing or purchase, (c)
articles, 30 licensing or purchase discounts based upon historical
database records, and
byte offsets representing increments of logically related

information.

usage variables, and (d) reporting to users in a manner
enabling users to determine whether a certain item was
acquired, or acquired within a certain time period

VDE supports as many simultaneous predefined increment
types as may be practical for a given type of content and 35
business model.

securely store at a user’s site potentially highly detailed

(without requiring the use of conventional database
mechanisms, which are highly inefficient for these
applications). Bitmap meter methods record activities
associated with electronic appliances, properties,

information reflective of a user’s usage of a variety of
different content segment types and employing both
inexpensive “exposed” host mass storage for maintain-
ing detailed information in the form of encrypted data
and maintaining summary information for security test-
ing in highly secure special purpose VDE installation
nonvolatile memory (if available).

support trusted chain of handling capabilities for path-
ways of distributed electronic information and/or for
content usage related information. Such chains may
extend, for example, from a content creator, to a
distributor, a redistributor, a client user, and then may
provide a pathway for securely reporting the same
and/or differing usage information to one or more
auditors, such as to one or more independent clearing-
houses and then back to the content providers, includ-
ing content creators. The same and/or different path-
ways employed for certain content handling, and
related content control information and reporting infor-
mation handling, may also be employed as one or more
pathways for electronic payment handling (payment is
characterized in the present invention as administrative
content) for electronic content and/or appliance usage.
These pathways are used for conveyance of all or
portions of content, and/or content related control
information. Content creators and other providers can
specify the pathways that, partially or fully, must be
used to disseminate commercially distributed property
content, content control information, payment admin-
istrative content, and/or associated usage reporting

40

45

50

55

60

65

objects, or portions thereof, and/or administrative
activities that are independent of specific properties,
objects, etc., performed by a user and/or electronic
appliance such that a content and/or appliance provider
and/or controller of an administrative activity can
determine whether a certain activity has occurred at
some point, or during a certain period, in the past (for
example, certain use of a commercial electronic content
product and/or appliance). Such determinations can
then be used as part of pricing and/or control strategies
of a content and/or appliance provider, and/or control-
ler of an administrative activity. For example, the
content provider may choose to charge only once for
access to a portion of a property, regardless of the
number of times that portion of the property is accessed
by a user.

support “launchable” content, that is content that can be
provided by a content provider to an end-user, who can
then copy or pass along the content to other end-user
parties without requiring the direct participation of a
content provider to register and/or otherwise initialize
the content for use. This content goes “out of (the
traditional distribution) channel” in the form of a
“traveling object.” Traveling objects are containers that
securely carry at least some permissions information
and/or methods that are required for their use (such
methods need not be carried by traveling objects if the
required methods will be available at, or directly avail-
able to, a destination VDE installation). Certain trav-
elling objects may be used at some or all VDE instal-

Page 00164

Page 00165

5,915,019

25

lations of a given VDE arrangement since they can
make available the content control information neces-

sary for content use without requiring the involvement
of a commercial VDE value chain participant or data
security administrator (e.g. a control officer or network
administrator). As long as traveling object control
information requirements are available at the user VDE
installation secure subsystem (such as the presence of
a sufficient quantity of financial credit from an autho-
rized credit provider), at least some travelling object
content may be used by a receiving party without the
need to establish a connection with a remote VDE

authority (until, for example, budgets are exhausted or
a time content usage reporting interval has occurred).
Traveling objects can travel “out-of-channel,”
allowing, for example, a user to give a copy of a
traveling object whose content is a software program,
a movie or a game, to a neighbor, the neighbor being
able to use the traveling object if appropriate credit
(e.g. an electronic clearinghouse account from a clear-
inghouse such as VISA or AT&T) is available.
Similarly, electronic information that is generally avail-
able on an Internet, or a similar network, repository
might be provided in the form of a traveling object that
can be downloaded and subsequently copied by the
initial downloader and then passed along to other
parties who may pass the object on to additional parties.

provide very flexible and extensible user identification
according to individuals, installations, by groups such
as classes, and by function and hierarchical identifica-
tion employing a hierarchy of levels of client identifi-
cation (for example, client organization ID, client
department ID, client network ID, client project ID, and
client employee ID, or any appropriate subset of the
above).

provide a general purpose, secure, component based con-
tent control and distribution system that functions as a
foundation transaction operating system environment
that employs executable code pieces crafted for trans-
action control and auditing. These code pieces can be
reused to optimize efficiency in creation and operation
of trusted, distributed transaction management arrange-
ments. VDE supports providing such executable code
in the form of “atomic” load modules and associated

data. Many such load modules are inherently
configurable, aggregatable, portable, and extensible
and singularly, or in combination (along with associ-
ated data), run as control methods under the VDE
transaction operating environment. VDE can satisfy the
requirements of widely differing electronic commerce
and data security applications by, in part, employing
this general purpose transaction management founda-
tion to securely process VDE transaction related con-
trol methods. Control methods are created primarily
through the use of one or more of said executable,
reusable load module code pieces (normally in the form
of executable object components) and associated data.
The component nature of control methods allows the
present invention to efficiently operate as a highly
configurable content control system. Under the present
invention, content control models can be iteratively and
asynchronously shaped, and otherwise updated to
accommodate the needs of VDE participants to the
extent that such shaping and otherwise updating con-
forms to constraints applied by a VDE application, if
any (e.g., whether new component assemblies are
accepted and, if so, what certification requirements

10

15

20

25

30

35

40

45

50

55

60

65

26

exist for such component assemblies or whether any or
certain participants may shape any or certain control
information by selection amongst optional control
information (permissions record) control methods. This
iterative (or concurrent) multiple participant process
occurs as a result of the submission and use of secure,
control information components (executable code such
as load modules and/or methods, and/or associated
data). These components may be contributed indepen-
dently by secure communication between each control
information influencing VDE participant’s VDE instal-
lation and may require certification for use with a given
application, where such certification was provided by a
certification service manager for the VDE arrangement
who ensures secure interoperability and/or reliability
(e.g., bug control resulting from interaction) between
appliances and submitted control methods. The trans-
action management control functions of a VDE elec-
tronic appliance transaction operating environment
interact with non-secure transaction management oper-
ating system functions to properly direct transaction
processes and data related to electronic information
security, usage control, auditing, and usage reporting.
VDE provides the capability to manages resources
related to secure VDE content and/or appliance control
information execution and data storage.

facilitate creation of application and/or system function-
ality under VDE and to facilitate integration into elec-
tronic appliance environments of load modules and
methods created under the present invention. To
achieve this, VDE employs an Application Program-
mer’s Interface (API) and/or a transaction operating
system (such as a ROS) programming language with
incorporated functions, both of which support the use
of capabilities and can be used to efficiently and tightly
integrate VDE functionality into commercial and user
applications.

support user interaction through: (a) “Pop-Up” applica-
tions which, for example, provide messages to users
and enable users to take specific actions such as
approving a transaction, (b) stand-alone VDE applica-
tions that provide administrative environments for user
activities such as: end-user preference specifications
for limiting the price per transaction, unit of time,
and/or session, for accessing history information con-
cerning previous transactions, for reviewing financial
information such as budgets, expenditures (e.g. detailed
and/or summary) and usage analysis information, and
(c) VDE aware applications which, as a result of the use
of a VDE API and/or a transaction management (for
example, ROS based) programming language embeds
VDE “awareness” into commercial or internal software

(application programs, games, etc.) so that VDE user
control information and services are seamlessly inte-
grated into such software and can be directly accessed
by a user since the underlying functionality has been
integrated into the commercial software’s native
design. For example, in a VDE aware word processor
application, a user may be able to “print” a document
into a VDE content container object, applying specific
control information by selecting from amongst a series
of different menu templates for different purposes (for
example, a confidential memo template for internal
organization purposes may restrict the ability to
“keep,” that is to make an electronic copy of the
memo).

employ “templates” to ease the process of configuring
capabilities of the present invention as they relate to

Page 00165

Page 00166

5,915,019

27

specific industries or businesses. Templates are appli-
cations or application add-ons under the present inven-
tion. Templates support the efficient specification and/
or manipulation of criteria related to specific content
types, distribution approaches, pricing mechanisms,
user interactions with content and/or administrative

activities, and/or the like. Given the very large range of
capabilities and configurations supported by the present
invention, reducing the range of configuration oppor-
tunities to a manageable subset particularly appropriate
for a given business model allows the full configurable
power of the present invention to be easily employed
by “typical” users who would be otherwise burdened
with complex programming and/or configuration
design responsibilities template applications can also
help ensure that VDE related processes are secure and
optimally bug free by reducing the risks associated with
the contribution of independently developed load
modules, including unpredictable aspects of code inter-
action between independent modules and applications,
as well as security risks associated with possible pres-
ence of viruses in such modules. VDE, through the use
of templates, reduces typical user configuration respon-
sibilities to an appropriately focused set of activities
including selection of method types (e.g. functionality)
through menu choices such as multiple choice, icon
selection, and/or prompting for method parameter data
(such as identification information, prices, budget
limits, dates, periods of time, access rights to specific
content, etc.) that supply appropriate and/or necessary
data for control information purposes. By limiting the
typical (non-programming) user to a limited subset of
configuration activities whose general configuration
environment (template) has been preset to reflect gen-
eral requirements corresponding to that user, or a
content or other business model can very substantially
limit difficulties associated with content containeriza-

tion (including placing initial control information on
content), distribution, client administration, electronic
agreement implementation, end-user interaction, and
clearinghouse activities, including associated interop-
erability problems (such as conflicts resulting from
security, operating system, and/or certification
incompatibilities). Use of appropriate VDE templates
can assure users that their activities related to content

VDE containerization, contribution of other control
information, communications, encryption techniques
and/or keys, etc. will be in compliance with specifica-
tions for their distributed VDE arrangement. VDE
templates constitute preset configurations that can nor-
mally be reconfigurable to allow for new and/or modi-
fied templates that reflect adaptation into new industries
as they evolve or to reflect the evolution or other
change of an existing industry. For example, the tem-
plate concept may be used to provide individual, over-
all frameworks for organizations and individuals that
create, modify, market, distribute, consume, and/or
otherwise use movies, audio recordings and live
performances, magazines, telephony based retail sales,
catalogs, computer software, information data bases,
multimedia, commercial communications,
advertisements, market surveys, infomercials, games,
CAD/CAM services for numerically controlled
machines, and the like. As the context surrounding
these templates changes or evolves, template applica-
tions provided under the present invention may be
modified to meet these changes for broad use, or for

10

15

20

25

30

35

40

45

50

55

60

65

28

more focused activities. A given VDE participant may
have a plurality of templates available for different
tasks. A party that places content in its initial VDE
container may have a variety of different, configurable
templates depending on the type of content and/or
business model related to the content. An end-user may
have different configurable templates that can be
applied to different document types (e-mail, secure
internal documents, database records, etc.) and/or sub-
sets of users (applying differing general sets of control
information to different bodies of users, for example,
selecting a list of users who may, under certain preset
criteria, use a certain document). Of course, templates
may, under certain circumstances have fixed control
information and not provide for user selections or
parameter data entry.

support plural, different control models regulating the use
and/or auditing of either the same specific copy of
electronic information content and/or differently regu-
lating different copies (occurrences) of the same elec-
tronic information content. Differing models for
billing, auditing, and security can be applied to the
same piece of electronic information content and such
differing sets of control information may employ, for
control purposes, the same, or differing, granularities of
electronic information control increments. This

includes supporting variable control information for
budgeting and auditing usage as applied to a variety of
predefined increments of electronic information,
including employing a variety of different budgets
and/or metering increments for a given electronic infor-
mation deliverable for: billing units of measure, credit
limit, security budget limit and security content meter-
ing increments, and/or market surveying and customer
profiling content metering increments. For example, a
CD-ROM disk with a database of scientific articles

might be in part billed according to a formula based on
the number of bytes decrypted, number of articles
containing said bytes decrypted, while a security bud-
get might limit the use of said database to no more than
5% of the database per month for users on the wide area
network it is installed on.

provide mechanisms to persistently maintain trusted con-
tent usage and reporting control information through
both a sufficiently secure chain of handling of content
and content control information and through various
forms of usage of such content wherein said persistence
of control may survive such use. Persistence of control
includes the ability to extract information from a VDE
container object by creating a new container whose
contents are at least in part secured and that contains
both the extracted content and at least a portion of the
control information which control information of the

original container and/or are at least in part produced
by control information of the original container for this
purpose and/or VDE installation control information
stipulates should persist and/or control usage of content
in the newly formed container. Such control informa-
tion can continue to manage usage of container content
if the container is “embedded” into another VDE man-

aged object, such as an object which contains plural
embedded VDE containers, each of which contains

content derived (extracted) from a different source.
enables users, other value chain participants (such as

clearinghouses and government agencies), and/or user
organizations, to specify preferences or requirements
related to their use of electronic content and/or appli-

Page 00166

Page 00167

5,915,019

29

ances. Content users, such as end-user customers using
commercially distributed content (games, information
resources, software programs, etc.), can define, if
allowed by senior control information, budgets, and/or
other control information, to manage their own internal
use of content. Uses include, for example, a user setting
a limit on the price for electronic documents that the
user is willing to pay without prior express user
authorization, and the user establishing the character of
metering information he or she is willing to allow to be
collected (privacy protection). This includes providing
the means for content users to protect the privacy of
information derived from their use of a VDE installa-

tion and content and/or appliance usage auditing. In
particular, VDE can prevent information related to a
participant’s usage of electronic content from being
provided to other parties without the participant’s tacit
or explicit agreement.

provide mechanisms that allow control information to
“evolve” and be modified according, at least in part, to
independently, securely delivered further control infor-
mation. Said control information may include execut-
able code (e.g., Load modules) that has been certified
as acceptable (e.g., reliable and trusted) for use with a
specific VDE application, class of applications, and/or
a VDE distributed arrangement. This modification
(evolution) of control information can occur upon
content control information (load modules and any
associated data) circulating to one or more VDE par-
ticipants in a pathway of handling of control
information, or it may occur upon control information
being received from a VDE participant. Handlers in a
pathway of handling of content control information, to
the extent each is authorized, can establish, modify,
and/or contribute to, permission, auditing, payment,
and reporting control information related to controlling,
analyzing, paying for, and/or reporting usage of, elec-
tronic content and/or appliances (for example, as
related to usage of VDE controlled property content).
Independently delivered (from an independent source
which is independent except in regards to certification),
at least in part secure, control information can be
employed to securely modify content control informa-
tion when content control information has flowed from

one party to another party in a sequence of VDE
content control information handling. This modifica-
tion employs, for example, one or more VDE compo-
nent assemblies being securely processed in a VDE
secure subsystem. In an alternate embodiment, control
information may be modified by a senior party through
use of their VDE installation secure sub-system after
receiving submitted, at least in part secured, control
information from a “junior” party, normally in the form
of a VDE administrative object. Control information
passing along VDE pathways can represent a mixed
control set, in that it may include: control information
that persisted through a sequence of control informa-
tion handlers, other control information that was
allowed to be modified, and further control information
representing new control information and/or mediating
data. Such a control set represents an evolution of
control information for disseminated content. In this

example the overall content control set for a VDE
content container is “evolving” as it securely (e.g.
communicated in encrypted form and using authenti-
cation and digital signaturing techniques) passes, at
least in part, to a new participant’s VDE installation

10

15

20

25

30

35

40

45

50

55

60

65

30

where the proposed control information is securely
received and handled. The received control information

may be integrated (through use of the receiving parties’
VDE installation secure sub-system) with in-place con-
trol information through a negotiation process involv-
ing both control information sets. For example, the
modification, within the secure sub-system of a content
provider’s VDE installation, of content control infor-
mation for a certain VDE content container may have
occurred as a result of the incorporation of required
control information provided by a financial credit pro-
vider. Said credit provider may have employed their
VDE installation to prepare and securely communicate
(directly or indirectly) said required control informa-
tion to said content provider. Incorporating said
required control information enables a content provider
to allow the credit provider’s credit to be employed by
a content end-user to compensate for the end-user’s use
of VDE controlled content and/or appliances, so long as
said end-user has a credit account with said financial

credit provider and said credit account has sufficient
credit available. Similarly, control information requir-
ing the payment of taxes and/or the provision of
revenue information resulting from electronic com-
merce activities may be securely received by a content
provider. This control information may be received, for
example, from a government agency. Content providers
might be required by law to incorporate such control
information into the control information for commer-

cially distributed content and/or services related to
appliance usage. Proposed control information is used
to an extent allowed by senior control information and
as determined by any negotiation trade-offs that satisfy
priorities stipulated by each set (the received set and the
proposed set). VDE also accommodates different con-
trol schemes specifically applying to different partici-
pants (e.g., individual participants and/or participant
classes (types)) in a network of VDE content handling
participants.

support multiple simultaneous control models for the
same content property and/or property portion. This
allows, for example, for concurrent business activities
which are dependent on electronic commercial product
content distribution, such as acquiring detailed market
survey information and/or supporting advertising, both
of which can increase revenue and result in lower

content costs to users and greater value to content
providers. Such control information and/or overall con-
trol models may be applied, as determined or allowed
by control information, in differing manners to different
participants in a pathway of content, reporting,
payment, and/or related control information handling.
VDE supports applying different content control infor-
mation to the same and/or different content and/or

appliance usage related activities, and/or to different
parties in a content and/or appliance usage model, such
that different parties (or classes of VDE users, for
example) are subject to differing control information
managing their use of electronic information content.
For example, differing control models based on the
category of a user as a distributor of a VDE controlled
content object or an end-user of such content may result
in different budgets being applied. Alternatively, for
example, a one distributor may have the right to dis-
tribute a different array of properties than another
distributor (from a common content collection
provided, for example, on optical disc). An individual,

Page 00167

Page 00168

5,915,019

31

and/or a class or other grouping of end-users, may have
different costs (for example, a student, senior citizen,
and/or poor citizen user of content who may be pro-
vided with the same or differing discounts) than a
“typical” content user.

support provider revenue information resulting from cus-
tomer use of content and/or appliances, and/or provider
and/or end-user payment of taxes, through the transfer
of credit and/or electronic currency from said end-user
and/or provider to a government agency, might occur
“automatically” as a result of such received control
information causing the generation of a VDE content
container whose content includes customer content

usage information reflecting secure, trusted revenue
summary information and/or detailed user transaction
listings (level of detail might depend, for example on
type or size of transaction—information regarding a
bank interest payment to a customer or a transfer of a
large (e.g. over $10,000) might be, by law, automati-
cally reported to the government). Such summary and/
or detailed information related to taxable events and/or

currency, and/or creditor currency transfer, may be
passed along a pathway of reporting and/or payment to
the government in a VDE container. Such a container
may also be used for other VDE related content usage
reporting information.

support the flowing of content control information
through different “branches” of content control infor-
mation handling so as to accommodate, under the
present invention’s preferred embodiment, diverse con-
trolled distributions of VDE controlled content. This

allows different parties to employ the same initial
electronic content with differing (perhaps competitive)
control strategies. In this instance, a party who first
placed control information on content can make certain
control assumptions and these assumptions would
evolve into more specific and/or extensive control
assumptions. These control assumptions can evolve
during the branching sequence upon content model
participants submitting control information changes,
for example, for use in “negotiating” with “in place”
content control information. This can result in new or

modified content control information and/or it might
involve the selection of certain one or more already
“in-place” content usage control methods over in-place
alternative methods, as well as the submission of rel-
evant control information parameter data. This form of
evolution of different control information sets applied
to different copies of the same electronic property
content and/or appliance results from VDE control
information flowing “down” through different branches
in an overall pathway of handling and control and being
modified differently as it diverges down these different
pathway branches. This ability of the present invention
to support multiple pathway branches for the flow of
both VDE content control information and VDE man-

aged content enables an electronic commerce market-
place which supports diverging, competitive business
partnerships, agreements, and evolving overall busi-
ness models which can employ the same content prop-
erties combined, for example, in differing collections of
content representing differing at least in part competi-
tive products.

enable a user to securely extract, through the use of the
secure subsystem at the user’s VDE installation, at least
a portion of the content included within a VDE content
container to produce a new, secure object (content

10

15

20

25

30

35

40

45

50

55

60

65

32

container), such that the extracted information is main-
tained in a continually secure manner through the
extraction process. Formation of the new VDE con-
tainer containing such extracted content shall result in
control information consistent with, or specified by, the
source VDE content container, and/or local VDE instal-
lation secure subsystem as appropriate, content control
information. Relevant control information, such as
security and administrative information, derived, at
least in part, from the parent (source) object’s control
information, will normally be automatically inserted
into a new VDE content container object containing
extracted VDE content. This process typically occurs
under the control framework of a parent object and/or
VDE installation control information executing at the
user’s VDE installation secure subsystem (with, for
example, at least a portion of this inserted control
information being stored securely in encrypted form in
one or more permissions records). In an alternative
embodiment, the derived content control information
applied to extracted content may be in part or whole
derived from, or employ, content control information
stored remotely from the VDE installation that per-
formed the secure extraction such as at a remote server
location. As with the content control information for

most VDE managed content, features of the present
invention allows the content’s control information to:

(a) “evolve,” for example, the extractor of content may
add new control methods and/or modify control
parameter data, such as VDE application compliant
methods, to the extent allowed by the content’s
in-place control information. Such new control infor-
mation might specify, for example, who may use at
least a portion of the new object, and/or how said at
least a portion of said extracted content may be used
(e.g. when at least a portion may be used, or what
portion or quantity of portions may be used);

(b) allow a user to combine additional content with at
least a portion of said extracted content, such as
material authored by the extractor and/or content (for
example, images, video, audio, and/or text) extracted
from one or more other VDE container objects for
placement directly into the new container;

(c) allow a user to securely edit at least a portion of said
content while maintaining said content in a secure
form within said VDE content container;

(d) append extracted content to a pre-existing VDE
content container object and attach associated con-
trol information—in these cases, user added infor-
mation may be secured, e.g., encrypted, in part or as
a whole, and may be subject to usage and/or auditing
control information that differs from the those

applied to previously in place object content;
(e) preserve VDE control over one or more portions of

extracted content after various forms of usage of said
portions, for example, maintain content in securely
stored form while allowing “temporary” on screen
display of content or allowing a software program to
be maintained in secure form but transiently decrypt
any encrypted executing portion of said program (all,
or only a portion, of said program may be encrypted
to secure the program).

Generally, the extraction features of the present invention
allow users to aggregate and/or disseminate and/or
otherwise use protected electronic content information
extracted from content container sources while main-

taining secure VDE capabilities thus preserving the

Page 00168

Page 00169

5,915,019

33

rights of providers in said content information after
various content usage processes.

support the aggregation of portions of VDE controlled
content, such portions being subject to differing VDE
content container control information, wherein various
of said portions may have been provided by
independent, different content providers from one or
more different locations remote to the user performing
the aggregation. Such aggregation, in the preferred
embodiment of the present invention, may involve
preserving at least a portion of the control information
(e.g., executable code such as load modules) for each of
various of said portions by, for example, embedding
some or all of such portions individually as VDE
content container objects within an overall VDE con-
tent container and/or embedding some or all of such
portions directly into a VDE content container. In the
latter case, content control information of said content
container may apply differing control information sets
to various of such portions based upon said portions
original control information requirements before aggre-
gation. Each of such embedded VDE content contain-
ers may have its own control information in the form of
one or more permissions records. Alternatively, a nego-
tiation between control information associated with

various aggregated portions of electronic content, may
produce a control information set that would govern
some or all of the aggregated content portions. The
VDE content control information produced by the
negotiation may be uniform (such as having the same
load modules and/or component assemblies, and/or it
may apply differing such content control information to
two or more portions that constitute an aggregation of
VDE controlled content such as differing metering,
budgeting, billing and/or payment models. For
example, content usage payment may be automatically
made, either through a clearinghouse, or directly, to
different content providers for different potions.

enable flexible metering of, or other collection of infor-
mation related to, use of electronic content and/or
electronic appliances. Afeature of the present invention
enables such flexibility of metering control mecha-
nisms to accommodate a simultaneous, broad array of:
(a) different parameters related to electronic informa-
tion content use; (b) different increment units bytes,
documents, properties, paragraphs, images, etc.) and/or
other organizations of such electronic content; and/or
(c) different categories of user and/or VDE installation
types, such as client organizations, departments,
projects, networks, and/or individual users, etc. This
feature of the present invention can be employed for
content security, usage analysis (for example, market
surveying), and/or compensation based upon the use
and/or exposure to VDE managed content. Such meter-
ing is a flexible basis for ensuring payment for content
royalties, licensing, purchasing, and/or advertising. A
feature of the present invention provides for payment
means supporting flexible electronic currency and
credit mechanisms, including the ability to securely
maintain audit trails reflecting information related to
use of such currency or credit. VDE supports multiple
differing hierarchies of client organization control
information wherein an organization client administra-
tor distributes control information specifying the usage
rights of departments, users, and/or projects. Likewise,
a department (division) network manager can function
as a distributor (budgets, access rights, etc.) for depart-
ment networks, projects, and/or users, etc.

10

15

20

25

30

35

40

45

50

55

60

65

34

provide scalable, integratable, standardized control means
for use on electronic appliances ranging from inexpen-
sive consumer (for example, television set-top
appliances) and professional devices (and hand-held
PDAs) to servers, mainframes, communication
switches, etc. The scalable transaction management/
auditing technology of the present invention will result
in more efficient and reliable interoperability amongst
devices functioning in electronic commerce and/or data
security environments. As standardized physical con-
tainers have become essential to the shipping of physi-
cal goods around the world, allowing these physical
containers to universally “fit” unloading equipment,
efficiently use truck and train space, and accommodate
known arrays of objects (for example, boxes) in an
efficient manner, so VDE electronic content containers
may, as provided by the present invention, be able to
efficiently move electronic information content (such
as commercially published properties, electronic cur-
rency and credit, and content audit information), and
associated content control information, around the
world. Interoperability is fundamental to efficient elec-
tronic commerce. The design of the VDE foundation,
VDE load modules, and VDE containers, are important
features that enable the VDE node operating environ-
ment to be compatible with a very broad range of
electronic appliances. The ability, for example, for
control methods based on load modules to execute in

very “small” and inexpensive secure sub-system
environments, such as environments with very little
read/write memory, while also being able to execute in
large memory sub-systems that may be used in more
expensive electronic appliances, supports consistency
across many machines. This consistent VDE operating
environment, including its control structures and con-
tainer architecture, enables the use of standardized
VDE content containers across a broad range of device
types and host operating environments. Since VDE
capabilities can be seamlessly integrated as extensions,
additions, and/or modifications to fundamental capa-
bilities of electronic appliances and host operating
systems, VDE containers, content control information,
and the VDE foundation will be able to work with

many device types and these device types will be able
to consistently and efficiently interpret and enforce
VDE control information. Through this integration
users can also benefit from a transparent interaction
with many of the capabilities of VDE. VDE integration
with software operating on a host electronic appliance
supports a variety of capabilities that would be unavail-
able or less secure without such integration. Through
integration with one or more device applications and/or
device operating environments, many capabilities of
the present invention can be presented as inherent
capabilities of a given electronic appliance, operating
system, or appliance application. For example, features
of the present invention include: (a) VDE system
software to in part extend and/or modify host operating
systems such that they possesses VDE capabilities,
such as enabling secure transaction processing and
electronic information storage; (b) one or more appli-
cation programs that in part represent tools associated
with VDE operation; and/or (c) code to be integrated
into application programs, wherein such code incorpo-
rates references into VDE system software to integrate
VDE capabilities and makes such applications VDE
aware (for example, word processors, database

Page 00169

Page 00170

5,915,019

35

retrieval applications, spreadsheets, multimedia pre-
sentation authoring tools, film editing software, music
editing software such as MIDI applications and the
like, robotics control systems such as those associated
with CAD/CAM environments and NCM software and

the like, electronic mail systems, teleconferencing
software, and other data authoring, creating, handling,
and/or usage applications including combinations of
the above). These one or more features (which may also
be implemented in firmware or hardware) may be
employed in conjunction with a VDE node secure
hardware processing capability, such as a
microcontroller(s), microprocessor(s), other CPU(s) or
other digital processing logic.

employ audit reconciliation and usage pattern evaluation
processes that assess, through certain, normally net-
work based, transaction processing reconciliation and
threshold checking activities, whether certain viola-
tions of security of a VDE arrangement have occurred.
These processes are performed remote to VDE con-
trolled content end-user VDE locations by assessing,
for example, purchases, and/or requests, for electronic
properties by a given VDE installation. Applications
for such reconciliation activities include assessing
whether the quantity of remotely delivered VDE con-
trolled content corresponds to the amount of financial
credit and/or electronic currency employed for the use
of such content. A trusted organization can acquire
information from content providers concerning the cost
for content provided to a given VDE installation and/or
user and compare this cost for content with the credit
and/or electronic currency disbursements for that
installation and/or user. Inconsistencies in the amount
of content delivered versus the amount of disbursement

can prove, and/or indicate, depending on the
circumstances, whether the local VDE installation has

been, at least to some degree, compromised (for
example, certain important system security functions,
such as breaking encryption for at least some portion of
the secure subsystem and/or VDE controlled content by
uncovering one or more keys). Determining whether
irregular patterns (e.g. unusually high demand) of con-
tent usage, or requests for delivery of certain kinds of
VDE controlled information during a certain time
period by one or more VDE installations and/or users
(including, for example, groups of related users whose
aggregate pattern of usage is suspicious) may also be
useful in determining whether security at such one or
more installations, and/or by such one or more users,
has been compromised, particularly when used in com-
bination with an assessment of electronic credit and/or

currency provided to one or more VDE users and/or
installations, by some or all of their credit and/or
currency suppliers, compared with the disbursements
made by such users and/or installations.

support security techniques that materially increase the
time required to “break” a system’s integrity. This
includes using a collection of techniques that mini-
mizes the damage resulting from comprising some
aspect of the security features of the present inventions.

provide a family of authoring, administrative, reporting,
payment, and billing tool user applications that com-
prise components of the present invention’s trusted/
secure, universe wide, distributed transaction control
and administration system. These components support
VDE related: object creation (including placing control
information on content), secure object distribution and

10

15

20

25

30

35

40

45

50

55

60

65

36

management (including distribution control
information, financial related, and other usage
analysis), client internal VDE activities administration
and control, security management, user interfaces, pay-
ment disbursement, and clearinghouse related func-
tions. These components are designed to support highly
secure, uniform, consistent, and standardized: elec-

tronic commerce and/or data security pathway(s) of
handling, reporting, and/or payment; content control
and administration; and human factors (e.g. user
interfaces).

support the operation of a plurality of clearinghouses,
including, for example, both financial and user clear-
inghouse activities, such as those performed by a client
administrator in a large organization to assist in the
organization’s use of a VDE arrangement, including
usage information analysis, and control of VDE activi-
ties by individuals and groups of employees such as
specifying budgets and the character of usage rights
available under VDE for certain groups of and/or
individual, client personnel, subject to control informa-
tion series to control information submitted by the
client administrator. At a clearinghouse, one or more
VDE installations may operate together with a trusted
distributed database environment (which may include
concurrent database processing means). A financial
clearinghouse normally receives at its location securely
delivered content usage information, and user requests
(such as requests for further credit, electronic currency,
and/or higher credit limit). Reporting of usage infor-
mation and user requests can be used for supporting
electronic currency, billing, payment and credit related
activities, and/or for user profile analysis and/or
broader market survey analysis and marketing
(consolidated) list generation or other information
derived, at least in part, from said usage information.
this information can be provided to content providers or
other parties, through secure, authenticated encrypted
communication to the VDE installation secure sub-

systems. Clearinghouse processing means would nor-
mally be connected to specialized I/O means, which
may include high speed telecommunication switching
means that may be used for secure communications
between a clearinghouse and other VDE pathway par-
ticipants.

securely support electronic currency and credit usage
control, storage, and communication at, and between,
VDE installations. VDE further supports automated
passing of electronic currency and/or credit
information, including payment tokens (such as in the
form of electronic currency or credit) or other payment
information, through a pathway of payment, which said
pathway may or may not be the same as a pathway for
content usage information reporting. Such payment
may be placed into a VDE container created automati-
cally by a VDE installation in response to control
information stipulating the “withdrawal” of credit or
electronic currency from an electronic credit or cur-
rency account based upon an amount owed resulting
from usage of VDE controlled electronic content and/or
appliances. Payment credit or currency may then be
automatically communicated in protected (at least in
part encrypted) form through telecommunication of a
VDE container to an appropriate party such as a
clearinghouse, provider of original property content or
appliance, or an agent for such provider (other than a
clearinghouse). Payment information may be packaged

Page 00170

Page 00171

5,915,019

37

in said VDE content container with, or without, related
content usage information, such as metering informa-
tion. An aspect of the present invention further enables
certain information regarding currency use to be speci-
fied as unavailable to certain, some, or all VDE parties
(“conditionally” to filly anonymous currency) and/or
further can regulate certain content information, such
as currency and/or credit use related information (and/
or other electronic information usage data) to be avail-
able only under certain strict circumstances, such as a
court order (which may itself require authorization
through the use of a court controlled VDE installation
that may be required to securely access “conditionally”
anonymous information). Currency and credit
information, under the preferred embodiment of the
present invention, is treated as administrative content;

support fingerprinting (also known as watermarking) for
embedding in content such that when content protected
under the present invention is released in clear form
from a VDE object (displayed, printed, communicated,
extracted, and/or saved), information representing the
identification of the user and/or VDE installation

responsible for transforming the content into clear for
is embedded into the released content. Fingerprinting is
useful in providing an ability to identify who extracted
information in clear form a VDE container, or who
made a copy of a VDE object or a portion of its
contents. Since the identity of the user and/or other
identifying information may be embedded in an
obscure or generally concealed manner, in VDE con-
tainer content and/or control information, potential
copyright violators may be deterred from unauthorized
extraction or copying. Fingerprinting normally is
embedded into unencrypted electronic content or con-
trol information, though it can be embedded into
encrypted content and later placed in unencrypted
content in a secure VDE installation sub-system as the
encrypted content carrying the fingerprinting informa-
tion is decrypted. Electronic information, such as the
content of a VDE container, may be fingerprinted as it
leaves a network (such as Internet) location bound for
a receiving party. Such repository information may be
maintained in unencrypted form prior to communica-
tion and be encrypted as it leaves the repository.
Fingerprinting would preferably take place as the con-
tent leaves the repository, but before the encryption
step. Encrypted repository content can be decrypted,
for example in a secure VDE sub-system, fingerprint
information can be inserted, and then the content can be
re-encrypted for transmission. Embedding identifica-
tion information of the intended recipient user and/or
VDE installation into content as it leaves, for example,
an Internet repository, would provide important infor-
mation that would identify or assist in identifying any
party that managed to compromise the security of a
VDE installation or the delivered content. If a party
produces an authorized clear form copy of VDE con-
trolled content, including making unauthorized copies
of an authorized clear form copy, fingerprint informa-
tion would point back to that individual and/or his or
her VDE installation. Such hidden information will act

as a strong disincentive that should dissuade a substan-
tial portion of potential content “pirates” from stealing
other parties electronic information. Fingerprint infor-
mation identifying a receiving party and/or VDE instal-
lation can be embedded into a VDE object before, or
during, decryption, replication, or communication of

10

15

20

25

30

35

40

45

50

55

60

65

38

VDE content objects to receivers. Fingerprinting elec-
tronic content before it is encrypted for transfer to a
customer or other user provides information that can be
very useful for identifying who received certain content
which may have then been distributed or made avail-
able in unencrypted form. This information would be
useful in tracking who may have “broken” the security
of a VDE installation and was illegally making certain
electronic content available to others. Fingerprinting
may provide additional, available information such as
time and/or date of the release (for example extraction)
of said content information. Locations for inserting
fingerprints may be specified by VDE installation and/
or content container control information. This informa-

tion may specify that certain areas and/or precise
locations within properties should be used for
fingerprinting, such as one or more certain fields of
information or information types. Fingerprinting infor-
mation may be incorporated into a property by modi-
fying in a normally undetectable way color frequency
and/or the brightness of certain image pixels, by
slightly modifying certain audio signals as to
frequency, by modifying font character formation, etc.
Fingerprint information, itself, should be encrypted so
as to make it particularly difficult for tampered finger-
prints to be interpreted as valid. Variations in finger-
print locations for different copies of the same property;
“false” fingerprint information; and multiple copies of
fingerprint information within a specific property or
other content which copies employ different finger-
printing techniques such as information distribution
patterns, frequency and/or brightness manipulation,
and encryption related techniques, are features of the
present invention for increasing the difficulty of an
unauthorized individual identifying fingerprint loca-
tions and erasing and/or modifying fingerprint infor-
mation.

provide smart object agents that can carry requests, data,
and/or methods, including budgets, authorizations,
credit or currency, and content. For example, smart
objects may travel to and/or from remote information
resource locations and fulfill requests for electronic
information content. Smart objects can, for example, be
transmitted to a remote location to perform a specified
database search on behalf of a user or otherwise “intel-

ligently” search remote one or more repositories of
information for user desired information. After identi-

fying desired information at one or more remote
locations, by for example, performing one or more
database searches, a smart object may return via com-
munication to the user in the form of a secure “return

object” containing retrieved information. Auser may be
charged for the remote retrieving of information, the
returning of information to the user’s VDE installation,
and/or the use of such information. In the latter case, a
user may be charged only for the information in the
return object that the user actually uses. Smart objects
may have the means to request use of one or more
services and/or resources. Services include locating
other services and/or resources such as information

resources, language or format translation, processing,
credit (or additional credit) authorization, etc.
Resources include reference databases, networks, high
powered or specialized computing resources (the smart
object may carry information to another computer to be
efficiently processed and then return the information to
the sending VDE installation), remote object

Page 00171

Page 00172

5,915,019

39

repositories, etc. Smart objects can make efficient use
of remote resources (e.g. centralized databases, super
computers, etc.) while providing a secure means for
charging users based on information and/or resources
actually used.

support both “translations” of VDE electronic agreements
elements into modern language printed agreement ele-
ments (such as English language agreements) and
translations of electronic rights protection/transaction
management modern language agreement elements to
electronic VDE agreement elements. This feature
requires maintaining a library of textual language that
corresponds to VDE load modules and/or methods
and/or component assemblies. As VDE methods are
proposed and/or employed for VDE agreements, a
listing of textual terms and conditions can be produced
by a VDE user application which, in a preferred
embodiment, provides phrases, sentences and/or para-
graphs that have been stored and correspond to said
methods and/or assemblies. This feature preferably
employs artificial intelligence capabilities to analyze
and automatically determine, and/or assist one or more
users to determine, the proper order and relationship
between the library elements corresponding to the
chosen methods and/or assemblies so as to compose
some or all portions of a legal or descriptive document.
One or more users, and/or preferably an attorney (if the
document a legal, binding agreement), would review
the generated document material upon completion and
employ such additional textual information and/or edit-
ing as necessary to describe non electronic transaction
elements of the agreement and make any other
improvements that may be necessary. These features
further support employing modern language tools that
allow one or more users to make selections from

choices and provide answers to questions and to pro-
duce a VDE electronic agreement from such a process.
This process can be interactive and the VDE agreement
formulation process may employ artificial intelligence
expert system technology that learns from responses
and, where appropriate and based at least in part on said
responses, provides further choices and/or questions
which “evolves” the desired VDE electronic agree-
ment.

support the use of multiple VDE secure subsystems in a
single VDE installation. Various security and/or per-
formance advantages may be realized by employing a
distributed VDE design within a single VDE installa-
tion. For example, designing a hardware based VDE
secure subsystem into an electronic appliance VDE
display device, and designing said subsystem’s inte-
gration with said display device so that it is as close as
possible to the point of display, will increase the
security for video materials by making it materially
more difficult to “steal” decrypted video information as
it moves from outside to inside the video system.
Ideally, for example, a VDE secure hardware module
would be in the same physical package as the actual
display monitor, such as within the packaging of a
video monitor or other display device, and such device
would be designed, to the extent commercially
practical, to be as tamper resistant as reasonable. As
another example, embedding a VDE hardware module
into an I/O peripheral may have certain advantages
from the standpoint of overall system throughput. If
multiple VDE instances are employed within the same
VDE installation, these instances will ideally share

10

15

20

25

30

35

40

45

50

55

60

65

40

resources to the extent practical, such as VDE instances
storing certain control information and content and/or
appliance usage information on the same mass storage
device and in the same VDE management database.

requiring reporting and payment compliance by employ-
ing exhaustion of budgets and time ageing of keys. For
example, a VDE commercial arrangement and associ-
ated content control information may involve a content
provider’s content and the use of clearinghouse credit
for payment for end-user usage of said content. Control
information regarding said arrangement may be deliv-
ered to a user’s (of said content) VDE installation
and/or said financial clearinghouse’s VDE installation.
Said control information might require said clearing-
house to prepare and telecommunicate to said content
provider both content usage based information in a
certain form, and content usage payment in the form of
electronic credit (such credit might be “owned” by the
provider after receipt and used in lieu of the availability
or adequacy of electronic currency) and/or electronic
currency. This delivery of information and payment
may employ trusted VDE installation secure sub-
systems to securely, and in some embodiments,
automatically, provide in the manner specified by said
control information, said usage information and pay-
ment content. Features of the present invention help
ensure that a requirement that a clearinghouse report
such usage information and payment content will be
observed. For example, if one participant to a VDE
electronic agreement fails to observe such information
reporting and/or paying obligation, another participant
can stop the delinquent party from successfully partici-
pating in VDE activities related to such agreement. For
example, if required usage information and payment
was not reported as specified by content control
information, the “injured” party can fail to provide,
through failing to securely communicate from his VDE
installation secure subsystem, one or more pieces of
secure information necessary for the continuance of
one or more critical processes. For example, failure to
report information and/or payment from a clearing-
house to a content provider (as well as any security
failures or other disturbing irregularities) can result in
the content provider not providing key and/or budget
refresh information to the clearinghouse, which infor-
mation can be necessary to authorize use of the clear-
inghouse’s credit for usage of the provider’s content
and which the clearinghouse would communicate to
end-user’s during a content usage reporting communi-
cation between the clearinghouse and end-user. As
another example, a distributor that failed to make
payments and/or report usage information to a content
provider might find that their budget for creating per-
missions records to distribute the content provider’s
content to users, and/or a security budget limiting one
or more other aspect of their use of the provider’s
content, are not being refreshed by the content provider,
once exhausted or timed-out (for example, at a prede-
termined date). In these and other cases, the offended
party might decide not to refresh time ageing keys that
had “aged out.” Such a use of time aged keys has a
similar impact as failing to refresh budgets or time-
aged authorizations.

support smart card implementations of the present inven-
tion in the form of portable electronic appliances,
including cards that can be employed as secure credit,
banking, and/or money cards. A feature of the present

Page 00172

Page 00173

5,915,019

41

invention is the use of portable VDEs as transaction
cards at retail and other establishments, wherein such
cards can “dock” with an establishment terminal that

has a VDE secure sub-system and/or an online con-
nection to a VDE secure and/or otherwise secure and

compatible subsystem, such as a “trusted” financial
clearinghouse (e.g., VISA, Mastercard). The VDE card
and the terminal (and/or online connection) can
securely exchange information related to a transaction,
with credit and/or electronic currency being transferred
to a merchant and/or clearinghouse and transaction
information flowing back to the card. Such a card can
be used for transaction activities of all sorts. A docking
station, such as a PCMCIA connector on an electronic
appliance, such as a personal computer, can receive a
consumer’s VDE card at home. Such a station/card
combination can be used for on-line transactions in the

same manner as a VDE installation that is permanently
installed in such an electronic appliance. The card can
be used as an “electronic wallet” and contain electronic

currency as well as credit provided by a clearinghouse.
The card can act as a convergence point for financial
activities of a consumer regarding many, if not all,
merchant, banking, and on-line financial transactions,
including supporting home banking activities. A con-
sumer can receive his paycheck and/or investment
earnings and/or “authentic” VDE content container
secured detailed information on such receipts, through
on-line connections. Auser can send digital currency to
another party with a VDE arrangement, including giv-
ing away such currency. AVDE card can retain details
of transactions in a highly secure and database orga-
nized fashion so that financially related information is
both consolidated and very easily retrieved and/or
analyzed. Because of the VDE security, including use
of effective encryption, authentication, digital
signaturing, and secure database structures, the records
contained within a VDE card arrangement may be
accepted as valid transaction records for government
and/or corporate recordkeeping requirements. In some
embodiments of the present invention a VDE card may
employ docking station and/or electronic appliance
storage means and/or share other VDE arrangement
means local to said appliance and/or available across a
network, to augment the information storage capacity
of the VDE card, by for example, storing dated, and/or
archived, backup information. Taxes relating to some
or all of an individual’s financial activities may be
automatically computed based on “authentic” informa-
tion securely stored and available to said VDE card.
Said information may be stored in said card, in said
docking station, in an associated electronic appliance,
and/or other device operatively attached thereto, and/or
remotely, such as at a remote server site. A card’s data,
e.g. transaction history, can be backed up to an indi-
vidual’s personal computer or other electronic appli-
ance and such an appliance may have an integrated
VDE installation of its own. A current transaction,

recent transactions (for redundancy), or all or other
selected card data may be backed up to a remote backup
repository, such a VDE compatible repository at a
financial clearinghouse, during each or periodic dock-
ing for a financial transaction and/or information com-
munication such as a user/merchant transaction. Back-

ing up at least the current transaction during a
connection with another party’s VDE installation (for
example a VDE installation that is also on a financial or

10

15

20

25

30

35

40

45

50

55

60

65

42

general purpose electronic network), by posting trans-
action information to a remote clearinghouse and/or
bank, can ensure that sufficient backup is conducted to
enable complete reconstruction of VDE card internal
information in the event of a card failure or loss.

support certification processes that ensure authorized
interoperability between various VDE installations so
as to prevent VDE arrangements and/or installations
that unacceptably deviate in specification protocols
from other VDE arrangements and/or installations from
interoperating in a manner that may introduce security
(integrity and/or confidentiality of VDE secured
information), process control, and/or software compat-
ibility problems. Certification validates the identity of
VDE installations and/or their components, as well as
VDE users. Certification data can also serve as infor-

mation that contributes to determining the decommis-
sioning or other change related to VDE sites.

support the separation of fundamental transaction control
processes through the use of event (triggered) based
method control mechanisms. These event methods trig-
ger one or more other VDE methods (which are avail-
able to a secure VDE sub-system) and are used to carry
out VDE managed transaction related processing.
These triggered methods include independently
(separably) and securely processable component billing
management methods, budgeting management
methods, metering management methods, and related
auditing management processes. As a result of this
feature of the present invention, independent triggering
of metering, auditing, billing, and budgeting methods,
the present invention is able to efficiently, concurrently
support multiple financial currencies (e.g. dollars,
marks, yen) and content related budgets, and/or billing
increments as well as very flexible content distribution
models.

support, complete, modular separation of the control
structures related to (1) content event triggering, (2)
auditing, (3) budgeting (including specifying no right
of use or unlimited right of use), (4) billing, and (5) user
identity (VDE installation, client name, department,
network, and/or user, etc.). The independence of these
VDE control structures provides a flexible system
which allows plural relationships between two or more
of these structures, for example, the ability to associate
a financial budget with different event trigger structures
(that are put in place to enable controlling content
based on its logical portions). Without such separation
between these basic VDE capabilities, it would be more
difficult to efficiently maintain separate metering,
budgeting, identification, and/or billing activities which
involve the same, differing (including overlapping), or
entirely different, portions of content for metering,
billing, budgeting, and user identification, for example,
paying fees associated with usage of content, perform-
ing home banking, managing advertising services, etc.
VDE modular separation of these basic capabilities
supports the programming of plural, “arbitrary” rela-
tionships between one or differing content portions
(and/or portion units) and budgeting, auditing, and/or
billing control information. For example, under VDE, a
budget limit of $200 dollars or 300 German Marks a
month may be enforced for decryption of a certain
database and 2 US. Dollars or 3 German Marks may be
charged for each record of said database decrypted
(depending on user selected currency). Such usage can
be metered while an additional audit for user profile

Page 00173

Page 00174

5,915,019

43

purposes can be prepared recording the identity of each
filed displayed. Additionally, further metering can be
conducted regarding the number of said database bytes
that have been decrypted, and a related security budget
may prevent the decrypting of more than 5% of the total
bytes of said database per year. The user may also,
under VDE (if allowed by senior control information),
collect audit information reflecting usage of database
fields by different individuals and client organization
departments and ensure that differing rights of access
and differing budgets limiting database usage can be
applied to these client individuals and groups. Enabling
content providers and users to practically employ such
diverse sets of user identification, metering, budgeting,
and billing control information results, in part, from the
use of such independent control capabilities. As a
result, VDE can support great configurability in cre-
ation of plural control models applied to the same
electronic property and the same and/or plural control
models applied to differing or entirely different content
models (for example, home banking versus electronic
shopping).

Methods, Other Control Information, and VDE Objects
VDE control information (e.g., methods) that collectively

control use of VDE managed properties (database,
document, individual commercial product), are either
shipped with the content itself (for example, in a content
container) and/or one or more portions of such control
information is shipped to distributors and/or other users in
separably deliverable “administrative objects.” A subset of
the methods for a property may in part be delivered with
each property while one or more other subsets of methods
can be delivered separately to a user or otherwise made
available for use (such as being available remotely by
telecommunication means). Required methods (methods
listed as required for property and/or appliance use) must be
available as specified if VDE controlled content (such as
intellectual property distributed within a VDE content
container) is to be used. Methods that control content may
apply to a plurality of VDE container objects, such as a class
or other grouping of such objects. Methods may also be
required by certain users or classes of users and/or VDE
installations and/or classes of installations for such parties to
use one or more specific, or classes of, objects.

Afeature of VDE provided by the present invention is that
certain one or more methods can be specified as required in
order for a VDE installation and/or user to be able to use

certain and/or all content. For example, a distributor of a
certain type of content might be allowed by “senior” par-
ticipants (by content creators, for example) to require a
method which prohibits end-users from electronically sav-
ing decrypted content, a provider of credit for VDE trans-
actions might require an audit method that records the time
of an electronic purchase, and/or a user might require a
method that summarizes usage information for reporting to
a clearinghouse (e.g. billing information) in a way that does
not convey confidential, personal information regarding
detailed usage behavior.

A further feature of VDE provided by the present inven-
tion is that creators, distributors, and users of content can

select from among a set of predefined methods (if available)
to control container content usage and distribution functions
and/or they may have the right to provide new customized
methods to control at least certain usage functions (such
“new” methods may be required to be certified for trusted-
ness and interoperability to the VDE installation and/or for
of a group of VDE applications). As a result, VDE provides

10

15

20

25

30

35

40

45

50

55

60

65

44

a very high degree of configurability with respect to how the
distribution and other usage of each property or object (or
one or more portions of objects or properties as desired
and/or applicable) will be controlled. Each VDE participant
in a VDE pathway of content control information may set
methods for some or all of the content in a VDE container,
so long as such control information does not conflict with
senior control information already in place with respect to:

(1) certain or all VDE managed content,
(2) certain one or more VDE users and/or groupings of

users,

(3) certain one or more VDE nodes and/or groupings of
nodes, and/or

(4) certain one or more VDE applications and/or arrange-
ments.

For example, a content creator’s VDE control information
for certain content can take precedence over other submitted
VDE participant control information and, for example, if
allowed by senior control information, a content distribu-
tor’s control information may itself take precedence over a
client administrator’s control information, which may take
precedence over an end-user’s control information. Apath of
distribution participant’s ability to set such electronic con-
tent control information can be limited to certain control

information (for example, method mediating data such as
pricing and/or sales dates) or it may be limited only to the
extent that one or more of the participant’s proposed control
information conflicts with control information set by senior
control information submitted previously by participants in
a chain of handling of the property, or managed in said
participant’s VDE secure subsystem.

VDE control information may, in part or in full, (a)
represent control information directly put in place by VDE
content control information pathway participants, and/or (b)
comprise control information put in place by such a partici-
pant on behalf of a party who does not directly handle
electronic content (or electronic appliance) permissions
records information (for example control information
inserted by a participant on behalf of a financial clearing-
house or government agency). Such control information
methods (and/or load modules and/or mediating data and/or
component assemblies) may also be put in place by either an
electronic automated, or a semi-automated and human

assisted, control information (control set) negotiating pro-
cess that assesses whether the use of one or more pieces of
submitted control information will be integrated into and/or
replace existing control information (and/or chooses
between alternative control information based upon interac-
tion with in-place control information) and how such control
information may be used.

Control information may be provided by a party who does
not directly participate in the handling of electronic content
(and/or appliance) and/or control information for such con-
tent (and/or appliance). Such control information may be
provided in secure form using VDE installation secure
sub-system managed communications (including, for
example, authenticating the deliverer of at least in part
encrypted control information) between such not directly
participating one or more parties’ VDE installation secure
subsystems, and a pathway of VDE content control infor-
mation participant’s VDE installation secure subsystem.
This control information may relate to, for example, the
right to access credit supplied by a financial services
provider, the enforcement of regulations or laws enacted by
a government agency, or the requirements of a customer of
VDE managed content usage information (reflecting usage
of content by one or more parties other than such customer)

Page 00174

Page 00175

5,915,019

45

relating to the creation, handling and/or manner of reporting
of usage information received by such customer. Such
control information may, for example, enforce societal
requirements such as laws related to electronic commerce.

VDE content control information may apply differently to
different pathway of content and/or control information
handling participants. Furthermore, permissions records
rights may be added, altered, and/or removed by a VIDE
participant if they are allowed to take such action. Rights of
VDE participants may be defined in relation to specific
parties and/or categories of parties and/or other groups of
parties in a chain of handling of content and/or content
control information (e.g., permissions records). Modifica-
tions to control information that may be made by a given,
eligible party or parties, may be limited in the number of
modifications, and/or degree of modification, they may
make.

At least one secure subsystem in electronic appliances of
creators, distributors, auditors, clearinghouses, client
administrators, and end-users (understanding that two or
more of the above classifications may describe a single user)
provides a “sufficiently” secure (for the intended
applications) environment for:

1 Decrypting properties and control information;
Storing control and metering related information;
Managing communications;
Processing core control programs, along with associ-
ated data, that constitute control information for elec-
tronic content and/or appliance rights protection,
including the enforcing of preferences and require-
ments of VDE participants.

Normally, most usage, audit, reporting, payment, and
distribution control methods are themselves at least in part
encrypted and are executed by the secure subsystem of a
VDE installation. Thus, for example, billing and metering
records can be securely generated and updated, and encryp-
tion and decryption keys are securely utilized, within a
secure subsystem. Since VDE also employs secure (e.g.
encrypted and authenticated) communications when passing
information between the participant location (nodes) secure
subsystems of a VDE arrangement, important components
of a VDE electronic agreement can be reliably enforced with
sufficient security (sufficiently trusted) for the intended
commercial purposes. A VDE electronic agreement for a
value chain can be composed, at least in part, of one or more
subagreements between one or more subsets of the value
chain participants. These subagreements are comprised of
one or more electronic contract “compliance” elements
(methods including associated parameter data) that ensure
the protection of the rights of VDE participants.

The degree of trustedness of a VDE arrangement will be
primarily based on whether hardware SPUs are employed at
participant location secure subsystems and the effectiveness
of the SPU hardware security architecture, software security
techniques when an SPU is emulated in software, and the
encryption algorithm(s) and keys that are employed for
securing content, control information, communications, and
access to VDE node (VDE installation) secure subsystems.
Physical facility and user identity authentication security
procedures may be used instead of hardware SPUs at certain
nodes, such as at an established financial clearinghouse,
where such procedures may provide sufficient security for
trusted interoperability with a VDE arrangement employing
hardware SPUs at user nodes.

The updating of property management files at each loca-
tion of a VDE arrangement, to accommodate new or modi-
fied control information, is performed in the VDE secure

2.
3.
4.

10

15

20

25

30

35

40

45

50

55

60

65

46

subsystem and under the control of secure management file
updating programs executed by the protected subsystem.
Since all secure communications are at least in part
encrypted and the processing inside the secure subsystem is
concealed from outside observation and interference, the
present invention ensures that content control information
can be enforced. As a result, the creator and/or distributor
and/or client administrator and/or other contributor of secure

control information for each property (for example, an
end-user restricting the kind of audit information he or she
will allow to be reported and/or a financial clearinghouse
establishing certain criteria for use of its credit for payment
for use of distributed content) can be confident that their
contributed and accepted control information will be
enforced (within the security limitations of a given VDE
security implementation design). This control information
can determine, for example:

(1) How and/or to whom electronic content can be
provided, for example, how an electronic property can
be distributed;

(2) How one or more objects and/or properties, or portions
of an object or property, can be directly used, such as
decrypted, displayed, printed, etc;

(3) How payment for usage of such content and/or content
portions may or must be handled; and

(4) How audit information about usage information
related to at least a portion of a property should be
collected, reported, and/or used.

Seniority of contributed control information, including
resolution of conflicts between content control information

submitted by multiple parties, is normally established by:

(1) the sequence in which control information is put in
place by various parties (in place control information
normally takes precedence over subsequently submit-
ted control information),

(2) the specifics of VDE content and/or appliance control
information. For example, in-place control information
can stipulate which subsequent one or more piece of
control from one or more parties or class of parties will
take precedence over control information submitted by
one or more yet different parties and/or classes of
parties, and/or

(3) negotiation between control information sets from
plural parties, which negotiation establishes what con-
trol information shall constitute the resulting control
information set for a given piece of VDE managed
content and/or VDE installation.

Electronic Agreements and Rights Protection
An important feature of VDE is that it can be used to

assure the administration of, and adequacy of security and
rights protection for, electronic agreements implemented
through the use of the present invention. Such agreements
may involve one or more of:

(1) creators, publishers, and other distributors, of elec-
tronic information,

(2) financial service (e.g. credit) providers,

(3) users of (other than financial service providers) infor-
mation arising from content usage such as content
specific demographic information and user specific
descriptive information. Such users may include mar-
ket analysts, marketing list compilers for direct and
directed marketing, and government agencies,

(4) end users of content,

(5) infrastructure service and device providers such as
telecommunication companies and hardware manufac-

Page 00175

Page 00176

5,915,019

47

turers (semiconductor and electronic appliance and/or
other computer system manufacturers) who receive
compensation based upon the use of their services
and/or devices, and

(6) certain parties described by electronic information.
VDE supports commercially secure “extended” value

chain electronic agreements. VDE can be configured to
support the various underlying agreements between parties
that comprise this extended agreement. These agreements
can define important electronic commerce considerations
including:

(1) security,

(2) content use control, including electronic distribution,

(3) privacy (regarding, for example, information concern-
ing parties described by medical, credit, tax, personal,
and/or of other forms of confidential information),

(4) management of financial processes, and

(5) pathways of handling for electronic content, content
and/or appliance control information, electronic con-
tent and/or appliance usage information and payment
and/or credit.

VDE agreements may define the electronic commerce
relationship of two or more parties of a value chain, but such
agreements may, at times, not directly obligate or otherwise
directly involve other VDE value chain participants. For
example, an electronic agreement between a content creator
and a distributor may establish both the price to the dis-
tributor for a creator’s content (such as for a property
distributed in a VDE container object) and the number of
copies of this object that this distributor may distribute to
end-users over a given period of time. In a second
agreement, a value chain end-user may be involved in a
three party agreement in which the end-user agrees to certain
requirements for using the distributed product such as
accepting distributor charges for content use and agreeing to
observe the copyright rights of the creator. Athird agreement
might exist between the distributor and a financial clearing-
house that allows the distributor to employ the clearing-
house’s credit for payment for the product if the end-user has
a separate (fourth) agreement directly with the clearinghouse
extending credit to the end-user. A fifth, evolving agreement
may develop between all value chain participants as content
control information passes along its chain of handling. This
evolving agreement can establish the rights of all parties to
content usage information, including, for example, the
nature of information to be received by each party and the
pathway of handling of content usage information and
related procedures. A sixth agreement in this example, may
involve all parties to the agreement and establishes certain
general assumptions, such as security techniques and degree
of trustedness (for example, commercial integrity of the
system may require each VDE installation secure subsystem
to electronically warrant that their VDE node meets certain
interoperability requirements). In the above example, these
six agreements could comprise agreements of an extended
agreement for this commercial value chain instance.

VDE agreements support evolving (“living”) electronic
agreement arrangements that can be modified by current
and/or new participants through very simple to sophisticated
“negotiations” between newly proposed content control
information interacting with control information already in
place and/or by negotiation between concurrently proposed
content control information submitted by a plurality of
parties. A given model may be asynchronously and progres-
sively modified over time in accordance with existing senior
rules and such modification may be applied to all, to classes

10

15

20

25

30

35

40

45

50

55

60

65

48

of, and/or to specific content, and/or to classes and/or
specific users and/or user nodes. A given piece of content
may be subject to different control information at different
times or places of handling, depending on the evolution of
its content control information (and/or on differing, appli-
cable VDE installation content control information). The
evolution of control information can occur during the pass-
ing along of one or more VDE control information contain-
ing objects, that is control information may be modified at
one or more points along a chain of control information
handling, so long as such modification is allowed. As a
result, VDE managed content may have different control
information applied at both different “locations” in a chain
of content handling and at similar locations in differing
chains of the handling of such content. Such different
application of control information may also result from
content control information specifying that a certain party or
group of parties shall be subject to content control informa-
tion that differs from another party or group of parties. For
example, content control information for a given piece of
content may be stipulated as senior information and there-
fore not changeable, might be put in place by a content
creator and might stipulate that national distributors of a
given piece of their content may be permitted to make
100,000 copies per calendar quarter, so long as such copies
are provided to boni fide end-users, but may pass only a
single copy of such content to a local retailers and the
control information limits such a retailer to making no more
than 1,000 copies per month for retail sales to end-users. In
addition, for example, an end-user of such content might be
limited by the same content control information to making
three copies of such content, one for each of three different
computers he or she uses (one desktop computer at work,
one for a desktop computer at home, and one for a portable
computer).

Electronic agreements supported by the preferred
embodiment of the present invention can vary from very
simple to very elaborate. They can support widely diverse
information management models that provide for electronic
information security, usage administration, and communi-
cation and may support:

(a) secure electronic distribution of information, for
example commercial literary properties,

(b) secure electronic information usage monitoring and
reporting,

(c) secure financial transaction capabilities related to both
electronic information and/or appliance usage and
other electronic credit and/or currency usage and
administration capabilities,

(d) privacy protection for usage information a user does
not wish to release, and

(e) “living” electronic information content dissemination
models that flexibly accommodate:
(1) a breadth of participants,
(2) one or more pathways (chains) for: the handling of

content, content and/or appliance control
information, reporting of content and/or appliance
usage related information, and/or payment,

(3) supporting an evolution of terms and conditions
incorporated into content control information,
including use of electronic negotiation capabilities,

(4) support the combination of multiple pieces of
content to form new content aggregations, and

(5) multiple concurrent models.
Secure Processing Units
An important part of VDE provided by the present inven-

tion is the core secure transaction control arrangement,

Page 00176

Page 00177

5,915,019

49

herein called an SPU (or SPUs), that typically must be
present in each user’s computer, other electronic appliance,
or network. SPUs provide a trusted environment for gener-
ating decryption keys, encrypting and decrypting
information, managing the secure communication of keys
and other information between electronic appliances (i.e.
between VDE installations and/or between plural VDE
instances within a single VDE installation), securely accu-
mulating and managing audit trail, reporting, and budget
information in secure and/or non-secure non-volatile

memory, maintaining a secure database of control informa-
tion management instructions, and providing a secure envi-
ronment for performing certain other control and adminis-
trative functions.

Ahardware SPU (rather than a software emulation) within
a VDE node is necessary if a highly trusted environment for
performing certain VDE activities is required. Such a trusted
environment may be created through the use of certain
control software, one or more tamper resistant hardware
modules such as a semiconductor or semiconductor chipset
(including, for example, a tamper resistant hardware elec-
tronic appliance peripheral device), for use within, and/or
operatively connected to, an electronic appliance. With the
present invention, the trustedness of a hardware SPU can be
enhanced by enclosing some or all of its hardware elements
within tamper resistant packaging and/or by employing
other tamper resisting techniques (e.g. microfusing and/or
thin wire detection techniques). Atrusted environment of the
present invention implemented, in part, through the use of
tamper resistant semiconductor design, contains control
logic, such as a microprocessor, that securely executes VDE
processes.

A VDE node’s hardware SPU is a core component of a
VDE secure subsystem and may employ some or all of an
electronic appliance’s primary control logic, such as a
microcontroller, microcomputer or other CPU arrangement.
This primary control logic may be otherwise employed for
non VDE purposes such as the control of some or all of an
electronic appliance’s non-VDE functions. When operating
in a hardware SPU mode, said primary control logic must be
sufficiently secure so as to protect and conceal important
VDE processes. For example, a hardware SPU may employ
a host electronic appliance microcomputer operating in
protected mode while performing VDE related activities,
thus allowing portions of VDE processes to execute with a
certain degree of security. This alternate embodiment is in
contrast to the preferred embodiment wherein a trusted
environment is created using a combination of one or more
tamper resistant semiconductors that are not part of said
primary control logic. In either embodiment, certain control
information (software and parameter data) must be securely
maintained within the SPU, and further control information

can be stored externally and securely (e.g. in encrypted and
tagged form) and loaded into said hardware SPU when
needed. In many cases, and in particular with
microcomputers, the preferred embodiment approach of
employing special purpose secure hardware for executing
said VDE processes, rather than using said primary control
logic, may be more secure and efficient. The level of security
and tamper resistance required for trusted SPU hardware
processes depends on the commercial requirements of par-
ticular markets or market niches, and may vary widely.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
present invention(s) may be better and more completely
understood by referring to the following detailed description

10

15

20

25

30

35

40

45

50

55

60

65

50

of presently preferred example embodiments in connection
with the drawings, of which:

FIG. 1 illustrates an example of a “Virtual Distribution
Environment” provided in accordance with a preferred
example/embodiment of this invention;

FIG. 1A is a more detailed illustration of an example of
the “Information Utility” shown in FIG. 1;

FIG. 2 illustrates an example of a chain of handling and
control;

FIG. 2A illustrates one example of how rules and control
information may persist from one participant to another in
the FIG. 2 chain of handling and control;

FIG. 3 shows one example of different control informa-
tion that may be provided;

FIG. 4 illustrates examples of some different types of
rules and/or control information;

FIGS. 5A and 5B show an example of an “object”;

FIG. 6 shows an example of a Secure Processing Unit
(“SPU”);

FIG. 7 shows an example of an electronic appliance;

FIG. 8 is a more detailed block diagram of an example of
the electronic appliance shown in FIG. 7;

FIG. 9 is a detailed view of an example of the Secure
Processing Unit (SPU) shown in FIGS. 6 and 8;

FIG. 10 shows an example of a “Rights Operating Sys-
tem” (“ROS”) architecture provided by the Virtual Distri-
bution Environment;

FIGS. 11A—11C show examples of functional relationship
(s) between applications and the Rights Operating System;

FIGS. 11D—11J show examples of “components” and
“component assemblies”;

FIG. 12 is a more detailed diagram of an example of the
Rights Operating System shown in FIG. 10;

FIG. 12A shows an example of how “objects” can be
created;

FIG. 13 is a detailed block diagram of an example the
software architecture for a “protected processing environ-
ment” shown in FIG. 12;

FIGS. 14A—14C are examples of SPU memory maps
provided by the protected processing environment shown in
FIG. 13;

FIG. 15 illustrates an example of how the channel services
manager and load module execution manager of FIG. 13 can
support a channel;

FIG. 15A is an example of a channel header and channel
detail records shown in FIG. 15;

FIG. 15B is a flowchart of an example of program control
steps that may be performed by the FIG. 13 protected
processing environment to create a channel;

FIG. 16 is a block diagram of an example of a secure data
base structure;

FIG. 17 is an illustration of an example of a logical object
structure;

FIG. 18 shows an example of a stationary object structure;

FIG. 19 shows an example of a traveling object structure;

FIG. 20 shows an example of a content object structure;

FIG. 21 shows an example of an administrative object
structure;

FIG. 22 shows an example of a method core structure;

FIG. 23 shows an example of a load module structure;

FIG. 24 shows an example of a User Data Element (UDE)
and/or Method Data Element (MDE) structure;

Page 00177

Page 00178

5,915,019

51

FIGS. 25A—25C show examples of “map meters”;

FIG. 26 shows an example of a permissions record
(PERC) structure;

FIGS. 26A and 26B together show a more detailed
example of a permissions record structure;

FIG. 27 shows an example of a shipping table structure;

FIG. 28 shows an example of a receiving table structure;

FIG. 29 shows an example of an administrative event log
structure;

FIG. 30 shows an example inter-relationship between and
use of the object registration table, subject table and user
rights table shown in the FIG. 16 secure database;

FIG. 31 is a more detailed example of an object registra-
tion table shown in FIG. 16;

FIG. 32 is a more detailed example of subject table shown
in FIG. 16;

FIG. 33 is a more detailed example of a user rights table
shown in FIG. 16;

FIG. 34 shows a specific example of how a site record
table and group record table may track portions of the secure
database shown in FIG. 16;

FIG. 34A is an example of a FIG. 34 site record table
structure;

FIG. 34B is an example of a FIG. 34 group record table
structure;

FIG. 35 shows an example of a process for updating the
secure database;

FIG. 36 shows an example of how new elements may be
inserted into the FIG. 16 secure data base;

FIG. 37 shows an example of how an element of the
secure database may be accessed;

FIG. 38 is a flowchart example of how to protect a secure
database element;

FIG. 39 is a flowchart example of how to back up a secure
database;

FIG. 40 is a flowchart example of how to recover a secure
database from a backup;

FIGS. 41A—41D are a set of examples showing how a
“chain of handling and control” may be enabled using
“reciprocal methods”;

FIGS. 42A—42D show an example of a “reciprocal”
BUDGET method;

FIGS. 43A—43D show an example of a “reciprocal”
REGISTER method;

FIGS. 44A—44C show an example of a “reciprocal”
AUDIT method;

FIGS. 45—48 show examples of several methods being
used together to control release of content or other infor-
mation;

FIGS. 49, 49A—49F show an example OPEN method;

FIGS. 50, 50A—50F show an example of a READ method;

FIGS. 51, 51A—51F show an example of a WRITE
method;

FIG. 52 shows an example of a CLOSE method;

FIGS. 53A—53B show an example of an EVENT method;

FIG. 53C shows am example of a BILLING method;

FIG. 54 shows an example of an ACCESS method;

FIGS. 55A—55B show examples of DECRYPT and
ENCRYPT methods;

FIG. 56 shows an example of a CONTENT method;

FIGS. 57A and 57B show examples of EXTRACT and
EMBED methods;

10

15

20

25

30

35

40

45

50

55

60

65

52

FIG. 58A shows an example of an OBSCURE method;

FIGS. 58B, 58C show examples of a FINGERPRINT
method;

FIG. 59 shows an example of a DESTROY method;

FIG. 60 shows an example of a PANIC method;

FIG. 61 shows an example of a METER method;

FIG. 62 shows an example of a key “convolution” pro-
cess;

FIG. 63 shows an example of how different keys may be
generated using a key convolution process to determine a
“true” key;

FIGS. 64 and 65 show an example of how protected
processing environment keys may be initialized;

FIGS. 66 and 67 show example processes for decrypting
information contained within stationary and traveling
objects, respectively;

FIG. 68 shows an example of how a protected processing
environment may be initialized;

FIG. 69 shows an example of how firmware may be
downloaded into a protected processing environment;

FIG. 70 shows an example of multiple VDE electronic
appliances connected together with a network or other
communications means;

FIG. 71 shows an example of a portable VDE electronic
appliance;

FIGS. 72A—72D show examples of “pop-up” displays that
may be generated by the user notification and exception
interface;

FIG. 73 shows an example of a “smart object”;

FIG. 74 shows an example of a process using “smart
objects”;

FIGS. 75A—75D show examples of data structures used
for electronic negotiation;

FIGS. 75E—75F show example structures relating to an
electronic agreement;

FIGS. 76A—76B show examples of electronic negotiation
processes;

FIG. 77 shows a further example of a chain of handling
and control;

FIG. 78 shows an example of a VDE “repository”;

FIGS. 79—83 show an example illustrating a chain of
handling and control to evolve and transform VDE managed
content and control information;

FIG. 84 shows a further example of a chain of handling
and control involving several categories of VDE partici-
pants;

FIG. 85 shows a further example of a chain of distribution
and handling within an organization;

FIGS. 86 and 86A show a further example of a chain of
handling and control; and

FIG. 87 shows an example of a virtual silicon container
model.

MORE DETAILED DESCRIPTION

FIGS. 1—7 and the discussion below provides an overview
of some aspects of features provided by this invention.
Following this overview is a more technical “detail descrip-
tion” of example embodiments in accordance with the
invention.

Overview
FIG. 1 shows a “Virtual Distribution Environment”

(“VDE”) 100 that may be provided in accordance with this

Page 00178

Page 00179

5,915,019

53

invention. In FIG. 1, an information utility 200 connects to
communications means 202 such as telephone or cable TV
lines for example. Telephone or cable TV lines 202 may be
part of an “electronic highway” that carries electronic infor-
mation from place to place. Lines 202 connect information
utility 200 to other people such as for example a consumer
208, an office 210, a video production studio 204, and a
publishing house 214. Each of the people connected to
information utility 200 may be called a “VDE participant”
because they can participate in transactions occurring within
the virtual distribution environment 100.

Almost any sort of transaction you can think of can be
supported by virtual distribution environment 100. Afew of
many examples of transactions that can be supported by
virtual distribution environment 100 include:

home banking and electronic payments;

electronic legal contracts;

distribution of “content” such as electronic printed matter,
video, audio, images and computer programs; and

secure communication of private information such as
medical records and financial information.

Virtual distribution environment 100 is “virtual” because

it does not require many of the physical “things” that used
to be necessary to protect rights, ensure reliable and pre-
dictable distribution, and ensure proper compensation to
content creators and distributors. For example, in the past,
information was distributed on records or disks that were

difficult to copy. In the past, private or secret content was
distributed in sealed envelopes or locked briefcases deliv-
ered by courier. To ensure appropriate compensation, con-
sumers received goods and services only after they handed
cash over to a seller. Although information utility 200 may
deliver information by transferring physical “things” such as
electronic storage media, the virtual distribution environ-
ment 100 facilitates a completely electronic “chain of han-
dling and control.”

VDE Flexibility Supports Transactions
Information utility 200 flexibly supports many different

kinds of information transactions. Different VDE partici-
pants may define and/or participate in different parts of a
transaction. Information utility 200 may assist with deliv-
ering information about a transaction, or it may be one of the
transaction participants.

For example, the video production studio 204 in the upper
right-hand corner of FIG. 1 may create video/television
programs. Video production studio 204 may send these
programs over lines 202, or may use other paths such as
satellite link 205 and CD ROM delivery service 216. Video
production studio 204 can send the programs directly to
consumers 206, 206, 210, or it can send the programs to
information utility 200 which may store and later send them
to the consumers, for example. Consumers 206, 208, 210 are
each capable of receiving and using the programs created by
video production studio 204—assuming, that is, that the
video production studio or information utility 200 has
arranged for these consumers to have appropriate “rules and
controls” (control information) that give the consumers
rights to use the programs.

Even if a consumer has a copy of a video program, she
cannot watch or copy the program unless she has “rules and
controls” that authorize use of the program. She can use the
program only as permitted by the “rules and controls.”

For example, video production studio 204 might release a
half-hour exercise video in the hope that as many viewers as
possible will view it. The video production studio 204
wishes to receive $2.00 per viewing. Video production

10

15

20

25

30

35

40

45

50

55

60

65

54

studio 204 may, through information utility 200, make the
exercise video available in “protected” form to all consum-
ers 206, 208, 210. Video production studio 204 may also
provide “rules and controls” for the video. These “rules and
controls” may specify for example:

(1) any consumer who has good credit of at least $2.00
based on a credit account with independent financial
provider 212 (such as Mastercard or VISA) may watch
the video,

(2) virtual distribution environment 100 will “meter” each
time a consumer watches the video, and report usage to
video production studio 204 from time to time, and

(3) financial provider 212 may electronically collect pay-
ment ($2.00) from the credit account of each consumer
who watches the video, and transfer these payments to
the video production studio 204.

Information utility 200 allows even a small video pro-
duction studio to market videos to consumers and receive

compensation for its efforts. Moreover, the videos can, with
appropriate payment to the video production studio, be made
available to other video publishers who may add value
and/or act as repackagers or redistributors.

FIG. 1 also shows a publishing house 214. Publishing
house 214 may act as a distributor for an author 206. The
publishing house 214 may distribute rights to use “content”
(such as computer software, electronic newspapers, the
video produced by publishing house 214, audio, or any other
data) to consumers such as office 210. The use rights may be
defined by “rules and controls” distributed by publishing
house 216. Publishing house 216 may distribute these “rules
and controls” with the content, but this is not necessary.
Because the content can be used only by consumers that
have the appropriate “rules and controls,” content and its
associated “rules and controls” may be distributed at differ-
ent times, in different ways, by different VDE participants.
The ability of VDE to securely distribute and enforce “rules
and controls” separately from the content they apply to
provides great advantages.

Use rights distributed by publishing house 214 may, for
example, permit office 210 to make and distribute copies of
the content to its employees. Office 210 may act as a
redistributor by extending a “chain of handling and control”
to its employees. The office 210 may add or modify “rules
and controls” (consistent with the “rules and controls” it
receives from publishing house 214) to provide office-
internal control information and mechanisms. For example,
office 210 may set a maximum usage budget for each
individual user and/or group within the office, or it may
permit only specified employees and/or groups to access
certain information.

FIG. 1 also shows an information delivery service 216
delivering electronic storage media such as “CD ROM”
disks to consumers 206. Even though the electronic storage
media themselves are not delivered electronically by infor-
mation utility 200 over lines 202, they are still part of the
virtual distribution environment 100. The electronic storage
media may be used to distribute content, “rules and
controls,” or other information.

Example of What’s Inside Information Utility 200
“Information utility” 200 in FIG. 1 can be a collection of

participants that may act as distributors, financial
clearinghouses, and administrators. FIG. 1A shows an
example of what may be inside one example of information
utility 200. Information utility participants 200a—200g could
each be an independent organization/business. There can be
any number of each of participants 200a—200g. In this
example, electronic “switch” 200a connects internal parts of

Page 00179

Page 00180

5,915,019

55

information utility 200 to each other and to outside
participants, and may also connect outside participants to
one another.

Information utility 200 may include a “transaction pro-
cessor” 200b that processes transactions (to transfer elec-
tronic funds, for example) based on requests from partici-
pants and/or report receiver 2006. It may also include a
“usage analyst” 2006 that analyzes reported usage informa-
tion. A “report creator” 200d may create reports based on
usage for example, and may provide these reports to outside
participants and/or to participants within information utility
200. A “report receiver” 2006 may receive reports such as
usage reports from content users. A “permissioning agent”
200f may distribute “rules and controls” granting usage or
distribution permissions based on a profile of a consumer’s
credit worthiness, for example. An administrator 200h may
provide information that keeps the virtual distribution envi-
ronment 100 operating properly. A content and message
storage 200g may store information for use by participants
within or outside of information utility 200.

Example of Distributing “Content” Using a “Chain of
Handling and Control”

As explained above, virtual distribution environment 100
can be used to manage almost any sort of transaction. One
type of important transaction that virtual distribution envi-
ronment 100 may be used to manage is the distribution or
communication of “content” or other important information.
FIG. 2 more abstractly shows a “model” of how the FIG. 1
virtual distribution environment 100 may be used to provide
a “chain of handling and control” for distributing content.
Each of the blocks in FIG. 2 may correspond to one or more
of the VDE participants shown in FIG. 1.

In the FIG. 2 example, a VDE content creator 102 creates
“content.” The content creator 102 may also specify “rules
and controls” for distributing the content. These
distribution-related “rules and controls” can specify who has
permission to distribute the rights to use content, and how
many users are allowed to use the content.

Arrow 104 shows the content creator 102 sending the
“rules and controls” associated with the content to a VDE

rights distributor 106 (“distributor”) over an electronic high-
way 108 (or by some other path such as an optical disk sent
by a delivery service such as US. mail). The content can be
distributed over the same or different path used to send the
“rules and controls.” The distributor 106 generates her own
“rules and controls” that relate to usage of the content. The
usage-related “rules and controls” may, for example, specify
what a user can and can’t do with the content and how much

it costs to use the content. These usage-related “rules and
controls” must be consistent with the “rules and controls”

specified by content creator 102.
Arrow 110 shows the distributor 106 distributing rights to

use the content by sending the content’s “rules and controls”
to a content user 112 such as a consumer. The content user

112 uses the content in accordance with the usage-related
“rules and controls.”

In this FIG. 2 example, information relating to content use
is, as shown by arrow 114, reported to a financial clearing-
house 116. Based on this “reporting,” the financial clearing-
house 116 may generate a bill and send it to the content user
112 over a “reports and payments” network 118. Arrow 120
shows the content user 112 providing payments for content
usage to the financial clearinghouse 116. Based on the
reports and payments it receives, the financial clearinghouse
116 may provide reports and/or payments to the distributor
106. The distributor 106 may, as shown by arrow 122,
provide reports and/or payments to the content creator 102.

10

15

20

25

30

35

40

45

50

55

60

65

56

The clearinghouse 116 may provide reports and payments
directly to the creator 102. Reporting and/or payments may
be done differently. For example, clearinghouse 116 may
directly or through an agent, provide reports and/or pay-
ments to each of VDE content creators 102, and rights
distributor 106, as well as reports to content user 112.

The distributor 106 and the content creator 102 may be the
same person, or they may be different people. For example,
a musical performing group may act as both content creator
102 and distributor 106 by creating and distributing its own
musical recordings. As another example, a publishing house
may act as a distributor 106 to distribute rights to use works
created by an author content creator 102. Content creators
102 may use a distributor 106 to efficiently manage the
financial end of content distribution.

The “financial clearinghouse” 116 shown in FIG. 2 may
also be a “VDE administrator.” Financial clearinghouse 116
in its VDE administrator role sends “administrative” infor-

mation to the VDE participants. This administrative infor-
mation helps to keep the virtual distribution environment
100 operating properly. The “VDE administrator” and finan-
cial clearinghouse roles may be performed by different
people or companies, and there can be more than one of
each.

More about “Rules and Controls”

The virtual distribution environment 100 prevents use of
protected information except as permitted by the “rules and
controls” (control information). For example, the “rules and
controls” shown in FIG. 2 may grant specific individuals or
classes of content users 112 “permission” to use certain
content. They may specify what kinds of content usage are
permitted, and what kinds are not. They may specify how
content usage is to be paid for and how much it costs. As
another example, “rules and controls” may require content
usage information to be reported back to the distributor 106
and/or content creator 102.

Every VDE participant in “chain of handling and control”
is normally subject to “rules and controls.” “Rules and
controls” define the respective rights and obligations of each
of the various VDE participants. “Rules and controls” pro-
vide information and mechanisms that may establish inter-
dependencies and relationships between the participants.
“Rules and controls” are flexible, and permit “virtual dis-
tribution environment” 100 to support most “traditional”
business transactions. For example:

“Rules and controls” may specify which financial
clearinghouse(s) 116 may process payments,

“Rules and controls” may specify which participant(s)
receive what kind of usage report, and

“Rules and controls” may specify that certain information
is revealed to certain participants, and that other infor-
mation is kept secret from them.

“Rules and controls” may self limit if and how they may
be changed. Often, “rules and controls” specified by one
VDE participant cannot be changed by another VDE par-
ticipant. For example, a content user 112 generally can’t
change “rules and controls” specified by a distributor 106
that require the user to pay for content usage at a certain rate.
“Rules and controls” may “persist” as they pass through a
“chain of handling and control,” and may be “inherited” as
they are passed down from one VDE participant to the next.

Depending upon their needs, VDE participants can
specify that their “rules and controls” can be changed under
conditions specified by the same or other “rules and con-
trols.” For example, “rules and controls” specified by the
content creator 102 may permit the distributor 106 to “mark
up” the usage price just as retail stores “mark up” the

Page 00180

Page 00181

5,915,019

57

wholesale price of goods. FIG. 2A shows an example in
which certain “rules and controls” persist unchanged from
content creator 102 to content user 112; other “rules and
controls” are modified or deleted by distributor 106; and still
other “rules and controls” are added by the distributor.

“Rules and controls” can be used to protect the content
user’s privacy by limiting the information that is reported to
other VDE participants. As one example, “rules and con-
trols” can cause content usage information to be reported
anonymously without revealing content user identity, or it
can reveal only certain information to certain participants
(for example, information derived from usage) with appro-
priate permission, if required. This ability to securely control
what information is revealed and what VDE participants) it
is revealed to allows the privacy rights of all VDE partici-
pants to be protected.

“Rules and Contents” Can Be Separately Delivered
As mentioned above, virtual distribution environment 100

“associates” content with corresponding “rules and
controls,” and prevents the content from being used or
accessed unless a set of corresponding “rules and controls”
is available. The distributor 106 doesn’t need to deliver

content to control the content’s distribution. The preferred
embodiment can securely protect content by protecting
corresponding, usage enabling “rules and controls” against
unauthorized distribution and use.

In some examples, “rules and controls” may travel with
the content they apply to. Virtual distribution environment
100 also allows “rules and controls” to be delivered sepa-
rately from content. Since no one can use or access protected
content without “permission” from corresponding “rules and
controls,” the distributor 106 can control use of content that

has already been (or will in the future be) delivered. “Rules
and controls” may be delivered over a path different from the
one used for content delivery. “Rules and controls” may also
be delivered at some other time. The content creator 102

might deliver content to content user 112 over the electronic
highway 108, or could make the content available to anyone
on the highway. Content may be used at the time it is
delivered, or it may be stored for later use or reuse.

The virtual distribution environment 100 also allows

payment and reporting means to be delivered separately. For
example, the content user 112 may have a virtual “credit
card” that extends credit (up to a certain limit) to pay for
usage of any content. A “credit transaction” can take place
at the user’s site without requiring any “online” connection
or further authorization. This invention can be used to help
securely protect the virtual “credit card” against unautho-
rized use.

“Rules and Contents” Define Processes

FIG. 3 shows an example of an overall process based on
“rules and controls.” It includes an “events” process 402, a
meter process 404, a billing process 406, and a budget
process 408. Not all of the processes shown in FIG. 3 will
be used for every set of “rules and controls.”

The “events process” 402 detects things that happen
(“events”) and determines which of those “events” need
action by the other “processes.” The “events” may include,
for example, a request to use content or generate a usage
permission. Some events may need additional processing,
and others may not. Whether an “event” needs more pro-
cessing depends on the “rules and controls” corresponding
to the content. For example, a user who lacks permission
will not have her request satisfied (“No Go”). As another
example, each user request to turn to a new page of an
electronic book may be satisfied (“Go”), but it may not be
necessary to meter, bill or budget those requests. Auser who

10

15

20

25

30

35

40

45

50

55

60

65

58

has purchased a copy of a novel may be permitted to open
and read the novel as many times as she wants to without any
further metering, billing or budgeting. In this simple
example, the “event process” 402 may request metering,
billing and/or budgeting processes the first time the user asks
to open the protected novel (so the purchase price can be
charged to the user), and treat all later requests to open the
same novel as “insignificant events.” Other content (for
example, searching an electronic telephone directory) may
require the user to pay a fee for each access.

“Meter” process 404 keeps track of events, and may
report usage to distributor 106 and/or other appropriate VDE
participant(s). FIG. 4 shows that process 404 can be based
on a number of different factors such as:

(a) type of usage to charge for,

(b) what kind of unit to base charges on,

(c) how much to charge per unit,

(d) when to report, and

(e) how to pay.
These factors may be specified by the “rules and controls”
that control the meter process.

Billing process 406 determines how much to charge for
events. It records and reports payment information.

Budget process 408 limits how much content usage is
permitted. For example, budget process 408 may limit the
number of times content may be accessed or copied, or it
may limit the number of pages or other amount of content
that can be used based on, for example, the number of
dollars available in a credit account. Budget process 408
records and reports financial and other transaction informa-
tion associated with such limits.

Content may be supplied to the user once these processes
have been successfully performed.

Containers and “Objects”
FIG. 5A shows how the virtual distribution environment

100, in a preferred embodiment, may package information
elements (content) into a “container” 302 so the information
can’t be accessed except as provided by its “rules and
controls.” Normally, the container 302 is electronic rather
than physical. Electronic container 302 in one example
comprises “digital” information having a well defined struc-
ture. Container 302 and its contents can be called an “object
300.”

The FIG. 5A example shows items “within” and enclosed
by container 302. However, container 302 may “contain”
items without those items actually being stored within the
container. For example, the container 302 may reference
items that are available elsewhere such as in other containers

at remote sites. Container 302 may reference items available
at different times or only during limited times. Some items
may be too large to store within container 302. Items may,
for example, be delivered to the user in the form of a “live
feed” of video at a certain time. Even then, the container 302

“contains” the live feed (by reference) in this example.
Container 302 may contain information content 304 in

electronic (such as “digital”) form. Information content 304
could be the text of a novel, a picture, sound such as a
musical performance or a reading, a movie or other video,
computer software, or just about any other kind of electronic
information you can think of. Other types of “objects” 300
(such as “administrative objects”) may contain “administra-
tive” or other information instead of or in addition to
information content 304.

In the FIG. 5A example, container 302 may also contain
“rules and controls” in the form of:

Page 00181

Page 00182

5,915,019

59

(a) a “permissions record” 808;
(b) “budgets” 308; and
(c) “other methods” 1000.
FIG. 5B gives some additional detail about permissions

record 808, budgets 308 and other methods 1000. The
“permissions record” 808 specifies the rights associated with
the object 300 such as, for example, who can open the
container 302, who can use the object’s contents, who can
distribute the object, and what other control mechanisms
must be active. For example, permissions record 808 may
specify a user’s rights to use, distribute and/or administer the
container 302 and its content. Permissions record 808 may
also specify requirements to be applied by the budgets 308
and “other methods” 1000. Permissions record 808 may also
contain security related information such as scrambling and
descrambling “keys.”

“Budgets” 308 shown in FIG. 5B are a special type of
“method” 1000 that may specify, among other things, limi-
tations on usage of information content 304, and how usage
will be paid for. Budgets 308 can specify, for example, how
much of the total information content 304 can be used and/or

copied. The methods 310 may prevent use of more than the
amount specified by a specific budget.

“Other methods” 1000 define basic operations used by
“rules and controls.” Such “methods” 1000 may include, for
example, how usage is to be “metered,” if and how content
304 and other information is to be scrambled and

descrambled, and other processes associated with handling
and controlling information content 304. For example, meth-
ods 1000 may record the identity of anyone who opens the
electronic container 302, and can also control how informa-
tion content is to be charged based on “metering.” Methods
1000 may apply to one or several different information
contents 304 and associated containers 302, as well as to all
or specific portions of information content 304.

Secure Processing Unit (SPU)
The “VDE participants” may each have an “electronic

appliance.” The appliance may be or contain a computer.
The appliances may communicate over the electronic high-
way 108. FIG. 6 shows a secure processing unit (“SPU”) 500
portion of the “electronic appliance” used in this example by
each VDE participant. SPU 500 processes information in a
secure processing environment 503, and stores important
information securely. SPU 500 may be emulated by software
operating in a host electronic appliance.

SPU 500 is enclosed within and protected by a “tamper
resistant security barrier” 502. Security barrier 502 separates
the secure environment 503 from the rest of the world. It

prevents information and processes within the secure envi-
ronment 503 from being observed, interfered with and
leaving except under appropriate secure conditions. Barrier
502 also controls external access to secure resources, pro-
cesses and information within SPU 500. In one example,
tamper resistant security barrier 502 is formed by security
features such as “encryption,” and hardware that detects
tampering and/or destroys sensitive information within
secure environment 503 when tampering is detected.

SPU 500 in this example is an integrated circuit (“IC”)
“chip” 504 including “hardware” 506 and “firmware” 508.
SPU 500 connects to the rest of the electronic appliance
through an “appliance link” 510. SPU “firmware” 508 in this
example is “software” such as a “computer program(s)”
“embedded” within chip 504. Firmware 508 makes the
hardware 506 work. Hardware 506 preferably contains a
processor to perform instructions specified by firmware 508.
“Hardware” 506 also contains long-term and short-term
memories to store information securely so it can’t be tam-

10

15

20

25

30

35

40

45

50

55

60

65

60

pered with. SPU 500 may also have a protected clock/
calendar used for timing events. The SPU hardware 506 in
this example may include special purpose electronic circuits
that are specially designed to perform certain processes
(such as “encryption” and “decryption”) rapidly and effi-
ciently.

The particular context in which SPU 500 is being used
will determine how much processing capabilities SPU 500
should have. SPU hardware 506, in this example, provides
at least enough processing capabilities to support the secure
parts of processes shown in FIG. 3. In some contexts, the
functions of SPU 500 may be increased so the SPU can
perform all the electronic appliance processing, and can be
incorporated into a general purpose processor. In other
contexts, SPU 500 may work alongside a general purpose
processor, and therefore only needs to have enough process-
ing capabilities to handle secure processes.

VDE Electronic Appliance and “rights Operating System”
FIG. 7 shows an example of an electronic appliance 600

including SPU 500. Electronic appliance 600 may be prac-
tically any kind of electrical or electronic device, such as:

a computer

a TV. “set top” control box
a pager

a telephone

a sound system

a video reproduction system

a video game player
a “smart” credit card

Electronic appliance 600 in this example may include a
keyboard or keypad 612, a voice recognizer 613, and a
display 614. A human user can input commands through
keyboard 612 and/or voice recognizer 613, and may view
information on display 614. Appliance 600 may communi-
cate with the outside world through any of the connections/
devices normally used within an electronic appliance. The
connections/devices shown along the bottom of the drawing
are examples:

a “modem” 618 or other telecommunications link;

a CD ROM disk 620 or other storage medium or device;

a printer 622;

broadcast reception 624;
a document scanner 626; and

a “cable” 628 connecting the appliance with a “network.”
Virtual distribution environment 100 provides a “rights

operating system” 602 that manages appliance 600 and SPU
500 by controlling their hardware resources. The operating
system 602 may also support at least one “application” 608.
Generally, “application” 608 is hardware and/or software
specific to the context of appliance 600. For example, if
appliance 600 is a personal computer, then “application” 608
could be a program loaded by the user, for instance, a word
processor, a communications system or a sound recorder. If
appliance 600 is a television controller box, then application
608 might be hardware or software that allows a user to
order videos on demand and perform other functions such as
fast forward and rewind. In this example, operating system
602 provides a standardized, well defined, generalized
“interface” that could support and work with many different
“applications” 608.

Operating system 602 in this example provides “rights
and auditing operating system functions” 604 and “other
operating system functions” 606. The “rights and auditing
operating system functions” 604 securely handle tasks that
relate to virtual distribution environment 100. SPU 500

Page 00182

Page 00183

5,915,019

61

provides or supports many of the security functions of the
“rights and auditing operating system functions” 402. The
“other operating system functions” 606 handle general
appliance functions. Overall operating system 602 may be
designed from the beginning to include the “rights and
auditing operating system functions” 604 plus the “other
operating system functions” 606, or the “rights and auditing
operating system functions” may be an add-on to a preex-
isting operating system providing the “other operating sys-
tem functions.”

“Rights operating system” 602 in this example can work
with many different types of appliances 600. For example, it
can work with large mainframe computers, “minicomput-
ers” and “microcomputers” such as personal computers and
portable computing devices. It can also work in control
boxes on the top of television sets, small portable “pagers,”
desktop radios, stereo sound systems, telephones, telephone
switches, or any other electronic appliance. This ability to
work on big appliances as well as little appliances is called
“scalable.” A “scalable” operating system 602 means that
there can be a standardized interface across many different
appliances performing a wide variety of tasks.

The “rights operating system functions” 604 are
“services-based” in this example. For example, “rights oper-
ating system functions” 604 handle summary requests from
application 608 rather than requiring the application to
always make more detailed “subrequests” or otherwise get
involved with the underlying complexities involved in sat-
isfying a summary request. For example, application 608
may simply ask to read specified information; “rights oper-
ating system functions” 604 can then decide whether the
desired information is VDE-protected content and, if it is,
perform processes needed to make the information avail-
able. This feature is called “transparency.” “Transparency”
makes tasks easy for the application 608. “Rights operating
system functions” 604 can support applications 608 that
“know” nothing about virtual distribution environment 100.
Applications 608 that are “aware” of virtual distribution
environment 100 may be able to make more detailed use of
virtual distribution environment 100.

In this example, “rights operating system functions” 604
are “event driven”. Rather than repeatedly examining the
state of electronic appliance 600 to determine whether a
condition has arisen, the “rights operating system functions”
604 may respond directly to “events” or “happenings”
within appliance 600.

In this example, some of the services performed by “rights
operating system functions” 604 may be extended based on
additional “components” delivered to operating system 602.
“Rights operating system functions” 604 can collect together
and use “components” sent by different participants at
different times. The “components” help to make the oper-
ating system 602 “scalable.” Some components can change
how services work on little appliances versus how they work
on big appliances (e.g., multi-user). Other components are
designed to work with specific applications or classes of
applications (e.g., some types of meters and some types of
budgets).

Electronic Appliance 600
An electronic appliance 600 provided by the preferred

embodiment may, for example, be any electronic apparatus
that contains one or more microprocessors and/or microcon-
trollers and/or other devices which perform logical and/or
mathematical calculations. This may include computers;
computer terminals; device controllers for use with comput-
ers; peripheral devices for use with computers; digital dis-
play devices; televisions; video and audio/video projection

10

15

20

25

30

35

40

45

50

55

60

65

62

systems; channel selectors and/or decoders for use with
broadcast and/or cable transmissions; remote control
devices; video and/or audio recorders; media players includ-
ing compact disc players, videodisc players and tape play-
ers; audio and/or video amplifiers; virtual reality machines;
electronic game players; multimedia players; radios; tele-
phones; videophones; facsimile machines; robots; numeri-
cally controlled machines including machine tools and the
like; and other devices containing one or more microcom-
puters and/or microcontrollers and/or other CPUs, including
those not yet in existence.

FIG. 8 shows an example of an electronic appliance 600.
This example of electronic appliance 600 includes a system
bus 653. In this example, one or more conventional general
purpose central processing units (“CPUs”) 654 are con-
nected to bus 653. Bus 653 connects CPU(s) 654 to RAM
656, ROM 658, and I/O controller 660. One or more SPUs
500 may also be connected to system bus 653. System bus
653 may permit SPU(s) 500 to communicate with CPU(s)
654, and also may allow both the CPU(s) and the SPU(s) to
communicate (e.g., over shared address and data lines) with
RAM 656, ROM 658 and I/O controller 660. Apower supply
659 may provide power to SPU 500, CPU 654 and the other
system components shown.

In the example shown, I/O controller 660 is connected to
secondary storage device 652, a keyboard/display 612, 614,
a communications controller 666, and a backup storage
device 668. Backup storage device 668 may, for example,
store information on mass media such as a tape 670, a floppy
disk, a removable memory card, etc. Communications con-
troller 666 may allow electronic appliance 600 to commu-
nicate with other electronic appliances via network 672 or
other telecommunications links. Different electronic appli-
ances 600 may interoperate even if they use different CPUs
and different instances of ROS 602, so long as they typically
use compatible communication protocols and/or security
methods. In this example, I/O controller 660 permits CPU
654 and SPU 500 to read from and write to secondary
storage 662, keyboard/display 612, 614, communications
controller 666, and backup storage device 668.

Secondary storage 662 may comprise the same one or
more non-secure secondary storage devices (such as a
magnetic disk and a CD-ROM drive as one example) that
electronic appliance 600 uses for general secondary storage
functions. In some implementations, part or all of secondary
storage 652 may comprise a secondary storage device(s) that
is physically enclosed within a secure enclosure. However,
since it may not be practical or cost-effective to physically
secure secondary storage 652 in many implementations,
secondary storage 652 may be used to store information in
a secure manner by encrypting information before storing it
in secondary storage 652. If information is encrypted before
it is stored, physical access to secondary storage 652 or its
contents does not readily reveal or compromise the infor-
mation.

Secondary storage 652 in this example stores code and
data used by CPU 654 and/or SPU 500 to control the overall
operation of electronic appliance 600. For example, FIG. 8
shows that “Rights Operating System” (“ROS”) 602
(including a portion 604 of ROS that provides VDE func-
tions and a portion 606 that provides other OS functions)
shown in FIG. 7 may be stored on secondary storage 652.
Secondary storage 652 may also store one or more VDE
objects 300. FIG. 8 also shows that the secure files 610
shown in FIG. 7 may be stored on secondary storage 652 in
the form of a “secure database” or management file system
610. This secure database 610 may store and organize

Page 00183

Page 00184

5,915,019

63

information used by ROS 602 to perform VDE functions
604. Thus, the code that is executed to perform VDE and
other OS functions 604, 606, and secure files 610 (as well as
VDE objects 300) associated with those functions may be
stored in secondary storage 652. Secondary storage 652 may
also store “other information” 673 such as, for example,
information used by other operating system functions 606
for task management, non-VDE files, etc. Portions of the
elements indicated in secondary storage 652 may also be
stored in ROM 658, so long as those elements do not require
changes (except when ROM 658 is replaced). Portions of
ROS 602 in particular may desirably be included in ROM
658 (e.g., “bootstrap” routines, POST routines, etc. for use
in establishing an operating environment for electronic
appliance 600 when power is applied).

FIG. 8 shows that secondary storage 652 may also be used
to store code (“application programs”) providing user
application(s) 608 shown in FIG. 7. FIG. 8 shows that there
may be two general types of application programs 608:
“VDE aware” applications 608a, and Non-VDE aware
applications 608b. VDE aware applications 608a may have
been at least in part designed specifically with VDE 100 in
mind to access and take detailed advantage of VDE func-
tions 604. Because of the “transparency” features of ROS
602, non-VDE aware applications 608b (e.g., applications
not specifically designed for VDE 100) can also access and
take advantage of VDE functions 604.

Secure Processing Unit 500
Each VDE node or other electronic appliance 600 in the

preferred embodiment may include one or more SPUs 500.
SPUs 500 may be used to perform all secure processing for
VDE 100. For example, SPU 500 is used for decrypting (or
otherwise unsecuring) VDE protected objects 300. It is also
used for managing encrypted and/or otherwise secured com-
munication (such as by employing authentication and/or
error-correction validation of information). SPU 500 may
also perform secure data management processes including
governing usage of, auditing of, and where appropriate,
payment for VDE objects 300 (through the use of
prepayments, credits, real-time electronic debits from bank
accounts and/or VDE node currency token deposit
accounts). SPU 500 may perform other transactions related
to such VDE objects 300.

SPU Physical Packaging and Security Barrier 502
As shown FIG. 6, in the preferred embodiment, an SPU

500 may be implemented as a single integrated circuit
“chip” 505 to provide a secure processing environment in
which confidential and/or commercially valuable informa-
tion can be safely processed, encrypted and/or decrypted. IC
chip 505 may, for example, comprise a small semiconductor
“die” about the size of a thumbnail. This semiconductor die

may include semiconductor and metal conductive pathways.
These pathways define the circuitry, and thus the
functionality, of SPU 500. Some of these pathways are
electrically connected to the external “pins” 504 of the chip
505.

As shown in FIGS. 6 and 9, SPU 500 may be surrounded
by a tamper-resistant hardware security barrier 502. Part of
this security barrier 502 is formed by a plastic or other
package in which an SPU “die” is encased. Because the
processing occurring within, and information stored by, SPU
500 are not easily accessible to the outside world, they are
relatively secure from unauthorized access and tampering.
All signals cross barrier 502 through a secure, controlled
path provided by BIU 530 that restricts the outside world’s
access to the internal components within SPU 500. This
secure, controlled path resists attempts from the outside
world to access secret information and resources within SPU
500.

10

15

20

25

30

35

40

45

50

55

60

65

64

It is possible to remove the plastic package of an IC chip
and gain access to the “die.” It is also possible to analyze and
“reverse engineer” the “die” itself (e.g., using various types
of logic analyzers and microprobes to collect and analyze
signals on the die while the circuitry is operating, using acid
etching or other techniques to remove semiconductor layers
to expose other layers, viewing and photographing the die
using an electron microscope, etc.) Although no system or
circuit is absolutely impervious to such attacks, SPU barrier
502 may include additional hardware protections that make
successful attacks exceedingly costly and time consuming.
For example, ion implantation and/or other fabrication tech-
niques may be used to make it very difficult to visually
discern SPU die conductive pathways, and SPU internal
circuitry may be fabricated in such a way that it “self-
destructs” when exposed to air and/or light. SPU 500 may
store secret information in internal memory that loses its
contents when power is lost. Circuitry may be incorporated
within SPU 500 that detects microprobing or other
tampering, and self-destructs (or destroys other parts of the
SPU) when tampering is detected. These and other
hardware-based physical security techniques contribute to
tamper-resistant hardware security barrier 502.

To increase the security of security barrier 502 even
further, it is possible to encase or include SPU 500 in one or
more further physical enclosures such as, for example:
epoxy or other “potting compound”; further module enclo-
sures including additional self-destruct, self-disabling or
other features activated when tampering is detected; further
modules providing additional security protections such as
requiring password or other authentication to operate; and
the like. In addition, further layers of metal may be added to
the die to complicate acid etching, micro probing, and the
like; circuitry designed to “zeroize” memory may be
included as an aspect of self-destruct processes; the plastic
package itself may be designed to resist chemical as well as
physical “attacks”; and memories internal to SPU 500 may
have specialized addressing and refresh circuitry that
“shuffles” the location of bits to complicate efforts to elec-
trically determine the value of memory locations. These and
other techniques may contribute to the security of barrier
502.

In some electronic appliances 600, SPU 500 may be
integrated together with the device microcontroller or
equivalent or with a device 1/0 or communications micro-
controller into a common chip (or chip set) 505. For
example, in one preferred embodiment, SPU 500 may be
integrated together with one or more other CPU(s) (e.g., a
CPU 654 of an electronic appliance) in a single component
or package. The other CPU(s) 654 may be any centrally
controlling logic arrangement, such as for example, a
microprocessor, other microcontroller, and/or array or other
parallel processor. This integrated configuration may result
in lower overall cost, smaller overall size, and potentially
faster interaction between an SPU 500 and a CPU 654.

Integration may also provide wider distribution if an inte-
grated SPU/CPU component is a standard feature of a
widely distributed microprocessor line. Merging an SPU
500 into a main CPU 654 of an electronic appliance 600 (or
into another appliance or appliance peripheral microcom-
puter or other microcontroller) may substantially reduce the
overhead cost of implementing VDE 100. Integration con-
siderations may include cost of implementation, cost of
manufacture, desired degree of security, and value of com-
pactness.

SPU 500 may also be integrated with devices other than
CPUs. For example, for video and multimedia applications,

Page 00184

Page 00185

5,915,019

65

some performance and/or security advantages (depending
on overall design) could result from integrating an SPU 500
into a video controller chip or chipset. SPU 500 can also be
integrated directly into a network communications chip or
chipset or the like. Certain performance advantages in high
speed communications applications may also result from
integrating an SPU 500 with a modem chip or chipset. This
may facilitate incorporation of an SPU 500 into communi-
cation appliances such as stand-alone fax machines. SPU
500 may also be integrated into other peripheral devices,
such as CD-ROM devices, set-top cable devices, game
devices, and a wide variety of other electronic appliances
that use, allow access to, perform transactions related to, or
consume, distributed information.

SPU 500 Internal Architecture

FIG. 9 is a detailed diagram of the internal structure
within an example of SPU 500. SPU 500 in this example
includes a single microprocessor 520 and a limited amount
of memory configured as ROM 532 and RAM 534. In more
detail, this example of SPU 500 includes microprocessor
520, an encrypt/decrypt engine 522, a DMA controller 526,
a real-time clock 528, a bus interface unit (“BIU”) 530, a
read only memory (ROM) 532, a random access memory
(RAM) 534, and a memory management unit (“MMU”) 540.
DMA controller 526 and MMU 540 are optional, but the
performance of SPU 500 may suffer if they are not present.
SPU 500 may also include an optional pattern matching
engine 524, an optional random number generator 542, an
optional arithmetic accelerator circuit 544, and optional
compression/decompression circuit 546. A shared address/
data bus arrangement 536 may transfer information between
these various components under control of microprocessor
520 and/or DMA controller 526. Additional or alternate

dedicated paths 538 may connect microprocessor 520 to the
other components (e.g., encrypt/decrypt engine 522 via line
538a, real-time clock 528 via line 538b, bus interface unit
530 via line 538C, DMA controller via line 538d, and

memory management unit (MMU) 540 via line 5386).
The following section discusses each of these SPU com-

ponents in more detail.
Microprocessor 520
Microprocessor 520 is the “brain” of SPU 500. In this

example, it executes a sequence of steps specified by code
stored (at least temporarily) within ROM 532 and/or RAM
534. Microprocessor 520 in the preferred embodiment com-
prises a dedicated central processing arrangement (e.g., a
RISC and/or CISC processor unit, a microcontroller, and/or
other central processing means or, less desirably in most
applications, process specific dedicated control logic) for
executing instructions stored in the ROM 532 and/or other
memory. Microprocessor 520 may be separate elements of a
circuitry layout, or may be separate packages within a secure
SPU 500.

In the preferred embodiment, microprocessor 520 nor-
mally handles the most security sensitive aspects of the
operation of electronic appliance 600. For example, micro-
processor 520 may manage VDE decrypting, encrypting,
certain content and/or appliance usage control information,
keeping track of usage of VDE secured content, and other
VDE usage control related functions.

Stored in each SPU 500 and/or electronic appliance
secondary memory 652 may be, for example, an instance of
ROS 602 software, application programs 608, objects 300
containing VDE controlled property content and related
information, and management database 610 that stores both
information associated with objects and VDE control infor-
mation. ROS 602 includes software intended for execution

10

15

20

25

30

35

40

45

50

55

60

65

66

by SPU microprocessor 520 for, in part, controlling usage of
VDE related objects 300 by electronic appliance 600. As
will be explained, these SPU programs include “load mod-
ules” for performing basic control functions. These various
programs and associated data are executed and manipulated
primarily by microprocessor 520.

Real Time Clock (RTC) 528
In the preferred embodiment, SPU 500 includes a real

time clock circuit (“RTC”) 528 that serves as a reliable,
tamper resistant time base for the SPU. RTC 528 keeps track
of time of day and date (e.g., month, day and year) in the
preferred embodiment, and thus may comprise a combina-
tion calendar and clock. Areliable time base is important for
implementing time based usage metering methods, “time
aged decryption keys,” and other time based SPU functions.

The RTC 528 must receive power in order to operate.
Optimally, the RTC 528 power source could comprise a
small battery located within SPU 500 or other secure enclo-
sure. However, the RTC 528 may employ a power source
such as an externally located battery that is external to the
SPU 500. Such an externally located battery may provide
relatively uninterrupted power to RTC 528, and may also
maintain as non-volatile at least a portion of the otherwise
volatile RAM 534 within SPU 500.

In one implementation, electronic appliance power supply
659 is also used to power SPU 500. Using any external
power supply as the only power source for RTC 528 may
significantly reduce the usefulness of time based security
techniques unless, at minimum, SPU 500 recognizes any
interruption (or any material interruption) of the supply of
external power, records such interruption, and responds as
may be appropriate such as disabling the ability of the SPU
500 to perform certain or all VDE processes. Recognizing a
power interruption may, for example, be accomplished by
employing a circuit which is activated by power failure. The
power failure sensing circuit may power another circuit that
includes associated logic for recording one or more power
fail events. Capacitor discharge circuitry may provide the
necessary temporary power to operate this logic. In addition
or alternatively, SPU 500 may from time to time compare an
output of RTC 528 to a clock output of a host electronic
appliance 600, if available. In the event a discrepancy is
detected, SPU 500 may respond as appropriate, including
recording the discrepancy and/or disabling at least some
portion of processes performed by SPU 500 under at least
some circumstances.

If a power failure and/or RTC 528 discrepancy and/or
other event indicates the possibility of tampering, SPU 500
may automatically destroy, or render inaccessible without
privileged intervention, one or more portions of sensitive
information it stores, such as execution related information
and/or encryption key related information. To provide fur-
ther SPU operation, such destroyed information would have
to be replaced by a VDE clearinghouse, administrator and/or
distributor, as may be appropriate. This may be achieved by
remotely downloading update and/or replacement data and/
or code. In the event of a disabling and/or destruction of
processes and/or information as described above, the elec-
tronic appliance 600 may require a secure VDE communi-
cation with an administrator, clearinghouse, and/or distribu-
tor as appropriate in order to reinitialize the RTC 528. Some
or all secure SPU 500 processes may not operate until then.

It may be desirable to provide a mechanism for setting
and/or synchronizing RTC 528. In the preferred
embodiment, when communication occurs between VDE
electronic appliance 600 and another VDE appliance, an
output of RTC 528 may be compared to a controlled RTC

Page 00185

Page 00186

5,915,019

67

528 output time under control of the party authorized to be
“senior” and controlling. In the event of a discrepancy,
appropriate action may be taken, including resetting the RTC
528 of the “junior” controlled participant in the communi-
cation.

SPU Encrypt/Decrypt Engine 522
In the preferred embodiment, SPU encrypt/decrypt engine

522 provides special purpose hardware (e.g., a hardware
state machine) for rapidly and efficiently encrypting and/or
decrypting data. In some implementations, the encrypt/
decrypt functions may be performed instead by micropro-
cessor 520 under software control, but providing special
purpose encrypt/decrypt hardware engine 522 will, in
general, provide increased performance. Microprocessor
520 may, if desired, comprise a combination of processor
circuitry and dedicated encryption/decryption logic that may
be integrated together in the same circuitry layout so as to,
for example, optimally share one or more circuit elements.

Generally, it is preferable that a computationally efficient
but highly secure “bulk” encryption/decryption technique
should be used to protect most of the data and objects
handled by SPU 500. It is preferable that an extremely
secure encryption/decryption technique be used as an aspect
of authenticating the identity of electronic appliances 600
that are establishing a communication channel and securing
any transferred permission, method, and administrative
information. In the preferred embodiment, the encrypt/
decrypt engine 522 includes both a symmetric key
encryption/decryption circuit (e.g. DES, Skipjack/Clipper,
IDEA, RC-2, RC-4, etc.) and an antisymmetric
(asymmetric) or Public Key (“PK”) encryption/decryption
circuit. The public/private key encryption/decryption circuit
is used principally as an aspect of secure communications
between an SPU 500 and VDE administrators, or other
electronic appliances 600, that is between VDE secure
subsystems. A symmetric encryption/decryption circuit may
be used for “bulk” encrypting and decrypting most data
stored in secondary storage 662 of electronic appliance 600
in which SPU 500 resides. The symmetric key encryption/
decryption circuit may also be used for encrypting and
decrypting content stored within VDE objects 300.

DES or public/private key methods may be used for all
encryption functions. In alternate embodiments, encryption
and decryption methods other than the DES and public/
private key methods could be used for the various encryp-
tion related functions. For instance, other types of symmetric
encryption/decryption techniques in which the same key is
used for encryption and decryption could be used in place of
DES encryption and decryption. The preferred embodiment
can support a plurality of decryption/encryption techniques
using multiple dedicated circuits within encrypt/decrypt
engine 522 and/or the processing arrangement within SPU
500.

Pattern Matching Engine 524
Optional pattern matching engine 524 may provide spe-

cial purpose hardware for performing pattern matching
functions. One of the functions SPU 500 may perform is to
validate/authenticate VDE objects 300 and other items.
Validation/authentication often involves comparing long
data strings to determine whether they compare in a prede-
termined way. In addition, certain forms of usage (such as
logical and/or physical (contiguous) relatedness of accessed
elements) may require searching potentially long strings of
data for certain bit patterns or other significant pattern
related metrics. Although pattern matching can be per-
formed by SPU microprocessor 520 under software control,
providing special purpose hardware pattern matching engine
524 may speed up the pattern matching process.

10

15

20

25

30

35

40

45

50

55

60

65

68

Compression/Decompression Engine 546
An optional compression/decompression engine 546 may

be provided within an SPU 500 to, for example, compress
and/or decompress content stored in, or released from, VDE
objects 300. Compression/decompression engine 546 may
implement one or more compression algorithms using hard-
ware circuitry to improve the performance of compression/
decompression operations that would otherwise be per-
formed by software operating on microprocessor 520, or
outside SPU 500. Decompression is important in the release
of data such as video and audio that is usually compressed
before distribution and whose decompression speed is
important. In some cases, information that is useful for
usage monitoring purposes (such as record separators or
other delimiters) is “hidden” under a compression layer that
must be removed before this information can be detected
and used inside SPU 500.

Random Number Generator 542

Optional random number generator 542 may provide
specialized hardware circuitry for generating random values
(e.g., from inherently unpredictable physical processes such
as quantum noise). Such random values are particularly
useful for constructing encryption keys or unique identifiers,
and for initializing the generation of pseudo-random
sequences. Random number generator 542 may produce
values of any convenient length, including as small as a
single bit per use. Arandom number of arbitrary size may be
constructed by concatenating values produced by random
number generator 542. A cryptographically strong pseudo-
random sequence may be generated from a random key and
seed generated with random number generator 542 and
repeated encryption either with the encrypt/decrypt engine
522 or cryptographic algorithms in SPU 500. Such
sequences may be used, for example, in private headers to
frustrate efforts to determine an encryption key through
cryptoanalysis.

Arithmetic Accelerator 544

An optional arithmetic accelerator 544 may be provided
within an SPU 500 in the form of hardware circuitry that can
rapidly perform mathematical calculations such as multipli-
cation and exponentiation involving large numbers. These
calculations can, for example, be requested by microproces-
sor 520 or encrypt/decrypt engine 522, to assist in the
computations required for certain asymmetric encryption/
decryption operations. Such arithmetic accelerators are well-
known to those skilled in the art. In some implementations,
a separate arithmetic accelerator 544 may be omitted and
any necessary calculations may be performed by micropro-
cessor 520 under software control.

DMA Controller 526
DMA controller 526 controls information transfers over

address/data bus 536 without requiring microprocessor 520
to process each individual data transfer. Typically, micro-
processor 520 may write to DMA controller 526 target and
destination addresses and the number of bytes to transfer,
and DMA controller 526 may then automatically transfer a
block of data between components of SPU 500 (e.g., from
ROM 532 to RAM 534, between encrypt/decrypt engine 522
and RAM 534, between bus interface unit 530 and RAM

534, etc.). DMA controller 526 may have multiple channels
to handle multiple transfers simultaneously. In some
implementations, a separate DMA controller 526 may be
omitted, and any necessary data movements may be per-
formed by microprocessor 520 under software control.

Bus Interface Unit (BIU) 530
Bus interface unit (BIU) 530 communicates information

between SPU 500 and the outside world across the security

Page 00186

Page 00187

5,915,019

69

barrier 502. BIU 530 shown in FIG. 9 plus appropriate driver
software may comprise the “appliance link” 510 shown in
FIG. 6. Bus interface unit 530 may be modelled after a
USART or PCI bus interface in the preferred embodiment.
In this example, BIU 530 connects SPU 500 to electronic
appliance system bus 653 shown in FIG. 8. BIU 530 is
designed to prevent unauthorized access to internal compo-
nents within SPU 500 and their contents. It does this by only
allowing signals associated with an SPU 500 to be processed
by control programs running on microprocessor 520 and not
supporting direct access to the internal elements of an SPU
500.

Memory Management Unit 540
Memory Management Unit (MMU) 540, if present, pro-

vides hardware support for memory management and virtual
memory management functions. It may also provide height-
ened security by enforcing hardware compartmentalization
of the secure execution space (e.g., to prevent a less trusted
task from modifying a more trusted task). More details are
provided below in connection with a discussion of the
architecture of a Secure Processing Environment (“SPE”)
503 supported by SPU 500.

MMU 540 may also provide hardware-level support func-
tions related to memory management such as, for example,
address mapping.

SPU Memory Architecture
In the preferred embodiment, SPU 500 uses three general

kinds of memory:

(1) internal ROM 532;
(2) internal RAM 534; and
(3) external memory (typically RAM and/or disk supplied

by a host electronic appliance).
The internal ROM 532 and RAM 534 within SPU 500

provide a secure operating environment and execution
space. Because of cost limitations, chip fabrication size,
complexity and other limitations, it may not be possible to
provide sufficient memory within SPU 500 to store all
information that an SPU needs to process in a secure
manner. Due to the practical limits on the amount of ROM
532 and RAM 534 that may be included within SPU 500,
SPU 500 may store information in memory external to it,
and move this information into and out of its secure internal

memory space on an as needed basis. In these cases, secure
processing steps performed by an SPU typically must be
segmented into small, securely packaged elements that may
be “paged in” and “paged out” of the limited available
internal memory space. Memory external to an SPU 500
may not be secure. Since the external memory may not be
secure, SPU 500 may encrypt and cryptographically seal
code and other information before storing it in external
memory. Similarly, SPU 500 must typically decrypt code
and other information obtained from external memory in
encrypted form before processing (e.g., executing) based on
it. In the preferred embodiment, there are two general
approaches used to address potential memory limitations in
a SPU 500. In the first case, the small, securely packaged
elements represent information contained in secure database
610. In the second case, such elements may represent
protected (e.g., encrypted) virtual memory pages. Although
virtual memory pages may correspond to information ele-
ments stored in secure database 610, this is not required in
this example of a SPU memory architecture.

The following is a more detailed discussion of each of
these three SPU memory resources.

SPU Internal ROM

SPU 500 read only memory (ROM) 532 or comparable
purpose device provides secure internal non-volatile storage

10

15

20

25

30

35

40

45

50

55

60

65

70

for certain programs and other information. For example,
ROM 532 may store “kernel” programs such as SPU control
firmware 508 and, if desired, encryption key information
and certain fundamental “load modules.” The “kernel”

programs, load module information, and encryption key
information enable the control of certain basic functions of

the SPU 500. Those components that are at least in part
dependent on device configuration (e.g., POST, memory
allocation, and a dispatcher) may be loaded in ROM 532
along with additional load modules that have been deter-
mined to be required for specific installations or applica-
tions.

In the preferred embodiment, ROM 532 may comprise a
combination of a masked ROM 532a and an EEPROM

and/or equivalent “flash” memory 532b. EEPROM or flash
memory 532b is used to store items that need to be updated
and/or initialized, such as for example, certain encryption
keys. An additional benefit of providing EEPROM and/or
flash memory 532b is the ability to optimize any load
modules and library functions persistently stored within
SPU 500 based on typical usage at a specific site. Although
these items could also be stored in NVRAM 534b,
EEPROM and/or flash memory 532b may be more cost
effective.

Masked ROM 532a may cost less than flash and/or
EEPROM 532b, and can be used to store permanent portions
of SPU software/firmware. Such permanent portions may
include, for example, code that interfaces to hardware ele-
ments such as the RTC 528, encryption/decryption engine
522, interrupt handlers, key generators, etc. Some of the
operating system, library calls, libraries, and many of the
core services provided by SPU 500 may also be in masked
ROM 532a. In addition, some of the more commonly used
executables are also good candidates for inclusion in masked
ROM 532a. Items that need to be updated or that need to
disappear when power is removed from SPU 500 should not
be stored in masked ROM 532a.

Under some circumstances, RAM 534a and/or NVRAM

534b (NVRAM 534b may, for example, be constantly
powered conventional RAM) may perform at least part of
the role of ROM 532.

SPU Internal RAM

SPU 500 general purpose RAM 534 provides, among
other things, secure execution space for secure processes. In
the preferred embodiment, RAM 534 is comprised of dif-
ferent types of RAM such as a combination of high-speed
RAM 534a and an NVRAM (“non-volatile RAM”) 534b.
RAM 534a may be volatile, while NVRAM 534b is pref-
erably battery backed or otherwise arranged so as to be
non-volatile (i.e., it does not lose its contents when power is
turned off).

High-speed RAM 534a stores active code to be executed
and associated data structures.

NVRAM 534b preferably contains certain keys and sum-
mary values that are preloaded as part of an initialization
process in which SPU 500 communicates with a VDE
administrator, and may also store changeable or changing
information associated with the operation of SPU 500. For
security reasons, certain highly sensitive information (e.g.,
certain load modules and certain encryption key related
information such as internally generated private keys) needs
to be loaded into or generated internally by SPU 500 from
time to time but, once loaded or generated internally, should
never leave the SPU. In this preferred embodiment, the SPU
500 non-volatile random access memory (NVRAM) 534b
may be used for securely storing such highly sensitive
information. 534b is also used by SPU 500 to store data that

Page 00187

Page 00188

5,915,019

71

may change frequently but which preferably should not be
lost in a power down or power fail mode.

NVRAM 534b is preferably a flash memory array, but
may in addition or alternatively be electrically erasable
programmable read only memory (EEPROM), static RAM
(SRAM), bubble memory, three dimensional holographic or
other electro-optical memory, or the like, or any other
writable (e.g., randomly accessible) non-volatile memory of
sufficient speed and cost-effectiveness.

SPU External Memory
The SPU 500 can store certain information on memory

devices external to the SPU. If available, electronic appli-
ance 600 memory can also be used to support any device
external portions of SPU 500 software. Certain advantages
may be gained by allowing the SPU 500 to use external
memory. As one example, memory internal to SPU 500 may
be reduced in size by using non-volatile read/write memory
in the host electronic appliance 600 such as a non-volatile
portion of RAM 656 and/or ROM 658.

Such external memory may be used to store SPU
programs, data and/or other information. For example, a
VDE control program may be, at least in part, loaded into the
memory and communicated to and decrypted within SPU
500 prior to execution. Such control programs may be
re-encrypted and communicated back to external memory
where they may be stored for later execution by SPU 500.
“Kernel” programs and/or some or all of the non-kernel
“load modules” may be stored by SPU 500 in memory
external to it. Since a secure database 610 may be relatively
large, SPU 500 can store some or all of secure database 610
in external memory and call portions into the SPU 500 as
needed.

As mentioned above, memory external to SPU 500 may
not be secure. Therefore, when security is required, SPU 500
must encrypt secure information before writing it to external
memory, and decrypt secure information read from external
memory before using it. Inasmuch as the encryption layer
relies on secure processes and information (e.g., encryption
algorithms and keys) present within SPU 500, the encryp-
tion layer effectively “extends” the SPU security barrier 502
to protect information the SPU 500 stores in memory
external to it.

SPU 500 can use a wide variety of different types of
external memory. For example, external memory may com-
prise electronic appliance secondary storage 652 such as a
disk; external EEPROM or flash memory 658; and/or exter-
nal RAM 656. External RAM 656 may comprise an external
nonvolatile (e.g. constantly powered) RAM and/or cache
RAM.

Using external RAM local to SPU 500 can significantly
improve access times to information stored externally to an
SPU. For example, external RAM may be used:

to buffer memory image pages and data structures prior to
their storage in flash memory or on an external hard
disk (assuming transfer to flash or hard disk can occur
in significant power or system failure cases);

provide encryption and decryption buffers for data being
released from VDE objects 300.

to cache “swap blocks” and VDE data structures currently
in use as an aspect of providing a secure virtual
memory environment for SPU 500.

to cache other information in order to, for example,
reduce frequency of access by an SPU to secondary
storage 652 and/or for other reasons.

Dual ported external RAM can be particularly effective in
improving SPU 500 performance, since it can decrease the
data movement overhead of the SPU bus interface unit 530

and SPU microprocessor 520.

10

15

20

25

30

35

40

45

50

55

60

65

72

Using external flash memory local to SPU 500 can be
used to significantly improve access times to virtually all
data structures. Since most available flash storage devices
have limited write lifetimes, flash storage needs to take into
account the number of writes that will occur during the
lifetime of the flash memory. Hence, flash storage of fre-
quently written temporary items is not recommended. If
external is non-volatile, then transfer to flash (or hard disk)
may not be necessary.

External memory used by SPU 500 may include two
categories:

external memory dedicated to SPU 500, and

memory shared with electronic appliance 600.
For some VDE implementations, sharing memory (e.g.,

electronic appliance 656, ROM 658 and/or secondary stor-
age 652) with CPU 654 or other elements of an electronic
appliance 600 may be the most cost elective way to store
VDE secure database management files 610 and information
that needs to be stored external to SPU 500. A host system
hard disk secondary memory 652 used for general purpose
file storage can, for example, also be used to store VDE
management files 610. SPU 500 may be given exclusive
access to the external memory (e.g., over a local bus high
speed connection provided by BIU 530). Both dedicated and
shared external memory may be provided.

The hardware configuration of an example of electronic
appliance 600 has been described above. The following
section describes an example of the software architecture of
electronic appliance 600 provided by the preferred
embodiment, including the structure and operation of pre-
ferred embodiment “Rights Operating System” (“ROS”)
602.

Rights Operating System 602
Rights Operating System (“ROS”) 602 in the preferred

embodiment is a compact, secure, event-driven, services-
based, “component” oriented, distributed multiprocessing
operating system environment that integrates VDE informa-
tion security control information, components and protocols
with traditional operating system concepts. Like traditional
operating systems, ROS 602 provided by the preferred
embodiment is a piece of software that manages hardware
resources of a computer system and extends management
functions to input and/or output devices, including commu-
nications devices. Also like traditional operating systems,
preferred embodiment ROS 602 provides a coherent set of
basic functions and abstraction layers for hiding the differ-
ences between, and many of the detailed complexities of,
particular hardware implementations. In addition to these
characteristics found in many or most operating systems,
ROS 602 provides secure VDE transaction management and
other advantageous features not found in other operating
systems. The following is a non-exhaustive list of some of
the advantageous features provided by ROS 602 in the
preferred embodiment:

Standardized interface provides coherent set of basic
functions

simplifies programming

the same application can run on many different platforms
Event driven

eases functional decomposition
extendible

accommodates state transition and/or process oriented
events

simplifies task management

simplifies inter-process communications

Page 00188

Page 00189

5,915,019

73
Services based

allows simplified and transparent scalability

simplifies multiprocessor support

hides machine dependencies

eases network management and support
Component Based Architecture

processing based on independently deliverable secure
components

component model of processing control allows different
sequential steps that are reconfigurable based on
requirements

components can be added, deleted or modified (subject to
permissioning)

full control information over pre-defined and user-defined
application events

events can be individually controlled with independent
executables

Secure

secure communications

secure control functions

secure virtual memory management

information control structures protected from exposure
data elements are validated, correlated and access con-

trolled

components are encrypted and validated independently

components are tightly correlated to prevent unauthorized
use of elements

control structures and secured executables are validated

prior to use to protect against tampering

integrates security considerations at the I/O level

provides on-the-fly decryption of information at release
time

enables a secure commercial transaction network

flexible key management features
Scalaeble

highly scalaeble across many different platforms

supports concurrent processing in a multiprocessor envi-
ronment

supports multiple cooperating processors

any number of host or security processors can be sup-
ported

control structures and kernel are easily portable to various
host platforms and to different processors within a
target platform without recompilation

supports remote processing

Remote Procedure Calls may be used for internal OS
communications

Highly Integratable

can be highly integrated with host platforms as an addi-
tional operating system layer

permits non-secure storage of secured components and
information using an OS layer “on top of” traditional
OS platforms

can be seamlessly integrated with a host operating system
to provide a common usage paradigm for transaction
management and content access

integration may take many forms: operating system layers
for desktops (e.g., DOS, Windows, Macintosh); device
drivers and operating system interfaces for network
services (e.g, Unix and Netware); and dedicated com-
ponent drivers for “low end” set tops are a few of many
examples

10

15

20

25

30

35

40

45

50

55

60

65

74

can be integrated in traditional and real time operating
systems

Distributed

provides distribution of control information and recipro-
cal control information and mechanisms

supports conditional execution of controlled processes
within any VDE node in a distributed, asynchronous
arrangement

controlled delegation of rights in a distributed environ-
ment

supports chains of handling and control

management environment for distributed, occasionally
connected but otherwise asynchronous networked data-
base

real time and time independent data management

supports “agent” processes
Transparent

can be seamlessly integrated into existing operating sys-
tems

can support applications not specifically written to use it
Network friendly

internal OS structures may use RPCs to distribute pro-
cessing

subnets may seamlessly operate as a single node or
independently

General Background Regarding Operating Systems
An “operating system” provides a control mechanism for

organizing computer system resources that allows program-
mers to create applications for computer systems more
easily. An operating system does this by providing com-
monly used functions, and by helping to ensure compatibil-
ity between different computer hardware and architectures
(which may, for example, be manufactured by different
vendors). Operating systems also enable computer “periph-
eral device” manufacturers to far more easily supply com-
patible equipment to computer manufacturers and users.

Computer systems are usually made up of several differ-
ent hardware components. These hardware components
include, for example:

a central processing unit (CPU) for executing instructions;
an array of main memory cells (e.g., “RAM” or “ROM”)

for storing instructions for execution and data acted
upon or parameterizing those instructions; and

one or more secondary storage devices (e.g., hard disk
drive, floppy disk drive, CD-ROM drive, tape reader,
card reader, or “flash” memory) organized to reflect
named elements (a “file system”) for storing images of
main memory cells.

Most computer systems also include input/output devices
such as keyboards, mice, video systems, printers, scanners
and communications devices.

To organize the CPU’s execution capabilities with avail-
able RAM, ROM and secondary storage devices, and to
provide commonly used functions for use by programmers,
a piece of software called an “operating system” is usually
included with the other components. Typically, this piece of
software is designed to begin executing after power is
applied to the computer system and hardware diagnostics are
completed. Thereafter, all use of the CPU, main memory and
secondary memory devices is normally managed by this
“operating system” software. Most computer operating sys-
tems also typically include a mechanism for extending their
management functions to I/O and other peripheral devices,
including commonly used functions associated with these
devices.

Page 00189

Page 00190

5,915,019

75

By managing the CPU, memory and peripheral devices
through the operating system, a coherent set of basic func-
tions and abstraction layers for hiding hardware details
allows programmers to more easily create sophisticated
applications. In addition, managing the computer’s hard-
ware resources with an operating system allows many
differences in design and equipment requirements between
different manufacturers to be hidden. Furthermore, applica-
tions can be more easily shared with other computer users
who have the same operating system, with significantly less
work to support different manufacturers’ base hardware and
peripheral devices.

ROS 602 is an Operating System Providing Significant
Advantages

ROS 602 is an “operating system.” It manages the
resources of electronic appliance 600, and provides a com-
monly used set of functions for programmers writing appli-
cations 608 for the electronic appliance. ROS 602 in the
preferred embodiment manages the hardware (e.g., CPU(s),
memory(ies), secure RTC(s), and encrypt/decrypt engines)
within SPU 500. ROS may also manage the hardware (e.g.,
CPU(s) and memory(ies)) within one or more general pur-
pose processors within electronic appliance 600. ROS 602
also manages other electronic appliance hardware resources,
such as peripheral devices attached to an electronic appli-
ance. For example, referring to FIG. 7, ROS 602 may
manage keyboard 612, display 614, modem 618, disk drive
620, printer 622, scanner 624. ROS 602 may also manage
secure database 610 and a storage device (e.g., “secondary
storage” 652) used to store secure database 610.

ROS 602 supports multiple Processors. ROS 602 in the
preferred embodiment supports any number of local and/or
remote processors. Supported processors may include at
least two types: one or more electronic appliance processors
654, and/or one or more SPUs 500. A host processor CPU
654 may provide storage, database, and communications
services. SPU 500 may provide cryptographic and secured
process execution services. Diverse control and execution
structures supported by ROS 602 may require that process-
ing of control information occur within a controllable execu-
tion space—this controllable execution space may be pro-
vided by SPU 500. Additional host and/or SPU processors
may increase efficiencies and/or capabilities. ROS 602 may
access, coordinate and/or manage further processors remote
to an electronic appliance 600 (e.g., via network or other
communications link) to provide additional processor
resources and/or capabilities.

ROS 602 is services based. The ROS services provided
using a host processor 654 and/or a secure processor (SPU
500) are linked in the preferred embodiment using a
“Remote Procedure Call” (“RPC”) internal processing
request structure. Cooperating processors may request inter-
process services using a RPC mechanism, which is mini-
mally time dependent and can be distributed over cooper-
ating processors on a network of hosts. The multi-processor
architecture provided by ROS 602 is easily extensible to
support any number of host or security processors. This
extensibility supports high levels of scalability. Services also
allow functions to be implemented differently on different
equipment. For example, a small appliance that typically has
low levels of usage by one user may implement a database
service using very different techniques than a very large
appliance with high levels of usage by many users. This is
another aspect of scalability.

ROS 602 provides a distributed processing environment.
For example, it permits information and control structures to
automatically, securely pass between sites as required to

10

15

20

25

30

35

40

45

50

55

60

65

76

fulfill a user’s requests. Communications between VDE
modes under the distributed processing features of ROS 602
may include interprocess service requests as discussed
above. ROS 602 supports conditional and/or state dependent
execution of controlled processors within any VDE node.
The location that the process executes and the control
structures used may be locally resident, remotely accessible,
or carried along by the process to support execution on a
remote system.

ROS 602 provides distribution of control information,
including for example the distribution of control structures
required to permit “agents” to operate in remote environ-
ments. Thus, ROS 602 provides facilities for passing execu-
tion and/or information control as part of emerging require-
ments for “agent” processes.

If desired, ROS 602 may independently distribute control
information over very low bandwidth connections that may
or may not be “real time” connections. ROS 602 provided by
the preferred embodiment is “network friendly,” and can be
implemented with any level of networking protocol. Some
examples include e-mail and direct connection at approxi-
mately “Layer 5” of the ISO model.

The ROS 602 distribution process (and the associated
auditing of distributed information) is a controlled event that
itself uses such control structures. This “reflective” distrib-

uted processing mechanism permits ROS 602 to securely
distribute rights and permissions in a controlled manner, and
effectively restrict the characteristics of use of information
content. The controlled delegation of rights in a distributed
environment and the secure processing techniques used by
ROS 602 to support this approach provide significant advan-
tages.

Certain control mechanisms within ROS 602 are “recip-
rocal.” Reciprocal control mechanisms place one or more
control components at one or more locations that interact
with one or more components at the same or other locations
in a controlled way. For example, a usage control associated
with object content at a user’s location may have a reciprocal
control at a distributor’s location that governs distribution of
the usage control, auditing of the usage control, and logic to
process user requests associated with the usage control. A
usage control at a user’s location (in addition to controlling
one or more aspects of usage) may prepare audits for a
distributor and format requests associated with the usage
control for processing by a distributor. Processes at either
end of a reciprocal control may be further controlled by
other processes (e.g., a distributor may be limited by a
budget for the number of usage control mechanisms they
may produce). Reciprocal control mechanisms may extend
over many sites and many levels (e.g., a creator to a
distributor to a user) and may take any relationship into
account (e.g., creator/distributor, distributor/user, user/user,
user/creator, user/creator/distributor, etc.) Reciprocal con-
trol mechanisms have many uses in VDE 100 in representing
relationships and agreements in a distributed environment.

ROS 602 is scalable. Many portions of ROS 602 control
structures and kernel(s) are easily portable to various host
platforms without recompilation. Any control structure may
be distributed (or redistributed) if a granting authority per-
mits this type of activity. The executable references within
ROS 602 are portable within a target platform. Different
instances of ROS 602 may execute the references using
different resources. For example, one instance of ROS 602
may perform a task using an SPU 500, while another
instance of ROS 602 might perform the same task using a
host processing environment running in protected memory
that is emulating an SPU in software. ROS 602 control

Page 00190

Page 00191

5,915,019

77

informationis similarly portable; in many cases the event
processing structures may be passed between machines and
host platforms as easily as between cooperative processors
in a single computer. Appliances with different levels of
usage and/or resources available for ROS 602 functions may
implement those functions in very different ways. Some
services may be omitted entirely if insufficient resources
exist. As described elsewhere, ROS 602 “knows” what
services are available, and how to proceed based on any
given event. Not all events may be processable if resources
are missing or inadequate.

ROS 602 is component based. Much of the functionality
provided by ROS 602 in the preferred embodiment may be
based on “components” that can be securely, independently
deliverable, replaceable and capable of being modified (e.g.,
under appropriately secure conditions and authorizations).
Moreover, the “components” may themselves be made of
independently deliverable elements. ROS 602 may assemble
these elements together (using a construct provided by the
preferred embodiment called a “channel”) at execution time.
For example, a “load module” for execution by SPU 500
may reference one or more “method cores,” method param-
eters and other associated data structures that ROS 602 may
collect and assemble together to perform a task such as
billing or metering. Different users may have different
combinations of elements, and some of the elements may be
customizable by users with appropriate authorization. This
increases flexibility, allows elements to be reused, and has
other advantages.

ROS 602 is highly secure. ROS 602 provides mechanisms
to protect information control structures from exposure by
end users and conduit hosts. ROS 602 can protect
information, VDE control structures and control executables
using strong encryption and validation mechanisms. These
encryption and validation mechanisms are designed to make
them highly resistant to undetected tampering. ROS 602
encrypts information stored on secondary storage device(s)
652 to inhibit tampering. ROS 602 also separately encrypts
and validates its various components. ROS 602 correlates
control and data structure components to prevent unautho-
rized use of elements. These features permit ROS 602 to
independently distribute elements, and also allows integra-
tion of VDE functions 604 with non-secure “other” OS
functions 606.

ROS 602 provided by the preferred embodiment extends
conventional capabilities such as, for example, Access Con-
trol List (ACL) structures, to user and process defined
events, including state transitions. ROS 602 may provide
full control information over pre-defined and user-defined
application events. These control mechanisms include “go/
no-go” permissions, and also include optional event-specific
executables that permit complete flexibility in the processing
and/or controlling of events. This structure permits events to
be individually controlled so that, for example, metering and
budgeting may be provided using independent executables.
For example, ROS 602 extends ACL structures to control
arbitrary granularity of information. Traditional operating
systems provide static “go-no go” control mechanisms at a
file or resource level; ROS 602 extends the control concept
in a general way from the largest to the smallest sub-element
using a flexible control structure. ROS 602 can, for example,
control the printing of a single paragraph out of a document
file.

ROS 602 provided by the preferred embodiment permits
secure modification and update of control information gov-
erning each component. The control information may be
provided in a template format such as method options to an

10

15

20

25

30

35

40

45

50

55

60

65

78

end-user. An end-user may then customize the actual control
information used within guidelines provided by a distributor
or content creator. Modification and update of existing
control structures is preferably also a controllable event
subject to auditing and control information.

ROS 602 provided by the preferred embodiment validates
control structures and secured executables prior to use. This
validation provides assurance that control structures and
executables have not been tampered with by end-users. The
validation also permits ROS 602 to securely implement
components that include fragments of files and other oper-
ating system structures. ROS 602 provided by the preferred
embodiment integrates security considerations at the oper-
ating system I/O level (which is below the access level), and
provides “on-the-fly” decryption of information at release
time. These features permit non-secure storage of ROS 602
secured components and information using an OS layer “on
top of” traditional operating system platforms.

ROS 602 is highly integratable with host platforms as an
additional operating system layer. Thus, ROS 602 may be
created by “adding on” to existing operating systems. This
involves hooking VDE “add ons” to the host operating
system at the device driver and network interface levels.
Alternatively, ROS 602 may comprise a wholly new oper-
ating system that integrates both VDE functions and other
operating system functions.

Indeed, there are at least three general approaches to
integrating VDE functions into a new operating system,
potentially based on an existing operating system, to create
a Rights Operating System 602 including:

(1) Redesign the operating system based on VDE trans-
action management requirements;

(2) Compile VDE API functions into an existing operating
systems; and

(3) Integrate a VDE Interpreter into an existing operating
system.

The first approach could be most effectively applied when
a new operating system is being designed, or if a significant
upgrade to an existing operating system is planned. The
transaction management and security requirements provided
by the VDE functions could be added to the design require-
ments list for the design of a new operating system that
provides, in an optimally efficient manner, an integration of
“traditional” operating system capabilities and VDE capa-
bilities. For example, the engineers responsible for the
design of the new version or instance of an operating system
would include the requirements of VDE metering/
transaction management in addition to other requirements (if
any) that they use to form their design approach,
specifications, and actual implementations. This approach
could lead to a “seamless” integration of VDE functions and
capabilities by threading metering/transaction management
functionality throughout the system design and implemen-
tation.

The second approach would involve taking an existing set
of API (Application Programmer Interface) functions, and
incorporating references in the operating system code to
VDE function calls. This is similar to the way that the
current Windows operating system is integrated with DOS,
wherein DOS serves as both the launch point and as a
significant portion of the kernel underpinning of the Win-
dows operating system. This approach would be also pro-
vide a high degree of “seamless” integration (although not
quite as “seamless” as the first approach). The benefits of
this approach include the possibility that the incorporation of
metering/transaction management functionality into the new
version or instance of an operating system may be accom-

Page 00191

Page 00192

5,915,019

79

plished with lower cost (by making use of the existing code
embodied in an API, and also using the design implications
of the API functional approach to influence the design of the
elements into which the metering/transaction management
functionality is incorporated).

The third approach is distinct from the first two in that it
does not incorporate VDE functionality associated with
metering/transaction management and data security directly
into the operating system code, but instead adds a new
generalized capability to the operating system for executing
metering/transaction management functionality. In this case,
an interpreter including metering/transaction management
functions would be integrated with other operating system
code in a “stand alone” mode. This interpreter might take
scripts or other inputs to determine what metering/
transaction management functions should be performed, and
in what order and under which circumstances or conditions

they should be performed.
Instead of (or in addition to) integrating VDE functions

into/with an electronic appliance operating system, it would
be possible to provide certain VDE functionality available as
an application running on a conventional operating system.

ROS Software Architecture

FIG. 10 is a block diagram of one example of a software
structure/architecture for Rights Operating System (“ROS”)
602 provided by the preferred embodiment. In this example,
ROS 602 includes an operating system (“OS”) “core” 679,
a user Application Program Interface (“API”) 682, a “redi-
rector” 684, an “intercept” 692, a User Notification/
Exception Interface 686, and a file system 687. ROS 602 in
this example also includes one or more Host Event Process-
ing Environments (“HPEs”) 655 and/or one or more Secure
Event Processing Environments (“SPEs”) 503 (these envi-
ronments may be generically referred to as “Protected
Processing Environments” 650).

HPE(s) 655 and SPE(s) 503 are self-contained computing
and processing environments that may include their own
operating system kernel 688 including code and data pro-
cessing resources. A given electronic appliance 600 may
include any number of SPE(s) 503 and/or any number of
HPE(s) 655. HPE(s) 655 and SPE(s) 503 may process
information in a secure way, and provide secure processing
support for ROS 602. For example, they may each perform
secure processing based on one or more VDE component
assemblies 690, and they may each offer secure processing
services to OS kernel 680.

In the preferred embodiment, SPE 503 is a secure pro-
cessing environment provided at least in part by an SPU 500.
Thus, SPU 500 provides the hardware tamper-resistant bar-
rier 503 surrounding SPE 503. SPE 503 provided by the
preferred embodiment is preferably:

a small and compact
loadable into resource constrained environments such as

for example minimally configured SPUs 500

dynamically updatable

extensible by authorized users

integratable into object or procedural environments
secure.

In the preferred embodiment, HPE 655 is a secure pro-
cessing environment supported by a processor other than an
SPU, such as for example an electronic appliance CPU 654
general-purpose microprocessor or other processing system
or device. In the preferred embodiment, HPE 655 may be
considered to “emulate” an SPU 500 in the sense that it may
use software to provide some or all of the processing
resources provided in hardware and/or firmware by an SPU.

10

15

20

25

30

35

40

45

50

55

60

65

80

HPE 655 in one preferred embodiment of the present
invention is full-featured and fully compatible with SPE
503—that is, HPE 655 can handle each and every service
call SPE 503 can handle such that the SPE and the HPE are

“plug compatible” from an outside interface standpoint
(with the exception that the HPE may not provide as much
security as the SPE).

HPEs 655 may be provided in two types: secure and not
secure. For example, it may be desirable to provide non-
secure versions of HPE 655 to allow electronic appliance
600 to efficiently run non-sensitive VDE tasks using the full
resources of a fast general purpose processor or computer.
Such non-secure versions of HPE 655 may run under
supervision of an instance of ROS 602 that also includes an
SPE 503. In this way, ROS 602 may run all secure processes
within SPE 503, and only use HPE 655 for processes that do
not require security but that may require (or run more
efficiently) under potentially greater resources provided by a
general purpose computer or processor supporting HPE 655.
Non-secure and secure HPE 655 may operate together with
a secure SPE 503.

HPEs 655 may (as shown in FIG. 10) be provided with a
software-based tamper resistant barrier 674 that makes them
more secure. Such a software-based tamper resistant barrier
674 may be created by software executing on general-
purpose CPU 654. Such a “secure” HPE 655 can be used by
ROS 602 to execute processes that, while still needing
security, may not require the degree of security provided by
SPU 500. This can be especially beneficial in architectures
providing both an SPE 503 and an HPE 655. The SPU 502
may be used to perform all truly secure processing, whereas
one or more HPEs 655 may be used to provide additional
secure (albeit possibly less secure than the SPE) processing
using host processor or other general purpose resources that
may be available within an electronic appliance 600. Any
service may be provided by such a secure HPE 655. In the
preferred embodiment, certain aspects of “channel process-
ing” appears to be a candidate that could be readily exported
from SPE 503 to HPE 655.

The software-based tamper resistant barrier 674 provided
by HPE 655 may be provided, for example, by: introducing
time checks and/or code modifications to complicate the
process of stepping through code comprising a portion of
kernel 688a and/or a portion of component assemblies 690
using a debugger; using a map of defects on a storage device
(e.g., a hard disk, memory card, etc.) to form internal test
values to impede moving and/or copying HPE 655 to other
electronic appliances 600; using kernel code that contains
false branches and other complications in flow of control to
disguise internal processes to some degree from disassembly
or other efforts to discover details of processes; using
“self-generating” code (based on the output of a co-sine
transform, for example) such that detailed and/or complete
instruction sequences are not stored explicitly on storage
devices and/or in active memory but rather are generated as
needed; using code that “shuffles” memory locations used
for data values based on operational parameters to compli-
cate efforts to manipulate such values; using any software
and/or hardware memory management resources of elec-
tronic appliance 600 to “protect” the operation of HPE 655
from other processes, functions, etc. Although such a
software-based tamper resistant barrier 674 may provide a
fair degree of security, it typically will not be as secure as the
hardware-based tamper resistant barrier 502 provided (at
least in part) by SPU 500. Because security may be better/
more effectively enforced with the assistance of hardware
security features such as those provided by SPU 500 (and

Page 00192

Page 00193

5,915,019

81

because of other factors such as increased performance
provided by special purpose circuitry within SPU 500), at
least one SPE 503 is preferred for many or most higher
security applications. However, in applications where lesser
security can be tolerated and/or the cost of an SPU 500
cannot be tolerated, the SPE 503 may be omitted and all
secure processing may instead be performed by one or more
secure HPEs 655 executing on general-purpose CPUs 654.
Some VDE processes may not be allowed to proceed on
reduced-security electronic appliances of this type if insuf-
ficient security is provided for the particular process
involved.

Only those processes that execute completely within SPEs
503 (and in some cases, HPEs 655) may be considered to be
truly secure. Memory and other resources external to SPE
503 and HPEs 655 used to store and/or process code and/or
data to be used in secure processes should only receive and
handle that information in encrypted form unless SPE 503/
HPE 655 can protect secure process code and/or data from
non-secure processes.

OS “core” 679 in the preferred embodiment includes a
kernel 680, an RPC manager 732, and an “object switch”
734. API 682, HPE 655 and SPE 503 may communicate
“event” messages with one another via OS “core” 679. They
may also communicate messages directly with one another
without messages going through OS “core” 679.

Kernel 680 may manage the hardware of an electronic
appliance 600. For example, it may provide appropriate
drivers and hardware managers for interacting with input/
output and/or peripheral devices such as keyboard 612,
display 614, other devices such as a “mouse” pointing
device and speech recognizer 613, modem 618, printer 622,
and an adapter for network 672. Kernel 680 may also be
responsible for initially loading the remainder of ROS 602,
and may manage the various ROS tasks (and associated
underlying hardware resources) during execution. OS kernel
680 may also manage and access secure database 610 and
file system 687. OS kernel 680 also provides execution
services for applications 608a(1), 608a(2), etc. and other
applications.

RPC manager 732 performs messaging routing and
resource management/integration for ROS 680. It receives
and routes “calls” from/to API 682, HPE 655 and SPE 503,
for example.

Object switch 734 may manage construction, deconstruc-
tion and other manipulation of VDE objects 300.

User Notification/Exception Interface 686 in the preferred
embodiment (which may be considered part of API 682 or
another application coupled to the API) provides “pop up”
windows/displays on display 614. This allows ROS 602 to
communicate directly with a user without having to pass
information to be communicated through applications 608.
For applications that are not “VDE aware,” user notification/
exception interface 686 may provide communications
between ROS 602 and the user.

API 682 in the preferred embodiment provides a
standardized, documented software interface to applications
608. In part, API 682 may translate operating system “calls”
generated by applications 608 into Remote Procedure Calls
(“RPCs”) specifying “events.” RPC manager 732 may route
these RPCs to kernel 680 or elsewhere (e.g., to HPE(s) 655
and/or SPE(s) 503, or to remote electronic appliances 600,
processors, or VDE participants) for processing. The API
682 may also service RPC requests by passing them to
applications 608 that register to receive and process specific
requests.

API 682 provides an “Applications Programming Inter-
face” that is preferably standardized and documented. It

10

15

20

25

30

35

40

45

50

55

60

65

82

provides a concise set of function calls an application
program can use to access services provided by ROS 602. In
at least one preferred example, API 682 will include two
parts: an application program interface to VDE functions
604; and an application program interface to other OS
functions 606. These parts may be interwoven into the same
software, or they may be provided as two or more discrete
pieces of software (for example).

Some applications, such as application 608a(1) shown in
FIG. 11, may be “VDE aware” and may therefore directly
access both of these parts of API 682. FIG. 11A shows an
example of this. A “VDE aware” application may, for
example, include explicit calls to ROS 602 requesting the
creation of new VDE objects 300, metering usage of VDE
objects, storing information in VDE-protected form, etc.
Thus, a “VDE aware” application can initiate (and, in some
examples, enhance and/or extend) VDE functionality pro-
vided by ROS 602. In addition, “VDE aware” applications
may provide a more direct interface between a user and ROS
602 (e.g., by suppressing or otherwise dispensing with “pop
up” displays otherwise provided by user notification/
exception interface 686 and instead providing a more “seam-
less” interface that integrates application and ROS
messages).

Other applications, such as application 608b shown in
FIG. 11B, may not be “VDE Aware” and therefore may not
“know” how to directly access an interface to VDE functions
604 provided by API 682. To provide for this, ROS 602 may
include a “redirector” 684 that allows such “non-VDE

aware” applications 608(b) to access VDE objects 300 and
functions 604. Redirector 684, in the preferred embodiment,
translates OS calls directed to the “other OS functions” 606

into calls to the “VDE functions” 604. As one simple
example, redirector 684 may intercept a “file open” call from
application 608(b), determine whether the file to be opened
is contained within a VDE container 300, and if it is,

generate appropriate VDE function call(s) to file system 687
to open the VDE container (and potentially generate events
to HPE 655 and/or SPE 503 to determine the name(s) of
file(s) that may be stored in a VDE object 300, establish a
control structure associated with a VDE object 300, perform
a registration for a VDE object 300, etc.). Without redirector
684 in this example, a non-VDE aware application such as
608b could access only the part of API 682 that provides an
interface to other OS functions 606, and therefore could not
access any VDE functions.

This “translation” feature of redirector 684 provides
“transparency.” It allows VDE functions to be provided to
the application 608(b) in a “transparent” way without requir-
ing the application to become involved in the complexity
and details associated with generating the one or more calls
to VDE functions 604. This aspect of the “transparency”
features of ROS 602 has at least two important advantages:

(a) it allows applications not written specifically for VDE
functions 604 (“non-VDE aware applications”) to nev-
ertheless access critical VDE functions; and

(b) it reduces the complexity of the interface between an
application and ROS 602.

Since the second advantage (reducing complexity) makes it
easier for an application creator to produce applications,
even “VDE aware” applications 608a(2) may be designed so
that some call invoking VDE functions 604 are requested at
the level of an “other OS functions” call and then “trans-

lated” by redirector 684 into a VDE function call (in this
sense, redirector 684 may be considered a part of API 682).
FIG. 11C shows an example of this. Other calls invoking
VDE functions 604 may be passed directly without trans-
lation by redirector 684.

Page 00193

Page 00194

5,915,019

83

Referring again to FIG. 10, ROS 620 may also include an
“interceptor” 692 that transmits and/or receives one or more
real time data feeds 694 (this may be provided over cable(s)
628 for example), and routes one or more such data feeds
appropriately while providing “translation” functions for
real time data sent and/or received by electronic appliance
600 to allow “transparency” for this type of information
analogous to the transparency provided by redirector 684
(and/or it may generate one or more real time data feeds).

Secure ROS Components and Component
Assemblies

As discussed above, ROS 602 in the preferred embodi-
ment is a component-based architecture. ROS VDE func-
tions 604 may be based on segmented, independently load-
able executable “component assemblies” 690. These
component assemblies 690 are independently securely
deliverable. The component assemblies 690 provided by the
preferred embodiment comprise code and data elements that
are themselves independently deliverable. Thus, each com-
ponent assembly 690 provided by the preferred embodiment
is comprised of independently securely deliverable elements
which may be communicated using VDE secure communi-
cation techniques, between VDE secure subsystems.

These component assemblies 690 are the basic functional
unit provided by ROS 602. The component assemblies 690
are executed to perform operating system or application
tasks. Thus, some component assemblies 690 may be con-
sidered to be part of the ROS operating system 602, while
other component assemblies may be considered to be “appli-
cations” that run under the support of the operating system.
As with any system incorporating “applications” and “oper-
ating systems,” the boundary between these aspects of an
overall system can be ambiguous. For example, commonly
used “application” functions (such as determining the struc-
ture and/or other attributes of a content container) may be
incorporated into an operating system. Furthermore, “oper-
ating system” functions (such as task management, or
memory allocation) may be modified and/or replaced by an
application. A common thread in the preferred embodi-
ment’s ROS 602 is that component assemblies 690 provide
functions needed for a user to fulfill her intended activities,
some of which may be “application-like” and some of which
may be “operating system-like.”

Components 690 are preferably designed to be easily
separable and individually loadable. ROS 602 assembles
these elements together into an executable component
assembly 690 prior to loading and executing the component
assembly (e.g., in a secure operating environment such as
SPE 503 and/or HPE 655). ROS 602 provides an element
identification and referencing mechanism that includes
information necessary to automatically assemble elements
into a component assembly 690 in a secure manner prior to,
and/or during, execution.

ROS 602 application structures and control parameters
used to form component assemblies 690 can be provided by
different parties. Because the components forming compo-
nent assemblies 690 are independently securely deliverable,
they may be delivered at different times and/or by different
parties (“delivery” may take place within a local VDE secure
subsystem, that is submission through the use of such a
secure subsystem of control information by a chain of
content control information handling participant for the
preparation of a modified control information set constitutes
independent, secure delivery). For example, a content cre-
ator can produce a ROS 602 application that defines the

10

15

20

25

30

35

40

45

50

55

60

65

84

circumstances required for licensing content contained
within a VDE object 300. This application may reference
structures provided by other parties. Such references might,
for example, take the form of a control path that uses content
creator structures to meter user activities; and structures
created/owned by a financial provider to handle financial
parts of a content distribution transaction (e.g., defining a
credit budget that must be present in a control structure to
establish creditworthiness, audit processes which must be
performed by the licensee, etc.). As another example, a
distributor may give one user more favorable pricing than
another user by delivering different data elements defining
pricing to different users. This attribute of supporting mul-
tiple party securely, independently deliverable control infor-
mation is fundamental to enabling electronic commerce, that
is, defining of a content and/or appliance control information
set that represents the requirements of a collection of inde-
pendent parties such as content creators, other content
providers, financial service providers, and/or users.

In the preferred embodiment, ROS 602 assembles
securely independently deliverable elements into a compo-
nent assembly 690 based in part on context parameters (e.g.,
object, user). Thus, for example, ROS 602 may securely
assemble different elements together to form different com-
ponent assemblies 690 for different users performing the
same task on the same VDE object 300. Similarly, ROS 602
may assemble differing element sets which may include, that
is reuse, one or more of the same components to form
different component assemblies 690 for the same user per-
forming the same task on different VDE objects 300.

The component assembly organization provided by ROS
602 is “recursive” in that a component assembly 690 may
comprise one or more component “subassemblies” that are
themselves independently loadable and executable compo-
nent assemblies 690. These component “subassemblies”
may, in turn, be made of one or more component “sub-sub-
assemblies.” In the general case, a component assembly 690
may include N levels of component subassemblies.

Thus, for example, a component assembly 690(k) that
may includes a component subassembly 690(k+l). Compo-
nent subassembly 690(k+l), in turn, may include a compo-
nent sub-subassembly 690(3), . . . and so on to N—level
subassembly 690(k+N). The ability of ROS 602 to build
component assemblies 690 out of other component assem-
blies provides great advantages in terms of, for example,
code/data reusability, and the ability to allow different
parties to manage different parts of an overall component.

Each component assembly 690 in the preferred embodi-
ment is made of distinct components. FIGS. 11D—11H are
abstract depictions of various distinct components that may
be assembled to form a component assembly 690(k) show-
ing FIG. 111. These same components can be combined in
different ways (e.g., with more or less components) to form
different component assemblies 690 providing completely
different functional behavior. FIG. 11] is an abstract depic-
tion of the same components being put together in a different
way (e.g., with additional components) to form a different
component assembly 690(1'). The component assemblies
690(k) and 690(]') each include a common feature 691 that
interlocks with a “channel” 594 defined by ROS 602. This
“channel” 594 assembles component assemblies 690 and
interfaces them with the (rest of) ROS 602.

ROS 602 generates component assemblies 690 in a secure
manner. As shown graphically in FIGS. 111 and 11], the
different elements comprising a component assembly 690
may be “interlocking” in the sense that they can only go

Page 00194

Page 00195

5,915,019

85

together in ways that are intended by the VDE participants
who created the elements and/or specified the component
assemblies. ROS 602 includes security protections that can
prevent an unauthorized person from modifying elements,
and also prevent an unauthorized person from substituting
elements. One can picture an unauthorized person making a
new element having the same “shape” as the one of the
elements shown in FIGS. 11D—11H, and then attempting to
substitute the new element in place of the original element.
Suppose one of the elements shown in FIG. 11H establishes
the price for using content within a VDE object 300. If an
unauthorized person could substitute her own “price” ele-
ment for the price element intended by the VDE content
distributor, then the person could establish a price of zero
instead of the price the content distributor intended to
charge. Similarly, if the element establishes an electronic
credit card, then an ability to substitute a different element
could have disastrous consequences in terms of allowing a
person to charge her usage to someone else’s (or a non-
existent) credit card. These are merely a few simple
examples demonstrating the importance of ROS 602 ensur-
ing that certain component assemblies 690 are formed in a
secure manner. ROS 602 provides a wide range of protec-
tions against a wide range of “threats” to the secure handling
and execution of component assemblies 690.

In the preferred embodiment, ROS 602 assembles com-
ponent assemblies 690 based on the following types of
elements:

Permissions Records (“PERC”s) 808;
Method “Cores” 1000;
Load Modules 1100;

Data Elements (e.g., User Data Elements (“UDEs”) 1200
and Method Data Elements (“MDEs”) 1202); and

Other component assemblies 690.
Briefly, a PERC 808 provided by the preferred embodi-

ment is a record corresponding to a VDE object 300 that
identifies to ROS 602, among other things, the elements
ROS is to assemble together to form a component assembly
690. Thus PERC 808 in effect contains a “list of assembly
instructions” or a “plan” specifying what elements ROS 602
is to assemble together into a component assembly and how
the elements are to be connected together. PERC 808 may
itself contain data or other elements that are to become part
of the component assembly 690.

The PERC 808 may reference one or more method
“cores” 1000'. A method core 1000' may define a basic
“method” 1000 (e.g., “control,” “billing,” “metering,” etc.)

In the preferred embodiment, a “method” 1000 is a
collection of basic instructions, and information related to
basic instructions, that provides context, data, requirements,
and/or relationships for use in performing, and/or preparing
to perform, basic instructions in relation to the operation of
one or more electronic appliances 600. Basic instructions
may be comprised of, for example:

machine code of the type commonly used in the program-
ming of computers; pseudo-code for use by an inter-
preter or other instruction processing program operat-
ing on a computer;

a sequence of electronically represented logical opera-
tions for use with an electronic appliance 600;

or other electronic representations of instructions, source
code, object code, and/or pseudo code as those terms
are commonly understood in the arts.

Information relating to said basic instructions may
comprise, for example, data associated intrinsically with
basic instructions such as for example, an identifier for the

10

15

20

25

30

35

40

45

50

55

60

65

86

combined basic instructions and intrinsic data, addresses,
constants, and/or the like. The information may also, for
example, include one or more of the following:

information that identifies associated basic instructions

and said intrinsic data for access, correlation and/or
validation purposes;

required and/or optional parameters for use with basic
instructions and said intrinsic data;

information defining relationships to other methods;

data elements that may comprise data values, fields of
information, and/or the like;

information specifying and/or defining relationships
among data elements, basic instructions and/or intrinsic
data;

information specifying relationships to external data ele-
ments;

information specifying relationships between and among
internal and external data elements, methods, and/or the
like, if any exist; and

additional information required in the operation of basic
instructions and intrinsic data to complete, or attempt to
complete, a purpose intended by a user of a method,
where required, including additional instructions and/
or intrinsic data.

Such information associated with a method may be
stored, in part or whole, separately from basic instructions
and intrinsic data. When these components are stored
separately, a method may nevertheless include and encom-
pass the other information and one or more sets of basic
instructions and intrinsic data (the latter being included
because of said other information’s reference to one or more

sets of basic instructions and intrinsic data), whether or not
said one or more sets of basic instructions and intrinsic data

are accessible at any given point in time.
Method core 1000' may be parameterized by an “event

code” to permit it to respond to different events in different
ways. For example, a METER method may respond to a
“use” event by storing usage information in a meter data
structure. The same METER method may respond to an
“administrative” event by reporting the meter data structure
to a VDE clearinghouse or other VDE participant.

In the preferred embodiment, method core 1000' may
“contain,” either explicitly or by reference, one or more
“load modules” 1100 and one or more data elements (UDEs
1200, MDEs 1202). In the preferred embodiment, a “load
module” 1100 is a portion of a method that reflects basic
instructions and intrinsic data. Load modules 1100 in the

preferred embodiment contain executable code, and may
also contain data elements (“DTDs” 1108) associated with
the executable code. In the preferred embodiment, load
modules 1100 supply the program instructions that are
actually “executed” by hardware to perform the process
defined by the method. Load modules 1100 may contain or
reference other load modules.

Load modules 1100 in the preferred embodiment are
modular and “code pure” so that individual load modules
may be reenterable and reusable. In order for components
690 to be dynamically updatable, they may be individually
addressable within a global public name space. In view of
these design goals, load modules 1100 are preferably small,
code (and code-like) pure modules that are individually
named and addressable. A single method may provide dif-
ferent load modules 1100 that perform the same or similar
functions on different platforms, thereby making the method
scalable and/or portable across a wide range of different
electronic appliances.

Page 00195

Page 00196

5,915,019

87

UDEs 1200 and MDEs 1202 may store data for input to
or output from executable component assembly 690 (or data
describing such inputs and/or outputs). In the preferred
embodiment, UDEs 1200 may be user dependent, whereas
MDEs 1202 may be user independent.

The component assembly example 690(k) shown in FIG.
11E comprises a method core 1000', UDEs 1200a & 1200b,
an MDE 1202, load modules 1100a—1100d, and a further

component assembly 690(k+1). As mentioned above, a
PERC 808(k) defines, among other things, the “assembly
instructions” for component assembly 690(k), and may
contain or reference parts of some or all of the components
that are to be assembled to create a component assembly.

One of the load modules 1100b shown in this example is
itself comprised of plural load modules 1100c, 1100d. Some
of the load modules (e.g., 1100a, 1100d) in this example
include one or more “DTD” data elements 1108 (e.g., 1108a,
1108b). “DTD” data elements 1108 may be used, for
example, to inform load module 1100a of the data elements
included in MDE 1202 and/or UDEs 1200a, 1200b.
Furthermore, DTDs 1108 may be used as an aspect of
forming a portion of an application used to inform a user as
to the information required and/or manipulated by one or
more load modules 1100, or other component elements.
Such an application program may also include functions for
creating and/or manipulating UDE(s) 1200, MDE(s) 1202,
or other component elements, subassemblies, etc.

Components within component assemblies 690 may be
“reused” to form different component assemblies. As men-
tioned above, FIG. 11F is an abstract depiction of one
example of the same components used for assembling
component assembly 690(k) to be reused (e.g., with some
additional components specified by a different set of “assem-
bly instructions” provided in a different PERC 808(l)) to
form a different component assembly 690(l). Even though
component assembly 690(l) is formed from some of the
same components used to form component assembly 690(k),
these two component assemblies may perform completely
different processes in complete different ways.

As mentioned above, ROS 602 provides several layers of
security to ensure the security of component assemblies 690.
One important security layer involves ensuring that certain
component assemblies 690 are formed, loaded and executed
only in secure execution space such as provided within an
SPU 500. Components 690 and/or elements comprising
them may be stored on external media encrypted using local
SPU 500 generated and/or distributor provided keys.

ROS 602 also provides a tagging and sequencing scheme
that may be used within the loadable component assemblies
690 to detect tampering by substitution. Each element com-
prising a component assembly 690 may be loaded into an
SPU 500, decrypted using encrypt/decrypt engine 522, and
then tested/compared to ensure that the proper element has
been loaded. Several independent comparisons may be used
to ensure there has been no unauthorized substitution. For

example, the public and private copies of the element ID
may be compared to ensure that they are the same, thereby
preventing gross substitution of elements. In addition, a
validation/correlation tag stored under the encrypted layer of
the loadable element may be compared to make sure it
matches one or more tags provided by a requesting process.
This prevents unauthorized use of information. As a third
protection, a device assigned tag (e.g., a sequence number)
stored under an encryption layer of a loadable element may
be checked to make sure it matches a corresponding tag
value expected by SPU 500. This prevents substitution of
older elements. Validation/correlation tags are typically

10

15

20

25

30

35

40

45

50

55

60

65

88

passed only in secure wrappers to prevent plaintext exposure
of this information outside of SPU 500.

The secure component based architecture of ROS 602 has
important advantages. For example, it accommodates lim-
ited resource execution environments such as provided by a
lower cost SPU 500. It also provides an extremely high level
of configurability. In fact, ROS 602 will accommodate an
almost unlimited diversity of content types, content provider
objectives, transaction types and client requirements. In
addition, the ability to dynamically assemble independently
deliverable components at execution time based on particu-
lar objects and users provides a high degree of flexibility,
and facilitates or enables a distributed database, processing,
and execution environment.

One aspect of an advantage of the component-based
architecture provided by ROS 602 relates to the ability to
“stage” functionality and capabilities over time. As
designed, implementation of ROS 602 is a finite task.
Aspects of its wealth of functionality can remain unex-
ploited until market realities dictate the implementation of
corresponding VDE application functionality. As a result,
initial product implementation investment and complexity
may be limited. The process of “surfacing” the full range of
capabilities provided by ROS 602 in terms of authoring,
administrative, and artificial intelligence applications may
take place over time. Moreover, already-designed function-
ality of ROS 602 may be changed or enhanced at any time
to adapt to changing needs or requirements.

More Detailed Discussion of Rights Operating
System 602 Architecture

FIG. 12 shows an example of a detailed architecture of
ROS 602 shown in FIG. 10. ROS 602 may include a file
system 687 that includes a commercial database manager
730 and external object repositories 728. Commercial data-
base manager 730 may maintain secure database 610. Object
repository 728 may store, provide access to, and/or maintain
VDE objects 300.

FIG. 12 also shows that ROS 602 may provide one or
more SPEs 503 and/or one or more HPEs 655. As discussed

above, HPE 655 may “emulate” an SPU 500 device, and
such HPEs 655 may be integrated in lieu of (or in addition
to) physical SPUs 500 for systems that need higher through-
put. Some security may be lost since HPEs 655 are typically
protected by operating system security and may not provide
truly secure processing. Thus, in the preferred embodiment,
for high security applications at least, all secure processing
should take place within an SPE 503 having an execution
space within a physical SPU 500 rather than a HPE 655
using software operating elsewhere in electronic appliance
600.

As mentioned above, three basic components of ROS 602
are a kernel 680, a Remote Procedure Call (RPC) manager
732 and an object switch 734. These components, and the
way they interact with other portions of ROS 602, will be
discussed below.
Kernel 680

Kernel 680 manages the basic hardware resources of
electronic appliance 600, and controls the basic tasking
provided by ROS 602. Kernel 680 in the preferred embodi-
ment may include a memory manager 680a, a task manager
680b, and an I/O manager 6806. Task manager 680b may
initiate and/or manage initiation of executable tasks and
schedule them to be executed by a processor on which ROS
602 runs (e.g., CPU 654 shown in FIG. 8). For example,
Task manager 680b may include or be associated with a
“bootstrap loader” that loads other parts of ROS 602. Task

Page 00196

Page 00197

5,915,019

89

manager 680b may manage all tasking related to ROS 602,
including tasks associated with application program(s) 608.
Memory manager 680a may manage allocation,
deallocation, sharing and/or use of memory (e.g., RAM 656
shown in FIG. 8) of electronic appliance 600, and may for
example provide virtual memory capabilities as required by
an electronic appliance and/or associated application(s). I/O
manager 6806 may manage all input to and output from ROS
602, and may interact with drivers and other hardware
managers that provide communications and interactivity
with physical devices.
RPC Manager 732

ROS 602 in a preferred embodiment is designed around a
“services based” Remote Procedure Call architecture/

interface. All functions performed by ROS 602 may use this
common interface to request services and share information.
For example, SPE(s) 503 provide processing for one or more
RPC based services. In addition to supporting SPUs 500, the
RFC interface permits the dynamic integration of external
services and provides an array of configuration options using
existing operating system components. ROS 602 also com-
municates with external services through the RFC interface
to seamlessly provide distributed and/or remote processing.
In smaller scale instances of ROS 602, a simpler message
passing IPC protocol may be used to conserve resources. Tis
may limit the configurability of ROS 602 services, but this
possible limitation may be acceptable in some electronic
appliances.

The RPC structure allows services to be called/requested
without the calling process having to know or specify where
the service is physically provided, what system or device
will service the request, or how the service request will be
fulfilled. This feature supports families of services that may
be scaled and/or customized for specific applications. Ser-
vice requests can be forwarded and serviced by different
processors and/or different sites as easily as they can be
forwarded and serviced by a local service system. Since the
same RPC interface is used by ROS 602 in the preferred
embodiment to request services within and outside of the
operating system, a request for distributed and/or remote
processing incurs substantially no additional operating sys-
tem overhead. Remote processing is easily and simply
integrated as part of the same service calls used by ROS 602
for requesting local-based services. In addition, the use of a
standard RPC interface (“RSI”) allows ROS 602 to be
modularized, with the different modules presenting a stan-
dardized interface to the remainder of the operating system.
Such modularization and standardized interfacing permits
different vendors/operating system programmers to create
different portions of the operating system independently, and
also allows the functionality of ROS 602 to be flexibly
updated and/or changed based on different requirements
and/or platforms.

RPC manager 732 manages the RFC interface. It receives
service requests in the form of one or more “Remote
Procedure Calls” (RPCs) from a service requestor, and
routes the service requests to a service provider(s) that can
service the request. For example, when rights operating
system 602 receives a request from a user application via
user API 682, RPC manager 732 may route the service
request to an appropriate service through the “RFC service
interface” (“RSI”). The RSI is an interface between RPC
manager 732, service requestors, and a resource that will
accept and service requests.

The RPC interface (RSI) is used for several major ROS
602 subsystems in the preferred embodiment.

RPC services provided by ROS 602 in the preferred
embodiment are divided into subservices, i.e., individual

10

15

20

25

30

35

40

45

50

55

60

65

90

instances of a specific service each of which may be tracked
individually by the RFC manager 732. This mechanism
permits multiple instances of a specific service on higher
throughput systems while maintaining a common interface
across a spectrum of implementations. The subservice con-
cept extends to supporting multiple processors, multiple
SPEs 503, multiple HPEs 655, and multiple communica-
tions services.

The preferred embodiment ROS 602 provides the follow-
ing RPC based service providers/requestors (each of which
have an RPC interface or “RSI” that communicates with

RPC manager 732):

SPE device driver 736 (this SPE device driver is con-
nected to an SPE 503 in the preferred embodiment);

HPE Device Driver 738 (this HPE device driver is con-
nected to an HPE 738 in the preferred embodiment);

Notification Service 740 (this notification service is con-
nected to user notification interface 686 in the preferred
embodiment);

API Service 742 (this API service is connected to user API
682 in the preferred embodiment;

Redirector 684;

Secure Database (File) Manager 744 (this secure database
or file manager 744 may connect to and interact with
commercial database manager 730 and secure files 610
through a cache manager 746, a database interface 748,
and a database driver 750);

Name Services Manager 752;

Outgoing Administrative Objects Manager 754;

Incoming Administrative Objects Manager 756;

a Gateway 734 to object switch 734 (this is a path used to
allow direct communication between RPC manager
732 and Object Switch 734); and

Communications Manager 776.
The types of services provided by HPE 655, SPE 503,

User Notification 686, API 742 and Redirector 684 have
already been described above. Here is a brief description of
the type(s) of services provided by OS resources 744, 752,
754, 756 and 776:

Secure Database Manager 744 services requests for
access to secure database 610;

Name Services Manager 752 services requests relating to
user, host, or service identification;

Outgoing Administrative Objects Manager 754 services
requests relating to outgoing administrative objects;

Incoming Administrative Objects Manager 756 services
requests relating to incoming administrative objects;
and

Communications Manager 776 services requests relating
to communications between electronic appliance 600
and the outside world.

Object Switch 734

Object switch 734 handles, controls and communicates
(both locally and remotely) VDE objects 300. In the pre-
ferred embodiment, the object switch may include the fol-
lowing elements:

a stream router 758;

a real time stream interface(s) 760 (which may be con-
nected to real time data feed(s) 694);

a time dependent stream interface(s) 762;

a intercept 692;

Page 00197

Page 00198

5,915,019

91

a container manager 764;

one or more routing tables 766; and

buffering/storage 768.
Stream router 758 routes to/from “real time” and “time

independent” data streams handled respectively by real time
stream interface(s) 760 and time dependent stream interface
(s) 762. Intercept 692 intercepts I/O requests that involve
real-time information streams such as, for example, real time
feed 694. The routing performed by stream router 758 may
be determined by routing tables 766. Buffering/storage 768
provides temporary store-and-forward, buffering and related
services. Container manager 764 may (typically in conjunc-
tion with SPE 503) perform processes on VDE objects 300
such as constructing, deconstructing, and locating portions
of objects.

Object switch 734 communicates through an Object
Switch Interface (“OSI”) with other parts of ROS 602. The
Object Switch Interface may resemble, for example, the
interface for a Unix socket in the preferred embodiment.
Each of the “OSI” interfaces shown in FIG. 12 have the

ability to communicate with object switch 734.
ROS 602 includes the following object switch service

providers/resources (each of which can communicate with
the object switch 734 through an “OSI”):

Outgoing Administrative Objects Manager 754;

Incoming Administrative Objects Manager 756;

Gateway 734 (which may translate RPC calls into object
switch calls and vice versa so RPC manager 732 may
communicate with object switch 734 or any other
element having an OSI to, for example, provide and/or
request services);

External Services Manager 772;

Object Submittal Manager 774; and

Communications Manager 776.
Briefly,

Object Repository Manager 770 provides services relat-
ing to access to object repository 728;

External Services Manager 772 provides services relating
to requesting and receiving services externally, such as
from a network resource or another site;

Object Submittal Manager 774 provides services relating
to how a user application may interact with object
switch 734 (since the object submittal manager pro-
vides an interface to an application program 608, it
could be considered part of user API 682); and

Communications Manager 776 provides services relating
to communicating with the outside world.

In the preferred embodiment, communications manager
776 may include a network manager 780 and a mail gateway
(manager) 782. Mail gateway 782 may include one or more
mail filters 784 to, for example, automatically route VDE
related electronic mail between object switch 734 and the
outside world electronic mail services. External Services

Manager 772 may interface to communications manager 776
through a Service Transport Layer 786. Service Transport
Layer 786a may enable External Services Manager 772 to
communicate with external computers and systems using
various protocols managed using the service transport layer
786.

The characteristics of and interfaces to the various sub-

systems of ROS 680 shown in FIG. 12 are described in more
detail below.

RPC Manager 732 and Its RPC Services Interface
As discussed above, the basic system services provided

by ROS 602 are invoked by using an RPC service interface

10

15

20

25

30

35

40

45

50

55

60

65

92

(RSI). This RPC service interface provides a generic, stan-
dardized interface for different services systems and sub-
systems provided by ROS 602.

RPC Manager 732 routes RPCs requesting services to an
appropriate RPC service interface. In the preferred
embodiment, upon receiving an RPC call, RPC manager 732
determines one or more service managers that are to service
the request. RPC manager 732 then routes a service request
to the appropriate service(s) (via a RSI associated with a
service) for action by the appropriate service manager(s).

For example, if a SPE 503 is to service a request, the RFC
Manager 732 routes the request to RSI 736a, which passes
the request on to SPE device driver 736 for forwarding to the
SPE. Similarly, if HPE 655 is to service the request, RPC
Manager 732 routes the request to RSI 738a for forwarding
to a HPE. In one preferred embodiment, SPE 503 and HPE
655 may perform essentially the same services so that RSIs
736a, 738a are different instances of the same RSI. Once a

service request has been received by SPE 503 (or HPE 655),
the SPE (or HPE) typically dispatches the request internally
using its own internal RPC manager (as will be discussed
shortly). Processes within SPEs 503 and HPEs 655 can also
generate RPC requests. These requests may be processed
internally by a SPE/HPE, or if not internally serviceable,
passed out of the SPE/HPE for dispatch by RPC Manager
732.

Remote (and local) procedure calls may be dispatched by
a RPC Manager 732 using an “RPC Services Table.” An
RPC Services Table describes where requests for specific
services are to be routed for processing. Each row of an RPC
Services Table in the preferred embodiment contains a
services ID, the location of the service, and an address to
which control will be passed to service a request. An RPC
Services Table may also include control information that
indicates which instance of the RFC dispatcher controls the
service. Both RPC Manager 732 and any attached SPEs 503
and HPEs 655 may have symmetric copies of the RFC
Services Table. If an RPC service is not found in the RFC

services tables, it is either rejected or passed to external
services manager 772 for remote servicing.

Assuming RPC manager 732 finds a row corresponding to
the request in an RPC Services Table, it may dispatch the
request to an appropriate RSI. The receiving RSI accepts a
request from the RFC manager 732 (which may have looked
up the request in an RPC service table), and processes that
request in accordance with internal priorities associated with
the specific service.

In the preferred embodiment, RPC Service Interface(s)
supported by RPC Manager 732 may be standardized and
published to support add-on service modules developed by
third party vendors, and to facilitate scalability by making it
easier to program ROS 602. The preferred embodiment RSI
closely follows the DOS and Unix device driver models for
block devices so that common code may be developed for
many platforms with minimum effort. An example of one
possible set of common entry points are listed below in the
table.

Interface call Description

SVCiLOAD Load a service manager and return its status.
SVCiUNLOAD Unload a service manager.
SVCiMOUNT Mount (load) a dynamically loaded subservice and

return its status.

Unmount (unload) a dynamically loadedsubservice.
SVCiUNMOUNT

Page 00198

Page 00199

5,915,019

93
-continued

Interface call Description

SVC,OPEN Open a mounted subservice.
SVCiCLOSE Close a mounted subservice.
SVCiREAD Read a block from an opened subservice.
SVCiWRITE Write a block to an opened subservice.
SVC,IOCTL Control a subservice or a service manager.

Load

In the preferred embodiment, services (and the associated
RSIs they present to RPC manager 732) may be activated
during boot by an installation boot process that issues an
RPC LOAD. This process reads an RPC Services Table from
a configuration file, loads the service module if it is run time
loadable (as opposed to being a kernel linked device driver),
and then calls the LOAD entry point for the service. A
successful return from the LOAD entry point will indicate
that the service has properly loaded and is ready to accept
requests.
RPC LOAD Call Example: SVCiLOAD (long serviceiid)

This LOAD interface call is called by the RPC manager
732 during rights operating system 602 initialization. It
permits a service manager to load any dynamically loadable
components and to initialize any device and memory
required by the service. The service number that the service
is loaded as is passed in as serviceiid parameter. In the
preferred embodiment, the service returns 0 is the initial-
ization process was completed successfully or an error
number if some error occurred.
Mount

Once a service has been loaded, it may not be fully
functional for all subservices. Some subservices (e.g., com-
munications based services) may require the establishment
of additional connections, or they may require additional
modules to be loaded. If the service is defined as

“mountable,” a RPC manager 732 will call the MOUNT
subservice entry point with the requested subservice ID prior
to opening an instance of a subservice.
RPC MOUNT Call Example:

SVCiMOUNT (long serviceiid, long subserviceiid,
BYTE *buffer)

This MOUNT interface call instructs a service to make a

specific subservice ready. This may include services related
to networking, communications, other system services, or
external resources. The serviceiid and subserviceiid

parameters may be specific to the specific service being
requested. The buffer parameter is a memory address that
references a control structure appropriate to a specific ser-
Vice.

Open
Once a service is loaded and “mounted,” specific

instances of a service may be “opened” for use. “Opening”
an instance of a service may allocate memory to store
control and status information. For example, in a BSD
socket based network connection, a LOAD call will initial-
ize the software and protocol control tables, a MOUNT call
will specify networks and hardware resources, and an OPEN
will actually open a socket to a remote installation.

Some services, such as commercial database manager 730
that underlies the secure database service, may not be
“mountable.” In this case, a LOAD call will make a con-
nection to a database manager 730 and ensure that records
are readable. An OPEN call may create instances of internal
cache manager 746 for various classes of records.
RPC OPEN Call Example:

SVCiOPEN (long serviceiid, long subserviceiid,
BYTE *buffer, int (*receive) (long requestiid))

10

15

20

25

30

35

40

45

50

55

60

65

94

This OPEN interface call instructs a service to open a
specific subservice. The serviceiid and subserviceiid
parameters are specific to the specific service being
requested, and the buffer parameter is a memory address that
references a control structure appropriate to a specific ser-Vice.

The optional receive parameter is the address of a noti-
fication callback function that is called by a service when-
ever a message is ready for the service to retrieve it. One call
to this address is made for each incoming message received.
If the caller passes a NULL to the interface, the software will
not generate a callback for each message.
Close, Unmount and Unload

The converse of the OPEN, MOUNT, and LOAD calls are
CLOSE, UNMOUNT, and UNLOAD. These interface calls

release any allocated resources back to ROS 602 (e.g.,
memory manager 680a).
RPC CLOSE Call Example: SVCiCLOSE (long svci
handle)

This LOAD interface call closes an open service
“handle.” A service “handle” describes a service and sub-
service that a user wants to close. The call returns 0 if the

CLOSE request succeeds (and the handle is no longer valid)
or an error number.

RPC UNLOAD Call Example: SVCiUNLOAD (void)
This UNLOAD interface call is called by a RPC manager

732 during shutdown or resource reallocation of rights
operating system 602. It permits a service to close any open
connections, flush buffers, and to release any operating
system resources that it may have allocated. The service
returns 0.

RPC UNMOUNT Call Example: SVCiUNMOUNT (long
serviceiid, long subserviceiid)

This UNMOUNT interface call instructs a service to

deactivate a specific subservice. The serviceiid and
subserviceiid parameters are specific to the specific service
being requested, and must have been previously mounted
using the SVCiMOUNTO request. The call releases all
system resources associated with the subservice before it
returns.
Read and Write

The READ and WRITE calls provide a basic mechanism
for sending information to and receiving responses from a
mounted and opened service. For example, a service has
requests written to it in the form of an RPC request, and
makes its response available to be read by RPC Manager 732
as they become available.
RPC READ Call Example:

SVCiREAD (long svcihandle, long requestiid, BYTE
*buffer, long size)

This READ call reads a message response from a service.
The svcihandle and requestiid parameters uniquely iden-
tify a request. The results of a request will be stored in the
user specified buffer up to size bytes. If the buffer is too
small, the first size bytes of the message will be stored in the
buffer and an error will be returned.

If a message response was returned to the caller’s buffer
correctly, the function will return 0. Otherwise, an error
message will be returned.
RPC WRITE Call Example:

SVCiwrite (long serviceiid, long subserviceiid, BYTE
*buffer, long size, int (*receive) (long requestiid)

This WRITE call writes a message to a service and
subservice specified by the serviceiid/subserviceiid
parameter pair. The message is stored in buffer (and usually
conforms to the VDE RPC message format) and is size bytes
long. The function returns the request id for the message (if

Page 00199

Page 00200

5,915,019

95

it was accepted for sending) or an error number. If a user
specifies the receive callback functions, all messages regard-
ing a request will be sent to the request specific callback
routine instead of the generalized message callback.
Input/Output Control

The IOCTL (“Input/Output ConTroL”) call provides a
mechanism for querying the status of and controlling a
loaded service. Each service type will respond to specific
general IOCTL requests, all required class IOCTL requests,
and service specific IOCTL requests.
RPC IOCTL Call Example: ROIiSVCiIOCTL (long
serviceiid, long subserviceiid,

int command, BYTE *buffer)
This IOCTL function provides a generalized control inter-

face for a RSI. Auser specifies the serviceiid parameter and
an optional subserviceiid parameter that they wish to
control. They specify the control command parameter(s),
and a buffer into/from which the command parameters may
be written/read. An example of a list of commands and the
appropriate buffer structures are given below.

Command Structure Description

GETilNFO SVCilNFO Returns information about a
service/subservice.

GET,STATS SVC,STATS Returns current statistics about a
service/subservice.

CLR,STATS None Clears the statistics about a
service/subservice.

Now that a generic RPC Service Interface provided by the
preferred embodiment has been described, the following
description relates to particular examples of services pro-
vided by ROS 602.
SPE Device Driver 736

SPE device driver 736 provides an interface between ROS
602 and SPE 503. Since SPE 503 in the preferred embodi-
ment runs within the confines of an SPU 500, one aspect of
this device driver 736 is to provide low level communica-
tions services with the SPU 500 hardware. Another aspect of
SPE device driver 736 is to provide an RPC service interface
(RSI) 736a particular to SPE 503 (this same RSI may be
used to communicate with HPE 655 through HPE device
driver 738).

SPE RSI 736a and driver 736 isolates calling processes
within ROS 602 (or external to the ROS) from the detailed
service provided by the SPE 503 by providing a set of basic
interface points providing a concise function set. This has
several advantages. For example, it permits a full line of
scaled SPUs 500 that all provide common functionality to
the outside world but which may differ in detailed internal
structure and architecture. SPU 500 characteristics such as

the amount of memory resident in the device, processor
speed, and the number of services supported within SPU 500
may be the decision of the specific SPU manufacturer, and
in any event may differ from one SPU configuration to
another. To maintain compatibility, SPE device driver 736
and the RSI 736a it provides conform to a basic common
RPC interface standard that “hides” differences between

detailed configurations of SPUs 500 and/or the SPEs 503
they may support.

To provide for such compatibility, SPE RSI 736a in the
preferred embodiment follows a simple block based stan-
dard. In the preferred embodiment, an SPE RSI 736a may be
modeled after the packet interfaces for network Ethernet
cards. This standard closely models the block mode interface
characteristics of SPUs 500 in the preferred embodiment.

An SPE RSI 736a allows RPC calls from RPC manager
732 to access specific services provided by an SPE 736. To

10

15

20

25

30

35

40

45

50

55

60

65

96

do this, SPE RSI 736a provides a set of “service notification
address interfaces.” These provide interfaces to individual
services provided by SPE 503 to the outside world. Any
calling process within ROS 602 may access these SPE-
provided services by directing an RPC call to SPE RSI 736a
and specifying a corresponding “service notification
address” in an RPC call. The specified “service notification
address” causes SPE 503 to internally route an RPC call to
a particular service within an SPE. The following is a listing
of one example of a SPE service breakdown for which
individual service notification addresses may be provided:

Channel Services Manager

Authentication Manager/Secure Communications Man-
ager

Secure Database Manager
The Channel Services Manager is the principal service

provider and access point to SPE 503 for the rest of ROS
602. Event processing, as will be discussed later, is primarily
managed (from the point of view of processes outside SPE
503) by this service. The Authentication Manager/Secure
Communications Manager may provide login/logout ser-
vices for users of ROS 602, and provide a direct service for
managing communications (typically encrypted or other-
wise protected) related to component assemblies 690, VDE
objects 300, etc. Requests for display of information (e.g.,
value remaining in a financial budget) may be provided by
a direct service request to a Secure Database Manager inside
SPE 503. The instances of Authentication Manager/Secure
Communications Manager and Secure Database Manager, if
available at all, may provide only a subset of the information
and/or capabilities available to processes operating inside
SPE 503. As stated above, most (potentially all) service
requests entering SPE are routed to a Channel Services
Manager for processing. As will be discussed in more detail
later on, most control structures and event processing logic
is associated with component assemblies 690 under the
management of a Channel Services Manager.

The SPE 503 must be accessed through its associated SPE
driver 736 in this example. Generally, calls to SPE driver
736 are made in response to RPC calls. In this example, SPE
driver RSI 736a may translate RPC calls directed to control
or ascertain information about SPE driver 736 into driver

calls. SPE driver RSI 736a in conjunction with driver 736
may pass RPC calls directed to SPE 503 through to the SPE.

The following table shows one example of SPE device
driver 736 calls:

Entry Point Description

SPEiinfoO Returns summary information about
the SPE driver 736 (and SPE 503)
Initializes SPE driver 736, and sets the
default notification address for received

packets.
Terminates SPE driver 736 and resets
SPU 500 and the driver 736.

Resets driver 736 without resetting
SPU 500.
Return statistics for notification
addresses and/or an entire driver 736.
Clears statistics for a specific
notification address and/or an entire
driver 736.

Sets a notification address for a specific
service ID.
Returns a notification address for a

specific service ID.

SPEiinitializeiinterfaceO

SPEiterminateiinterfaceO

SPEiresetiinterfaceO

SPEigetistatsO

SPEiclearistatsO

SPEisetinotifyO

SPEigetinotifyO

Page 00200

Page 00201

5,915,019

97
-continued

Entry Point Description

SPEitxipktO Sends a packet (e.g., containing an RPC
call) to SPE 503 for processing.

The following are more detailed examples of each of the
SPE driver calls set forth in the table above.

Example of an “SPE Information” Driver Call: SPEiinfo
(void)

This function returns a pointer to an SPEiINFO data
structure that defines the SPE device driver 736a. This data

structure may provide certain information about SPE device
driver 736, RSI 736a and/0r SPU 500. An example of a
SPEiINFO structure is described below:

Version Number/ID for SPE
Device Driver 736
Version Number/ID for SPE
Device Driver RSI 736
Pointer to name of SPE Device
Driver 736
Pointer to ID name of SPU 500

Functionality Code Describing
SPE Capabilities/functionality

Example of an SPE “Initialize Interface” Driver Call: SPEi
initializeiinterface (int (fcn *receiver)(void))

A receiver function passed in by way of a parameter will
be called for all packets received from SPE 503 unless their
destination service is over-ridden using the setinotify() call.
A receiver function allows ROS 602 to specify a format for
packet communication between RPC manager 732 and SPE
503.

This function returns “0” in the preferred embodiment if
the initialization of the interface succeeds and non-zero if it

fails. If the function fails, it will return a code that describes
the reason for the failure as the value of the function.

Example of an SPE “Terminate Interface” Driver Call:
SPEiterminateiinterface (void)

In the preferred embodiment, this function shuts down
SPE Driver 736, clears all notification addresses, and ter-
minates all outstanding requests between an SPE and an
ROS RPC manager 732. It also resets an SPE 503 (e.g., by
a warm reboot of SPU 500) after all requests are resolved.

Termination of driver 736 should be performed by ROS
602 when the operating system is starting to shut down. It
may also be necessary to issue this call if an SPE 503 and
ROS 602 get so far out of synchronization that all processing
in an SPE must be reset to a known state.

Example of an SPE “Reset Interface” Driver Call: SPEi
resetiinterface (void)

This function resets driver 736, terminates all outstanding
requests between SPE 503 and an ROS RPC manager 732,
and clears all statistics counts. It does not reset the SPU 500,
but simply restores driver 736 to a known stable state.

Example of an SPE “Get Statistics” Driver Call: SPEigeti
stats (long serviceiid)

This function returns statistics for a specific service
notification interface or for the SPE driver 736 in general. It
returns a pointer to a static buffer that contains these
statistics or NULL if statistics are unavailable (either
because an interface is not initialized or because a receiver

address was not specified). An example of the SPEiSTATS
structure may have the following definition:

10

15

20

25

30

35

40

45

50

55

60

65

98

Service id

packets rx
packets tx
bytes rx
bytes tx
errors rx
errors tx

requests tx
req tx completed
req tx cancelled
req rx
req rx completed
req rx cancelled

If a user specifies a service ID, statistics associated with
packets sent by that service are returned. If a user specified
0 as the parameter, the total packet statistics for the interface
are returned.

Example of an SPE “Clear Statistic” Driver Call: SPEi
clearistats (long serviceiid)

This function clears statistics associated with the SPE

serviceiid specified. If no serviceiid is specified (i.e., the
caller passes in 0), global statistics will be cleared. The
function returns 0 if statistics are successfully cleared or an
error number if an error occurs.

Example of an SPE “Set Notification Address” Driver Call:
SPEisetinotify (long serviceiid, int (fcn*receiver)
(v0id))

This function sets a notification address (receiver) for a
specified service. If the notification address is set to NULL,
SPE device driver 736 will send notifications for packets to
the specified service to the default notification address.
Example of a SPE “Get Notification Address” Driver Call:
SPEigetinotify (long serviceiid)

This function returns a notification address associated

with the named service or NULL if no specific notification
address has been specified.
Example of an SPE “Send Packet” Driver Call:

sendipkt (BYTE *buffer, long size, int (far *receive)
(v0id))

This function sends a packet stored in buffer of “length”
size. It returns 0 if the packet is sent successfully, or returns
an error code associated with the failure.

Redirector Service Manager 684
The redirector 684 is a piece of systems integration

software used principally when ROS 602 is provided by
“adding on” to a pre-existing operating system or when
“transparent” operation is desired for some VDE functions,
as described earlier. In one embodiment the kernel 680, part
of communications manager 776, file system 687, and part
of API service 742 may be part of a pre-existing operating
system such as DOS, Windows, UNIX, Macintosh System,
089, PSOS, 08/2, or other operating system platform. The
remainder of ROS 602 subsystems shown in FIG. 12 may be
provided as an “add on” to a preexisting operating system.
Once these ROS subsystems have been supplied and “added
on,” the integrated whole comprises the ROS 602 shown in
FIG. 12.

In a scenario of this type of integration, ROS 602 will
continue to be supported by a preexisting OS kernel 680, but
may supplement (or even substitute) many of its functions
by providing additional add-on pieces such as, for example,
a virtual memory manager.

Also in this integration scenario, an add-on portion of API
service 742 that integrates readily with a preexisting API
service is provided to support VDE function calls. A pre-
existing API service integrated with an add-on portion
supports an enhanced set of operating system calls including

Page 00201

Page 00202

5,915,019

99
both calls to VDE functions 604 and calls to functions 606

other than VDE functions (see FIG. 11A). The add-on
portion of API service 742 may translate VDE function calls
into RPC calls for routing by RPC manager 732.

ROS 602 may use a standard communications manager
776 provided by the preexisting operating system, or it may
provide “add ons” and/or substitutions to it that may be
readily integrated into it. Redirector 684 may provide this
integration function.

This leaves a requirement for ROS 602 to integrate with
a preexisting file system 687. Redirector 684 provides this
integration function.

In this integration scenario, file system 687 of the preex-
isting operating system is used for all accesses to secondary
storage. However, VDE objects 300 may be stored on
secondary storage in the form of external object repository
728, file system 687, or remotely accessible through com-
munications manager 776. When object switch 734 wants to
access external object repository 728, it makes a request to
the object repository manager 770 that then routes the
request to object repository 728 or to redirector 692 (which
in turn accesses the object in file system 687).

Generally, redirector 684 maps VDE object repository
728 content into preexisting calls to file system 687. The
redirector 684 provides preexisting OS level information
about a VDE object 300, including mapping the object into
a preexisting OS’s name space. This permits seamless access
to VDE protected content using “normal ” file system 687
access techniques provided by a preexisting operating sys-
tem.

In the integration scenarios discussed above, each preex-
isting target OS file system 687 has different interface
requirements by which the redirector mechanism 684 may
be “hooked.” In general, since all commercially viable
operating systems today provide support for network based
volumes, file systems, and other devices (e.g., printers,
modems, etc.), the redirector 684 may use low level network
and file access “hooks” to integrate with a preexisting
operating system. “Add-ons” for supporting VDE functions
602 may use these existing hooks to integrate with a
preexisting operating system.
User Notification Service Manager 740

User Notification Service Manager 740 and associated
user notification exception interface (“pop up”) 686 provides
ROS 602 with an enhanced ability to communicate with a
user of electronic appliance 600. Not all applications 608
may be designed to respond to messaging from ROS 602
passed through API 682, and it may in any event be
important or desirable to give ROS 602 the ability to
communicate with a user no matter what state an application
is in. User notification services manager 740 and interface
686 provides ROS 602 with a mechanism to communicate
directly with a user, instead of or in addition to passing a
return call through API 682 and an application 608. This is
similar, for example, to the ability of the Windows operating
system to display a user message in a “dialog box” that
displays “on top of” a running application irrespective of the
state of the application.

The User Notification 686 block in the preferred embodi-
ment may be implemented as application code. The imple-
mentation of interface 740a is preferably built over notifi-
cation service manager 740, which may be implemented as
part of API service manager 742. Notification services
manager 740 in the preferred embodiment provides notifi-
cation support to dispatch specific notifications to an appro-
priate user process via the appropriate API return, or by
another path. This mechanism permits notifications to be

10

15

20

25

30

35

40

45

50

55

60

65

100

routed to any authorized process—not just back to a process
that specified a notification mechanism.
API Service Manager 742

The preferred embodiment API Service Manager 742 is
implemented as a service interface to the RFC service
manager 732. All user API requests are built on top of this
basic interface. The API Service Manager 742 preferably
provides a service instance for each running user application
608.

Most RPC calls to ROS functions supported by API
Service Manager 742 in the preferred embodiment may map
directly to service calls with some additional parameter
checking. This mechanism permits developers to create their
own extended API libraries with additional or changed
functionality.

In the scenario discussed above in which ROS 602 is

formed by integrating “add ons” with a preexisting operating
system, the API service 742 code may be shared (e.g.,
resident in a host environment like a Windows DLL), or it
may be directly linked with an applications’s code—
depending on an application programmer’s implementation
decision, and/or the type of electronic appliance 600. The
Notification Service Manager 740 may be implemented
within API 682. These components interface with Notifica-
tion Service component 686 to provide a transition between
system and user space.
Secure Database Service Manager (“SDSM”) 744

There are at least two ways that may be used for managing
secure database 600:

a commercial database approach, and
a site record number approach.

Which way is chosen may be based on the number of records
that a VDE site stores in the secure database 610.

The commercial database approach uses a commercial
database to store securely wrappered records in a commer-
cial database. This way may be preferred when there are a
large number of records that are stored in the secure database
610. This way provides high speed access, efficient updates,
and easy integration to host systems at the cost of resource
usage (most commercial database managers use many sys-
tem resources).

The site record number approach uses a “site record
number” (“SRN”) to locate records in the system. This
scheme is preferred when the number of records stored in the
secure database 610 is small and is not expected to change
extensively over time. This way provides efficient resources
use with limited update capabilities. SRNs permit further
grouping of similar data records to speed access and increase
performance.

Since VDE 100 is highly scalable, different electronic
appliances 600 may suggest one way more than the other.
For example, in limited environments like a set top, PDA, or
other low end electronic appliance, the SRN scheme may be
preferred because it limits the amount of resources (memory
and processor) required. When VDE is deployed on more
capable electronic appliances 600 such as desktop
computers, servers and at clearinghouses, the commercial
database scheme may be more desirable because it provides
high performance in environments where resources are not
limited.

One difference between the database records in the two

approaches is whether the records are specified using a full
VDE ID or SRN. To translate between the two schemes, a
SRN reference may be replaced with a VDE ID database
reference wherever it occurs. Similarly, VDE IDs that are
used as indices or references to other items may be replaced
by the appropriate SRN value.

Page 00202

Page 00203

5,915,019

101

In the preferred embodiment, a commercially available
database manager 730 is used to maintain secure database
610. ROS 602 interacts with commercial database manager
730 through a database driver 750 and a database interface
748. The database interface 748 between ROS 602 and

external, third party database vendors’ commercial database
manager 730 may be an open standard to permit any
database vendor to implement a VDE compliant database
driver 750 for their products.

ROS 602 may encrypt each secure database 610 record so
that a VDE-provided security layer is “on top of” the
commercial database structure. In other words, SPE 736
may write secure records in sizes and formats that may be
stored within a database record structure supported by
commercial database manager 730. Commercial database
manager 730 may then be used to organize, store, and
retrieve the records. In some embodiments, it may be
desirable to use a proprietary and/or newly created database
manager in place of commercial database manager 730.
However, the use of commercial database manager 730 may
provide certain advantages such as, for example, an ability
to use already existing database management product(s).

The Secure Database Services Manager (“SDSM”) 744
makes calls to an underlying commercial database manager
730 to obtain, modify, and store records in secure database
610. In the preferred embodiment, “SDSM” 744 provides a
layer “on top of” the structure of commercial database
manager 730. For example, all VDE-secure information is
sent to commercial database manager 730 in encrypted form.
SDSM 744 in conjunction with cache manager 746 and
database interface 748 may provide record management,
caching (using cache manager 746), and related services (on
top of) commercial database systems 730 and/or record
managers. Database Interface 748 and cache manager 746 in
the preferred embodiment do not present their own RSI, but
rather the RFC Manager 732 communicates to them through
the Secure Database Manager RSI 744a.
Name Services Manager 752

The Name Services Manager 752 supports three subser-
vices: user name services, host name services, and services
name services. User name services provides mapping and
lookup between user name and user ID numbers, and may
also support other aspects of user-based resource and infor-
mation security. Host name services provides mapping and
lookup between the names (and other information, such as
for example address, communications connection/routing
information, etc.) of other processing resources (e.g., other
host electronic appliances) and VDE node IDs. Services
name service provides a mapping and lookup between
services names and other pertinent information such as
connection information (e.g., remotely available service
routing and contact information) and service IDs.

Name Services Manager 752 in the preferred embodiment
is connected to External Services Manager 772 so that it may
provide external service routing information directly to the
external services manager. Name services manager 752 is
also connected to secure database manager 744 to permit the
name services manager 752 to access name services records
stored within secure database 610.

External Services Manager 772 & Services Transport Layer
786

The External Services Manager 772 provides protocol
support capabilities to interface to external service provid-
ers. External services manager 772 may, for example, obtain
external service routing information from name services
manager 752, and then initiate contact to a particular exter-
nal service (e.g., another VDE electronic appliance 600, a

10

15

20

25

30

35

40

45

50

55

60

65

102

financial clearinghouse, etc.) through communications man-
ager 776. External services manager 772 uses a service
transport layer 786 to supply communications protocols and
other information necessary to provide communications.

There are several important examples of the use of
External Services Manager 772. Some VDE objects may
have some or all of their content stored at an Object
Repository 728 on an electronic appliance 600 other than the
one operated by a user who has, or wishes to obtain, some
usage rights to such VDE objects. In this case, External
Services Manager 772 may manage a connection to the
electronic appliance 600 where the VDE objects desired (or
their content) is stored. In addition, file system 687 may be
a network file system (e.g., Netware, LANtastic, NFS, etc.)
that allows access to VDE objects using redirecter 684.
Object switch 734 also supports this capability.

If External Services Manager 772 is used to access VDE
objects, many different techniques are possible. For
example, the VDE objects may be formatted for use with the
World Wide Web protocols (HTML, HTTP, and URL) by
including relevant headers, content tags, host ID to URL
conversion (e.g., using Name Services Manager 752) and an
HTTP-aware instance of Services Transport Layer 786.

In other examples, External Services Manager 772 may
be used to locate, connect to, and utilize remote event

processing services; smart agent execution services (both to
provide these services and locate them); certification ser-
vices for Public Keys; remote Name Services; and other
remote functions either supported by ROS 602 RPCs (e.g.,
have RSIs), or using protocols supported by Services Trans-
port Layer 786.
Outgoing Administrative Object Manager 754

Outgoing administrative object manager 754 receives
administrative objects from object switch 734, object reposi-
tory manager 770 or other source for transmission to another
VDE electronic appliance. Outgoing administrative object
manager 754 takes care of sending the outgoing object to its
proper destination. Outgoing administrative object manager
754 may obtain routing information from name services
manager 752, and may use communications service 776 to
send the object. Outgoing administrative object manager
754 typically maintains records (in concert with SPE 503) in
secure database 610 (e.g., shipping table 444) that reflect
when objects have been successfully transmitted, when an
object should be transmitted, and other information related
to transmission of objects.
Incoming Administrative Object Manager 756

Incoming administrative object manager 756 receives
administrative objects from other VDE electronic appliances
600 via communications manager 776. It may route the
object to object repository manager 770, object switch 734
or other destination. Incoming administrative object man-
ager 756 typically maintains records (in concert with SPE
503) in secure database 610 (e.g., receiving table 446) that
record which objects have been received, objects expected
for receipt, and other information related to received and/or
expected objects.
Object Repository Manager 770

Object repository manager 770 is a form of database or
file manager. It manages the storage of VDE objects 300 in
object repository 728, in a database, or in the file system 687.
Object repository manager 770 may also provide the ability
to browse and/or search information related to objects (such
as summaries of content, abstracts, reviewers’ commentary,
schedules, promotional materials, etc.), for example, by
using INFORMATION methods associated with VDE
objects 300.

Page 00203

Page 00204

5,915,019

103

Object Submittal Manager 774
Object submittal manager 774 in the preferred embodi-

ment provides an interface between an application 608 and
object switch 734, and thus may be considered in some
respects part of API 682. For example, it may allow a user
application to create new VDE objects 300. It may also
allow incoming/outgoing administrative object managers
756, 754 to create VDE objects 300 (administrative objects).

FIG. 12A shows how object submittal manager 774 may
be used to communicate with a user of electronic appliance
600 to help to create a new VDE object 300. FIG. 12A shows
that object creation may occur in two stages in the preferred
embodiment: an object definition stage 1220, and an object
creation stage 1230. The role of object submittal manager
774 is indicated by the two different “user input” depictions
(774(1), 774(2)) shown in FIG. 12A.

In one of its roles or instances, object submittal manager
774 provides a user interface 774a that allows the user to
create an object configuration file 1240 specifying certain
characteristics of a VDE object 300 to be created. This user
interface 774a may, for example, allow the user to specify
that she wants to create an object, allow the user to designate
the content the object will contain, and allow the user to
specify certain other aspects of the information to be con-
tained within the object (e.g., rules and control information,
identifying information, etc.).

Part of the object definition task 1220 in the preferred
embodiment may be to analyze the content or other infor-
mation to be placed within an object. Object definition user
interface 774a may issue calls to object switch 734 to
analyze “content” or other information that is to be included
within the object to be created in order to define or organize
the content into “atomic elements” specified by the user. As
explained elsewhere herein, such “atomic element” organi-
zations might, for example, break up the content into
paragraphs, pages or other subdivisions specified by the
user, and might be explicit (e.g., inserting a control character
between each “atomic element”) or implicit. Object switch
734 may receive static and dynamic content (e.g., by way of
time independent stream interface 762 and real time stream
interface 760), and is capable of accessing and retrieving
stored content or other information stored within file system
687.

The result of object definition 1240 may be an object
configuration file 1240 specifying certain parameters relat-
ing to the object to be created. Such parameters may include,
for example, map tables, key management specifications,
and event method parameters. The object construction stage
1230 may take the object configuration file 1240 and the
information or content to be included within the new object
as input, construct an object based on these inputs, and store
the object within object repository 728.

Object construction stage 1230 may use information in
object configuration file 1240 to assemble or modify a
container. This process typically involves communicating a
series of events to SPE 503 to create one or more PERCs

808, public headers, private headers, and to encrypt content,
all for storage in the new object 300 (or within secure
database 610 within records associated with the new object).

The object configuration file 1240 may be passed to
container manager 764 within object switch 734. Container
manager 734 is responsible for constructing an object 300
based on the object configuration file 1240 and further user
input. The user may interact with the object construction
1230 through another instance 774(2) of object submittal
manager 774. In this further user interaction provided by
object submittal manager 774, the user may specify

10

15

20

25

30

35

40

45

50

55

60

65

104

permissions, rules and/or control information to be applied
to or associated with the new object 300. To specify
permissions, rules and control information, object submittal
manager 774 and/or container manager 764 within object
switch 734 generally will, as mentioned above, need to issue
calls to SPE 503 (e.g., through gateway 734) to cause the
SPE to obtain appropriate information from secure database
610, generate appropriate database items, and store the
database items into the secure database 610 and/or provide
them in encrypted, protected form to the object switch for
incorporation into the object. Such information provided by
SPE 503 may include, in addition to encrypted content or
other information, one or more PERCs 808, one or more
method cores 1000', one or more load modules 1100, one or
more data structures such as UDEs 1200 and/or MDEs 1202,
along with various key blocks, tags, public and private
headers, and error correction information.

The container manager 764 may, in cooperation with SPE
503, construct an object container 302 based at least in part
on parameters about new object content or other information
as specified by object configuration file 1240. Container
manager 764 may then insert into the container 302 the
content or other information (as encrypted by SPE 503) to be
included in the new object. Container manager 764 may also
insert appropriate permissions, rules and/or control infor-
mation into the container 302 (this permissions, rules and/or
control information may be defined at least in part by user
interaction through object submittal manager 774, and may
be processed at least in part by SPE 503 to create secure data
control structures). Container manager 764 may then write
the new object to object repository 687, and the user or the
electronic appliance may “register” the new object by
including appropriate information within secure database
610.

Communications Subsystem 776
Communications subsystem 776, as discussed above, may

be a conventional communications service that provides a
network manager 780 and a mail gateway manager 782.
Mail filters 784 may be provided to automatically route
objects 300 and other VDE information to/from the outside
world. Communications subsystem 776 may support a real
time content feed 684 from a cable, satellite or other
telecommunications link.

Secure Processing Environment 503
As discussed above in connection with FIG. 12, each

electronic appliance 600 in the preferred embodiment
includes one or more SPEs 503 and/or one or more HPEs

655. These secure processing environments each provide a
protected execution space for performing tasks in a secure
manner. They may fulfill service requests passed to them by
ROS 602, and they may themselves generate service
requests to be satisfied by other services within ROS 602 or
by services provided by another VDE electronic appliance
600 or computer.

In the preferred embodiment, an SPE 503 is supported by
the hardware resources of an SPU 500. An HPE 655 may be
supported by general purpose processor resources and rely
on software techniques for security/protection. HPE 655
thus gives ROS 602 the capability of assembling and execut-
ing certain component assemblies 690 on a general purpose
CPU such as a microcomputer, minicomputer, mainframe
computer or supercomputer processor. In the preferred
embodiment, the overall software architecture of an SPE
503 may be the same as the software architecture of an HPE
655. An HPE 655 can “emulate” SPE 503 and associated

SPU 500, i.e., each may include services and resources
needed to support an identical set of service requests from

Page 00204

Page 00205

5,915,019

105

ROS 602 (although ROS 602 may be restricted from sending
to an HPE certain highly secure tasks to be executed only
within an SPU 500).

Some electronic appliance 600 configurations might
include both an SPE 503 and an HPE 655. For example, the
HPE 655 could perform tasks that need lesser (or no)
security protections, and the SPE 503 could perform all tasks
that require a high degree of security. This ability to provide
serial or concurrent processing using multiple SPE and/or
HPE arrangements provides additional flexibility, and may
overcome limitations imposed by limited resources that can
practically or cost-effectively be provided within an SPU
500. The cooperation of an SPE 503 and an HPE 655 may,
in a particular application, lead to a more efficient and cost
effective but nevertheless secure overall processing environ-
ment for supporting and providing the secure processing
required by VDE 100. As one example, an HPE 655 could
provide overall processing for allowing a user to manipulate
released object 300 ‘contents,’ but use SPE 503 to access the
secure object and release the information from the object.

FIG. 13 shows the software architecture of the preferred
embodiment Secure Processing Environment (SPE) 503.
This architecture may also apply to the preferred embodi-
ment Host Processing Environment (HPE) 655. “Protected
Processing Environment” (“PPE”) 650 may refer generally
to SPE 503 and/or HPE 655. Hereinafter, unless context
indicates otherwise, references to any of “PPE 650,” “HPE
655” and “SPE 503” may refer to each of them.

As shown in FIG. 13, SPE 503 (PPE 650) includes the
following service managers/major functional blocks in the
preferred embodiment:
Kernel/Dispatcher 552

Channel Services Manager 562

SPE RPC Manager 550

Time Base Manager 554

Encryption/Decryption Manager 556

Key and Tag Manager 558

Summary Services Manager 560

Authentication Manager/Service Communications Man-
ager 564

Random Value Generator 565

Secure Database Manager 566
Other Services 592.

Each of the major functional blocks of PPE 650 is
discussed in detail below.

I. SPE Kernel/Dispatcher 552
The Kernel/Dispatcher 552 provides an operating system

“kernel” that runs on and manages the hardware resources of
SPU 500. This operating system “kernel” 552 provides a
self-contained operating system for SPU 500; it is also a part
of overall ROS 602 (which may include multiple OS
kernels, including one for each SPE and HPE ROS is
controlling/managing). Kernel/dispatcher 552 provides SPU
task and memory management, supports internal SPU hard-
ware interrupts, provides certain “low level services,” man-
ages “DTD” data structures, and manages the SPU bus
interface unit 530. Kernel/dispatcher 552 also includes a
load module execution manager 568 that can load programs
into secure execution space for execution by SPU 500.

In the preferred embodiment, kernel/dispatcher 552 may
include the following software/functional components:

load module execution manager 568

task manager 576
memory manager 578
virtual memory manager 580

10

15

20

25

30

35

40

45

50

55

60

65

106

“low level” services manager 582
internal interrupt handlers 584
BIU handler 586 (may not be present in HPE 655)
Service interrupt queues 588
DTD Interpreter 590.
At least parts of the kernel/dispatcher 552 are preferably

stored in SPU firmware loaded into SPU ROM 532. An

example of a memory map of SPU ROM 532 is shown in
FIG. 14A. This memory map shows the various components
of kernel/dispatcher 552 (as well as the other SPE services
shown in FIG. 13) residing in SPU ROM 532a and/or
EEPROM 532b. The FIG. 14B example of an NVRAM
534b memory map shows the task manager 576 and other
information loaded into NVRAM.

One of the functions performed by kernel/dispatcher 552
is to receive RPC calls from ROS RPC manager 732. As
explained above, the ROS Kernel RPC manager 732 can
route RPC calls to the SPE 503 (via SPE Device Driver 736
and its associated RSI 736a) for action by the SPE. The SPE
kernel/dispatcher 552 receives these calls and either handles
them or passes them on to SPE RPC manager 550 for routing
internally to SPE 503. SPE 503 based processes can also
generate RPC requests. Some of these requests can be
processed internally by the SPE 503. If they are not inter-
nally serviceable, they may be passed out of the SPE 503
through SPE kernel/dispatcher 552 to ROS RPC manager
732 for routing to services external to SPE 503.

A. Kernel/Dispatcher Task Management
Kernel/dispatcher task manager 576 schedules and over-

sees tasks executing within SPE 503 (PPE 650). SPE 503
supports many types of tasks. A“channel” (a special type of
task that controls execution of component assemblies 690 in
the preferred embodiment) is treated by task manager 576 as
one type of task. Tasks are submitted to the task manager
576 for execution. Task manager 576 in turn ensures that the
SPE 503/SPU 500 resources necessary to execute the tasks
are made available, and then arranges for the SPU micro-
processor 520 to execute the task.

Any call to kernel/dispatcher 552 gives the kernel an
opportunity to take control of SPE 503 and to change the
task or tasks that are currently executing. Thus, in the
preferred embodiment kernel/dispatcher task manager 576
may (in conjunction with virtual memory manager 580
and/or memory manager 578) “swap out” of the execution
space any or all of the tasks that are currently active, and
“swap in” additional or different tasks.

SPE tasking managed by task manager 576 may be either
“single tasking” (meaning that only one task may be active
at a time) or “multi-tasking” (meaning that multiple tasks
may be active at once). SPE 503 may support single tasking
or multi-tasking in the preferred embodiment. For example,
“high end” implementations of SPE 503 (e.g., in server
devices) should preferably include multi-tasking with “pre-
emptive scheduling.” Desktop applications may be able to
use a simpler SPE 503, although they may still require
concurrent execution of several tasks. Set top applications
may be able to use a relatively simple implementation of
SPE 503, supporting execution of only one task at a time.
For example, a typical set top implementation of SPU 500
may perform simple metering, budgeting and billing using
subsets of VDE methods combined into single “aggregate”
load modules to permit the various methods to execute in a
single tasking environment. However, an execution envi-
ronment that supports only single tasking may limit use with
more complex control structures. Such single tasking ver-
sions of SPE 503 trade flexibility in the number and types of
metering and budgeting operations for smaller run time

Page 00205

Page 00206

5,915,019

107

RAM size requirements. Such implementations of SPE 503
may (depending upon memory limitations) also be limited to
metering a single object 300 at a time. Of course, variations
or combinations are possible to increase capabilities beyond
a simple single tasking environment without incurring the
additional cost required to support “full multi-tasking.”

In the preferred embodiment, each task in SPE 503 is
represented by a “swap block,” which may be considered a
“task” in a traditional multitasking architecture. A “swap
block” in the preferred embodiment is a bookkeeping
mechanism used by task manager 576 to keep track of tasks
and subtasks. It corresponds to a chunk of code and asso-
ciated references that “fits” within the secure execution

environment provided by SPU 500. In the preferred
embodiment, it contains a list of references to shared data

elements (e.g., load modules 1100 and UDEs 1200), private
data elements (e.g., method data and local stack), and
swapped process “context” information (e.g., the register set
for the process when it is not processing). FIG. 14C shows
an example of a snapshot of SPU RAM 532 storing several
examples of “swap blocks” for a number of different tasks/
methods such as a “channel” task, a “control” task, an
“event” task, a “meter” task, a “budget” task, and a “billing”
task. Depending on the size of SPU RAM 532, “swap
blocks” may be swapped out of RAM and stored temporarily
on secondary storage 652 until their execution can be
continued. Thus, SPE 503 operating in a multi-tasking mode
may have one or more tasks “sleeping.” In the simplest form,
this involves an active task that is currently processing, and
another task (e.g., a control task under which the active task
may be running) that is “sleeping” and is “swapped out” of
active execution space. Kernel/dispatcher 522 may swap out
tasks at any time.

Task manager 576 may use Memory Manager 578 to help
it perform this swapping operation. Tasks may be swapped
out of the secure execution space by reading appropriate
information from RAM and other storage internal to SPU
500, for example, and writing a “swap block” to secondary
storage 652. Kernel 552 may swap a task back into the
secure execution space by reading the swap block from
secondary storage 652 and writing the appropriate informa-
tion back into SPU RAM 532. Because secondary storage
652 is not secure, SPE 503 must encrypt and cryptographi-
cally seal (e.g., using a one-way hash function initialized
with a secret value known only inside the SPU 500) each
swap block before it writes it to secondary storage. The SPE
503 must decrypt and verify the cryptographic seal for each
swap block read from secondary storage 652 before the
swap block can be returned to the secure execution space for
further execution.

Loading a “swap block” into SPU memory may require
one or more “paging operations” to possibly first save, and
then flush, any “dirty pages” (i.e., pages changed by SPE
503) associated with the previously loaded swap blocks, and
to load all required pages for the new swap block context.

Kernel/dispatcher 522 preferably manages the “swap
blocks” using service interrupt queues 588. These service
interrupt queues 588 allow kernel/dispatcher 552 to track
tasks (swap blocks) and their status (running, “swapped
out,” or “asleep”). The kernel/dispatcher 552 in the preferred
embodiment may maintain the following service interrupt
queues 588 to help it manage the “swap blocks”:

RUN queue
SWAP queue
SLEEP queue.

Those tasks that are completely loaded in the execution
space and are waiting for and/or using execution cycles from

10

15

20

25

30

35

40

45

50

55

60

65

108

microprocessor 502 are in the RUN queue. Those tasks that
are “swapped” out (e.g., because they are waiting for other
swappable components to be loaded) are referenced in the
SWAP queue. Those tasks that are “asleep” (e.g., because
they are “blocked” on some resource other than processor
cycles or are not needed at the moment) are referenced in the
SLEEP queue. Kernel/dispatcher task manager 576 may, for
example, transition tasks between the RUN and SWAP
queues based upon a “round-robin” scheduling algorithm
that selects the next task waiting for service, swaps in any
pieces that need to be paged in, and executes the task.
Kernel/dispatcher 552 task manager 576 may transition
tasks between the SLEEP queue and the “awake” (i.e., RUN
or SWAP) queues as needed.

When two or more tasks try to write to the same data
structure in a multi-tasking environment, a situation exists
that may result in “deadly embrace” or “task starvation.” A
“multi-threaded” tasking arrangement may be used to pre-
vent “deadly embrace” or “task starvation” from happening.
The preferred embodiment kernel/dispatcher 552 may sup-
port “single threaded” or “multi-threaded” tasking.

In single threaded applications, the kernel/dispatcher 552
“locks” individual data structures as they are loaded. Once
locked, no other SPE 503 task may load them and will
“block” waiting for the data structure to become available.
Using a single threaded SPE 503 may, as a practical matter,
limit the ability of outside vendors to create load modules
1100 since there can be no assurance that they will not cause
a “deadly embrace” with other VDE processes about which
outside vendors may know little or nothing. Moreover, the
context swapping of a partially updated record might destroy
the integrity of the system, permit unmetered use, and/or
lead to deadlock. In addition, such “locking” imposes a
potentially indeterminate delay into a typically time critical
process, may limit SPE 503 throughput, and may increase
overhead.

This issue notwithstanding, there are other significant
processing issues related to building single-threaded ver-
sions of SPE 503 that may limit its usefulness or capabilities
under some circumstances. For example, multiple concur-
rently executing tasks may not be able to process using the
same often-needed data structure in a single-threaded SPE
503. This may effectively limit the number of concurrent
tasks to one. Additionally, single-threadedness may elimi-
nate the capability of producing accurate summary budgets
based on a number of concurrent tasks since multiple
concurrent tasks may not be able to effectively share the
same summary budget data structure. Single-threadedness
may also eliminate the capability to support audit processing
concurrently with other processing. For example, real-time
feed processing might have to be shut down in order to audit
budgets and meters associated with the monitoring process.

One way to provide a more workable “single-threaded”
capability is for kernel/dispatcher 552 to use virtual page
handling algorithms to track “dirty pages” as data areas are
written to. The “dirty pages” can be swapped in and out with
the task swap block as part of local data associated with the
swap block. When a task exits, the “dirty pages” can be
merged with the current data structure (possibly updated by
another task for SPU 500) using a three-way merge algo-
rithm (i.e., merging the original data structure, the current
data structure, and the “dirty pages” to form a new current
data structure). During the update process, the data structure
can be locked as the pages are compared and swapped. Even
though this virtual paging solution might be workable for
allowing single threading in some applications, the vendor
limitations mentioned above may limit the use of such single

Page 00206

Page 00207

5,915,019

109

threaded implementations in some cases to dedicated hard-
ware. Any implementation that supports multiple users (e.g.,
“smart home” set tops, many desk tops and certain PDA
applications, etc.) may hit limitations of a single threaded
device in certain circumstances.

It is preferable when these limitations are unacceptable to
use a full “multi-threaded” data structure write capabilities.
For example, a type of “two-phase commit” processing of
the type used by database vendors may be used to allow data
structure sharing between processes. To implement this
“two-phase commit” process, each swap block may contain
page addresses for additional memory blocks that will be
used to store changed information. A change page is a local
copy of a piece of a data element that has been written by an
SPE process. The changed page(s) references associated
with a specific data structure are stored locally to the swap
block in the preferred embodiment.

For example, SPE 503 may support two (change pages)
per data structure. This limit is easily alterable by changing
the size of the swap block structure and allowing the update
algorithm to process all of the changed pages. The “commit”
process can be invoked when a swap block that references
changed pages is about to be discarded. The commit process
takes the original data element that was originally loaded
(e.g., UDEO), the current data element (e.g., UDEn) and the
changed pages, and merges them to create a new copy of the
data element (e.g., UDEn+1). Differences can be resolved by
the DTD interpreter 590 using a DTD for the data element.
The original data element is discarded (e.g., as determined
by its DTD use count) if no other swap block references it.

B. Kernel/Dispatcher Memory Management
Memory manager 578 and virtual memory manager 580

in the preferred embodiment manage ROM 532 and RAM
534 memory within SPU 500 in the preferred embodiment.
Virtual memory manager 580 provides a fully “virtual”
memory system to increase the amount of “virtual” RAM
available in the SPE secure execution space beyond the
amount of physical RAM 534a provided by SPU 500.
Memory manager 578 manages the memory in the secure
execution space, controlling how it is accessed, allocated
and deallocated. SPU MMU 540, if present, supports virtual
memory manager 580 and memory manager 578 in the
preferred embodiment. In some “minimal” configurations of
SPU 500 there may be no virtual memory capability and all
memory management functions will be handled by memory
manager 578. Memory management can also be used to help
enforce the security provided by SPE 503. In some classes
of SPUs 500, for example, the kernel memory manager 578
may use hardware memory management unit (MMU) 540 to
provide page level protection within the SPU 500. Such a
hardware-based memory management system provides an
effective mechanism for protecting VDE component assem-
blies 690 from compromise by “rogue” load modules.

In addition, memory management provided by memory
manager 578 operating at least in part based on hardware-
based MMU 540 may securely implement and enforce a
memory architecture providing multiple protection domains.
In such an architecture, memory is divided into a plurality of
domains that are largely isolated from each other and share
only specific memory areas under the control of the memory
manager 578. An executing process cannot access memory
outside its domain and can only communicate with other
processes through services provided by and mediated by
privileged kernel/dispatcher software 552 within the SPU
500. Such an architecture is more secure if it is enforced at

least in part by hardware within MMU 540 that cannot be
modified by any software-based process executing within
SPU 500.

10

15

20

25

30

35

40

45

50

55

60

65

110

In the preferred embodiment, access to services imple-
mented in the ROM 532 and to physical resources such as
NVRAM 534b and RTC 528 are mediated by the combina-
tion of privileged kernel/dispatcher software 552 and hard-
ware within MMU 540. ROM 532 and RTC 528 requests are
privileged in order to protect access to critical system
component routines (e.g., RTC 528).

Memory manager 578 is responsible for allocating and
deallocating memory; supervising sharing of memory
resources between processes; and enforcing memory access/
use restriction. The SPE kernel/dispatcher memory manager
578 typically initially allocates all memory to kernel 552,
and may be configured to permit only process-level access
to pages as they are loaded by a specific process. In one
example SPE operating system configuration, memory man-
ager 578 allocates memory using a simplified allocation
mechanism. A list of each memory page accessible in SPE
503 may be represented using a bit map allocation vector, for
example. In a memory block, a group of contiguous memory
pages may start at a specific page number. The size of the
block is measured by the number of memory pages it spans.
Memory allocation may be recorded by setting/clearing the
appropriate bits in the allocation vector.

To assist in memory management functions, a “dope
vector,” may be prepended to a memory block. The “dope
vector” may contain information allowing memory manager
578 to manage that memory block. In its simplest form, a
memory block may be structured as a “dope vector” fol-
lowed by the actual memory area of the block. This “dope
vector” may include the block number, support for dynamic
paging of data elements, and a marker to detect memory
overwrites. Memory manager 578 may track memory blocks
by their block number and convert the block number to an
address before use. All accesses to the memory area can be
automatically offset by the size of the “dope vector” during
conversion from a block memory to a physical address.
“Dope vectors” can also be used by virtual memory manager
580 to help manage virtual memory.

The ROM 532 memory management task performed by
memory manager 578 is relatively simple in the preferred
embodiment. All ROM 532 pages may be flagged as “read
only” and as “non-pagable.” EEPROM 532B memory man-
agement may be slightly more complex since the “burn
count” for each EEPROM page may need to be retained.
SPU EEPROM 532B may need to be protected from all
uncontrolled writes to conserve the limited writable lifetime

of certain types of this memory. Furthermore, EEPROM
pages may in some cases not be the same size as memory
management address pages.

SPU NVRAM 534b is preferably battery backed RAM
that has a few access restrictions. Memory manager 578 can
ensure control structures that must be located in NVRAM

534b are not relocated during “garbage collection” pro-
cesses. As discussed above, memory manager 578 (and
MMU 540 if present) may protect NVRAM 534b and RAM
534a at a page level to prevent tampering by other processes.

Virtual memory manager 580 provides paging for pro-
grams and data between SPU external memory and SPU
internal RAM 534a. It is likely that data structures and
executable processes will exceed the limits of any SPU 500
internal memory. For example, PERCs 808 and other fun-
damental control structures may be fairly large, and “bit map
meters” may be, or become, very large. This eventuality may
be addressed in two ways:

(1) subdividing load modules 1100; and
(2) supporting virtual paging.
Load modules 1100 can be “subdivided” in that in many

instances they can be broken up into separate components

Page 00207

Page 00208

5,915,019

111

only a subset of which must be loaded for execution. Load
modules 1100 are the smallest pagable executable element in
this example. Such load modules 1100 can be broken up into
separate components (e.g., executable code and plural data
description blocks), only one of which must be loaded for
simple load modules to execute. This structure permits a
load module 1100 to initially load only the executable code
and to load the data description blocks into the other system
pages on a demand basis. Many load modules 1100 that have
executable sections that are too large to fit into SPU 500 can
be restructured into two or more smaller independent load
modules. Large load modules may be manually “split” into
multiple load modules that are “chained” together using
explicit load module references.

Although “demand paging” can be used to relax some of
these restrictions, the preferred embodiment uses virtual
paging to manage large data structures and executables.
Virtual Memory Manager 580 “swaps” information (e.g.,
executable code and/or data structures) into and out of SPU
RAM 534a, and provides other related virtual memory
management services to allow a full virtual memory man-
agement capability. Virtual memory management may be
important to allow limited resource SPU 500 configurations
to execute large and/or multiple tasks.

C. SPE Load Module Execution Manager 568
The SPE (HPE) load module execution manager

(“LMEM”) 568 loads executables into the memory managed
by memory manager 578 and executes them. LMEM 568
provides mechanisms for tracking load modules that are
currently loaded inside the protected execution environment.
LMEM 568 also provides access to basic load modules and
code fragments stored within, and thus always available to,
SPE 503. LMEM 568 may be called, for example, by load
modules 1100 that want to execute other load modules.

In the preferred embodiment, the load module execution
manager 568 includes a load module executor (“program
loader”) 570, one or more internal load modules 572, and
library routines 574. Load module executor 570 loads
executables into memory (e.g., after receiving a memory
allocation from memory manager 578) for execution. Inter-
nal load module library 572 may provide a set of commonly
used basic load modules 1100 (stored in ROM 532 or
NVRAM 534b, for example). Library routines 574 may
provide a set of commonly used code fragments/routines
(e.g., bootstrap routines) for execution by SPE 503.

Library routines 574 may provide a standard set of library
functions in ROM 532. A standard list of such library
functions along with their entry points and parameters may
be used. Load modules 1100 may call these routines (e.g.,
using an interrupt reserved for this purpose). Library calls
may reduce the size of load modules by moving commonly
used code into a central location and permitting a higher
degree of code reuse. All load modules 1100 for use by SPE
503 are preferably referenced by a load module execution
manager 568 that maintains and scans a list of available load
modules and selects the appropriate load module for execu-
tion. If the load module is not present within SPE 503, the
task is “slept” and LMEM 568 may request that the load
module 1100 be loaded from secondary storage 562. This
request may be in the form of an RPC call to secure database
manager 566 to retrieve the load module and associated data
structures, and a call to encrypt/decrypt manager 556 to
decrypt the load module before storing it in memory allo-
cated by memory manager 578.

In somewhat more detail, the preferred embodiment
executes a load module 1100 by passing the load module
execution manager 568 the name (e.g., VDE ID) of the

10

15

20

25

30

35

40

45

50

55

60

65

112
desired load module 1100. LMEM 568 first searches the list

of “in memory” and “built-in” load modules 572. If it cannot
find the desired load module 1100 in the list, it requests a
copy from the secure database 610 by issuing an RPC
request that may be handled by ROS secure database man-
ager 744 shown in FIG. 12. Load module execution manager
568 may then request memory manager 578 to allocate a
memory page to store the load module 1100. The load
module execution manager 568 may copy the load module
into that memory page, and queue the page for decryption
and security checks by encrypt/decrypt manager 556 and
key and tag manager 558. Once the page is decrypted and
checked, the load module execution manager 568 checks the
validation tag and inserts the load module into the list of
paged in modules and returns the page address to the caller.
The caller may then call the load module 1100 directly or
allow the load module execution module 570 to make the
call for it.

FIG. 15a shows a detailed example of a possible format
for a channel header 596 and a channel 594 containing
channel detail records 594(1), 594(2), . . . 594(N). Channel
header 596 may include a channel ID field 597(1), a user ID
field 597(2), an object ID field 597(3), a field containing a
reference or other identification to a “right” (i.e., a collection
of events supported by methods referenced in a PERC 808
and/or “user rights table” 464) 597(4), an event queue
597(5), and one or more fields 598 that cross-reference
particular event codes with channel detail records (“CDRs”).
Channel header 596 may also include a “jump” or reference
table 599 that permits addressing of elements within an
associated component assembly or assemblies 690. Each
CDR 594(1), . . . 594(N) corresponds to a specific event
(event code) to which channel 594 may respond. In the
preferred embodiment, these CDRs may include explicitly
and/or by reference each method core 1000' (or fragment
thereon, load module 1100 and data structure(s) (e.g., URT,
UDE 1200 and/or MDE 1202) needed to process the corre-
sponding event. In the preferred embodiment, one or more
of the CDRs (e.g., 594(1)) may reference a control method
and a URT 464 as a data structure.

FIG. 15b shows an example of program control steps
performed by SPE 503 to “open” a channel 594 in the
preferred embodiment. In the preferred embodiment, a chan-
nel 594 provides event processing for a particular VDE
object 300, a particular authorized user, and a particular
“right” (i.e., type of event). These three parameters may be
passed to SPE 503. Part of SPE kernel/dispatcher 552
executing within a “channel 0” constructed by low level
services 582 during a “bootstrap” routine may respond
initially to this “open channel” event by allocating an
available channel supported by the processing resources of
SPE 503 (block 1125). This “channel 0” “open channel” task
may then issue a series of requests to secure database
manager 566 to obtain the “blueprint” for constructing one
or more component assemblies 690 to be associated with
channel 594 (block 1127). In the preferred embodiment, this
“blueprint” may comprise a PERC 808 and/or URT 464. In
may be obtained by using the “Object, User, Right” param-
eters passed to the “open channel” routine to “chain”
together object registration table 460 records, user/object
table 462 records, URT 464 records, and PERC 808 records.
This “open channel” task may preferably place calls to key
and tag manager 558 to validate and correlate the tags
associated with these various records to ensure that they are
authentic and match. The preferred embodiment process
then may write appropriate information to channel header
596 (block 1129). Such information may include, for

Page 00208

Page 00209

5,915,019

113

example, User ID, Object ID, and a reference to the “right”
that the channel will process. The preferred embodiment
process may next use the “blueprint” to access (e.g, the
secure database manager 566 and/or from load module
execution manager library(ies) 568) the appropriate “control
method”that may be used to, in effect, supervise execution
of all of the other methods 1000 within the channel 594

(block 1131). The process may next “bind” this control
method to the channel (block 1133), which step may include
binding information from a URT 464 into the channel as a
data structure for the control method. The process may then
pass an “initialization” event into channel 594 (block 1135).
This “initialization” event may be created by the channel
services manager 562, the process that issued the original
call requesting a service being fulfilled by the channel being
built, or the control method just bound to the channel could
itself possibly generate an initialization event which it would
in effect pass to itself.

In response to this “initialization” event, the control
method may construct the channel detail records 594(1), . . .
594(N) used to handle further events other than the “initial-
ization” event. The control method executing “within” the
channel may access the various components it needs to
construct associated component assemblies 690 based on the
“blueprint” accessed at step 1127 (block 1137). Each of
these components is bound to the channel 594 (block 1139)
by constructing an associated channel detail record speci-
fying the method core(s) 1000', load module(s) 1100, and
associated data structures) (e.g., UDE(s) 1200 and/or MDE
(s) 1202) needed to respond to the event. The number of
channel detail records will depend on the number of events
that can be serviced by the “right,” as specified by the
“blueprint” (i.e., URT 464). During this process, the control
method will construct “swap blocks” to, in effect, set up all
required tasks and obtain necessary memory allocations
from kernel 562. The control method will, as necessary,
issue calls to secure database manager 566 to retrieve
necessary components from secure database 610, issue calls
to encrypt/decrypt manager 556 to decrypt retrieved
encrypted information, and issue calls to key and tag man-
ager 558 to ensure that all retrieved components are vali-
dated. Each of the various component assemblies 690 so
constructed are “bound” to the channel through the channel
header event code/pointer records 598 and by constructing
appropriate swap blocks referenced by channel detail
records 594(1), . . . 594(N). When this process is complete,
the channel 594 has been completely constructed and is
ready to respond to further events. As a last step, the FIG.
15b process may, if desired, deallocate the “initialization”
event task in order to free up resources.

Once a channel 594 has been constructed in this fashion,
it will respond to events as they arrive. Channel services
manager 562 is responsible for dispatching events to channel
594. Each time a new event arrives (e.g., via an RPC call),
channel services manager 562 examines the event to deter-
mine whether a channel already exists that is capable of
processing it. If a channel does exist, then the channel
services manager 562 passes the event to that channel. To
process the event, it may be necessary for task manager 576
to “swap in” certain “swappable blocks” defined by the
channel detail records as active tasks. In this way, executable
component assemblies 690 formed during the channel open
process shown in FIG. 15b are placed into active secure
execution space, the particular component assembly that is
activated being selected in response to the received event
code. The activated task will then perform its desired
function in response to the event.

10

15

20

25

30

35

40

45

50

55

60

65

114

To destroy a channel, the various swap blocks defined by
the channel detail records are destroyed, the identification
information in the channel header 596 is wiped clean, and
the channel is made available for re-allocation by the
“channel 0” “open channel” task.

D. SPE Interrupt Handlers 584
As shown in FIG. 13, kernel/dispatcher 552 also provides

internal interrupt handler(s) 584. These help to manage the
resources of SPU 500. SPU 500 preferably executes in either
“interrupt” or “polling” mode for all significant components.
In polling mode, kernel/dispatcher 552 may poll each of the
sections/circuits within SPU 500 and emulate an interrupt
for them. The following interrupts are preferably supported
by SPU 500 in the preferred embodiment:

“tick” of RTC 528

interrupt from bus interface 530

power fail interrupt

watchdog timer interrupt

interrupt from encrypt/decrypt engine 522

memory interrupt (e.g., from MMU 540).
When an interrupt occurs, an interrupt controller within

microprocessor 520 may cause the microprocessor to begin
executing an appropriate interrupt handler. An interrupt
handler is a piece of software/firmware provided by kernel/
dispatcher 552 that allows microprocessor 520 to perform
particular functions upon the occurrence of an interrupt. The
interrupts may be “vectored” so that different interrupt
sources may effectively cause different interrupt handlers to
be executed.

A “timer tick” interrupt is generated when the real-time
RTC 528 “pulses.” The timer tick interrupt is processed by
a timer tick interrupt handler to calculate internal device
date/time and to generate timer events for channel process-
ing.

The bus interface unit 530 may generate a series of
interrupts. In the preferred embodiment, bus interface 530,
modeled after a USART, generates interrupts for various
conditions (e.g., “receive buffer full,” “transmitter buffer
empty,” and “status word change”). Kernel/dispatcher 552
services the transmitter buffer empty interrupt by sending
the next character from the transmit queue to the bus
interface 530. Kernel/dispatcher interrupt handler 584 may
service the received buffer full interrupt by reading a
character, appending it to the current buffer, and processing
the buffer based on the state of the service engine for the bus
interface 530. Kernel/dispatcher 552 preferably processes a
status word change interrupt and addresses the appropriate
send/receive buffers accordingly.

SPU 500 generates a power fail interrupt when it detects
an imminent power fail condition. This may require imme-
diate action to prevent loss of information. For example, in
the preferred embodiment, a power fail interrupt moves all
recently written information (i.e., “dirty pages”) into non-
volatile NVRAM 534b, marks all swap blocks as “swapped
out,” and sets the appropriate power fail flag to facilitate
recovery processing. Kernel/dispatcher 552 may then peri-
odically poll the “power fail bit” in a status word until the
data is cleared or the power is removed completely.

SPU 500 in the example includes a conventional watch-
dog timer that generates watchdog timer interrupts on a
regular basis. A watchdog timer interrupt handler performs
internal device checks to ensure that tampering is not
occurring. The internal clocks of the watchdog timer and
RTC 528 are compared to ensure SPU 500 is not being
paused or probed, and other internal checks on the operation
of SPU 500 are made to detect tampering.

Page 00209

Page 00210

5,915,019

115

The encryption/decryption engine 522 generates an inter-
rupt when a block of data has been processed. The kernel
interrupt handler 584 adjusts the processing status of the
block being encrypted or decrypted, and passes the block to
the next stage of processing. The next block scheduled for
the encryption service then has its key moved into the
encrypt/decrypt engine 522, and the next cryptographic
process started.

A memory management unit 540 interrupt is generated
when a task attempts to access memory outside the areas
assigned to it. A memory management interrupt handler
traps the request, and takes the necessary action (e.g., by
initiating a control transfer to memory manager 578 and/or
virtual memory manager 580). Generally, the task will be
failed, a page fault exception will be generated, or appro-
priate virtual memory page(s) will be paged in.

E. Kernel/Dispatcher Low Level Services 582
Low level services 582 in the preferred embodiment

provide “low level” functions. These functions in the pre-
ferred embodiment may include, for example, power-on
initialization, device POST, and failure recovery routines.
Low level services 582 may also in the preferred embodi-
ment provide (either by themselves or in combination with
authentication manager/service communications manager
564) download response-challenge and authentication com-
munication protocols, and may provide for certain low level
management of SPU 500 memory devices such as EEPROM
and FLASH memory (either alone or in combination with
memory manager 578 and/or virtual memory manager 580).

F. Kernel/Dispatcher BIU Handler 586
BIU handler 586 in the preferred embodiment manages

the bus interface unit 530 (if present). It may, for example,
maintain read and write buffers for the BIU 530, provide
BIU startup initialization, etc.

G. Kernel/Dispatcher DTD Interpreter 590
DTD interpreter 590 in the preferred embodiment handles

data formatting issues. For example, the DTD interpreter
590 may automatically open data structures such as UDEs
1200 based on formatting instructions contained within
DTDs.

The SPE kernel/dispatcher 552 discussed above supports
all of the other services provided by SPE 503. Those other
services are discussed below.

II. SPU Channel Services Manager 562
“Channels” are the basic task processing mechanism of

SPE 503 (HPE 655) in the preferred embodiment. ROS 602
provides an event-driven interface for “methods.” A “chan-
nel” allows component assemblies 690 to service events. A
“channel” is a conduit for passing “events” from services
supported by SPE 503 (HPE 655) to the various methods and
load modules that have been specified to process these
events, and also supports the assembly of component assem-
blies 690 and interaction between component assemblies. In
more detail, “channel” 594 is a data structure maintained by
channel manager 593 that “binds” together one or more load
modules 1100 and data structures (e.g., UDEs 1200 and/or
MDEs 1202) into a component assembly 690. Channel
services manager 562 causes load module execution man-
ager 569 to load the component assembly 690 for execution,
and may also be responsible for passing events into the
channel 594 for response by a component assembly 690. In
the preferred embodiment, event processing is handled as a
message to the channel service manager 562.

FIG. 15 is a diagram showing how the preferred embodi-
ment channel services manager 562 constructs a “channel”
594, and also shows the relationship between the channel
and component assemblies 690. Briefly, the SPE channel

10

15

20

25

30

35

40

45

50

55

60

65

116

manager 562 establishes a “channel” 594 and an associated
“channel header” 596. The channel 594 and its header 596

comprise a data structure that “binds” or references elements
of one or more component assemblies 690. Thus, the chan-
nel 594 is the mechanism in the preferred embodiment that
collects together or assembles the elements shown in FIG.
11E into a component assembly 690 that may be used for
event processing.

The channel 594 is set up by the channel services manager
562 in response to the occurrence of an event. Once the
channel is created, the channel services manager 562 may
issue function calls to load module execution manager 568
based on the channel 594. The load module execution

manager 568 loads the load modules 1100 referenced by a
channel 594, and requests execution services by the kernel/
dispatcher task manager 576. The kernel/dispatcher 552
treats the event processing request as a task, and executes it
by executing the code within the load modules 1100 refer-
enced by the channel.

The channel services manager 562 may be passed an
identification of the event (e.g., the “event code”). The
channel services manager 562 parses one or more method
cores 1000' that are part of the component assembly(ies) 690
the channel services manager is to assemble. It performs this
parsing to determine which method(s) and data structure(s)
are invoked by the type of event. Channel manager 562 then
issues calls (e.g., to secure database manager 566) to obtain
the methods and data structure(s) needed to build the com-
ponent assembly 690. These called-for method(s) and data
structure(s) (e.g., load modules 1100, UDEs 1200 and/or
MDEs 1202) are each decrypted using encrypt/decrypt man-
ager 556 (if necessary), and are then each validated using
key and tag manager 558. Channel manager 562 constructs
any necessary “jump table” references to, in effect, “link” or
“bind” the elements into a single cohesive executable so the
load module(s) can reference data structures and any other
load module(s) in the component assembly. Channel man-
ager 562 may then issue calls to LMEM 568 to load the
executable as an active task.

FIG. 15 shows that a channel 594 may reference another
channel. An arbitrary number of channels 594 may be
created by channel manager 594 to interact with one another.

“Channel header” 596 in the preferred embodiment is (or
references) the data structure(s) and associated control
program(s) that queues events from channel event sources,
processes these events, and releases the appropriate tasks
specified in the “channel detail record” for processing. A
“channel detail record” in the preferred embodiment links an
event to a “swap bloc ” (i.e., task) associated with that
event. The “swap block” may reference one or more load
modules 1100, UDEs 1200 and private data areas required to
properly process the event. One swap block and a corre-
sponding channel detail item is created for each different
event the channel can respond to.

In the preferred embodiment, Channel Services Manager
562 may support the following (internal) calls to support the
creation and maintenance of channels 562:

Call Name Source Description

“Write Write Writes an event to the channel for response by
Event” the channel. The Write Event call thus permit

the caller to insert an event into the event

queue associated with the channel. The event
will be processed in turn by the channel 594.

“Bind Ioctl Binds an item to a channel with the

Page 00210

Page 00211

5,915,019

117
-continued

Call Name Source Description

Item” appropriate processing algorithm. The m
Itfl call permits the caller to bind a VDE
item ID to a channel (e.g., to create one or
more swap blocks associated with a channel).
This call may manipulate the contents of
individual swap blocks.
Unbinds an item from a channel with the

appropriate processing algorithm. The Unbind
Itfl call permits the caller to break the
binding of an item to a swap block. This call
may manipulate the contents of individual
swap blocks.

“Unbind
Item”

Ioctl

SPE RPC Manager 550
As described in connection with FIG. 12, the architecture

of ROS 602 is based on remote procedure calls in the
preferred embodiment. ROS 602 includes an RPC Manager
732 that passes RPC calls between services each of which
present an RPC service interface (“RSI”) to the RFC man-
ager. In the preferred embodiment, SPE 503 (HPE 655) is
also built around the same RPC concept. The SPE 503 (HPE
655) may include a number of internal modular service
providers each presenting an RSI to an RPC manager 550
internal to the SPE (HPE). These internal service providers
may communicate with each other and/or with ROS RPC
manager 732 (and thus, with any other service provided by
ROS 602 and with external services), using RPC service
requests.

RPC manager 550 within SPE 503 (HPE 655) is not the
same as RPC manager 732 shown in FIG. 12, but it performs
a similar function within the SPE (HPE): it receives RPC
requests and passes them to the RSI presented by the service
that is to fulfill the request. In the preferred embodiment,
requests are passed between ROS RPC manager 732 and the
outside world (i.e., SPE device driver 736) Via the SPE
(HPE) Kernel/Dispatcher 552. Kernel/Dispatcher 552 may
be able to service certain RPC requests itself, but in general
it passes received requests to RPC manager 550 for routing
to the appropriate service internal to the SPE (HPE). In an
alternate embodiment, requests may be passed directly
between the HPE, SPE, API, Notification interface, and
other external services instead of routing them through the
ROS RPC manager 732. The decision on which embodiment
to use is part of the scalability of the system; some embodi-
ments are more efficient than others under various traffic

loads and system configurations. Responses by the services
(and additional service requests they may themselves
generate) are provided to RPC Manager 550 for routing to
other service(s) internal or external to SPE 503 (HPE 655).

SPE RPC Manager 550 and its integrated service manager
uses two tables to dispatch remote procedure calls: an RPC
services table, and an optional RPC dispatch table. The RPC
services table describes where requests for specific services
are to be routed for processing. In the preferred embodiment,
this table is constructed in SPU RAM 534a or NVRAM

534b, and lists each RPC service “registered” within SPU
500. Each row of the RFC services table contains a service

ID, its location and address, and a control byte. In simple
implementations, the control byte indicates only that the
service is provided internally or externally. In more complex
implementations, the control byte can indicate an instance of
the service (e.g., each service may have multiple “instances”
in a multi-tasking environment). ROS RPC manager 732
and SPE 503 may have symmetric copies of the RFC
services table in the preferred embodiment. If an RPC
service is not found in the RFC services table, SPE 503 may
either reject it or pass it to ROS RPC manager 732 for
service.

10

15

20

25

30

35

40

45

50

55

60

65

118

The SPE RPC manager 550 accepts the request from the
RFC service table and processes that request in accordance
with the internal priorities associated with the specific
service. In SPE 503, the RFC service table is extended by an
RPC dispatch table. The preferred embodiment RPC dis-
patch table is organized as a list of Load Module references
for each RPC service supported internally by SPE 503. Each
row in the table contains a load module ID that services the

call, a control byte that indicates whether the call can be
made from an external caller, and whether the load module
needed to service the call is permanently resident in SPU
500. The RPC dispatch table may be constructed in SPU
ROM 532 (or EEPROM) when SPU firmware 508 is loaded
into the SPU 500. If the RFC dispatch table is in EEPROM,
it flexibly allows for updates to the services without load
module location and version control issues.

In the preferred embodiment, SPE RPC manager 550 first
references a service request against the RFC service table to
determine the location of the service manager that may
service the request. The RPC manager 550 then routes the
service request to the appropriate service manager for action.
Service requests are handled by the service manager within
the SPE 503 using the RFC dispatch table to dispatch the
request. Once the RFC manager 550 locates the service
reference in the RFC dispatch table, the load module that
services the request is called and loaded using the load
module execution manager 568. The load module execution
manager 568 passes control to the requested load module
after performing all required context configuration, or if
necessary may first issue a request to load it from the
external management files 610.

SPU Time Base Manager 554
The time base manager 554 supports calls that relate to the

real time clock (“RTC”) 528. In the preferred embodiment,
the time base manager 554 is always loaded and ready to
respond to time based requests.

The table below lists examples of basic calls that may be
supported by the time base manager 554:

Call Name Description

Independent requests

Get Time Returns the time (local, GMT, or ticks).Set time Sets the time in the RTC 528. Access to this

command may be restricted to a VDE
administrator.

Changes the time in the RTC 528. Access to
this command may be restricted to a VDE
administrator.

Adjust time

Set Time Set GMT/local time conversion and the
Parameter current and allowable magnitude of user

adjustments to RTC 528 time.
Channel Services Manager Requests

Bind Time Bind timer services to a channel as an event
source.

Unbind Unbind timer services from a channel as an
Time event source.

Set Alarm Sets an alarm notification for a specific time.
The user will be notified by an alarm event
at the time of the alarm. Parameters to this

request determine the event, frequency, and
requested processing for the alarm.

Clear Alarm Cancels a requested alarm notification.

SPU Encryption/Decryption Manager 556
The Encryption/Decryption Manager 556 supports calls

to the various encryption/decryption techniques supported
by SPE 503/HPE 655. It may be supported by a hardware-
based encryption/decryption engine 522 within SPU 500.

Page 00211

Page 00212

5,915,019

119

Those encryption/decryption technologies not supported by
SPU encrypt/decrypt engine 522 may be provided by
encrypt/decrypt manager 556 in software. The primary bulk
encryption/decryption load modules preferably are loaded at
all times, and the load modules necessary for other algo-
rithms are preferably paged in as needed. Thus, if the
primary bulk encryption/decryption algorithm is DES, only
the DES load modules need be permanently resident in the
RAM 534a of SPE 503/HPE 655.

The following are examples of RFC calls supported by
Encrypt/Decrypt Manager 556 in the preferred embodiment:

Call Name Description

PK Encrypt Encrypt a block using a PK (public key)
algorithm.

PK Decrypt Decrypt a block using a PK algorithm.
DES Encrypt a block using DES.
Encrypt
DES Decrypt a block using DES.
Decrypt
RC—4 Encrypt a block using the RC-4 (or other
Encrypt bulk encryption) algorithm.
RC—4 Decrypt a block using the RC—4 (or other
Decrypt bulk encryption) algorithm.Initialize Initialize DES instance to be used.
DES
Instance
Initialize Initialize RC—4 instance to be used.
RC—4
Instance
Initialize Initialize MD5 instance to be used.
MD5
Instance
Process Process MD5 block.
MD5 Block

The call parameters passed may include the key to be
used; mode (encryption or decryption); any needed Initial-
ization Vectors; the desired cryptographic operating (e.g.,
type of feedback); the identification of the cryptographic
instance to be used; and the start address, destination
address, and length of the block to be encrypted or
decrypted.

SPU Key and Tag Manager 558

The SPU Key and Tag Manager 558 supports calls for key
storage, key and management file tag look up, key
convolution, and the generation of random keys, tags, and
transaction numbers.

The following table shows an example of a list of SPE/
HPE key and tag manager service 558 calls:

Call Name Description

Key Requests

Get Key Retrieve the requested key.
Set Key Set (store) the specified key.
Generate Key Generate a key (pair) for a specified algorithm.
Generate Generate a key using a specified convolution
Convoluted Key
Get Convolution

algorithm and algorithm parameter block.
Return the currently set (default) convolution

Algorithm parameters for a specific convolution algorithm.
Set Convolution Sets the convolution parameters for a specific
Algorithm convolution algorithm (calling routine must provide a

tag to read returned contents).
Tag Requests

Get Tag Get the validation (or other) tag for a specific VDEItem ID.

10

15

20

25

30

35

40

45

50

55

60

65

-continued

Call Name Description

Set Tag Set the validation (or other) tag for a specific VDEItem ID to a known value.

Calculate the “hash block number” for a specific VDE
Item ID.

Calculate Hash
Block Number

Set Hash Set the hash parameters and hash algorithm. Forces
Parameters a resynchronization of the hash table.
Get Hash Retrieve the current hash parameters/algorithm.Paramteters

Synchronize Synchronize the management files and rebuild the
Management hash block tables based on information found in the
Files tables. Reserved for VDE administrator.

Keys and tags may be securely generated within SPE 503
(HPE 655) in the preferred embodiment. The key generation
algorithm is typically specific to each type of encryption
supported. The generated keys may be checked for crypto-
graphic weakness before they are used. A request for Key
and Tag Manager 558 to generate a key, tag and/or trans-
action number preferably takes a length as its input param-
eter. It generates a random number (or other appropriate key
value) of the requested length as its output.

The key and tag manager 558 may support calls to retrieve
specific keys from the key storage areas in SPU 500 and any
keys stored external to the SPU. The basic format of the calls
is to request keys by key type and key number. Many of the
keys are periodically updated through contact with the VDE
administrator, and are kept within SPU 500 in NVRAM
534b or EEPROM because these memories are secure,
updatable and non-volatile.

SPE 503/HPE 655 may support both Public Key type keys
and Bulk Encryption type keys. The public key (PK) encryp-
tion type keys stored by SPU 500 and managed by key and
tag manager 558 may include, for example, a device public
key, a device private key, a PK certificate, and a public key
for the certificate. Generally, public keys and certificates can
be stored externally in non-secured memory if desired, but
the device private key and the public key for the certificate
should only be stored internally in an SPU 500 EEPROM or
NVRAM 534b. Some of the types of bulk encryption keys
used by the SPU 500 may include, for example, general-
purpose bulk encryption keys, administrative object private
header keys, stationary object private header keys, traveling
object private header keys, download/initialization keys,
backup keys, trail keys, and management file keys.

As discussed above, preferred embodiment Key and Tag
Manager 558 supports requests to adjust or convolute keys
to make new keys that are produced in a deterministic way
dependent on site and/or time, for example. Key convolution
is an algorithmic process that acts on a key and some set of
input parameterfs) to yield a new key. It can be used, for
example, to increase the number of keys available for use
without incurring additional key storage space. It may also
be used, for example, as a process to “age” keys by incor-
porating the value of real-time RTC 528 as parameters. It
can be used to make keys site specific by incorporating
aspects of the site ID as parameters.

Key and Tag Manager 558 also provides services relating
to tag generation and management. In the preferred
embodiment, transaction and access tags are preferably
stored by SPE 503 (HPE 655) in protected memory (e.g.,
within the NVRAM 534b of SPU 500). These tags may be
generated by key and tag manager 558. They are used to, for
example, check access rights to, validate and correlate data
elements. For example, they may be used to ensure compo-
nents of the secured data structures are not tampered with

Page 00212

Page 00213

5,915,019

121

outside of the SPU 500. Key and tag manager 558 may also
support a trail transaction tag and a communications trans-
action tag.

SPU Summary Services Manager 560

SPE 503 maintains an audit trail in reprogrammable
nonvolatile memory within the SPU 500 and/or in secure
database 610. This audit trail may consist of an audit
summary of budget activity for financial purposes, and a
security summary of SPU use. Wren a request is made to the
SPU, it logs the request as having occurred and then notes
whether the request succeeded or failed. All successful
requests maybe summed and stored by type in the SPU 500.
Failure information, including the elements listed below,
may be saved along with details of the failure:

Control Information Retained in
an SPE an Access Failures

Object IDUser ID

Type of failure
Time of failure

This information may be analyzed to detect cracking
attempts or to determine patterns of usage outside expected
(and budgeted) norms. The audit trail histories in the SPU
500 may be retained until the audit is reported to the
appropriate parties. This will allow both legitimate failure
analysis and attempts to cryptoanalyze the SPU to be noted.

Summary services manager 560 may store and maintain
this internal summary audit information. This audit infor-
mation can be used to check for security breaches or other
aspects of the operation of SPE 503. The event summaries
may be maintained, analyzed and used by SPE 503 (HPE
655) or a VDE administrator to determine and potentially
limit abuse of electronic appliance 600. In the preferred
embodiment, such parameters may be stored in secure
memory (e.g., within the NVRAM 534b of SPU 500).

There are two basic structures for which summary ser-
vices are used in the preferred embodiment. One (the “event
summary data structure”) is VDE administrator specific and
keeps track of events. The event summary structure may be
maintained and audited during periodic contact with VDE
administrators. The other is used by VDE administrators
and/or distributors for overall budget. A VDE administrator
may register for event summaries and an overall budget
summary at the time an electronic appliance 600 is initial-
ized. The overall budget summary may be reported to and
used by a VDE administrator in determining distribution of
consumed budget (for example) in the case of corruption of
secure management files 610. Participants that receive
appropriate permissions can register their processes (e.g.,
specific budgets) with summary services manager 560,
which may then reserve protected memory space (e.g.,
within NVRAM 534b) and keep desired use and/or access
parameters. Access to and modification of each summary
can be controlled by its own access tag.

The following table shows an example of a list of PPE
summary service manager 560 service calls:

Call Name Description

Create summary
info

Create a summary service if the user
has a “ticket” that permits her to
request this service.

10

15

20

25

30

35

40

45

50

55

60

65

122

-continued

Call Name Description

Return the current value of the

summary service. The caller must
present an appropriate tag (and/or
“ticket”) to use this request.
Set the value of a summary service.
Increment the specified summary
service (e.g., a scalar meter summary
data area). The caller must present
an appropriate tag (and/or “ticket”) to
use this request.
Destroy the specified summary
service if the user has a tag and/or
“ticket” that permits them to request
this service.

Get value

Set value
Increment

Destroy

In the preferred embodiment, the event summary data
structure uses a fixed event number to index into a look up
table. The look up table contains a value that can be
configured as a counter or a counter plus limit. Counter
mode may be used by VDE administrators to determine
device usage. The limit mode may be used to limit tampering
and attempts to misuse the electronic appliance 600.
Exceeding a limit will result in SPE 503 (HPE 655) refising
to service user requests until it is reset by a VDE adminis-
trator. Calls to the system wide event summary process may
preferably be built into all load modules that process the
events that are of interest.

The following table shows examples of events that may
be separately metered by the preferred embodiment event
summary data structure:

Event Type

Successful Initialization completed successfully.
Events User authentication accepted.

Communications established.

Channel loads set for specified values.
Decryption completed.
Key information updated.
New budget created or existing budget
updated.
New billing information generated or
existing billing updated.
New meter set up or existing meter
updated.
New PERC created or existing PERC
updated.
New objects registered.
Administrative objects successfully
processed.
Audit processed successfully.
All other events.
Initialization failed.
Authentication failed.

Communication attempt failed.
Request to load a channel failed.
Validation attempt unsuccessful.
Link to subsidiary item failed
correlation tag match.
Authorization attempt failed.
Decryption attempt failed.
Available budget insufficient to
complete requested procedure.
Audit did not occur.

Administrative object did not process
correctly.
Other failed events.

Failed Events

Another, “overall currency budget” summary data struc-
ture maintained by the preferred embodiment summary
services manager 560 allows registration of VDE electronic
appliance 600. The first entry is used for an overall currency

Page 00213

Page 00214

5,915,019

123

budget consumed value, and is registered by the VDE
administrator that first initializes SPE 503 (HPE 655). Cer-
tain currency consuming load modules and audit load mod-
ules that complete the auditing process for consumed cur-
rency budget may call the summary services manager 560 to
update the currency consumed value. Special authorized
load modules may have access to the overall currency
summary, while additional summaries can be registered for
by individual providers.

SPE Authentication Manager/Service
Communications Manager 564

The Authentication Manager/Serice Communications
Manager 564 supports calls for user password validation and
“ticket” generation and validation. It may also support
secure communications between SPE 503 and an external

node or device (e.g., a VDE administrator or distributor). It
may support the following examples of authentication-
related service requests in the preferred embodiment:

Call Name Description

User Services

Creates a new user and stores Name Services

Records (NSRs) for use by the Name Services
Manager 752.
Authenticates a user for use of the system. This
request lets the caller authenticate as a specific
user ID. Group membership is also
authenticated by this request. The
authentication returns a “ticket” for the user.
Deletes a user’s NSR and related records.

Ticket Services

Create User

Authenticate
User

Delete User

Generate Generates a “ticket” for use of one or more
Ticket services.
Authenticate Authenticates a “ticket.”
Ticket

Not included in the table above are calls to the secure
communications service. The secure communications ser-

vice provided by manager 564 may provide (e.g., in con-
junction with low-level services manager 582 if desired)
secure communications based on a public key (or others)
challenge-response protocol. This protocol is discussed in
further detail elsewhere in this document. Tickets identify
users with respect to the electronic appliance 600 in the case
where the appliance may be used by multiple users. Tickets
may be requested by and returned to VDE software appli-
cations through a ticket-granting protocol (e.g., Kerberos).
VDE components may require tickets to be presented in
order to authorize particular services.

SPE Secure Database Manager 566

Secure database manager 566 retrieves, maintains and
stores secure database records within secure database 610 on

memory external to SPE 503. Many of these secure database
files 610 are in encrypted form. All secure information
retrieved by secure database manager 566 therefore must be
decrypted by encrypt/decrypt manager 556 before use.
Secure information (e.g., records of use) produced by SPE
503 (HPE 655) which must be stored external to the secure
execution environment are also encrypted by encrypt/
decrypt manager 556 before they are stored via secure
database manager 566 in a secure database file 610.

For each VDE item loaded into SPE 503, Secure Database
manager 566 in the preferred embodiment may search a
master list for the VDE item ID, and then check the

10

15

20

25

30

35

40

45

50

55

60

65

124

corresponding transaction tag against the one in the item to
ensure that the item provided is the current item. Secure
Database Manager 566 may maintain list of VDE item ID
and transaction tags in a “hash structure” that can be paged
into SPE 503 to quickly locate the appropriate VDE item ID.
In smaller systems, a look up table approach may be used.
In either case, the list should be structured as a pagable
structure that allows VDE item ID to be located quickly.

The “hash based” approach may be used to sort the list
into “hash buckets” that may then be accessed to provide
more rapid and efficient location of ite ms in the list. In the
“hash based” approach, the VDE item IDs are “hashed”
through a subset of the full item ID and organized as pages
of the “hashed” table. Each “hashed” page may contain the
rest of the VDE item ID and current transaction tag for each
item associated with that page. The “hash” table page
number may be derived from the components of the VDE
item ID, such as distribution ID, item ID, site ID, user ID,
transaction tag, creator ID, type and/or version. The hashing
algorithm (both the algorithm itself and the parameters to be
hashed) may be configurable by a VDE administrator on a
site by site basis to provide optimum hash page use. An
example of a hash page structure appears below:

Field

Hash Page Header

Distributor ID
Item ID
Site ID
User ID

Transaction Tag
Hash Page Entry

Creator ID
Item ID

Type
Version

Transation Tag

In this example, each hash page may contain all of the
VDE item IDs and transaction tags for items that have
identical distributor ID, item ID, and user ID fields (site ID
will be fixed for a given electronic appliance 600). These
four pieces of information may thus be used as hash algo-
rithm parameters.

The “hash” pages may themselves be frequently updated,
and should carry transaction tags that are checked each time
a “hash” page is loaded. The transaction tag may also be
updated each time a “hash” page is written out.

As an alternative to the hash-based approach, if the
number of updatable items is kept small (such as in a
dedicated consumer electronic appliance 600), then assign-
ing each updatable item a unique sequential site record
number as part of its VDE item ID may allow a look up table
approach to be used. Only a small number of bytes of
transaction tag are needed per item, and a table transaction
tag for all frequently updatable items can be kept in pro-
tected memory such as SPU NVRAM 534b.

Random Value Generator Manager 565

Random Value Generator Manager 565 may generate
random values. If a hardware-based SPU random value

generator 542 is present, the Random Value Generator
Manager 565 may use it to assist in generating random
values.

Other SPE RPC Services 592

Other authorized RPC services may be included in SPU
500 by having them “register” themselves in the RFC

Page 00214

Page 00215

5,915,019

125

Services Table and adding their entries to the RPC Dispatch
Table. For example, one or more component assemblies 690
may be used to provide additional services as an integral part
of SPE 503 and its associated operating system. Requests to
services not registered in these tables will be passed out of
SPE 503 (HPE 655) for external servicing.

SPE 503 Performance Considerations

Performance of SPE 503 (HPE 655) is a function of:
complexity of the component assemblies used
number of simultaneous component assembly operations
amount of internal SPU memory available
speed of algorithm for block encryption/decryption
The complexity of component assembly processes along

with the number of simultaneous component assembly pro-
cesses is perhaps the primary factor in determining perfor-
mance. These factors combine to determine the amount of

code and data and must be resident in SPU 500 at any one
time (the minimum device size) and thus the number of
device size “chunks” the processes must be broken down
into. Segmentation inherently increases time size over sim-
pler models. Of course, feature limited versions of SPU 500
may be implemented using significantly smaller amounts of
RAM 534. “Aggregate” load modules as described above
may remove fexibility in configuring VDE structures and
also further limit the ability of participants to individually
update otherwise separated elements, but may result in a
smaller minimum device size. A very simple metering
version of SPU 500 can be constructed to operate with
minimal device resources.

The amount of RAM 534 internal to SPU 500 has more

impact on the performance of the SPE 503 than perhaps any
other aspect of the SPU. The flexible nature of VDE pro-
cesses allows use of a large number of load modules,
methods and user data elements. It is impractical to store
more than a small number of these items in ROM 532 within
SPU 500. Most of the code and data structures needed to

support a specific VDE process will need to be dynamically
loaded into the SPU 500 for the specific VDE process when
the process is invoked. The operating system within SPU
500 then may page in the necessary VDE items to perform
the process. The amount of RAM 534 within SPU 500 will
directly determine how large any single VDE load module
plus its required data can be, as well as the number of page
swaps that will be necessary to run a VDE process. The SPU
I/O speed, encryption/decryption speed, and the amount of
internal memory 532, 534 will directly affect the number of
page swaps required in the device. Insecure external
memory may reduce the wait time for swapped pages to be
loaded into SPU 500, but will still incur substantial
encryption/decryption penalty for each page.

In order to maintain security, SPE 503 must encrypt and
cryptographically seal each block being swapped out to a
storage device external to a supporting SPU 500, and must
similarly decrypt, verity the cryptographic seal for, and
validate each block as it is swapped into SPU 500. Thus, the
data movement and encryption/decryption overhead for
each swap block has a very large impact on SPE perfor-mance.

The performance of an SPU microprocessor 520 may not
significantly impact the performance of the SPE 503 it
supports. if the processor is not responsible for moving data
through the encrypt/decrypt engine 522.

VDE Secure Database 610

VDE 100 stores separately deliverable VDE elements in
a secure (e.g., encrypted) database 610 distributed to each

5

10

15

20

25

30

35

40

45

50

55

60

65

126

VDE electronic appliance 610. The database 610 in the
preferred embodiment may store and/or manage three basic
classes of VDE items:

VDE objects,

VDE process elements, and
VDE data structures.

The following table lists examples of some of the VDE
items stored in or managed by information stored in secure
database 610:

Class Brief Description

Objects Content Objects Provide a container for content.
Administrative Provide a container for information

Objects used to keep VDE 100 operating.
Traveling Objects Provide a container for content and

control information.

Smart Objects Provide a container for (user-
specified) processes and data.Process Method Cores Provide a mechanism to relate

Elements events to control mechanisms and

permissions.
Load Modules Secure (tamper-resistant) executable
(“LMs”) code.
Method Data Independently deliverable data
Elements structures used to control/customize
(“MDEs”) methods.

Data Permissions Permissions to use objects;
Structures Records (“PERCs”) “blueprints” to build component

assemblies.

User Data Basic data structure for storing
Elements information used in conjunction with
(“UDEs”) load modules.
Administrative Used by VDE node to maintain
Data Structures administrative information.

Each electronic appliance 600 may have an instance of a
secure database 610 that securely maintains the VDE items.
FIG. 16 shows one example of a secure database 610. The
secure database 610 shown in this example includes the
following VDE-protected items:

one or more PERCs 808;

methods 1000 (including static and dynamic method
“cores” 1000, and MDEs 1202);

Static UDEs 1200a and Dynamic UDEs 1200b; and
load modules 1100.

Secure database 610 may also include the following
additional data structures used and maintained for adminis-

trative purposes:

an “object registry” 450 that references an object storage
728 containing one or more VDE objects;

name service records 452; and

configuration records 454 (including site configuration
records 456 and user configuration records 458).

Secure database 610 in the preferred embodiment does
not include VDE objects 300, but rather references VDE
objects stored, for example, on file system 687 and/or in a
separate object repository 728. Nevertheless, an appropriate
“starting point” for understanding VDE-protected informa-
tion may be a discussion of VDE objects 300.

VDE Objects 300

VDE 100 provides a media independent container model
for encapsulating content. FIG. 17 shows an example of a
“logical” structure or format 800 for an object 300 provided
by the preferred embodiment.

The generalized “logical object” structure 800 shown in
FIG. 17 used by the preferred embodiment supports digital

Page 00215

Page 00216

5,915,019

127

content delivery over any currently used media. “Logical
object” in the preferred embodiment may refer collectively
to: content; computer software and/or methods used to
manipulate, record, and/or otherwise control use of said
content; and permissions, limitations, administrative control
information and/or requirements applicable to said content,
and/or said computer software and/or methods. Logical
objects may or may not be stored, and may or may not be
present in, or accessible to, any given electronic appliance
600. The content portion of a logical object may be orga-
nized as information contained in, not contained in, or
partially contained in one or more objects.

Briefly, the FIG. 17 “logical object” structure 800 in the
preferred embodiment includes a public header 802, private
header 804, a “private body” 806 containing one or more
methods 1000, permissions record(s) (PERC) 808 (which
may include one or more key blocks 810), and one or more
data blocks or areas 812. These elements may be “packaged”
within a “container” 302. This generalized, logical object
structure 800 is used in the preferred embodiment for
different types of VDE objects 300 categorized by the type
and location of their content.

The “container” concept is a convenient metaphor used to
give a name to the collection of elements required to make
use of content or to perform an administrative-type activity.
Container 302 typically includes identifying information,
control structures and content (e.g., a property or adminis-
trative data). The term “container” is often (e.g., Bento/
OpenDoc and OLE) used to describe a collection of infor-
mation stored on a computer system’s secondary storage
system(s) or accessible to a computer system over a com-
munications network on a “server’s” secondary storage
system. The “container” 302 provided by the preferred
embodiment is not so limited or restricted. In VDE 100,
there is no requirement that this information is stored
together, received at the same time, updated at the same
time, used for only a single object, or be owned by the same
entity. Rather, in VDE 100 the container concept is extended
and generalized to include real-time content and/or online
interactive content passed to an electronic appliance over a
cable, by broadcast, or communicated by other electronic
communication means.

Thus, the “complete” VDE container 302 or logical object
structure 800 may not exist at the user’s location (or any
other location, for that matter) at any one time. The “logical
object” may exist over a particular period of time (or periods
of time), rather than all at once. This concept includes the
notion of a “virtual container” where important container
elements may exist either as a plurality of locations and/or
over a sequence of time periods (which may or may not
overlap). Of course, VDE 100 containers can also be stored
with all required control structures and content together.
This represents a continuum: from all content and control
structures present in a single container, to no locally acces-
sible content or container speciiEc control structures.

Although at least some of the data representing the object
is typically encrypted and thus its structure is not
discernible, within a PPE 650 the object may be viewed
logically as a “container” 302 because its structure and
components are automatically and transparently decrypted.

A container model merges well with the event-driven
processes and ROS 602 provided by the preferred embodi-
ment. Under this model, content is easily subdivided into
small, easily manageable pieces, but is stored so that it
maintains the structural richness inherent in unencrypted
content. An object oriented container model (such as Bento/

10

15

20

25

30

35

40

45

50

55

60

65

128

OpenDoc or OLE) also provides many of the necessary
“hooks” for inserting the necessary operating system inte-
gration components, and for defining the various content
specific methods.

In more detail, the logical object structure 800 provided
by the preferred embodiment includes a public (or
unencrypted) header 802 that identifies the object and may
also identify one or more owners of rights in the object
and/or one or more distributors of the object. Private (or
encrypted) header 804 may include a part or all of the
information in the public header and further, in the preferred
embodiment, will include additional data for validating and
identifying the object 300 when a user attempts to register as
a user of the object with a service clearinghouse, VDE
administrator, or an SPU 500. Alternatively, information
identifying one or more rights owners and/or distributors of
the object may be located in encrypted fon within encrypted
header 804, along with any of said additional validating and
identifying data.

Each logical object structure 800 may also include a
“private body” 806 containing or referencing a set of meth-
ods 1000 (i.e., programs or procedures) that control use and
distribution of the object 300. The ability to optionally
incorporate different methods 1000 with each object is
important to making VDE 100 highly configurable. Methods
1000 perorm the basic function of deErning what users
(including, where appropriate, distributors, client
administrators, etc.), can and cannot do with an object 300.
Thus, one object 300 may come with relatively simple
methods, such as allowing unlimited viewing within a fixed
period of time for a fixed fee (such as the newsstand price
of a newspaper for viewing the newspaper for a period of
one week after the paper’s publication), while other objects
may be controlled by much more complicated (e.g., billing
and usage limitation) methods.

Logical object structure 800 shown in FIG. 17 may also
include one or more PERCs 808. PERCs 808 govern the use
of an object 300, specifying methods or combinations of
methods that must be used to access or otherwise use the

object or its contents. The permission records 808 for an
object may include key block(s) 810, which may store
decryption keys for accessing the content of the encrypted
content stored within the object 300.

The content portion of the object is typically divided into
portions called data blocks 812. Data blocks 812 may
contain any sort of electronic information, such as,
“content,” including computer programs, images, sound,
VDE administrative information, etc. The size and number
of data blocks 812 may be selected by the creator of the
property. Data blocks 812 need not all be the same size (size
may be influenced by content usage, database format, oper-
ating system, security and/or other considerations). Security
will be enhanced by using at least one key block 810 for each
data block 812 in the object, although this is not required.
Key blocks 810 may also span portions of a plurality of data
blocks 812 in a consistent or pseudo-random manner. The
spanning may provide additional security by applying one or
more keys to fragmented or seemingly random pieces of
content contained in an object 300, database, or other
information entity.

Many objects 300 that are distributed by physical media
and/or by “out of channel” means (e.g., redistributed after
receipt by a customer to another customer) might not include
key blocks 810 in the same object 300 that is used to
transport the content protected by the key blocks. This is
because VDE objects may contain data that can be elec-

Page 00216

Page 00217

5,915,019

129

tronicaly copied outside the confines of a VDE node. If the
content is encrypted, the copies will also be encrypted and
the copier cannot gain access to the content unless she has
the appropriate decryption key(s). FEor objects in which
maintaining security is particularly important, the permis-
sion records 808 and key blocks 810 will frequently be
distributed electronically, using secure communications
techniques (discussed below) that are controlled by the VDE
nodes of the sender and receiver. As a result, permission
records 808 and key blocks 810 will frequently, in the
preferred embodiment, be stored only on electronic appli-
ances 600 of registered users (and may themselves be
delivered to the user as part of a registration/initialization
process). In this instance, permission records 808 and key
blocks 810 for each property can be encrypted with a private
DES key that is stored only in the secure memory of am SPU
500, making the key blocks unusable on any other user’s
VDE node. Alternately, the key blocks 810 can be encrypted
with the end user’s public key, making those key blocks
usable only to the SPU 500 that stores the corresponding
private key (or other, acceptably secure, encryption/security
techniques can be employed).

In the preferred embodiment, the one or more keys used
to encrypt each permission record 808 or other management
information record will be changed every time the record is
updated (or after a certain one or more events). In this event,
the updated record is re-encrypted with new one or more
keys. Alternately, one or more of the keys used to encrypt
and decrypt management information may be “time aged”
keys that automatically become invalid after a period of
time. Combinations of time aged and other event triggered
keys may also be desirable; for example keys may change
after a certain number of accesses, and/or after a certain
duration of time or absolute point in time. The techniques
may also be used together for any given key or combination
of keys. The preferred embodiment procedure for construct-
ing time aged keys is a one-way convolution algorithm with
input parameters including user and site information as well
as a specified portion of the real time value provided by the
SzPU RTC 528. Other techniques for time aging may also be
used, including for example techniques that use only user or
site information, absolute points in time, and/or duration of
time related to a subset of activities related to using or
decrypting VDE secured content or the use of the VDE
system.

VDE 100 supports many different types of “objects” 300
having the logical object structure 800 shown in FIG. 17.
Objects may be classified in one sense based on whether the
protection information is bound together with the protected
information. For example, a container that is bound by its
control(s) to a speciiEc VDE node is called a “stationary
object” (see FIG. 18). A container that is not bound by its
control information to a specific VDE node but rather carries
sufficient control and permissions to permit its use, in whole
or in part, at any of several sites is called a “Traveling
Object” (see FIG. 19).

Objects may be classified in another sense based on the
nature of the information they contain. A container with
information content is called a “Content Object” (see FIG.
20). A container that contains transaction information, audit
trails, VDE structures, and/or other VDE control/
administrative information is called an “Administrative

Object” (see FIG. 21). Some containers that contain execut-
able code operating under VDE control (as opposed to being
VDE control information) are called “Smart Objects.” Smart
Objects support user agents and provide control for their
execution at remote sites. There are other categories of

10

15

20

25

30

35

40

45

50

55

60

65

130

objects based upon the location, type and access mechanism
associated with their content, that can include combinations
of the types mentioned above. Some of these objects sup-
ported by VDE 100 are described below. Some or all of the
data blocks 812 shown in FIG. 17 mxay include “embedded”
content, administrative, stationary, traveling and/or other
objects.

1. Stationary Objects

FIG. 18 shows an example of a “Stationary Object”
structure 850 provided by the preferred embodiment. “Sta-
tionary Object” structure 850 is intended to be used only at
specific VDE electronic appliance/installations that have
received explicit permissions to use one or more portions of
the stationary object. Therefore, stationary object structure
850 does not contain a permissions record (PERC) 808;
rather, this permissions record is supplied and/or delivered
separately (e.g., at a different time, over a different path,
and/or by a different party) to the appliance/installation 600.
A common PERC 808 may be used with many different
stationary objects.

As shown in FIG. 18, public header 802 is preferably
“plaintext” (i.e., unencrypted). Private header 804 is pref-
erably encrypted using at least one of many “private header
keys.” Private header 804 preferably also includes a copy of
identification elements from public header 802, so that if the
identification information in the plaintext public header is
tampered with, the system can determine precisely what the
tamperer attempted to alter. Methods 1000 may be contained
in a section called the “private body” 806 in the form of
object local methods, load modules, and/or user data ele-
ments. This private body (method) section 806 is preferably
encrypted using one or more private body keys contained in
the separate permissions record 808. The data blocks 812
contain content (information or administrative) that may be
encrypted using one or more content keys also provided in
permissions record 808.

2. Traveling Objects

FIG. 19 shows an example of a “traveling object” struc-
ture 860 provided by the preferred embodiment. Traveling
objects are objects that carry with them sufficient informa-
tion to enable at least some use of at least a portion of their
content when they arrive at a VDE node.

Traveling object structure 860 may be the same as sta-
tionary object structure 850 shown in FIG. 18 except that the
traveling object structure includes a permissions record
(PERC) 808 within private header 804. The inclusion of
PERC 808 within traveling object structure 860 permits the
traveling object to be used at any VDE electronic appliance/
paricipant 600 (in accordance with the methods 1000 and the
contained PERC 808).

“Traveling” objects are a class of VDE objects 300 that
can specifically support “out of channel” distribution.
Therefore, they include key block(s) 810 and are transport-
able from one electronic appliance 600 to another. Traveling
objects may come with a quite limited usage related budget
so that a user may use, in whole or part, content (such as a
computer program, game, or database) and evaluate whether
to acquire a license or further license or purchase object
content. Alternatively, traveling object PERCs 808 may
contain or reference budget records with, for example:

(a) budget(s) reflecting previously purchased rights or
credit for future licensing or purchasing and enabling at
least one or more types of object content usage, and/or

(b) budget(s) that employ (and may debit) available
credit(s) stored on and managed by the local VDE node
in order to enable object content use, and/or

Page 00217

Page 00218

5,915,019

131

(c) budget(s) refecting one or more maximum usage
criteria before a report to a local VDE node (and,
optionally, also a report to a clearinghouse) is required
and which may be followed by a reset allowing further
usage, and/or modification of one or more of the
original one or more budget(s).

As with standard VDE objects 300, a user may be required
to contact a clearinghouse service to acquire additional
budgets if the user wishes to continue to use the traveling
object after the exhaustion of an available budget(s) or if the
traveling object (or a copy thereof) is moved to a different
electronic appliance and the new appliance does not have a
available credit budget(s) that corresponds to the require-
ments stipulated by permissions record 808.

For example, a traveling object PERC 808 may include a
reference to a required budget VDE 1200 or budget options
that may be found and/or are expected to be available. For
example, the budget VDE may reference a consumer’s
VISA, MC, AMEX, or other “generic” budget that may be
object independent and may be applied towards the use of a
certain or classes of traveling object content (for example
any movie object from a class of traveling objects that might
be Blockbuster Video rentals). The budget VDE itself may
stipulate one or more classes of objects it may be used with,
while an object may specifically reference a certain one or
more generic budgets. Under such circumstances, VDE
providers will typically make information available in such
a manner as to allow correct referencing and to enable
billing handling and resulting payments.

Traveling objects can be used at a receiving VDE node
electronic appliance 600 so long as either the appliance
carries the correct budget or budget type (e.g. sufficient
credit available from a clearinghouse such as a VISA
budget) either in general or for specific one or more users or
user classes, or so long as the traveling object itself carries
with it sufficient budget allowance or an appropriate autho-
rization (e.g., a stipulation that the traveling object may be
used on certain one or more installations or installation

classes or users or user classes where classes correspond to
a specific subset of installations or users who are represented
by a predefined class identifiers stored in a secure database
610). After receiving a traveling object, if the user (and/or
installation) doesn’t have the appropriate budget(s) and/or
authorizations, then the user could be informed by the
electronic appliance 600 (using information stored in the
traveling object) as to which one or more parties the user
could contact. The party or parties might constitute a list of
alternative clearinghouse providers for the traveling object
from which the user selects his desired contact).

As mentioned above, traveling objects enable objects 300
to be distributed “Out-Of—Channel;” that is, the object may
be distributed by an unauthorized or not explicitly autho-
rized individual to another individual. “Out of channel”

includes paths of distribution that allow, for example, a user
to directly redistribute an object to another individual. For
example, an object provider might allow users to redistribute
copies of an object to their firiends and associates (for
example by physical delivery of storage media or by deliv-
ery over a computer network) such that if a friend or
associate satis:ies any certain criteria required for use of said
object, he may do so.

For example, if a software program was distributed as a
traveling object, a user of the program who wished to supply
it or a usable copy of it to a friend would normally be free
to do so. Traveling Objects have great potential commercial
significance, since useful content could be primarily distrib-
uted by users and through bulletin boards, which would

10

15

20

25

30

35

40

45

50

55

60

65

132

require little or no distribution overhead apart from regis-
tration with the “original” content provider and/or clearing-
house.

The “out of channel” distribution may also allow the
provider to receive payment for usage and/or elsewise
maintain at least a degree of control over the redistributed
object. Such certain criteria might involve, for example, the
registered presence at a user’s VDE node of an authorized
third party financial relationship, such as a credit card, along
with sufficient available credit for said usage.

Thus, if the user had a VDE node, the user might be able
to use the traveling object if he had an appropriate, available
budget available on his VD node (and if necessary, allocated
to him), and/or if he or his VDE node belonged to a specially
authorized group of users or installations and/or if the
traveling object carried its own budget(s).

Since the content of the traveling object is encrypted, it
can be used only under authorized circumstances unless the
traveling object private header key used with the object is
broken—a potentially easier task with a traveling object as
compared to, for example, permissions and/or budget infor-
mation since many objects may share the same key, giving
a cryptoanalyst both more information in cyphertext to
analyze and a greater incentive to perform cryptoanalysis.

In the case of a “traveling object,” content owners may
distribute information with some or all of the key blocks 810
included in the object 300 in which the content is encapsu-
lated. Putting keys in distributed objects 300 increases the
exposure to attempts to defeat security mechanisms by
breaking or cryptoanalyzing the encryption algorithm with
which the private header is protected (e.g., by determining
the key for the header’s encryption). This breaking of
security would normally require considerable skill and time,
but if broken, the algorithm and key could be published so
as to allow large numbers of individuals who possess objects
that are protected with the same key(s) and algorithmas) to
illegally use protected information. As a result, placing keys
in distributed objects 300 may be limited to content that is
either “time sensitive” (has reduced value afer the passage of
a certain period of time), or which is somewhat limited in
value, or where the commercial value of placing keys in
objects (for example convenience to end-users, lower cost of
eliminating the telecommunication or other means for deliv-
ering keys and/or permissions information and/or the ability
to supporting objects going “out-of-channel”) exceeds the
cost of vulnerability to sophisticated hackers. As mentioned
elsewhere, the security of keys may be improved by employ-
ing convolution techniques to avoid storing “true” keys in a
traveling object, although in most cases using a shared secret
provided to most or all VDE nodes by a VDE administrator
as an input rather than site ID and/or time in order to allow
objects to remain independent of these values.

As shown in FIG. 19 and discussed above, a traveling
object contains a permissions record 808 that preferably
provides at least some budget (one, the other, or both, in a
general case). Permission records 808 can, as discussed
above, contain a key block(s) 810 storing important key
information. PERC 808 may also contain or refer to budgets
containing potentially valuable quantities/values. Such bud-
gets may be stored within a traveling object itself, or they
may be delivered separately and protected by highly secure
communications keys and administrative object keys and
management database techniques.

The methods 1000 contained by a traveling object will
typically include an installation procedure for “self regis-
tering” the object using the permission records 808 in the
object (e.g., a REGISTER method). This may be especially

Page 00218

Page 00219

5,915,019

133

usefil for objects that have time limited value, objects (or
properties) for which the end user is either not charged or is
charged only a nominal fee (e.g., objects for which adver-
tisers and/or information publishers are charged based on the
number of end users who actually access published
information), and objects that require widely available bud-
gets and may particularly benefit from out-of-channel dis-
tribution (e.g., credit card derived budgets for objects con-
taining properties such as movies, software programs,
games, etc.). Such traveling objects may be supplied with or
without contained budget UDEs.

One use of traveling objects is the publishing of software,
where the contained permission record(s) may allow poten-
tial customers to use the software in a demonstration mode,
and possibly to use the full program features for a limited
time before having to pay a license fee, or before having to
pay more than an initial trial fee. For example, using a time
based billing method and budget records with a small
pre-installed time budget to allow full use of the program for
a short period of time. Various control methods may be used
to avoid misuse of object contents. For example, by setting
the minimum registration interval for the traveling object to
an appropriately large period of time (e.g., a month, or six
months or a year), users are prevented from re-using the
budget records in the same traveling object.

Another method for controlling the use of traveling
objects is to include time-aged keys in the permission
records that are incorporated in the traveling object. This is
usefi generally for traveling objects to ensure that they will
not be used beyond a certain date without re-registration,
and is particularly useful for traveling objects that are
electronically distributed by broadcast, network, or telecom-
munications (including both one and two way cable), since
the date and time of delivery of such traveling objects aging
keys can be set to accurately correspond to the time the user
came into possession of the object.

Traveling objects can also be used to facilitate “moving”
an object from one electronic appliance 600 to another. A
user could move a traveling object, with its incorporated one
or more permission records 808 from a desktop computer,
for example, to his notebook computer. A traveling object
might register its user within itself and thereafter only be
useable by that one user. A traveling object might maintain
separate budget information, one for the basic distribution
budget record, and another for the “active” distribution
budget record of the registered user. In this way, the object
could be copied and passed to another potential user, and
then could be a portable object for that user.

Traveling objects can come in a container which contains
other objects. For example, a traveling object container can
include one or more content objects and one or more
administrative objects for registering the content obj ect(s) in
an end user’s object registry and/or for providing mecha-
nisms for enforcing permissions and/or other security func-
tions. Contained administrative object(s) may be used to
install necessary permission records and/or budget informa-
tion in the end user’s electronic appliance.

Content Objects

FIG. 20 shows an example of a VDE content object
structure 880. Generally, content objects 880 include or
provide information content. This “content” may be any sort
of electronic information. For example, content may
include: computer software, movies, books, music, informa-
tion databases, multimedia information, virtual reality
information, machine instructions, computer data files, com-
munications messages and/or signals, and other information,

10

15

20

25

30

35

40

45

50

55

60

65

134

at least a portion of which is used and/or manipulated by one
or more electronic appliances. VDE 100 can also be con-
figured for authenticating, controlling, and/or auditing elec-
tronic commercial transactions and communications such as

inter-bank transactions, electronic purchasing
communications, and the transmission of, auditing of, and
secure commercial archiving of, electronically signed con-
tracts and other legal documents; the information used for
these transactions may also be termed “content.” As men-
tioned above, the content need not be physically stored
within the object container but may instead be provided
separately at a diferent time (e.g., a real time feed over a
cable).

Content object structure 880 in the particular example
shown in FIG. 20 is a type of stationary object because it
does not include a PERC 808. In this example, content
object structure 880 includes, as at least part of its content
812, at least one embedded content object 882 as shown in
FIG. 6A. Content object structure 880 may also include an
administrative object 870. Thus, objects provided by the
preferred embodiment may include one or more “embed-
ded” objects.

Administrative Objects

FIG. 21 shows an example of an administrative object
structure 870 provided by the preferred embodiment. An
“administrative object” generally contains permissions,
administrative control information, computer sofware and/
or methods associated with the operation of VDE 100.
Administrative objects may also or alternatively contain
records of use, and/or other information used in, or related
to, the operation of VDE 100. An administrative object may
be distinguished from a content object by the absence of
VDE protected “content” for release to an end user for
example. Since objects may contain other objects, it is
possible for a single object to contain one or more content
containing objects and one or more administrative objects.
Administrative objects may be used to transmit information
between electronic appliances for update, usage reporting,
billing and/or control purposes. They contain information
that helps to administer VDE 100 and keep it operating
properly. Administrative objects generally are sent between
two VDE nodes, for example, a VDE clearinghouse service,
distributor, or client administrator and an end user’s elec-
tronic appliance 600.

Administrative object structure 870 in this example
includes a public header 802, private header 804 (including
a “PERC” 808) and a “private body” 806 containing meth-
ods 1000. Administrative object structure 870 in this par-
ticular example shown in FIG. 20 is a type of traveling
object because it contains a PERC 808, but the administra-
tive object could exclude the PERC 808 and be a stationary
object. Rather than storing information content, administra-
tive object structure 870 stores “administrative information
content” 872. Administrative information content 872 may,
for example, comprise a number of records 872a, 872b, . . .
87211 each corresponding to a different “event.” Each record
872a, 872b, . . . 87211 may include an “event” field 874, and
may optionally include a parameter field 876 and/or a data
field 878. These administrative content records 872 may be
used by VDE 100 to define events that may be processed
during the course of transactions, e.g., an event designed to
add a record to a secure database might include parameters
896 indicating how and where the record should be stored
and data field 878 containing the record to be added. In
another example, a collection of events may describe a
financial transaction between the creator(s) of an

Page 00219

Page 00220

5,915,019

135

administrative object and the recipient(s), such as a
purchase, a purchase order, or an invoice. Each event record
872 may be a set of instructions to be executed by the end
user’s electronic appliance 600 to make an addition or
modification to the end user’s secure database 610, for
example. Events can perform many basic management
functions, for example: add an object to the object registry,
including providing the associated user/group record(s),
rights records, permission record and/or method records;
delete audit records (by “rolling up” the audit trail informa-
tion into, for example, a more condensed, e.g. summary
form, or by actual deletion); add or update permissions
records 808 for previously registered objects; add or update
budget records; add or update user rights records; and add or
update load modules.

In the preferred embodiment, an administrative object
may be sent, for example, by a distributor, client
administrator, or, perhaps, a clearinghouse or other financial
service provider, to an end user, or, alternatively, for
example, by an object creator to a distributor or service
clearinghouse. Administrative objects, for example, may
increase or otherwise adjust budgets and/or permissions of
the receiving VDE node to which the administrative object
is being sent. Similarly, administrative objects containing
audit information in the data area 878 of an event record 872

can be sent ifrom end users to distributors, and/or clearing-
houses and/or client administrators, who might themselves
further transmit to object creators or to other participants in
the object’s chain of handling.

Methods

Methods 1000 in the preferred embodiment support many
of the operations that a user encounters in using objects and
communicating with a distributor. They may also specify
what method fields are displayable to a user (e.g., use events,
user request events, user response events, and user display
events). Additionally, if distribution capabilities are sup-
ported in the method, then the method may support distri-
bution activities, distributor communications with a user
about a method, method modification, what method fields
are displayable to a distributor, and any distribution database
checks and record keeping (e.g., distribution events, dis-
tributor request events, and distributor response events).

Given the generality of the existing method structure, and
the diverse array of possibilities for assembling methods, a
generalized structure may be used for establishing relation-
ships between methods. Since methods 1000 may be inde-
pendent of an object that requires themn during any given
session, it is not possible to define the relationships within
the methods themselves. “Control methods” are used in the

preferred embodiment to deiEne relationships between
methods. Control methods may be object specific, and may
accommodate an individual object’s requirements during
each session.

A control method of an object establishes relationships
between other methods. These relationships are parameter-
ized with explicit method identifiers when a record set
reflecting desired method options for each required method
is constructed during a registration process.

An “aggregate method” in the preferred embodiment
represents a collection of methods that may be treated as a
single unit. A collection of methods that are related to a
specific property, for example, may be stored in an aggregate
method. This type of aggregation is useful from an imple-
mentation point of view because it may reduce bookkeeping
overhead and may improve overall database efficiency. In

10

15

20

25

30

35

40

45

50

55

60

65

136

other cases, methods may be aggregated because they are
logically coupled. For example, two budgets may be linked
together because one of the budgets represents an overall
limitation, and a second budget represents the current limi-
tation available for use. This would arise if, for example, a
large budget is released in small amounts over time.

For example, an aggregate method that includes meter,
billing and budget processes can be used instead of three
separate methods. Such an aggregate method may reference
a single “load module” 1100 that performs all of the func-
tions of the three separate load modules and use only one
user data element that contains meter, billing and budget
data. Using an aggregate method instead of three separate
methods may minimize overall memory requirements, data-
base searches, decryptions, and the number of user data
element writes back to a secure database 610. The disad-

vantage of using an aggregate method instead of three
separate methods can be a loss of some flexibility on the part
of a provider and user in that various finctions may no longer
be independently replaceable.

FIG. 16 shows methods 1000 as being part of secure
database 610.

A “method” 1000 provided by the preferred embodiment
is a collection of basic instructions and information related

to the basic instructions, that provides context, data, require-
ments and/or relationships for use in performing, and/or
preparing to perform, the basic instructions in relation to the
operation of one or more electronic appliances 600. As
shown in FIG. 16, methods 1000 in the preferred embodi-
ment are represented in secure database 610 by:

method “cores” 1000';

Method Data Elements (MDEs) 1202;
User Data Elements (UDEs) 1200; and
Data Description Elements (DTDs).
Method “core” 1000' in the preferred embodiment may

contain or reference one or more data elements such as

MDEs 1202 and UDEs 1200. In the preferred embodiment,
MDEs 1202 and UDEs 1200 may have the same general
characteristics, the main difference between these two types
of data elements being that a UDE is preferably tied to a
particular method as well as a particular user or group of
users, whereas an MDE may be tied to a particular method
but may be user independent. These MDE and UDE data
structures 1200, 1202 are used in the preferred embodiment
to provide input data to methods 1000, to receive data
outputted by methods, or both. MDEs 1202 and UDEs 1200
may be delivered independently of method cores 1000' that
reference them, or the data structures may be delivered as
part of the method cores. For example, the method core
1000' in the preferred embodiment may contain one or more
MDEs 1202 and/or UDEs 1200 (or portions thereof).
Method core 1000' may, alternately or in addition, reference
one or more MDE and/or UDE data structures that are

delivered independently of method core(s) that reference
them.

Method cores 1000' in the preferred embodiment also
reference one or more “load modules” 1100. Load modules

1100 in the preferred embodiment comprise executable
code, and may also include or reference one or more data
structures called “data descriptor” (“DTD”) information.
This “data descriptor” information may, for example, pro-
vide data input information to the DTD interpreter 590.
DTDs may enable load modules 1100 to access (e.g., read
from and/or write to) the MDE and/or UDE data elements
1202, 1200.

Method cores 1000' may also reference one or more DTD
and/or MDE data structures that contain a textual description

Page 00220

Page 00221

5,915,019

137

of their operations suitable for inclusion as part of an
electronic contract. The references to the DTD and MDE

data structures may occur in the private header of the method
core 1000', or may be speciified as part of the event table
described below.

FIG. 22 shows an example of a format for a method core
1000' provided by the preferred embodiment. Amethod core
1000' in the preferred embodiment contains a method event
table 1006 and a method local data area 1008. Method event
table 1006 lists “events.” These “events” each reference

“load modules” 1100 and/or PERCs 808 that control pro-
cessing of an event. Associated with each event in the list is
any static data necessary to parameterize the load module
1000 or permissions record 808, and reference(s) into
method user data area 1008 that are needed to support that
event. The data that parameterizes the load module 1100 can
be thought of, in part, as a specific function call to the load
module, and the data elements corresponding to it may be
thought of as the input and/or output data for that specific
function call.

Method cores 1000' can be specific to a single user, or
they may be shared across a number of users (e.g., depend-
ing upon the uniqueness of the method core and/or the
speciiEc user data element). Specifically, each user/group
may have its own UDE 1200 and use a shared method core
1000'. This structure allows for lower database overhead

than when associating an entire method core 1000' with a
user/group. To enable a user to use a method, the user may
be sent a method core 1000' specifying a UDE 1200. If that
method core 1000' already exists in the site’s secure data-
base 610, only the UDE 1200 may need to be added.
Alternately, the method may create any required UDE 1200
at registration time.

The FIG. 22 example of a format for a method core 1000'
provided by the preferred embodiment includes a public
(unencrypted) header 802, a private (encrypted) header 804,
method event table 1006, and a method local data area 1008.

An example of a possible field layout for method core
1000' public header 802 is shown in the following table:

Field Type Description

Method ID Creator ID Site ID of creator of this method.

Distributor ID Distributor of this method (e.g.,
last change).

Type ID Constant, indicates method ”type.”
Method ID Unique sequence number for this

method.
Version ID Version number of this method.

Other Class ID ID to support different method
classification “classes.”

information Type ID ID to support method type
compatible searching.

Descriptive Description(s) Textual description(s) of theInformation method.

Event Summary Summary of event classes (e.g.,
USE) that this method supports.

An example of a possible field layout for private header
804 is shown below:

Field Type Description

Copy of Public Header 802 Method Method ID from Public Header
ID and “Other Classification
Information”

Descriptive # of Events # of events supported in this
Information method.

10

15

20

25

30

35

40

45

50

55

60

65

-continued

Field Type Description

Access and Access tag Tags used to determine if this
method is the correct method

under management by the SPU;
ensure that the method core

1000' is used only under
appropriate circumstances.
Optional Reference to DTD(s)
and/or MDE(s)Check value for Private Header
and method event table.
Check Value for Public Header

Reference Tags Validation tag
Correlation tag

Data Structure Reference

Check Value

Check Value for Public Header

Referring once again to FIG. 22, method event table 1006
may in the preferred embodiment include from 1 to N
method event records 1012. Each of these method event

records 1012 corresponds to a different event the method
1000 represented by method core 1000' may respond to.
Methods 1000 in the preferred embodiment may have com-
pletely different behavior depending upon the event they
respond to. For example, an AUDIT method may store
information in an audit trail UDE 1200 in response to an
event corresponding to a useres use of an object or other
resource. This same AUDIT method may report the stored
audit trail to a VDE administrator or other participant in
response to an administrative event such as, for example, a
timer expiring within a VDE node or a request from another
VDE participant to report the audit trail. In the preferred
embodiment, each of these different events may be repre-
sented by an “event code.” This “event code” may be passed
as a parameter to a method when the method is called, and
used to “look up” the appropriate method event record 1012
within method event table 1006. The selected method event

record 1012, in turn, specifies the appropriate information
(e.g., load module(s) 1100, data element UDE(s) and MDE
(s) 1200, 1202, and/or PERC(s) 808) used to construct a
component assembly 690 for execution in response to the
event that has occurred.

Thus, in the preferred embodiment, each method event
record 1012 may include an event field 1014, a LM/PERC
reference field 1016, and any number of data reference fields
1018. Event fields 1014 in the preferred embodiment may
contain a “event code” or other information identifying the
corresponding event. The LM/PERC reference field 1016
may provide a reference into the secure database 610 (or
other “pointer” information) identifying a load module 1100
and/or a PERC 808 providing (or referencing) executable
code to be loaded and executed to perform the method in
response to the event. Data reference fields 1018 may
include information referencing a UDE 1200 or a MDE
1202. These data structures may be contained in the method
local data area 1008 of the method core 1000', or they may
be stored within the secure database 610 as independent
deliverables.

The following table is an example of a possible more
detailed field layout for a method event record 1012:

Field Type Description

Event Field 1014 Identifies corresponding event.
Access tag Secret tag to grant access to this

row of the method event record.

LM/PERC DB ID or Database reference (or local pointer).
Reference offset/size
Field 1016 Correlation tag Correlation tag to assert when

referencing this element.

Page 00221

Page 00222

5,915,019

-continued

Field Type Description

#of Data Element Reference Count of data reference fields in the
Fields method event record.

Data UDE ID or Database 610 reference (or local
Reference offset/size pointer).
Field 1 Correlation tag Correlation tag to assert when

referencing this element.

Data UDE ID or Database 610 reference (or local
Reference offset/size pointer).
Field n Correlation tag Correlation tag to assert when

referencing this element.

Load Modules

FIG. 23 is an example of a load module 1100 provided by
the preferred embodiment. In general, load modules 1100
represent a collection of basic functions that are used for
control operations.

Load module 1100 contains code and static data (that is
functionally the equivalent of code), and is used to perform
the basic operations of VDE 100. Load modules 1100 will
generally be shared by all the control structures for all
objects in the system, though proprietary load modules are
also permitted. Load modules 1100 may be passed between
VDE participants in administrative object structures 870,
and are usually stored in secure database 610. They are
always encrypted and authenticated in both of these cases.
When a method core 1000' references a load module 1100,
a load module is loaded into the SPE 503, decrypted, and
then either passed to the electronic appliance microprocessor
for executing in an HBE 655 (if that is where it executes),
or kept in the SPE (if that is where it executes). If no SPE
503 is present, the load module may be decrypted by the
HPE 655 prior to its execution.

Load module creation by parties is preferably controlled
by a certification process or a ring based SPU architecture.
Thus, the process of creating new load modules 1100 is itself
a controlled process, as is the process of replacing, updating
or deleting load modules already stored in a secured data-
base 610.

A load module 1100 is able to perform its function only
when executed in the protected environment of an SPE 503
or an HPE 655 because only then can it gain access to the
protected elements (e.g., UDEs 1200, other load modules
1100) on which it operates. Initiation of load module execu-
tion in this environment is strictly controlled by a combi-
nation of access tags, validation tags, encryption keys,
digital signatures and/0r correlation tags. Thus, a load mod-
ule 1100 may only be referenced if the caller knows its ID
and asserts the shared secret correlation tag specific to that
load module. The decrypting SPU may match the identifi-
cation token and local access tag of a load module after
decryption. These techniques make the physical replacement
of any load module 1100 detectable at the next physical
access of the load module. Furthermore, load modules 1100
may be made “read only” in the preferred embodiment. The
read-only nature of load modules 1100 prevents the write-
back of load modules that have been tampered with in
non-secure space.

Load modules are not necessarily directly governed by
PERCs 808 that control them, nor must they contain any
time/date information or expiration dates. The only control
consideration in the preferred embodiment is that one or

10

15

20

25

30

35

40

45

50

55

60

65

140

more methods 1000 reference them using a correlation tag

(the value of a protected object created by the load module’s
owner, distributed to authorized parties for inclusion in their
methods, and to which access and use is controlled by one

or more PERCs 808). If a method core 1000' references a
load module 1100 and asserts the proper correlation tag (and
the load module satisfies the internal tamper checks for the

SPE 503), then that load module can be loaded and executed,
or it can be acquired from, shipped to, updated, or deleted
by, other systems.

As shown in FIG. 23, load modules 1100 in the preferred

embodiment may be constructed of a public (unencrypted)
header 802, a private (encrypted) header 804, a private body
1106 containing the encrypted executable code, and one or
more data description elements (“DTDs”) 1108. The DTDs
1108 may be stored within a load module 1100, or they may
be references to static data elements stored in secure data-
base 610.

The following is an example of a possible field layout for
load module public header 802:

Field Type Description

LM ID VDE ID of Load Module.
Site ID of creator of this load module.

Constant indicates load module type.
Unique sequence number for this load
module, which uniquely identifies the
load module in a sequence of load
modules created by an authorized
VDE participant.
Version number of this load module.

ID to support different load module
classes.

ID to support method type compatible
searching.
Textual description of the load
module
Value that describes what execution

space (e.g., SPE of HPE) this loadmodule.

Creator ID

Type ID
LM ID

Version ID
Other Class ID
classification

information Type ID

Descriptive
Information

Description

Execution space
code

Many load modules 100 contain code that executes in an
SPE 503. Some load modules 1100 contain code that
executes in an HPE 655. TIhis allows methods 1000 to

execute in whichever environment is appropriate. For
example, an INFORMATION method 1000 can be built to
execute only in SPE 503 secure space for government
classes of security, or in an HPE 655 for commercial
applications. As described above, the load module public
header 802 may contain an “execution space code” field that
indicates where the load module 1100 needs to execute. This

functionality also allows for diferent SPE instruction sets as
well as different user platforms, and allows methods to be
constructed without dependencies on the underlying load
module instruction set.

Load modules 1100 operate on three major data areas: the
stack, load module parameters, and data structures. The
stack and execution memory size required to execute the
load module 1100 are preferably described in private header
804, as are the data descriptions from the stack image on
load module call, return, and any return data areas. The stack
and dynamic areas are described using the same DTD
mechanism. The following is an example of a possible
layout for a load module private header 1104:

Page 00222

Page 00223

5,915,019

141

Field Type Description

Copy of some or all of informa-
tion from public header 802

Object ID from Public Header.

Other Check Value Check Value for Public Header.
classification
information

Descriptive LM Size Size of executable code block.
Information LM Exec Size Executable code size for the load

module.

LM Exec Stack Stack size required for the load module.
Execution space Code that describes the execution space
code or this load module.

Access and Access tag Tags used to determine if the load
reference Validation tag module is the correct LM requested by
tags he SPE.

Correlation tag Tag used to determine if the caller of
he LM has the right to execute thisLM.

Used to determine if the LM executable

content is intact and was created by a
rusted source (one with a correct certif-

icate for creating LMs).Number of DTDs that follow the code
alock.

If locally defined, the physical size and
offset in bytes of the first DTD defined
or this LM.

If publicly referenced DTD, this is the
DTD ID and the correlation tag to
3ermit access to the record.

Digital Signature

Data record DTD count

descriptor
information DTD 1 reference

DTD N reference If locally defined, the physical size and
offset in bytes of the Nth DTD defined
or this LM.

If publicly referenced DTD, this is the
DTD ID and the correlation tag to
3ermit access to the record.
Check Value for entire LM.

Check Value

Each load module 1100 also may use DTD 1108 infor-
mation to provide the information necessary to support
building methods from a load module. This DTD informa-
tion contains the definition expressed in a language such as
SGML for the names and data types of all of the method data
fieldss that the load module supports, and the acceptable
ranges of values that can be placed in the fields. Other DTDs
may describe the function of the load module 1100 in
English for inclusion in an electronic contract, for example.

The next section of load module 1100 is an encrypted
executable body 1106 that contains one or more blocks of
encrypted code. Load modules 1100 are preferably coded in
the “native” instruction set of their execution environment

for efficiency and compactness. SPU 500 and platform
providers may provide versions of the standard load mod-
ules 1100 in order to make their products cooperate with the
content in distribution mechanisms contemplated by VDE
100. The preferred embodiment creates and uses native
mode load modules 1100 in lieu of an interpreted or
“p-code” solution to optimize the performance of a limited
resource SPU. However, when sufficient SPE (or BPE)
resources exist and/0r platforms have sufficient resources,
these other implementation approaches may improve the
cross platform utility of load module code.

The following is an example of a field layout for a load
module DTD 1108:

Field Type Description

DTD ID Uses Object ID from Private Header.
Site ID of creator of this DTD.
Constant.

Create ID

Type ID

10

15

20

25

30

35

40

45

50

55

60

65

142

-continued

Field Type Description

DTD ID Unique sequence number for this DTD.
Version ID Version number of this DTD.

Descriptive DTD Size Size of DTD block.
Information

Access and Access tag Tags used to determine if the DTD is the
reference Validation tag correct DTD requested by the SPE.
tags Correlation tag Tag used to determine if the caller of this

DTD has the right to use the DTD.
DTD Body DTD Data Definition 1

DTD Data Definition 2

DTD Data Definition N
Check Value Check Value for entire DTD record.

Some examples of how load mnodules 1100 may use
DTDs 1108 include:

Increment data element (defined by name in DTD3) value
in data area DTD4 by value in DTD1

Set data element (defined by name in DTD3) value in data
area DTD4 to value in DTD3

Compute atomic element from event in DTD1 from table
in DTD3 and return in DTD2

Compute atomic element from event in DTD1 from
equlation in DTD3 and return in DTD2

Create load module from load module creation template
referenced in DTD3

Modify load module in DTD3 using content in DTD4
Destroy load module named in DTD3
Commonly used load modules 1100 may be built into a

SPU 500 as space permits. VDE processes that use built-in
load modules 1100 will have significantly better perfor-
mance than processes that have to find, load and decrypt
external load modules. The most useful load modules 1100

to build into a SPU might include scaler meters, fixed price
billing, budgets and load modules for aggregate methods
that perform these three processes.
User Data Elements (UDEs) 1200 and Method Data Ele-
ments (MDEs) 1202

User Data Elements (UDEs) 1200 and Method Data
Elements (MDEs) 1202 in the preferred embodiment store
data. There are many types of UDEs 1200 and MDEs 1202
provided by the preferred embodiment. In the preferred
embodiment, each of these diferent types of data structures
shares a common overall format including a common header
definition and naming scheme. Other UDEs 1200 that share
this common structure include “local name services records”

(to be explained shortly) and account information for con-
necting to other VDE participants. These elements are not
necessarily associated with an individual user, and may
therefore be considered MDEs 1202. All UDEs 1200 and all

MDEs 1202 provided by the preferred embodiment may, if
desired, (as shown in FIG. 16) be stored in a common
physical table within secure database 610, and database
access processes may commonly be used to access all of
these different types of data structures.

In the preferred embodiment, PERCs 808 and user rights
table records are types of UDE 1200. There are many other
types of UDEs 1200/MDEs 1202, including for example,
meters, meter trails, budgets, budget trails, and audit trails.
Different formats for these different types of UDEs/MDEs
are defined, as described above, by SGML defnitions con-
tained within DTDs 1108. Methods 1000 use these DTDs to

appropriately access UDEs/MDEs 1200, 1202.

Page 00223

Page 00224

5,915,019

143

Secure database 610 stores two types of items: static and
dynamic. Static data structures and other items are used for
information that is essentially static information. This
includes load modules 1100, PERCs 808, and many com-
ponents of methods. These items are not updated frequently
and contain expiration dates that can be used to prevent
“old” copies of the information from being substituted for
newly received items. These items may be encrypted with a
site specific secure database file key when they are stored in
the secure database 610, and then decrypted using that key
when they are loaded into the SPE.

Dynamic items are used to support secure items that must
be updated frequently. The UDEs 1200 of many methods
must be updated and written out of the SPE 503 after each
use. Meters and budgets are common examples of this.
Expiration dates cannot be used efectively to prevent sub-
stitution of the previous copy of a budget UDE 1200. To
secure these frequently updated items, a transaction tag is
generated and included in the encrypted item each time that
item is updated. A list of all VDE item IDs and the current
transaction tag for each item is maintained as part of the
secure database 610.

FIG. 24 shows an example of a user data element
(“UDE”) 1200 provided by the preferred embodiment. As
shown in FIG. 24, UDE 1200 in the preferred embodiment
includes a public header 802, a private header 804, and a
data area 1206. The layout for each of these user data
elements 1200 is generally defined by an SGML data
definition contained within a DTD 1108 associated with one

or more load modules 1100 that operate on the UDE 1200.
UDEs 1200 are preferably encrypted using a site specific

key once they are loaded into a site. This site-specific key
masks a validation tag that may be derived from a crypto-
graphically strong pseudo-random sequence by the SPE 503
and updated each time the record is written back to the
secure database 610. This technique provides reasonable
assurance that the UDE 1200 has not been tampered with nor
substituted when it is requested by the system for the nextuse.

Meters and budgets are perhaps among the most common
data structures in VDE 100. They are used to count and
record events, and also to limit events. The data structures
for each meter and budget are determined by the content
provider or a distributor/redistributor authorized to change
the information. Meters and budgets, however, generally
have common information stored in a common header

format (e.g., user ID, site ID and related identification
information).

The content provider or distributor/redistributor may
specify data structures for each meter and budget UDE.
Although these data structures vary depending upon the
particular application, some are more common than others.
The following table lists some of the more commonly
occurring data structures for METER and BUDGET meth-
ods:

Typical
Field type Format Use Description or Use

Ascending Use byte, short, long, Meter/ Ascending count of uses.
Counter or unsigned Budget

versions of the
same widths

Descending Use byte, short, long, Budget Descending count of
Counter or unsigned

versions of the
same widths

permitted use; eg.,
remaining budget.

5

10

15

20

25

30

35

40

45

50

55

60

65

144

-continued

Typica
Field type Format Use Description or Use

Counter/Limit 2, 4 or 8 byte Me er/ usage limits since a specific
integer split into Buc ge time; generally used in
two related bytes compound meter data
or words structures.

Bitmap Array bytes Me er/ Bi indicator of use or
Buc ge ownership.

Wide bitmap Array of bytes Me er/ Indicator of use or
Buc ge ownership that may age

wi h time.
Last Use Data timeit Me er/ Date of last use.

Buc ge
Start Date timeit Buc ge Date of first allowable use.
Expiration Date timeit Me er/ Exairation Date.

Buc ge
Last Audit timeit Me er/ Da e of last audit.
Date Buc ge
Next Audit timeit Me er/ Da e of next required
Date Buc ge auc it.
Auditor VDE ID Me er/ VDE ID of authorized

Buc ge auc itor.

The information in the table above is not complete or

comprehensive, but rather is intended to show some
examples of types of information that may be stored in meter
and budget related data structures. The actual structure of
particular meters and budgets is determined by one or more
DTDs 1108 associated with the load modules 1100 that

create and manipulate the data structure. A list of data types
permitted by the DTD interpreter 590 in VDE 100 is
extensible by properly authorized parties.

FIG. 25 shows an example of one particularly advanta-
geous kind of UDE 1200 data area 1206. This data area 1206
defines a “map” that may be used to record usage informa-
tion. For example, a meter method 1000 may maintain one
or more “usage map” data areas 1206. The usage map may
be a “usage bit map” in the sense that it stores one or more
bits of information (i.e., a single or multi-dimensional bit
image) corresponding to each of several types or categories
of usage. Usage maps are an efficient means for referencing
prior usage. For example, a usage map data area may be used
by a meter method 1000 to record all applicable portions of
information content that the user has paid to use, thus
supporting a very efficient and flexible means for allowing
subsequent user usage of the same portions of the informa-
tion content. This may enable certain VDE related security
functions such as “contiguousness,” “logical relatedness,”
randomization of usage, and other usage types. Usage maps
may be analyzed for other usage patterns (e.g., quantity
discounting, or for enabling a user to reaccess information
content for which the user previously paid for unlimited
usage).

The “usage map” concept provided by the preferred
embodiment may be tied to the concept of “atomic ele-
ments.” In the preferred embodiment, usage of an object 300
may be metered in terms of “atomic elements.” In the
preferred embodiment, an “atomic element” in the metering
context defines a unit of usage that is “sufficiently signifi-
cant” to be recorded in a meter. The definition of what

constitutes an “atomic element” is determined by the creator
of an object 300. For instance, a “byte” of information
content contained in an object 300 could be defined as an
“atomic element,” or a record of a database could be defined
as an “atomic element,” or each chapter of an electronically
published book could be defined as an “atomic element.”

An object 300 can have multiple sets of overlapping
atomic elements. For example, an access to any database in
a plurality of databases may be defined as an “atomic

Page 00224

Page 00225

5,915,019

145

element.”Simultaneously, an access to any record, field of
records, sectors of informations, and/or bytes contained in
any of the plurality of databases might also be defined as an
“atomic element.” In an electronically published newspaper,
each hundred words of an article could be defined as an

“atomic element,” while articles of more than a certain
length could be defined as another set of “atomic elements.”
Some portions of a newspaper (e.g., advertisements, the
classified section, etc.) might not be mapped into an atomic
element.

The preferred embodiment provides an essentially
unbounded ability for the object creator to define atomic
element types. Such atomic element definitions may be very
Eexible to accommodate a wide variety of diferent content
usage. Some examples of atomic element types supported by
the preferred embodiment include bytes, records, files,
sectors, objects, a quantity of bytes, contiguous or relatively
contiguous bytes (or other predefined unit types), logically
related bytes containing content that has some logical rela-
tionship by topic, location or other user specifiable logic of
relationship, etc. Content creators preferably may flexibly
define other types of atomic elements.

The preferred embodiment of the present invention pro-
vides EVENT methods to provide a mapping between usage
events and atomic elements. Generally, there may be an
EVENT method for each different set of atomic elements

defined for an object 300. In many cases, am object 300 will
have at least one type of atomic element for metering
relating to billing, and at least one other atomic element type
for non-billing related metering (e.g., used to, for example,
detect fraud, bill advertisers, and/or collect data on end user

usage activities).
In the preferred embodiment, each EVENT method in a

usage related context performs two functions: (1) it maps an
accessed event into a set of zero or more atomic elements,

and (2) it provides information to one or more METER
methods for metering object usage. The definition used to
define this mapping between access events and atomic
elements may be in the form of a mathematical definition, a
table, a load module, etc. When an EVENT method maps an
access request into “zero” atomic elements, a user accessed
event is not mapped into any atomic element based on the
particular atomic element definition that applies. This can
be, for example, the object owner is not interested in
metering usage based on such accesses (e.g., because the
object owner deems such accesses to be insignificant firom
a metering standpoint).

A“usage map” may employ a “bit map image” for storage
of usage history information in a highly efficient manner.
Individual storage elements in a usage map may correspond
to atomic elements. Different elements within a usage map
may correspond to different atomic elements (e.g., one map
element may correspond to number of bytes read, another
map element may correspond to whether or not a particular
chapter was opened, and yet another map element may
correspond to some other usage event).

One of the characteristics of a usage map provided by the
preferred embodiment of the present invention is that the
significance of a map element is specified, at least in part, by
the position of the element within the usage map. Thus, in
a usage map provided by the preferred embodiment, the
information indicated or encoded by a map element is a
function of its position (either physically or logically) within
the map structure. As one simple example, a usage map for
a twelve-chapter novel could consist of twelve elements, one
for each chapter of the novel. When the user opens the first
chapter, one or more bits within the element corresponding

10

15

20

25

30

35

40

45

50

55

60

65

146

to the first chapter could be changed in value (e.g., set to
“one”). In this simple example where the owner of the
content object containing the novel was interested only in
metering which chapters had been opened by the user, the
usage map element corresponding to a chapter could be set
to “one” the first time the user opened that corresponding
chapter, and could remain “one” no matter how many
additional times the user opened the chapter. The object
owner or other interested VDE participant would be able to
rapidly and eficienty tell which chapter(s) had been opened
by the user simply by examining the compact usage map to
determine which elements were set to “one.”

Suppose that the content object owner wanted to know
how many times the user had opened each chapter of the
novel. In this case, the usage map might comprise, for a
twelve-chapter novel, twelve elements each of which has a
one-to-one correspondence with a different one of the twelve
chapters of the novel. Each time a user opens a particular
chapter, the correspo nding METER method might incre-
ment the value contained in the corresponding usage map
element. In this way, an account could be readily maintained
for each of the chapters of the novel.

The position of elements within a usage map may encode
a multi-variable function. For example, the elements within
a usage map may be arranged in a two-dimensional array as
shown in FIG. 25B. Different array coordinates could cor-
respond to independent variables such as, for example,
atomic elements and time. Suppose, as an example, that a
content object owner distributes an object containing a
collection of audio recordings. Assume further that the
content object owner wants to track the number of times the
user listens to each recording within the collection, and also
wants to track usage based on month of the year. Thus,
assume that the content object owner wishes to know how
many times the user during the month of January listened to
each of the recordings on a recording-by-recording basis,
similarly wants to know this same information for the month
of February, March, etc. In this case, the usage map (see
FIG. 25B) might be defined as a two-dimensional array of
elements. One dimension of the array might encode audio
recording number. The other dimension of the array might
encode month of the year. During the month of January, the
corresponding METER method would increment elements
in the array in the “January” column of the array, selecting
which element to increment as a function of recording
number. When January comes to an end, the METER
method might cease writing into the array elements in the
January column, and instead write values into a further set
of February array elements—once again selecting the par-
ticular array element in this column as a function of record-
ing number. This concept may be extended to N dimensions
encoding N different variables.

Usage map meters are thus an efficient means for refer-
encing prior usage. They may be used to enable certain VDE
related security fiuctions such as testing for contiguousness
(including relative contiguousness), logical relatedness
(including relative logical relatedness), usage
randomization, and other usage patterns. For example, the
degree or character of the “randomness” of content usage by
a user might serve as a potential indicator of attempts to
circumvent VDE content budget limitations. A user or
groups of users might employ multiple sessions to extract
content in a manner which does not violate contiguousness,
logical relatedness or quantity limitations, but which nev-
ertheless enables reconstruction of a material portion or all
of a given, valuable unit of content. Usage maps can be
analyzed to determine other patterns of usage for pricing

Page 00225

Page 00226

5,915,019

147

such as, for example, quantity discounting after usage of a
certain quantity of any or certain atomic units, or for
enabling a user to reaccess an object for which the user
previously paid for unlimited accesses (or unlimited
accesses over a certain time duration). Other useful analyses
might include discounting for a given atomic unit for a
plurality of uses.

A further example of a map meter includes storing a
record of all applicable atomic elements that the user has
paid to use (or alternatively, has been metered as having
used, though payment may not yet have been required or
made). Such a usage map would support a very efficient and
flexible way to allow subsequent user usage of the same
atomic elements.

Afurther usage map could be maintained to detect fraudu-
lent usage of the same object. For example, the object might
be stored in such a way that sequential access of long blocks
should never occur. AMETER method could then record all

applicable atomic elements accesses during, for example,
any specified increment of time, such as ten minutes, an
hour, a day, a month, a year, or other time duration). The
usage map could be analyzed at the end of the specified time
increment to check for an excessively long contiguous set of
accessed blocks, and/or could be analyzed at the initiation of
each access to applicable atomic elements. After each time
duration based analysis, if no fraudulent use is detected, the
usage map could be cleared (or partially cleared) and the
mapping process could begin in whole or in part anew. If a
fraudulent use pattern is suspected or detected, that infor-
mation might be recorded and the use of the object could be
halted. For example, the user might be required to contact a
content provider who might then further analyze the usage
information to determine whether or not further access

should be permitted.
FIG. 25c shows a particular type of “wide bit map” usage

record 1206 wherein each entry in the usage record corre-
sponds to usage during a particular time period (e.g., current
month usage, last month’s usage, usage in the month before
last, etc.). The usage record shown thus comprises an array
of “flags” or fields 1206, each element in the array being
used to indicate usage in a diferent time period in this
particular example. When a time Ibe period ends, all ele-
ments 1206 in the array may be shifted one position, and
thus usage information (or the purchase of user access
rights) over a series of time periods can be reflected by a
series of successive array elements. In the specific example
shown in FIG. 256, the entire wide array 1206 is shifted by
one array position each month, with the oldest array element
being deleted and the new array element being “turned” in
a new array map corresponding to the current time period.
In this example, record 1302 tracks usage access rights
and/or other usage related activities during the present
calendar month as well for the five immediately prior
calendar months. Corresponding billing and/or billing
method 406 may inspect the map, determine usage as related
to billing and/or security monitoring for current usage based
on a formula that employs the usage data stored in the
record, and updates the wide record to indicate the appli-
cable array elements for which usage occurred or the like. A
wide bit map may also be used for many other purposes such
as maintaining an element by element count of usage, or the
contiguousness, relatedness, etc. function described above,
or some combination of functionality.

Audit trail maps may be generated at any frequency
determined by control, meter, budget and billing methods
and load modules associated with those methods. Audit

trails have a similar structure to meters and budgets and they

10

15

20

25

30

35

40

45

50

55

60

65

148

may contain user specific information in addition to infor-
mation about the usage event that caused them to be created.
Like meters and budgets, audit trails have a dynamic forat
that is defined by the content provider or their authorized
designee, and share the basic element types for mneters and
budgets shown in the table above. In addition to these types,
the following table lists some examples of other signifcant
data mields that may be found in audit trails:

Field type Format Typical Use Description of Use

Use Event ID unsigned long Me er/Budget/ Event ID that started a
Bil ing processing sequence.

Internal unsigned long Me er/Budget/ Transaction number to
Sequence Bil ing help detect audits that
Number have been tampered

with.

Atomic Unsigned Me er/Billing Atomic element(s) and
Element(s) integer(s) of ID of object that was
& Object ID appropriate used.

width

Personal User Character or Buc get/Billing Personal information
Information other about user.

information

Use timeit Me er/Budget/ Date/time of use.
Date/Time Bil ing
Site ID/User VDE ID Me er/Budget/ VDE ID of user.
ID Bil ing

Audit trail records may be automatically combined into

single records to conserve header space. The combination
process may, for example, occur under control of a load
module that creates individual audit trail records.

Permissions Record Overview

FIG. 16 also shows that PERCs 808 may be stored as part
of secure database 610. Permissions records (“PERCs”) 808
are at the highest level of the data driven control hierarchy
provided by the preferred embodiment of VDE 100.
Basically, there is at least one PERC 808 that corresponds to
each information and/or transactional content distributed by
VDE 100. Thus, at least one PERC 808 exists for each VDE
object 300 in the preferred embodiment. Some objects may
have multiple corresponding PERCs 808. PERC 808 con-
trols how access and/or manipulation permissions are dis-
tributed and/or how content and/or other information may
otherwise be used. PERC 808 also specifies the “rights” of
each VDE participant in and to the content and/or other
information.

In the preferred embodiment, no end user may use or
access a VDE object unless a permissions record 808 has
been delivered to the end user. As discussed above, a PERC
808 may be delivered as part of a traveling object 860 or it
may be delivered separately (for example, within an admin-
istrative object). An electronic appliance 600 may not access
an object unless a corresponding PERC 808 is present, and
may only use the object and related information as permitted
by the control structures contained within the PERC.

Briefly, the PERC 808 stores information concerning the
methods, method options, decryption keys and rights with
respect to a corresponding VDE object 300.

PERC 808 includes control structures that define high
level categories or classifications of operations. These high
level categories are referred to as “rights.” The “right”
control structures, in turn, provide internal control structures
that reference “methods” 1000. The internal structure of

preferred embodiment PERC 808 organizes the “methods”
that are required to perform each allowable operation on an
object or associated control structure (including operations

Page 00226

Page 00227

5,915,019

149

performed on the PERC itself). For example, PERC 808
contains decryption keys for the object, and usage of the
keys is controlled by the methods that are required by the
PERC for performing operations associated with the exer-
cise of a “right.”

PERC 808 for an object is typically created when the
object is created, and future substantive modifications of a
PERC, if allowed, are controlled by methods associated with
operations using the distribution right(s) defined by the same
(or different) PERC.

FIG. 22 shows the internal structures present in an
example of a PERC 808 provided by the preferred embodi-
ment. All of the structures shown represent (or reference)
collections of methods required to process a corresponding
object in some specific way. PERCs 808 are organized as a
hierarchical structure, and the basic elements of the hierar-
chy are as follows:

“rights” records 906
“control sets” 914

“required method” records 920 and
“required method options” 924.

There are other elements that may be included in a PERC
808 hierarchy that describe rules and the rule options to
support the negotiation of rule sets and control information
for smart objects and for the protection of a user’s personal
information by a privacy filter. These alternate elements may
include:

optional rights records

optional control sets

optional method records

permitted rights records

permitted rights control sets

permitted method records

required DTD descriptions

optional DTD descriptions

permitted DTD descriptions
These alternate fields can control other processes that may,
in part, base negotiations or decisions regarding their opera-
tion on the contents of these fields. Rights negotiation, smart
object control information, and related processes can use
these fields for more precise control of their operation.

The PERC 808 shown in FIG. 26 includes a PERC header

900, a CSO (“control set 0”) 902, private body keys 904, and
one or more rights sub-records 906. Control set 0 902 in the
preferred embodiment contains information that is common
to one or more “rights” associated with an object 300. For
example, a particular “event” method or methods might be
the same for usage rights, extraction rights and/or other
rights. In that case, “control set 0” 902 may reference this
event that is common across multiple “rights.” The provision
of “control set 0” 902 is actually an optimization, since it
would be possible to store different instances of a
commonly-used event within each of plural “rights” records
906 of a PERC 808.

Each rights record 906 defines a different “right” corre-
sponding to an object. A “right” record 906 is the highest
level of organization present in PERC 808. There can be
several different rights in a PERC 808. A “right” represents
a major functional partitioning desired by a participant of the
basic architecture of VDE 100. For example, the right to use
an object and the right to distribute rights to use an object are
major functional groupings within VDE 100. Some
examples of possible rights include access to content, per-
mission to distribute rights to access content, the ability to
read and process audit trails related to content and/or control

10

15

20

25

30

35

40

45

50

55

60

65

150

structures, the right to perform transactions that may or may
not be related to content and/or related control structures

(such as banking transactions, catalog purchases, the col-
lection of taxes, EDI transactions, and such), and the ability
to change some or all of the internal structure of PERCs
created for distribution to other users. PERC 808 contains a

rights record 906 for each type of right to object access/use
the PERC grants.

Normally, for VDE end users, the most frequently granted
right is a usage right. Other types of rights include the
“extraction right,” the “audit right” for accessing audit trail
information of end users, and a “distribution right” to
distribute an object. Each of these different types of rights
may be embodied in a different rights record 906 (or
alternatively, different PERCs 808 corresponding to an
object may be used to grant different rights).

Each rights record 906 includes a rights record header
908, a CSR (“control set for right”) 910, one or more “right
keys” 912, and one or more “control sets” 914. Each “rights”
record 906 contains one or more control sets 914 that are

either required or selectable options to control an object in
the exercise of that “right.” Thus, at the next level, inside of
a “right” 906, are control sets 914. Control sets 914, in turn,
each includes a control set header 916, a control method 918,
and one or more required methods records 920. Required
methods records 920, in turn, each includes a required
method header 922 and one or more required method
options 924.

Control sets 914 exist in two types in VDE 100: common
required control sets which are given designations “control
set 0” or “control set for right,” and a set of control set
options. “Control set 0” 902 contains a list of required
methods that are common to all control set options, so that
the common required methods do not have to be duplicated
in each control set option. A “control set for right” (“CSR”)
910 contains a similar list for control sets within a given
right. “Control set 0” and any “control sets for rights” are
thus, as mentioned above, optimizations; the same function-
ality for the control sets can be accomplished by listing all
the common required methods in each control set option and
omitting “control set 0” and any “control sets for rights.”

One of the control set options, “control set 0” and the
appropriate “control set for right” together form a complete
control set necessary to exercise a right.

Each control set option contains a list of required methods
1000 and represents a different way the right may be
exercised. Only one of the possible complete control sets
914 is used at any one time to exercise a right in the
preferred embodiment.

Each control set 914 contains as many required methods
records 920 as necessary to satisi all of the requirements of
the creators andjor distributors for the exercise of a right.
Multiple ways a right may be exercised, or multiple control
sets that govern how a given right is exercised, are both
supported. As an example, a single control set 914 might
require multiple meter and budget methods for reading the
object’s content, and also require different meter and budget
methods for printing an object’s content. Both reading and
printing an object’s content can be controlled in a single
control set 914.

Alternatively, two different control set options could
support reading an object’s content by using one control set
option to support metering and budgeting the number of
bytes read, and the other control set option to support
metering and budgeting the number of paragraphs read. One
or the other of these options would be active at a time.

Typically, each control set 914 will reference a set of
related methods, and thus different control sets can offer a

Page 00227

Page 00228

5,915,019

151

different set of method options. lFor example, one control set
914 may represent one distinct kind of metering
methodology, and another control set may represent another,
entirely different distinct metering methodology.

At the next level inside a control set 914 are the required
methods records 920. Methods records 920 contain or ref-

erence methods 1000 in the preferred embodiment. Methods
1000 are a collection of “events,” references to load modules
associated with these events, static data, and references to a
secure database 610 for automatic retrieval of any other
separately deliverable data elements that may be required for
processing events (e.g., UDEs). Acontrol set 914 contains a
list of required methods that must be used to exercise a
specific right (i.e., process events associated with a right). A
required method record 920 listed in a control set 914
indicates that a method must exist to exercise the right that
the control set supports. The required methods may refer-
ence “load modules” 1100 to be discussed below. Briefly,
load modules 1100 are pieces of executable code that may be
used to carry out required methods.

Each control set 914 may have a control method record
918 as one of its required methods. The referenced control
method may define the relationships between some or all of
the various methods 1000 defined by a control set 906. For
example, a control method may indicate which required
methods are functionally grouped together to process par-
ticular events, and the order for processing the required
methods. Thus, a control method may specify that required
method referenced by record 920(a)(1)(i) is the first to be
called and then its output is to go to required method
referenced by record 920(a)(1)(ii) and so on. In this way, a
meter method may be tied to one or more billing methods
and then the billing methods may be individually tied to
different budget methods, etc.

Required method records 920 specify one or more
required method options 924. Required method options are
the lowest level of control structure in a preferred embodi-
ment PERC 808. By parameterizing the required methods
and specifying the required method options 924 indepen-
dently of the required methods, it becomes possible to reuse
required methods in many different circumstances.

For example, a required method record 920 may indicate
that an actual budget method ID must be chosen from the list
of budget method IDs in the required method option list for
that required method. Required method record 920 in this
case does not contain any method :Ds for information about
the type of method required, it only indicates that a method
is required. Required method option 924 contains the
method ID of the method to be used if this required method
option is selected. As a further optimization, an actual
method ID may be stored if only one option exists for a
specific required method. This allows the size of this data
structure to be decreased.

PERC 808 also contains the fudndamental decryption
keys for an object 300, and any other keys used with “rights”
(for encoding and/or decoding audit trails, for example). It
may contain the keys for the object content or keys to
decrypt portions of the object that contain other keys that
then can be used to decrypt the content of the object. Usage
of the keys is controlled by the control sets 914 in the same
“right” 906 within PERC 808.

In more detail, FIG. 26 shows PERC 808 as including
private body keys 904, and right keys 912. Private body keys
904 are used to decrypt information contained within a
private body 806 of a corresponding VDE object 300. Such
information may include, for example, methods 1000, load
modules 1100 and/or UDEs 1200, for example. Right keys

10

15

20

25

30

35

40

45

50

55

60

65

152

912 are keys used to exercise a right in the preferred
embodiment. Such right keys 912 may include, for example,
decryption keys that enable a method specified by PERC
808 to decrypt content for release by a VDE node to an end
user. These right keys 912 are, in the preferred embodiment,
unique to an object 300. Their usage is preferably controlled
by budgets in the preferred embodiment.

Detailed Example of a PERC 808

FIGS. 26A and 26B show one example of a preferred
embodiment PERC 808. In this example, PERC header 900
includes:

a site record number 926,

a field 928 speciigng the length of the private body key
block,

a field 930 speciigng the length of the PERC,

an expiration date/time field 932 specifyng the expiration
date and/or time for the PERC,

a last modification date/time field 934 specifying the last
date and/or time the PERC 808 was modified,

the original distributor ID field 936 that specifies who
originally distributed the PERC and/or corresponding
object,

a last distributor field 938 that specifies who was the last
distributor of the PERC and/or the object,

an object ID field 940 identifying the corresponding VDE
object 300,

a field 942 that speci:ies the class and/or type of PERC
and/or the instance ID for the record class to differen-

tiate the PERCs of the same type that may differ in their
particulars,

a field 944 specifying the number of “rights” sub-records
906 within the PERC, and

a validation tag 948.
The PERC 808 shown in FIGS. 26a, 26b also has private
body keys stored in a private body key block 950.

This PERC 808 includes a control set 0 sub-record 914 (0)
that may be used commonly by all of rights 906 within the
PERC. This control set 0 record 914(0) may include the
following fields:

a length field 952 specifying the length of the control set
0 record

a field 954 specitying the number of required method
records 920 within the control set

an access tag field 956 specifying an access tag to control
modification of the record and

one or more required method records 920.
Each required method record 920, in turn may include:

a length field 958 specifying the length of the required
method record

a field 960 specilyng the number of method option records
within the required method record 920

an access tag field 962 specifying an access tag to control
modification of the record and

one or more method option records 924.
Each method option sub-record 924 may include:

a length field 964 speciriyng the length of the method
option record

a length field 966 specifying the length of the data area (if
any) corresponding to the method option record

a method ID field 968 specifying a method ID (e.g.,
type/owner/class/instance)

a correlation tag field 970 specifying a correlation tag for
correlating with the method specified in field 968

Page 00228

Page 00229

5,915,019

153

an access tag field 972 specifying an access tag to control
modification of this record

a method-specific attributes field 974
a data area 976 and

a check value field 978 for validation purposes
In this example of PERC 808 also includes one or more

rights records 906, and an overall check value field 980.
FIG. 23b is an example of one of right records 906 shown
in FIG. 16a. In this particular example, rights record 906a
includes a rights record header 908 comprising:

a length field 982 specifying the length of the rights key
block 912

a length field 984 specifying the length of the rights record
908

an expiration date/time field 986 specifying the expiration
date and/or time for the rights record

a right ID field 988 identifying a right

a number field 990 specifying the number of control sets
914 within the rights record 906, and

an access tag field 992 specifing an access tag to control
modification of the right record.

This example of rights record 906 includes:

a control set for this right (CSR) 910
a rights key block 912
one or more control sets 914, and
a check value field 994.

Object Registry

Referring once again to FIG. 16, secure database 610
provides data structures that support a “lookup” mechanism
for “registered” objects. This “lookup” mechanism permits
electronic appliance 600 to associate, in a secure way, VDE
objects 300 with PERCs 808, methods 1000 and llsad
modules 1100. In the preferred embodiment, this lookup
mechanism is based in part on data structures contained
within object registry 450.

In one embodiment, object registry 450 includes the
following tables:

an object registration table 460;

a subject table 462;

a User Rights Table (“URT”) 464;
an Administrative Event Log 442;
a shipping table 444; and
a receiving table 446.
Object registry 460 in the example embodiment is a

database of information concerning registered VDE objects
300 and the rights of users and user groups with regard to
those objects. When electronic appliance 600 receives an
object 300 containing a new budget or load module 1100, the
electronic appliance usually needs to add the information
contained by the object to secure database 610. Moreover,
when any new VDE object 300 arrives at an electronic
appliance 600, the electronic appliance must “register” the
object within object registry 450 so that it can be accessed.
The lists and records for a new object 300 are built in the
preferred embodiment when the object is “registered” by the
electronic appliance 600. The information for the object may
be obtained from the object’s encrypted private header,
object body, and encrypted name services record. This
information may be extracted or derived from the object 300
by SPE 503, and then stored within secure database 610 as
encrypted records.

In one embodiment, object registration table 460 includes
information identifying objects within object storage

10

15

20

25

30

35

40

45

50

55

60

65

154

(repository) 728. These VDE objects 300 stored within
object storage 728 are not, in the example embodiment,
necessarily part of secure database 610 since the objects
typically incorporate their own security (as necessary and
required) and are maintained using different mechanisms
than the ones used to maintain the secure database. Even

though VDE objects 300 may not strictly be part of secure
database 610, object registry 450 (and in particular, object
registration table 460) refers to the objects and thus “incor-
porates them by reference” into the secure database. In the
preferred embodiment, an electronic appliance 600 may be
disabled from using any VDE object 300 that has not been
appropriately registered with a corresponding registration
record stored within object registration table 460.

Subject table 462 in the example embodiment establishes
correspondence between objects referred to by object reg-
istration table 460 and users (or groups of users) of elec-
tronic appliance 600. Subject table 462 provides many of the
attributes of an access control list (“ACL”), as will be
explained below.

User rights table 464 in the example embodiment pro-
vides permissioning and other information specific to par-
ticular users or groups of users and object combinations set
forth in subject table 462. In the example embodiment,
permissions records 808 (also shown in FIG. 16 and being
stored within secure database 610) may provide a universe
of permissioning for a particular object-user combination.
Records within user rights table 464 may specify a sub-set
of this permissioning universe based on, for example,
choices made by users during interaction at time of object
registration.

Administrative event log 442, shipping table 444, and
receiving table 446 provide information about receipts and
deliveries of VDE objects 300. These data structures keep
track of administrative objects sent or received by electronic
appliance 600 including, for example, the purpose and
actions of the administrative objects in summary and
detailed form. Briefly, shipping table 444 incudes a shipping
record for each administrative object sent (or scheduled to
be sent) by electronic appliance 600 to another VDE par-
ticipant. Receiving table 446 in the preferred embodiment
includes a receiving record for each administrative object
received (or scheduled to be received) by electronic appli-
ance 600. Administrative event log 442 includes an event log
record for each shipped and each received administrative
object, and may include details concerning each distinct
event specified by received administrative objects.

Administrative Object Shipping and Receiving

FIG. 27 is an example of a detailed format for a shipping
table 444. In the preferred embodiment, shipping table 444
includes a header 444A and any number of shipping records
445. Header 444A includes information used to maintain

shipping table 444. Each shipping record 445 within ship-
ping table 444 provides details concerning a shipping event
(i.e., either a completed shipment of an administrative object
to another VDE participant, or a scheduled shipment of an
administrative object).

In the example embodiment of the secure database 610,
shipping table header 444A may include a site record
number 444A(1), a user (or group) ID 444A(2), a series of
reference fields 444A(3)—444A(6), validation tags
444A(7)—444A(8), and a check value field 444A(9). The
fields 444A(3)—444A(6) reference certain recent IDs that
designate lists of shipping records 445 within shipping table
444. For example, field 444A(3) may reference to a “first”
shipping record representing a completed outgoing shipment

Page 00229

Page 00230

5,915,019

155

of an administrative object, and field 444A(4) may reference
to a “last” shipping record representing a completed outgo-
ing shipment of an administrative object. In this example,
“first” and “last” may, if desired, refer to time or order of
shipment as one example. Similarly, fields 444A(5) and
444A(6) may reference to “first” and “last” shipping records
for scheduled outgoing shipments. Validation tag 444A(7)
may provide validation from a name services record within
name services record table 452 associated with the user

(group) ID in the header. This permits access from the
shipping record back to the name services record that
describes the sender of the object described by the shipping
records. Validation tag 444A(8) provides validation for a
“first” outgoing shipping record referenced by one or more
of pointers 444A(3)—444A(6). Other validation tags may be
provided for validation of scheduled shipping record(s).

Shipping record 444(1) shown includes a site record
number 445(1)(A). It also includes first and last scheduled
shipment date/times 445(1)(B), 445(1)(C) providing a win-
dow of time used for scheduling administrative object
shipments. Field 445(1)(D) may specify an actual date/time
of a completed shipment of an administrative object. Field
445(1)(E) provides an ID of an administrative object
shipped or to be shipped, and thus identifies which admin-
istrative object within object storage 728 pertains to this
particular shipping record. A reference field 445(1)(G) ref-
erences a name services record within name services record

table 452 specifing the actual or intended recipient of the
administrative object shipped or to be shipped. This infor-
mation within name services record table 452 may, for
example, provide routing information sufficient to permit
outgoing administrative objects manager 754 shown in FIG.
12 to inform object switch 734 to ship the administrative
object to the intended recipient. A field 445(1)(H) may
specify (e.g., using a series of bit flags) the purpose of the
administrative object shipment, and a field 445(1)(I) may
specify the status of the shipment. Reference fields 445(1)
(J), 445(1)(K) may reference “previous” and “next” ship-
ping records 445 in a linked list (in the preferred
embodiment, there may be two linked lists, one for com-
pleted shipping records and the other for scheduled shipping
records). Fields 445(1)(L)—445(1)(P) may provide valida-
tion tags respectively from header 444A, to a record within
administrative event log 442 pointed to by pointer 445(l)(F);
to the name services record referenced by field 445(1)(G);
from the previous record referenced by 445(1)(J); and to the
next record referenced by field 445(1)(K). A check value
field 445(1)(Q) may be used for validating shipping record
445.

FIG. 28 shows an example of one possible detailed format
for a receiving table 446. In one embodiment, receiving
table 446 has a structure that is similar to the structure of the

shipping table 444 shown in FIG. 27. Thus, for example,
receiving table 446 may include a header 446a and a
plurality of receiving records 447, each receiving record
including details about a particular reception or scheduled
reception of an administrative object. Receiving table 446
may include two linked lists, one for completed receptions
and another for schedule receptions. Receiving table records
447 may each reference an entry within name services
record table 452 specifying an administrative object sender,
and may each point to an entry within administrative event
log 442. Receiving records 447 may also include additional
details about scheduled and/or completed reception (e.g.,
scheduled or actual date/time of reception, purpose of recep-
tion and status of reception), and they may each include
validation tags for validating references to other secure
database records.

10

15

20

25

30

35

40

45

50

55

60

65

156

FIG. 29 shows an example of a detailed format for an
administrative event log 442. In the preferred embodiment,
administrative event log 442 inclu des an event log record
442(1) . . . 442(N) for each shipped administrative object
and for each received administrative object. Each adminis-
trative event log record may include a header 443a and from
1 to N sub-records 442(J)(1) . . . 442(J)(N). In the preferred
embodiment, header 443a may include a site record number
field 443A(1), a record length ield 443A(2), an administra-
tive object ID field 443A(3), a field 443A(4) specifying a
number of events, a validation tag 443A(5) from shipping
table 444 or receiving table 446, and a check sum field
443A(6). The number of events specified in field 443A(4)
corresponds to the number of sub-records 442(J)(1) . . .
442(J)(N) within the administrative event log record 442(J).
Each of these sub-records specifies information about a
particular “event” affected or corresponding to the admin-
istrative object specified within field 443(A)(3). Adminis-
trative events are retained in the administrative event log
442 to permit the reconstruction (and preparation for con-
struction or processing) of the administrative objects that
have been sent from or received by the system. This permits
lost administrative objects to be reconstructed at a later time.

Each sub-record may include a sub-record length field
442(J)(1)(a), a data area length iEeld 442(J)(1)(b), an event
ID field 442(J)(1)(c), a record type field 442(J)(1)(d), a
record ID field 442(J)(1)(e), a data area field 442(J)(1)(f),
and a check value field 442(J)(1)(g). The data area 442(J)
(1)(f) may be used to indicate which information within
secure database 610 is affected by the event specified in the
event D field 442(J)(1)(c), or what new secure database
item(s) were added, and may also specify the outcome of the
event.

The object registration table 460 in the preferred embodi-
ment includes a record corresponding to each VDE object
300 within object storage (repository) 728. When a new
object arrives or is detected (e.g., by redirector 684), a
preferred embodiment electronic appliance 600 “registers”
the object by creating an appropriate object registration
record and storing it in the object registration table 460. In
the preferred embodiment, the object registration table
stores information that is user-independent, and depends
only on the objects that are registered at a even VDE
electronic appliance 600. Registration activities are typically
managed by a REGISTER method associated with an object.

In the example, subject table 462 associates users (or
groups of users) with registered objects. The example sub-
ject table 462 performs the function of an access control list
by specifying which users are authorized to access which
registered VDE objects 300.

As described above, secure database 610 stores at least
one PERC 808 corresponding to each registered VDE object
300. PERCS 808 specify a set of rights that may be exercised
to use or access the corresponding VDE object 300. The
preferred embodiment allows user to “customize” their
access rights by selecting a subset of rights authorized by a
corresponding PERC 808 and/or by specifying parameters
or choices that correspond to some or all of the rights
granted by PERC 808. These user choices are set forth in a
user rights table 464 in the preferred embodiment. User
rights table (URT) 464 includes URT records, each of which
corresponds to a user (or group of users). Each of these URT
records speciifies user choices for a corresponding VDE
object 300. These user choices may, either independently or
in combination with a PERO 808, reference one or more
methods 1000 for exercising the rights granted to the user by
the PERC 808 in a way specified by the choices contained
within the URT record.

Page 00230

Page 00231

5,915,019

157

FIG. 30 shows an example of how these various tables
may interact with one another to provide a secure database
lookup mechanism. FIG. 30 shows object registration table
460 as having a plurality of object registration records
460(1), 460(2), . . . These records correspond to VDE objects
300(1), 300(2), . . . stored within object repository 728. FIG.
31 shows an example format for an object registration record
460 provided by the preferred embodiment. Object registra-
tion record 460(N) may include the following fields:

site record number field 466(1)

object type field 466(2)
creator ID field 466(3)
object ID field 466(4)
a reference field 466(5) that references subject table 462
an attribute field 466(6)
a minimum registration interval reld 466(7)
a tag 466(8) to a subject table record, and
a check value field 466(9).
The site record number field 466(1) specifies the site

record number for this object registration record 460(N). In
one embodiment of secure database 610, each record stored
within the secure database is identified by a site record
number. This site record number may be used as part of a
database lookup process in order to keep track of all of the
records within the secure database 610.

Object type field 466(2) may specie the type of registered
VDE object 300 (e.g., a content object, an administrative
object, etc.).

Creator ID field 466(3) in the example may identiy the
creator of the corresponding VDE object 300.

Object ID field 466(4) in the example uniquely identifies
the registered VDE object 300.

Reference field 466(5) in the preferred embodiment iden-
tifies a record within the subject table 462. Through use of
this reference, electronic appliance 600 may determine all
users (or user groups) listed in subject table 462 authorized
to access the corresponding VDE object 300. Tag 466(8) is
used to validate that the subject table records accessed using
field 466(5) is the proper record to be used with the object
registration record 460(N).

Attribute field 466(6) may store one or more attributes or
attribute flags corresponding to VDE object 300.

Minimum registration interval field 466(7) may specify
how often the end user may re-register as a user of the VDE
object 300 with a clearinghouse service, VDE administrator,
or VDE provider. One reason to prevent frequent
re-registration is to foreclose users from reusing budget
quantities in traveling objects until a specified amount of
time has elapsed. The minimum registration interval field
466(7) may be left unused when the object owner does not
wish to restrict re-registration.

Check value field 466(9) contains validation information
used for detecting corruption or modification of record
460(N) to ensure security and integrity of the record. In the
preferred embodiment, many or all of the fields within
record 460(N) (as with other records within the secure
database 610) may be fully or partially encxyted and/or
contain fields that are stored redundantly in each record
(once in unencrypted form and once in encrypted form).
Encrypted and unencrypted versions of the same fields may
be cross checked at various times to detect corruption or
modification of the records.

As mentioned above, reference field 466(5) references
subject table 462, and in particular, references one or more
user/object records 460(M) within the subject table. FIG. 32
shows an example of a format for a user/object record

10

15

20

25

30

35

40

45

50

55

60

65

158

462(M) provided by the example. Record 462(M) may
include a header 468 and a subject record portion 470.
Header 468 may include a field 468(6) referencing a “first”
subject record 470 contained within the subject registration
table 462. This “first” subject record 470(1) may, in turn,
include a reference field 470(5) that references a “next”
subject record 470(2) within the subject registration table
462, and so on. This “linked list” structure permits a single
object registration record 460(N) to reference to from one to
N subject records 470.

Subject registration table header 468 in the example
includes a site record number field 468(1) that may uniquely
identify the header as a record within secure database 610.
Header 468 may also include a creator ID field 468(2) that
may be a copy of the content of the object registration table
creator ID field 466(3). Similarly, subject registration table
header 468 may include an object ID field 468(5) that may
be a copy of object ID field 466(4) within object registration
table 460. These fields 468(2), 468(5) make user/object
registration records explicitly correspond to particular VDE
objects 300.

Header 468 may also include a tag 468(7) that permits
validation. In one example arrangement, the tag 468(7)
within the user/object registration header 468 may be the
same as the tag 466(8) within the object registration record
460(N) that points to the user/object registration header.
Correspondence between these tags 468(7) and 466(8) per-
mits validation that the object registration record and user/
object registration header match up.

User/object header 468 also includes an original distribu-
tor ID field 468(3) indicating the original distributor of the
corresponding VDE object 300, and the last distributor ID
field 468(4) that indicates the last distributor within the
chain of handling of the object prior to its receipt by
electronic appliance 600.

Header 468 also includes a tag 468(8) allowing validation
between the header and the “first” subject record 470(1)
which field 468(6) references

Subject record 470(1) includes a site record number
472(1), a user (or user group) ID field 472(2), a user (or user
group) attributes field 472(3), a field 472(4) referencing user
rights table 464, a field 472(5) that references to the “next”
subject record 470(2) (if there is one), a tag 472(6) used to
validate with the header tag 468(8), a tag 472(7) used to
validate with a corresponding tag in the user rights table
record referenced by field 472(4), a tag 472(9) used to
validate with a tag in the “next” subject record referenced to
by field 472(5) and a check value field 472(9).

User or user group ID 472(2) identifies a user or a user
group authorized to use the object identified in field 468(5).
Thus, the fields 468(5) and 472(2) together form the heart of
the access control list provided by subject table 462. User
attributes field 472(3) may specify attributes pertaining to
use/access to object 300 by the user or user group specified
in fields 472(2). Any number of different users or user
groups may be added to the access control list (each with a
different set of attributes 472(3)) by providing additional
subject records 470 in the “linked list” structure.

Subject record reference field 472(4) references one or
more records within user rights table 464. FIG. 33 shows an
example of a preferred format for a user rights table record
464(k). User rights record 464(k) may include a URT header
474, a record rights header 476, and a set of user choice
records 478. URT header 474 may include a site record
number field, a field 474(2) specifying the number of rights
records within the URT record 464(k), a field 474(3) refer-
encing a “first” rights record (i.e., to rights record header

Page 00231

Page 00232

5,915,019

159

476), a tag 474(4) used to validate the lookup from the
subject table 462, a tag 474(5) used to validate the lookup to
the rights record header 476, and a check value field 474(6).

Rights record header 476 in the preferred embodiment
may include site record number field 476(1), a right ID field
476(2), a field 476(3) referencing the “next” rights record
476(2), a field 476(4) referencing a first set of user choice
records 478(1), a tag 476(5) to allow validation with URT
header tag 474(5), a tag 476(6) to allow validation with a
user choice record tag 478(6), and a check value field
476(7). Right ID field 476(2) may, for example, specify the
type of right conveyed by the rights record 476(e.g., right to
use, right to distribute, right to read, right to audit, etc.).

The one or more user choice records 478 referenced by
rights record header 476 sets forth the user choices corre-
sponding to access and/or use of the corresponding VDE
object 300. There will typically be a rights record 476 for
each right authorized to the corresponding user or user
group. These rights govern use of the VDE object 300 by
that user or user group. For instance, the user may have an
“access” right, and an “extraction” right, but not a “copy”
right. Other rights controlled by rights record 476 (which is
derived from PERC 808 using a REGISTER method in the
preferred embodiment) include distribution rights, audit
rights, and pricing rights. When an object 300 is registered
with the electronic appliance 600 and is registered with a
particular user or user group, the user may be permitted to
select among various usage methods set forth in PERC 808.
For instance, a VDE object 300 might have two required
meter methodologes: one for billing purposes, and one for
accumulating data concerning the promotional materials
used by the user. The user might be given the choice of a
variety of meter/billing methods, such as: payment by VISA
or MasterCard; choosing between billing based upon the
quantity of material retrieved from am information database,
based on the time of use, and/or both. The user might be
offered a discount on time and/or quantity billing if he is
willing to allow certain details concerning his retrieval of
content to be provided to third parties (e.g., for demographic
purposes). At the time of registration of an object and/or user
for the object, the user would be asked to select a particular
meter methodology as the “active metering method” for the
first acquired meter. A VDE distributor might narrow the
universe of available choices for the user to a subset of the

original selection array stipulated by PERC 808. These user
selection and configuration settings are stored within user
choice records 480(1), 480(2), 480(N). The user choice
records need not be explicitly set forth within user rights
table 464; instead, it is possible for user choice records 480
to refer (e.g., by site reference number) to particular VDE
methods and/or information parameterizing those methods.
Such reference by user choice records 480 to method 1000
should be validated by validation tags contained within the
user choice records. Thus, user choice records 480 in the
preferred embodiment may select one or more methods 1000
for use with the corresponding VDE object 300 (as is shown
in FIG. 27). These user choice records 480 may themselves
fully define the methods 1000 and other information used to
build appropriate components assemblies 690 for imple-
menting the methods. Alternatively, the user/object record
462 used to reference the user rights record 464 may also
reference the PERC 808 corresponding to VDE object 300
to provide additional information needed to build the com-
ponent assembly 690 and/or otherwise access the VDE
object 300. For example, PERC 808 may be accessed to
obtain MDEs 1202 pertaining to the selected methods,
private body and/or rights keys for decrypting and/or

10

15

20

25

30

35

40

45

50

55

60

65

160

encrypting object contents, and may also be used to provide
a checking capability ensuring that the user rights record
conveys only those rights authorized by a current authori-
zation embodied within a PERC.

In one embodiment provided by the present invention, a
conventional database engine may be used to store and
organize secure database 610, and the encryption layers
discussed above may be “on top of” the conventional
database structure. However, if such a conventional database
engine is unable to organize the records in secure database
610 and support the security considerations outlined above,
then electronic appliance 600 may maintain separate index-
ing structures in encrypted form. These separate indexing
structures can be maintained by SPE 503. This embodiment
would require SPE 503 to decrypt the index and search
decrypted index blocks to find appropriate “site record IDs”
or other pointers. SPE 503 might then request the indicated
record from the conventional database engine. If the record
ID cannot be checked against a record list, SPE 503 might
be required to ask for the data file itself so it can retrieve the
desired record. SPE 503 would then perform appropriate
authentication to ensure that the file has not been tampered
with and that the proper block is returned. SPE 503 should
not simply pass the index to the conventional database
engine (unless the database engine is itself secure) since this
would allow an incorrect record to be swapped for the
requested one.

FIG. 34 is an example of how the site record numbers
described above may be used to access the various data
structures within secure database 610. In this example,
secure database 610 further includes a site record table 482

that stores a plurality of site record numbers. Site record
table 482 may store what is in effect a “master list” of all
records within secure database 610. These site record num-

bers stored by site record table 482 permit any record within
secure database 610 to be accessed. Thus, some of the site
records within site record table 482 may index records with
an object registration table 460, other site record numbers
within the site record table may index records within the
user/object table 462, still other site record numbers within
the site record table may access records within UIT 464, and
still other site record numbers within the site record table

may access PERCs 808. In addition, each of method cores
1000' may also include a site record number so they may be
accessed by site record table 482.

FIG. 34A shows an example of a site record 482(j) within
site record table 482. Site record 482(j) may include a field
484(1) indicating the type of record, a field 484(2) indicating
the owner or creator of the record, a “class” field 484(3) and
an “instance” field 484(4) providing additional information
about the record to which the site record 482(j) points; a
specific descriptor iield 484(5) indicating some specific
descriptor (e.g., object ID) associated with the record; an
identiEication 484(6) of the table or other data structure
which the site record references; a reference and/or offset
within that data structure indicating where the record begins;
a validation tag 484(8) for validating the record being
looked up, and a check value field 484(9). Fields 484(6) and
484(7) together may provide the mechanism by which the
record referenced to by the site record 484(j) is actually
physically located within the secure database 610.

Updating Secure Database 610

FIG. 35 show an example of a process 1150 which can be
used by a clearinghouse, VDE administrator or other VDE
participant to update the secure database 610 maintained by
an end user’s electronic appliance 600. For example, the

Page 00232

Page 00233

5,915,019

161

process 1500 shown in FIG. 35 might be used to collect
“audit trail” records within secure database 610 and/or

provide new budgets and permissions (e.g., PERCs 808) in
response to an end user’s request.

Typically, the end user’s electronic appliance 600 may
initiate communications with a clearinghouse (Block 1152).
This contact may, for example, be established automatically
or in response to a user command. It may be initiated across
the electronic highway 108, or across other communications
networks such as a LAN, WAN, two-way cable or using
portable media exchange between electronic appliances. The
process of exchanging administrative information need not
occur in a single “on line” session, but could instead occur
over time based on a number of different one-way and/or
two-way communications over the same or different com-
munications means. However, the process 1150 shown inr
FIG. 35 is a specific example where the end user’s electronic
appliance 600 and the other VDE participant (e.g., a
clearinghouse) establish a two-way real-time interactive
communications exchange across a telephone line, network,
electronic highway 108, etc.

The end user’s electronic appliance 600 generally con-
tacts a particular VDE administrator or clearinghouse. The
identity of the particular clearinghouse is based on the VDE
object 300 the user wishes to access or has already accessed.
For example, suppose the user has already accessed a
particular VDE object 300 and has run out of budget for
firther access. The user could issue a request which will
cause her electronic appliance 600 to automatically contact
the VDE administrator, distributor and/or inancial clearing-
house that has responsibility for that particular object. The
identity of the appropriate VDE participants to contact is
provided in the example by information within UDEs 1200,
MDEs 1202, the Object Registration Table 460 and/or
Subject Table 462, for example. Electronic appliance 600
may have to contact multiple VDE participants (e.g., to
distribute audit records to one participant, obtain additional
budgets or other permissions from another participant, etc.).
The contact 1152 may in one example be scheduled in
accordance with the FIG. 27 Shipping Table 444 and the
FIG. 29 Administrative Event Log 442.

Once contact is established, the end user’s electronic
appliance and the clearinghouse typically authenticate one
another and agree on a session key to use for the real-time
information exchange (Block 1154). Once a secure connec-
tion is established, the end user’s electronic appliance may
determine (e.g., based on Shipping Table 444) whether it has
any administrative object(s) containing audit information
that it is supposed to send to the clearinghouse (decision
Block 1156). Audit information pertaining to several VDE
objects 300 may be placed within the same administrative
object for transmission, or different administrative objects
may contain audit information about different objects.
Assuming the end user’s electronic appliance has at least
one such administrative object to send to this particular
clearinghouse (“yes” exit to decision Block 1156), the
electronic appliance sends that administrative object to the
clearinghouse via the now-established secure real-time com-
munications (Block 1158). In one specific example, a single
administrative object may be sent an administrative object
containing audit information pertaining to multiple VDE
objects, with the audit information for each different object
compromising a separate “even” within the administrative
object.

The clearinghouse may receive the administrative object
and process its contents to determine whether the contents
are “valid” and “legitimate.” For example, the clearinghouse

10

15

20

25

30

35

40

45

50

55

60

65

162

may analyze the contained audit information to determine
whether it indicates misuse of the applicable VDE object
300. The clearinghouse may, as a result of this analysis, may
generate one or more responsive administrative objects that
it then sends to the end user’s electronic appliance 600
(Block 1160). The end user’s electronic appliance 600 may
process events that update its secure database 610 and/or
SPU 500 contents based on the administrative object
received (Block 1162). For example, if the audit information
received by the clearinghouse is legitimate, then the clear-
inghouse may send an administrative object to the end user’s
electronic appliance 600 requesting the electronic appliance
to delete and/or compress the audit information that has been
transferred. Alternatively or in addition, the clearinghouse
may request additional information from the end-user elec-
tronic appliance 600 at this stage (e.g., retransmission of
certain information that was corrupted during the initial
transmission, transmission of additional information not

earlier transmitted, etc.). If the clearinghouse detects misuse
based on the received audit information, it may transmit an
administrative object that revokes or otherwise modifies the
end user’s right to further access the associated VDE objects
300.

The clearinghouse may, in addition or alternatively, send
an administrative object to the end user’s electronic appli-
ance 600 that instructs the electronic appliance to display
one or more messages to the user. These messages may
inform the user about certain conditions and/or they may
request additional information from the user. For example,
the message may instruct the end user to contact the clear-
inghouse directly by telephone or otherwise to resolve an
indicated problem, enter a PIN, or it may instruct the user to
contact a new service company to re-register the associated
VDE object. Alternatively, the message may tell the end user
that she needs to acquire new usage permissions for the
object, and may inform the user of cost, status and other
associated information.

During the same or different communications exchange,
the same or different clearinghouse may handle the end
user’s request for additional budget and/or permission per-
taining to VDE object 300. For example, the end user’s
electronic appliance 600 may (e.g., in response to a user
input request to access a particular VDE object 300) send an
administrative object to the clearinghouse requesting bud-
gets and/or other permissions allowing access (Block 1164).
As mentioned above, such requests may be transmitted in
the form of one or more administrative objects, such as, for
example, a single administrative object having multiple
“events” associated with multiple requested budgets and/or
other permissions for the same or different VDE objects 300.
The clearinghouse may upon receipt of such a request, check
the end user’s credit, financial records, business agreements
and/or audit histories to determine whether the requested
budgets and/or permissions should be given. The clearing-
house may, based on this analysis, send one or more respon-
sive administrative objects which cause the end user’s
electronic appliance 600 to update its secure database in
response (Block 1166, 1168). This updating might, for
example, comprise replacing an expired PERC 808 with a
fresh one, modifying a PERC to provide additional (or
lesser) rights, etc. Steps 1164—1168 may be repeated mul-
tiple times in the same or different communications session
to provide further updates to the end user’s secure database
610.

FIG. 36 shows an example of how a new record or
element may be inserted into secure database 610. The load
process 1070 shown in FIG. 35 checks each data element or

Page 00233

Page 00234

5,915,019

163

item as it is loaded to ensure that it has not been tampered
with, replaced or substituted. In the process 1070 shown in
FIG. 35, the first step that is performed is to check to see if
the current user of electronic appliance 600 is authorized to
insert the item into secure database 610 (block 1072). This
test may involve, in the preferred embodiment, loading (or
using already loaded) appropriate methods 1000 and other
data structures such as UDEs 1200 into an SPE 503, which
then authenticates user authorization to make the change to
secure database 610 (block 1074). If the user is approved as
being authorized to make the change to secure database 610,
then SPE 503 may check the integrity of the element to be
added to the secure database by decrypting it (block 1076)
and determining whether it has become damaged or cor-
rupted (block 1078). The element is checked to ensure that
it decrypts properly using a predetermined management file
key, and the check value may be validated. In addition, the
public and private header ID tags (if present) may be
compared to ensure that the proper element has been pro-
vided and had not been substituted, and the unique element
tag ID compared against the predetermined element tag. If
any of these tests fail, the element may be automatically
rejected, error corrected, etc. Assuming the element is found
to have integrity, SPE 503 may re-encrypt the information
block 1080) using a new key for example (see FIG. 37
discussion below). In the same process step an appropriate
tag is preferably provided so that the information becomes
encrypted within a security wrapper having appropriate tags
contained therein (block 1082). SPE 503 may retain appro-
priate tag information so that it can later validate or other-
wise authenticate the item when it is again read from secure
database 610 (block 1084). The now-secure element within
its security wrapper may then be stored within secure
database 610.

FIG. 37 shows an example of a process 1050 used in the
preferred embodiment database to securely access an item
stored in secure database 610. In the preferred embodiment,
SPE 503 first accesses and reads in the item from secure
database 610 records. SPE 503 reads this information from

secure database 610 in encrypted form, and may “unwrap”
it (block 1052) by decrypting it (block 1053) based on access
keys internally stored within the protected memory of an
SPU 500. In the preferred embodiment, this “unwrap”
process 1052 involves sending blocks of information to
encrypt/decrypt engine 522 along with a management file
key and other necessary information needed to decrypt.
Decrypt engine 522 may return “plaintext” information that
SPE 503 then checks to ensure that the security of the object
has not been breached and that the object is the proper object
to be used (block 1054). SPE 503 may then check all
correlation and access tags to ensure that the read-in element
has not been substituted and to guard against other security
threats (block 1054). Part of this “checking” process
involves checking the tags obtained from the secure data-
base 610 with tags contained within the secure memory or
an SPU 500 (block 1056). These tags stored within SPU 500
may be accessed from SPU protected memory (block 1056)
and used to check further the now-unwrapped object.
Assuming this “checking” process 1054 does not reveal any
improprieties (and block 1052 also indicates that the object
has not become corrupted or otherwise damaged), SPE 503
may then access or otherwise use the item (block 1058).
Once use of the item is completed, SPE 503 may need to
store the item back into secure database 610 if it has

changed. If the item has changed, SPE 503 will send the item
in its changed form to encrypt/decrypt engine 522 for
encryption (block 1060), providing the appropriate neces-

10

15

20

25

30

35

40

45

50

55

60

65

164

sary information to the encrypt/decrypt engine (e.g., the
appropriate same or different management file key and data)
so that the object is appropriately encrypted. Aunique, new
tag and/or encryption key may be used at this stage to
uniquely tag and/or encrypt the item security wrapper (block
1062; see also detailed FIG. 37 discussion below). SPE 503
may retain a copy of the key and/or tag within a protected
memory of SPU 500 (block 1064) so that the SPE can
decrypt and validate the object when it is again read from
secure database 610.

The keys to decrypt secure database 610 records are, in
the preferred embodiment, maintained solely within the
protected memory of am SPU 500. Each index or record
update that leaves the SPU 500 may be time stamped, and
then encrypted with a unique key that is determined by the
SPE 503. For example, a key identification number may be
placed “in plain view” at the front of the records of secure
database 610 so the SPE 503 can determine which key to use
the next time the record is retrieved. SPE 503 can maintain

the site ID of the record or index, the key identification
number associated with it, and the actual keys in the list
internal to the SPE. At some point, this internal list may fill
up. At this point, SPE 503 may call a maintenance routine
that re-encrypts items within secure database 610 containing
changed information. Some or all of the items within the
data structure containing changed information may be read
in, decrypted, and then re-encrypted with the same key.
These items may then be issued the same key identification
number. The items may then be written out of SPE 503 back
into secure database 610. SPE 503 may then clear the
internal list of item IDs and corresponding key identification
numbers. It may then begin again the process of assigning a
different key and a new key identification number to each
new or changed item. By using this process, SPE 503 can
protect the data structures (including the indexes) of secure
database 610 against substitution of old items and against
substitution of indexes for current items. This process also
allows SPE 503 to validate retrieved item IDs against the
encrypted list of expected IDs.

FIG. 38 is a flowchart showing this process in more detail.
Whenever a secure database 610 item is updated or
modified, a new encryption key can be generated for the
updated item. Encryption using a new key is performed to
add security and to prevent misuse of backup copies of
secure database 610 records. The new encryption key for
each updated secure database 610 record may be stored in
SPU 500 secure memory with an indication of the secure
database record or record(s) to which it applies.

SPE 503 may generate a new encryption/decryption key
for each new item it is going to store within secure database
610 (block 1086). SPE 503 may use this new key to encrypt
the record prior to storing it in the secure database (block
1088). SPE 503 make sure that it retains the key so that it can
later read and decrypt the record. Such decryption keys are,
in the preferred embodiment, maintained within protected
non-volatile memory (e.g., NVRAM 534b) within SPU 500.
Since this protected memory has a limited size, there may
not be enough room within the protected memory to store a
new key. This condition is tested for by decision block 1090
in the preferred embodiment. If there is not enough room in
memory for the new key (or some other event such as the
number of keys stored in the memory exceeding a prede-
termined number, a timer has expired, etc.), then the pre-
ferred embodiment handles the situation by re-encrypting
other records with secure database 610 with the same new

key in order to reduce the number of (or change) encryption/
decryption keys in use. Thus, one or more secure database

Page 00234

Page 00235

5,915,019

165

610 items may be read from the secure database (block
1092), and decrypted using the old key(s) used to encrypt
them the last time they were stored. In the preferred
embodiment, one or more “old keys” are selected, and all
secure database items encrypted using the old key(s) are
read and decrypted. These records may now be re-encrypted
using the new key that was generated at block 1086 for the
new record (block 1094). The old key(s) used to decrypt the
other record(s) may now be removed from the SPU pro-
tected memory (block 1096), and the new key stored in its
place (block 1097). The old key(s) cannot be removed from
secure memory by block 1096 unless SPE 503 is assured that
all records within the secure database 610 that were

encrypted using the old key(s) have been read by block 1092
and re-encrypted by block 1904 using the new key. All
records encrypted (or re-encrypted) using the new key may
now be stored in secure database 610 (block 1098). If
decision block 1090 determines there is room within the

SPU 500 protected memory to store the new key, then the
operations of blocks 1092, 1094, 1096 are not needed and
SPE 503 may instead simply store the new key within the
protected memory (block 1097) and store the new encrypted
records into secure database 610 (block 1098).

The security of secure database 610 files may be further
improved by segmenting the records into “compartments.”
Different encryption/decryption keys may be used to protect
different “compartments.” This strategy can be used to limit
the amount of information within secure database 610 that is

encrypted with a single key. Another technique for increas-
ing security of secure database 610 may be to encrypt
different portions of the same records with different keys so
that more than one key may be needed to decrypt those
records.

Backup of Secure Database 610

Secure database 610 in the preferred embodiment is
backed up at periodic or other time intervals to protect the
information the secure database contains. This secure data-

base information may be of substantial value to many VDE
participants. Back ups of secure database 610 should occur
without significant inconvenience to the user, and should not
breach any security.

The need to back up secure database 610 may be checked
at power on of electronic appliance 600, when SPE 503 is
initially invoked, at periodic time intervals, and if “audit roll
up” value or other summary services information maintained
by SPE 503 exceeds a user set or other threshold, or
triggered by criteria established by one or more content
publishers and/or distributors and/or clearinghouse service
providers and/or users. The user may be prompted to backup
if she has failed to do so by or at some certain point in time
or after a certain duration of time or quantity of usage, or the
backup may proceed automatically without user interven-
tion.

Referring to FIG. 8, backup storage 668 and storage
media 670 (e.g., magnetic tape) may be used to store backed
up information. Of course, any non-volatile media (e.g., one
or more floppy diskettes, a writable optical diskette, a hard
drive, or the like) may be used for backup storage 668.

There are at least two scenarios to backing up secure
database 610. The first scenario is “site specific,” and uses
the security of SPU 500 to support restoration of the backed
up information. This first method is used in case of damage
to secure database 610 due for example to failure of sec-
ondary storage device 652, inadvertent user damage to the
files, or other occurrences that may damage or corrupt some
or all of secure database 610. This first, site specific scenario

10

15

20

25

30

35

40

45

50

55

60

65

166

of back up assumes that an SPU 500 still functions properly
and is available to restore backed up information.

The second back up scenario assumes that the user’s SPU
500 is no longer operational and needs to be, or has been,
replaced. This second approach permits an authorized VDE
administrator or other authorized VDE participant to access
the stored back up information in order to prevent loss of
critical data and/or assist the user in recovering from theerror.

Both of these scenarios are provided by the example of
program control steps performed by ROS 602 shown in FIG.
39. FIG. 39 shows an example back up routine 1250
performed by an electronic appliance 600 to back up secure
database 610 (and other information) onto back up storage
668. Once a back up has been initiated, as discussed above,
back up routine 1250 generates one or more back up keys
(block 1252). Back up routine 1250 then reads all secure
database items, decrypts each item using the original key
used to encrypt them before they were stored in secure
database 610 (block 1254). Since SPU 500 is typically the
only place where the keys for decrypting this information
within an instance of secure database 610 are stored, and
since one of the scenarios provided by back up routine 1250
is that SPU 500 completely failed or is destroyed, back up
routine 1250 performs this reading and decrypting step 1254
so that recovery from a backup is not dependent on knowl-
edge of these keys within the SPU. Instead, back up routine
1250 encrypts each secure database 610 item with a newly
generated back up key(s) (block 1256) and writes the
encrypted item to back up store 668 (block 1258). This
process continues until all items within secure database 610
have been read, decrypted, encrypted with a newly gener-
ated back up key(s), and written to the back up store (as
tested for by decision block 1260).

The preferred embodiment also reads the summary ser-
vices audit information stored within the protected memory
of SPU 500 by SPE summary services manager 560,
encrypts this information with the newly generated back up
key(s), and writes this summary services information to
back up store 668 (block 1262).

Finally, back up routine 1250 saves the back up key(s)
generated by block 1252 and used to encrypt in blocks 1256,
1262 onto back up store 668. It does this in two secure ways
in order to cover both of the restoration scenarios discussed

above. Back up routine 1250 may encrypt the back up key(s)
(along with other information such as the time of back up
and other appropriate information to identify the back up)
with a further key or keys such that only SPU 500 can
decrypt (block 1264). This encrypted information is then
written to back up store 668 (block 1264). For example, this
step may include multiple encryptions using one or more
public keys with corresponding private keys known only to
SPU 500. Alternatively, a second back up key generated by
the SPU 500 and kept only in the SPU may be used for the
final encryption in place of a public key. Block 1264
preferably includes multiple encryption in order to make it
more difficult to attack the security of the back up by
“cracking” the encryption used to protect the back up keys.
Although block 1262 includes encrypted summary services
information on the back up, it preferably does not include
SPU device private keys, shared keys, SPU code and other
internal security information to prevent this information
from ever becoming available to users even in encrypted
form.

The information stored by block 1264 is sufficient to
allow the same SPU 500 that performed (or at least in part

Page 00235

Page 00236

5,915,019

167

performed) back up routine 1250 to recover the backed up
information. However, this information is useless to any
device other than that same SPU because only that SPU
knows the particular keys used to protect the back up keys.
To cover the other possible scenario wherein the SPU 500
fails in a non-recoverable way, back up routine 1250 pro-
vides an additional step (block 1266) of saving the back up
key(s) under protection of one or more further set of keys
that may be read by an authorized VDE administrator. For
example, block 1266 may encrypt the back up keys with an
“download authorization key” received during initialization
of SPU 500 from a VDE administrator. This encrypted
version of back up keys is also written to back up store 668
(block 1266). It can be used to support restoration of the
back up files in the event of an SPU 500 failure. More
specifically, a VDE administrator that knows the download
authorization (or other) keys(s) used by block 1266 may be
able to recover the back up key(s) in the back up store 668
and proceed to restore the backed up secure database 610 to
the same or different electronic appliance 600.

In the preferred embodiment, the information saved by
routine 1250 in back up files can be restored only after
receiving a back up authorization from an authorized VDE
administrator. In most cases, the restoration process will
simply be a restoration of secure database 610 with some
adjustments to account for any usage since the back up
occurred. This may require the user to contact additional
providers to transmit audit and billing data and receive new
budgets to reflect activity since the last back up. Current
summary services information maintained within SPU 500
may be compared to the summary services information
stored on the back up to determine or estimate most recent
usage activity.

In case of an SPU 500 failure, an authorized VDE
administrator must be contacted to both initialize the

replacement SPU 500 and to decrypt the back up files. These
processes allow for both SPU failures and upgrades to new
SPUs. In the case of restoration, the back up files are used
to restore the necessary information to the user’s system. In
the case of upgrades, the back up files may be used to
validate the upgrade process.

The back up files may in some instances be used to
transfer management information between electronic appli-
ances 600. However, the preferred embodiment may restrict
some or all information from being transportable between
electronic appliances with appropriate authorizations. Some
or all of the back up files may be packaged within an
administrative object and transmitted for analysis,
transportation, or other uses.

As a more detailed example of a need for restoration from
back up files, suppose an electronic appliance 600 suffers a
hard disk failure or other accident that wipes out or corrupts
part or all of the secure database 610, but assume that the
SPU 500 is still functional. SPU 500 may include all of the
information (e.g., secret keys and the like) it needs to restore
the secure database 610. However, ROS 602 may prevent
secure database restoration until a restoration authorization
is received from a VDE administrator. A restoration autho-

rization may comprise, for example, a “secret value” that
must match a value expected by SPE 503. A VDE admin-
istrator may, if desired, only provide this restoration autho-
rization after, for example, summary services information
stored within SPU 500 is transmitted to the administrator in

an administrative object for analysis. In some circumstances,
a VDE administrator may require that a copy (partial or
complete) of the back up files be transmitted to it within an
administrative object to check for indications of fraudulent

10

15

20

25

30

35

40

45

50

55

60

65

168

activities by the user. The restoration process, once
authorized, may require adjustment of restored budget
records and the like to resect activity since the last back up,
as mentioned above.

FIG. 40 is an example of program controlled “restore”
routine 1268 performed by electronic appliance 600 to
restore secure database 610 based on the back up provided
by the routine shown in FIG. 38. This restore may be used,
for example, in the event that an electronic appliance 600
has failed but can be recovered or “reinitialized” through
contact with a VDE administrator for example. Since the
preferred embodiment does not permit an SPU 500 to restore
from backup unless and until authorized by a VDE
administrator, restore routine 1268 begins by establishing a
secure communication with a VDE administrator that can

authorize the restore to occur (block 1270). Once SPU 500
and the VDE administrator authenticate one another (part of
block 1270), the VDE administrator may extract “work in
progress” and summary values from the SPU 500’s internal
non-volatile memory (block 1272). The VDE administrator
may use this extracted information to help determine, for
example, whether there has been a security violation, and
also permits a failed SPU 500 to effectively “dump” its
contents to the VDE administrator to permit the VDE
administrator to handle the contents. The SPU 500 may
encrypt this information and provide it to the VDE admin-
istrator packaged in one or more administrative objects. The
VDE administrator may then request a copy of some or all
of the current backup of secure database 610 from the SPU
500 (block 1274). This information may be packaged by
SPU 500 into one or more administrative objects, for
example, and sent to the VDE administrator. Upon receiving
the information, the VDE administrator may read the sum-
mary services audit information from the backup volume
(i.e., information stored by FIG. 38 block 1262) to determine
the summary values and other information stored at time of
backup. The VDE administrator may also determine the time
and date the backup was made by reading the information
stored by FIG. 38 block 1264.

The VDE administrator may at this point restore the
summary values and other information within SPU 500
based on the information obtained by block 1272 and from
the backup (block 1276). For example, the VDE adminis-
trator may reset SPU internal summary values and counters
so that they are consistent with the last backup. These values
may be adjusted by the VDE administrator based on the
“work in progress” recovered by block 1272, the amount of
time that has passed since the backup, etc. The goal may
typically be to attempt to provide internal SPU values that
are equal to what they would have been had the failure not
occurred.

The VDE administrator may then authorize SPU 500 to
recover its secure database 610 from the backup files (block
1278). This restoration process replaces all secure database
610 records with the records from the backup. The VDE
administrator may adjust these records as needed by passing
commands to SPU 500 during or after the restoration
process.

The VDE administrator may then compute bills based on
the recovered values (block 1280), and perform other actions
to recover from SPU downtime (block 1282). Typically, the
goal is to bill the user and adjust other VDE 100 values
pertaining to the failed electronic appliance 600 for usage
that occurred subsequent to the last backup but prior to the
failure. This process may involve the VDE administrator
obtaining, from other VDE participants, reports and other
information pertaining to usage by the electronic appliance

Page 00236

Page 00237

5,915,019

169

prior to its failure and comparing it to the secure database
backup to determine which usage and other events are not
yet accounted for.

In one alternate embodiment, SPU 500 may have suffi-
cient internal, non-volatile memory to allow it to store some
or all of secure database 610. In this embodiment, the
additional memory may be provided by additional one or
more integrated circuits that can be contained within a
secure enclosure, such as a tamper resistant metal container
or some form of a chip pack containing multiple integrated
circuit components, and which impedes and/or evidences
tampering attempts, and/or disables a portion or all of SPU
500 or associated critical key and/or other control informa-
tion in the event of tampering. The same back up routine
1250 shown in FIG. 38 may be used to back up this type of
information, the only difference being that block 1254 may
read the secure database item from the SPU internal memory
and may not need to decrypt it before encrypting it with the
back up key(s).

Event-Driven VDE Processes

As discussed above, processes provided by/under the
preferred embodiment rights operating system (ROS) 602
may be “event driven.” This “event driven” capability
facilitates integration and extendibility.

An “event” is a happening at a point in time. Some
examples of “events” are a user striking a key of a keyboard,
arrival of a message or an object 300, expiration of a timer,
or a request from another process.

In the preferred embodiment, ROS 602 responds to an
“event” by performing a process in response to the event.
ROS 602 dynamically creates active processes and tasks in
response to the occurrence of an event. For example, ROS
602 may create and begin executing one or more component
assemblies 690 for performing a process or processes in
response to occurrence of an event. The active processes and
tasks may terminate once ROS 602 has responded to the
event. This ability to dynamically create (and end) tasks in
response to events provides great flexibility, and also permits
limited execution resources such as those provided by an
SPU 500 to perform a virtually unlimited variety of different
processes in different contexts.

Since an “event” may be any type of happening, there are
an unlimited number of different events. Thus, any attempt
to categorize events into different types will necessarily be
a generalization. Keeping this in mind, it is possible to
categorize events provided/supported by the preferred
embodiment into two broad categories:

user-initiated events; and

system-initiated events.
Generally, “user-initiated” events are happenings attrib-

utable to a user (or a user application). A common “user-
initiated” event is a user’s request (e.g., by pushing a
keyboard button, or transparently using redirector 684) to
access an object 300 or other VDE-protected information.

“System-initiated” events are generally happenings not
attributable to a user. Examples of system initiated events
include the expiration of a timer indicating that information
should be backed to non-volatile memory, receipt of a
message from another electronic appliance 600, and a ser-
vice call generated by another process (which may have
been started to respond to a system-initiated event and/or a
user-initiated event).

ROS 602 provided by the preferred embodiment responds
to an event by specifying and beginning processes to process
the event. These processes are, in the preferred embodiment,
based on methods 1000. Since there are an unlimited number

10

15

20

25

30

35

40

45

50

55

60

65

170

of different types of events, the preferred embodiment
supports an unlimited number of different processes to
process events. This flexibility is supported by the dynamic
creation of component assemblies 690 from independently
deliverable modules such as method cores 1000', load mod-
ules 1100, and data structures such as UDEs 1200. Even
though any categorization of the unlimited potential types of
processes supported/provided by the preferred embodiment
will be a generalization, it is possible to generally classify
processes as falling within two categories:

processes relating to use of VDE protected information;
and

processes relating to VDE administration.
“Use” and “Administrative” Processes

“Use” processes relate in some way to use of VDE-
protected information. Methods 1000 provided by the pre-
ferred embodiment may provide processes for creating and
maintaining a chain of control for use of VDE-protected
information. One specific example of a “use” type process is
processing to permit a user to open a VDE object 300 and
access its contents. A method 1000 may provide detailed
use-related processes such as, for example, releasing content
to the user as requested (if permitted), and updating meters,
budgets, audit trails, etc. Use-related processes are often
user-initiated, but some use processes may be system-
initiated. Events that trigger a VDE use-related process may
be called “use events.”

An “administrative” process helps to keep VDE 100
working. It provides processing that helps support the trans-
action management “infrastructure” that keeps VDE 100
running securely and efficiently. Administrative processes
may, for example, provide processing relating to some
aspect of creating, modifying and/or destroying VDE-
protected data structures that establish and maintain VDE’s
chain of handling and control. For example, “administra-
tive” processes may store, update, modify or destroy infor-
mation contained within a VDE electronic appliance 600
secure database 610. Administrative processes also may
provide communications services that establish, maintain
and support secure communications between different VDE
electronic appliances 600. Events that trigger administrative
processes may be called “administrative events.”

Reciprocal Methods
Some VDE processes are paired based on the way they

interact together. One VDE process may “request” process-
ing services from another VDE process. The process that
requests processing services may be called a “request pro-
cess.” The “request” constitutes an “event” because it trig-
gers processing by the other VDE process in the pair. The
VDE process that responds to the “request event” may be
called a “response process.” The “request process” and
“response process” may be called “reciprocal processes.”

The “request event” may comprise, for example, a mes-
sage issued by one VDE node electronic appliance 600 or
process for certain information. A corresponding “response
process” may respond to the “request event” by, for
example, sending the information requested in the message.
This response may itself constitute a “request event” if it
triggers a further VDE “response process.” For example,
receipt of a message in response to an earlier-generated
request may trigger a “reply process.” This “reply process”
is a special type of “response process” that is triggered in
response to a “reply” from another “response process.”
There may be any number of “request” and “response”
process pairs within a given VDE transaction.

A “request process” and its paired “response process”
may be performed on the same VDE electronic appliance

Page 00237

Page 00238

5,915,019

171

600, or the two processes may be performed on different
VDE electronic appliances. Communication between the
two processes in the pair may be by way of a secure
(VDE-protected) communication, an “out of channel”
communication, or a combination of the two.

FIGS. 41a—41d are a set of examples that show how the
chain of handling and control is enabled using “reciprocal
methods.” Achain of handling and control is constructed, in
part, using one or more pairs of “reciprocal events” that
cooperate in request-response manner. Pairs of reciprocal
events may be managed in the preferred embodiment in one
or more “reciprocal methods.” As mentioned above, a
“reciprocal method” is a method 1000 that can respond to
one or more “reciprocal events.” Reciprocal methods con-
tain the two halves of a cooperative process that may be
securely executed at physically and/or temporally distant
VDE nodes. The reciprocal processes may have a flexibly
defined information passing protocols and information con-
tent structure. The reciprocal methods may, in fact, be based
on the same or different method core 1000' operating in the
same or different VDE nodes 600. VDE nodes 600A and

600B shown in FIG. 41a may be the same physical elec-
tronic appliance 600 or may be separate electronic appli-ances.

FIG. 41a is an example of the operation of a single pair
of reciprocal events. In VDE node 600A, method 1000a is
processing an event that has a request that needs to be
processed at VDE node 600B. The method 1000a (e.g.,
based on a component assembly 690 including its associated
load modules 1100 and data) that responds to this “request”
event is shown in FIG. 41a as 1450. The process 1450
creates a request (1452) and, optionally, some information or
data that will be sent to the other VDE node 1000b for

processing by a process associated with the reciprocal event.
The request and other information may be transmitted by
any of the transport mechanisms described elsewhere in this
disclosure.

Receipt of the request by VDE node 600b comprises a
response event at that node. Upon receipt of the request, the
VDE node 600b may perform a “reciprocal” process 1454
defined by the same or different method 1000b to respond to
the response event. The reciprocal process 1454 may be
based on a component assembly 690 (e.g., one or more load
modules 1100, data, and optionally other methods present in
the VDE node 600B).

FIG. 41b extends the concepts presented in FIG. 41a to
include a response from VDE node 600B back to VDE node
600A. The process starts as described for FIG. 41a through
the receipt and processing of the request event and infor-
mation 1452 by the response process 1454 in VDE node
600B. The response process 1454 may, as part of its
processing, cooperate with another request process (1468) to
send a response 1469 back to the initiating VDE node 600A.
A corresponding reciprocal process 1470 provided by
method 1000A may respond to and process this request
event 1469. In this manner, two or more VDE nodes 600A,
600B may cooperate and pass configurable information and
requests between methods 1000A, 1000B executing in the
nodes. The first and second request-response sequences
[(1450, 1452, 1454) and (1468, 1469, 1470)] may be sepa-
rated by temporal and spatial distances. For efficiency, the
request (1468) and response (1454) processes may be based
on the same method 1000 or they may be implemented as
two methods in the same or different method core 1000'. A

method 1000 may be parameterized by an “event code” so
it may provide different behaviors/results for different
events, or different methods may be provided for different
events.

10

15

20

25

30

35

40

45

50

55

60

65

172
FIG. 416 shows the extension the control mechanism

described in FIGS. 41a—41b to three nodes (600A, 600B,
600C). Each request-response pair operates in the manner as
described for FIG. 41b, with several pairs linked together to
form a chain of control and handling between several VDE
nodes 600A, 600B, 600C. This mechanism may be used to
extend the chain of handling and control to an arbitrary
number of VDE nodes using any configuration of nodes. For
example, VDE node 600C might communicate directly to
VDE node 600A and communicate directly to VDE 600B,
which in turn communicates with VDE node 600A.

Alternately, VDE node 600C might communicate directly
with VDE node 600A, VDE node 600A may communicate
with VDE node 600B, and VDE node 600B may commu-
nicate with VDE node 600C.

A method 1000 may be parameterized with sets of events
that specify related or cooperative functions. Events may be
logically grouped by function (e.g., use, distribute), or a set
of reciprocal events that specify processes that may operate
in conjunction with each other. FIG. 41d illustrates a set of
“reciprocal events” that support cooperative processing
between several VDE nodes 102, 106, 112 in a content
distribution model to support the distribution of budget. The
chain of handling and control, in this example, is enabled by
using a set of “reciprocal events” specified within a BUD-
GET method. FIG. 41d is an example of how the reciprocal
event behavior within an example BUDGET method (1510)
work in cooperation to establish a chain of handling and
control between several VDE nodes. The example BUDGET
method 1510 responds to a “use” event 1478 by performing
a “use” process 1476 that defines the mechanism by which
processes are budgeted. The BUDGET method 1510 might,
for example, specify a use process 1476 that compares a
meter count to a budget value and fail the operation if the
meter count exceeds the budget value. It might also write an
audit trail that describes the results of said BUDGET deci-

sions. Budget method 1510 may respond to a “distribute”
event by performing a distribute process 1472 that defines
the process and/or control information for further distribu-
tion of the budget. It may respond to a “request” event 1480
by performing a request process 1480 that specifies how the
user might request use and/or distribution rights from a
distributor. It may respond to a “response” event 1482 by
performing a response process 1484 that specifies the man-
ner in which a distributor would respond to requests from
other users to whom they have distributed some (or all) of
their budget to. It may respond to a “reply” event 1474 by
performing a reply process 1475 that might specify how the
user should respond to message regranting or denying
(more) budget.

Control of event processing, reciprocal events, and their
associated methods and method components is provided by
PERCs 808 in the preferred embodiment. These PERCs
(808) might reference administrative methods that govern
the creation, modification, and distribution of the data struc-
tures and administrative methods that permit access,
modification, and further distribution of these items. In this
way, each link in the chain of handling and control might, for
example, be able to customize audit information, alter the
budget requirements for using the content, and/or control
further distribution of these rights in a manner specified by
prior members along the distribution chain.

In the example shown in FIG. 41d, a distributor at a VDE
distributor node (106) might request budget from a content
creator at another node (102). This request may be made in
the context of a secure VDE communication or it may be
passed in an “out-of-channel” communication (e.g. a tele-

Page 00238

Page 00239

5,915,019

173 174

phone call or letter). The creator 102 may decide to grant
budget to the distributor 106 and processes a distribute event
(1452 in BUDGET method 1510 at VDE node 102). Aresult Event Type Event Process Description
of processing the distribute event Within the BUDGET. . . “Use” Events use bud et Use bud et.

methOd mlght be a secure communication (1454) between 5 Request Events recues ignore budget Requestfinore money for
VDE nodes 102 and 106 by Which a budget granting use and processes by User budget
redistribute rights to the distributor 106 may be transferred Node Request recues audit by Request that auditor #1
from the creator 102 to the distributor. The distributor’s Process 14800 auditor #1 audit the budget use-

rec ues budget deletion Request that budget be
deleted from system.VDE node 106 may respond to the receipt of the budget

information by processing the communication using the 10 recues method U date method used for

reply process 1475B of the BUDGET method 1510. The updated aiming
reply event processing 1475B might, for example, install a recues to change Change from auditor i to
budget and PERC 808 Within the distributor’s VDE 106 auditors _ _ auditor 2: or vise versa-

node to permit the distributor to access content or processes Feiuesldlfferent and“ Ehfnge tlmgtlnterval
~ ~ ~ In erva e ween au 1 S.

for Which access is control at least in part by the budget recues ability to pro_ Recuest ability to provide
and/or PERC. At some point, the distributor 106 may also 15

. . . vice budget copies copies of a budget.
des1re to use the content to Which she has been granted rights rec ues ability to Rec uest ability to distribute
to access. distribute budget a budget to other users.

After registering to use the content object, the user 112 mu“ account Status Refine/St mformatlon 0n cur'
would be required to utilize an array of “use” processes Ten Status Of an account. Request New Method Rec uest new method.
1476C to, for example, open, read, write, and/or close the 20 Request Method Recuest update of method.
content object as part of the use process. Update

Once the distributor 106 has used some or all of her Request Method Recuest deletion of method.
budget, she may desire to obtain additional budget. The Delejuon. Response Events receive more budget Allocate more money to
distributor 106 might then initiate a process using the Processed by User budget.
BUDGET method request process (1480B). Request process 25 Node request receive method update Upc ate method.
1480B might initiate a communication (1482AB) with the Process 1480C receive auditor change Change from one auditor to
content creator VDE node 102 requesting more budget and . . “0 her'.

h .d. details Of the use activit to date (6 receive change to audit Change interval betweenper .aps .pI‘OVl lug y ’g” interval audits.
audit trails). The content creator 102 processes the ‘get more receive budget deletion Delete budget.
budget’ request event 1482AB using the response process 30 provide audit to Forward audit information
(1484A) Within the creator’s BUDGET method 1510A. and?“ #1 . to audltc’r #1: . .
R 1484A . h f 1 ak d prOVide audit to Forward audit informationesponse process . mig t, .orexamp e, m e a eter- auditor #2 to auditor #2
mination if the use information indicates proper use of the receive account status Provide account status.

content, and/or if the distributor is credit worthy for more Receive New Receive new budget.

budget. The BUDGET method response process 1484A 35 5626136 MethOd Eecewe updated mforma'. p a e ion.

might also. initiate a finanCial transaction to transfer funds Receive More Receive more for budget.
from the distributor to pay for said use, or use the distribute Sent Audit Send audit information.
process 1472A to distribute budget to the distributor 106. A _ _ Perform Deletion De ete information-
response to the distributor 106 granting more budget (or Dlsmbute Events creaie New creaie new budget
d . b d t) mi ht be sent immediatel as a 40 PrOVide More PrOVide more for budget.enylng more 11 g6 g . . .y . Audit Perform audit.
response to the request communication 1482AB, or it might Delete De ete information.
be sent at a later time as part of a separate communication. Reconcile Rec_o_nci1e budget and

The response communication, upon being received at the C gum”? d t. . , . . opy 03y u ge.

distributor s VDE node 106, might. be. processed using the Distribute Distribute budget.
reply process 1475B Within the distributor’s copy of the 45 Method Modification Modify method.
BUDGET method 1510B. The reply process 1475B might Display Method Dispiax requestéd method-
then process the additional budget in the same manner as RequeSt Events Delete De ete mformamn'
described above Processed by Get New Ge new budget.. ’ Distributor Node Get More Ge more for budget.

The Chaln 0f handling and COHtFOI may, 1H addltlon to Request Process Get Updated Ge updated information.
posting budget information, also pass control information 50 1484B Get Audited Ge audit information-
that governs the manner in WhiCh said budget may be Response Events Provide New to user Provide new budget to user.. Processed by PrOVide More to user PrOVide more budget to
utilized. For example, the control information spec1fied in Distributor Node usen
the abOVe example may 21150 COHtaIH COHtIOI information Request Process Provide Update to user Provided updated budget to
describing the process and limits that apply to the distribu- 1484B user-

Audit user Audit a specified user.
tor’s redistribution of the right to use the creator’s content 55
object. Thus, when the distributor responds to a budget
request from a user (a communication between a user at
VDE node 112 to the distributor at VDE node 106 similar in .

nature to the one described above between VDE nodes 106 Exgmiélleggqft Rec1procal Method Processes
and 102) using the distribute process 1472B Within the 60 FIGS 42a 42b 42c and 42d res -. . , . . . , , , pectively, are flowcharts
distributor 5 COPY 0f the BUDGET method.15.10B, a dlsm' of example process control steps performed by a represen-
bution and request/response/reply process similar to the one tative example of BUDGET method 2250 provided by the

Delete user’s method Delete method belonging touser.

described above might be initiated. preferred embodiment. In the preferred embodiment, BUD-
Thus, in this example a single method can provide mul- GET method 2250 may operate in any of four different

tiple dynamic behaviors based on different “triggering” 65 modes:
events. For example, single BUDGET method 1510 might use (see FIG. 42a)
support any or all of the events listed below: administrative request (see FIG. 42b)

Page 00239

Page 00240

5,915,019

175

administrative response (see FIG. 42c)
administrative reply (see FIG. 42d).

In general, the “use” mode of BUDGET method 2250 is
invoked in response to an event relating to the use of an
object or its content. The “administrative request” mode of
BUDGET method 2250 is invoked by or on behalf of the
user in response to some user action that requires contact
with a VDE financial provider, and basically its task is to
send an administrative request to the VDE financial pro-
vider. The “administrative response” mode of BUDGET
method 2250 is performed at the VDE financial provider in
response to receipt of an administrative request sent from a
VDE node to the VDE financial provider by the “adminis-
trative request” invocation of BUDGET method 2250 shown
in FIG. 42b. The “administrative response” invocation of
BUDGET method 2250 results in the transmission of an

administrative object from VDE financial provider to the
VDE user node. Finally, the “administrative reply” invoca-
tion of BUDGET method 2250 shown in FIG. 42d is

performed at the user VDE node upon receipt of the admin-
istrative object sent by the “administrative response” invo-
cation of the method shown in FIG. 426.

In the preferred embodiment, the same BUDGET method
2250 performs each of the four different step sequences
shown in FIGS. 42a—42d. In the preferred embodiment,
different event codes may be passed to the BUDGET method
2250 to invoke these various different modes. Of course, it
would be possible to use four separate BUDGET methods
instead of a single BUDGET method with four different
“dynamic personalities,” but the preferred embodiment
obtains certain advantages by using the same BUDGET
method for each of these four types of invocations.

Looking at FIG. 42a, the “use” invocation of BUDGET
method 2250 first primes the Budget Audit Trail (blocks
2252, 2254). It then obtains the DTD for the Budget UDE,
which it uses to obtain and read the Budget UDE blocks
2256—2262). BUDGET method 2250 in this “use” invoca-
tion may then determine whether a Budget Audit date has
expired, and terminate if it has (“yes” exit to decision block
2264; blocks 2266, 2268). So long as the Budget Audit date
has not expired, the method may then update the Budget
using the atomic element and event counts (and possibly
other information) (blocks 2270, 2272), and may then save
a Budget User Audit record in a Budget Audit Trail UDE
(blocks 2274, 2276) before terminating (at terminate point
2278).

Looking at FIG. 42b, the first six steps (blocks
2280—2290) may be performed by the user VDE node in
response to some user action (e.g., request to access new
information, request for a new budget, etc.). This “admin-
istrative request” invocation of BUDGET method 2250 may
prime an audit trail (blocks 2280, 2282). The method may
then place a request for administrative processing of an
appropriate Budget onto a request queue (blocks 2284,
2286). Finally, the method may save appropriate audit trail
information (blocks 2288, 2290). Sometime later, the user
VDE node may prime a communications audit trail (blocks
2292, 2294), and may then write a Budget Administrative
Request into an administrative object (block 2296). This step
may obtain information from the secure database as needed
from such sources such as, for example, Budget UDE;
Budget Audit Trail UDE(s); and Budget Administrative
Request Record(s) (block 2298).

Block 2296 may then communicate the administrative
object to a VDE financial provider, or alternatively, block
2296 may pass administrative object to a separate commu-
nications process or method that arranges for such commu-

5

10

15

20

25

30

35

40

45

50

55

60

65

176

nications to occur. If desired, method 2250 may then save a
communications audit trail (blocks 2300, 2302) before ter-
minating (at termination point 2304).

FIG. 426 is a flowchart of an example of process control
steps performed by the example of BUDGET method 2250
provided by the preferred embodiment operating in an
“administrative response” mode. Steps shown in FIG. 426
would, for example, be performed by a VDE financial
provider who has received an administrative object contain-
ing a Budget administrative request as created (and com-
municated to a VDE administrator for example) by FIG. 42b
(block 2296).

Upon receiving the administrative object, BUDGET
method 2250 at the VDE financial provider site may prime
a budget communications and response audit trail (blocks
2306, 2308), and may then unpack the administrative object
and retrieve the budget request(s), audit trail(s) and record(s)
it contains (block 2310). This information retrieved from the
administrative object may be written by the VDE financial
provider into its secure database (block 2312). The VDE
financial provider may then retrieve the budget request(s)
and determine the response method it needs to execute to
process the request (blocks 2314, 2316). BUDGET method
2250 may send the event(s) contained in the request record
(s) to the appropriate response method and may generate
response records and response requests based on the
RESPONSE method (block 2318). The process performed
by block 2318 may satisfy the budget request by writing
appropriate new response records into the VDE financial
provider’s secure database (block 2320). BUDGET method
2250 may then write these Budget administrative response
records into an administrative object (blocks 2322, 2324),
which it may then communicate back to the user node that
initiated the budget request. BUDGET method 2250 may
then save communications and response processing audit
trail information into appropriate audit trail UDE(s) (blocks
2326, 2328) before terminating (at termination point 2330).

FIG. 42d is a flowchart of an example of program control
steps performed by a representative example of BUDGET
method 2250 operating in an “administrative reply” mode.
Steps shown in FIG. 42d might be performed, for example,
by a VDE user node upon receipt of an administrative object
containing budget-related information. BUDGET method
2250 may first prime a Budget administrative and commu-
nications audit trail (blocks 2332, 2334). BUDGET method
2250 may then extract records and requests from a received
administrative object and write the reply record to the VDE
secure database (blocks 2336, 2338). The VDE user node
may then save budget administrative and communications
audit trail information in an appropriate audit trail UDE(s)
(blocks 2340, 2341).

Sometime later, the VDE user node may retrieve the reply
record from the secure database and determine what method

is required to process it clocks 2344, 2346). The VDE user
node may, optionally, prime an audit trail (blocks 2342,
2343) to record the results of the processing of the reply
event. The BUDGET method 2250 may then send event(s)
contained in the reply record(s) to the REPLY method, and
may generate/update the secure database records as neces-
sary to, for example, insert new budget records, delete old
budget records and/or apply changes to budget records
(blocks 2348, 2350). BUDGET method 2250 may then
delete the reply record from the secure data base (blocks
2352, 2353) before writing the audit trail (if required)
(blocks 2354m 2355) terminating (at terminate point 2356).

B. Register
FIGS. 43a—43d are fiowcharts of an example of program

control steps performed by a representative example of a

Page 00240

Page 00241

5,915,019

177

REGISTER method 2400 provided by the preferred embodi-
ment. In this example, the REGISTER method 2400 per-
forms the example steps shown in FIG. 43a when operating
in a “use” mode, performs the example steps shown in FIG.
43b when operating in an “administrative request” mode,
performs the steps shown in FIG. 436 when operating in an
“administrative response” mode, and performs the steps
shown in FIG. 43d when operating in an “administrative
reply” mode.

The steps shown in FIG. 43a may be, for example,
performed at a user VDE node in response to some action by
or on behalf of the user. For example the user may ask to
access an object that has not yet been (or is not now)
properly registered to her. In response to such a user request,
the REGISTER method 2400 may prime a Register Audit
Trail UDE (blocks 2402, 2404) before determining whether
the object being requested has already been registered
(decision block 2406). If the object has already been regis-
tered (“yes” exit to decision block 2406), the REGISTER
method may terminate (at termination point 2408). If the
object is not already registered (“no” exit to decision block
2406), then REGISTER method 2400 may access the VDE
node secure database PERC 808 and/or Register MDE
(block 2410). REGISTER method 2400 may extract an
appropriate Register Record Set from this PERC 808 and/or
Register MDE (block 2412), and determine whether all of
the required elements are present that are needed to register
the object (decision block 2414). If some piece(s) is missing
(“no” exit to decision block 2414), REGISTER method
2400 may queue a Register request record to a communi-
cation manager and then suspend the REGISTER method
until the queued request is satisfied (blocks 2416, 2418).
Block 2416 may have the effect of communicating a register
request to a VDE distributor, for example. When the request
is satisfied and the register request record has been received
(block 2420), then the test of decision block 2414 is satisfied
(“yes” exit to decision block 2414), and REGISTER method
2400 may proceed. At this stage, the REGISTER method
2400 may allow the user to select Register options from the
set of method options allowed by PERC 808 accessed at
block 2410 (block 2422). As one simple example, the PERC
808 may permit the user to pay by VISA or MasterCard but
not by American Express; block 2422 may display a prompt
asking the user to select between paying using her VISA
card and paying using her MasterCard (block 2424). The
REGISTER method 2400 preferably validates the user
selected registration options and requires the user to select
different options if the initial user options were invalid
(block 2426, “no” exit to decision block 2428). Once the
user has made all required registration option selections and
those selections have been validated (“yes” exit to decision
block 2428), the REGISTER method 2400 may write an
User Registration Table (URT) corresponding to this object
and this user which embodies the user registration selections
made by the user along with other registration information
required by PERC 808 and/or the Register MDE (blocks
2430, 2432). REGISTER method 2400 may then write a
Register audit record into the secure database (blocks 2432,
2434) before terminating (at terminate point 2436).

FIG. 43b shows an example of an “administrative
request” mode of REGISTER method 2400. This Adminis-
trative Request Mode may occur on a VDE user system to
generate an appropriate administrative object for communi-
cation to a VDE distributor or other appropriate VDE
participant requesting registration information. Thus, for
example, the steps shown in FIG. 43b may be performed as
part of the “queue register request record” block 2416 shown

10

15

20

25

30

35

40

45

50

55

60

65

178

in FIG. 43a. To make a Register administrative request,
REGISTER method 2400 may first prime a communications
audit trail (blocks 2440, 2442), and then access the secure
database to obtain data about registration (block 2444). This
secure database access may, for example, allow the owner
and/or publisher of the object being registered to find out
demographic, user or other information about the user. As a
specific example, suppose that the object being registered is
a spreadsheet software program. The distributor of the object
may want to know what other software the user has regis-
tered. For example, the distributor may be willing to give
preferential pricing if the user registers a “suite” of multiple
software products distributed by the same distributor. Thus,
the sort of information solicited by a “user registration” card
enclosed with most standard software packages may be
solicited and automatically obtained by the preferred
embodiment at registration time. In order to protect the
privacy rights of the user, REGISTER method 2400 may
pass such user-specific data through a privacy filter that may
be at least in part customized by the user so the user can
prevent certain information from being revealed to the
outside world (block 2446). The REGISTER method 2400
may write the resulting information along with appropriate
Register Request information identifying the object and
other appropriate parameters into an administrative object
(blocks 2448, 2450). REGISTER method 2400 may then
pass this administrative object to a communications handler.
REGISTER method 2400 may then save a communications
audit trail (blocks 2452, 2454) before terminating (at termi-
nate point 2456).

FIG. 436 includes REGISTER method 2400 steps that
may be performed by a VDE distributor node upon receipt
of Register Administrative object sent by block 2448, FIG.
43b. REGISTER method 2400 in this “administrative

response” mode may prime appropriate audit trails (blocks
2460, 2462), and then may unpack the received administra-
tive object and write the associated register request(s) con-
figuration information into the secure database (blocks 2464,
2466). REGISTER method 2400 may then retrieve the
administrative request from the secure database and deter-
mine which response method to run to process the request
(blocks 2468, 2470). If the user fails to provide sufficient
information to register the object, REGISTER method 2400
may fail (blocks 2472, 2474). Otherwise, REGISTER
method 2400 may send event(s) contained in the appropriate
request record(s) to the appropriate response method, and
generate and write response records and response requests
(e.g., PERC(s) and/or UDEs) to the secure database (blocks
2476, 2478). REGISTER method 2400 may then write the
appropriate Register administrative response record into an
administrative object (blocks 2480, 2482). Such information
may include, for example, one or more replacement PERC
(s) 808, methods, UDE(s), etc. (block 2482). This enables,
for example, a distributor to distribute limited right permis-
sions giving users only enough information to register an
object, and then later, upon registration, replacing the lim-
ited right permissions with wider permissioning scope grant-
ing the user more complete access to the objects. REGIS-
TER method 2400 may then save the communications and
response processing audit trail (blocks 2484, 2486), before
terminating (at terminate point 2488).

FIG. 43d shows steps that may be performed by the VDE
user node upon receipt of the administrative object
generated/transmitted by FIG. 436 block 2480. The steps
shown in FIG. 43d are very similar to those shown in FIG.
42d for the BUDGET method administrative reply process.

Page 00241

Page 00242

5,915,019

179
C. Audit

FIGS. 44a—44c are flowcharts of examples of program
control steps performed by a representative example of an
AUDIT method 2520 provided by the preferred embodi-
ment. As in the examples above, the AUDIT method 2520
provides three different operational modes in this preferred
embodiment example: FIG. 44a shows the steps performed
by the AUDIT method in an “administrative request” mode;
FIG. 44b shows steps performed by the method in the
“administrative response” mode; and FIG. 446 shows the
steps performed by the method in an “administrative reply”
mode.

The AUDIT method 2520 operating in the “administrative
request” mode as shown in FIG. 44a is typically performed,
for example, at a VDE user node based upon some request
by or on behalf of the user. For example, the user may have
requested an audit, or a timer may have expired that initiates
communication of audit information to a VDE content

provider or other VDE participant. In the preferred
embodiment, different audits of the same overall process
may be performed by different VDE participants. A particu-
lar “audit” method 2520 invocation may be initiated for any
one (or all) of the involved VDE participants. Upon invo-
cation of AUDIT method 2520, the method may prime an
audit administrative audit trail (thus, in the preferred
embodiment, the audit processing may itself be audited)
(blocks 2522, 2524). The AUDIT method 2520 may then
queue a request for administrative processing (blocks 2526,
2528), and then may save the audit administrative audit trail
in the secure database (blocks 2530, 2532). Sometime later,
AUDIT method 2520 may prime a communications audit
trail (blocks 2534, 2536), and may then write Audit Admin-
istrative Request(s) into one or more administrative object(s)
based on specific UDE, audit trail UDE(s), and/or adminis-
trative record(s) stored in the secure database (blocks 2538,
2540). The AUDIT method 2520 may then save appropriate
information into the communications audit trail (blocks
2542, 2544) before terminating (at terminate point 2546).

FIG. 44b shows example steps performed by a VDE
content provider, financial provider or other auditing VDE
node upon receipt of the administrative object generated and
communicated by FIG. 44a block 2538. The AUDIT method
2520 in this “administrative response” mode may first prime
an Audit communications and response audit trail (blocks
2550, 2552), and may then unpack the received administra-
tive object and retrieve its contained Audit request(s) audit
trail(s) and audit record(s) for storage into the secured
database (blocks 2554, 2556). AUDIT method 2520 may
then retrieve the audit request(s) from the secure database
and determine the response method to run to process the
request (blocks 2558, 2560). AUDIT method 2520 may at
this stage send event(s) contained in the request record(s) to
the appropriate response method, and generate response
record(s) and requests based on this method (blocks 2562,
2564). The processing block 2562 may involve a commu-
nication to the outside world.

For example, AUDIT method 2520 at this point could call
an external process to perform, for example, an electronic
funds transfer against the user’s bank account or some other
bank account. The AUDIT administrative response can, if
desired, call an external process that interfaces VDE to one
or more existing computer systems. The external process
could be passed the user’s account number, PIN, dollar
amount, or any other information configured in, or associ-
ated with, the VDE audit trail being processed. The external
process can communicate with non-VDE hosts and use the
information passed to it as part of these communications.

10

15

20

25

30

35

40

45

50

55

60

65

180

For example, the external process could generate automated
clearinghouse (ACH) records in a file for submittal to a
bank. This mechanism would provide the ability to auto-
matically credit or debit a bank account in any financial
institution. The same mechanism could be used to commu-

nicate with the existing credit card (e.g. VISA) network by
submitting VDE based charges against the charge account.

Once the appropriate Audit response record(s) have been
generated, AUDIT method 2520 may write an Audit admin-
istrative record(s) into an administrative object for commu-
nication back to the VDE user node that generated the Audit
request (blocks 2566, 2568). The AUDIT method 2520 may
then save communications and response processing audit
information in appropriate audit trail(s) (blocks 2570, 2572)
before terminating (at terminate point 2574).

FIG. 446 shows an example of steps that may be per-
formed by the AUDIT method 2520 back at the VDE user
node upon receipt of the administrative object generated and
sent by FIG. 44b, block 2566. The steps 2580—2599 shown
in FIG. 446 are similar to the steps shown in FIG. 43d for the
REGISTER method 2400 in the “administrative reply”
mode. Briefly, these steps involve receiving and extracting
appropriate response records from the administrative object
(block 2584), and then processing the received information
appropriately to update secure database records and perform
any other necessary actions (blocks 2595, 2596).

Examples of Event-Driven Content-Based Methods
VDE methods 1000 are designed to provide a very

flexible and highly modular approach to secure processing.
A complete VDE process to service a “use event” may
typically be constructed as a combination of methods 1000.
As one example, the typical process for reading content or
other information from an object 300 may involve the
following methods:

an EVENT method
a METER method
a BILLING method
a BUDGET method.

FIG. 45 is an example of a sequential series of methods
performed by VDE 100 in response to an event. In this
example, when an event occurs, an EVENT method 402 may
“qualify” the event to determine whether it is significant or
not. Not all events are significant. For example, if the
EVENT method 1000 in a control process dictates that usage
is to be metered based upon number of pages read, then user
request “events” for reading less than a page of information
may be ignored. In another example, if a system event
represents a request to read a certain number of bytes, and
the EVENT method 1000 is part of a control process
designed to meter paragraphs, then the EVENT method may
evaluate the read request to determine how many paragraphs
are represented in the bytes requested. This process may
involve mapping to “atomic elements” to be discussed in
more detail below.

EVENT method 402 filters out events that are not sig-
nificant with regard to the specific control method involved.
EVENT method 402 may pass on qualified events to a
METER process 1404, which meters or discards the event
based on its own particular criteria.

In addition, the preferred embodiment provides an opti-
mization called “precheck” EVENT method/process 402
may perform this “precheck” based on metering, billing and
budget information to determine whether processing based
on an event will be allowed. Suppose, for example, that the
user has already exceeded her budget with respect to access-
ing certain information content so that no further access is
permitted. Although BUDGET method 408 could make this

Page 00242

Page 00243

5,915,019

181

determination, records and processes performed by BUD-
GET method 404 and/or BILLING method 406 might have
to be “undone” to, for example, prevent the user from being
charged for an access that was actually denied. It may be
more efficient to perform a “precheck” within EVENT
method 402 so that fewer transactions have to be “undone.”

METER method 404 may store an audit record in a meter
“trail” UDE 1200, for example, and may also record infor-
mation related to the event in a meter UDE 1200. For

example, METER method 404 may increment or decrement
a “meter” value within a meter UDE 1200 each time content

is accessed. The two different data structures (meter UDE
and meter trail UDE) may be maintained to permit record
keeping for reporting purposes to be maintained separately
from record keeping for internal operation purposes, for
example.

Once the event is metered by METER method 404, the
metered event may be processed by a BILLING method 406.
BILLING method 406 determines how much budget is
consumed by the event, and keeps records that are useful for
reconciliation of meters and budgets. Thus, for example,
BILLING method 406 may read budget information from a
budget UDE, record billing information in a billing UDE,
and write one or more audit records in a billing trail UDE.
While some billing trail information may duplicate meter
and/or budget trail information, the billing trail information
is useful, for example, to allow a content creator 102 to
expect a payment of a certain size, and serve as a reconcili-
ation check to reconcile meter trail information sent to

creator 102 with budget trail information sent to, for
example, an independent budget provider.

BILLING method 406 may then pass the event on to a
BUDGET method 408. BUDGET method 408 sets limits
and records transactional information associated with those

limits. For example, BUDGET method 408 may store bud-
get information in a budget UDE, and may store an audit
record in a budget trail UDE. BUDGET method 408 may
result in a “budget remaining” field in a budget UDE being
decremented by an amount specified by BILLING method
406.

The information content may be released, or other action
taken, once the various methods 402, 404, 406, 408 have
processed the event.

As mentioned above, PERCs 808 in the preferred embodi-
ment may be provided with “control methods” that in effect
“oversee” performance of the other required methods in a
control process. FIG. 46 shows how the required methods/
processes 402, 404, 406, and 408 of FIG. 45 can be
organized and controlled by a control method 410. Control
method 410 may call, dispatch events, or otherwise invoke
the other methods 402, 404, 406, 408 and otherwise super-
vise the processing performed in response to an “event.”

Control methods operate at the level of control sets 906
within PERCs 808. They provide structure, logic, and flow
of control between disparate acquired methods 1000. This
mechanism permits the content provider to create any
desired chain of processing, and also allows the specific
chain of processing to be modified (within permitted limits)
by downstream redistributors. This control structure concept
provides great flexibility.

FIG. 47 shows an example of an “aggregate” method 412
which collects METER method 404, BUDGET method 406
and BILLING method 408 into an “aggregate” processing
flow. Aggregate method 412 may, for example, combine
various elements of metering, budgeting and billing into a
single method 1000. Aggregate method 412 may provide
increased efficiency as a result of processing METER

10

15

20

25

30

35

40

45

50

55

60

65

182

method 404, BUDGET method 406 and BILLING method
408 aggregately, but may decrease flexibility because of
decreased modularity.

Many different methods can be in effect simultaneously.
FIG. 48 shows an example of preferred embodiment event
processing using multiple METER methods 404 and mul-
tiple BUDGET methods 1408. Some events may be subject
to many different required methods operating independently
or cumulatively. For example, in the example shown in FIG.
48, meter method 404a may maintain meter trail and meter
information records that are independent from the meter trail
and meter information records maintained by METER
method 404b. Similarly, BUDGET method 408a may main-
tain records independently of those records maintained by
BUDGET method 408b. Some events may bypass BILLING
method 408 while nevertheless being processed by meter
method 404a and BUDGET method 408a. A variety of
different variations are possible.

Representative Examples of VDE Methods
Although methods 1000 can have virtually unlimited

variety and some may even be user-defined, certain basic
“use” type methods are preferably used in the preferred
embodiment to control most of the more fundamental object
manipulation and other functions provided by VDE 100. For
example, the following high level methods would typically
be provided for object manipulation:

OPEN method

READ method

WRITE method

CLOSE method.

An OPEN method is used to control opening a container
so its contents may be accessed. AREAD method is used to
control the access to contents in a container. A WRITE
method is used to control the insertion of contents into a
container. A CLOSE method is used to close a container that

has been opened.
Subsidiary methods are provided to perform some of the

steps required by the OPEN, READ, WRITE and/or CLOSE
methods. Such subsidiary methods may include the follow-
mg:

ACCESS method

PANIC method

ERROR method

DECRYPT method

ENCRYPT method

DESTROY content method

INFORMATION method

OBSCURE method

FINGERPRINT method

EVENT method.

CONTENT method

EXTRACT method

EMBED method

METER method

BUDGET method

REGISTER method

BILLING method

AUDIT method

Ah ACCESS method may be used to physically access
content associated with an opened container (the content can
be anywhere). A PANIC method may be used to disable at
least a portion of the VDE node if a security violation is
detected. An ERROR method may be used to handle error

Page 00243

Page 00244

5,915,019

183

conditions. A DECRYPT method is used to decrypt
encrypted information. An ENCRYPT method is used to
encrypt information. ADESTROY content method is used to
destroy the ability to access specific content within a con-
tainer. An INFORMATION method is used to provide public
information about the contents of a container. An
OBSCURE method is used to devalue content read from an

opened container (e.g., to write the word “SAMPLE” over
a displayed image). A FINGERPRINT method is used to
mark content to show who has released it from the secure
container. An event method is used to convert events into

different events for response by other methods.
Open
FIG. 49 is a flowchart of an example of preferred embodi-

ment process control steps for an example of an OPEN
method 1500. Different OPEN methods provide different
detailed steps. However, the OPEN method shown in FIG.
49 is a representative example of a relatively full-featured
“open” method provided by the preferred embodiment. FIG.
49 shows a macroscopic view of the OPEN method. FIGS.
49a—49f are together an example of detailed program con-
trolled steps performed to implement the method shown in
FIG. 49.

The OPEN method process starts with an “open event.”
This open event may be generated by a user application, an
operating system intercept or various other mechanisms for
capturing or intercepting control. For example, a user appli-
cation may issue a request for access to a particular content
stored within the VDE container. As another example,
another method may issue a command.

In the example shown, the open event is processed by a
control method 1502. Control method 1502 may call other
methods to process the event. For example, control method
1502 may call an EVENT method 1504, a METER method
1506, a BILLING method 1508, and a BUDGET method
1510. Not all OPEN control methods necessarily call of
these additional methods, but the OPEN method 1500
shown in FIG. 49 is a representative example.

Control method 1502 passes a description of the open
event to EVENT method 1504. EVENT method 1504 may
determine, for example, whether the open event is permitted
and whether the open event is significant in the sense that it
needs to be processed by METER method 1506, BILLING
method 1508, and/or BUDGET method 1510. EVENT
method 1504 may maintain audit trail information within an
audit trail UDE, and may determine permissions and sig-
nificance of the event by using an Event Method Data
Element (MDE). EVENT method 1504 may also map the
open event into an “atomic element” and count that may be
processed by METER method 1506, BILLING method
1508, and/or BUDGET method 1510.

In OPEN method 1500, once EVENT method 1504 has
been called and returns successfully, control method 1502
then may call METER method 1506 and pass the METER
method, the atomic element and count returned by EVENT
method 1504. METER method 1506 may maintain audit
trail information in a METER method Audit Trail UDE, and
may also maintain meter information in a METER method
UDE. In the preferred embodiment, METER method 1506
returns a meter value to control method 1502 assuming
successful completion.

In the preferred embodiment, control method 1502 upon
receiving an indication that METER method 1506 has
completed successfully, then calls BILLING method 1508.
Control method 1502 may pass to BILLING method 1508
the meter value provided by METER method 1506. BILL-
ING method 1508 may read and update billing information

10

15

20

25

30

35

40

45

50

55

60

65

184

maintained in a BILLING method map MDE, and may also
maintain and update audit trail in a BILLING method Audit
Trail UDE. BILLING method 1508 may return a billing
amount and a completion code to control method 1502.

Assuming BILLING method 1508 completes
successfully, control method 1502 may pass the billing value
provided by BILLING method 1508 to BUDGET method
1510. BUDGET method 1510 may read and update budget
information within a BUDGET method UDE, and may also
maintain audit trail information in a BUDGET method Audit

Trail UDE. BUDGET method 1510 may return a budget
value to control method 1502, and may also return a
completion code indicating whether the open event exceeds
the user’s budget (for this type of event).

Upon completion of BUDGET method 1510, control
method 1502 may create a channel and establish read/use
control information in preparation for subsequent calls to the
READ method.

FIGS. 49a—49f are a more detailed description of the
OPEN method 1500 example shown in FIG. 49. Referring to
FIG. 49a, in response to an open event, control method 1502
first may determine the identification of the object to be
opened and the identification of the user that has requested
the object to be opened (block 1520). Control method 1502
then determines whether the object to be opened is regis-
tered for this user (decision block 1522). It makes this
determination at least in part in the preferred embodiment by
reading the PERC 808 and the User Rights Table (URT)
element associated with the particular object and particular
user determined by block 1520 (block 1524). If the user is
not registered for this particular object (“no” exit to decision
block 1522), then control method 1502 may call the REG-
ISTER method for the object and restart the OPEN method
1500 once registration is complete (block 1526). The REG-
ISTER method block 1526 may be an independent process
and may be time independent. It may, for example, take a
relatively long time to complete the REGISTER method
(say if the VDE distributor or other participant responsible
for providing registration wants to perform a credit check on
the user before registering the user for this particular object).

Assuming the proper URT for this user and object is
present such that the object is registered for this user (“yes”
exit to decision block 1522), control method 1502 may
determine whether the object is already open for this user
(decision block 1528). This test may avoid creating a
redundant channel for opening an object that is already open.
Assuming the object is not already open (“no” exit to
decision block 1528), control method 1502 creates a channel
and binds appropriate open control elements to it (block
1530). It reads the appropriate open control elements from
the secure database (or the container, such as, for example,
in the case of a traveling object), and “binds” or “links” these
particular appropriate control elements together in order to
control opening of the object for this user. Thus, block 1530
associates an event with one or more appropriate method
core(s), appropriate load modules, appropriate User Data
Elements, and appropriate Method Data Elements read from
the secure database (or the container) (block 1532). At this
point, control method 1502 specifies the open event (which
started the OPEN method to begin with), the object ID and
user ID (determined by block 1520), and the channel ID of
the channel created by block 1530 to subsequent EVENT
method 1504, METER method 1506, BILLING method
1508 and BUDGET method 1510 to provide a secure
database “transaction” (block 1536). Before doing so, con-
trol method 1502 may prime an audit process (block 1533)
and write audit information into an audit UDE (block 1534)

Page 00244

Page 00245

5,915,019

185
so a record of the transaction exists even if the transaction
fails or is interfered with.

The detail steps performed by EVENT method 1504 are
set forth on FIG. 49b. EVENT method 1504 may first prime
an event audit trail if required (block 1538) which may write
to an EVENT Method Audit Trail UDE (block 1540).
EVENT method 1504 may then perform the step of mapping
the open event to an atomic element number and event count
using a map MDE (block 1542). The EVENT method map
MDE may be read from the secure database (block 1544).
This mapping process performed by block 1542 may, for
example, determine whether or not the open event is
meterable, billable, or budgetable, and may transform the
open event into some discrete atomic element for metering,
billing and/or budgeting. As one example, block 1542 might
perform a one-to-one mapping between open events and
“open” atomic elements, or it may only provide an open
atomic element for every fifth time that the object is opened.
The map block 1542 preferably returns the open event, the
event count, the atomic element number, the object ID, and
the user ID. This information may be written to the EVENT
method Audit Trail UDE (block 1546, 1548). In the pre-
ferred embodiment, a test (decision block 1550) is then
performed to determine whether the EVENT method failed.
Specifically, decision block 1550 may determine whether an
atomic element number was generated. If no atomic element
number was generated (e.g., meaning that the open event is
not significant for processing by METER method 1506,
BILLING method 1508 and/or BUDGET method 1510),
then EVENT method 1504 may return a “fail” completion
code to control method 1502 (“no” exit to decision block
1550).

Control method 1502 tests the completion code returned
by EVENT method 1504 to determine whether it failed or
was successful (decision block 1552). If the EVENT method
failed (“no” exit to decision block 1552), control method
1502 may “roll back” the secure database transaction (block
1554) and return itself with an indication that the OPEN
method failed (block 1556). In this context, “rolling back”
the secure database transaction means, for example, “undo-
ing” the changes made to audit trail UDE by blocks 1540,
1548. However, this “roll back” performed by block 1554 in
the preferred embodiment does not “undo” the changes
made to the control method audit UDE by blocks 1532,
1534.

Assuming the EVENT method 1504 completed
successfully, control method 1502 then calls the METER
method 1506 shown on FIG. 496. In the preferred
embodiment, METER method 1506 primes the meter audit
trail if required (block 1558), which typically involves
writing to a METER method audit trail UDE (block 1560).
METER method 1506 may then read a METER method
UDE from the secure database (block 1562), modify the
meter UDE by adding an appropriate event count to the
meter value contained in the meter UDE (block 1564), and
then writing the modified meter UDE back to the secure
database (block 1562). In other words, block 1564 may read
the meter UDE, increment the meter count it contains, and
write the changed meter UDE back to the secure database.
In the preferred embodiment, METER method 1506 may
then write meter audit trail information to the METER

method audit trail UDE if required (blocks 1566, 1568).
METER method 1506 preferably next performs a test to
determine whether the meter increment succeeded (decision
block 1570). METER method 1506 returns to control
method 1502 with a completion code (e.g., succeed or fail)
and a meter value determined by block 1564.

10

15

20

25

30

35

40

45

50

55

60

65

186
Control method 1502 tests whether the METER method

succeeded by examining the completion code, for example
(decision block 1572). If the METER method failed (“no”
exit to decision block 1572), then control method 1502 “rolls
back” a secure database transaction (block 1574), and
returns with an indication that the OPEN method failed

(block 1576). Assuming the METER method succeeded
(“yes” exit to decision block 1572), control method 1502
calls the BILLING method 1508 and passes it the meter
value provided by METER method 1506.

An example of steps performed by BILLING method
1508 is set forth in FIG. 49d. BILLING method 1508 may
prime a billing audit trail if required (block 1578) by writing
to a BILLING method Audit Trail UDE within the secure

database (block 1580). BILLING method 1508 may then
map the atomic element number, count and meter value to a
billing amount using a BILLING method map MDE read
from the secure database (blocks 1582, 1584). Providing an
independent BILLING method map MDE containing, for
example, price list information, allows separately deliver-
able pricing for the billing process. The resulting billing
amount generated by block 1582 may be written to the
BILLING method Audit Trail UDE (blocks 1586, 1588), and
may also be returned to control method 1502. In addition,
BILLING method 1508 may determine whether a billing
amount was properly selected by block 1582 (decision block
1590). In this example, the test performed by block 1590
generally requires more than mere examination of the
returned billing amount, since the billing amount may be
changed in unpredictable ways as specified by BILLING
method map MDE. Control then returns to control method
1502, which tests the completion code provided by BILL-
ING method 1508 to determine whether the BILLING

method succeeded or failed (block 1592). If the BILLING
method failed (“no” exit to decision block 1592), control
method 1502 may “roll bac ” the secure database transac-
tion (block 1594), and return an indication that the OPEN
method failed (block 1596). Assuming the test performed by
decision block 1592 indicates that the BILLING method

succeeded (“yes” exit to decision block 1592), then control
method 1502 may call BUDGET method 1510.

Other BILLING methods may use site, user and/or usage
information to establish, for example, pricing information.
For example, information concerning the presence or
absence of an object may be used in establishing “suite”
purchases, competitive discounts, etc. Usage levels may be
factored into a BILLING method to establish price breaks
for different levels of usage. Acurrency translation feature of
a BILLING method may allow purchases and/or pricing in
many different currencies. Many other possibilities exist for
determining an amount of budget consumed by an event that
may be incorporated into BILLING methods.

An example of detailed control steps performed by BUD-
GET method 1510 is set forth in FIG. 496. BUDGET

method 1510 may prime a budget audit trail if required by
writing to a budget trail UDE (blocks 1598, 1600). BUD-
GET method 1510 may next perform a billing operation by
adding a billing amount to a budget value (block 1602). This
operation may be performed, for example, by reading a
BUDGET method UDE from the secure database, modify-
ing it, and writing it back to the secure database (block
1604). BUDGET method 1510 may then write the budget
audit trail information to the BUDGET method Audit Trail

UDE (blocks 1606, 1608). BUDGET method 1510 may
finally, in this example, determine whether the user has run
out of budget by determining whether the budget value
calculated by block 1602 is out of range (decision block

Page 00245

Page 00246

5,915,019

187

1610). If the user has run out of budget (“yes” exit to
decision block 1610), the BUDGET method 1510 may
return a “fail completion” code to control method 1502.
BUDGET method 1510 then returns to control method 1502,
which tests whether the BUDGET method completion code
was successful (decision block 1612). If the BUDGET
method failed (“no” exit to decision block 1612), control
method 1502 may “roll back” the secure database transac-
tion and itself return with an indication that the OPEN

method failed (blocks 1614, 1616). Assuming control
method 1502 determines that the BUDGET method was

successful, the control method may perform the additional
steps shown on FIG. 49f. For example, control method 1502
may write an open audit trail if required by writing audit
information to the audit UDE that was primed at block 1532
(blocks 1618, 1620). Control method 1502 may then estab-
lish a read event processing (block 1622), using the User
Right Table and the PERC associated with the object and
user to establish the channel (block 1624). This channel may
optionally be shared between users of the VDE node 600, or
may be used only by a specified user.

Control method 1502 then, in the preferred embodiment,
tests whether the read channel was established successfully
(decision block 1626). If the read channel was not success-
fully established (“no” exit to decision block 1626), control
method 1502 “rolls back” the secured database transaction

and provides an indication that the OPEN method failed
(blocks 1628, 1630). Assuming the read channel was suc-
cessfully established (“yes” exit to decision block 1626),
control method 1502 may “commit” the secure database
transaction (block 1632). This step of “committing” the
secure database transaction in the preferred embodiment
involves, for example, deleting intermediate values associ-
ated with the secure transaction that has just been performed
and, in one example, writing changed UDEs and MDEs to
the secure database. It is generally not possible to “roll back”
a secure transaction once it has been committed by block
1632. Then, control method 1502 may “tear down” the
channel for open processing (block 1634) before terminating
(bock 1636). In some arrangements, such as multi-tasking
VDE node environments, the open channel may be con-
stantly maintained and available for use by any OPEN
method that starts. In other implementations, the channel for
open processing may be rebuilt and restarted each time an
OPEN method starts.

Read

FIGS. 50, 50a—50f show examples of process control
steps for performing a representative example of a READ
method 1650. Comparing FIG. 50 with FIG. 49 reveals that
the same overall high level processing may typically be
performed for READ method 1650 as was described in
connection with OPEN method 1500. Thus, READ method
1650 may call a control method 1652 in response to a read
event, the control method in turn invoking an EVENT
method 1654, a METER method 1656, a BILLING method
1658 and a BUDGET method 1660. In the preferred
embodiment, READ control method 1652 may request
methods to fingerprint and/or obscure content before releas-
ing the decrypted content.

FIGS. 50a—50e are similar to FIGS. 49a—49e. Of course,
even though the same user data elements may be used for
both the OPEN method 1500 and the READ method 1650,
the method data elements for the READ method may be
completely different, and in addition, the user data elements
may provide different auditing, metering, billing and/or
budgeting criteria for read as opposed to open processing.

Referring to FIG. 50f, the READ control method 1652
must determine which key to use to decrypt content if it is

5

10

15

20

25

30

35

40

45

50

55

60

65

188

going to release decrypted content to the user (block 1758).
READ control method 1652 may make this key determina-
tion based, in part, upon the PERC 808 for the object (block
1760). READ control method 1652 may then call an
ACCESS method to actually obtain the encrypted content to
be decrypted (block 1762). The content is then decrypted
using the key determined by block 1758 (block 1764).
READ control method 1652 may then determine whether a
“fingerprint” is desired (decision block 1766). If fingerprint-
ing of the content is desired (“yes” exit of decision block
1766), READ control method 1652 may call the FINGER-
PRINT method (block 1768). Otherwise, READ control
method 1652 may determine whether it is desired to obscure
the decrypted content (decision block 1770). If so, READ
control method 1652 may call an OBSCURE method to
perform this function (block 1772). Finally, READ control
method 1652 may commit the secure database transaction
block 1774), optionally tear down the read channel (not
shown), and terminate (block 1776).

Write

FIGS. 51, 51a—51f are flowcharts of examples of process
control steps used to perform a representative example of a
WRITE method 1780 in the preferred embodiment. WRITE
method 1780 uses a control method 1782 to call an EVENT

method 1784, METER method 1786, BILLING method
1788, and BUDGET method 1790 in this example. Thus,
writing information into a container (either by overwriting
information already stored in the container or adding new
information to the container) in the preferred embodiment
may be metered, billed and/or budgeted in a manner similar
to the way opening a container and reading from a container
can be metered, billed and budgeted. As shown in FIG. 51,
the end result of WRITE method 1780 is typically to encrypt
content, update the container table of contents and related
information to reflect the new content, and write the content
to the object.

FIG. 51a for the WRITE control method 1782 is similar
to FIG. 49a and FIG. 50a for the OPEN control method and

the READ control method, respectively. However, FIG. 51b
is slightly different from its open and read counterparts. In
particular, block 1820 is performed if the WRITE EVENT
method 1784 fails. This block 1820 updates the EVENT
method map MDE to reflect new data. This is necessary to
allow information written by block 1810 to be read by FIG.
51b READ method block 1678 based on the same (but now
updated) EVENT method map MDE.

Looking at FIG. 51f, once the EVENT, METER, BILL-
ING and BUDGET methods have returned successfully to
WRITE control method 1782, the WRITE control method

writes audit information to Audit UDE (blocks 1890, 1892),
and then determines (based on the PERC for the object and
user and an optional algorithm) which key should be used to
encrypt the content before it is written to the container
(blocks 1894, 1896). CONTROL method 1782 then encrypts
the content (block 1898) possibly by calling an ENCRYPT
method, and writes the encrypted content to the object
(block 1900). CONTROL method 1782 may then update the
table of contents (and related information) for the container
to reflect the newly written information (block 1902), com-
mit the secure database transaction (block 1904), and return
(block 1906).

Close

FIG. 52 is a flowchart of an example of process control
steps to perform a representative example of a CLOSE
method 1920 in the preferred embodiment. CLOSE method
1920 is used to close an open object. In the preferred
embodiment, CLOSE method 1920 primes an audit trail and

Page 00246

Page 00247

5,915,019

189

writes audit information to an Audit UDE (blocks 1922,
1924). CLOSE method 1920 then may destroy the current
channel(s) being used to support and/or process one or more
open objects (block 1926). As discussed above, in some
(e.g., multi-user or multi-tasking) installations, the step of
destroying a channel is not needed because the channel may
be left operating for processing additional objects for the
same or different users. CLOSE method 1920 also releases

appropriate records and resources associated with the object
at this time (block 1926). The CLOSE method 1920 may
then write an audit trail (if required) into an Audit UDE
(blocks 1928, 1930) before completing.

Event

FIG. 53a is a flowchart of example process control steps
provided by a more general example of an EVENT method
1940 provided by the preferred embodiment. Examples of
EVENT methods are set forth in FIGS. 49b, 50b and 51b and
are described above. EVENT method 1940 shown in FIG.

53a is somewhat more generalized than the examples above.
Like the EVENT method examples above, EVENT method
1940 receives an identification of the event along with an
event count and event parameters. EVENT method 1940
may first prime an EVENT audit trail (if required) by writing
appropriate information to an EVENT method Audit Trail
UDE (blocks 1942, 1944). EVENT method 1940 may then
obtain and load an EVENT method map DTD from the
secure database (blocks 1946, 1948). This EVENT method
map DTD describes, in this example, the format of the
EVENT method map MDE to be read and accessed imme-
diately subsequently (by blocks 1950, 1952). In the pre-
ferred embodiment, MDEs and UDEs may have any of
various different formats, and their formats may be flexibly
specified or changed dynamically depending upon the
installation, user, etc. The DTD, in effect, describes to the
EVENT method 1940 how to read from the EVENT method

map MDE. DTDs are also used to specify how methods
should write to MDEs and UDEs, and thus may be used to
implement privacy filters by, for example, preventing certain
confidential user information from being written to data
structures that will be reported to third parties.

Block 1950 (“map event to atomic element # and event
count using a Map MDE”) is in some sense the “heart” of
EVENT method 1940. This step “maps” the event into an
“atomic element number” to be responded to by subse-
quently called methods. An example of process control steps
performed by a somewhat representative example of this
“mapping” step 1950 is shown in FIG. 53b.

The FIG. 53b example shows the process of converting a
READ event that is associated with requesting byte range
1001—1500 from a specific piece of content into an appro-
priate atomic element. The example EVENT method map-
ping process (block 1950 in FIG. 53a) can be detailed as the
representative process shown in FIG. 53b.

EVENT method mapping process 1950 may first look up
the event code (READ) in the EVENT method MDE (1952)
using the EVENT method map DTD (1948) to determine the
structure and contents of the MDE. A test might then be
performed to determine if the event code was found in the
MDE (1956), and if not (“No” branch), the EVENT method
mapping process may the terminate (1958) without mapping
the event to an atomic element number and count. If the

event was found in the MDE (“Yes” branch), the EVENT
method mapping process may then compare the event range
(e.g., bytes 1001—1500) against the atomic element to event
range mapping table stored in the MDE (block 1960). The
comparison might yield one or more atomic element num-
bers or the event range might not be found in the mapping

5

10

15

20

25

30

35

40

45

50

55

60

65

190

table. The result of the comparison might then be tested
(block 1962) to determine if any atomic element numbers
were found in the table. If not (“No” branch), the EVENT
method mapping process may terminate without selecting
any atomic element numbers or counts (1964). If the atomic
element numbers were found, the process might then cal-
culate the atomic element count from the event range (1966).
In this example, the process might calculate the number of
bytes requested by subtracting the upper byte range from the
lower byte range (e.g., 1500—1001+1=500). The example
EVENT method mapping process might then terminate
(block 1968) and return the atomic element number(s) and
counts.

EVENT method 1940 may then write an EVENT audit
trail if required to an EVENT method Audit Trail UDE
(block 1970, 1972). EVENT method 1940 may then prepare
to pass the atomic element number and event count to the
calling CONTROL method (or other control process) (at exit
point 1978). Before that, however, EVENT method 1940
may test whether an atomic element was selected (decision
block 1974). If no atomic element was selected, then the
EVENT method may be failed (block 1974). This may occur
for a number of reasons. For example, the EVENT method
may fail to map an event into an atomic element if the user
is not authorized to access the specific areas of content that
the EVENT method MDE does not describe. This mecha-

nism could be used, for example, to distribute customized
versions of a piece of content and control access to the
various versions in the content object by altering the EVENT
method MDE delivered to the user. A specific use of this
technology might be to control the distribution of different
language (e.g., English, French, Spanish) versions of a piece
of content.

Billing
FIG. 536 is a flowchart of an example of process control

steps performed by a BILLING method 1980. Examples of
BILLING methods are set forth in FIGS. 49d, 50d, and 51d
and are described above. BILLING method 1980 shown in

FIG. 536 is somewhat more generalized than the examples
above. Like the BILLING method examples above, BILL-
ING method 1980 receives a meter value to determine the

amount to bill. BILLING method 1980 may first prime a
BILLING audit trail (if required) by writing appropriate
information to the BILLING method Audit Trail UDE

(blocks 1982, 1984). BILLING method 1980 may then
obtain and load a BILLING method map DTD from the
secure database (blocks 1985, 1986), which describes the
BILLING method map MDE (e.g., a price list, table, or
parameters to the billing amount calculation algorithm) that
should be used by this BILLING method. The BILLING
method map MDE may be delivered either as part of the
content object or as a separately deliverable component that
is combined with the control information at registration.

The BILLING method map MDE in this example may
describe the pricing algorithm that should be used in this
BILLING method (e.g., bill $0.001 per byte of content
released). Block 1988 (“Map meter value to billing
amount”) functions in the same manner as block 1950 of the
EVENT method; it maps the meter value to a billing value.
Process step 1988 may also interrogate the secure database
(as limited by the privacy filter) to determine if other objects
or information (e.g., user information) are present as part of
the BILLING method algorithm.

BILLING method 1980 may then write a BILLING audit
trail if required to a BILLING method Audit Trail UDE
(block 1990, 1992), and may prepare to return the billing
amount to the calling CONTROL method (or other control

Page 00247

Page 00248

5,915,019

191

process). Before that, however, BILLING method 1980 may
test whether a billing amount was determined (decision
block 1994). If no billing amount was determined, then the
BILLING method may be failed (block 1996). This may
occur if the user is not authorized to access the specific areas
of the pricing table that the BILLING method MDE
describes (e.g., you may purchase not more than $100.00 of
information from this content object).

Access

FIG. 54 is a flowchart of an example of program control
steps performed by an ACCESS method 2000. As described
above, an ACCESS method may be used to access content
embedded in an object 300 so it can be written to, read from,
or otherwise manipulated or processed. In many cases, the
ACCESS method may be relatively trivial since the object
may, for example, be stored in a local storage that is easily
accessible. However, in the general case, an ACCESS
method 2000 must go through a more complicated proce-
dure in order to obtain the object. For example, some objects
(or parts of objects) may only be available at remote sites or
may be provided in the form of a real-time download or feed
(e.g., in the case of broadcast transmissions). Even if the
object is stored locally to the VDE node, it may be stored as
a secure or protected object so that it is not directly acces-
sible to a calling process. ACCESS method 2000 establishes
the connections, routings, and security requisites needed to
access the object. These steps may be performed transpar-
ently to the calling process so that the calling process only
needs to issue an access request and the particular ACCESS
method corresponding to the object or class of objects
handles all of the details and logistics involved in actually
accessing the object.

ACCESS method 2000 may first prime an ACCESS audit
trail (if required) by writing to an ACCESS Audit Trail UDE
(blocks 2002, 2004). ACCESS method 2000 may then read
and load an ACCESS method DTD in order to determine the

format of an ACCESS MDE (blocks 2006, 2008). The
ACCESS method MDE specifies the source and routing
information for the particular object to be accessed in the
preferred embodiment. Using the ACCESS method DTD,
ACCESS method 2000 may load the correction parameters
(e.g., by telephone number, account ID, password and/or a
request script in the remote resource dependent language).

ACCESS method 2000 reads the ACCESS method MDE

from the secure database, reads it in accordance with the
ACCESS method DTD, and loads encrypted content source
and routing information based on the MDE (blocks 2010,
2012). This source and routing information specifies the
location of the encrypted content. ACCESS method 2000
then determines whether a connection to the content is

available (decision block 2014). This “connection” could be,
for example, an on-line connection to a remote site, a
real-time information feed, or a path to a secure/protected
resource, for example. If the connection to the content is not
currently available (“No” exit of decision block 2014), then
ACCESS method 2000 takes steps to open the connection
(block 2016). If the connection fails (e.g., because the user
is not authorized to access a protected secure resource), then
the ACCESS method 2000 returns with a failure indication

(termination point 2018). If the open connection succeeds,
on the other hand, then ACCESS method 2000 obtains the

encrypted content (block 2020). ACCESS method 2000 then
writes an ACCESS audit trail if required to the secure
database ACCESS method Audit Trail UDE (blocks 2022,
2024), and then terminates (terminate point 2026).

Decrypt and Encrypt
FIG. 55a is a flowchart of an example of process control

steps performed by a representative example of a DECRYPT

10

15

20

25

30

35

40

45

50

55

60

65

192

method 2030 provided by the preferred embodiment.
DECRYPT method 2030 in the preferred embodiment
obtains or derives a decryption key from an appropriate
PERC 808, and uses it to decrypt a block of encrypted
content. DECRYPT method 2030 is passed a block of
encrypted content or a pointer to where the encrypted block
is stored. DECRYPT 2030 selects a key number from a key
block (block 2032). For security purposes, a content object
may be encrypted with more than one key. For example, a
movie may have the first 10 minutes encrypted using a first
key, the second 10 minutes encrypted with a second key, and
so on. These keys are stored in a PERC 808 in a structure
called a “key block.” The selection process involves deter-
mining the correct key to use from the key block in order to
decrypt the content. The process for this selection is similar
to the process used by EVENT methods to map events into
atomic element numbers. DECRYPT method 2030 may then
access an appropriate PERC 808 from the secure database
610 and loads a key (or “seed”) from a PERC (blocks 2034,
2036). This key information may be the actual decryption
key to be used to decrypt the content, or it may be infor-
mation from which the decryption key may be at least in part
derived or calculated. If necessary, DECRYPT method 2030
computes the decryption key based on the information read
from PERC 808 at block 2034 (block 2038). DECRYPT
method 2030 then uses the obtained and/or calculated

decryption key to actually decrypt the block of encrypted
information (block 2040). DECRYPT method 2030 outputs
the decrypted block (or the pointer indicating where it may
be found), and terminates (termination point 2042).

FIG. 55b is a flowchart of an example of process control
steps performed by a representative example of an
ENCRYPT method 2050. ENCRYPT method 2050 is passed
as an input, a block of information to encrypt (or a pointer
indicating where it may be found). ENCRYPT method 2050
then may determine an encryption key to use from a key
block (block 2052). The encryption key selection makes a
determination if a key for a specific block of content to be
written already exists in a key block stored in PERC 808. If
the key already exists in the key block, then the appropriate
key number is selected. If no such key exists in the key
block, a new key is calculated using an algorithm appropri-
ate to the encryption algorithm. This key is then stored in the
key block of PERC 808 so that DECRYPT method 2030
may access the key in order to decrypt the content stored in
the content object. ENCRYPT method 2050 then accesses
the appropriate PERC to obtain, derive and/or compute an
encryption key to be used to encrypt the information block
(blocks 2054, 2056, 2058, which are similar to FIG. 55a
blocks 2034, 2036, 2038). ENCRYPT method 2050 then
actually encrypts the information block using the obtained
and/or derived encryption key (block 2060) and outputs the
encrypted information block or a pointer where it can be
found before terminating (termination point 2062).

Content

FIG. 56 is a flowchart of an example of process control
steps performed by a representative of a CONTENT method
2070 provided by the preferred embodiment. CONTENT
method 2070 in the preferred embodiment builds a “synop-
sis” of protected content using a secure process. For
example, CONTENT method 2070 may be used to derive
unsecure (“public”) information from secure content. Such
derived public information might include, for example, an
abstract, an index, a table of contents, a directory of files, a
schedule when content may be available, or excerpts such as
for example, a movie “trailer.”

CONTENT method 2070 begins by determining whether
the derived content to be provided must be derived from

Page 00248

Page 00249

5,915,019

193

secure contents, or whether it is already available in the
object in the form of static values (decision block 2070).
Some objects may, for example, contain prestored abstracts,
indexes, tables of contents, etc., provided expressly for the
purpose of being extracted by the CONTENT method 2070.
If the object contains such static values (“static” exit to
decision block 2072), then CONTENT method 2070 may
simply read this static value content information from the
object (block 2074), optionally decrypt, and release this
content description (block 2076). If, on the other hand,
CONTENT method 2070 must derive the synopsis/content
description from the secure object (“derived” exit to deci-
sion block 2072), then the CONTENT method may then
securely read information from the container according to a
synopsis algorithm to produce the synopsis (block 2078).

Extract and Embed

FIG. 57a is a flowchart of an example of process control
steps performed by a representative example of an
EXTRACT method 2080 provided by the preferred embodi-
ment. EXTRACT method 2080 is used to copy or remove
content from an object and place it into a new object. In the
preferred embodiment, the EXTRACT method 2080 does
not involve any release of content, but rather simply takes
content from one container and places it into another
container, both of which may be secure. Extraction of
content differs from release in that the content is never

exposed outside a secure container. Extraction and Embed-
ding are complementary functions; extract takes content
from a container and creates a new container containing the
extracted content and any specified control information
associated with that content. Embedding takes content that
is already in a container and stores it (or the complete object)
in another container directly and/or by reference, integrating
the control information associated with existing content with
those of the new content.

EXTRACT method 2080 begins by priming an Audit
UDE (blocks 2082, 2084). EXTRACT method then calls a
BUDGET method to make sure that the user has enough
budget for (and is authorized to) extract content from the
original object (block 2086). If the user’s budget does not
permit the extraction (“no” exit to decision block 2088), then
EXTRACT method 2080 may write a failure audit record
(block 2090), and terminate (termination point 2092). If the
user’s budget permits the extraction (“yes” exit to decision
block 2088), then the EXTRACT method 2080 creates a
copy of the extracted object with specified rules and control
information (block 2094). In the preferred embodiment, this
step involves calling a method that actually controls the
copy. This step may or may not involve decryption and
encryption, depending on the particular the PERC 808
associated with the original object, for example. EXTRACT
method 2080 then checks whether any control changes are
permitted by the rights authorizing the extract to begin with
(decision block 2096). In some cases, the extract rights
require an exact copy of the PERC 808 associated with the
original object (or a PERC included for this purpose) to be
placed in the new (destination) container (“no” exit to
decision block 2096). If no control changes are permitted,
then extract method 2080 may simply write audit informa-
tion to the Audit UDE (blocks 2098, 2100) before terminat-
ing (terminate point 2102). If, on the other hand, the extract
rights permit the user to make control changes (“yes” to
decision block 2096), then EXTRACT method 2080 may
call a method or load module that solicits new or changed
control information (e.g., from the user, the distributor who
created/granted extract rights, or from some other source)
from the user (blocks 2104, 2106). EXTRACT method 2080

10

15

20

25

30

35

40

45

50

55

60

65

194

may then call a method or load module to create a new
PERC that reflects these user-specified control information
(block 2104). This new PERC is then placed in the new
(destination) object, the auditing steps are performed, and
the process terminates.

FIG. 57b is an example of process control steps performed
by a representative example of an EMBED method 2110
provided by the preferred embodiment. EMBED method
2110 is similar to EXTRACT method 2080 shown in FIG.

57a. However, the EMBED method 2110 performs a slightly
different function—it writes an object (or reference) into a
destination container. Blocks 2112—2122 shown in FIG. 57b
are similar to blocks 2082—2092 shown in FIG. 57a. At

block 2124, EMBED method 2110 writes the source object
into the destination container, and may at the same time
extract or change the control information of the destination
container. One alternative is to simply leave the control
information of the destination container alone, and include
the full set of control information associated with the object
being embedded in addition to the original container control
information. As an optimization, however, the preferred
embodiment provides a technique whereby the control infor-
mation associated with the object being embedded are
“abstracted” and incorporated into the control information of
the destination container. Block 2124 may call a method to
abstract or change this control information. EMBED method
2110 then performs steps 2126—2130 which are similar to
steps 2096, 2104, 2106 shown in FIG. 57a to allow the user,
if authorized, to change and/or specify control information
associated with the embedded object and/or destination
container. EMBED method 2110 then writes audit informa-

tion into an Audit UDE (blocks 2132, 2134), before termi-
nating (at termination point 2136).

Obscure

FIG. 58a is a flowchart of an example of process control
steps performed by a representative example of an
OBSCURE method 2140 provided by the preferred embodi-
ment. OBSCURE method 2140 is typically used to release
secure content in devalued form. For example, OBSCURE
method 2140 may release a high resolution image in a lower
resolution so that a viewer can appreciate the image but not
enjoy its full value. As another example, the OBSCURE
method 2140 may place an obscuring legend (e.g., “COPY,”
“PROOF,” etc.) across an image to devalue it. OBSCURE
method 2140 may “obscure” text, images, audio
information, or any other type of content.

OBSCURE method 2140 first calls an EVENT method to

determine if the content is appropriate and in the range to be
obscured (block 2142). If the content is not appropriate for
obscuring, the OBSCURE method terminates (decision
block 2144 “no” exit, terminate point 2146). Assuming that
the content is to be obscured (“yes” exit to decision block
2144), then OBSCURE method 2140 determines whether it
has previously been called to obscure this content (decision
block 2148). Assuming the OBSCURE 2140 has not previ-
ously called for this object/content (“yes” exit to decision
block 2148), the OBSCURE method 2140 reads an appro-
priate OBSCURE method MDE from the secure database
and loads an obscure formula and/or pattern from the MDE
(blocks 2150, 2152). The OBSCURE method 2140 may then
apply the appropriate obscure transform based on the patters
and/or formulas loaded by block 2150 (block 2154). The
OBSCURE method then may terminate (terminate block
2156).

Fingerprint
FIG. 58b is a flowchart of an example of process control

steps performed by a representative example of a FINGER-

Page 00249

Page 00250

5,915,019

195

PRINT method 2160 provided by the preferred embodiment.
FINGERPRINT method 2160 in the preferred embodiment
operates to “mark” released content with a “fingerprint”
identification of who released the content and/or check for
such marks. This allows one to later determine who released

unsecured content by examining the content. FINGER-
PRINT method 2160 may, for example, insert a user ID
within a datastream representing audio, video, or binary
format information. FINGERPRINT method 2160 is quite
similar to OBSCURE method 2140 shown in FIG. 58a

except that the transform applied by FINGERPRINT
method block 2174 “fingerprints” the released content rather
than obscuring it.

FIG. 58C shows am example of a “fingerprinting” proce-
dure 2160 that inserts into released content “fingerprints”
2161 that identify the object and/or property and/or the user
that requested the released content and/or the date and time
of the release and/or other identification criteria of the
released content.

Such fingerprints 2161 can be “buried”—that is inserted
in a manner that hides the fingerprints from typical users,
sophisticated “hackers,” and/or from all users, depending on
the file format, the sophistication and/or variety of the
insertion algorithms, and on the availability of original,
non-fingerprinted content (for comparison for reverse engi-
neering of algorithm(s)). Inserted or embedded fingerprints
2161, in a preferred embodiment, may be at least in part
encrypted to make them more secure. Such encrypted fin-
gerprints 2161 may be embedded within released content
provided in “clear” (plaintext) form.

Fingerprints 2161 can be used for a variety of purposes
including, for example, the often related purposes of proving
misuse of released materials and proving the source of
released content. Software piracy is a particularly good
example where fingerprinting can be very useful. Finger-
printing can also help to enforce content providers’ rights for
most types of electronically delivered information including
movies, audio recordings, multimedia, information
databases, and traditional “literary” materials. Fingerprint-
ing is a desirable alternative or addition to copy protection.

Most piracy of software applications, for example, occurs
not with the making of an illicit copy by an individual for use
on another of the individual’s own computers, but rather in
giving a copy to another party. This often starts a chain (or
more accurately a pyramid) of illegal copies, as copies are
handed from individual to individual. The fear of identifi-

cation resulting from the embedding of a fingerprint 2161
will likely dissuade most individuals from participating, as
many currently do, in widespread, “casual” piracy. In some
cases, content may be checked for the presence of a finger-
print by a fingerprint method to help enforce content pro-
viders’ rights.

Different fingerprints 2161 can have different levels of
security (e.g., one fingerprint 2161(1) could be readable/
identifiable by commercial concerns, while another finger-
print 2161(2) could be readable only by a more trusted
agency. The methods for generating the more secure finger-
print 2161 might employ more complex encryption tech-
niques (e.g., digital signatures) and/or obscuring of location
methodologies. Two or more fingerprints 2161 can be
embedded in different locations and/or using different tech-
niques to help protect fingerprinted information against
hackers. The more secure fingerprints might only be
employed periodically rather than each time content release
occurs, if the technique used to provide a more secure
fingerprint involves an undesired amount of additional over-
head. This may nevertheless be effective since a principal

10

15

20

25

30

35

40

45

50

55

60

65

196

objective of fingerprinting is deterrence—that is the fear on
the part of the creator of an illicit copy that the copying will
be found out.

For example, one might embed a copy of a fingerprint
2161 which might be readily identified by an authorized
party—for example a distributor, service personal, client
administrator, or clearinghouse using a VDE electronic
appliance 600. One might embed one or more additional
copies or variants of a fingerprint 2161 (e.g., fingerprints
carrying information describing some or all relevant iden-
tifying information) and this additional one or more finger-
prints 2161 might be maintained in a more secure manner.

Fingerprinting can also protect privacy concerns. For
example, the algorithm and/or mechanisms needed to iden-
tify the fingerprint 2161 might be available only through a
particularly trusted agent.

Fingerprinting 2161 can take many forms. For example,
in an image, the color of every N pixels (spread across an
image, or spread across a subset of the image) might be
subtly shifted in a visually unnoticeable manner (at least
according to the normal, unaided observer). These shifts
could be interpreted by analysis of the image (with or
without access to the original image), with each occurrence
or lack of occurrence of a shift in color (or greyscale) being
one or more binary “on or off” bits for digital information
storage. The N pixels might be either consistent, or
alternatively, pseudo-random in order (but interpretable, at
least in part, by a object creator, object provider, client
administrator, and/or VDE administrator).

Other modifications of an image (or moving image, audio,
etc.) which provide a similar benefit (that is, storing infor-
mation in a form that is not normally noticeable as a result
of a certain modification of the source information) may be
appropriate, depending on the application. For example,
certain subtle modifications in the frequency of stored audio
information can be modified so as to be normally unnotice-
able to the listener while still being readable with the proper
tools. Certain properties of the storage of information might
be modified to provide such slight but interpretable varia-
tions in polarity of certain information which is optically
stored to achieve similar results. Other variations employing
other electronic, magnetic, and/or optical characteristic may
be employed.

Content stored in files that employ graphical formats,
such as Microsoft Windows word processing files, provide
significant opportunities for “burying” a fingerprint 2161.
Content that includes images and/or audio provides the
opportunity to embed fingerprints 2161 that may be difficult
for unauthorized individuals to identify since, in the absence
of an “unfingerprinted” original for purposes of comparison,
minor subtle variations at one or more time instances in

audio frequencies, or in one or more video images, or the
like, will be in themselves undiscernible given the normally
unknown nature of the original and the large amounts of data
employed in both image and sound data (and which is not
particularly sensitive to minor variations). With formatted
text documents, particularly those created with graphical
word processors (such as Microsoft Windows or Apple
MacIntosh word processors and their DOS and Unix
equivalents), fingerprints 2161 can normally be inserted
unobtrusively into portions of the document data represen-
tation that are not normally visible to the end user (such as
in a header or other non-displayed data field).

Yet another form of fingerprinting, which may be particu-
larly suitable for certain textual documents, would employ
and control the formation of characters for a given font.
Individual characters may have a slightly different visual

Page 00250

Page 00251

5,915,019

197

formation which connotes certain “fingerprint” information.
This alteration of a given character’s form would be gener-
ally undiscernible, in part because so many slight variations
exist in versions of the same font available from different

suppliers, and in part because of the smallness of the
variation. For example, in a preferred embodiment, a pro-
gram such as Adobe Type Align could be used which, in its
off-the-shelf versions, supports the ability of a user to
modify font characters in a variety of ways. The mathemati-
cal definition of the font character is modified according to
the user’s instructions to produce a specific set of modifi-
cations to be applied to a character or font. Information
content could be used in an analogous manner (as an
alternative to user selections) to modify certain or all char-
acters too subtly for user recognition under normal circum-
stances but which nevertheless provide appropriate encod-
ing for the fingerprint 2161. Various subtly different versions
of a given character might be used within a single document
so as to increase the ability to carry transaction related font
fingerprinted information.

Some other examples of applications for fingerprinting
might include:

1. In software programs, selecting certain interchangeable
code fragments in such a way as to produce more or
less identical operation, but on analysis, differences that
detail fingerprint information.

2. With databases, selecting to format certain fields, such
as dates, to appear in different ways.

3. In games, adjusting backgrounds, or changing order of
certain events, including noticeable or very subtle
changes in timing and/or ordering of appearance of
game elements, or slight changes in the look of ele-
ments of the game.

Fingerprinting method 2160 is typically performed (if at
all) at the point at which content is released from a content
object 300. However, it could also be performed upon
distribution of an object to “mark” the content while still in
encrypted form. For example, a network-based object
repository could embed fingerprints 2161 into the content of
an object before transmitting the object to the requester, the
fingerprint information could identify a content requester/
end user. This could help detect “spoof” electronic appli-
ances 600 used to release content without authorization.

Destroy
FIG. 59 is a flowchart of an example of process control

steps performed by a representative performed by a
DESTROY method 2180 provided by the preferred embodi-
ment. DESTROY method 2180 removes the ability of a user
to use an object by destroying the URT the user requires to
access the object. In the preferred embodiment, a
DESTROY method 2180 may first write audit information to
an Audit UDE (blocks 2182, 2184). DESTROY method
2180 may than call a WRITE and/or ACCESS method to
write information which will corrupt (and thus destroy) the
header and/or other important parts of the object (block
2186). DESTROY method 2180 may then mark one or more
of the control structures (e.g., the URT) as damaged by
writing appropriate information to the control structure
(blocks 2188, 2190). DESTROY method 2180, finally, may
write additional audit information to Audit UDE (blocks
2192, 2194) before terminating (terminate point 2196).

Panic

FIG. 60 is a flowchart of an example of process control
steps performed by a representative example of a PANIC
method 2200 provided by the preferred embodiment. PANIC
method 2200 may be called when a security violation is
detected. PANIC method 2200 may prevent the user from

10

15

20

25

30

35

40

45

50

55

60

65

198

further accessing the object currently being accessed by, for
example, destroying the channel being used to access the
object and marking one or more of the control structures
(e.g., the URT) associated with the user and object as
damaged (blocks 2206, and 2208—2210, respectively).
Because the control structure is damaged, the VDE node will
need to contact an administrator to obtain a valid control

structure(s) before the user may access the same object
again. When the VDE node contacts the administrator, the
administrator may request information sufficient to satisfy
itself that no security violation occurred, or if a security
violation did occur, take appropriate steps to ensure that the
security violation is not repeated.

Meter

FIG. 61 is a flowchart of an example of process control
steps performed by a representative example of a METER
method provided by the preferred embodiment. Although
METER methods were described above in connection with

FIGS. 49, 50 and 51, the METER method 2220 shown in
FIG. 61 is possibly a somewhat more representative
example. In the preferred embodiment, METER method
2220 first primes an Audit Trail by accessing a METER
Audit Trail UDE (blocks 2222, 2224). METER method 2220
may then read the DTD for the Meter UDE from the secure
database (blocks 2226, 2228). METER method 2220 may
then read the Meter UDE from the secure database (blocks
2230, 2232). METER method 2220 next may test the
obtained Meter UDE to determine whether it has expired
(decision block 2234). In the preferred embodiment, each
Meter UDE may be marked with an expiration date. If the
current date/time is later than the expiration date of the
Meter UDE (“yes” exit to decision block 2234), then the
METER method 2220 may record a failure in the Audit
Record and terminate with a failure condition (block 2236,
2238).

Assuming the Meter UDE is not yet expired, the meter
method 2220 may update it using the atomic element and
event count passed to the METER method from, for
example, an EVENT method (blocks 2239, 2240). The
METER method 2220 may then save the Meter Use Audit
Record in the Meter Audit Trail UDE (blocks 2242, 2244),
before terminating (at terminate point 2246).

Additional Security Features Provided by the Preferred
Embodiment

VDE 100 provided by the preferred embodiment has
sufficient security to help ensure that it cannot be compro-
mised short of a successful “brute force attack,” and so that
the time and cost to succeed in such a “brute force attack”

substantially exceeds any value to be derived. In addition,
the security provided by VDE 100 compartmentalizes the
internal workings of VDE so that a successful “brute force
attack” would compromise only a strictly bounded subset of
protected information, not the entire system.

The following are among security aspects and features
provided by the preferred embodiment:

security of PPE 650 and the processes it performs

security of secure database 610
security of encryption/decryption performed by PPE 650
key management; security of encryption/decryption keys

and shared secrets

security of authentication/external communications
security of secure database backup
secure transportability of VDE internal information

between electronic appliances 600
security of permissions to access VDE secure information
security of VDE objects 300

Page 00251

Page 00252

5,915,019

199

integrity of VDE security.
Some of these security aspects and considerations are

discussed above. The following provides an expanded dis-
cussion of preferred embodiment security features not fully
addressed elsewhere.

Management of Keys and Shared Secrets
VDE 100 uses keys and shared secrets to provide security.

The following key usage features are provided by the
preferred embodiment:

different cryptosystem/key types

secure key length

key generation

key “convolution” and key “aging.”
Each of these types are discussed below.

A. Public-Key and Symmetric Key Cryptosystems
The process of disguising or transforming information to

hide its substance is called encryption. Encryption produces
“ciphertext.” Reversing the encryption process to recover
the substance from the ciphertext is called “decryption.” A
cryptographic algorithm is the mathematical function used
for encryption and decryption.

Most modern cryptographic algorithms use a “key.” The
“key” specifies one of a family of transformations to be
provided. Keys allow a standard, published and tested
cryptographic algorithm to be used while ensuring that
specific transformations performed using the algorithm are
kept secret. The secrecy of the particular transformations
thus depends on the secrecy of the key, not on the secrecy
of the algorithm.

There are two general forms of key-based algorithms,
either or both of which may be used by the preferred
embodiment PPE 650:

symmetric; and

public-key (“PK”).
Symmetric algorithms are algorithms where the encryp-

tion key can be calculated from the decryption key and vice
versa. In many such systems, the encryption and decryption
keys are the same. The algorithms, also called “secret-key”,
“single key” or “shared secret” algorithms, require a sender
and receiver to agree on a key before ciphertext produced by
a sender can be decrypted by a receiver. This key must be
kept secret. The security of a symmetric algorithm rests in
the key: divulging the key means that anybody could encrypt
and decrypt information in such a cryptosystem. See
Schneier, Applied Cryptography at Page 3. Some examples
of symmetric key algorithms that the preferred embodiment
may use include DES, Skipjack/Clipper, IDEA, RC2, and
RC4.

In public-key cryptosystems, the key used for encryption
is different from the key used for decryption. Furthermore,
it is computationally infeasible to derive one key from the
other. The algorithms used in these cryptosystems are called
“public key” because one of the two keys can be made
public without endangering the security of the other key.
They are also sometimes called “asymmetric” cryptosys-
tems because they use different keys for encryption and
decryption. Examples of public-key algorithms include
RSA, El Gamal and LUC.

The preferred embodiment PPE 650 may operate based on
only symmetric key cryptosystems, based on public-key
cryptosystems, or based on both symmetric key cryptosys-
tems and public-key cryptosystems. VDE 100 does not
require any specific encryption algorithms; the architecture
provided by the preferred embodiment may support numer-
ous algorithms including PK and/or secret key (non PK)
algorithms. In some cases, the choice of encryption/

5

10

15

20

25

30

35

40

45

50

55

60

65

200

decryption algorithm will be dependent on a number of
business decisions such as cost, market demands, compat-
ibility with other commercially available systems, export
laws, etc.

Although the preferred embodiment is not dependent on
any particular type of cryptosystem or encryption/
decryption algorithm(s), the preferred example uses PK
cryptosystems for secure communications between PPEs
650, and uses secret key cryptosystems for “bulk”
encryption/decryption of VDE objects 300. Using secret key
cryptosystems (e.g., DES implementations using multiple
keys and multiple passes, Skipj ack, RC2, or RC4) for “bulk”
encryption/decryption provides efficiencies in encrypting
and decrypting large quantities of information, and also
permits PPEs 650 without PK-capability to deal with VDE
objects 300 in a variety of applications. Using PK crypto-
systems for communications may provide advantages such
as eliminating reliance on secret shared external communi-
cation keys to establish communications, allowing for a
challenge/response that doesn’t rely on shared internal
secrets to authenticate PPEs 650, and allowing for a publicly
available “certification” process without reliance on shared
secret keys.

Some content providers may wish to restrict use of their
content to PK implementations. This desire can be supported
by making the availability of PK capabilities, and the
specific nature or type of PK capabilities, in PPEs 650 a
factor in the registration of VDE objects 300, for example,
by including a requirement in a REGISTER method for such
objects in the form of a load module that examines a PPE
650 for specific or general PK capabilities before allowing
registration to continue.

Although VDE 100 does not require any specific
algorithm, it is highly desirable that all PPEs 650 are capable
of using the same algorithm for bulk encryption/decryption.
If the bulk encryption/decryption algorithm used for
encrypting VDE objects 300 is not standardized, then it is
possible that not all VDE electronic appliances 600 will be
capable of handling all VDE objects 300. Performance
differences will exist between different PPEs 650 and asso-

ciated electronic appliances 600 if standardized bulk
encryption/decryption algorithms are not implemented in
whole or in part by hardware-based encrypt/decrypt engine
522, and instead are implemented in software. In order to
support algorithms that are not implemented in whole or in
part by encrypt/decrypt engine 522, a component assembly
that implements such an algorithm must be available to a
PPE 650.

B. Key Length
Increased key length may increase security. A “brute-

force” attack of a cryptosystem involves trying every pos-
sible key. The longer the key, the more possible keys there
are to try. At some key length, available computation
resources will require an impractically large amount of time
for a “brute force” attacker to try every possible key.

VDE 100 provided by the preferred embodiment accom-
modates and can use many different key lengths. The length
of keys used by VDE 100 in the preferred embodiment is
determined by the algorithm(s) used for encryption/
decryption, the level of security desired, and throughput
requirements. Longer keys generally require additional pro-
cessing power to ensure fast encryption/decryption response
times. Therefore, there is a tradeoff between (a) security, and
(b) processing time and/or resources. Since a hardware-
based PPE encrypt/decrypt engine 522 may provide faster
processing than software-based encryption/decryption, the
hardware-based approach may, in general, allow use of
longer keys.

Page 00252

Page 00253

5,915,019

201

The preferred embodiment may use a 1024 bit modulus
(key) RSA cryptosystem implementation for PK encryption/
decryption, and may use 56-bit DES for “bulk” encryption/
decryption. Since the 56-bit key provided by standard DES
may not be long enough to provide sufficient security for at
least the most sensitive VDE information, multiple DES
encryptions using multiple passes and multiple DES keys
may be used to provide additional security. DES can be
made significantly more secure if operated in a manner that
uses multiple passes with different keys. For example, three
passes with 2 or 3 separate keys is much more secure
because it effectively increases the length of the key. RC2
and RC4 (alternatives to DES) can be exported for up to
40-bit key sizes, but the key size probably needs to be much
greater to provide even DES Revel security. The 80-bit key
length provided by NSA’s Skipjack may be adequate for
most VDE security needs.

The capability of downloading code and other informa-
tion dynamically into PPE 650 allows key length to be
adjusted and changed dynamically even after a significant
number of VDE electronic appliances 600 are in use. The
ability of a VDE administrator to communicate with each
PPE 650 efficiently makes such after-the-fact dynamic
changes both possible and cost-effective. New or modified
cryptosystems can be downloaded into existing PPEs 650 to
replace or add to the cryptosystem repertoire available
within the PPE, allowing older PPEs to maintain compat-
ibility with newer PPEs and/or newly released VDE objects
300 and other VDE-protected information. For example,
software encryption/decryption algorithms may be down-
loaded into PPE 650 at any time to supplement the
hardware-based functionality of encrypt/decrypt engine 522
by providing different key length capabilities. To provide
increased flexibility, PPE encrypt/decrypt engine 522 may
be configured to anticipate multiple passes and/or variable
and/or longer key lengths. In addition, it may be desirable to
provide PPEs 650 with the capability to internally generate
longer PK keys.

C. Key Generation
Key generation techniques provided by the preferred

embodiment permit PPE 650 to generate keys and other
information that are “known” only to it.

The security of encrypted information rests in the security
of the key used to encrypt it. If a cryptographically weak
process is used to generate keys, the entire security is weak.
Good keys are random bit strings so that every possible key
in the key space is equally likely. Therefore, keys should in
general be derived from a reliably random source, for
example, by a cryptographically secure pseudo-random
number generator seeded from such a source. Examples of
such key generators are described in Schneier, Applied
Cryptography (John Wiley and Sons, 1994), chapter 15. If
keys are generated outside a given PPE 650 (e.g., by another
PPE 650), they must be verified to ensure they come from
a trusted source before they can be used. “Certification” may
be used to verity keys.

The preferred embodiment PPE 650 provides for the
automatic generation of keys. For example, the preferred
embodiment PPE 650 may generate its own public/private
key pair for use in protecting PK-based external communi-
cations and for other reasons. A PPE 650 may also generate
its own symmetric keys for various purposes during and
after initialization. Because a PPE 650 provides a secure
environment, most key generation in the preferred embodi-
ment may occur within the PPE (with the possible exception
of initial PPE keys used at manufacturing or installation time
to allow a PPE to authenticate initial download messages to
it).

10

15

20

25

30

35

40

45

50

55

60

65

202

Good key generation relies on randomness. The preferred
embodiment PPE 650 may, as mentioned above in connec-
tion with FIG. 9, includes a hardware-based random number
generator 542 with the characteristics required to generate
reliable random numbers. These random numbers may be
used to “seed” a cryptographically strong pseudo-random
number generator (e.g., DES operated in Output Feedback
Mode) for generation of additional key values derived from
the random seed. In the preferred embodiment, random
number generator 542 may consist of a “noise diode” or
other physically-based source of random values (e.g., radio-
active decay).

If no random number generator 542 is available in the
PPE 650, the SPE 503 may employ a cryptographic algo-
rithm (e.g., DES in Output Feedback Mode) to generate a
sequence of pseudo-random values derived from a secret
value protected within the SPE. Although these numbers are
pseudo-random rather than truly random, they are crypto-
graphically derived from a value unknown outside the SPE
503 and therefore may be satisfactory in some applications.

In an embodiment incorporating an HPE 655 without an
SPE 503, the random value generator 565 software may
derive reliably random numbers from unpredictable external
physical events (e.g., high-resolution timing of disk I/O
completions or of user keystrokes at an attached keyboard
612).

Conventional techniques for generating PK and non-PK
keys based upon such “seeds” may be used. Thus, if per-
formance and manufacturing costs permit, PPE 650 in the
preferred embodiment will generate its own public/private
key pair based on such random or pseudo-random “seed”
values. This key pair may then be used for external com-
munications between the PPE 650 that generated the key
pair and other PPEs that wish to communicate with it. For
example, the generating PPE 650 may reveal the public key
of the key pair to other PPEs. This allows other PPEs 650
using the public key to encrypt messages that may be
decrypted only by the generating PPE (the generating PPE
is the only PPE that “knows” the corresponding “private
key”). Similarly, the generating PPE 650 may encrypt mes-
sages using its private key that, when decrypted successfully
by other PPEs with the generating PPE’s public key, permit
the other PPEs to authenticate that the generating PPE sent
the message.

Before one PPE 650 uses a public key generated by
another PPE, a public key certification process should be
used to provide authenticity certificates for the public key. A
public-key certificate is someone’s public key “signed” by a
trustworthy entity such as an authentic PPE 650 or a VDE
administrator. Certificates are used to thwart attempts to
convince a PPE 650 that it is communicating with an
authentic PPE when it is not (e.g., it is actually communi-
cating with a person attempting to break the security of PPE
650). One or more VDE administrators in the preferred
embodiment may constitute a certifying authority. By “sign-
ing” both the public key generated by a PPE 650 and
information about the PPE and/or the corresponding VDE
electronic appliance 600 (e.g., site ID, user ID, expiration
date, name, address, etc.), the VDE administrator certifying
authority can certify that information about the PPE and/or
the VDE electronic appliance is correct and that the public
key belongs to that particular VDE mode.

Certificates play an important role in the trustedness of
digital signatures, and also are important in the public-key
authentication communications protocol (to be discussed
below). In the preferred embodiment, these certificates may
include information about the trustedness/level of security of

Page 00253

Page 00254

5,915,019

203

a particular VDE electronic appliance 600 (e.g., whether or
not it has a hardware-based SPE 503 or is instead a less

trusted software emulation type HPE 655) that can be used
to avoid transmitting certain highly secure information to
less trusted/secure VDE installations.

Certificates can also play an important role in decommis-
sioning rogue users and/or sites. By including a site and/or
user ID in a certificate, a PPE can evaluate this information
as an aspect of authentication. For example, if a VDE
administrator or clearinghouse encounters a certificate bear-
ing an ID (or other information) that meets certain criteria
(e.g., is present on a list of decommissioned and/or other-
wise suspicious users and/or sites), they may choose to take
actions based on those criteria such as refusing to
communicate, communicating disabling information, noti-
fying the user of the condition, etc. Certificates also typically
include an expiration date to ensure that certificates must be
replaced periodically, for example, to ensure that sites and/or
users must stay in contact with a VDE administrator and/or
to allow certification keys to be changed periodically. More
than one certificate based on different keys may be issued for
sites and/or users so that if a given certification key is
compromised, one or more “backup” certificates may be
used. If a certification key is compromised, A VDE admin-
istrator may refuse to authenticate based on certificates
generated with such a key, and send a signal after authen-
ticating with a “backup” certificate that invalidates all use of
the compromised key and all certificates associated with it in
further interactions with VDE participants. A new one or
more “backup” certificates and keys may be created and sent
to the authenticated site/user after such a compromise.

If multiple certificates are available, some of the certifi-
cates may be reserved as backups. Alternatively or in
addition, one certificate from a group of certificates may be
selected (e.g., by using RNG 542) in a given authentication,
thereby reducing the likelihood that a certificate associated
with a compromised certification key will be used. Still
alternatively, more than one certificate may be used in a
given authentication.

To guard against the possibility of compromise of the
certification algorithm (e.g., by an unpredictable advance in
the mathematical foundations on which the algorithm is
based), distinct algorithms may used for different certificates
that are based on different mathematical foundations.

Another technique that may be employed to decrease the
probability of compromise is to keep secret (in protected
storage in the PPE 650) the “public” values on which the
certificates are based, thereby denying an attacker access to
values that may aid in the attack. Although these values are
nominally “public,” they need be known only to those
components which actually validate certificates (i.e., the
PPE 650).

In the preferred embodiment, PPE 650 may generate its
own certificate, or the certificate may be obtained externally,
such as from a certifying authority VDE administrator.
Irrespective of where the digital certificate is generated, the
certificate is eventually registered by the VDE administrator
certifying authority so that other VDE electronic appliances
600 may have access to (and trust) the public key. For
example, PPE 650 may communicate its public key and
other information to a certifying authority which may then
encrypt the public key and other information using the
certifying authority’s private key. Other installations 600
may trust the “certificate” because it can be authenticated by
using the certifying authority’s public key to decrypt it. As
another example, the certifying authority may encrypt the
public key it receives from the generating PPE 650 and use

10

15

20

25

30

35

40

45

50

55

60

65

204

it to encrypt the certifying authority’s private key. The
certifying authority may then send this encrypted informa-
tion back to the generating PPE 650. The generating PPE
650 may then use the certifying authority’s private key to
internally create a digital certificate, after which it may
destroy its copy of the certifying authority’s private key. The
generating PPE 650 may then send out its digital certificate
to be stored in a certification repository at the VDE admin-
istrator (or elsewhere) if desired. The certificate process can
also be implemented with an external key pair generator and
certificate generator, but might be somewhat less secure
depending on the nature of the secure facility. In such a case,
a manufacturing key should be used in PPE 650 to limit
exposure to the other keys involved.

A PPE 650 may need more than one certificate. For
example, a certificate may be needed to assure other users
that a PPE is authentic, and to identify the PPE. Further
certificates may be needed for individual users of a PPE 650.
These certificates may incorporate both user and site infor-
mation or may only include user information. Generally, a
certifying authority will require a valid site certificate to be
presented prior to creating a certificate for a given user.
Users may each require their own public key/private key
pair in order to obtain certificates. VDE administrators,
clearinghouses, and other participants may normally require
authentication of both the site (PPE 650) and of the user in
a communication or other interaction. The processes
described above for key generation and certification for
PPEs 650 may also be used to form site/user certificates or
user certificates.

Certificates as described above may also be used to certify
the origin of load modules 1100 and/or the authenticity of
administrative operations. The security and assurance tech-
niques described above may be employed to decrease the
probability of compromise for any such certificate
(including certificates other than the certificate for a VDE
electronic appliance 600’s identity).

D. Key Aging and Convolution
PPE 650 also has the ability in the preferred embodiment

to generate secret keys and other information that is shared
between multiple PPEs 650. In the preferred embodiment,
such secret keys and other information may be shared
between multiple VDE electronic appliances 600 without
requiring the shared secret information to ever be commu-
nicated explicitly between the electronic appliances. More
specifically, PPE 650 uses a technique called “key convo-
lution” to derive keys based on a deterministic process in
response to seed information shared between multiple VDE
electronic appliances 600. Since the multiple electronic
appliances 600 “know” what the “seed” information is and
also “know” the deterministic process used to generate keys
based on this information, each of the electronic appliances
may independently generate the “true key.” This permits
multiple VDE electronic appliances 600 to share a common
secret key without potentially compromising its security by
communicating it over an insecure channel.

No encryption key should be used for an indefinite period.
The longer a key is used, the greater the chance that it may
be compromised and the greater the potential loss if the key
is compromised but still in use to protect new information.
The longer a key is used, the more information it may protect
and therefore the greater the potential rewards for someone
to spend the effort necessary to break it. Further, if a key is
used for a long time, there may be more ciphertext available
to an attacker attempting to break the key using a ciphertext-
based attack. See Schneier at 150—151. Key convolution in
the preferred embodiment provides a way to efficiently

Page 00254

Page 00255

5,915,019

205

change keys stored in secure database 610 on a routine
periodic or other basis while simplifying key management
issues surrounding the change of keys. In addition, key
convolution may be used to provide “time aged keys”
(discussed below) to provide “expiration dates” for key
usage and/or validity.

FIG. 62 shows an example implementation of key con-
volution in the preferred embodiment. Key convolution may
be performed using a combination of a site ID 2821 and the
high-order bits of the RTC 528 to yield a site-unique value
“V” that is time-dependent on a large scale (e.g., hours or
days). This value “V” may be used as the key for an
encryption process 2871 that transforms a convolution seed
value 2861 into a “current convolution key” 2862. The seed
value 2861 may be a universe-wide or group-wide shared
secret value, and may be stored in secure key storage (e.g.,
protected memory within PPE 650). The seed value 2861 is
installed during the manufacturing process and may be
updated occasionally by a VDE administrator. There may be
a plurality of seed values 2861 corresponding to different
sets of objects 300.

The current convolution key 2862 represents an encoding
of the site ID 2821 and current time. This transformed value

2862 may be used as a key for another encryption process
2872 to transform the stored key 810 in the object’s PERC
808 into the true private body key 2863 for the object’s
contents.

The “convolution function” performed by blocks 2861,
2871 may, for example, be a one-way function that can be
performed independently at both the content creator’s site
and at the content user’s site. If the content user does not use

precisely the same convolution function and precisely the
same input values (e.g., time and/or site and/or other
information) as used by the content creator, then the result
of the convolution function performed by the content user
will be different from the content creator’s result. If the

result is used as a symmetrical key for encryption by the
content creator, the content user will not be able to decrypt
unless the content user’s result is the same as the result of the
content creator.

The time component for input to the key convolution
function may be derived from RTC 528 (care being taken to
ensure that slight differences in RTC synchronization
between VDE electronic appliances will not cause different
electronic appliances to use different time components).
Different portions of the RTC 528 output may be used to
provide keys with different valid durations, or some toler-
ance can be built into the process to try several different key
values. For example, a “time granularity” parameter can be
adjusted to provide time tolerance in terms of days, weeks,
or any other time period. As one example, if the “time
granularity” is set to 2 days, and the tolerance is :2 days,
then three real-time input values can be tried as input to the
convolution algorithm. Each of the resulting key values may
be tried to determine which of the possible keys is actually
used. In this example, the keys will have only a 4 day life
span.

FIG. 63 shows how an appropriate convoluted key may be
picked in order to compensate for skew between the user’s
RTC 528 and the producer’s RTC 528. A sequence of
convolution keys 2862(a—e) may be generated by using
different input values 2881(a—e), each derived from the site
ID 2821 and the RTC 528 value plus or minus a differential
(e.g., —2 days, —1 days, no delta, +1 days, +2 days). The
convolution steps 2871(a—e) are used to generate the
sequence of keys 2862(a—e).

Meanwhile, the creator site may use the convolution step
2871(2) based on his RTC 528 value (adjusted to correspond

10

15

20

25

30

35

40

45

50

55

60

65

206

to the intended validity time for the key) to generate a
convoluted key 2862(2), which may then be used to generate
the content key 2863 in the object’s PERC 808. To decrypt
the object’s content, the user site may use each of its
sequence of convolution keys 2862(a—e) to attempt to gen-
erate the master content key 810. When this is attempted, as
long as the RTC 538 of the creator site is within acceptable
tolerance of the RTC 528 at the user site, one of keys
2862(a—e) will match key 2862(2) and the decryption will be
successful. In this example, matching is determined by
validity of decrypted output, not by direct comparison of
keys.

Key convolution as described above need not use both site
ID and time as a value. Some keys may be generated based
on current real time, other keys might be generated on site
ID, and still other keys might be generated based on both
current real-time and site ID.

Key convolution can be used to provide “time-aged”
keys. Such “time-aged” keys provide an automatic mecha-
nism for allowing keys to expire and be replaced by “new”
keys. They provide a way to give a user time-limited rights
to make time-limited use of an object, or portions of an
object, without requiring user re-registration but retaining
significant control in the hands of the content provider or
administrator. If secure database 610 is sufficiently secure,
similar capabilities can be accomplished by checking an
expiration date/time associated with a key, but this requires
using more storage space for each key or group of keys.

In the preferred embodiment, PERCs 808 can include an
expiration date and/or time after which access to the VDE-
protected information they correspond to is no longer autho-
rized. Alternatively or in addition, after a duration of time
related to some aspect of the use of the electronic appliance
600 or one or more VDE objects 300, a PERC 808 can force
a user to send audit history information to a clearinghouse,
distributor, client administrator, or object creator in order to
regain or retain the right to use the object(s). The PERC 808
can enforce such time-based restrictions by checking/
enforcing parameters that limit key usage and/or availability
past time of authorized use. “Time aged” keys may be used
to enforce or enhance this type of time-related control of
access to VDE protected information.

“Time aged” keys can be used to encrypt and decrypt a set
of information for a limited period of time, thus requiring
re-registration or the receipt of new permissions or the
passing of audit information, without which new keys are
not provided for user use. Time aged keys can also be used
to improve system security since one or more keys would be
automatically replaced based on the time ageing criteria-and
thus, cracking secure database 610 and locating one or more
keys may have no real value. Still another advantage of
using time aged keys is that they can be generated
dynamically-thereby obviating the need to store decryption
keys in secondary and/or secure memory.

A “time aged key” in the preferred embodiment is not a
“true key” that can be used for encryption/decryption, but
rather is a piece of information that a PPE 650, in conjunc-
tion with other information, can use to generate a “true key.”
This other information can be time-based, based on the
particular “ID” of the PPE 650, or both. Because the “true
key” is never exposed but is always generated within a
secure PPE 650 environment, and because secure PPEs are
required to generate the “true key,” VDE 100 can use “time
aged” keys to significantly enhance security and flexibility
of the system.

The process of “aging” a key in the preferred embodiment
involves generating a time-aged “true key” that is a function

Page 00255

Page 00256

5,915,019

207

of: (a) a “true key,” and (b) some other information (e.g., real
time parameters, site ID parameters, etc.) This information
is combined/transformed (e.g., using the “key convolution”
techniques discussed above) to recover or provide a “true
key.” Since the “true key” can be recovered, this avoids
having to store the “true key” within PERC 808, and allow
different “true keys” to correspond to the same information
within PERC 808. Because the “true key” is not stored in the
PERC 808, access to the PERC does not provide access to
the information protected by the “true key.” Thus, “time
aged” keys allows content creators/providers to impose a
limitation (e.g., site based and/or time based) on information
access that is, in a sense, “external of” or auxiliary to the
permissioning provided by one or more PERCs 808. For
example, a “time aged” key may enforce an additional time
limitation on access to certain protected information, this
additional time limitation being independent of any infor-
mation or permissioning contained within the PERC 808 and
being instead based on one or more time and/or site ID
values.

As one example, time-aged decryption keys may be used
to allow the purchaser of a “trial subscription” of an elec-
tronically published newspaper to access each edition of the
paper for a period of one week, after which the decryption
keys will no longer work. In this example, the user would
need to purchase one or more new PERCs 808, or receive an
update to an existing one or more permissions records, to
access editions other than the ones from that week. Access

to those other editions which might be handled with a totally
different pricing structure (e.g., a “regular” subscription rate
as opposed to a free or minimal “trial” subscription rate).

In the preferred embodiment, time-aged-based “true
keys” can be generated using a one-way or invertible “key
convolution” function. Input parameters to the convolution
function may include the supplied time-aged keys; user
and/or site specific values; a specified portion (e.g., a certain
number of high order bits) of the time value from an RTC
528 (if present) or a value derived from such time value in
a predefined manner; and a block or record identifier that
may be used to ensure that each time aged key is unique. The
output of the “key convolution” function may be a “true
key” that is used for decryption purposes until discarded.
Running the function with a time-aged key and inappropri-
ate time values typically yields a useless key that will not
decrypt.

Generation of a new time aged key can be triggered based
on some value of elapsed, absolute or relative time (e.g.,
based on a real time value from a clock such as RTC 528).
At that time, the convolution would produce the wrong key
and decryption could not occur until the time-aged key is
updated. The criteria used to determine when a new “time
aged key” is to be created may itself be changed based on
time or some other input variable to provide yet another
level of security. Thus, the convolution function and/or the
event invoking it may change, shift or employ a varying
quantity as a parameter.

One example of the use of time-aged keys is as follows:
1) A creator makes a “true” key, and encrypts content with

it.

2) A creator performs a “reverse convolution” to yield a
“time aged key” using, as input parameters to the “reverse
convolution”:

a) the “true” key,
b) a time parameter (e.g., valid high-order time bits of

RTC 528), and
c) optional other information (e.g., site ID and/or user ID).

3) The creator distributes the “time-aged key” to content
users (the creator may also need to distribute the convo-

10

15

20

25

30

35

40

45

50

55

60

65

208

lution algorithm and/or parameters if she is not using a
convolution algorithm already available to the content
users’ PPE 650).

4) The content user’s PPE 650 combines:
a) “time-aged” key
b) high-order time bits
c) required other information (same as 2c).

It performs a convolution function (i.e., the inverse of
“reverse convolution” algorithm in step (2) above) to obtain
the “true” key. If the supplied time and/or other information
is “wrong,” the convolution function will not yield the “true”
key, and therefore content cannot be decrypted.

Any of the key blocks associated with VDE objects 300
or other items can be either a regular key block or a
time-aged key block, as specified by the object creator
during the object configuration process, or where
appropriate, a distributor or client administrator.

“Time aged” keys can also be used as part of protocols to
provide secure communications between PPEs 650. For
example, instead of providing “true” keys to PPE 650 for
communications, VDE 100 may provide only “partial” com-
munication keys to the PPE. These “partial” keys may be
provided to PPE 650 during initialization, for example. A
predetermined algorithm may produce “true keys” for use to
encrypt/decrypt information for secure communications.
The predetermined algorithm can “age” these keys the same
way in all PPEs 650, or PPEs 650 can be required to contact
a VDE administrator at some predetermined time so a new
set of partial communications keys can be downloaded to the
PPEs. If the PPE 650 does not generate or otherwise obtain
“new” partial keys, then it will be disabled from communi-
cating with other PPEs (a further, “fail safe” key may be
provided to ensure that the PPE can communicate with a
VDE administrator for reinitialization purposes). Two sets of
partial keys can be maintained within a PPE 650 to allow a
fixed amount of overlap time across all VDE appliances 600.
The older of the two sets of partial keys can be updated
periodically.

The following additional types of keys (to be discussed
below) can also be “aged” in the preferred embodiment:

individual message keys (i.e., keys used for a particular
message),

administrative, stationary and travelling object shared
keys,

secure database keys, and
private body and content keys.

Initial Installation Key Management
FIG. 64 shows the flow of universe-wide, or “master,”

keys during creating of a PPE 650. In the preferred
embodiment, the PPE 650 contains a secure non-volatile key
storage 2802 (e.g. SPU 500 non-volatile RAM 534 B or
protected storage maintained by HPE 655) that is initialized
with keys generated by the manufacturer and by the PPE
itself.

The manufacturer possesses (i.e., knows, and protects
from disclosure or modification) one or more public key
2811/private key 2812 key pairs used for signing and
validating site identification certificates 2821. For each site,
the manufacturer generates a site ID 2821 and list of site
characteristics 2822. In addition, the manufacturer possesses
the public keys 2813, 2814 for validating load modules and
initialization code downloads. To enhance security, there
may be a plurality of such certification keys, and each PPE
650 may be initialized using only a subset of such keys of
each type.

As part of the initialization process, the PPE 650 may
generate internally or the manufacturer may generate and

Page 00256

Page 00257

5,915,019

209

supply, one or more pairs of site-specific public keys 2815
and private keys 2816. These are used by the PPE 650 to
prove its identity. Similarly, site-specific database key(s)
2817 for the site are generated, and if needed (i.e., if a
Random Number Generator 542 is not available), a random
initialization seed 2818 is generated.

The initialization may begin by generating site ID 2821
and characteristics 2822 and the site public key 2815/private
key 2816 pair(s). These values are combined and may be
used to generate one or more site identity certificates 2823.
The site identity certificates 2823 may be generated by the
public key generation process 2804, and may be stored both
in the PPE’s protected key storage 2802 and in the manu-
facturer’s VDE site certificate database 2803.

The certification process 2804 may be performed either
by the manufacturer or internally to the PPE 650. If per-
formed by the PPE 650, the PPE will temporarily receive the
identity certification private key(s) 2812, generate the cer-
tificate 2823, store the certificate in local key storage 2802
and transmit it to the manufacturer, after which the PPE 650

must erase its copy of the identity certification private key(s)
2812.

Subsequently, initialization may require generation, by
the PPE 650 or by the manufacturer, of site-specific database
key(s) 2817 and of site-specific seed value(s) 2818, which
are stored in the key storage 2802. In addition, the download
certification key(s) 2814 and the load module certification
key(s) 2813 may be supplied by the manufacturer and stored
in the key storage 2802. These may be used by the PPE 650
to validate all further communications with external entities.

At this point, the PPE 650 may be further initialized with
executable code and data by downloading information cer-
tified by the load module key(s) 2813 and download key(s)
2814. In the preferred embodiment, these keys may be used
to digitally sign data to be loaded into the PPE 650,
guaranteeing its validity, and additional key(s) encrypted
using the site-specific public key(s) 2815 may be used to
encrypt such data and protect it from disclosure.
Installation and Update Key Management

FIG. 65 illustrates an example of further key installation
either by the manufacturer or by a subsequent update by a
VDE administrator. The manufacturer or administrator may
supply initial or new values for private header key(s) 2831,
external communication key(s) 2832, administrative object
keys 2833, or other shared key(s) 2834. These keys may be
universe-wide in the same sense as the global certification
keys 2811, 2813, and 2814, or they may be restricted to use
within a defined group of VDE instances.

To perform this installation, the installer retrieves the
destination site’s identity certificate(s) 2823, and from that
extracts the site public key(s) 2815. These key(s) may be
used in an encryption process 2841 to protect the keys being
installed. The key(s) being installed are then transmitted
inside the destination site’s PPE 650. Inside the PPE 650, the

decryption process 2842 may use the site private key(s)
2816 to decrypt the transmission. The PPE 650 then stores
the installed or updated keys in its key storage 2802.
Object-Specific Key Use

FIGS. 66 and 67 illustrate the use of keys in protecting
data and control information associated with VDE objects
300.

FIG. 66 shows use of a stationary content object 850
whose control information is derived from an administrative

object 870. The objects may be received by the PPE 650
(e.g., by retrieval from an object repository 728 over a
network or retrieved from local storage). The administrative
object decryption process 2843 may use the private header

10

15

20

25

30

35

40

45

50

55

60

65

210

key(s) 2815 to decrypt the administrative object 870, thus
retrieving the PERC 808 governing access to the content
object 850. The private body key(s) 810 may then be
extracted from the PERC 808 and used by the content
decryption process 2845 to make the content available
outside the PPE 650. In addition, the database key(s) 2817
may be used by the encryption process 2844 to prepare the
PERC for storage outside the PPE 650 in the secure database
610. In subsequent access to the content object 850, the
PERC 808 may be retrieved from the secure database 610,
decrypted with database key(s) 2817, and used directly,
rather than being extracted from administrative object 870.

FIG. 67 shows the similar process involving a traveling
object 860. The principal distinction between FIGS. 66 and
67 is that the PERC 808 is stored directly within the
traveling object 860, and therefore may be used immediately
after the decryption process 2843 to provide a private header
key(s) 2831. This private header key 2831 is used to process
content within the traveling object 860.
Secret-Key Variations

FIGS. 64 through 67 illustrate the preferred public-key
embodiment, but may also be used to help understand the
secret-key versions. In secret-key embodiments, the certifi-
cation process and the public key encryptions/decryptions
are replaced with private-key encryptions, and the public
key/private-key pairs are replaced with individual secret
keys that are shared between the PPE 650 instance and the
other parties (e.g., the load module supplier(s), the PPE
manufacturer). In addition, the certificate generation process
2804 is not performed in secret-key embodiments, and no
site identity certificates 2823 or VDE certificate database
2803 exist.

Key Types
The detailed descriptions of key types below further

explain secret-key embodiments; this summary is not
intended as a complete description. The preferred embodi-
ment PPE 650 can use different types of keys and/or
different “shared secrets” for different purposes. Some key
types apply to a Public-Key/Secret Key implementation,
other keys apply to a Secret Key only implementation, and
still other key types apply to both. The following table lists
examples of various key and “shared secret” information
used in the preferred embodiment, and where this informa-
tion is used and stored:

Used in PK Example Storage
Key/Secret Information Type or Non-PK Location(s)

master Key(s) (may include Both PPE
some of the specific keys manufacturing facility
mentioned below) VDE administrator
Manufacturing Key Both PPE (PK case)

(PK optional) Manufacturing facility
Certification key pair PK PPE

Certification repository
Public/private key pair PK PPE

Certification repository
(Public Key only)

Initial secret key Non-PK PPE
PPE manufacturing ID Non-PK PPE
Site ID, shared code, shared Both PPE
keys and shared secrets
Download authorization key Both PPE

VDE administrator
External communication Both PPE

keys and other info Secure Database
Administrative object keys Both Permission record
Stationary object keys Both Permission record
Traveling object shared keys Both Permission record
Secure database keys Both PPE

Page 00257

Page 00258

5,915,019

-continued

Used in PK Example Storage
Key/Secret Information Type or Non-PK Location(s)

Private body keys Both Secure database
Some objects

Content keys Both Secure database
Some objects

Authorization shared secrets Both Permission record

Secure Database Back up Both PPE
keys Secure database

Master Keys
A “master” key is a key used to encrypt other keys. An

initial or “master” key may be provided within PPE 650 for
communicating other keys in a secure way. During initial-
ization of PPE 650, code and shared keys are downloaded to
the PPE. Since the code contains secure convolution algo-
rithms and/0r coefficients, it is comparable to a “master key.”
The shared keys may also be considered “master keys.”

If public-key cryptography is used as the basis for exter-
nal communication with PPE 650, then a master key is
required during the PPE Public-key pair certification pro-
cess. This master key may be, for example, a private key
used by the manufacturer or VDE administrator to establish
the digital certificate (encrypted public key and other infor-
mation of the PPE), or it may, as another example, be a
private key used by a VDE administrator to encrypt the
entries in a certification repository. Once certification has
occurred, external communications between PPEs 650 may
be established using the certificates of communicating PPEs.

If shared secret keys are used as the basis for external
communications, then an initial secret key is required to
establish external communications for PPE 650 initializa-

tion. This initial secret key is a “master key” in the sense that
it is used to encrypt other keys. A set of shared partial
external communications keys (see discussion above) may
be downloaded during the PPE initialization process, and
these keys are used to establish subsequent external PPE
communications.

Manufacturing Key
A manufacturing key is used at the time of PPE manu-

facture to prevent knowledge by the manufacturing staff of
PPE-specific key information that is downloaded into a PPE
at initialization time. For example, a PPE 650 that operates
as part of the manufacturing facility may generate informa-
tion for download into the PPE being initialized. This
information must be encrypted during communication
between the PPEs 650 to keep it confidential, or otherwise
the manufacturing staff could read the information. Amanu-
facturing key is used to protect the information. The manu-
facturing key may be used to protect various other keys
downloaded into the PPE such as, for example, a certifica-
tion private key, a PPE public/private key pair, and/or other
keys such as shared secret keys specific to the PPE. Since the
manufacturing key is used to encrypt other keys, it is a
“master key.”

A manufacturing key may be public-key based, or it may
be based on a shared secret. Once the information is

downloaded, the now-initialized PPE 650 can discard (or
simply not use) the manufacturing key. Amanufacturing key
may be hardwired into PPE 650 at manufacturing time, or
sent to the PPE as its first key and discarded after it is no
longer needed. As indicated in the table above and in the
preceding discussion, a manufacturing key is not required if
PK capabilities are included in the PPE.
Certification Key Pair

A certification key pair may be used as part of a “certi-
fication” process for PPEs 650 and VDE electronic appli-

10

15

20

25

30

35

40

45

50

55

60

65

212

ances 600. This certification process in the preferred
embodiment may be used to permit a VDE electronic
appliance to present one or more “certificates” authenticat-
ing that it (or its key) can be trusted. As described above, this
“certification” process may be used by one PPE 650 to
“certify” that it is an authentic VDE PPE, it has a certain
level of security and capability set (e.g., it is hardware based
rather than merely software based), etc. Briefly, the “certi-
fication” process may involve using a certificate private key
of a certification key pair to encrypt a message including
another VDE node’s public-key. The private key of a cer-
tification key pair is preferably used to generate a PPE
certificate. It is used to encrypt a public-key of the PPE. A
PPE certificate can either be stored in the PPE, or it may be
stored in a certification repository.

Depending on the authentication technique chosen, the
public key and the private key of a certification key pair may
need to be protected. In the preferred embodiment, the
certification public key(s) is distributed amongst PPEs such
that they may make use of them in decrypting certificates as
an aspect of authentication. Since, in the preferred
embodiment, this public key is used inside a PPE 650, there
is no need for this public key to be available in plaintext, and
in any event it is important that such key be maintained and
transmitted with integrity (e.g., during initialization and/0r
update by a VDE administrator). If the certification public
key is kept confidential (i.e., only available in plaintext
inside the PPE 650), it may make cracking security much
more difficult. The private key of a certification key pair
should be kept confidential and only be stored by a certifying
authority (i.e., should not be distributed).

In order to allow, in the preferred embodiment, the ability
to differentiate installations with different levels/degrees of
trustedness/security, different certification key pairs may be
used (e.g., different certification keys may be used to certify
SPEs 503 then are used to certify HPEs 655).
PPE Public/Private Key Pair

In the preferred embodiment, each PPE 650 may have its
own unique “device” (and/0r user) public/private key pair.
Preferably, the private key of this key pair is generated
within the PPE and is never exposed in any form outside of
the PPE. Thus, in one embodiment, the PPE 650 may be
provided with an internal capability for generating key pairs
internally. If the PPE generates its own public-key crypto-
system key pairs internally, a manufacturing key discussed
above may not be needed. If desired, however, for cost
reasons a key pair may be exposed only at the time a PPE
650 is manufactured, and may be protected at that time using
a manufacturing key. Allowing PPE 650 to generate its
public key pair internally allows the key pair to be
concealed, but may in some applications be outweighed by
the cost of putting a public-key key pair generator into PPE
650.

Initial Secret Key
The initial secret key is used as a master key by a secret

key only based PPE 650 to protect information downloaded
into the PPE during initialization. It is generated by the PPE
650, and is sent from the PPE to a secure manufacturing
database encrypted using a manufacturing key. The secure
database sends back a unique PPE manufacturing ID
encrypted using the initial secret key in response.

The initial secret key is likely to be a much longer key
than keys used for “standard” encryption due to its special
role in PPE initialization. Since the resulting decryption
overhead occurs only during the initialization process, mul-
tiple passes through the decryption hardware with selected
portions of this key are tolerable.

Page 00258

Page 00259

5,915,019

213

PPE Manufacturing ID
The PPE manufacturing ID is not a “key,” but does fall

within the classic definition of a “shared secret.” It prefer-
ably uniquely identifies a PPE 650 and may be used by the
secure database 610 to determine the PPE’s initial secret key
during the PPE initialization process.
Site ID, Shared Code, Shared Keys and Shared Secrets

The VDE site ID along with shared code, keys and secrets
are preferably either downloaded into PPE 650 during the
PPE initialization process, or are generated internally by a
PPE as part of that process. In the preferred embodiment,
most or all of this information is downloaded.

The PPE site ID uniquely identifies the PPE 650. The site
ID is preferably unique so as to uniquely identify the PPE
650 and distinguish that PPE from all other PPEs. The site
ID in the preferred embodiment provides a unique address
that may be used for various purposes, such as for example
to provide “address privacy” functions. In some cases, the
site ID may be the public key of the PPE 650. In other cases,
the PPE site ID may be assigned during the manufacturing
and/or initialization process. In the case of a PPE 650 that is
not public-key-capable, it would not be desirable to use the
device secret key as the unique site ID because this would
expose too many bits of the key—and therefore a different
information string should be used as the site ID.

Shared code comprises those code fragments that provide
at least a portion of the control program for the PPE 650. In
the preferred embodiment, a basic code fragment is installed
during PPE manufacturing that permits the PPE to bootstrap
and begin the initialization process. This fragment can be
replaced during the initialization process, or during subse-
quent download processing, with updated control logic.

Shared keys may be downloaded into PPE 650 during the
initialization process. These keys may be used, for example,
to decrypt the private headers of many object structures.

When PPE 650 is operating in a secret key only mode, the
initialization and download processes may import shared
secrets into the PPE 650. These shared secrets may be used
during communications processes to permit PPEs 650 to
authenticate the identity of other PPEs and/or users.
Download Authorization Key

The download authorization key is received by PPE 650
during the initialization download process. It is used to
authorize further PPE 650 code updates, key updates, and
may also be used to protect PPE secure database 610 backup
to allow recovery by a VDE administrator (for example) if
the PPE fails. It may be used along with the site ID, time and
convolution algorithm to derive a site ID specific key. The
download authorization key may also be used to encrypt the
key block used to encrypt secure database 610 backups. It
may also be used to for a site specific key that is used to
enable future downloads to the PPE 650. This download

authorization key is not shared among all PPEs 650 in the
preferred embodiment; it is specific to functions performed
by authorized VDE administrators.
External Communications Keys and Related Secret and
Public Information

There are several cases where keys are required when
PPEs 650 communicate. The process of establishing secure
communications may also require the use of related public
and secret information about the communicating electronic
appliances 600. The external communication keys and other
information are used to support and authenticate secure
communications. These keys comprise a public-key pair in
the preferred embodiment although shared secret keys may
be used alternatively or in addition.

10

15

20

25

30

35

40

45

50

55

60

65

214

Administrative Object Keys
In the preferred embodiment, an administrative object

shared key may be used to decrypt the private header of an
administrative object 870. In the case of administrative
objects, a permissions record 808 may be present in the
private header. In some cases, the permissions record 808
may be distributed as (or within) an administrative object
that performs the function of providing a right to process the
content of other administrative objects. The permissions
record 808 preferably contains the keys for the private body,
and the keys for the content that can be accessed would be
budgets referenced in that permissions record 808. The
administrative object shared keys may incorporate time as a
component, and may be replaced when expired.
Stationary Object Keys

A stationary object shared key may be used to decrypt a
private header of stationary objects 850. As explained above,
in some cases a permissions record 808 may be present in
the private header of stationary objects. If present, the
permissions record 808 may contain the keys for the private
body but will not contain the keys for the content. These
shared keys may incorporate time as a component, and may
be replaced when expired.
Traveling Object Shared Keys

A traveling object shared key may be used to decrypt the
private header of traveling objects 860. In the preferred
embodiment, traveling objects contain permissions record
808 in their private headers. The permissions record 808
preferably contains the keys for the private body and the
keys for the content that can be accessed as permitted by the
permissions record 808. These shared keys may incorporate
time as a component, and may be replaced when expired.
Secure Database Keys

PPE 650 preferably generates these secure database keys
and never exposes them outside of the PPE. They are
site-specific in the preferred embodiment, and may be
“aged” as described above. As described above, each time an
updated record is written to secure database 610, a new key
may be used and kept in a key list within the PPE. Periodi-
cally (and when the internal list has no more room), the PPE
650 may generate a new key to encrypt new or old records.
A group of keys may be used instead of a single key,
depending on the size of the secure database 610.
Private Body Keys

Private body keys are unique to an object 300, and are not
dependent on key information shared between PPEs 650.
They are preferably generated by the PPE 650 at the time the
private body is encrypted, and may incorporate real-time as
a component to “age” them. They are received in permis-
sions records 808, and their usage may be controlled by
budgets.
Content Keys

Content Keys are unique to an object 300, and are not
dependent on key information shared between PPEs 650.
They are preferably generated by the PPE 650 at the time the
content is encrypted. They may incorporate time as a com-
ponent to “age” them. They are received in permissions
records 808, and their usage may be controlled by budgets.
Authorization Shared Secrets

Access to and use of information within a PPE 650 or

within a secure database 610 may be controlled using
authorization “shared secrets” rather than keys. Authoriza-
tion shared secrets may be stored within the records they
authorize (permissions records 808, budget records, etc.).
The authorization shared secret may be formulated when the
corresponding record is created. Authorization shared
secrets can be generated by an authorizing PPE 650, and

Page 00259

Page 00260

5,915,019

215

may be replaced when record updates occur. Authorization
shared secrets have some characteristics associated with

“capabilities” used in capabilities based operating systems.
Access tags (described below) are an important set of
authorization shared secrets in the preferred embodiment.
Backup Keys

As described above, the secure database 610 backup
consists of reading all secure database records and current
audit “roll ups” stored in both PPE 650 and externally. Then,
the backup process decrypts and re-encrypts this information
using a new set of generated keys. These keys, the time of
the backup, and other appropriate information to identify the
backup, may be encrypted multiple times and stored with the
previously encrypted secure database files and roll up data
within the backup files. These files may then all be encrypted
using a “backup key” that is generated and stored within
PPE 650. This backup key 500 may be used by the PPE to
recover a backup if necessary. The backup keys may also be
securely encrypted (e.g., using a download authentication
key and/or a VDE administrator public key) and stored
within the backup itself to permit a VDE administrator to
recover the backup in case of PPE 650 failure.
Cryptographic Sealing

Sealing is used to protect the integrity of information
when it may be subjected to modifications outside the
control of the PPE 650, either accidentally or as an attack on
the VDE security. Two specific applications may be the
computation of check values for database records and the
protection of data blocks that are swapped out of an SPE
500.

There are two types of sealing: keyless sealing, also
known as cryptographic hashing, and keyed sealing. Both
employ a cryptographically strong hash function, such as
MD5 or SHA. Such a function takes an input of arbitrary
size and yields a fixed-size hash, or “digest.” The digest has
the property that it is infeasible to compute two inputs that
yield the same digest, and infeasible to compute one input
that yields a specific digest value, where “infeasible” is with
reference to a work factor based on the size of the digest
value in bits. If, for example, a 256-bit hash function is to be
called strong, it must require approximately on average
1038 (20128) trials before a duplicated or specified digest
value is likely to be produced.

Keyless seals may be employed as check values in
database records (e.g., in PERC 808) and similar applica-
tions. Akeyless seal may be computed based on the content
of the body of the record, and the seal stored with the rest
of the record. The combination of seal and record may be
encrypted to protect it in storage. If someone modifies the
encrypted record without knowing the encryption key (either
in the part representing the data or the part representing the
seal), the decrypted content will be different, and the
decrypted check value will not match the digest computed
from the record’s data. Even though the hash algorithm is
known, it is not feasible to modify both the record’s data and
its seal to correspond because both are encrypted.

Keyed seals may be employed as protection for data
stored outside a protected environment without encryption,
or as a validity proof between two protected environments.
Akeyed seal is computed similarly to a keyless seal, except
that a secret initial value is logically prefixed to the data
being sealed. The digest value thus depends both on the
secret and the data, and it is infeasible to compute a new seal
to correspond to modified data even though the data itself is
visible to an attacker. A keyed seal may protect data in
storage with a single secret value, or may protect data in
transit between two environments that share a single secret
value.

5

10

15

20

25

30

35

40

45

50

55

60

65

216

The choice of keys or keyless seals depends on the nature
of the data being protected and whether it is additionally
protected by encryption.
Tagging

Tagging is particularly useful for supporting the secure
storage of important component assembly and related infor-
mation on secondary storage memory 652. Integrated use of
information “tagging” and encryption strategies allows use
of inexpensive mass storage devices to securely store infor-
mation that, in part enables, limits and/or records the
configuration, management and operation of a VDE node
and the use of VDE protected content.

When encrypted or otherwise secured information is
delivered into a user’s secure VDE processing area (e.g.,
PPE 650), a portion of this information can be used as a
“tag” that is first decrypted or otherwise unsecured and them
compared to an expected value to confirm that the informa-
tion represents expected information. The tag thus can be
used as a portion of a process confirming the identity and
correctness of received, VDE protected, information.

Three classes of tags that may be included in the control
structures of the preferred embodiment:

access tags
validation tags
correlation tags.

These tags have distinct purposes.
An access tag may be used as a “shared secret” between

VDE protected elements and entities authorized to read
and/or modify the tagged element(s). The access tag may be
broken into separate fields to control different activities
independently. If an access tag is used by an element such
as a method core 1000', administrative events that affect

such an element must include the access tag (or portion of
the access tag) for the affected element(s) and assert that tag
when an event is submitted for processing. If access tags are
maintained securely (e.g., created inside a PPE 650 when the
elements are created, and only released from PPE 650 in
encrypted structures), and only distributed to authorized
parties, modification of structures can be controlled more
securely. Of course, control structures (e.g., PERCs 808)
may further limit or qualify modifications or other actions
expressed in administrative events.

Correlation tags are used when one element references
another element. For example, a creator might be required
by a budget owner to obtain permission and establish a
business relationship prior to referencing their budget within
the creator’s PERCs. After such relationship was formed, the
budget owner might transmit one or more correlation tags to
the creator as one aspect of allowing the creator to produce
PERCs that reference the budget owner’s budget.

Validation tags may be used to help detect record substi-
tution attempts on the part of a tamperer.

In some respects, these three classes of tags overlap in
function. For example, a correlation tag mismatch may
prevent some classes of modification attempts that would
normally be prevented by an access tag mismatch before an
access tag check is performed. The preferred embodiment
may use this overlap in some cases to reduce overhead by,
for example, using access tags in a role similar to validation
tags as described above.

In general, tagging procedures involve changing, within
SPE 503, encryption key(s), securing techniques(s), and/or
providing specific, stored tag(s). These procedures can be
employed with secure database 610 information stored on
said inexpensive mass storage 652 and used within a hard-
ware SPU 500 for authenticating, decrypting, or otherwise
analyzing, using and making available VDE protected con-

Page 00260

Page 00261

5,915,019

217

tent and management database information. Normally,
changing validation tags involves storing within a VDE
node hardware (e.g., the PPE 650) one or more elements of
information corresponding to the tagging changes. Storage
of information outside of the hardware SPE’s physically
secure, trusted environment is a highly cost savings means
of secure storage, and the security of important stored
management database information is enhanced by this tag-
ging of information. Performing this tagging “change” fre-
quently (for example, every time a given record is
decrypted) prevents the substitution of “incorrect” informa-
tion for “correct” information, since said substitution will
not carry information which will match the tagging infor-
mation stored within the hardware SPE during subsequent
retrieval of the information.

Another benefit of information tagging is the use of tags
to help enforce and/or verify information and/or control
mechanisms in force between two or more parties. If infor-
mation is tagged by one party, and then passed to another
party or parties, a tag can be used as an expected value
associated with communications and/or transactions

between the two parties regarding the tagged information.
For example, if a tag is associated with a data element that
is passed by Party A to Party B, Party B may require Party
A to prove knowledge of the correct value of at least a
portion of a tag before information related to, and/or part of,
said data element is released by Party B to Party A, or vice
versa. In another example, a tag may be used by Party A to
verify that information sent by Party B is actually associated
with, and/or part of, a tagged data element, or vice versa.
Establishing a Secure, Authenticated, Communication
Channel

From time to time, two parties (e.g., PPEs A and B), will
need to establish a communication channel that is known by
both parties to be secure from eavesdropping, secure from
tampering, and to be in use solely by the two parties whose
identifies are correctly known to each other.

The following describes an example process for estab-
lishing such a channel and identifies how the requirements
for security and authentication may be established and
validated by the parties. The process is described in the
abstract, in terms of the claims and belief each party must
establish, and is not to be taken as a specification of any
particular protocol. In particular, the individual sub-steps of
each step are not required to be implemented using distinct
operations; in practice, the establishment and validation of
related proofs is often combined into a single operation.

The sub-steps need not be performed in the order detailed
below, except to the extent that the validity of a claim cannot
be proven before the claim is made by the other party. The
steps may involve additional communications between the
two parties than are implied by the enumerated sub-steps, as
the “transmission” of information may itself be broken into
sub-steps. Also, it is not necessary to protect the claims or
the proofs from disclosure or modification during transmis-
sion. Knowledge of the claims (including the specific com-
munication proposals and acknowledgements thereof) is not
considered protected information. Any modification of the
proofs will cause the proofs to become invalid and will cause
the process to fail.

Standard public-key or secret-key cryptographic tech-
niques can be used to implement this process (e.g., X509,
Authenticated Diffie-Hellman, Kerberos). The preferred
embodiment uses the three-way X.509 public key protocol
steps.

The following may be the first two steps in the example
process:

10

15

20

25

30

35

40

45

50

55

60

65

218

A. (precursor step): Establish means of creating validat-
able claims by A

B. (precursor step): Establish means of creating validat-
able claims by B

These two steps ensure that each party has a means of
making claims that can be validated by the other party, for
instance, by using a public key signature scheme in which
both parties maintain a private key and make available a
public key that itself is authenticated by the digital signature
of a certification authority.

The next steps may be:
A (proposal step):

. Determine B’s identity

. Acquire means of validating claims made by B

. Create a unique identity for this specific proposed com-
munication

4. Create a communication proposal identifying the parties
and the specific communication

5. Create validatable proof of A’s identity and the origin of
the communication proposal

6. Deliver communication proposal and associated proof to
B.

These steps establish the identity of the correspondent
party B and proposes a communication. Because establish-
ment of the communication will require validation of claims
made by B, a means must be provided for Ato validate such
claims. Because the establishment of the communication

must be unique to a specific requirement by A for
communication, this communication proposal and all asso-
ciated traffic must be unambiguously distinguishable from
all other such traffic. Because B must validate the proposal
as a legitimate proposal from A, a proof must be provided
that the proposal is valid.

The next steps may be as follows:
B (acknowledgement step):

. Extract A’s identity from the communication proposal

. Acquire means of validating claims made by A

. Validate A’s claim of identity and communication pro-
posal origin

4. Determine the unique identification of the communication
proposal

5. Determine that the communication proposal does not
duplicate an earlier proposal

6. Create an acknowledgement identifying the specific com-
munication proposal

7. Create validatable proof of B’s identity and the origin of
the acknowledgement

8. Deliver the acknowledgement and associated proof to A.
These steps establish that party B has received A’s

communication proposal and is prepared to act on it.
Because B must validate the proposal, B must first determine
its origin and validate its authenticity. B must ensure that its
response is associated with a specific proposal, and that the
proposal is not a replay. If B accepts the proposal, it must
prove both B’s own identity and that B has received a
specific proposal.

The next steps may be:
A (establishment step):

1. Validate B’s claim acknowledgement of A’s specific
proposal

2. Extract the identity of the specific communication pro-
posal from the acknowledgement

3. Determine that the acknowledgement is associated with
an outstanding communication proposal

4. Create unique session key to be used for the proposed
communication

5. Create proof of session key’s creation by A

WNH

WNH

Page 00261

Page 00262

5,915,019

219

6. Create proof of session key’s association with the specific
communication proposal

7. Create proof of receipt of B’s acknowledgement
8. Protect the session key from disclosure in transmission
9. Protect the session key from modification in transmission
10. Deliver protected session key and all proofs to B.

These steps allows A to specify a session key to be
associated with all further traffic related to A’s specific
communication proposal. A must create the key, prove that
A created it, and prove that it is associated with the specific
proposed communication. In addition, Amust prove that the
session key is generated in response to B’s acknowledge-
ment of the proposal. The session key must be protected
from disclosure of modification to ensure that an attacker
cannot substitute a different value.

Transportability of VDE Installations Between PPEs 650
In a preferred embodiment, VDE objects 300 and other

secure information may if appropriate, be transported from
one PPE 650 to another securely using the various keys
outlined above. VDE 100 uses redistribution of VDE admin-

istrative information to exchange ownership of VDE object
300, and to allow the portability of objects between elec-
tronic appliances 600.

The permissions record 808 of VDE objects 300 contains
rights information that may be used to determine whether an
object can be redistributed in whole, in part, or at all. If a
VDE object 300 can be redistributed, then electronic appli-
ance 600 normally must have a “budget” and/or other
permissioning that allows it to redistribute the object. For
example, an electronic appliance 600 authorized to redis-
tribute an object may create an administrative object con-
taining a budget or rights less than or equal to the budget or
rights that it owns. Some administrative objects may be sent
to other PPEs 650. A PPE 650 that receives one of the

administrative objects may have the ability to use at least a
portion of the budgets, or rights, to related objects.

Transfer of ownership of a VDE object 300 is a special
case in which all of the permissions and/or budgets for a
VDE object are redistributed to a different PPE 650. Some
VDE objects may require that all object-related information
be delivered (e.g., it’s possible to “sell” all rights to the
object). However, some VDE objects 300 may prohibit such
a transfer. In the case of ownership transfer, the original
providers for a VDE object 300 may need to be contacted by
the new owner, informed of the transfer, and validated using
an authorization shared secret that accompanies
reauthorization, before transfer of ownership can be com-
pleted.

When an electronic appliance 600 receives a component
assembly, an encrypted part of the assembly may contain a
value that is known only to the party or PPE 650 that
supplied the assembly. This value may be saved with infor-
mation that must eventually returned to the assembly sup-
plier (e.g., audit, billing and related information). When a
component supplier requests that information be reported,
the value may be provided by the supplier so that the local
electronic appliance 600 can check it against the originally
supplied value to ensure that the request is legitimate. When
a new component is received, the value may be checked
against an old component to determine whether the new
component is legitimate (e.g., the new value for use in the
next report process may be included with the new
component).
Integrity of VDE Security

There are many ways in which a PPE 650 might be
compromised. The goal of the security provided by VDE
100 is to reduce the possibility that the system will be
compromised, and minimize the adverse effects if it is
compromised.

10

15

20

25

30

35

40

45

50

55

60

65

220

The basic cryptographic algorithm that are used to imple-
ment VDE 100 are assumed to be safe (cryptographically
strong). These include the secret-key encryption of content,
public-key signatures for integrity verification, public-key
encryption for privacy between PPEs 650 or between a PPE
and a VDE administrator, etc. Direct attack on these algo-
rithms is assumed to be beyond the capabilities of an
attacker. For domestic versions of VDE 100 some of this is

probably a safe assumption since the basic building blocks
for control information have sufficiently long keys and are
sufficiently proven.

The following risks of threat or attacks may be significant:
Unauthorized creation or modification of component

assemblies (e.g., budgets)
Unauthorized bulk disclosure of content

Compromise of one or more keys
Software emulation of a hardware PPE

Substitution of older records in place of newer records
Introduction of “rogue” (i.e., unauthentic) load modules
Replay attacks
Defeating “fingerprinting”
Unauthorized disclosure of individual content items
Redistribution of individual content items.

A significant potential security breach would occur if one
or more encryption keys are compromised. As discussed
above, however, the encryption keys used by VDE 100 are
sufficiently varied and compartmentalized so that compro-
mising one key would have only limited value to an attacker
in most cases. For example, if a certification private key is
exposed, an attacker could pass the challenge/response pro-
tocol as discussed above but would then confront the next

level of security that would entail cracking either the ini-
tialization challenge/response or the external communica-
tion keys. If the initialization challenge/response security is
also defeated, the initialization code and various initializa-
tion keys would also be exposed. However, it would still be
necessary to understand the code and data to find the shared
VDE keys and to duplicate the key-generation
(“convolution”) algorithms. In addition, correct real time
clock values must be maintained by the spoof. If the attacker
is able to accomplish all of this successfully, then all secure
communications to the bogus PPE would be compromised.
An object would be compromised if communications related
to the permissions record 808 of that object are sent to the
bogus PPE.

Knowledge of the PPE download authorization key and
the algorithms that are used to derive the key that encrypts
the keys for backup of secured database 610 would com-
promise the entire secured database at a specific electronic
appliance 600. However, in order to use this information to
compromise content of VDE objects 300, an understanding
of appropriate VDE internals would also be required. In a
preferred embodiment, the private body keys and content
keys stored in a secured database 610 are “aged” by includ-
ing a time component. Time is convoluted with the stored
values to derive the “true keys” needed to decrypt content.
If this process is also compromised, then object content or
methods would be revealed. Since a backup of secured
database 610 is not ever restored to a PPE 650 in the

preferred embodiment without the intervention of an autho-
rized VDE administrator, a “bogus” PPE would have to be
used to make use of this information.

External communication shared keys are used in the
preferred embodiment in conjunction with a key convolution
algorithm based on site ID and time. If compromised, all of
the steps necessary to allow communications with PPEs 650
must also be known to take advantage of this knowledge. In

Page 00262

Page 00263

5,915,019

221

addition, at least one of the administrative object shared keys
must be compromised to gain access to a decrypted permis-
sions record 808.

Compromising an administrative object shared key has no
value unless the “cracker” also has knowledge of external
communication keys. All administrative objects are
encrypted by unique keys exchanged using the shared exter-
nal communications keys, site ID and time. Knowledge of
PPE 650 internal details would be necessary to further
decrypt the content of administrative objects.

The private header of a stationary object (or any other
stationary object that uses the same shared key) if
compromised, may provide the attacker with access to
content until the shared key “ages” enough to no longer
decrypt the private header. Neither the private body nor the
content of the object is exposed unless a permissions record
808 for that object is also compromised. The private headers
of these objects may remain compromised until the key
“ages” enough to no longer decrypt the private header.

Secure database encryption keys in the preferred embodi-
ment are frequently changing and are also site specific. The
consequences of compromising a secured database 610 file
or a record depends on the information that has been
compromised. For example, permissions record 808 contain
keys for the public body and content of a VDE object 300.
If a permissions record 808 is compromised, the aspects of
that object protected by the keys provided by the permis-
sions record are also compromised—if the algorithm that
generates the “true keys” is also known. If a private body
key becomes known, the private body of the object is
compromised until the key “ages” and expires. If the “aging”
process for that key is also compromised, the breach is
permanent. Since the private body may contain methods that
are shared by a number of different objects, these methods
may also become compromised. When the breach is
detected, all administrative objects that provide budgets and
permissions record should update the compromised meth-
ods. Methods stored in secure database 610 are only
replaced by more recent versions, so the compromised
version becomes unusable after the update is completed.

If a content key becomes compromised, the portion of the
content encrypted with the key is also compromised until the
key “ages” and expires. If the “aging” process for that key
also becomes compromised, then the breach becomes per-
manent. If multiple levels of encryption are used, or portions
of the content are encrypted with different keys, learning a
single key would be insufficient to release some or all of the
content.

If an authorization shared secret (e.g., an access tag)
becomes known, the record containing the secret may be
modified by an authorized means if the “crackers” knows
how to properly use the secret. Generally speaking, the
external communications keys, the administrative object
keys and the management file keys must also be “cracked”
before a shared secret is useful. Of course, any detailed
knowledge of the protocols would also be required to make
use of this information.

In the preferred embodiment, PPE 650 may detect
whether or not it has become compromised. For example, by
comparing information stored in an SPE 503 (e.g., summary
service information) with information stored in secure data-
base 610 and/or transmitted to a VDE participant (e.g., a
VDE clearinghouse), discrepancies may become evident. If
PPE 650 (or a VDE administrator watching its activities or
communicating with it) detects that it has been
compromised, it may be updated with an initialization to use
new code, keys and new encryption/decryption algorithms.

10

15

20

25

30

35

40

45

50

55

60

65

222

This would limit exposure to VDE objects 300 that existed
at the time the encryption scheme was broken. It is possible
to require the PPE 650 to cease functioning after a certain
period of time unless new code and key downloads occur. It
is also possible to have VDE administrators force updates to
occur. It is also likely that the desire to acquire a new VDE
object 300 will provide an incentive for users to update their
PPEs 650 at regular time intervals.

Finally, the end-to-end nature of VDE applications, in
which content 108 flows in one direction, generating reports
and bills 118 in the other, makes it possible to perform
“back-end” consistency checks. Such checks, performed in
clearinghouses 116, can detect patterns of use that may or do
indicate fraud (e.g., excessive acquisition of protected con-
tent without any corresponding payment, usage records
without corresponding billing records). The fine grain of
usage reporting and the ready availability of usage records
and reports in electronic form enables sophisticated fraud
detection mechanisms to be built so that fraud-related costs

can be kept to an acceptable level.
PPE Initialization

Each PPE 650 needs to be initialized before it can be used.

Initialization may occur at the manufacturer site, after the
PPE 650 has been placed out in the field, or both. The
manufacturing process for PPE 650 typically involves
embedding within the PPE sufficient software that will allow
the device to be more completely initialized at a later time.
This manufacturing process may include, for example, test-
ing the bootstrap loader and challenge-response software
permanently stored within PPE 650, and loading the PPE’s
unique ID. These steps provide a basic VDE-capable PPE
650 that may be further initialized (e.g., after it has been
installed within an electronic appliance 600 and placed in
the field). In some cases, the manufacturing and further
initialization processes may be combined to produce “VDE
ready” PPEs 650. This description elaborates on the sum-
mary presented above with respect to FIGS. 64 and 65.

FIG. 68 shows an example of steps that may be performed
in accordance with one preferred embodiment to initialize a
PPE 650. Some of the steps shown in this flowchart may be
performed at the manufacturing site, and some may be
performed remotely through contact between a VDE admin-
istrator and the PPE 650. Alternatively, all of the steps
shown in the diagram may be performed at the manufactur-
ing site, or all of the steps shown may be performed through
remote communications between the PPE 500 and a VDE
administrator.

If the initialization process 1370 is being performed at the
manufacturer, PPE 650 may first be attached to a testbed.
The manufacturing testbed may first reset the PPE 650 (e.g.,
with a power on clear) (Block 1372). If this reset is being
performed at the manufacturer, then the PPE 650 preferably
executes a special testbed bootstrap code that completely
tests the PPE operation from a software standpoint and fails
if something is wrong with the PPE. A secure communica-
tions exchange may then be established between the manu-
facturing testbed and the PPE 650 using an initial challenge-
response interaction (Block 1374) that is preferably
provided as part of the testbed bootstrap process. Once this
secure communications has been established, the PPE 650
may report the results of the bootstrap tests it has performed
to the manufacturing testbed. Assuming the PPE 650 has
tested successfully, the manufacturing testbed may down-
load new code into the PPE 650 to update its internal
bootstrap code (Block 1376) so that it does not go through
the testbed bootstrap process upon subsequent resets (Block
1376). The manufacturing testbed may then Load new

Page 00263

Page 00264

5,915,019

223

firmware into the PPE internal non-volatile memory in order
to provide additional standard and/or customized capabili-
ties (Block 1378). For example, the manufacturing testbed
may preload PPE 650 with the load modules appropriate for
the particular manufacturing lot. This step permits the PPE
500 to be customized at the factory for specific applications.

The manufacturing testbed may next load a unique device
ID into PPE 650 (Block 1380). PPE 650 now carries a
unique ID that can be used for further interactions.

Blocks 1372—1380R typically are, in the preferred
embodiment, performed at the manufacturing site. Blocks
1374 and 1382—1388 may be performed either at the manu-
facturing site, after the PPE 650 has been deployed, or both.

To further initialize PPE 650, once a secure communica-
tions has been established between the PPE and the manu-

facturing testbed or a VDE administrator (Block 1374), any
required keys, tags or certificates are loaded into PPE 650
(Block 1382). For example, the manufacturing test bed may
load its information into PPE 650 so the PPE may be
initialized at a later time. Some of these values may be
generated internally within PPE 650. The manufacturing
testbed or VDE administrator may then initialize the PPE
real time clock 528 to the current real time value (Block
1384). This provides a time and date reference for the PPE
650. The manufacturing testbed or the VDE administrator
may next initialize the summary values maintained inter-
nally to the PPE 500 (Block 1386). If the PPE 650 is already
installed as part of an electronic appliance 600, the PPE may
at this point initialize its secure database 610 (Block 1388).

FIG. 69 shows an example of program control steps
performed by PPE 650 as part of a firmware download
process (See FIG. 68, Block 1378). The PPE download
process is used to load externally provided firmware and/or
data elements into the PPE. Firmware loads may take two
forms: permanent loads for software that remains resident in
the PPE 650; and transient loads for software that is being
loaded for execution. A related process for storing into the
secure database 610 is performed for elements that have
been sent to a VDE electronic appliance 600.

PPE 650 automatically performs several checks to ensure
that firmware being downloaded into the PPE has not been
tampered with, replaced, or substituted before it was loaded.
The download routine 1390 shown in the figure illustrates an
example of such checks. Once the PPE 650 has received a
new firmware item (Block 1392), it may check the item to
ensure that it decrypts properly using the predetermined
download or administrative object key (depending on the
source of the element) (decision Block 1394). If the firm-
ware decrypts properly (“yes” exits to decision Block 1394),
the firmware as check valve may be calculated and com-
pared against the check valve stored under the encryption
wrapper of the firmware (decision Block 1396). If the two
check summed values compare favorably (“yes” exit to
decision Block 1396), then the PPE 650 may compare the
public and private header identification tags associated with
the firmware to ensure that the proper firmware was pro-
vided and had not been substituted (step not shown in the
figure). Assuming this test also passes, the PPE 500 may
calculate the digital signatures of the firmware (assuming
digital signatures are supported by the PPE 650 and the
firmware is “signed”) and may check the calculated signa-
ture to ensure that it compares favorably to the digital
signatures under the firmware encryption wrapper (Blocks
1398, 1400). If any of these tests fail, then the download will
be aborted (“fail” termination 1401).

Assuming all of the tests described above pass, then PPE
650 determines whether the firmware is to be stored within

10

15

20

25

30

35

40

45

50

55

60

65

224

the PPE (e.g., an internal non-volatile memory), or whether
it is to be stored in the secure database 610 (decision Block
1402). If the firmware is to be stored within the PPE (“yes”
exit to decision Block 1402), then the PPE 500 may simply
store the information internally (Block 1404). If the firm-
ware is to be stored within the secure database 610 (“no” exit
to decision Block 1402), then the firmware may be tagged
with a unique PPE-specific tag designed to prevent record
substitution (Block 1406), and the firmware may then be
encrypted using the appropriate secure database key and
released to the secure database 610 (Block 1408).
Networking SPUs 500 and/or VDE Electronic Appliances
600

In the context of many computers interconnected by a
local or wide area network, it would be possible for one or
a few of them to be VDE electronic appliances 600. For
example, a VDE-capable server might include one or more
SPUs 500. This centralized VDE server could provide all
VDE services required within the network or it can share
VDE service with VDE server nodes; that is, it can perform
a few, some, or most VDE service activities. For example,
a user’s non-VDE computer could issue a request over the
network for VDE-protected content. In response to the
request, the VDE server could comply by accessing the
appropriate VDE object 300, releasing the requested content
and delivering the content over the network 672 to the
requesting user. Such an arrangement would allow VDE
capabilities to be easily integrated into existing networks
without requiring modification or replacement of the various
computers and other devices connected to the networks.

For example, a VDE server having one or more protected
processing environments 650 could communicate over a
network with workstations that do not have a protected
processing environment. The VDE server could perform all
secure VDE processing, and release resulting content and
other information to the workstations on the network. This

arrangement would require no hardware or software modi-
fication to the workstations.

However, some applications may require greater security,
flexibility and/or performance that may be obtained by
providing multiple VDE electronic appliances 600 con-
nected to the same network 672. Because commonly-used
local area networks constitute an insecure channel that may
be subject to tampering and/or eavesdropping, it is desirable
in most secure applications to protect the information com-
municated across the network. It would be possible to use
conventional network security techniques to protect VDE-
released content or other VDE information communicated

across a network 672 between a VDE electronic appliance
600 and a non-VDE electronic appliance. However, advan-
tages are obtained by providing multiple networked VDE
electronic appliances 600 within the same system.

As discussed above in connection with FIG. 8, multiple
VDE electronic appliances 600 may communicate with one
another over a network 672 or other communications path.
Such networking of VDE electronic appliances 600 can
provide advantages. Advantages include, for example, the
possibility of centralizing VDE resources, storing and/or
archiving metering information on a server VDE and deliv-
ering information and services efficiently across the network
672 to multiple electronic appliances 600.

For example, in a local area network topology, a “VDE
server” electronic appliance 600 could store VDE-protected
information and make it available to one or more additional

electronic appliances 600 or computers that may communi-
cate with the server over network 672. As one example, an
object repository 728 storing VDE objects could be main-

Page 00264

Page 00265

5,915,019

225

tained at the centralized server, and each of many networked
electronic appliance 600 users could access the centralized
object repository over the network 672 as needed. When a
user needs to access a particular VDE object 300, her
electronic appliance 600 could issue a request over network
672 to obtain a copy of the object. The “VDE server” could
deliver all or a portion of the requested object 300 in
response to the request. Providing such a centralized object
repository 728 would have the advantage of minimizing
mass storage requirements local to each electronic appliance
600 connected to the network 672, eliminate redundant
copies of the same information, ease information manage-
ment burdens, provide additional physical and/or other
security for particularly important VDE processes and/or
information occurring at the server, where providing such
security at VDE nodes may be commercially impractical for
certain business models, etc.

It may also be desirable to centralize secure database 610
in a local area network topology. For example, in the context
of a local area network, a secure database 610 server could
be provided at a centralized location. Each of several elec-
tronic appliances 600 connected to a local area network 672
could issue requests for secure database 610 records over the
network, and receive those records via the network. The
records could be provided over the network in encrypted
form. “Keys” needed to decrypt the records could be shared
by transmitting them across the network in secure commu-
nication exchanges. (Centralizing secure database 610 in a
network 672 has potential advantages of minimizing or
eliminating secondary storage and/or other memory require-
ments for each of the networked electronic appliances 600,
avoiding redundant information storage, allowing central-
ized backup services to be provided, easing information
management burdens, etc.

One way to inexpensively and conveniently deploy mul-
tiple instances of VDE electronic appliances 600 across a
network would be to provide network workstations with
software defining an HPE 655. This arrangement requires no
hardware modification of the workstations; an HPE 655 can

be defined using software only. An SPE(s) 503 and/or
HPE(s) 655 could also be provided within a VDE server.
This arrangement has the advantage of allowing distributed
VDE network processing without requiring workstations to
be customized or modified (except for loading a new
program(s) into them). VDE functions requiring high levels
of security may be restricted to an SPU-based VDE server.
“Secure” HPE-based workstations could perform VDE func-
tions requiring less security, and could also coordinate their
activities with the VDE server.

Thus, it may be advantageous to provide multiple VDE
electronic appliances 600 within the same network. It may
also be advantageous to provide multiple VDE electronic
appliances 600 within the same workstation or other elec-
tronic appliance 600. For example, an electronic appliance
600 may include multiple electronic appliances 600 each of
which have a SPU 500 and are capable of performing VDE
functions.

For example, one or more VDE electronic appliances 600
can be used as input/output device(s) of a computer system.
This may eliminate the need to decrypt information in one
device and then move it in unencrypted form across some
bus or other unsecured channel to another device such as a

peripheral. If the peripheral device itself is a VDE electronic
appliance 600 having a SPU 500, VDE-protected informa-
tion may be securely sent to the peripheral across the
insecure channel for processing (e.g., decryption) at the
peripheral device. Giving the peripheral device the capabil-

10

15

20

25

30

35

40

45

50

55

60

65

226

ity of handling VDE-protected information directly also
increases flexibility. For example, the VDE electronic appli-
ance 600 peripheral device may control VDE object 300
usage. It may, for example, meter the usage or other param-
eters associated with the information it processes, and it may
gather audit trials and other information specific to the
processing it performs in order to provide greater informa-
tion gathering about VDE object usage. Providing multiple
cooperating VDE electronic appliances 600 may also
increase performance by eliminating the need to move
encrypted information to a VDE electronic appliance 600
and then move it again in unencrypted form to a non-VDE
device. The VDE-protected information can be moved
directly to its destination device which, if VDE-capable,
may directly process it without requiring involvement by
some other VDE electronic appliance 600.

FIG. 70 shows an example of an arrangement 2630
comprising multiple VDE electronic appliances 600(1), 600
(2), 600(3), . . . , 600(N). VDE electronic appliances
600(1) . . . 600(N) may communicate with one another over
a communications path 2631 (e.g., the system bus of a work
station, a telephone or other wire, a cable, a backplane, a
network 672, or any other communications mechanism).
Each of the electronic appliances 600 shown in the figure
may have the same general architecture shown in FIG. 8,
i.e., they may each include a CPU (or microcontroller) 654,
SPU 500, RAM 656, ROM 658, and system bus 653. Each
of the electronic appliances 600 shown in the figure may
have an interface/controller 2632 (which may be considered
to be a particular kind of I/O controller 660 and/or commu-
nications controller 666 shown in FIG. 8). This interface/
controller 2632 provides an interface between the electronic
appliance system bus 653 and an appropriate electrical
connector 2634. Electrical connectors 2634 of each of the

respective electronic appliances 600(1), . . . 600(N) provide
a connection to a common network 672 or other communi-

cation paths.
Although each of electronic appliances 600 shown in the

figure may have a generally similar architecture, they may
perform different specialized tasks. For example, electronic
appliance 600(1) might comprise a central processing sec-
tion of a workstation responsible for managing the overall
operation of the workstation and providing computation
resources. Electronic appliance 600(2) might be a mass
storage device 620 for the same workstation, and could
provide a storage mechanism 2636 that might, for example,
read information from and write information to a secondary
storage device 652. Electronic appliance 600(3) might be a
display device 614 responsible for performing display tasks,
and could provide a displaying mechanism 2638 such as a
graphics controller and associated video or other display.
Electronic appliance 600(N) might be a printer 622 that
performs printing related tasks and could include, for
example, a print mechanism 2640.

Each of electronic appliances 600(1), . . . 600(N) could
comprise a different module of the same workstation device
all contained within a common housing, or the different
electronic appliances could be located within different sys-
tem components. For example, electronic appliance 600(2)
could be disposed within a disk controller unit, electronic
appliance 600(3) could be disposed within a display device
614 housing, and the electronic appliance 600(N) could be
disposed within the housing of a printer 622. Referring back
to FIG. 7, scanner 626, modem 618, telecommunication
means 624, keyboard 612 and/or voice recognition box 613
could each comprise a VDE electronic appliance 600 having
its own SPU 500. Additional examples include RF or

Page 00265

Page 00266

5,915,019

227

otherwise wireless interface controller, a serial interface

controller, LAN controllers, MPEG (video) controllers, etc.
Because electronic appliances 600(1) . . . 600(N) are each

VDE-capable, they each have the ability to perform encryp-
tion and/or decryption of VDE-protected information. This
means that information communicated across network 672

or other communications path 2631 connecting the elec-
tronic appliances can be VDE-protected (e.g., it may be
packaged in the form of VDE administrative and/or content
objects and encrypted as discussed above). One of the
consequences of this arrangement is that an eavesdropper
who taps into communications path 2631 will not be able
obtain information except in VDE-protected form. For
example, information generated by electronic appliance 600
(1) to be printed could be packaged in a VDE content object
300 and transmitted over path 2631 to electronic appliance
600 (N) for printing. An attacker would gain little benefit
from intercepting this information since it is transmitted in
protected form; she would have to compromise electronic
appliance 600(1) or 600(N) (or the SPU 500(1), 500(N)) in
order to access this information in unprotected form.

Another advantage provided by the arrangement shown in
the diagram is that each of electronic appliances 600(1), . . .
600(N) may perform their own metering, control and/or
other VDE-related functions. For example, electronic appli-
ance 600(N) may meter and/or perform any other VDE
control functions related to the information to be printed,
electronic appliance 600(3) may meter and/or perform any
other VDE control functions related to the information to be

displayed, electronic appliance 600(2) may meter and/or
perform any other VDE control functions related to the
information to be stored and/or retrieved from mass storage
620, and electronic appliance 600(1) may meter and/or
perform any other VDE control functions related to the
information it processes.

In one specific arrangement, each of electronic appliances
600(1), . . . 600(N) would receive a command that indicates
that the information received by or sent to the electronic
appliance is to use its SPU 500 to process the information to
follow. For example, electronic appliance 600(N) might
receive a command that indicates that information it is about

to receive for printing is in VDE-protected form (or the
information that is sent to it may itself indicate this). Upon
receiving this command or other information, electronic
appliance 600(N) may decrypt the received information
using SPU 500, and might also meter the information the
SPU provides to the print mechanism 2644 for printing. An
additional command might be sent to electronic appliance
600(N) to disable the decryption process or 600(N)’s VDE
secure subsystem may determine that the information should
not be decrypted and/or printed. Additional commands, for
example, may exist to load encryption/decryption keys, load
“limits,” establish “fingerprinting” requirements, and read
metered usage. These additional commands may be sent in
encrypted or unencrypted form as appropriate.

Suppose, for example, that electronic appliance 600(1)
produces information it wishes to have printed by a VDE-
capable printer 622. SPU 500(1) could establish a secure
communications across path 2631 with SPU 500(N) to
provide a command instructing SPU 500(N) to decrypt the
next block of data and store it as a decryption key and a limit.
SPU 500(1) might then send a further command to SPU
500(N) to use the decryption key and associated limit to
process any following encrypted print stream (or this com-
mand could be sent by CPU 654(1) to microcontroller
654(N)). Electronic appliance 600(1) could then begin send-
ing encrypted information on path 672 for decryption and

10

15

20

25

30

35

40

45

50

55

60

65

228

printing by printer 622. Upon receipt of each new block of
information by printer 622, SPU 500(N) might first check to
ensure that the limit is greater than zero. SPU 500(N) could
then increment a usage meter value it maintains, and dec-
rement the limit value. If the limit value is non-zero, SPU

500(N) could decrypt the information it has received and
provide it to print mechanism 2640 for printing. If the limit
is zero, then SPU 500(N) would not send the received
information to the print mechanism 2640, nor would it
decrypt it. Upon receipt of a command to stop, printer 622
could revert to a “non-secure” mode in which it would print
everything received by it across path 2631 without permit-
ting VDE processing.

The SPU 500(N) associated with printer 622 need not
necessarily be disposed within the housing of the printer, but
could instead be placed within an I/O controller 660 for
example (see FIG. 8). This would allow at least some of the
advantages similar to the ones discussed above to be pro-
vided without requiring a special VDE-capable printer 622.
Alternatively, a SPU 500(N) could be provided both within
printer 622 and within I/O controller 660 communicating
with the printer to provide advantages in terms of coordi-
nating 1/0 control and relieving processing burdens from
the SPU 500 associated with the central processing elec-
tronic appliance 600(1). When multiple VDE instances
occur within an electronic appliance, one or more VDE
secure subsystems may be “central” subsystems, that is
“secondary” VDE instances may pass encrypted usage
related information to one or more central secure subsystems
so as to allow said central subsystem to directly control
storage of said usage related information. Certain control
information may also be centrally stored by a central sub-
system and all or a portion of such information may be
securely provided to the secondary secure subsystem upon
its secure VDE request.
Portable Electronic Appliance

Electronic appliance 600 provided by the present inven-
tion may be portable. FIG. 71 shows one example of a
portable electronic appliance 2600. Portable appliance 2600
may include a portable housing 2602 that may be about the
size of a credit card in one example. Housing 2602 may
connect to the outside world through, for example, an
electrical connector 2604 having one or more electrical
contact pins (not shown). Connector 2604 may electrically
connect an external bus interface 2606 internal to housing
2602 to a mating connector 2604a of a host system 2608.
External bus interface 2606 may, for example, comprise a
PCMCIA (or other standard) bus interface to allow portable
appliance 2600 to interface with and communicate over a
bus 2607 of host system 2608. Host 2608 may, for example,
be almost any device imaginable, such as a computer, a pay
telephone, another VDE electronic appliance 600, a
television, an arcade video game, or a washing machine, to
name a few examples.

Housing 2602 may be tamper resistant. (See discussion
above relating to tamper resistance of SPU barrier 502.)

Portable appliance 2600 in the preferred embodiment
includes one or more SPUs 500 that may be disposed within
housing 2602. SPU 500 may be connected to external bus
interface 2606 by a bus 2610 internal to housing 2602. SPU
500 communicates with host 2608 (through external bus
interface 2606) over this internal bus 2610.

SPU 500 may be powered by a battery 2612 or other
portable power supply that is preferably disposed within
housing 2602. Battery 2612 may be, for example, a minia-
ture battery of the type found in watches or credit card sized
calculators. Battery 2612 may be supplemented (or

Page 00266

Page 00267

5,915,019

229

replaced) by solar cells, rechargeable batteries, capacitive
storage cells, etc.

A random access memory (RAM) 2614 is preferably
provided within housing 2602. RAM 2614 may be con-
nected to SPU 500 and not directly connected to bus 2610,
so that the contents of RAM 2614 may be accessed only by
the SPU and not by host 2608 (except through and as
permitted by the SPU). Looking at FIG. 9 for a moment,
RAM 2614 may be part of RAM 534 within the SPU 500,
although it need not necessarily be contained within the
same integrated circuit or other package that houses the rest
of the SPU.

Portable appliance 2600 RAM 534 may contain, for
example, information which can be used to uniquely identify
each instance of the portable appliance. This information
may be employed (e.g. as at least a portion of key or
password information) in authentication, verification,
decryption, and/or encryption processes.

Portable appliance 2600 may, in one embodiment, com-
prise means to perform substantially all of the functions of
a VDE electronic appliance 600. Thus, for example, portable
appliance 2600 may include the means for storing and using
permissions, methods, keys, programs, and/or other
information, and can be capable of operating as a “stand
alone” VDE node.

In a further embodiment, portable appliance 2600 may
perform preferred embodiment VDE functions once it has
been coupled to an additional external electronic appliance
600. Certain information, such as database management
permission(s), method(s), key(s), and/or other important
information (such as at least a portion of other VDE pro-
grams: administrative, user-interface, analysis, etc.) may be
stored (for example as records) at an external VDE elec-
tronic appliance 600 that may share information with por-
table appliance 2600.

One possible “stand alone” configuration for tamper-
resistant, portable appliance 2600 arrangements includes a
tamper-resistant package (housing 2602) containing one or
more processors (500, 2616) and/or other computing devices
and/or other control logic, along with random-access-
memory 2614. Processors 500, 2616 may execute permis-
sions and methods wholly (or at least in part) within the
portable appliance 2600. The portable appliance 2600 may
have the ability to encrypt information before the informa-
tion is communicated outside of the housing 2602 and/or
decrypt received information when said received informa-
tion is received from outside of the housing. This version
would also possess the ability to store at least a portion of
permission, method, and/or key information securely within
said tamper resistant portable housing 2602 on non-volatile
memory.

Another version of portable appliance 2600 may obtain
permissions and/or methods and/or keys from a local VDE
electronic appliance 600 external to the portable appliance
2600 to control, limit, or otherwise manage a user’s use of
a VDE protected object. Such a portable appliance 600 may
be contained within, received by, installed in, or directly
connected to, another electronic appliance 2600.

One example of a “minimal” configuration of portable
appliance 2600 would include only SPU 500 and battery
2612 within housing 2602 (the external bus interface 2606
and the RAM 2614 would in this case each be incorporated
into the SPU block shown in the Figure). In other, enhanced
examples of portable appliance 2600, any or all of the
following optional components may also be included within
housing 2602:

one or more CPUs 2616 (with associated support com-
ponents such as RAM-ROM 2617, 1/0 controllers (not
shown), etc.);

10

15

20

25

30

35

40

45

50

55

60

65

230

one or more display devices 2618;
one or more keypads or other user input buttons/control

information 2620;

one or more removable/replaceable memory device(s)
2622; and

one or more printing device(s) 2624.
In such more enhanced versions, the display 2618, keypad
2620, memory device 2622 and printer 2624 may be con-
nected to bus 2610, or they might be connected to CPU 2616
through an I/O port/controller portion (not shown) of the
CPU, Display 2618 may be used to display information from
SPU 500, CPU 2616 and/or host 2608. Keypad 2620 may be
used to input information to SPU 500, CPU 2616 and/or host
2608. Printer 2624 may be used to print information from
any/all of these sources. Removable/replaceable memory
2622 may comprise a memory cartridge or memory medium
such as a bulk storage device, for providing additional
long-term or short-term storage. Memory 2622 may be
easily removable from housing 2602 if desired.

In one example embodiment, portable appliance 2600
may have the form factor of a “smart card” (although a
“smart card” form factor may provide certain advantages,
housing 2602 may have the same or different form factor as
“conventional” a smart cards). Alternatively, such a portable
electronic appliance 2600 may, for example, be packaged in
a PCMCIA card configuration (or the like) which is cur-
rently becoming quite popular on personal computers and is
predicted to become common for desk-top computing
devices and Personal Digital Assistants. One advantageous
form factor for the portable electronic appliance housing
2602 may be, for example, a Type 1, 2, or 3 PCMCIA card
(or other derivations) having credit card or somewhat larger
dimensions. Such a form factor is conveniently portable, and
may be insertable into a wide array of computers and
consumer appliances, as well as receptacles at commercial
establishments such as retail establishments and banks, and
at public communications points, such as telephone or other
telecommunication “booths.”

Housing 2602 may be insertable into and removable from
a port, slot or other receptacle provided by host 2608 so as
to be physically (or otherwise operatively) connected to a
computer or other electronic appliance. The portable appli-
ance connector 2604 may be configured to allow easy
removability so that appliance 2600 may be moved to
another computer or other electronic appliance at a different
location for a physical connection or other operative con-
nection with that other device.

Portable electronic appliance 2600 may provide a valu-
able and relatively simple means for a user to move per-
missions and methods between their (compatible) various
electronic appliances 600, such as between a notebook
computer, a desktop computer and an office computer. It
could also be used, for example, to allow a consumer to visit
a next door neighbor and allow that neighbor to watch a
movie that the consumer had acquired a license to view, or
perhaps to listen to an audio record on a large capacity
optical disk that the consumer had licensed for unlimited
plays.

Portable electronic appliance 2600 may also serve as a
“smart card” for financial and other transactions for users to

employ in a variety of other applications such as, for
example, commercial applications. The portable electronic
appliance 2600 may, for example, carry permission and/or
method information used to authorize (and possibly record)
commercial processes and services.

An advantage of using the preferred embodiment VDE
portable appliance 2600 for financial transactions such as

Page 00267

Page 00268

5,915,019

231

those typically performed by banks and credit card compa-
nies is that VDE allows financial clearinghouses (such as
VISA, MasterCard, or American Express) to experience
significant reductions in operating costs. The clearinghouse
reduction in costs result from the fact that the local metering
and budget management that occurs at the user site through
the use of a VDE electronic appliance 600 such as portable
appliance 2600 frees the clearinghouse from being involved
in every transaction. In contrast to current requirements,
clearinghouses will be able to perform their functions by
periodically updating their records (such as once a month).
Audit and/or budget “roll-ups” may occur during a connec-
tion initiated to communicate such audit and/or budget
information and/or through a connection that can occur at
periodic or relatively periodic intervals and/or during a
credit updating, purchasing, or other portable appliance
2600 transaction.

Clearinghouse VDE digital distribution transactions
would require only occasional authorization and/or audit or
other administrative “roll-ups” to the central service, rather
than far more costly connections during each session. Since
there would be no requirement for the maintenance of a
credit card purchase “paper trail” (the authorization and then
forwarding of the credit card slip), there could be substantial
cost reductions for clearinghouses (and, potentially, lower
costs to users) due to reduction in communication costs,
facilities to handle concurrent processing of information,
and paper handling aspects of transaction processing costs.
This use of a portable appliance 2600 would allow credit
enforcement to exploit distributed processing employing the
computing capability in each VDE electronic appliance 600.
These credit cost and processing advantages may also apply
to the use of non-smart card and non-portable VDE elec-
tronic appliance 600s.

Since VDE 100 may be configured as a highly secure
commercial environment, and since the authentication pro-
cesses supported by VDE employ digital signature processes
which provide a legal validation that should be equivalent to
paper documentation and handwritten signatures, the need
for portable appliance 2600 to maintain paper trails, even for
more costly transactions, is eliminated. Since auditable
billing and control mechanisms are built into VDE 100 and
automated, they may replace traditional electronic interfaces
to VISA, Master Card, AMEX, and bank debit accounts for
digitally distributed other products and services, and may
save substantial operating costs for such clearinghouses.

Portable appliance 2600 may, if desired, maintain for a
consumer a portable electronic history. The portable history
can be, for example, moved to an electronic “dock” or other
receptacle, in or operatively connected to, a computer or
other consumer host appliance 2608. Host appliance 2608
could be, for example, an electronic organizer that has
control logic at least in part in the form of a microcomputer
and that stores information in an organized manner, e.g.,
according to tax and/or other transaction categories (such as
type of use or activity). By use of this arrangement, the
consumer no longer has to maintain receipts or otherwise
manually track transactions but nevertheless can maintain an
electronic, highly secure audit trail of transactions and
transaction descriptions. The transaction descriptions may,
for example, securely include the user’s digital signature,
and optionally, the service or goods provider’s digital sig-
nature.

When a portable appliance 2600 is “docked” to a host
2608 such as a personal computer or other electronic appli-
ance (such as an electronic organizer), the portable appliance
2600 could communicate interim audit information to the

5

10

15

20

25

30

35

40

45

50

55

60

65

232

host. In one embodiment, this information could be read,
directly or indirectly, into a computer or electronic organizer
money and/or tax management program (for example,
quicken or Microsoft Money and/or Turbo Tax and/or
Andrew Tobias’ Managing Your Money). This automation
of receipt management would be an enormous boon to
consumers, since the management and maintenance of
receipts is difficult and time-consuming, receipts are often
lost or forgotten, and the detail from credit card billings is
often wholly inadequate for billing and reimbursement pur-
poses since credit card billings normally don’t provide
sufficient data on the purchased items or significant trans-
action parameters.

In one embodiment, the portable appliance 2600 could
support secure (in this instance encrypted and/or
authenticated) two-way communications with a retail termi-
nal which may contain a VDE electronic appliance 600 or
communicate with a retailer’s or third party provider’s VDE
electronic appliance 600. During such a secure two-way
communication between, for example, each participant’s
secure VDE subsystem, portable appliance 2600 VDE
secure subsystem may provide authentication and appropri-
ate credit or debit card information to the retail terminal

VDE secure subsystem. During the same or different com-
munication session, the terminal could similarly, securely
communicate back to the portable appliance 2600 VDE
secure subsystem details as to the retail transaction (for
example, what was purchased and price, the retail establish-
ment’s digital signature, the retail terminal’s identifier, tax
related information, etc.).

For example, a host 2608 receptacle for receiving and/or
attaching to portable appliance 2600 could be incorporated
into or operatively connected to, a retail or other commercial
establishment terminal. The host terminal 2608 could be

operated by either a commercial establishment employee or
by the portable appliance 2600 holder. It could be used to,
for example, input specific keyboard and/or voice input
specific information such as who was taken to dinner, why
something was purchased, or the category that the informa-
tion should be attached to. Information could then be auto-

matically “parsed” and routed into securely maintained (for
example, encrypted) appropriate database management
records within portable appliance 2600. Said “parsing” and
routing would be securely controlled by VDE secure sub-
system processes and could, for example, be based on
category information entered in by the user and/or based on
class of establishment and/or type (category) of expenditure
information (or other use). Categorization can be provided
by the retail establishment, for example, by securely com-
municating electronic category information as a portion, for
example, of electronic receipt information or alternatively
by printing a hard copy receipt using printer 2624. This
process of categorization may take place in the portable
appliance 2600 or, alternatively, it could be performed by the
retail establishment and periodically “rolled-up” and com-
municated to the portable appliance 2600 holder.

Retail, clearinghouse, or other commercial organizations
may maintain and use by securely communicating to appli-
ance 2600 one or more of generic classifications of trans-
action types (for example, as specified by government
taxation rules) that can be used to automate the parsing of
information into records and/or for database information

“roll-ups” for; and/or in portable appliance 2600 or one or
more associated VDE nodes. In such instances, host 2608
may comprise an auxiliary terminal, for example, or it could
comprise or be incorporated directly within a commercial
establishments cash registers or other retail transactions

Page 00268

Page 00269

5,915,019

233

devices. The auxiliary terminal could be menu and/or icon
driven, and allow very easy user selection of categorization.
It could also provide templates, based on transaction type,
that could guide the user through specifying useful or
required transaction specific information (for example, pur-
pose for a business dinner and/or who attended the dinner).
For example, a user might select a business icon, then select
from travel, sales, meals, administration, or purchasing icons
for example, and then might enter in very specific informa-
tion and/or a key word, or other code that might cause the
downloading of a transaction’s detail into the portable
appliance 2600. This information might also be stored by the
commercial establishment, and might also be communicated
to the appropriate government and/or business organizations
for validation of the reported transactions (the high level of
security of auditing and communications and authentication
and validation of VDE should be sufficiently trusted so as
not to require the maintenance of a parallel audit history, but
parallel maintenance may be supported, and maintained at
least for a limited period of time so as to provide backup
information in the event of loss or “failure” of portable
appliance 2600 and/or one or more appliance 2600 associ-
ated VDE installations employed by appliance 2600 for
historical and/or status information record maintenance).
For example, of a retail terminal maintained necessary
transaction information concerning a transaction involving
appliance 2600, it could communicate such information to a
clearinghouse for archiving (and/or other action) or it could
periodically, for example, at the end of a business day,
securely communicate such information, for example, in the
form of a VDE content container object, to a clearinghouse
or clearinghouse agent. Such transaction history (and any
required VDE related status information such as available
credit) can be maintained and if necessary, employed to
reconstruct the information in a portable appliance 2600 so
as to allow a replacement appliance to be provided to an
appliance 2600 user or properly reset internal information in
data wherein such replacement and/or resetting provides all
necessary transaction and status information.

In a retail establishment, the auxiliary terminal host 2608
might take the form of a portable device presented to the
user, for example at the end of a meal. The user might place
his portable appliance 2600 into a smart card receptacle such
as a PCMCIA slot, and then enter whatever additional
information that might appropriately describe the transac-
tion as well as satisfying whatever electronic appliance 600
identification procedure(s) required. The transaction, given
the availability of sufficient credit, would be approved, and
transaction related information would then be communi-

cated back from the auxiliary terminal directly into the
portable appliance 2600. This would be a highly convenient
mode of credit usage and record management.

The portable device auxiliary terminal might be “on-line,”
that is electronically communicating back to a commercial
establishment and/or third party information collection point
through the use of cellular, satellite, radio frequency, or other
communications means. The auxiliary terminal might, after
a check by a commercial party in response to receipt of
certain identification information at the collection point,
communicate back to the auxiliary terminal whether or not
to accept the portable appliance 2600 based on other
information, such as a bad credit record or a stolen portable
appliance 2600. Such a portable auxiliary terminal would
also be very useful at other commercial establishments, for
example at gasoline stations, rental car return areas, street
and stadium vendors, bars, and other commercial establish-
ments where efficiency would be optimized by allowing

10

15

20

25

30

35

40

45

50

55

60

65

234

clerks and other personnel to consummate transactions at
points other than traditional cash register locations.

As mentioned above, portable appliance 2600 may com-
municate from time to time with other electronic appliances
600 such as, for example, a VDE administrator. Communi-
cation during a portable appliance 2600 usage session may
result from internally stored parameters dictating that the
connection should take place during that current session (or
next or other session) of use of the portable appliance. The
portable appliance 600 can carry information concerning a
real-time date or window of time or duration of time that

will, when appropriate, require the communication to take
place (e.g., perhaps before the transaction or other process
which has been contemplated by the user for that session or
during it or immediately following it). Such a communica-
tion can be accomplished quickly, and could be a secure,
VDE two-way communication during which information is
communicated to a central information handler. Certain

other information may be communicated to the portable
appliance 2600 and/or the computer or other electronic
appliance to which the portable appliance 2600 has been
connected. Such communicated other information can

enable or prevent a contemplated process from proceeding,
and/or make the portable appliance 2600, at least in part,
unusable or useable. Information communicated to the por-
table appliance 2600 could include one or more modifica-
tions to permissions and methods, such as a resetting or
increasing of one or more budgets, adding or withdrawing
certain permissions, etc.

The permissions and/or methods (i.e., budgets) carried by
the portable appliance 2600 may have been assigned to it in
conjunction with an “encumbering” of another, stationary or
other portable VDE electronic appliance 600. In one
example, a portable appliance 2600 holder or other VDE
electronic appliance 600 and/or VDE electronic appliance
600 user could act as “guarantor” of the financial aspects of
a transaction performed by another party. The portable
appliance 2600 of the holder would record an
“encumbrance,” which may be, during a secure communi-
cation with a clearinghouse, be recorded and maintained by
the clearinghouse and/or some other financial services party
until all or a portion of debt responsibilities of the other party
were paid or otherwise satisfied. Alternatively or in addition,
the encumbrance may also be maintained within the portable
appliance 2600, representing the contingent obligation of the
guarantor. The encumbrance may be, by some formula,
included in a determination of the credit available to the

guarantor. The credit transfer, acceptance, and/or record
management, and related processes, may be securely main-
tained by the security features provided by aspects of the
present invention. Portable appliance 600 may be the sole
location for said permissions and/or methods for one or
more VDE objects 300, or it may carry budgets for said
objects that are independent of budgets for said objects that
are found on another, non-portable VDE electronic appli-
ance 600. This may allow budgets, for example, to be
portable, without requiring “encumbering” and budget rec-
onciliation.

Portable VDE electronic appliance 2600 may carry (as
may other VDE electronic appliance 600s described) infor-
mation describing credit history details, summary of
authorizations, and usage history information (e.g., audit of
some degree of transaction history or related summary
information such as the use of a certain type/class of
information) that allows re-use of certain VDE protected
information at no cost or at a reduced cost. Such usage or
cost of usage may be contingent, at least in part, on previous

Page 00269

Page 00270

5,915,019

235

use of one or more objects or class of objects or amount of
use, etc., of VDE protected information.

Portable appliance 2600 may also carry certain informa-
tion which may be used, at least in part, for identification
purposes. This information may be employed in a certain
order (e.g. a pattern such as for example, based on a
pseudo-random algorithm) to verify the identity of the
carrier of the portable appliance 2600. Such information
may include, for example, one’s own or a wife’s and/or other
relatives maiden names, social security number or numbers
of one’s own and/or others, birth dates, birth hospital(s), and
other identifying information. It may also or alternatively
provide or include one or more passwords or other infor-
mation used to identify or otherwise verify/authenticate an
individual’s identity, such as voice print and retinal scan
information. For example, a portable appliance 2600 can be
used as a smart card that carries various permissions and/or
method information for authorizations and budgets. This
information can be stored securely within portable appliance
2600 in a secure database 610 arrangement. When a user
attempts to purchase or license an electronic product or
otherwise use the “smart card” to authorize a process,
portable appliance 2600 may query the user for identifica-
tion information or may initiate an identification process
employing scanned or otherwise entered information (such
as user fingerprint, retinal or voice analysis or other tech-
niques that may, for example, employ mapping and/or
matching of provided characteristics to information securely
stored within the portable appliance 2600). The portable
appliance 2600 may employ different queries at different
times (and/or may present a plurality of queries or requests
for scanning or otherwise entering identifying information)
so as to prevent an individual who has come into possession
of appropriate information for one or more of the “tests” of
identity from being able to successfully employ the portable
appliance 2600.

A portable appliance 600 could also have the ability to
transfer electronic currency or credit to another portable
appliance 2600 or to another individual’s account, for
example, using secure VDE communication of relevant
content between secure VDE subsystems. Such transfer may
be accomplished, for example, by telecommunication to, or
presentation at, a bank which can transfer credit and/or
currency to the other account. The transfer could also occur
by using two cards at the same portable appliance 2600
docking station. For example, a credit transaction worksta-
tion could include dual PCMCIA slots and appropriate credit
and/or currency transfer application software which allows
securely debiting one portable appliance 2600 and “credit-
ing” another portable appliance (i.e., debiting from one
appliance can occur upon issuing a corresponding credit
and/or currency to the other appliance). One portable appli-
ance 600, for example, could provide an authenticated credit
to another user. Employing two “smart card” portable appli-
ance 600 would enable the user of the providing of “credit”
“smart card” to go through a transaction process in which
said user provides proper identification (for example, a
password) and identifies a “public key” identifying another
“smart card” portable appliance 2600. The other portable
appliance 2600 could use acceptance processes, and provide
proper identification for a digital signature (and the credit
and/or currency sender may also digitally sign a transaction
certificate so the sending act may not be repudiated and this
certificate may accompany the credit and/or currency as
VDE container content. The transactions may involve, for
example, user interface interaction that stipulates interest
and/or other terms of the transfer. It may employ templates

10

15

20

25

30

35

40

45

50

55

60

65

236

for common transaction types where the provider of the
credit is queried as to certain parameters describing the
agreement between the parties. The receiving portable appli-
ance 2600 may iteratively or as a whole be queried as to the
acceptance of the terms. VDE negotiation techniques
described elsewhere in this application may be employed in
a smart card transfer of electronic credit and/or currency to
another VDE smart card or other VDE installation.

Such VDE electronic appliance 600/portable appliance
2600 credit transfer features would significantly reduce the
overhead cost of managing certain electronic credit and/or
currency activities by significantly automating these pro-
cesses through extending the computerization of credit con-
trol and credit availability that was begun with credit cards
and extended with debit cards. The automation of credit

extension and/or currency transfer and the associated dis-
tributed processing advantages described, including the
absence of any requirement for centralized processing and
telecommunications during each transaction, truly make
credit and/or currency, for many consumers and other elec-
tronic currency and/or credit users, an efficient, trusted, and
portable commodity.

The portable appliance 2600 or other VDE electronic
appliance 600, can, in one embodiment, also automate many
tax collection functions. A VDE electronic appliance 600
may, with great security, record financial transactions, iden-
tify the nature of the transaction, and identify the required
sales or related government transaction taxes, debit the taxes
from the users available credit, and securely communicate
this information to one or more government agencies
directly at some interval (for example monthly), and/or
securely transfer this information to, for example, a financial
clearinghouse, which would then transfer one or more
secure, encrypted (or unsecure, calculated by clearinghouse,
or otherwise computed) information audit packets (e.g.,
VDE content containers and employing secure VDE com-
munication techniques) to the one or more appropriate,
participating government agencies. The overall integrity and
security of VDE 100 could ensure, in a coherent and
centralized manner, that electronic reporting of tax related
information (derived from one or more electronic commerce
activities) would be valid and comprehensive. It could also
act as a validating source of information on the transfer of
sales tax collection (e.g., if, for example, said funds are
transferred directly to the government by a commercial
operation and/or transferred in a manner such that reported
tax related information cannot be tampered with by other
parties in a VDE pathway of tax information handling). A
government agency could select transactions randomly, or
some subset or all of the reported transactions for a given
commercial operation can be selected. This could be used to
ensure that the commercial operation is actually paying to
the government all appropriate collected finds required for
taxes, and can also ensure that end-users are charged appro-
priate taxes for their transactions (including receipt of inter-
est from bank accounts, investments, gifts, etc.

Portable appliance 2600 financial and tax processes could
involve template mechanisms described elsewhere herein.
While such an electronic credit and/or currency management
capability would be particularly interesting if managed at
least in part, through the use of a portable appliance 2600,
credit and/or currency transfer and similar features would
also be applicable for non-portable VDE electronic appli-
ance 600’s connected to or installed within a computer or
other electronic device.

User Notification Exception Interface (“Pop Up”) 686
As described above, the User Modification Exception

Interface 686 may be a set of user interface programs for

Page 00270

Page 00271

5,915,019

237

handling common VDE functions. These applications may
be forms of VDE templates and are designed based upon
certain assumptions regarding important options,
specifically, appropriate to a certain VDE user model and
important messages that must be reported given certain
events Aprimary function of the “pop-up” user interface 686
is to provide a simple, consistent user interface to, for
example, report metering events and exceptions (e.g., any
condition for which automatic processing is either impos-
sible or arguably undesirable) to the user, to enable the user
to configure certain aspects of the operation of her electronic
appliance 600 and, when appropriate, to allow the user to
interactively control whether to proceed with certain trans-
action processes. If an object contains an exception handling
method, that method will control how the “pop-up” user
interface 686 handles specific classes of exceptions.

The “pop-user” interface 686 normally enables handling
of tasks not dedicated to specific objects 300, such as for
example:

Logging onto an electronic appliance 600 and/or entering
into a VDE related activity or class of activities,

Configuring an electronic appliance 600 for a registered
user, and/or generally for the installation, with regard to user
preferences, and automatic handling of certain types of
exceptions,

Where appropriate, user selecting of meters for use with
specific properties, and

Providing an interface for communications with other
electronic appliances 600, including requesting and/or for
purchasing or leasing content from distributors, requesting
clearinghouse credit and/or budgets from a clearinghouse,
sending and/or receiving information to and/or from other
electronic appliances, and so on.

FIG. 72A shows an example of a common “logon” VDE
electronic appliance 600 function that may use user interface
686. “Log-on” can be done by entering a user name, account
name, and/or password. As shown in the provided example,
a configuration option provided by the “pop-up” user inter-
face 686 dialog can be “Login at Setup”, which, if selected,
will initiate a VDE Login procedure automatically every
time the user’s electronic appliance 600 is turned on or reset.
Similarly, the “pop-up” user interface 686 could provide an
interface option called “Login at Type” which, if selected,
will initiate a procedure automatically every time, for
example, a certain type of object or specific content type
application is opened such as a file in a certain directory, a
computer application or file with a certain identifying
extension, or the like.

FIG. 72B shows an example of a “pop-up” user interface
686 dialog that is activated when an action by the user has
been “trapped,” in this case to warn the user about the
amount of expense that will be incurred by the user’s action,
as well as to alert the user about the object 300 which has
been requested and what that particular object will cost to
use. In this example, the interface dialog provides a button
allowing the user to request further detailed information
about the object, including full text descriptions, a list of
associated files, and perhaps a history of past usage of the
object including any residual rights to use the object or
associated discounts.

The “Cancel” button 2660 in FIG. 72B cancels the user’s

trapped request. “Cancel” is the default in this example for
this dialog and can be activated, for example, by the return
and enter keys on the user’s keyboard 612, by a “mouse
click” on that button, by voice command, or other command
mechanisms. The “Approve button” 2662, which must be
explicitly selected by a mouse click or other command

10

15

20

25

30

35

40

45

50

55

60

65

238

procedure, allows the user to approve the expense and
proceed. The “More options” control 2664 expands the
dialog to another level of detail which provides further
options, an example of which is shown in FIG. 72C.

FIG. 72C shows a secondary dialog that is presented to
the user by the “pop-up” user interface 686 when the “More
options” button 2664 in FIG. 72B is selected by the user. As
shown, this dialog includes numerous buttons for obtaining
further information and performing various tasks.

In this particular example, the user is permitted to set
“limits” such as, for example, the session dollar limit
amount (field 2666), a total transaction dollar limit amount
(field 2668), a time limit (in minutes) (field 2670), and a
“unit limit” (in number of units such as paragraphs, pages,
etc.) (field 2672). Once the user has made her selections, she
may “click on” the OKAY button (2674) to confirm the limit
selections and cause them to take effect.

Thus, pop-up user interface dialogues can be provided to
specify user preferences, such as setting limits on budgets
and/or other aspects of object content usage during any one
session or over a certain duration of time or until a certain

point in time. Dialogs can also be provided for selecting
object related usage options such as selecting meters and
budgets to be used with one or more objects. Selection of
options may be applied to types (that is classes) of objects
by associating the instruction with one or more identifying
parameters related to the desired one or more types. User
specified configuration information can set default values to
be used in various situations, and can be used to limit the
number or type of occasions on which the user’s use of an
object is interrupted by a “pop-up” interface 686 dialog. For
example, the user might specify that a user request for VDE
protected content should be automatically processed without
interruption (resulting from an exceptions action) if the
requested processing of information will not cost more than
$25.00 and if the total charge for the entire current session
(and/or day and/or week, etc.) is not greater than $200.00
and if the total outstanding and unpaid charge for use hasn’t
exceeded $2500.00.

Pop-up user interface dialogs may also be used to notify
the user about significant conditions and events. For
example, interface 686 may be used to:

remind the user to send audit information to a

clearinghouse,
inform a user that a budget value is low and needs

replenishing,
remind the user to back up secure database 610, and
inform the user about expirations of PERCs or other

dates/times events.

Other important “pop-up” user interface 686 functions
include dialogs which enable flexible browsing through
libraries of properties or objects available for licensing or
purchase, either from locally stored VDE protected objects
and/or from one or more various, remotely located content
providers. Such function may be provided either while the
user’s computer is connected to a remote distributor’s or
clearinghouse’s electronic appliance 600, or by activating an
electronic connection to a remote source after a choice (such
as a property, a resource location, or a class of objects or
resources is selected). A browsing interface can allow this
electronic connection to be made automatically upon a user
selection of an item, or the connection itself can be explicitly
activated by the user. See FIG. 72D for an example of such
a “browsing” dialog.
Smarting Objects

VDE 100 extends its control capabilities and features to
“intelligent agents.” Generally, an “intelligent agent” can act

Page 00271

Page 00272

5,915,019

239

as an emissary to allow a process that dispatches it to
achieve a result the originating process specifies. Intelligent
agents that are capable of acting in the absence of their
dispatch process are particularly useful to allow the dis-
patching process to access, through its agent, the resources
of a remote electronic appliance. In such a scenario, the
dispatch process may create an agent (e.g., a computer
program and/or control information associated with a com-
puter program) specifying a particular desired task(s), and
dispatch the agent to the remote system. Upon reaching the
remote system, the “agent” may perform its assigned task(s)
using the remote system’s resources. This allows the dis-
patch process to, in effect, extend its capabilities to remote
systems where it is not present.

Using an “agent” in this manner increases flexibility. The
dispatching process can specify, through its agent, a par-
ticular desired task(s) that may not exist or be available on
the remote system. Using such an agent also provides added
trustedness; the dispatch process may only need to “trust” its
agent, not the entire remote system. Agents have additional
advantages.

Software agents require a high level of control and
accountability to be effective, safe and useful. Agents in the
form of computer viruses have had devastating effects
worldwide. Therefore, a system that allows an agent to
access it should be able to control it or otherwise prevent the
agent from damaging important resources. In addition, sys-
tems allowing themselves to be accessed by an agent should
sufficiently trust the agent and/or provide mechanisms
capable of holding the true dispatcher of the agent respon-
sible for the agent’s activities. Similarly, the dispatching
process should be able to adequately limit and/or control the
authority of the agents it dispatches or else it might become
responsible for unforeseen activities by the agent (e.g., the
agent might run up a huge bill in the course of following
imprecise instructions it was given by the process that
dispatched it).

These significant problems in using software agents have
not be adequately addressed in the past. The open, flexible
control structures provided by VDE 100 addresses these
problems by providing the desired control and accountabil-
ity for software agents (e.g., agent objects). For example,
VDE 100 positively controls content access and usage,
provides guarantee of payment for content used, and
enforces budget limits for accessed content. These control
capabilities are well suited to controlling the activities of a
dispatched agent by both the process that dispatches the
agent and the resource accessed by the dispatched agent.

One aspect of the preferred embodiment provided by the
present invention provides a “smart object” containing an
agent. Generally, a “smart object” may be a VDE object 300
that contains some type(s) of software programs (“agents”)
for use with VDE control information at a VDE electronic

appliance 600. Abasic “smart object” may comprise a VDE
object 300 that, for example, contains (physically and/or
virtually):

a software agent, and
at least one rule and/or control associated with the soft-

ware agent that governs the agent’s operation.
Although this basic structure is sufficient to define a “smart
object,” FIG. 73 shows a combination of containers and
control information that provides one example of a particu-
larly advantageous smart object structure for securely man-
aging and controlling the operation of software agents.

As shown in FIG. 73, a smart object 3000 may be
constructed of a container 300, within which is embedded

one or more further containers (3002, 300y, etc.). Container

10

15

20

25

30

35

40

45

50

55

60

65

240

300 may further contain rules and control information for
accessing and using these embedded containers 3002, 300y,
etc. Container 3002 embedded in container 300 is what

makes the object 3000 a “smart object.” It contains an
“agent” that is managed and controlled by VDE 100.

The rules and control information 806f associated with
container 3002 govern the circumstances under which the
agent may be released and executed at a remote VDE site,
including any limitations on execution based on the cost of
execution for example. This rule and control information
may be specified entirely in container 3002, and/or may be
delivered as part of container 300, as part of another
container (either within container 300 or a separately deliv-
erable container), and/or may be already present at the
remote VDE site.

The second container 300y is optional and contains con-
tent that describes the locations at which the agent stored in
container 3002 may be executed. Container 300y may also
contain rules and control information 8066 that describe the

manner in which the contents of container 300y may be used
or altered. This rule and control information 8066 and/or

further rules 300y(1) also contained within container 300y
may describe searching and routing mechanisms that may be
used to direct the smart object 3000 to a desired remote
information resource. Container 300y may contain and/or
reference rules and control information 300y(1) that specify
the manner in which searching and routing information use
and any changes may be paid for.

Container 300x is an optional content container that is
initially “empty” when the smart object 3000 is dispatched
to a remote site. It contains rules and control information

300x(1) for storing the content that is retrieved by the
execution of the agent contained in container 3002. Con-
tainer 300x may also contain limits on the value of content
that is stored in the retrieval container so as to limit the
amount of content that is retrieved.

Other containers in the container 300 may include admin-
istrative objects that contain audit and billing trails that
describe the actions of the agent in container 3002 and any
charges incurred for executing an agent at a remote VDE
node. The exact structure of smart object 3000 is dependent
upon the type of agent that is being controlled, the resources
it will need for execution, and the types of information being
retrieved.

The smart object 3000 in the example shown in FIG. 73
may be used to control and manage the operation of an agent
in VDE 100. The following detailed explanation of an
example smart object transaction shown in FIG. 74 may
provide a helpful, but non-limiting illustration. In this par-
ticular example, assume a user is going to create a smart
object 3000 that performs a library search using the “Very
Fast and Efficient” software agent to search for books
written about some subject of interest (e.g., “fire flies”). The
search engine is designed to return a list of books to the user.
The search engine in this example may spend no more than
$10.00 to find the appropriate books, may spend no more
than $3.00 in library access or communications charges to
get to the library, and may retrieve no more than $15 .00 in
information. All information relating to the search or use is
to be returned to the user and the user wile permit no
information pertaining to the user or the agent to be released
to a third party.

In this example, a dispatching VDE electronic appliance
3010 constructs a smart object 3000 like the one shown in
FIG. 73. The rule set in 806a is specified as a control set that
contains the following elements:
1. a smartiagentiexecution event that specifies the smart

agent is stored in embedded container 3002 and has rules
controlling its execution specified in that container;

Page 00272

Page 00273

5,915,019

241

2. a smartiagentiuse event that specifies the smart agent
will operate using information and parameters stored in
container 300;

3. a routinLuse event that specifies the information routing
information is stored in container 300y and has rules
controlling this information stored in that container;

4. an informationiwrite event that specifies information
written will be stored in container 300y, 300x, or 300w
depending on its type (routing, retrieved, or
administrative), and that these containers have indepen-
dent rules that control how information is written into
them.

The rule set in control set 806b contains rules that specify
the rights desired by this smart object 3000. Specifically, this
control set specifies that the software agent desires:
1. Aright to use the “agent execution” service on the remote

VDE site. Specific billing and charge information for this
right is carried in container 3002.

2. Aright to use the “software description list” service on the
remote VDE site. Specific billing and charge information
for this for this right is carried in container 300y.

3. Aright to use an “information locator service” on a remote
VDE site.

4. A right to have information returned to the user without
charge (charges to be incurred on release of information
and payment will be by a VISA budget)

5. A right to have all audit information returned such that it
is readable only by the sender.
The rule set in control set 8066 specifies that container

300w specifies the handling of all events related to its use.
The rule set in control set 806d specifies that container 300x
specifies the handling of all events related to its use. The rule
set in control set 8066 specifies that container 300y specifies
the handling of all events related to its use. The rule set in
control set 806f specifies that container 3002 specifies the
handling of all events related to its use.

Container 3002 is specified as containing the “Very Fast
and Efficient” agent content, which is associated with the
following rules set:
1. A use event that specifies a meter and VISA budget that

limits the execution to $10.00 charged against the owner’s
VISA card. Audits of usage are required and will be stored
in object 300w under control information specified in that
object.
After container 3002 and its set are specified, they are

constructed and embedded in the smart object container 300.
Container 300y is specified as a content object with two

types of content. Content type A is routing information and
is read/write in nature. Content type A is associated with a
rules set that specifies:
1. Ause event that specifies no operation for the release of

the content. This has the effect of not charging for the use
of the content.

2. A write event that specifies a meter and a VISA budget
that limits the value of writing to $3.00. The billing
method used by the write is left unspecified and will be
specified by the control method that uses this rule.

3. Audits of usage are required and will be stored in object
300w under control information specified in that object.
Content type B is information that is used by the software

agent to specify parameters for the agent. This content is
specified as the string “fire fly” or “fire flies”. Content type
B is associated with the following rule set:
1. Ause event that specifies that the use may only be by the

software agent or a routing agent. The software agent has
read only permission, the routing agent has read/write
access to the information. There are no charges associated

10

15

20

25

30

35

40

45

50

55

60

65

242

with using the information, but two meters; one by read
and one by write are kept to track use of the information
by various steps in the process.

2. Audits of usage are required and will be stored in object
300w under control information specified in that object.
After container 300y and its control sets are specified,

they are constructed and embedded in the smart object
container 300.

Container 300x is specified as a content object that is
empty, of content. It contains a control set that contains the
following rules:
1. Awriteiwithoutibilling event that specifies a meter and

a general budget that limits the value of writing to $15.00.
2. Audits of usage are required and will be stored in object

300w under control information specified in that object.
3. An empty use control set that may be filled in by the

owner of the information using predefined methods
(method options).
After container 300x and its control sets are specified,

they are constructed and embedded in the smart object
container 300.

Container 300w is specified as an empty administrative
object with a control set that contains the following rules:
1. A use event that specifies that the information contained

in the administrative object may only be released to the
creator of smart object container 300.

2. No other rules may be attached to the administrative
content in container 300w.

After container 300w and its control sets are specified,
they are constructed and embedded in the smart object
container 300.

At this point, the smart object has been constructed and is
ready to be dispatched to a remote VDE site. The smart
object is sent to a remote VDE site (e.g., using electronic
mail or another transport mechanism) that contains an
information locator service 3012 via path 3014. The smart
object is registered at the remote site 3012 for the “item
locator service.” The control set in container related to “item
locator service” is selected and the rules contained within it
activated at the remote site 3012. The remote site 3012 then

reads the contents of container 300y under the control of rule
set 806f and 300y(1), and permits writes of a list of location
information into container 300y pursuant to these rules. The
item locator service writes a list of three items into the smart

object, and then “deregisters” the smart object (now con-
taining the location information) and sends it to a site 3016
specified in the list written to the smart object via path 3018.
In this example, the user may have specified electronic mail
for transport and a list of remote sites that may have the
desired information is stored as a forwarding list.

The smart object 3000, upon arriving at the second remote
site 3016, is registered with that second site. The site 3016
provides agent execution and software description list ser-
vices compatible with VDE as a service to smart objects. It
publishes these services and specifies that it requires $10.00
to start the agent and $20/piece for all information returned.
The registration process compares the published service
information against the rules stored within the object and
determines that an acceptable overlap does not exist. Audit
information for all these activities is written to the admin-

istrative object 300w. The registration process then fails (the
object is not registered), and the smart object is forwarded
by site 3016 to the next VDE site 3020 in the list via path
3022.

The smart object 3000, upon arriving at the third remote
site 3020, is registered with that site. The site 3020 provides
agent execution and software description list services com-

Page 00273

Page 00274

5,915,019

243

patible with VDE as a service to smart objects. It publishes
these services and specifies that it requires $1.00 to start the
agent and $0.50/piece for all information returned. The
registration process compares the published service infor-
mation against the rules stored within the object and deter-
mines that an acceptable overlap exists. The registration
process creates a URT that specifies the agreed upon control
information. This URT is used in conjunction with the other
control information to execute the software agent under
VDE control.

The agent software starts and reads its parameters out of
container 300y. It then starts searching the database and
obtains 253 “hits” in the database. The list of hits is written

to container 300x along with a completed control set that
specifies the granularity of each item and that each item
costs $0.50. Upon completion of the search, the budget for
use of the service is incremented by $1.00 to resect the use
charge for the service. Audit information for all these
activities is written to the administrative object 300w.

The remote site 3020 returns the now “full” smart object
3000 back to the original sender (the user) at their VDE node
3010 via path 3024. Upon arrival, the smart object 3000 is
registered and the database records are available. The con-
trol information specified in container 300x is now a mix of
the original control information and the control information
specified by the service regarding remote release of their
information. The user then extracts 20 records from the

smart object 3000 and has $10.00 charged to her VISA
budget at the time of extraction.

In the above smart agent VDE examples, a certain orga-
nization of smart object 3000 and its constituent containers
is described. Other organizations of VDE and smart object
related control information and parameter data may be
created and may be used for the same purposes as those
ascribed to object 3000 in the above example.
Negotiation and Electronic Contracts

An electronic contract is an electronic form of an agree-
ment including rights, restrictions, and obligations of the
parties to the agreement. In many cases, electronic agree-
ments may surround the use of digitally provided content;
for example, a license to view a digitally distributed movie.
It is not required, however, that an electronic agreement be
conditioned on the presence or use of electronic content by
one or more parties to the agreement. In its simplest form,
an electronic agreement contains a right and a control that
governs how that right is used.

Electronic agreements, like traditional agreements, may
be negotiated between their parties (terms and conditions
submitted by one or more parties may simply be accepted
(cohesion contract) by one or more other parties and/or such
other parties may have the right to select certain of such
terms and conditions (while others may be required)). Nego-
tiation is defined in the dictionary as “the act of bringing
together by mutual agreement.” The preferred embodiment
provides electronic negotiation processes by which one or
more rights and associated controls can be established
through electronic automated negotiation of terms. Nego-
tiations normally require a precise specification of rights and
controls associated with those rights. PERC and URT struc-
tures provide a mechanism that may be used to provide
precise electronic representations of rights and the controls
associated with those rights. VDE thus provides a “vocabu-
lary” and mechanism by which users and creators may
specify their desires. Automated processes may interpret
these desires and negotiate to reach a common middle
ground based on these desires. The results of said negotia-
tion may be concisely described in a structure that may be

10

15

20

25

30

35

40

45

50

55

60

65

244
used to control and enforce the results of the electronic

agreement. VDE further enables this process by providing a
secure execution space in which the negotiation process(es)
are assured of integrity and confidentiality in their operation.
The negotiation process(es) may also be executed in such a
manner that inhibits external tampering with the negotiation.

A final desirable feature of agreements in general (and
electronic representations of agreements in particular) is that
they be accurately recorded in a non-repudiatable from. In
traditional terms, this involves creating a paper document (a
contract) that describes the rights, restrictions, and obliga-
tions of all parties involved. This document is read and then
signed by all parties as being an accurate representation of
the agreement. Electronic agreements, by their nature, may
not be initially rendered in paper. VDE enables such agree-
ments to be accurately electronically described and then
electronically signed to prevent repudiation. In addition, the
preferred embodiment provides a mechanism by which
human-readable descriptions of terms of the electronic con-
tract can be provided.

VDE provides a concise mechanism for specifying con-
trol sets that are VDE site interpretable. Machine interpret-
able mechanisms are often not human readable. VDE often

operates the negotiation process on behalf of at least one
human user. It is thus desirable that the negotiation be
expressible in “human readable form.” VDE data structures
for objects, methods, and load modules all have provisions
to specify one or more DTDs within their structures. These
DTDs may be stored as part of the item or they may be
stored independently. The DTD describes one or more data
elements (MDE, UDE, or other related data elements) that
may contain a natural language description of the function of
that item. These natural language descriptions provide a
language independent, human readable description for each
item. Collections of items (for example, a BUDGET
method) can be associated with natural language text that
describes its function and forms a term of an electronically
specified and enforceable contract. Collections of terms (a
control set) define a contract associated with a specific right.
VDE thus permits the electronic specification, negotiation,
and enforcement of electronic contracts that humans can
understand and adhere to.

VDE 100 enables the negotiation and enforcement of
electronic contracts in several ways:

it enables a concise specification of rights and control
information that permit a common vocabulary and proce-
dure for negotiation,

it provides a secure processing environment within which
to negotiate,

it provides a distributed environment within which rights
and control specifications may be securely distributed,

it provides a secure processing environment in which
negotiated contracts may be electronically rendered and
signed by the processes that negotiate them, and

it provides a mechanism that securely enforces a negoti-
ated electronic contract.

Typies of Negotiations
A simple form of a negotiation is a demand by one party

to form an “adhesion” contract. There are few, if any, options
that may be chosen by the other party in the negotiation. The
recipient of the demand has a simple option; she may accept
or reject the terms and conditions (control information) in
the demand. If she accepts the conditions, she is granted
rights subject to the specified control information. If she
rejects the conditions, she is not granted the rights. PERC
and URT structures may support negotiation by demand; a
PERC or control set from a PERC may be presented as a

Page 00274

Page 00275

5,915,019

245

demand, and the recipient may accept or reject the demand
(selecting any permitted method options if they are
presented).

Acommon example of this type of negotiation today is the
purchase of software under the terms of a “shrink-wrap
license.” Many widely publicized electronic distribution
schemes use this type of negotiation. CompuServe is an
example of an on-line service that operates in the same
manner. The choice is simple: either pay the specified charge
or don’t use the service or software. VDE supports this type
of negotiation with its capability to provide PERCs and
URTs that describe rights and control information, and by
permitting a content owner to provide a REGISTER method
that allows a user to select from a set of predefined method
options. In this scenario, the REGISTER method may con-
tain a component that is a simplified negotiation process.

A more complex form of a negotiation is analogous to
“haggling.” In this scenario, most of the terms and condi-
tions are fixed, but one or more terms (e.g., price or payment
terms) are not. For these terms, there are options, limits, and
elements that may be negotiated over. A VDE electronic
negotiation between two parties may be used to resolve the
desired, permitted, and optional terms. The result of the
electronic negotiation may be a finalized set of rules and
control information that specify a completed electronic
contract. A simple example is the scenario for purchasing
software described above adding the ability of the purchaser
to select a method of payment (VISA, Mastercard, or
American Express). A more complex example is a scenario
for purchasing information in which the price paid depends
on the amount of information about the user that is returned

along with a usage audit trail. In this second example, the
right to use the content may be associated with two control
sets. One control set may describe a fixed (“higher”) price
for using the content. Another control set may describe a
fixed (“lower”) price for using the content with additional
control information and field specifications requiring col-
lection and return the user’s personal information. In both of
these cases, the optional and permitted fields and control sets
in a PERC may describe the options that may be selected as
part of the negotiation. To perform the negotiation, one party
may propose a control set containing specific fields, control
information, and limits as specified by a PERC; the other
party may pick and accept from the control sets proposed,
reject them, or propose alternate control sets that might be
used. The negotiation process may use the permitted,
required, and optional designations in the PERC to deter-
mine an acceptable range of parameters for the final rule set.
Once an agreement is reached, the negotiation process may
create a new PERC and/or URT that describes the result of

the negotiation. The resulting PERCs and/or URTs may be
“signed” (e.g., using digital signatures) by all of the nego-
tiation processes involved in the negotiation to prevent
repudiation of the agreement at a later date.

Additional examples of negotiated elements are: elec-
tronic cash, purchase orders, purchase certificates (gift
certificates, coupons), bidding and specifications, budget
“rollbacks” and reconciliation, currency exchange rates,
stock purchasing, and billing rates.

A set of PERCs that might be used to support the second
example described above is presented in FIGS. 75A (PERC
sent by the content owner), 75B (PERC created by user to
represent their selections and rights), and 75C (PERC for
controlling the negotiation process). These PERCs might be
used in conjunction with any of the negotiation process(es)
and protocols described later in this section.

FIG. 75A shows an example of a PERC 3100 that might
be created by a content provider to describe their rights

10

15

20

25

30

35

40

45

50

55

60

65

246

options. In this example, the PERC contains information
regarding a single USE right. Two alternate control sets
3102a, 3102b are presented for this right in the example.
Control set 3102a permits the use of the content without
passing back information about the user, and another control
set 3102b permits the use of the content and collects
“response card” type information from the user. Both control
sets 3102a, 3102b may use a common set of methods for
most of the control information. This common control

information is represented by a CSR 3104 and CS0 3106.
Control set 3102a in this PERC 3100 describes a mecha-

nism by which the user may obtain the content without
providing any information about its user to the content
provider. This control set 3102a specifies a well-known
vending control method and set of required methods and
method options. Specifically, in this example, control set
3102a defines a BUDGET method 3108 (e.g., one of VISA,
Mastercard, or American Express) and it defines a BILLING
method 3110 that specifies a charge (e.g., a one-time charge
of $100.00).

Control set 3102b in this PERC 3100 describes another

mechanism by which the user may obtain the content. In this
example, the control set 3102b specifies a different vending
control method and a set of required methods and method
options. This second control set 3102b specifies a BUDGET
method 3112 (e.g., one of VISA, Mastercard, or American
Express), a BILLING method 3116 that specifies a charge
(e.g., a lesser one-time charge such as $25.00) and an
AUDIT method 3114 that specifies a set of desired and
required fields. The required and desired field specification
3116 may take the form of a DTD specification, in which, for
example, the field names are listed.

The content creator may “prefer” one of the two control
sets (e.g., control set 2) over the other one. If so, the
“preferred” control set may be “offered” first in the nego-
tiation process, and withdrawn in favor of the “non-
preferred” control set if the other party to the negotiation
“rejects” the “preferred” control set.

In this example, these two control sets 3102a, 3102b may
share a common BUDGET method specification. The BUD-
GET method specification may be included in the CSR 3104
or CSO 3106 control sets if desired. Selecting control set
3102a (use with no information passback) causes a unique
component assembly to be assembled as specified by the
PERC 3100. Specifically, in this example it selects the
“Vending” CONTROL method 3118, the BILLING method
3110 for a $100 fixed charge, and the rest of the control
information specified by CSR 3104 and CS0 3106. It also
requires the user to specify her choice of acceptable BUD-
GET method (e.g., from the list including VISA,
Mastercard, and American Express). Selecting control set
3102b assembles a different component assembly using the
“Vending with ‘response card”’ CONTROL method 3120,
the BILLING method 3116 (e.g., for a $25 fixed charge), an
AUDIT method 3114 that requires the fields listed in the
Required Fields DTD 3116. The process may also select as
many of the fields listed in the Desired Fields DTD 3116 as
are made available to it. The rest of the control information

is specified by CSR 3104 and CS0 3106. The selection of
control set 3102b also forces the user to specify their choice
of acceptable BUDGET methods (e.g., from the list includ-
ing VISA, Mastercard, and American Express).

FIG. 75B shows an example of a control set 3125 that
might be used by a user to specify her desires and require-
ments in a negotiation process. This control set has a USE
rights section 3127 that contains an aggregated CSR budget
specification 3129 and two optional control sets 3131a,

Page 00275

Page 00276

5,915,019

247

3131b for use of the content. Control set 3131a requires the
use of a specific CONTROL method 3133 and AUDIT
method 3135. The specified AUDIT method 3135 is param-
eterized with a list of fields 3137 that may be released in the
audit trail. Control set 3131a also specifies a BILLING
method 3139 that can cost no more than a certain amount

(e.g., $30.00). Control set 3131b in this example describes
a specific CONTROL method 3141 and may reference a
BILLING method 3143 that can cost no more than a certain

amount (e.g., $150.00) if this option is selected.
FIG. 75E shows a more high-level view of an electronic

contract 3200 formed as a “result” of a negotiation process
as described above. Electronic contract 3200 may include
multiple clauses 3202 and multiple digital signatures 3204.
Each clause 3202 may comprise a PERC/URT such as item
3160 described above and shown in FIG. 75D. Each

“clause” 3202 of electronic contract 3200 thus corresponds
to a component assembly 690 that may be assembled and
executed by a VDE electronic appliance 600. Just as in
normal contracts, there may be as many contract clauses
3202 within electronic contract 3200 as is necessary to
embody the “agreement” between the “parties.” Each of
clauses 3202 may have been electronically negotiated and
may thus embody a part of the “agreement” (e.g., a
“compromise”) between the parties. Electronic contract
3200 is “self-executing” in the sense that it may be literally
executed by a machine, i.e., a VDE electronic appliance 600
that assembles component assemblies 690 as specified by
various electronic clauses 3202. Electronic contract 3200

may be automatically “enforced” using the same VDE
mechanisms discussed above that are used in conjunction
with any component assembly 690. For example, assuming
that a clause 3202(2) corresponds to a payment or BILLING
condition or term, its corresponding component assembly
690 when assembled by a user’s VDE electronic appliance
600 may automatically determine whether conditions are
right for payment and, when they are, automatically access
an appropriate payment mechanism (e.g., a virtual “credit
card” object for the user) to arrange that payment to be
made. As another example, assuming that electronic contract
clause N 3202(N) corresponds to a user’s obligation to
provide auditing information to a particular VDE
participant, electronic contract 3200 will cause VDE elec-
tronic appliance 600 to assemble a corresponding compo-
nent assembly 690 that may, for example, access the appro-
priate audit trails within secure database 610 and provide
them in an administrative object to the correct participant.
FIG. 75F shows that clause 3202(N) may, for example,
specify a component assembly 690 that arranges for multiple
steps in a transaction 3206 to occur. Some of these steps
(e.g., step 3208(4), 3208(5)) may be conditional on a test
(e.g., 3208(3)) such as, for example, whether content usage
has exceeded a certain amount, whether a certain time period
has expired, whether a certain calendar date has been
reached, etc.

Digital signatures 3204 shown in the FIG. 75E electronic
contract 3200 may comprise, for example, conventional
digital signatures using public key techniques as described
above. Some electronic contracts 3200 may not bear any
digital signatures 3204. However, it may be desirable to
require the electronic appliance 600 of the user who is a
party to the electronic contract 3200 to digitally “sign” the
electronic contract so that the user cannot later repudiate the
contract, for evidentiary purposes, etc. Multiple parties to
the same contract may each digitally “sign” the same
electronic contract 3200 similarly to the way multiple parties
to a contract memorialized in a written instrument use an ink

pen to sign the instrument.

10

15

20

25

30

35

40

45

50

55

60

65

248

Although each of the clauses 3202 of electronic contract
3200 may ultimately correspond to a collection of data and
code that may be executed by a PPE 650, there may in some
instances be a need for rendering a human readable version
of the electronic contract. This need can be accommodated

by, as mentioned above, providing text within one or more
DTDs associated with the component assembly or assem-
blies 690 used to “self-execute” the contract. Such text

might, for example, describe from a functional point of view
what the corresponding electronic contract clause 3202
means or involves, and/or might describe in legally enforce-
able terms what the legal obligation under the contract is or
represents. “Templates” (described elsewhere herein) might
be used to supply such text from a text library. An expert
system and/or artificial intelligence capability might be used
to impose syntax rules that bind different textual elements
together into a coherent, humanly readable contract docu-
ment. Such text could, if necessary, be reviewed and modi-
fied by a “human” attorney in order customize it for the
particular agreement between the parties and/or to add
further legal obligations augmenting the “self-executing”
electronic obligations embodied within and enforced by the
associated component assemblies 690 executing on a VDE
electronic appliance 600. Such text could be displayed
automatically or on demand upon execution of the electronic
contract, or it could be used to generate a printed humanly-
readable version of the contract at any time. Such a docu-
ment version of the electronic contract 3200 would not need

to be signed in ink by the parties to the agreement (unless
desired) in view of the fact that the digital signatures 3204
would provide a sufficiently secure and trusted evidentiary
basis for proving the parties’ mutual assent to all the terms
and conditions within the contract.

In the preferred embodiment, the negotiation process
executes within a PPE 650 under the direction of a further

PERC that specifies the process. FIG. 75C shows an
example of a PERC 3150 that specifies a negotiation pro-
cess. The PERC 3150 contains a single right 3152 for
negotiation, with two permitted control sets 3154a, 3154b
described for that right. The first control set 3154a may be
used for a “trusted negotiation”; it references the desired
negotiation CONTROL method (“Negotiate”) 3156 and
references (in fields 3157a, 3157b) two UDEs that this
CONTROL method will use. These UDEs may be, for
example, the PERCs 3100, 3125 shown in FIGS. 75A and
75B. The second control set 3154b may be used by “multiple
negotiation” processes to manage the negotiation, and may
provide two negotiation methods: “Negotiate1,” and “Nego-
tiate2”. Both negotiation processes may be described as
required methods (“Negotiate1” and “Negotiate2”) 3156,
3158 that take respective PERCs 3100, 3125 as their inputs.
The CONTROL method 3158 for this control set in this

example may specify the name of a service that the two
negotiation processes will use to communicate with each
other, and may also manage the creation of the URT result-
ing from the negotiation.

When executed, the negotiation process(es) specified by
the PERC 3150 shown in FIG. 75C may be provided with
the PERCs 3100, 3125 as input that will be used as the basis
for negotiation. In this example, the choice of negotiation
process type (trusted or multiple) may be made by the
executing VDE node. The PERC 3150 shown in FIG. 75C
might be, for example, created by a REGISTER method in
response to a register request from a user. The process
specified by this PERC 3150 may then be used by a
REGISTER method to initiate negotiation of the terms of an
electronic contract.

Page 00276

Page 00277

5,915,019

249

During this example negotiation process, the PERCs
3100, 3125 shown in FIGS. 75A and 75B act as input data
structures that are compared by a component assembly
created based on PERC 3150 shown in FIG. 35C. The

component assembly specified by the control sets may be
assembled and compared, starting with required “terms,”
and progressing to preferred/desired “terms” and then mov-
ing on to permitted “terms,” as the negotiation continues.
Method option selections are made using the desired method
and method options specified in the PERCs 3100, 3125. In
this example, a control set for the PERC 3100 shown in FIG.
75A may be compared against the PERC 3125 shown in
FIG. 75B. If there is a “match,” the negotiation is success-
fully concluded and “results” are generated.

In this embodiment, the results of such negotiation will
generally be written as a URT and “signed” by the negotia-
tion process(es) to indicate that an agreement has been
reached. These electronic signatures provide the means to
show that a (virtual) “meeting of minds” was reached (one
of the traditional legal preconditions for a contract to exist).
An example of the URT 3160 that would have been created
by the above example is shown in FIG. 75D.

This URT 3160 (which may itself be a PERC 808)
includes a control set 3162 that reflects the “terms” that were

“agreed upon” in the negotiation. In this example, the
“agreed upon” terms must “match” terms required by input
PERCs 3100, 3125 in the sense that they must be “as
favorable as” the terms required by those PERCs. The
negotiation result shown includes, for example, a “negoti-
ated” control set 3162 that in some sense corresponds to the
control set 3102a of the FIG. 75A PERC 3100 and to the
control set 3131a of the FIG. 75B control set 3125. Result-

ing “negotiated” control set 3162 thus includes a required
BUDGET method 3164 that corresponds to the control set
3125 desired BUDGET method 3142 but which is “within”

the range of control sets allowed by control set 3100
required BUDGET method 3112. Similarly, resulting nego-
tiated control set 3162 includes a required AUDIT method
3166 that complies with the requirements of both PERC
3100 required AUDIT method 3114 and PERC 3125
required AUDIT method 3135. Similarly, resulting negoti-
ated control set 3162 includes a required BILLING method
3170 that “matches” or complies with each of PERC 3100
required BILLING method 3116 and PERC 3125 required
BILLING method 3170.

Another class of negotiation is one under which no rules
are fixed and only the desired goals are specified. The
negotiation processes for this type of negotiation may be
very complex. It may utilize artificial intelligence, fuzzy
logic, and/or related algorithms to reach their goals. VDE
supports these types of processes by providing a mechanism
for concisely specifying rights, control information, fields
and goals (in the form of desired rights, control information,
and fields). Goals for these types of processes might be
specified as one more control sets that contain specific
elements that are tagged as optional, permitted, or desired.
Types of Negotiations

Negotiations in the preferred embodiment may be struc-
tured in any of the following ways:
1. shared knowledge
2. trusted negotiator
3. “zero-based” knowledge

“Shared knowledge” negotiations are based on all parties
knowing all of the rules and constraints associated with the
negotiation. Demand negotiations are a simple case of
shared knowledge negotiations; the demander presents a list
of demands that must be accepted or rejected together. The

10

15

20

25

30

35

40

45

50

55

60

65

250

list of demands comprises a complete set of knowledge
required to accept or reject each item on the list. VDE
enables this class of negotiation to occur electronically by
providing a mechanism by which demands may be encoded,
securely passed, and securely processed between and with
secure VDE subsystems using VDE secure processing, and
communication capabilities. Other types of shared knowl-
edge negotiations employed by VDE involve the exchange
of information between two or more negotiating parties; the
negotiation process(es) can independently determine desired
final outcome(s) based on their independent priorities. The
processes can then negotiate over any differences. Shared
knowledge negotiations may require a single negotiation
process (as in a demand type negotiation) or may involve
two or more cooperative processes. FIGS. 76A and 76B
illustrate scenarios in which one and two negotiation pro-
cesses are used in a shared knowledge negotiation.

FIG. 76A shows a single negotiation process 3172 that
takes any number of PERCs 808 (e.g., supplied by different
parties) as inputs to the negotiation. The negotiation process
3172 executes at a VDE node under supervision of “Nego-
tiation Process Rules and Control information” that may be
supplied by a further PERC (e.g., PERC 3150 shown in FIG.
75C). The process 3172 generates one or more PERCs/URTs
3160 as results of the negotiation.

FIG. 76B shows multiple negotiation processes
3172A—3172N each of which takes as input a PERC 808
from a party and a further PERC 3150 that controls the
negotiation process, and each of which generates a negoti-
ated “result” PERC/URT 3160 as output. Processes
3172A—3172N may execute at the same or different VDE
nodes and may communicate using a “negotiation protocol.”

Single and multiple negotiation processes may be used for
specific VDE sites. The negotiation processes are named,
and can be accessed using well known method names.
PERCs and URTs may be transported in administrative or
smart objects to remote VDE sites for processing at that site,
as may the control PERCs and REGISTER method that
controls the negotiation.

Multiple negotiation processes require the ability to com-
municate between these processes 3172; including secure
communication between secure processes that are present at
physically separate VDE sites (secure subsystems). VDE
generalizes the inter-process communication into a securely
provided service that can be used if the configuration
requires it. The inter-process communication uses a nego-
tiation protocol to exchange information about rule sets
between processes 3172. An example of a negotiation pro-
tocol includes the following negotiation “primitives”:

WANT Want a set of terms and conditions

ACCEPT Accept a set of terms and conditions
REJECT Reject a set of terms and conditions
OFFER Offer a set of terms and conditions in exchange

for other terms and conditions

HAVE Assert a set of terms and conditions are possible or
desirable

QUIT Assert the end of the negotiation without reaching
an agreement

AGREEMENT Conclude the negotiation and pass the
rule set for signature

The WANT primitive takes rights and control set (or parts
of control sets) information, and asserts to the other process
(es) 3172 that the specified terms are desired or required.
Demand negotiations are a simple case of a WANT primitive
being used to assert the demand. This example of a protocol
may introduce a refined form of the WANT primitive,
REQUIRE. In this example, REQUIRE allows a party to set

Page 00277

Page 00278

5,915,019

251

terms that she decides are necessary for a contract to be
formed, WANT may allow the party to set terms that are
desirable but not essential. This permits a distinction
between “must have” and “would like to have.”

In this example, WANT primitives must always be
answered by an ACCEPT, REJECT, or OFFER primitive.
The ACCEPT primitive permits a negotiation process 3172
to accept a set of terms and conditions. The REJECT
primitive permits a process 3172 to reject an offered set of
terms and conditions. Rejecting a set of required terms and
conditions may terminate the negotiation. OFFER permits a
counter-offer to be made.

The HAVE, QUIT, and AGREEMENT primitives permit
the negotiation protocols to pass information about rule sets.
Shared knowledge negotiations may, for example, start with
all negotiation processes 3172A—3172N asserting HAVE
(my PERC) to the other processes. HAVE is also used when
an impasse is reached and one process 3172 needs to let the
other process 3172 know about permitted options. QUIT
signals an unsuccessful end of the negotiation without
reaching an agreement, while AGREEMENT signals a suc-
cessful end of an agreement and passes the resulting “nego-
tiated” PERC/URT 3160 to the other process(es) 3172 for
signature.

In “trusted negotiator” negotiations, all parties provide
their demands and preferences to a “trusted” negotiator and
agree to be bound by her decision. This is similar to binding
arbitration in today’s society. VDE enables this mode of
negotiation by providing an environment in which a
“trusted” negotiation service may be created. VDE provides
not only the mechanism by which demands, desires, and
limits may be concisely specified (e.g., in PERCs), but in
which the PERCs may be securely transferred to a “trusted”
negotiation service along with a rule set that specifies how
the negotiation will be conducted, and by providing a secure
execution environment so that the negotiation process may
not be tampered with. Trusted negotiator services can be
used at VDE sites where the integrity of the site is well
known. Remote trusted negotiation services can be used by
VDE sites that do not possess sufficient computing resources
to execute one or more negotiation process(es); they can
establish a communication link to a VDE site that provides
this service and permits the service to handle the negotiation
on their behalf.

“Zero-based” knowledge negotiations share some char-
acteristics of the zero-based knowledge protocols used for
authentication. It is well understood in the art how to

construct a protocol that can determine if a remote site is the
holder of a specific item without exchanging or exposing the
item. This type of protocol can be constructed between two
negotiation processes operating on at least one VDE site
using a control set as their knowledge base. The negotiation
processes may exchange information about their control
sets, and may make demands and counter proposals regard-
ing using their individual rule sets. For example, negotiation
process A may communicate with negotiation process B to
negotiate rights to read a book. Negotiation process A
specifies that it will pay not more than $10.00 for rights to
read the book, and prefers to pay between $5.00 and $6.00
for this right. Process A’s rule set also specifies that for the
$5.00 option, it will permit the release of the reader’s name
and address. Process B’s rule set specifies that it wants
$50.00 for rights to read the book, and will provide the book
for $5.50 if the user agrees to release information about
himself. The negotiation might go something like this:

10

15

20

25

30

35

40

45

50

55

60

65

252

Process A <--- > Process B

Want (right to read, unrestricted)<____
---->

Have(right to read,
unrestricted, $50)

Offer (right to read, tender
user info) ---->

Have(right to read,
tender user info, $5.50)

Accept(right to read, tender
user info, $5.50) >

In the above example, process A first specifies that it
desires the right to read the book without restrictions or other
information release. This starting position is specified as a
nights option in the PERC that process A is using as a rule.
Process B checks its rules and determines that an unre-

stricted right to read is indeed permitted for a price of $50.
It replies to processAthat these terms are available. Process
A receives this reply and checks it against the control set in
the PERC it uses as a rule base. The $50 is outside the $10

limit specified for this control set, so Process A cannot
accept the offer. It makes a counter offer (as described in
another optional rights option) of an unrestricted right to
read coupled with the release of the reader’s name and
address. The name and address fields are described in a DTD

referenced by Process A’s PERC. Process B checks its rules
PERC and determines that an unrestricted right to read
combined with the release of personal information is a
permitted option. It compares the fields that would be
released as described in the DTD provided by Process A
against the desired fields in a DTD in its own PERC, and
determines an acceptable match has occurred. It then sends
an offer for unrestricted rights with the release of specific
information for the cost of $5.50 to Process A. Process A

compares the right, restrictions, and fields against its rule set
and determines that $5.50 is within the range of $5—$6
described as acceptable in its rule set. It accepts the offer as
made. The offer is sealed by both parties “signing” a new
PERC that describes the results of the final negotiation
(unrestricted rights, with release of user information, for
$5.50). The new PERC may be used by the owner of Process
A to read the content (the book) subject to the described
terms and conditions.

Further Chain of Handling Model
As described in connection with FIG. 2, there are four (4)

“participants” instances of VDE 100 in one example of a
VDE chain of handling and control used, for example, for
content distribution. The first of these participant instances,
the content creator 102, is manipulated by the publisher,
author, rights owner or distributor of a literary property to
prepare the information for distribution to the consumer. The
second participant instance, VDE rights distributor 106, may
distribute rights and may also administer and analyze cus-
tomers’ use of VDE authored information. The third par-
ticipant instance, content user 112, is operated by users
(included end-users and distributors) when they use infor-
mation. The fourth participant instance, financial clearing-
house 116 enables the VDE related clearinghouse activities.
A further participant, a VDE administrator, may provide
support to keep VDE 100 operating properly. With appro-
priate authorizations and Rights Operating System compo-
nents installed, any VDE electronic appliance 600 can play
any or all of these participant roles.

Literary property is one example of raw material for VDE
100. To transfer this raw material into finished goods, the
publisher, author, or rights owner uses tools to transform
digital information (such as electronic books, databases,

Page 00278

Page 00279

5,915,019

253

computer software and movies) into protected digital pack-
ages called “objects.” Only those consumers (or others along
the chain of possession such as a redistributor) who receive
permission from a distributor 106 can open these packages.
VDE packaged content can be constrained by “rules and
control information” provided by content creator 102 and/or
content distributor 106—or by other VDE participants in the
content’s distribution pathway, i.e., normally by participants
“closer” to the creation of the VDE secured package than the
participant being constrained.

Once the content is packaged in an “object,” the digital
distribution process may begin. Since the information pack-
ages themselves are protected, they may be freely distributed
on CD-ROM disks, through computer networks, or broad-
cast through cable or by airwaves. Informal “out of channel”
exchange of protected packages among end-users does not
pose a risk to the content property rights. This is because
only authorized individuals may use such packages. In fact,
such “out of channel” distribution may be encouraged by
some content providers as a marginal cost method of market
penetration. Consumers with usage authorizations (e.g., a
VISA clearinghouse budget allowing a certain dollar amount
of usage) may, for example, be free to license classes of out
of channel VDE protected packages provided to them, for
example, by a neighbor.

To open a VDE package and make use of its content, an
end-user must have permission. Distributors 106 can grant
these permissions, and can very flexibly (if permitted by
senior control information) limit or otherwise specify the
ways in which package contents may be used. Distributors
106 and financial clearinghouses 116 also typically have
financial responsibilities (they may be the same organization
in some circumstances if desired). They ensure that any
payments required from end-users fulfill their own and any
other participant’s requirements. This is achieved by audit-
ing usage.

Distributors 106 using VDE 100 may include software
publishers, database publishers, cable, television, and radio
broadcasters, and other distributors of information in elec-
tronic form. VDE 100 supports all forms of electronic
distribution, including distribution by broadcast or
telecommunications, or by the physical transfer of electronic
storage media. It also supports the delivery of content in
homogeneous form, seamlessly integrating information
from multiple distribution types with separate delivery of
permissions, control mechanisms and content.

Distributors 106 and financial clearinghouses 116 may
themselves be audited based on secure records of their

administrative activities and a chain of reliable, “trusted”
processes ensures the integrity of the overall digital distri-
bution process. This allows content owners, for example, to
verify that they are receiving appropriate compensation
based on actual content usage or other agreed-upon bases.

Since the end-user 112 is the ultimate consumer of content

in this example, VDE 100 is designed to provide protected
content in a seamless and transparent way—so long as the
end-user stays within the limits of the permissions she has
received. The activities of end-user 112 can be metered so

that an audit can be conducted by distributors 106. The
auditing process may be filtered and/or generalized to satisfy
user privacy concerns. For example, metered, recorded VDE
content and/or appliance usage information may be filtered
prior to reporting it to distributor 106 to prevent more
information than necessary from being revealed about con-
tent user 112 and/or her usage.

VDE 100 gives content providers the ability to recreate
important aspects of their traditional distribution strategies

10

15

20

25

30

35

40

45

50

55

60

65

254

in electronic form and to innovatively structure new distri-
bution mechanisms appropriate to their individual needs and
circumstances. VDE 100 supports relevant participants in
the chain of distribution, and also enables their desired
pricing strategies, access and redistribution permissions,
usage rules, and related administrative and analysis proce-
dures. The reusable functional primitives of VDE 100 can be
flexibly combined by content providers to reflect their
respective distribution objectives. As a result, content pro-
viders can feed their information into established distribu-

tion channels and also create their own personalized distri-
bution channels.

A summary of the roles of the various participants of
virtual distribution environment 100 is set forth in the table
below:

Role Description

“Traditional” Participants

Content creator Packager and initial distributor of digital
information

Content owner Owner of the digital information.
Distributors Provide rights distribution services for budgets

and/or content.
Auditor Provide services for processing and reducing

usage based audit trails.
Clearinghouse Provides intermediate store and forward services

for content and audit information. Also, typically
provides a platform for other services, including
third party financial providers and auditors.
Provides communication services between sites

and other participants.
Provider of third party sources of electronic funds
to end-users and distributors. Examples of this
class of users are VISA, American Express, or a
government.

Network provider

Financial providers

End Users Consumers of information.

Other Participants

Redistributor Redistributes rights to use content based on chain
of handling restriction from content providers
and/or other distributors.

VDE Administrator Provider of trusted services for support of VDE
nodes.

Independent Audit Provider of services for processing and
Processor summarizing audit trail data. Provides

anonymity to end-users while maintaining the
comprehensive audit capabilities required by the
content providers.

Agents Provides distributed presence for end-users and
other VDE participants.

Of these various VDE participants, the “redistributor,”
“VDE Administrator,” “independent audit processor” and
“agents” are, in certain respects “new” participants that may
have no counterpart in many “traditional” business models.
The other VDE participants (i.e., content provider, content
owner, distributors, auditor, clearinghouse, network pro-
vider and financial providers) have “traditional” business
model counterparts in the sense that traditional distribution
models often included non-electronic participants perform-
ing some of the same business roles they serve in the virtual
distribution environment 100.

VDE distributors 106 may also include “end-users” who
provide electronic information to other end-users. For
example, FIG. 77 shows a further example of a virtual
distribution environment 100 chain of handling and control
provided by the present invention. As compared to FIG. 2,
FIG. 77 includes a new “client administrator” participant
700. In addition, FIG. 77 shows several different content

users 112(1), 112(2), . . . , 112(n) that may all be subject to
the “jurisdiction” of the client administrator 700. Client

Page 00279

Page 00280

5,915,019

255

administrator 700 may be, for example, a further rights
distributor within a corporation or other organization that
distributes rights to employees or other organization partici-
pant units (such as divisions, departments, networks, and or
groups, etc.) subject to organization-specific “rules and
control information.” The client administrator 700 may
fashion rules and control information for distribution, sub-
ject to “rules and control” specified by creator 102 and/or
distributor 106.

As mentioned above, VDE administrator 116b is a trusted
VDE node that supports VDE 100 and keeps it operating
properly. In this example, VDE administrator 116b may
provide, among others, any of all of the following:

VDE appliance initialization services
VDE appliance reinitialization/update services
Key management services
“Hot lists” of “rogue” VDE sites
Certification authority services
Public key registration
Client participant unit content budgets and other autho-

rizations

All participants of VDE 100 have the innate ability to
participate in any role. For example, users may gather
together existing protected packages, add (create new
content) packages of their own, and create new products.
They may choose to serve as their own distributor, or
delegate this responsibility to others. These capabilities are
particularly important in the object oriented paradigm which
is entering the marketplace today. The production of com-
pound objects, object linking and embedding, and other
multi-source processes will create a need for these capabili-
ties of VDE 100. The distribution process provided by VDE
100 is symmetrical; any end-user may redistribute informa-
tion received to other end-users, provided they possess
permission from and follow the rules established by the
distribution chain VDE control information governing redis-
tribution. End-users also may, within the same rules and
permissions restriction, encapsulate content owned by others
within newly published works and distribute these works
independently. Royalty payments for the new works may be
accessed by the publisher, distributors, or end-users, and
may be tracked and electronically collected at any stage of
the chain.

Independent financial providers can play an important
role in VDE 100. The VDE financial provider role is similar
to the role played by organizations such as VISA in tradi-
tional distribution scenarios. In any distribution model,
authorizing payments for use of products or services and
auditing usage for consistency and irregularities, is critical.
In VDE 100, these are the roles filled by independent
financial providers. The independent financial providers
may also provide audit services to content providers. Thus,
budgets or limits on use, and audits, or records of use, may
be processed by (and may also be put in place by) clear-
inghouses 116, and the clearinghouses may then collect
usage payments from users 112. Any VDE user 112 may
assign the right to process information or perform services
on their behalf to the extend allowed by senior control
information. The arrangement by which one VDE partici-
pant acts on behalf of another is called a “proxy.” Audit,
distribution, and other important rights may be “proxied” if
permitted by the content provider. One special type of
“proxy” is the VDE administrator 116b. A VDE adminis-
trator is an organization (which may be acting also as a
financial clearinghouse 116) that has permission to manage
(for example, “intervene” to reset) some portion or all of
VDE secure subsystem control information for VDE elec-

10

15

20

25

30

35

40

45

50

55

60

65

256

tronic appliances. This administration right may extend only
to admitting new appliances to a VDE infrastructure and to
recovering “crashed” or otherwise inoperable appliances,
and providing periodic VDE updates.
More on Object Creation, Distribution Methods, Budgets,
and Audits

VDE node electronic appliances 600 in the preferred
embodiment can have the ability to perform object creation,
distribution, audit collection and usage control functions
provided by the present invention. Incorporating this range
of capabilities within each of many electronic appliances
600 provided by the preferred embodiment is important to a
general goal of creating a single (or prominent) standard for
electronic transactions metering, control, and billing, that, in
its sum of installations, constitutes a secure, trusted, virtual
transaction/distribution management environment. If, gen-
erally speaking, certain key functions were generally or
frequently missing, at least in general purpose VDE node
electronic appliances 600, then a variety of different prod-
ucts and different standards would come forth to satisfy the
wide range of applications for electronic transaction/
distribution management; a single consistent set of tools and
a single “rational,” trusted security and commercial distri-
bution environment will not have been put in place to answer
the pressing needs of the evolving “electronic highway.”
Certain forms of certain electronic appliances 600 contain-
ing VDE nodes which incorporate embedded dedicated
VDE microcontrollers such as certain forms of video cas-

sette players, cable television converters and the like may
not necessarily have or need full VDE capabilities.
However, the preferred embodiment provides a number of
distributed, disparately located electronic appliances 600
each of which desirably include authoring, distribution,
extraction, audit, and audit reduction capabilities, along with
object authoring capabilities.

The VDE object authoring capabilities provided by the
preferred embodiment provides an author, for example, with
a variety of menus for incorporating methods in a VDE
object 300, including:

menus for metering and/or billing methods which define
how usage of the content portion of a VDE object is to be
controlled,

menus related to extraction methods for limiting and/or
enabling users of a VDE object from extracting information
from that object, and may include placing such information
in a newly created and/or pre-existing VDE content
container,

menus for specifying audit methods—that is, whether or
not certain audit information is to be generated and com-
municated in some secure fashion back to an object provider,
object creator, administrator, and/or clearinghouse, and

menus for distribution methods for controlling how an
object is distributed, including for example, controlling
distribution rights of different participant’s “down” a VDE
chain of content container handling.
The authoring capabilities may also include procedures for
distributing administrative budgets, object distribution con-
trol keys, and audit control keys to distributors and other
VDE participants who are authorized to perform distribution
and/or auditing functions on behalf of the author,
distributors, and/or themselves. The authoring capabilities
may also include procedures for selecting and distributing
distribution methods, audit methods and audit reduction
methods, including for example, securely writing and/or
otherwise controlling budgets for object redistribution by
distributors to subsequent VDE chain of content handling
participants.

Page 00280

Page 00281

5,915,019

257

The content of an object 300 created by an author may be
generated with the assistance of a VDE aware application
program or a non-VDE aware application program. The
content of the object created by an author in conjunction
with such programs may include text, formatted text,
pictures, moving pictures, sounds, computer software,
multimedia, electronic games, electronic training materials,
various types of files, and so on, without limitation. The
authoring process may encapsulate content generated by the
author in an object, encrypt the content with one or more
keys, and append one or more methods to define parameters
of allowed use and/or required auditing of use and/or
payment for use of the object by users (and/or by authorized
users only). The authoring process may also include some or
all aspects of distributing the object.

In general, in the preferred embodiment, an author can:
A. Specify what content is to be included in an object.
B. Specify content oriented methods including:

Information—typically abstract, promotional,
identifying, scheduling, and/or other information related to
the content and/or author

Content—e.g. list of files and/or other information
resources containing content, time variables, etc.
C. Specify control information (typically a collection of

methods related to one another by one or more permis-
sions records, including any method defining variables)
and any initial authorized user list including, for example:
Control information over Access & Extraction
Control information over Distribution

Control information over Audit Processing
AVDE node electronic appliance 600 may, for example,

distribute an object on behalf of an object provider if a VDE
node receives from an object provider administrative budget
information for distributing the object and associated distri-
bution key information.

A VDE node electronic appliance 600 may receive and
process audit records on behalf of an object provider if that
VDE node receives any necessary administrative budget,
audit method, and audit key information (used, for example,
to decrypt audit trails), from the object provider. An
auditing-capable VDE electronic appliance 600 may control
execution of audit reduction methods. “Audit reduction” in

the preferred embodiment is the process of extracting infor-
mation from audit records and/or processes that an object
provider (e.g., any object provider along a chain of handling
of the object) has specified to be reported to an object’s
distributors, object creators, client administrators, and/or
any other user of audit information. This may include, for
example, advertisers who may be required to pay for a user’s
usage of object content. In one embodiment, for example, a
clearinghouse can have the ability to “append” budget, audit
method, and/or audit key information to an object or class or
other grouping of objects located at a user site or located at
an object provider site to ensure that desired audit processes
will take place in a “trusted” fashion. Aparticipant in a chain
of handling of a VDE content container and/or content
container control information object may act as a “proxy”
for another party in a chain of handling of usage auditing
information related to usage of object content (for example
a clearinghouse, an advertiser, or a party interested in market
survey and/or specific customer usage information). This
may be done by specifying, for that other party, budget, audit
method, and/or key information that may be necessary to
ensure audit information is gathered and/or provided to, in
a proper manner, said additional party. For example,
employing specification information provided by said other
party.

10

15

20

25

30

35

40

45

50

55

60

65

258

Object Creation and Initial Control Structures
The VDE preferred embodiment object creation and con-

trol structure design processes support fundamental config-
urability of control information. This enables VDE 100 to
support a fill range of possible content types, distribution
pathways, usage control information, auditing requirements,
and users and user groups. VDE object creation in the
preferred embodiment employs VDE templates whose
atomic elements represent at least in part modular control
processes. Employing VDE creation software (in the pre-
ferred embodiment a GUI programming process) and VDE
templates, users may create VDE objects 300 by, for
example, partitioning the objects, placing “meta data” (e.g.,
author’s name, creation date, etc.) into them, and assigning
rights associated with them and/or object content to, for
example, a publisher and/or content creator. When an object
creator runs through this process, she normally will go
through a content specification procedure which will request
required data. The content specification process, when
satisfied, may proceed by, for example, inserting data into a
template and encapsulating the content. In addition, in the
preferred embodiment, an object may also automatically
register its presence with the local VDE node electronic
appliance 600 secure subsystem, and at least one permis-
sions record 808 may be produced as a result of the
interaction of template instructions and atomic methods, as
well as one or more pieces of control structure which can
include one or more methods, budgets, and/or etc. A regis-
tration process may require a budget to be created for the
object. If an object creation process specifies an initial
distribution, an administrative object may also be created for
distribution. The administrative object may contain one or
more permission records 808, other control structures,
methods, and/or load modules.

Permissions records 808 may specify various control
relationships between objects and users. For example, VDE
100 supports both single access (e.g., one-to-one relation-
ship between a user and a right user) and group access (any
number of people may be authorized as a group). A single
permissions record 808 can define both single and group
access. VDE 100 may provide “sharing,” a process that
allows multiple users to share a single control budget as a
budget. Additional control structure concepts include
distribution, redistribution, and audit, the latter supporting
meter and budget information reduction and/or transfer. All
of these processes are normally securely controlled by one
or more VDE secure subsystems.
Templates and Classes

VDE templates, classes, and flexible control structures
support frameworks for organizations and individuals that
create, modify, market, distribute, redistribute, consume,
and otherwise use movies, audio recordings and live
performances, magazines, telephony based retail sales,
catalogs, computer software, information databases,
multimedia, commercial communications, advertisements,
market surveys, infomercials, games, CAD/CAM services
for numerically controlled machines, and the like. As the
context surrounding these classes changes or evolves, the
templates provided by the preferred embodiment of the
present invention can be modified to meet these changes for
broad use, or more focused activities.

VDE 100 authoring may provide three inputs into a create
process: Templates, user input and object content. Templates
act as a set of control instructions and/or data for object
control software which are capable of creating (and/or
modifying) VDE objects in a process that interacts with user
instructions and provided content to create a VDE object.

Page 00281

Page 00282

5,915,019

259

Templates are usually specifically associated with object
creation and/or control structures. Classes represent user
groups which can include “natural” groups within an
organization, such as department members, specific security
clearance levels, etc., or ad hoc lists of individual’s and/or
VDE nodes.

For example, templates may be represented as text files
defining specific structures and/or component assemblies.
Templates, with their structures and/or component assem-
blies may serve as VDE object authoring or object control
applications. A creation template may consist of a number of
sub-templates, which, at the lowest level, represent an
“atomic level” of description of object specification. Tem-
plates may present one or more models that describe various
aspects of a content object and how the object should be
created including employing secure atomic methods that are
used to create, alter, and/or destroy permissions records 808
and/or associated budgets, etc.

Templates, classes (including user groups employing an
object under group access), and flexible control structures
including object “independent” permissions records
(permissions that can be associated with a plurality of
objects) and structures that support budgeting and auditing
as separate VDE processes, help focus the flexible and
configurable capabilities inherent within authoring provided
by the present invention in the context of specific industries
and/or businesses and/or applications. VDE rationalizes and
encompasses distribution scenarios currently employed in a
wide array of powerful industries (in part through the use of
application or industry specific templates). “Therefore, it is
important to provide a framework of operation and/or struc-
ture to allow existing industries and/or applications and/or
businesses to manipulate familiar concepts related to content
types, distribution approaches, pricing mechanisms, user
interactions with content and/or related administrative

activities, budgets, and the like.
The VDE templates, classes, and control structures are

inherently flexible and configurable to reflect the breadth of
information distribution and secure storage requirements, to
allow for efficient adaptation into new industries as they
evolve, and to reflect the evolution and/or change of an
existing industry and/or business, as well as to support one
or more groups of users who may be associated with certain
permissions and/or budgets and object types. The flexibility
of VDE templates, classes, and basic control structures is
enhanced through the use of VDE aggregate and control
methods which have a compound, conditional process
impact on object control. Taken together, and employed at
times with VDE administrative objects and VDE security
arrangements and processes, the present invention truly
achieves a content control and auditing architecture that can
be configured to most any commercial distribution embodi-
ment. Thus, the present invention fully supports the require-
ments and biases of content providers without forcing them
to fit a predefined application model. It allows them to define
the rights, control information, and flow of their content (and
the return of audit information) through distribution chan-
nels.

Modifying Object Content (Adding, Hiding, Modifying,
Removing, and/or Extending)

Adding new content to objects is an important aspect of
authoring provided by the present invention. Providers may
wish to allow one or more users to add, hide, modify, remove
and/or extend content that they provide. In this way, other
users may add value to, alter for a new purpose, maintain,
and/or otherwise change, existing content. The ability to add
content to an empty and/or newly created object is important
as well.

10

15

20

25

30

35

40

45

50

55

60

65

260

When a provider provides content and accompanying
control information, she may elect to add control informa-
tion that enables and/or limits the addition, modification,
hiding and/or deletion of said content. This control infor-
mation may concern:

the nature and/or location of content that may be added,
hidden, modified, and/or deleted;

portions of content that may be modified, hidden, deleted
and/or added to;

required secure control information over subsequent VDE
container content usage in a chain of control and/or locally
to added, hidden, and/or modified content;

requirements that provider-specified notices and/or por-
tions of content accompany added, hidden, deleted and/or
modified content and/or the fact that said adding, hiding,
modification and/or deletion occurred;

secure management of limitations and/or requirements
concerning content that may be removed, hidden and/or
deleted from content, including the amount and/or degree of
addition, hiding, modification and/or deletion of content;

providing notice to a provider or providers that
modification, hiding, addition and/or deletion has occurred
and/or the nature of said occurrence; and

other control information concerned with modification,
addition, hiding, and/or deleting provider content.

A provider may use this control information to establish
an opportunity for other users to add value to and/or main-
tain existing content in a controlled way. For example, a
provider of software development tools may allow other
users to add commentary and/or similar and/or complemen-
tary tools to their provided objects. A provider of movies
may allow commentary and/or promotional materials to be
added to their materials. A provider of CAD/CAM specifi-
cations to machine tool owners may allow other users to
modify objects containing instructions associated with a
specification to improve and/or translate said instructions for
use with their equipment. A database owner may allow other
users to add and/or remove records from a provided database
object to allow flexibility and/or maintenance of the data-
base.

Another benefit of introducing control information is the
opportunity for a provider to allow other users to alter
content for a new purpose. Aprovider may allow other users
to provide content in a new setting.

To attach this control information to content, a provider
may be provided with, or if allowed, design and implement,
a method or methods for an object that govern addition,
hiding, modification and/or deletion of content. Design and
implementation of such one or more methods may be
performed using VDE software tools in combination with a
PPE 650. The provider may then attach the method(s) to an
object and/or provide them separately. Apermissions record
808 may include requirements associated with this control
information in combination with other control information,
or a separate permissions record 808 may be used.

An important aspect of adding or modifying content is the
choice of encryption/decryption keys and/or other relevant
aspects of securing new or altered content. The provider may
specify in their method(s) associated with these processes a
technique or techniques to be used for creating and/or
selecting the encryption/decryption keys and/or other rel-
evant aspect of securing new and/or altered content. For
example, the provider may include a collection of keys, a
technique for generating new keys, a reference to a load
module that will generate keys, a protocol for securing
content, and/or other similar information.

Another important implication is the management of new
keys, if any are created and/or used. Aprovider may require

Page 00282

Page 00283

5,915,019

261

that such keys and reference to which keys were used must
be transmitted to the provider, or she may allow the keys
and/or securing strategy to remain outside a provider’s
knowledge and/or control. A provider may also choose an
intermediate course in which some keys must be transmitted
and others may remain outside her knowledge and/or con-
trol.

An additional aspect related to the management of keys is
the management of permissions associated with an object
resulting from the addition, hiding, modification and/or
deletion of content. Aprovider may or may not allow a VDE
chain of control information user to take some or all of the

VDE rules and control information associated with granting
permissions to access and/or manipulate VDE managed
content and/or rules and control information associated with

said resulting object. For example, a provider may allow a
first user to control access to new content in an object,
thereby requiring any other user of that portion of content to
receive permission from the first user. This may or may not,
at the provider’s discretion, obviate the need for a user to
obtain permission from the provider to access the object at
all.

Keys associated with addition, modification, hiding and/
or deletion may be stored in an independent permissions
record or records 808. Said permissions record(s) 808 may
be delivered to a provider or providers and potentially
merged with an existing permissions record or records, or
may remain solely under the control of the new content
provider. The creation and content of an initial permissions
record 808 and any control information over the permissions
record(s) are controlled by the method(s) associated with
activities by a provider. Subsequent modification and/or use
of said permission record(s) may involve a provider’s
method(s), user action, or both. A user’s ability to modify
and/or use permissions record(s) 808 is dependent on, at
least in part, the senior control information associated with
the permissions record(s) of a provider.
Distribution Control Information

To enable a broad and flexible commercial transaction

environment, providers should have the ability to establish
firm control information over a distribution process without
unduly limiting the possibilities of subsequent parties in a
chain of control. The distribution control information pro-
vided by the present invention allow flexible positive con-
trol. No provider is required to include any particular
control, or use any particular strategy, except as required by
senior control information. Rather, the present invention
allows a provider to select from generic control components
(which may be provided as a subset of components appro-
priate to a provider’s specific market, for example, as
included in and/or directly compatible with, a VDE
application) to establish a structure appropriate for a given
chain of handling/control. A provider may also establish
control information on their control information that enable

and limit modifications to their control information by otherusers.

The administrative systems provided by the present
invention generate administrative “events.” These “events”
correspond to activities initiated by either the system or a
user that correspond to potentially protected processes
within VDE. These processes include activities such as
copying a permissions record, copying a budget, reading an
audit trail record, copying a method, updating a budget,
updating a permissions record, updating a method, backing
up management files, restoring management files, and the
like. Reading, writing, modifying, updating, processing,
and/or deleting information from any portion of any VDE

10

15

20

25

30

35

40

45

50

55

60

65

262

record may be administrative events. An administrative
event may represent a process that performs one or more of
the aforementioned activities on one or more portions of one
or more records.

When a VDE electronic appliance 600 encounters an
administrative event, that event is typically processed in
conjunction with a VDE PPE 650. As in the case of events
generally related to access and/or use of content, in most
cases administrative events are specified by content provid-
ers (including, for example, content creators, distributors,
and/or client administrators) as an aspect of a control
specified for an object, group and/or class of objects.

For example, if a user initiates a request to distribute
permission to use a certain object from a desktop computer
to a notebook computer, one of the administrative events
generated may be to create a copy of a permissions record
that corresponds to the object. When this administrative
event is detected by ROS 602, an EVENT method for this
type of event may be present. If an EVENT method is
present, there may also be a meter, a billing, and a budget
associated with the EVENT method. Metering, billing, and
budgeting can allow a provider to enable and limit the
copying of a permissions record 808.

For example, during the course of processing a control
program, a meter, a billing, and a budget and/or audit records
may be generated and/or updated. Said audit records may
record information concerning circumstances surrounding
an administrative event and processing of said event. For
example, an audit record may contain a reference to a user
and/or system activity that initiated an event, the success or
failure of processing said event, the date and/or time, and/or
other relevant information.

Referring to the above example of a user with both a
desktop and notebook computer, the provider of a permis-
sions record may require an audit record each time a meter
for copying said permissions record is processed. The audit
record provides a flexible and configurable control and/or
recording environment option for a provider.

In some circumstances, it may be desirable for a provider
to limit which aspects of a control component may be
modified, updated, and/or deleted. “Atomic element defini-
tions” may be used to limit the applicability of events (and
therefore the remainder of a control process, if one exists) to
certain “atomic elements” of a control component. For
example, if a permissions record 808 is decomposed into
“atomic elements” on the fields described in FIG. 26, an
event processing chain may be limited, for example, to a
certain number of modifications of expiration date/time
information by specifying only this field in an atomic
element definition. In another example, a permissions record
808 may be decomposed into atomic elements based on
control sets. In this example, an event chain may be limited
to events that act upon certain control sets.

In some circumstances, it may be desirable for a provider
to control how administrative processes are performed. The
provider may choose to include in distribution records stored
in secure database 610 information for use in conjunction
with a component assembly 690 that controls and specifies,
for example, how processing for a given event in relation to
a given method and/or record should be performed. For
example, if a provider wishes to allow a user to make copies
of a permissions record 808, she may want to alter the
permissions record internally. For example, in the earlier
example of a user with a desktop and a notebook computer,
a provider may allow a user to make copies of information
necessary to enable the notebook computer based on infor-
mation present in the desktop computer, but not allow any

Page 00283

Page 00284

5,915,019

263

further copies of said information to be made by the note-
book VDE node. In this example, the distribution control
structure described earlier would continue to exist on the

desktop computer, but the copies of the enabling information
passed to the notebook computer would lack the required
distribution control structure to perform distribution from
the notebook computer. Similarly, a distribution control
structure may be provided by a content provider to a content
provider who is a distributor in which a control structure
would enable a certain number of copies to be made of a
VDE content container object along with associated copies
of permissions records, but the permissions records would
be altered (as per specification of the content provider, for
example) so as not to allow end-users who received dis-
tributor created copies from making further copies for
distribution to other VDE nodes.

Although the preceding example focuses on one particular
event (copying) under one possible case, similar processes
may be used for reading, writing, modifying, updating,
processing, and/or deleting information from records and/or
methods under any control relationship contemplated by the
present invention. Other examples include: copying a
budget, copying a meter, updating a budget, updating a
meter, condensing an audit trail, and the like.
Creating Custom Methods

In the preferred embodiment of the present invention,
methods may be created “at will,” or aliased to another
method. These two modes contribute to the superior
configurability, flexibility, and positive control of the VDE
distribution process. Generally, creating a method involves
specifying the required attributes or parameters for the data
portion of the method, and then “typing” the method. The
typing process typically involves choosing one or more load
modules to process any data portions of a method. In
addition to the method itself, the process of method creation
may also result in a method option subrecord for inclusion
in, or modification of, a permissions record, and a notation
in the distribution records. In addition to any “standard” load
module(s) required for exercise of the method, additional
load modules, and data for use with those load modules, may
be specified if allowed. These event processing structures
control the distribution of the method.

For example, consider the case of a security budget. One
form of a typical budget might limit the user to 10 Mb of
decrypted data per month. The user wishes to move their
rights to use the relevant VDE content container object to
their notebook. The budget creator might have limited the
notebook to the same amount, half the original amount, a
prorated amount based on the number of moves budgeted for
an object, etc. A distribute method (or internal event pro-
cessing structure) associated with the budget allows the
creator of the budget to make a determination as to the
methodology and parameters involved. Of course, different
distribution methods may be required for the case of
redistribution, or formal distribution of the method. The
aggregate of these choices is stored in a permissions record
for the method.

An example of the process steps used for the move of a
budget record might look something like this:
1) Check the move budget (e.g., to determine the number of

moves allowed)
2) Copy static fields to new record (e.g., as an encumbrance)
3) Decrement the Decr counter in the old record (the original

budget)
4) Increment the Encumbrance counter in the old record
5) Write a distribution record
6) Write a Distribution Event Id to the new record

10

15

20

25

30

35

40

45

50

55

60

65

264

7) Increment the move meter
8) Decrement the move budget
9) Increment the Decr counter in the new record
Creating a Budget

In the preferred embodiment, to create a budget, a user
manipulates a Graphical User Interface budget distribution
application (e.g., a VDE template application). The user fills
out any required fields for type(s) of budget, expiration
cycle(s), auditor(s), etc. A budget may be specified in
dollars, deutsche marks, yen, and/or in any other monetary
or content measurement schema and/or organization. The
preferred embodiment output of the application, normally
has three basic elements. A notation in the distribution

portion of secure database 610 for each budget record
created, the actual budget records, and a method option
record for inclusion in a permissions record. Under some
circumstances, a budget process may not result in the
creation of a method option since an existing method option
may be being used. Normally, all of this output is protected
by storage in secure database 610 and/or in one or more
administrative objects.

There are two basic modes of operation for a budget
distribution application in the preferred embodiment. In the
first case, the operator has an unlimited ability to specify
budgets. The budgets resulting from this type of activity may
be freely used to control any aspect of a distribution process
for which an operator has rights, including for use with
“security” budgets such as quantities limiting some aspect of
usage. For example, if the operator is a “regular person,” he
may use these budgets to control his own utilization of
objects based on a personal accounting model or schedule.
If the operator is an authorized user at VISA, the resulting
budgets may have broad implications for an entire distribu-
tion system. A core idea is that this mode is controlled
strictly by an operator.

The second mode of operation is used to create “alias”
budgets. These budgets are coupled to a preexisting budget
in an operator’s system. When an operator fills a budget, an
encumbrance is created on the aliased budget. When these
types of budgets are created, the output includes two method
option subrecords coupled together: the method option sub-
record for the aliased budget, and a method option subrecord
for the newly created budget. In most cases, the alias budget
can be used in place of the original budget if the budget
creator is authorized to modify the method options within
the appropriate required method record of a permissions
record.

For example, assume that a user (client administrator) at
a company has the company’s VISA budget on her elec-
tronic appliance 600. She wants to distribute budget to a
network of company users with a variety of preexisting
budgets and requirements. She also wants to limit use of the
company’s VISA budget to certain objects. To do this, she
aliases a company budget to the VISA budget. She then
modifies (if so authorized) the permissions record for all
objects that the company will allow their users to manipulate
so that they recognize the company budget in addition to, or
instead of, the VISA budget. She then distributes the new
permissions records and budgets to her users. The audit data
from these users is then reduced against the encumbrance on
the company’s VISA budget to produce a periodic billing.

In another example, a consumer wants to control his
family’s electronic appliance use of his VISA card, and
prevent his children from playing too many video games,
while allowing unlimited use of encyclopedias. In this case,
he could create two budgets. The first budget can be aliased
to his VISA card, and might only be used with encyclopedia

Page 00284

Page 00285

5,915,019

265

objects (referenced to individual encyclopedia objects and/
or to one or more classes of encyclopedia objects) that
reference the aliased budget in their explicitly modified
permissions record. The second budget could be, for
example, a time budget that he redistributes to the family for
use with video game objects (video game class). In this
instance, the second budget is a “self-replenishing” security/
control budget, that allows, for example, two hours of use
per day. The first budget operates in the same manner as the
earlier example. The second budget is added as a new
required method to permissions records for video games.
Since the time budget is required to access the video games,
an effective control path is introduced for requiring the
second budget—only permissions records modified to
accept the family budget can be used by the children for
video games and they are limited to two hours per day.
Sharing and Distributing Rights and Budgets

Move

The VDE “move” concept provided by the preferred
embodiment covers the case of “friendly sharing” of rights
and budgets. A typical case of “move” is a user who owns
several machines and wishes to use the same objects on
more than one of them. For example, a user owns a desktop
and a notebook computer. They have a subscription to an
electronic newspaper that they wish to read on either
machine, i.e., the user wishes to move rights from one
machine to the other.

An important concept within “move” is the idea of
independent operation. Any electronic appliance 600 to
which rights have been moved may contact distributors or
clearinghouses independently. For example, the user men-
tioned above may want to take their notebook on the road for
an extended period of time, and contact clearinghouses and
distributors without a local connection to their desktop.

To support independent operation, the user should be able
to define an account with a distributor or clearinghouse that
is independent of the electronic appliance 600 she is using
to connect. The transactions must be independently trace-
able and reconcilable among and between machines for both
the end user and the clearinghouse or distributor. The basic
operations of moving rights, budgets, and bitmap or com-
pound meters between machines is also supported.

Redistribution

Redistribution forms a UDE middle ground between the
“friendly sharing” of “move,” and formal distribution.
Redistribution can be thought of as “anonymous distribu-
tion” in the sense that no special interaction is required
between a creator, clearinghouse, or distributor and a redis-
tributor. Of course, a creator or distributor does have the
ability to limit or prevent redistribution.

Unlike the “move” concept, redistribution does not imply
independent operation. The redistributor serves as one point
of contact for users receiving redistributed rights and/or
budgets, etc. These users have no knowledge of, or access to,
the clearinghouse (or and/or distributor) accounts of the
redistributor. The redistributor serves as an auditor for the

rights and/or budgets, etc. that they redistribute, unless
specifically overridden by restrictions from distributors and/
or clearinghouses. Since redistributees (recipients of redis-
tributed rights and/or budgets, etc.) would place a relatively
unquantifiable workload on clearinghouses, and
furthermore, since a redistributor would be placing himself
at an auditable risk (responsible for all redistributed rights
and/or budgets, etc.), the audit of rights, budgets, etc. of
redistributees by redistributors is assumed as the default case
in the preferred embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

266
Distribution

Distribution involves three types of entity. Creators usu-
ally are the source of distribution. They typically set the
control structure “context” and can control the rights which
are passed into a distribution network. Distributors are users
who form a link between object (content) end users and
object (content) creators. They can provide a two-way
conduit for rights and audit data. Clearinghouses may pro-
vide independent financial services, such as credit and/or
billing services, and can serve as distributors and/or creators.
Through a permissions and budgeting process, these parties
collectively can establish fine control over the type and
extent of rights usage and/or auditing activities.

Encumbrance

An “encumbrance” is a special type of VDE budget.
When that a budget distribution of any type occurs, an
“encumbrance” may be generated. An encumbrance is indis-
tinguishable from an original budget for right exercise (e.g.,
content usage payment) purposes, but is uniquely identified
within distribution records as to the amount of the

encumbrance, and all necessary information to complete a
shipping record to track the whereabouts of an encumbrance.
For right exercise purposes, an encumbrance is identical to
an original budget; but for tracking purposes, it is uniquely
identifiable.

In the preferred embodiment of the present invention, a
Distribution Event ID will be used by user VDE nodes and
by clearinghouse services to track and reconcile
encumbrances, even in the case of asynchronous audits. That
is, the “new” encumbrance budget is unique from a tracking
point of view, but indistinguishable from a usage point of
view.

Unresolved encumbrances are a good intermediate con-
trol for a VDE distribution process. A suitable “grace
period” can be introduced during which encumbrances must
be resolved. If this period elapses, an actual billing or
payment may occur. However, even after the interval has
expired and the billing and/or payment made, an encum-
brance may still be outstanding and support later reconcili-
ation. In this case, an auditor may allow a user to gain a
credit, or a user may connect to a VDE node containing an
encumbered budget, and resolve an amount as an internal
credit. In some cases, missing audit trails may concern a
distributor sufficiently to revoke redistribution privileges if
encumbrances are not resolved within a “grace period,” or if
there are repeated grace period violations or if unresolved
encumbrances are excessively large.

Encumbrances can be used across a wide variety of
distribution modes. Encumbrances, when used in concert
with aliasing of budgets, opens important additional distri-
bution possibilities. In the case of aliasing a budget, the user
places himself in the control path for an object—an aliased
budget may only be used in conjunction with permissions
records that have been modified to recognize it. An encum-
brance has no such restrictions.

For example, a user may want to restrict his children’s use
of his electronic, VDE node VISA budget. In this case, the
user can generate an encumbrance on his VISA budget for
the children’s family alias budget, and another for his wife
that is a transparent encumbrance of the original VISA
budget. BigCo may use a similar mechanism to distribute
VISA budget to department heads, and aliased BigCo budget
to users directly.

Account Numbers and User IDs

In the preferred embodiment, to control access to
clearinghouses, users are assigned account numbers at clear-
inghouses. Account numbers provide a unique “instance”

Page 00285

Page 00286

5,915,019

267

value for a secure database record from the point of view of
an outsider. From the point of view of an electronic appli-
ance 600 site, the user, group, or group/user ids provide the
unique instance of a record. For example, from the point of
view of VISA, your Gold Card belongs to account number
#123456789. From the point of view of the electronic
appliance site (for example, a server at a corporation), the
sold card might belong to user id 1023. In organizations
which have plural users and/or user groups using a VDE
node, such users and/or user groups will likely be assigned
unique user IDs. differing budgets and/or other user rights
may be assigned to different users and/or user groups and/or
other VDE control information may be applied on a differing
manner to electronic content and/or appliance usage by users
assigned with different such IDs. Of course, both a clear-
inghouse and a local site will likely have both pieces of
information, but “used data” versus the “comment data”
may differ based on perspective.

In the preferred embodiment case of “move,” an account
number stored with rights stays the same. In the preferred
embodiment of other forms of distribution, a new account
number is required for a distributee. This may be generated
automatically by the system, or correspond to a methodol-
ogy developed by a distributor or redistributor. Distributors
maintain account numbers (and associated access secrets) in
their local name services for each distributee. Conversely,
distributees’ name services may store account numbers
based on user id for each distributor. This record usually is
moved with other records in the case of move, or is
generated during other forms of distribution.

Organizations (including families) may automatically
assign unique user IDs when creating control information
(e.g., a budget) for a new user or user group.

Requirements Record
In order to establish the requirements, and potentially

options, for exercising a right associated with a VDE content
container object before one or more required permissions
records are received for that object, a requirements record
may exist in the private header of such an object. This record
will help the user establish what they have, and what they
need from a distributor prior to forming a connection. If the
requirements or possibilities for exercising a particular right
have changed since such an object was published, a modified
requirements record may be included in a container with an
object (if available and allowed), or a new requirements
record may be requested from a distributor before registra-
tion is initiated. Distributors may maintain “catalogs”
online, and/or delivered to users, of collections of require-
ments records and/or descriptive information corresponding
to objects for which they may have ability to obtain and/or
grant rights to other users.
Passing an Audit

In the preferred embodiment of VDE there may be at least
two types of auditing. In the case of budget distribution,
billing records that reflect consumption of a budget gener-
ally need to be collected and processed. In the case of
permissions distribution, usage data associated with an
object are also frequently required.

In order to effect control over an object, a creator may
establish the basic control information associated with an

object. This is done in the formulation of permissions, the
distribution of various security, administrative and/or finan-
cial budgets, and the level of redistribution that is allowed,
etc. Distributors (and redistributors) may further control this
process within the rights, budgets, etc. (senior control
information) they have received.

For example, an object creator may specify that additional
required methods may be added freely to their permissions

10

15

20

25

30

35

40

45

50

55

60

65

268

records, establish no budget for this activity, and allow
unlimited redistribution of this right. As an alternative
example, a creator may allow moving of usage rights by a
distributor to half a dozen subdistributors, each of whom can
distribute 10,000 copies, but with no redistribution rights
being allowed to be allocated to subdistributors’
(redistributors’) customers. As another example, a creator
may authorize the moving of usage rights to only 10 VDE
nodes, and to only one level of distribution (no
redistribution). Content providers and other contributors of
control information have the ability through the use of
permissions records and/or component assemblies to control
rights other users are authorized to delegate in the permis-
sions records they send to those users, so long as such right
to control one, some, or all such rights of other users is either
permitted or restricted (depending on the control informa-
tion distribution model). It is possible and often desirable,
using VDE, to construct a mixed model in which a distribu-
tor is restricted from controlling certain rights of subsequent
users and is allowed to control other rights. VDE control of
rights distribution in some VDE models will in part or
whole, at least for certain one or more “levels” of a distri-
bution chain, be controlled by electronic content control
information providers who are either not also providers of
the related content or provide only a portion of the content
controlled by said content control information for example,
in certain models, a clearinghouse might also serve as a
rights distribution agent who provides one or more rights to
certain value chain participants, which one or more rights
may be “attached” to one or more rights to use the clear-
inghouse’s credit (if said clearinghouse is, at least in part, a
financial clearinghouse (such a control information provider
may alternatively, or in addition, restrict other users’ rights.

A content creator or other content control information

provider may budget a user (such as a distributor) to create
an unlimited number of permissions records for a content
object, but revoke this right and/or other important usage
rights through an expiration/termination process if the user
does not report his usage (provide an audit report) at some
expected one or more points in time and/or after a certain
interval of time (and/or if the user fails to pay for his usage
or violates other aspects of the agreement between the user
and the content provider). This termination (or suspension or
other specified consequence) can be enforced, for example,
by the expiration of time-aged encryption keys which were
employed to encrypt one or more aspects of control infor-
mation. This same termination (or other specified conse-
quence such as budget reduction, price increase, message
displays on screen to users, messages to administrators, etc.)
can also be the consequence of the failure by a user or the
users VDE installation to complete a monitored process,
such as paying for usage in electronic currency, failure to
perform backups of important stored information (e.g., con-
tent and/or appliance usage information, control
information, etc.), failure to use a repeated failure to use the
proper passwords or other identifiers, etc.).

Generally, the collection of audit information that is
collected for reporting to a certain auditor can be enforced
by expiration and/or other termination processes. For
example, the user’s VDE node may be instructed (a) from an
external source to no longer perform certain tasks, (b) carries
within its control structure information informing it to no
longer perform certain tasks, or (c) is elsewise no longer able
to perform certain tasks. The certain tasks might comprise
one or more enabling operations due to a user’s (or
installation’s) failure to either report said audit information
to said auditor and/or receive back a secure confirmation of

Page 00286

Page 00287

5,915,019

269

receipt and/or acceptance of said audit information. If an
auditor fails to receive audit information from a user (or
some other event fails to occur or occur properly), one or
more time-aged keys which are used, for example, as a
security component of an embodiment of the present
invention, may have their aging suddenly accelerated
(completed) so that one or more processes related to said
time-aged keys can no longer be performed.
Authorization Access Tags and Modification Access Tags

In order to enable a user VDE installation to pass audit
information to a VDE auditing party such as a
Clearinghouse, VDE allows a VDE auditing party to
securely, electronically communicate with the user VDE
installation and to query said installation for certain or all
information stored within said installation’s secure sub-

system, depending on said auditing party’s rights (said party
shall normally be unable to access securely stored informa-
tion that said party is not expressly authorized to access, that
is one content provider will normally not be authorized to
access content usage information related to content provided
by a different content provider). The auditing party asserts a
secure secret (e.g., a secure tag) that represents the set of
rights of the auditor to access certain information maintained
by said subsystem. If said subsystem validates said tag, the
auditing party may then receive auditing information that it
is allowed to request and receive.

Great flexibility exists in the enforcement of audit trail
requirements. For example, a creator (or other content
provider or control information provider or auditor in an
object’s or audit report’s chain of handling) may allow
changes by an auditor for event trails, but not allow anyone
but themselves to read those trails, and limit the redistribu-
tion of this right to, for example, six levels. Alternatively, a
creator or other controlling party may give a distributor the
right to process, for example, 100,000 audit records (and/or,
for example, the right to process 12 audit records from a
given user) before reporting their usage. If a creator or other
controlling party desires, he may allow (and/or require)
separate (and containing different, a subset of, overlapping,
or the same information) audit “packets” containing audit
information, certain of said audit information to be pro-
cessed by a distributor and certain other of said audit
information to be passed back to the creator and/or other
auditors (each receiving the same, overlapping, a subset of,
or different audit information). Similarly, as long as allowed
by, for example, an object creator, a distributor (or other
content and/or control information provider) may require
audit information to be passed back to it, for example, after
every 50,000 audit records are processed (or any other unit
of quantity and/or after a certain time interval and/or at a
certain predetermined date) by a redistributor. In the pre-
ferred embodiment, audit rules, like other control structures,
may be stipulated at any stage of a distribution chain of
handling as long as the right to stipulate said rules has not
been restricted by a more “senior” object and/or control
information distributing (such as an auditing) participant.

Audit information that is destined for different auditors

may be encrypted by different one or more encryption keys
which have been securely provided by each auditor’s VDE
node and communicated for inclusion in a user’s permis-
sions record(s) as a required step, for example, during object
registration. This can provide additional security to further
ensure (beyond the use of passwords and/or other identifi-
cation information and other VDE security features) that an
auditor may only access audit information to which he is
authorized. In one embodiment, encrypted (and/or
unencrypted) “packets” of audit information (for example,

10

15

20

25

30

35

40

45

50

55

60

65

270

in the form of administrative objects) may be bound for
different auditors including a clearinghouse and/or content
providers and/or other audit information users (including,
for example, market analysts and/or list purveyors). The
information may pass successively through a single chain of
handling, for example, user to clearinghouse to redistributor
to distributor to publisher/object creator, as specified by
VDE audit control structures and parameters. Alternatively,
encrypted (or, normally less preferably, unencrypted) audit
packets may be required to be dispersed directly from a user
to a plurality of auditors, some one or more who may have
the responsibility to “pass along” audit packets to other
auditors. In another embodiment, audit information may be
passed, for example, to a clearinghouse, which may then
redistribute all and/or appropriate subsets of said informa-
tion (and/or some processed result) to one or more other
parties, said redistribution employing VDE secure objects
created by said clearinghouse.

An important function of an auditor (receiver of audit
information) is to pass administrative events back to a user
VDE node in acknowledgement that audit information has
been received and/or “recognized.” In the preferred
embodiment, the receipt and/or acceptance of audit infor-
mation may be followed by two processes. The first event
will cause the audit data at a VDE node which prepared an
audit report to be deleted, or compressed into, or added to,
one or more summary values. The second event, or set of
events, will “inform” the relevant security (for example,
termination and/or other consequence) control information
(for example, budgets) at said VDE node of the audit receipt,
modify expiration dates, provide key updates, and/or etc. In
most cases, these events will be sent immediately to a site
after an audit trail is received. In some cases, this transmis-
sion may be delayed to, for example, first allow processing
of the audit trail and/or payment by a user to an auditor or
other party.

In the preferred embodiment, the administrative events
for content objects and independently distributed methods/
component assemblies are similar, but not necessarily iden-
tical. For example, key updates for a budget may control
encryption of a billing trail, rather than decryption of object
content. The billing trail for a budget is in all respects a
method event trail. In one embodiment, this trail must
include sufficient references into distribution records for

encumbrances to allow reconciliation by a clearinghouse.
This may occur, for example, if a grace period elapses and
the creator of a budget allows unresolved encumbrances to
ultimately yield automatic credits if an expired encumbrance
is “returned” to the creator.

Delivery of audit reports through a path of handling may
be in part insured by an inverse (return of information) audit
method. Many VDE methods have at least two pieces: a
portion that manages the process of producing audit infor-
mation at a user’s VDE node; and a portion that subse-
quently acts on audit data. In an example of the handling of
audit information bound for a plurality of auditors, a single
container object is received at a clearinghouse (or other
auditor). This container may contain (a) certain encrypted
audit information that is for the use of the clearinghouse
itself, and (b) certain other encrypted audit information
bound for other one or more auditor parties. The two sets of
information may have the same, overlapping and in part
different, or entirely different, information content.
Alternatively, the clearinghouse VDE node may be able to
work with some or all of the provided audit information. The
audit information may be, in part, or whole, in some
summary and/or analyzed form further processed at the

Page 00287

Page 00288

5,915,019

271

clearinghouse and/or may be combined with other informa-
tion to form a, at least in part, derived set of information and
inserted into one or more at least in part secure VDE objects
to be communicated to said one or more (further) auditor
parties. When an audit information container is securely
processed at said clearinghouse VDE node by said inverse
(return) audit method, the clearinghouse VDE node can
create one or more VDE administrative objects for securely
carrying audit information to other auditors while separately
processing the secure audit information that is specified for
use by said clearinghouse. Secure audit processes and credit
information distribution between VDE participants normally
takes place within the secure VDE “black box,” that is
processes are securely processed within secure VDE
PPE650 and audit information is securely communicated
between the VDE secure subsystems of VDE participants
employing VDE secure communication techniques (e.g.,
public key encryption, and authentication).

This type of inverse audit method may specify the han-
dling of returned audit information, including, for example,
the local processing of audit information and/or the secure
passing along of audit information to one or more auditor
parties. If audit information is not passed to one or more
other auditor parties as may be required and according to
criteria that may have been set by said one or more other
auditor parties and/or content providers and/or control infor-
mation providers during a permissions record specification
and/or modification process, the failure to, for example,
receive notification of successful transfer of required audit
information by an auditor party, e.g., a content provider, can
result in the disablement of at least some capability of the
passing through party’s VDE node (for example, disable-
ment of the ability to further perform certain one or more
VDE managed business functions that are related to object
(s) associated with said audit or party). In this preferred
embodiment example, when an object is received by an
auditor, it is automatically registered and permissions record
(s) contents are entered into the secure management data-
base of the auditor’s VDE node.

One or more permissions records that manage the creation
and use of an audit report object (and may manage other
aspects of object use as well) may be received by a user’s
system during an audit information reporting exchange (or
other electronic interaction between a user and an auditor or

auditor agent). Each received permissions record may gov-
ern the creation of the next audit report object. After the
reporting of audit information, a new permissions record
may be required at a user’s VDE node to refresh the
capability of managing audit report creation and audit infor-
mation transfer for the next audit reporting cycle. In our
above example, enabling an auditor to supply one or more
permissions records to a user for the purpose of audit
reporting may require that an auditor (such as a
clearinghouse) has received certain, specified permissions
records itself from “upstream” auditors (such as, for
example, content and/or other content control information
providers). Information provided by these upstream permis-
sions records may be integrated into the one or more
permissions records at an auditor VDE (e.g., clearinghouse)
installation that manage the permissions record creation
cycle for producing administrative objects containing per-
missions records that are bound for users during the audit
information reporting exchange. If an upstream auditor fails
to receive, and/or is unable to process, required audit
information, this upstream auditor may fail to provide to the
clearinghouse (in this example) the required permissions
record information which enables a distributor to support the

5

10

15

20

25

30

35

40

45

50

55

60

65

272

next permission record creation/auditing cycle for a given
one or more objects (or class of objects). As a result, the
clearinghouse’s VDE node may be unable to produce the
next cycle’s permissions records for users, and/or perform
some other important process. This VDE audit reporting
control process may be entirely electronic process manage-
ment involving event driven VDE activities at both the
intended audit information receiver and sender and employ-
ing both their secure PPE650 and secure VDE communica-
tion techniques.

In the preferred embodiment, each time a user registers a
new object with her own VDE node, and/or alternatively,
with a remote clearinghouse and/or distributor VDE node,
one or more permissions records are provided to, at least in
part, govern the use of said object. The permissions records
may be provided dynamically during a secure UDE regis-
tration process (employing the VDE installation secure
subsystem), and/or may be provided following an initial
registration and received at some subsequent time, e.g.
through one or more separate secure VDE communications,
including, for example, the receipt of a physical arrangement
containing or otherwise carrying said information. At least
one process related to the providing of the one or more
permissions records to a user can trigger a metering event
which results in audit information being created reflecting
the user’s VDE node’s, clearinghouse’s, and/or distributor’s
permissions records provision process. This metering pro-
cess may not only record that one or more permissions
records have been created. It may also record the VDE node
name, user name, associated object identification
information, time, date, and/or other identification informa-
tion. Some or all of this information can become part of audit
information securely reported by a clearinghouse or
distributor, for example, to an auditing content creator
and/or other content provider. This information can be
reconciled by secure VDE applications software at a receiv-
ing auditor’s site against a user’s audit information passed
through by said clearinghouse or distributor to said auditor.
For each metered one or more permissions records (or set of
records) that were created for a certain user (and/or VDE
node) to manage use of certain one or more VDE object(s)
and/or to manage the creation of VDE object audit reports,
it may be desirable that an auditor receive corresponding
audit information incorporated into an, at least in part,
encrypted audit report. This combination of metering of the
creation of permissions records; secure, encrypted audit
information reporting processes; secure VDE subsystem
reconciliation of metering information reflecting the cre-
ation of registration and/or audit reporting permissions with
received audit report detail; and one or more secure VDE
installation expiration and/or other termination and/or other
consequence processes; taken together significantly
enhances the integrity of the VDE secure audit reporting
process as a trusted, efficient, commercial environment.
Secure Document Management Example

VDE 100 may be used to implement a secure document
management environment. The following are some
examples of how this can be accomplished.

In one example, suppose a law firm wants to use VDE 100
to manage documents. In this example, a law firm that is part
of a litigation team might use VDE in the following ways:
1. to securely control access to, and/or other usage of,

confidential client records,
2. to securely control access, distribution, and/or other rights

to documents and memoranda created at the law firm,
3. to securely control access and other use of research

materials associated with the case,

Page 00288

Page 00289

5,915,019

273

4. to securely control access and other use, including dis-
tribution of records, documents, and notes associated with
the case,

5. to securely control how other firms in the litigation team
may use, including change, briefs that have been distrib-
uted for comment and review,

6. to help manage client billing.
The law firm may also use VDE to electronically file briefs
with the court (presuming the court is also VDE capable)
including providing secure audit verification of the ID (e.g.,
digital signature) of filers and other information pertinent to
said filing procedure.

In this example, the law firm receives in VDE content
containers documents from their client’s VDE installation

secure subsystems). Alternatively, or in addition, the law
firm may receive either physical documents which may be
scanned into electronic form, and/or they receive electronic
documents which have not yet been placed in VDE con-
tainers. The electronic form of a document is stored as a

VDE container (object) associated with the specific client
and/or case. The VDE container mechanism supports a
hierarchical ordering scheme for organizing files and other
information within a container; this mechanism may be used
to organize the electronic copies of the documents within a
container, A VDE container is associated with specific
access control information and rights that are described in
one or more permissions control information sets (PERCs)
associated with that container. In this example, only those
members of the law firm who possess a VDE instance, an
appropriate PERC, and the VDE object that contains the
desired document, may use the document. Alternatively or in
addition, a law firm member may use a VDE instance which
has been installed on the law firm’s network server. In this

case, the member must be identified by an appropriate PERC
and have access to the document containing VDE object (in
order to use the server VDE installation). Basic access
control to electronic documents is enabled using the secure
subsystem of one or more user VDE installations.

VDE may be used to provide basic usage control in
several ways. First, it permits the “embedding” of multiple
containers within a single object. Embedded objects permit
the “nesting” of control structures within a container. VDE
also extends usage control information to an arbitrary granu-
lar level (as opposed to a file based level provided by
traditional operating systems) and provides flexible control
information over any action associated with the information
which can be described as a VDE controlled process. For
example, simple control information may be associated with
viewing the one or more portions of documents and addi-
tional control information may be associated with editing,
printing and copying the same and/or different one or more
portions of these same documents.

In this example, a “client” container contains all docu-
ments that have been provided by the client (documents
received in other containers can be securely extracted and
embedded into the VDE client container using VDE extrac-
tion and embedding capabilities). Each document in this
example is stored as an object within the parent, client VDE
container. The “client” container also has several other

objects embedded within it; one for each attorney to store
their client notes, one (or more) for research results and
related information, and at least one for copies of letters,
work papers, and briefs that have been created by the law
firm. The client container may also contain other informa-
tion about the client, including electronic records of billing,
time, accounting, and payments. Embedding VDE objects
within a parent VDE content container provides a conve-

10

15

20

25

30

35

40

45

50

55

60

65

274

nient way to securely categorize and/or store different infor-
mation that shares similar control information. All client

provided documents may, for example, be subject to the
same control structures related to use and non-disclosure.

Attorney notes may be subject to control information, for
example, their use may be limited to the attorney who
created the notes and those attorneys to whom such creating
attorney expressly grants access rights. Embedded contain-
ers also provide a convenient mechanism to control collec-
tions of dissimilar information. For example, the research
obj ect(s) may be stored in the form of (or were derived from)
VDE “smart objects” that contain the results of research
performed by that object. Research results related to one
aspect of the case retrieved from a VDE enabled LEXIS site
might be encapsulated as one smart object; the results of
another session related to another (or the same) aspect of the
case may be encapsulated as a different object. Smart objects
are used in this example to help show that completely
disparate and separately delivered control information may
be incorporated into a client container as desired and/or
required to enforce the rights of providers (such as content
owners).

Control structures may be employed to manage any
variety of desired granularities and/or logical document
content groupings; a document, page, paragraph, topically
related materials, etc. In this example, the following
assumptions are made: client provided documents are con-
trolled at the page level, attorney notes are controlled at the
document level on an attorney by attorney basis, court filings
and briefs are controlled at a document level, research
information is controlled at whatever level the content

provider specifies at the time the research was performed,
and certain highly confidential information located in vari-
ous of the above content may be identified as subject to
display and adding comments only, and only by the lead
partner attorneys, with only the creator and/or embedder of
a given piece of content having the right to be otherwise
used (printed, extracted, distributed, etc).

In general, container content in this example is controlled
with respect to distribution of rights. This control informa-
tion are associated at a document level for all internally
generated documents, at a page level for client level
documents, and at the level specified by the content provider
for research documents.

VDE control information can be structured in either

complex or simple structures, depending on the participant’s
desires. In some cases, a VDE creator will apply a series of
control structure definitions that they prefer to use (and that
are supported by the VDE application managing the speci-
fication of rules and control information, either directly, or
through the use of certified application compatible VDE
component assemblies.

In this example, the law firm sets up a standard VDE
client content container for a new client at the time they
accept the case. A law firm VDE administrator would
establish a VDE group for the new client and add the VDE
IDs of the attorneys at the fir that are authorized to work on
the case, as well as provide, if appropriate, one or more user
template applications. These templates provide, for
example, one or more user interfaces and associated control
structures for selection by users of additional and/or alter-
native control functions (if allowed by senior control
information), entry of control parameter data, and/or per-
forming user specific administrative tasks. The administrator
uses a creation tool along with a predefined creation tem-
plate to create the container. This creation template specifies
the document usage (including distribution control

Page 00289

Page 00290

5,915,019

275

information) for documents as described above. Each elec-
tronic document from the client (including letters,
memoranda, E-mail, spreadsheet, etc.) are then added to the
container as separate embedded objects. Each new object is
created using a creation template that satisfies that the
default control structures specified with the container as
required for each new object of a given type.

As each attorney works on the case, they may enter notes
into an object stored within the client’s VDE container.
These notes may be taken using a VDE aware word pro-
cessor already in use at the law firm. In this example, a VDE
redirector handles the secure mapping of the word processor
file requests into the VDE container and its objects through
the use of VDE control processes operating with one or more
VDE PPEs. Attorney note objects are created using the
default creation template for the document type with assis-
tance from the attorney if the type cannot be automatically
determined from the content. This permits VDE to auto-
matically detect and protect the notes at the predetermined
level, e.g. document, page, paragraph.

Research can be automatically managed using VDE.
Smart objects can be, used to securely search out, pay for if
necessary, and retrieve information from VDE enabled
information resources on the information highway.

Examples of such resources might include LEXIS,
Westlaw, and other related legal databases. Once the infor-
mation is retrieved, it may be securely embedded in the VDE
content client container. If the smart object still contains
unreleased information, the entire smart object may be
embedded in the client’s VDE container. This places the
unreleased information under double VDE control require-
ments: those associated with releasing the information from
smart object (such as payment and/or auditing requirements)
and those associated with access to, or other usage of, client
information of the specified type.

Briefs and other filings may be controlled in a manner
similar to that for attorney notes. The filings may be edited
using the standard word processors in the law firm; with
usage control structures controlling who may review,
change, and/or add to the document (or, in a more sophis-
ticated example, a certain portion of said document). VDE
may also support electronic filing of briefs by providing a
trusted source for time/date stamping and validation of filed
documents.

When the client and attorney want to exchange confiden-
tial information over electronic mail or other means, VDE
can play an important role in ensuring that information
exchanged under privilege, properly controlled, and not
inappropriately released and/or otherwise used. The mate-
rials (content) stored in a VDE content container object will
normally be encrypted. Thus wrapped, a VDE object may be
distributed to the recipient without fear of unauthorized
access and/or other use. The one or more authorized users

who have received an object are the only parties who may
open that object and view and/or manipulate and/or other-
wise modify its contents and VDE secure auditing ensures a
record of all such user content activities. VDE also permits
the revocation of rights to use client/attorney privileged
information if such action becomes necessary, for example,
after an administrator review of user usage audit informa-
tion.

Large Organization Example
In a somewhat more general example, suppose an orga-

nization (e.g., a corporation or government department) with
thousands of employees and numerous offices disposed
throughout a large geographic area wishes to exercise con-
trol over distribution of information which belongs to said

10

15

20

25

30

35

40

45

50

55

60

65

276

organization (or association). This information may take the
form of formal documents, electronic mail messages, text
files, multimedia files, etc,, which collectively are referred to
as “documents.”

Such documents may be handled by people (referred to as
“users”) and/or by computers operating on behalf of users.
The documents may exist both in electronic form for storage
and transmission and in paper form for manual handling.

These documents may originate wholly within the
organization, or may be created, in whole or in part, from
information received from outside the organization. Autho-
rized persons within the organization may choose to release
documents, in whole or in part, to entities outside the
organization. Some such entities may also employ VDE 100
for document control, whereas others may not.
Document Control Policies

The organization as a whole may have a well-defined
policy for access control to, and/or other usage control of
documents. This policy may be based on a “lattice model”
of information flow, in which documents are characterized
as having one or more hierarchical “classification” security
attributes 9903 and zero or more non-hierarchical “compart-
ment” security attributes, all of which together comprise a
sensitivity security attribute.

The classification attributes may designate the overall
level of sensitivity of the document as an element of an
ordered set. For example, the set “unclassified,”
“confidential,” “secret,” “top secret” might be appropriate in
a government setting, and the set “public,” “internal,”
“confidential,” “registered confidential” might be appropri-
ate in a corporate setting.

The compartment attributes may designate the docu-
ment’s association with one or more specific activities
within the organization, such as departmental subdivisions
(e.g., “research,” “development,” “marketing”) or specific
projects within the organization.

Each person using an electronic appliance 600 would be
assigned, by an authorized user, a set of permitted sensitivity
attributes to designate those documents, or one or more
portions of certain document types, which could be pro-
cessed in certain one or more ways, by the person’s elec-
tronic appliance. A document’s sensitivity attribute would
have to belong to the user’s set of permitted sensitivity
values to be accessible.

In addition, the organization may desire to permit users to
exercise control over specific documents for which the user
has some defined responsibility. As an example, a user (the
“originating user”) may wish to place an “originator con-
trolled” (“ORCON”) restriction on a certain document, such
that the document may be transmitted and used only by those
specific other users whom he designates (and only in certain,
expressly authorized ways). Such a restriction may be flex-
ible if the “distribution list” could be modified after the

creation of the document, specifically in the event of some-
one requesting permission from the originating user to
transmit the document outside the original list of authorized
recipients. The originating user may wish to permit distri-
bution only to specific users, defined groups of users,
defined geographic areas, users authorized to act in specific
organizational roles, or a combination of any or all such
attributes.

In this example, the organization may also desire to
permit users to define a weaker distribution restriction such
that access to a document is limited as above, but certain or
all information within the document may be extracted and
redistributed without further restriction by the recipients.

The organization and/or originating users may wish to
know to what uses or geographic locations a document has

Page 00290

Page 00291

5,915,019

277

been distributed. The organization may wish to know where
documents with certain protection attributes have been
distributed, for example, based on geographic information
stored in site configuration records and/or name services
records.

A user may wish to request a “return receipt” for a
distributed document, or may wish to receive some indica-
tion of how a document has been handled by its recipients
(e.g., whether it has been viewed, printed, edited and/or
stored), for example, by specifying one or more audit
requirements (or methods known to have audit
requirements) in a PERC associated with such document(s).
User Environment

In an organization (or association) such as that described
above, users may utilize a variety of electronic appliances
600 for processing and managing documents. This may
include personal computers, both networked and otherwise,
powerful single-user workstations, and servers or mainframe
computers. To provide support for the control information
described in this example, each electronic appliance that
participates in use and management of VDE-protected docu-
ments may be enhanced with a VDE secure subsystem
supporting an SPE 503 and/or HPE 655.

In some organizations, where the threats to secure opera-
tion are relatively low, an HPE 655 may suffice. In other
organizations (e.g., government defense), it may be neces-
sary to employ an SPE 503 in all situations where VDE-
protected documents are processed. The choice of enhance-
ment environment and technology may be different in
different of the organization. Even if different types of PPE
650 are used within an organization to serve different
requirements, they may be compatible and may operate on
the same types (or subsets of types) of documents.

Users may employ application programs that are custom-
ized to operate in cooperation with the VDE for handling of
VDE-protected documents. Examples of this may include
VDE-aware document viewers, VDE aware electronic mail
systems, and similar applications. Those programs may
communicate with the PPE 650 component of a user’s
electronic appliance 600 to make VDE-protected documents
available for use while limiting the extent to which their
contents may be copied, stored, viewed, modified, and/or
transmitted and/or otherwise further distributed outside the

specific electronic appliance.
Users may wish to employ commercial, off-the-shelf

(“COTS”) operating systems and application programs to
process the VDE-protected documents. One approach to
permit the use of COTS application programs and operating
systems would be to allow such use only for documents
without restrictions on redistribution. The standard VDE

operating system redirector would allow users to access
VDE-protected documents in a manner equivalent to that for
files. In such an approach, however, a chain of control for
metering and/or auditing use may be broken” to some extent
at the point that the protected object was made available to
the COTS application. The fingerprinting (watermarking)
techniques of VDE may be used to facilitate further tracking
of any released information.

Avariety of techniques may be used to protect printing of
protected documents, such as, for example: server-based
decryption engines, special fonts for “fingerprinting,” etc.

Another approach to supporting COTS software would
use the VDE software running on the user’s electronic
appliance to create one or more “virtual machine” environ-
ments in which (COTS operating system and application
programs may run, but from which no information may be
permanently stored or otherwise transmitted except under

10

15

20

25

30

35

40

45

50

55

60

65

278

control of VDE. Such an environment would permit VDE to
manage all VDE-protected information, yet may permit
unlimited use of COTS applications to process that infor-
mation within the confines of a restricted environment. The

entire contents of such an environment could be treated by
VDE 100 as an extension to any VDE-protected documents
read into the environment. Transmission of information out

of the environment could be governed by the same rules as
the original document(s).
“Coarse-Grain” Control Capabilities

As mentioned above, an organization may employ VDE-
enforced control capabilities to manage the security,
distribution, integrity, and control of entire documents.
Some examples of these capabilities may include:
1) A communication channel connecting two or more elec-

tronic appliances 600 may be assigned a set of permitted
sensitivity attributes. Only documents whose sensitivity
attributes belong to this set would be permitted to be
transmitted over the channel. This could be used to

support the Device Labels requirement of the Trusted
Computer System Evaluation Criteria (TCSEC).

2) Awritable storage device (e.g., fixed disk, diskette, tape
drive optical disk) connected to or incorporated in an
electronic appliance 600 may be assigned a set of per-
mitted sensitivity attributes. Only documents whose sen-
sitivity attributes belong to this set would be permitted to
be stored on the device. This could be used to support the
TCSEC Device Labels requirement.

3) A document may have a list of users associated with it
representing the users who are permitted to “handle” the
document. This list of users may represent, for example,
the only users who may view the document, even if other
users receive the document container, they could not
manipulate the contents. This could be used to support the
standard ORCON handling caveat.

4) A document may have an attribute designating its origi-
nator and requiring an explicit permission to be granted
by an originator before the document’s content could be
viewed. This request for permission may be made at the
time the document is accessed by a user, or, for example,
at the time one user distributes the document to another

user. If permission is not granted, the document could not
be manipulated or otherwise used.

5) Adocument may have an attribute requiring that each use
of the document be reported to the document’s originator.
This may be used by an originator to gauge the distribu-
tion of the document. Optionally, the report may be
required to have been made successfully before any use of
the document is permitted, to ensure that the use is known
to the controlling party at the time of use. Alternatively,
for example, the report could be made in a deferred
(“batch”) fashion.

6) Adocument may have an attribute requiring that each use
of the document be reported to a central document track-
ing clearinghouse. This could be used by the organization
to track specific documents, to identify documents used
by any particular user and/or group of users to track
documents with specific attributes (e.g., sensitivity), etc.
Optionally, for example, the report may be required to
have been made successfully before any use of the
document is permitted.

7) AVDE protected document may have an attribute requir-
ing that each use of the document generate a “return
receipt,” to an originator. A person using the document
may be required to answer specific questions in order to
generate a return receipt, for example by indicating why
the document is of interest, or by indicating some knowl-

Page 00291

Page 00292

5,915,019

279

edge of the document’s contents (after reading it). This
may be used as assurance that the document had been
handled by a person, not by any automated software
mechanism.

8) A VDE protected document’s content may be made
available to a VDE-unaware application program in such
a way that it is uniquely identifiable (traceable) to a user
who caused its release. Thus, if the released form of the
document is further distributed, its origin could be deter-
mined. This may be done by employing VDE “finger-
printing” for content release. Similarly, a printed VDE
protected document may be marked in a similar, VDE
fingerprinted unique way such that the person who origi-
nally printed the document could be determined, even if
copies have since been made.

9) Usage of VDE protected documents could be permitted
under control of budgets that limit (based on size, time of
access, etc.) access or other usage of document content.
This may help prevent wholesale disclosure by limiting
the number of VDE documents accessible to an individual

during a fixed time period. For example, one such control
might permit a user, for some particular class of
documents, to view at most 100 pages/day, but only print
10 pages/day and permit printing only on weekdays
between nine and five. As a further example, a user might
be restricted to only a certain quantity of logically related,
relatively “contiguous” and/or some other pattern (such as
limiting the use of a database’s records based upon the
quantity of records that share a certain identifier in field)
of VDE protected document usage to identify, for
example, the occurrence of one or more types of excessive
database usage (under normal or any reasonable
circumstances). As a result, VDE content providers can
restrict usage of VDE content to acceptable usage char-
acteristics and thwart and/or identify (for example, by
generating an exception report for a VDE administrator or
organization supervisor) user attempts to inappropriately
use, for example, such an information database resource.
These control capabilities show some examples of how

VDE can be used to provide a flexible, interactive environ-
ment for tracking and managing sensitive documents. Such
an environment could directly trace the flow of a document
from person to person, by physical locations, by
organizations, etc. It would also permit specific questions to
be answered such as “what persons outside the R&D depart-
ment have received any R&D-controlled document.”
Because the control information is carried with each copy of
a VDE protected document, and can ensure that central
registries are updated and/or that originators are notified of
document use, tracking can be prompt and accurate.

This contrasts with traditional means of tracking paper
documents: typically, a paper-oriented system of manually
collected and handled receipts is used. Documents may be
individually copy-numbered and signed for, but once dis-
tributed are not actively controlled. In a traditional paper-
oriented system, it is virtually impossible to determine the
real locations of documents; what control can be asserted is
possible only if all parties strictly follow the handling rules
(which are at best inconvenient).

The situation is no better for processing documents within
the context of ordinary computer and network systems.
Although said systems can enforce access control informa-
tion based on user identity, and can provide auditing mecha-
nisms for tracking accesses to files, these are low-level
mechanisms that do not permit tracking or controlling the
flow of content. In such systems, because document content
can be freely copied and manipulated, it is not possible to

10

15

20

25

30

35

40

45

50

55

60

65

280

determine where document content has gone, or where it
came from. In addition, because the control mechanisms in
ordinary computer operating systems operate at a low level
of abstraction, the entities they control are not necessarily
the same as those that are manipulated by users. This
particularly causes audit trails to be cluttered with volumi-
nous information describing uninteresting activities.
“Fine-Grain” Control Capabilities

In addition to controlling and managing entire documents,
users may employ customized VDE-aware application soft-
ware to control and manage individual modifications to
documents. Examples of these capabilities include the fol-
lowing:
1) A VDE content user may be permitted to append further

information to a VDE document to indicate a proposed
alternative wording. This proposed alteration would be
visible to all other users (in addition to the original text)
of the document but would (for example) be able to be
incorporated into the actual text only by the document’sowner.

2) A group of VDE users could be permitted to modify one
or more parts of a document in such a way that each
individual alteration would be unambiguously traceable
to the specific user who performed it. The rights to modify
certain portions of a document, and the extension of
differing sets of rights to different users, allows an orga-
nization or secure environment to provide differing per-
missions enabling different rights to users of the same
content.

3) A group of users could create a VDE document
incrementally, by building it from individual contribu-
tions. These contributions would be bound together
within a single controlled document, but each would be
individually identified, for example, through their incor-
poration in VDE content containers as embedded con-
tainer objects.

4) VDE control and management capabilities could be used
to track activities related to individual document areas, for
instance recording how many times each section of a
document was viewed.

EXAMPLE

VDE Protected Content Repository

As the “Digital Highway” emerges, there is increased
discussion concerning the distribution of content across
networks and, in particular, public networks such as the
Internet. Content may be made available across public
networks in several ways including:

“mailing” content to a user in response to a request or
advance purchase (sending a token representing the com-
mitment of electronic funds or credit to purchase an item);

supporting content downloadable from an organization’s
own content repository, such a repository comprising, for
example, a store of products (such as software programs)
and/or a store of information resources, normally organized
into one or more databases; and

supporting a public repository into which other parties can
deposit their products for redistribution to customers
(normally by making electronic copies for distribution to a
customer in response to a request).

One possible arrangement of VDE nodes involves use of
one or more “repositories.” A repository, for example, may
serve as a location from which VDE participants may
retrieve VDE content containers. In this case, VDE users
may make use of a network to gain access to a “server”

Page 00292

Page 00293

5,915,019

281

system that allows one or more VDE users to access an
object repository containing VDE content containers.

Some VDE participants may create or provide content
and/or VDE content container objects, and then store content
and/or content objects at a repository so that other partici-
pants may access such content from a known and/or effi-
ciently organized (for retrieval) location. For example, a
VDE repository (portion of a VDE repository, multiple VDE
repositories, and/or providers of content to such
repositories) may advertise the availability of certain types
of VDE protected content by sending out email to a list of
network users. If the network users have secure VDE

subsystems in their electronic appliances, they may then
choose to access such a repository directly, or through one
or more smart agents and, using an application program for
example, browse (and/or electronically search) through the
offerings of VDE managed content available at the
repository, download desirable VDE content containers, and
make use of such containers. If the repository is successful
in attracting users who have an interest in such content, VDE
content providers may determine that such a repository is a
desirable locations) to make their content available for easy
access by users. If a repository, such as CompuServe, stores
content in non-encrypted (plaintext) form, it may encrypt
“outgoing” content on an “as needed” basis through placing
such content in VDE content containers with desired control

information, and may employ VDE secure communications
techniques for content communication to VDE participants.

VDE repositories may also offer other VDE services. For
example, a repository may choose to offer financial services
in the form of credit from the repository that may be used to
pay fees associated with use of VDE objects obtained from
the repository. Alternatively or in addition, a VDE repository
may perform audit information clearinghouse services on
behalf of VDE creators or other participants (e.g.
distributors, redistributors, client administrators, etc.) for
usage information reported by VDE users. Such services
may include analyzing such usage information, creating
reports, collecting payments, etc.

A “full service” VDE repository may be very attractive to
both providers and users of VDE managed content. Provid-
ers of VDE managed content may desire to place their
content in a location that is well known to users, offers
credit, and/or performs audit services for them. In this case,
providers may be able to focus on creating content, rather
than managing the administrative processes associated with
making content available in a “retail” fashion, collecting
audit information from many VDE users, sending and
receiving bills and payments, etc. VDE users may find the
convenience of a single location (or an integrated arrange-
ment of repositories) appealing as they are attempting to
locate content of interest. In addition, a full service VDE
repository may serve as a single location for the reporting of
usage information generated as a consequence of their use of
VDE managed content received from a VDE repository
and/or, for example, receiving updated software (e.g. VDE-
aware applications, load modules, component assemblies,
non VDE-aware applications, etc.) VDE repository services
may be employed in conjunction with VDE content delivery
by broadcast and/or on physical media, such as CD-ROM, to
constitute an integrated array of content resources that may
be browsed, searched, and/or filtered, as appropriate, to
fulfill the content needs of VDE users.

Apublic repository system may be established and main-
tained as a non-profit or for-profit service. An organization
offering the service may charge a service fee, for example,
on a per transaction basis and/or as a percentage of the

10

15

20

25

30

35

40

45

50

55

60

65

282

payments by, and/or cost of, the content to users. A reposi-
tory service may supply VDE authoring tools to content
creators, publishers, distributors, and/or value adding pro-
viders such that they may apply rules and controls that define
some or all of the guidelines managing use of their content
and so that they may place such content into VDE content
container objects.

A repository may be maintained at one location or may be
distributed across a variety of electronic appliances, such as
a variety of servers (e.g. video servers, etc.) which may be
at different locations but nonetheless constitute a single
resource. A VDE repository arrangement may employ VDE
secure communications and VDE node secure subsystems
(“protected processing environments”). The content com-
prising a even collection or unit of information desired by a
user may be spread across a variety of physical locations.
For example, content representing a company’s closing
stock price and the activity (bids, lows, highs, etc.) for the
stock might be located at a World Wide Web server in New
York, and content representing an analysis of the company
(such as a discussions of the company’s history, personnel,
products, markets, and/or competitors) might be located on
a server in Dallas. The content might be stored using VDE
mechanisms to secure and audit use. The content might be
maintained in clear form if sufficient other forms of security
are available at such one or more of sites (e.g. physical
security, password, protected operating system, data
encryption, or other techniques adequate for a certain con-
tent type). In the latter instances, content may be at least in
part encrypted and placed in VDE containers as it streams
out of a repository so as to enable secure communication and
subsequent VDE usage control and usage consequence
management.

A user might request information related to such a com-
pany including stock and other information. This request
might, for example, be routed first through a directory or a
more sophisticated database arrangement located in Boston.
This arrangement might contain pointers to, and retrieve
content from, both the New York and Dallas repositories.
This information content may, for example, be routed
directly to the user in two containers (e.g. such as a VDE
content container object from Dallas and a VDE content
container object from New York). These two containers may
form two VDE objects within a single VDE container
(which may contain two content objects containing the
respective pieces of content from Dallas and New York)
when processed by the user’s electronic appliance.
Alternatively, such objects might be integrated together to
form a single VDE container in Boston so that the informa-
tion can be delivered to the user within a single container to
simplify registration and control at the user’s site. The
information content from both locations may be stored as
separate information objects or they may be joined into a
single, integrated information object (certain fields and/or
categories in an information form or template may be filled
in by one resource and other fields and/or categories may be
filled by information provided by a different resource). A
distributed database may manage such a distributed reposi-
tory resource environment and use VDE to secure the
storing, communicating, auditing, and/or use of information
through VDE’s electronic enforcement of VDE controls.
VDE may then be used to provide both consistent content
containers and content control services.

An example of one possible repository arrangement 3300
is shown in FIG. 78. In this example, a repository 3302 is
connected to a network 3304 that allows authors 3306A,
3306B, 3306C, and 3306D; a publisher 3308; and one or

Page 00293

Page 00294

5,915,019

283

more end users 3310 to communicate with the repository
3302 and with each other. A second network 3312 allows the

publisher 3308, authors 3306E and 3306F, an editor 3314,
and a librarian 3316 to communicate with each other and

with a local repository 3318. The publisher 3308 is also
directly connected to author 3306E. In this example, the
authors 3306 and publisher 3308 connect to the repository
3302 in order to place their content into an environment in
which end users 3310 will be able to gain access to a broad
selection of content from a common location.

In this example, the repository has two major functional
areas: a content system 3302A and a clearinghouse system
3302B. The content system 3302A is comprised of a user/
author registration system 3320, a content catalog 3322, a
search mechanism 3324, content storage 3326, content ref-
erences 3328, and a shipping system 3330 comprised of a
controls packager 3322, a container packager 3334, and a
transaction system 3336. The clearinghouse system 3302B
is comprised of a user/author registration system 3338;
template libraries 3340; a control structure library 3342; a
disbursement system 3344; an authorization system 3346
comprised of a financial system 3348 and a content system
3350; a billing system 3352 comprised of a paper system
3354, a credit card system 3356, and an electronic funds
transfer (EFT) system 3358; and an audit system 3360
comprised of a receipt system 3362, a response system 3364,
a transaction system 3366, and an analysis system 3368.

In this example, author 3306A creates content in elec-
tronic form that she intends to make broadly available to
many end users 3310, and to protect her rights through use
of VDE. Author 3306A transmits a message to the repository
3302 indicating her desire to register with the repository to
distribute her content. In response to this message, the
user/author registration system 3320 of the content system
3302A, and the user/author registration system 3338 of the
clearinghouse system 3302B transmit requests for registra-
tion information to author 3306A using the network 3304.
These requests may be made in an on-line interactive mode;
or they may be transmitted in a batch to author 3306A who
then completes the requested information and transmits it as
a batch to the repository 3302; or some aspects may be
handled on-line (such as basic identifying information) and
other information may be exchanged in a batch mode.

Registration information related to the content system
3302A may, for example, include:

a request that Author 3306A provide information con-
cerning the types and/or categories of content proposed for
storage and access using the repository,

the form of abstract and/or other identifying information
required by the repository—in addition to providing author
3306A with an opportunity to indicate whether or not author
3306A generally includes other information with content
submissions (such as promotional materials, detailed infor-
mation regarding the format of submitted content, any
equipment requirements that should or must be met for
potential users of submitted content to successfully exploit
its value, etc.),

requests for information from author 3306A concerning
where the content is to be located (stored at the repository,
stored at author 3306A’s location, stored elsewhere, or some

combination of locations),
what general search characteristics should be associated

with content submissions (e.g. whether abstracts should be
automatically indexed for searches by users of the
repository, the manner in which content titles, abstracts,
promotional materials, relevant dates, names of performers

10

15

20

25

30

35

40

45

50

55

60

65

284

and/or authors, or other information related to content sub-
missions may or should be used in lists of types of content
and/or in response to searches, etc.), and/or

how content that is stored at and/or passed through the
repository should be shipped (including any container
criteria, encryption requirements, transaction requirements
related to content transmissions, other control criteria, etc.)

The information requested from author 3306A by the
user/author registration system of the clearinghouse may, for
example, consist of:

VDE templates that author 3306A may or must make use
of in order to correctly format control information such that,
for example, the audit system 3360 of the clearinghouse
system 3302B is properly authorized to receive and/or
process usage information related to content submitted by
author 3306A,

VDE control information available from the clearing-
house 3302B that may or must be used by author 3306A
(and/or included by reference) in some or all of the VDE
component assemblies created and/or used by author 3306A
associated with submitted content,

the manner in which disbursement of any funds associated
with usage of content provided by, passed through, or
collected by the repository clearinghouse system 3302B
should be made,

the form and/or criteria of authorizations to use submitted

content and/or financial transactions associated with content,

the acceptable forms of billing for use of content and/or
information associated with content (such as analysis reports
that may be used by others),

how VDE generated audit information should be
received,

how responses to requests from users should be managed,
how transactions associated with the receipt of audit

information should be formatted and authorized,

how and what forms of analysis should be performed on
usage information, and/or

under what circumstances (if any) usage information
and/or analysis results derived from VDE controlled content
usage information should be managed (including to whom
they may or must be delivered, the form of delivery, any
control information that may be associated with use of such
information, etc.)

The repository 3302 receives the completed registration
information from author 3306A and uses this information to

build an account profile for author 3306A. In addition,
software associated with the authoring process may be
transmitted to author 3306A. This software may, for
example, allow author 3306A to place content into a VDE
content container with appropriate controls in such a way
that many of the decisions associated with creating such
containers are made automatically to reflect the use of the
repository 3302 as a content system and/or a clearinghouse
system (for example, the location of content, the party to
contact for updates to content and/or controls associated
with content, the party or parties to whom audit information
may and/or must be transmitted and the pathways for such
communication, the character of audit information that is
collected during usage, the forms of payment that are
acceptable for use of content, the frequency of audit trans-
missions required, the frequency of billing, the form of
abstract and/or other identifying information associated with
content, the nature of at least a portion of content usage
control information, etc.)

Author 3306A makes use of a VDE authoring application
to specify the controls and the content that she desires to

Page 00294

Page 00295

5,915,019

285

place within a VDE content container, and produces such a
container in accordance with any requirements of the reposi-
tory 3302. Such a VDE authoring application may be, for
example, an application provided by the repository 3302
which can help ensure adherence to repository content
control requirements such as the inclusion of one or more
types of component assemblies or other VDE control struc-
tures and/or required parameter data, an application received
from another party, and/or an application created by author
3306A in whole or in part. Author 3306A then uses the
network 3304 to transmit the container and any deviations
from author 3306A’s account profile that may relate to such
content to the repository 3302. The repository 3302 receives
the submitted content, and then—in accordance with any
account profile requirements, deviations and/or desired
options in this example—makes a determination as to
whether the content was produced within the boundaries of
any content and/or control information requirements of the
repository and therefore should be placed within content
storage or referenced by a location pointer or the like. In
addition to placing the submitted content into content stor-
age or referencing such content’s location, the repository
3302 may also make note of characteristics associated with
such submitted content in the search mechanism 3324,
content references 3328, the shipping system 3330, and/or
the relevant systems of the clearinghouse system 3302B
related to templates and control structures, authorizations,
billing and/or payments, disbursements, and/or audits of
usage information.

During an authoring process, author 3306A may make use
of VDE templates. Such templates may be used as an aspect
of a VDE authoring application. For example, such tem-
plates may be used in the construction of a container as
described above. Alternatively or in addition, such templates
may also be used when submitted content is received by the
repository 3302. References to such templates may be
incorporated by author 3306A as an aspect of constructing a
container for submitted content (in this sense the container
delivered to the repository may be in some respects “incom-
plete” until the repository “completes” the container through
use of indicated templates). Such references may be required
for use by the repository 3302 (for example, to place VDE
control information in place to fulfill an aspect of the
repository’s business or security models such as one or more
map tables corresponding to elements of content necessary
for interacting with other VDE control structures to accom-
modate certain metering, billing, budgeting, and/or other
usage and/or distribution related controls of the repository).

For example, if content submitted by author 3306A con-
sists of a periodical publication, a template delivered to the
author by the repository 3302 when the author registers at
the repository may be used as an aspect of an authoring
application manipulated by the author in creating a VDE
content container for such a periodical. Alternatively or in
addition, a template designed for use with periodical pub-
lications may be resident at the repository 3302, and such a
template may be used by the repository to define, in whole
or in part, control structures associated with such a con-
tainer. For example, a VDE template designed to assist in
formulating control structures for periodical publications
might indicate (among other things) that:

usage controls should include a meter method that records
each article within a publication that a user opens,

a certain flat rate fee should apply to opening the peri-
odical regardless of the number of articles opened, and/or

a record should be maintained of every advertisement that
is viewed by a user.

10

15

20

25

30

35

40

45

50

55

60

65

286
If content is maintained in a known and/or identifiable

format, such a template may be used during initial construc-
tion of a container without author 3306A’s intervention to

identify any map tables that may be required to support such
recording and billing actions. If such a VDE template is
unavailable to author 3306A, she may choose to indicate that
the container submitted should be reconstructed (e.g.
augmented) by the repository to include the VDE control
information specified in a certain template or class of
templates. If the format of the content is known and/or
identifiable by the repository, the repository may be able to
reconstruct (or “complete”) such a container automatically.

One factor in a potentially ongoing financial relationship
between the repository and author 3306A may relate to
usage of submitted content by end users 3310. For example,
author 3306A may negotiate an arrangement with the reposi-
tory wherein the repository is authorized to keep 20% of the
total revenues generated from end users 3310 in exchange
for maintaining the repository services (e.g. making content
available to end users 3310, providing electronic credit,
performing billing activities, collecting fees, etc.) Afinancial
relationship may be recorded in control structures in flexible
and configurable ways. For example, the financial relation-
ship described above could be created in a VDE container
and/or installation control structure devised by author 3306A
to reflect author 3306A’s financial requirements and the
need for a 20% split in revenue with the repository wherein
all billing activities related to usage of submitted content
could be processed by the repository, and control structures
representing reciprocal methods associated with various
component assemblies required for use of author 3306A’s
submitted content could be used to calculate the 20% of

revenues. Alternatively, the repository may independently
and securely add and/or modify control structures originat-
ing from author 3306A in order to reflect an increase in
price. Under some circumstances, author 3306A may not be
directly involved (or have any knowledge of) the actual
price that the repository charges for usage activities, and
may concern herself only with the amount of revenue and
character of usage analysis information that she requires for
her own purposes, which she specifies in VDE control
information which governs the use, and consequences of
use, of VDE controlled content.

Another aspect of the relationship between authors and
the repository may involve the character of transaction
recording requirements associated with delivery of VDE
controlled content and receipt of VDE controlled content
usage audit information. For example, author 3306A may
require that the repository make a record of each user that
receives a copy of content from the repository. Author
3306A may further require collection of information regard-
ing the circumstances of delivery of content to such users
(e.g. time, date, etc.) In addition, the repository may elect to
perform such transactions for use internally (e.g. to deter-
mine patterns of usage to optimize systems, detect fraud,
etc.)

In addition to recording information regarding delivery of
such VDE controlled content, author 3306A may have
required or requested the repository to perform certain VDE
container related processes. For example, author 3306A may
want differing abstract and/or other descriptive information
delivered to different classes of users. In addition, author
3306A may wish to deliver promotional materials in the
same container as submitted content depending on, for
example, the character of usage exhibited by a particular
user (e.g. whether the user has ever received content from
author 3306A, whether the user is a regular subscriber to

Page 00295

Page 00296

5,915,019

287

author 3306A’s materials, and/or other patterns that may be
relevant to author 3306A and/or the end user that are used to

help determine the mix of promotional materials delivered to
a certain VDE content end user.) In another example, author
3306A may require that VDE fingerprinting be performed on
such content prior to transmission of content to an end user.

In addition to the form and/or character of content shipped
to an end user, authors may also require certain encryption
related processes to be performed by the repository as an
aspect of delivering content. For example, author 3306A
may have required that the repository encrypt each copy of
shipped content using a different encryption key or keys in
order to help maintain greater protection for content (e.g. in
case an encryption key was “cracked” or inadvertently
disclosed, the “damage” could be limited to the portion(s) of
that specific copy of a certain content deliverable). In
another example, encryption functions may include the need
to use entirely different encryption algorithms and/or tech-
niques in order to fulfill circumstantial requirements (e.g. to
comply with export restrictions). In a further example,
encryption related processes may include changing the
encryption techniques and/or algorithms based on the level
of trustedness and/or tamper resistance of the VDE site to
which content is delivered.

In addition to transaction information gathered when
content is shipped from a VDE repository to an end user, the
repository may be required to keep transaction information
related to the receipt of usage information, requests, and/or
responses to and/or from end users 3310. For example,
author 3306A may require the repository to keep a log of
some or all connections made by end users 3310 related to
transmissions and or reception of information related to the
use of author 3306A’s content (e.g. end user reporting of
audit information, end user requests for additional permis-
sions information, etc.)

Some VDE managed content provided to end users 3310
through the repository may be stored in content storage.
Other information may be stored elsewhere, and be refer-
enced through the content references. In the case where
content references are used, the repository may manage the
user interactions in such a manner that all repository content,
whether stored in content storage or elsewhere (such as at
another site), is presented for selection by end users 3310 in
a uniform way, such as, for example, a consistent or the same
user interface. If an end user requests delivery of content that
is not stored in content storage, the VDE repository may
locate the actual storage site for the content using informa-
tion stored in content references (e.g. the network address
where the content may be located, a URL, a filesystem
reference, etc.) After the content is located, the content may
be transmitted across the network to the repository or it may
be delivered directly from where it is stored to the requesting
end user. In some circumstances (e.g. when container modi-
fication is required, when encryption must be changed, if
financial transactions are required prior to release, etc.),
further processing may be required by the repository in order
to prepare such VDE managed content and/or VDE content
container for transmission to an end user.

In order to provide a manageable user interface to the
content available to VDE repository end users 3310 and to
provide administrative information used in the determina-
tion of control information packaged in VDE content con-
tainers shipped to end users 3310, the repository in this
example includes a content catalog 3322. This catalog is
used to record information related to the VDE content in

content storage, and/or content available through the reposi-
tory reflected in content references. The content catalog

10

15

20

25

30

35

40

45

50

55

60

65

288

3322 may consist of titles of content, abstracts, and other
identifying information. In addition, the catalog may also
indicate the forms of electronic agreement and/or agreement
VDE template applications (offering optional, selectable
control structures and/or one or more opportunities to pro-
vide related parameter data) that are available to end users
3310 through the repository for given pieces of content in
deciding, for example, options and/or requirements for: what
type(s) of information is recorded during such content’s use,
the charge for certain content usage activities, differences in
charges based on whether or not certain usage information
is recorded and/or made available to the repository and/or
content provider, the redistribution rights associated with
such content, the reporting frequency for audit
transmissions, the forms of credit and/or currency that may
be used to pay certain fees associated with use of such
content, discounts related to certain volumes of usage,
discounts available due to the presence of rights associated
with other content from the same and/or different content

providers, sales, etc. Furthermore, a VDE repository content
catalog 3322 may indicate some or all of the component
assemblies that are required in order to make use of content
such that the end user’s system and the repository can
exchange messages to help ensure that any necessary VDE
component assemblies or other VDE control information is
identified, and if necessary and authorized, are delivered
along with such content to the end user (rather than, for
example, being requested later after their absence has been
detected during a registration and/or use attempt).

In order to make use of the VDE repository in this
example, an end user must register with the repository. In a
manner similar to that indicated above in the case of an

author, a VDE end user transmits a message from her VDE
installation to the repository across the network indicating
that she wishes to make use of the services provided by the
repository (e.g. access content stored at and/or referenced by
the repository, use credit provided by the repository, etc.) In
response to this message, the user/author registration sys-
tems of the content system 3302A and the clearinghouse
system 3302B of the repository transmit requests for infor-
mation from the end user (e.g. in an on-line and/or batch
interaction). The information requested by the user/author
registration system of the content system 3302A may
include type(s) of content that the user wishes to access, the
characteristics of the user’s electronic appliance 600, etc.
The information requested by the user/author registration
system of the clearinghouse system 3302B may include
whether the user wishes to establish a credit account with the

clearinghouse system 3302B, what other forms of credit the
user may wish to use for billing purposes, what other
clearinghouses may be used by the end user in the course of
interacting with content obtained from the repository, any
general rules that the user has established regarding their
preferences for release and handling of usage analysis
information, etc. Once the end user has completed the
registration information and transmitted it to the repository,
the repository may construct an account profile for the user.
In this example, such requests and responses are handled by
secure VDE communications between secure VDE sub-

systems of both sending and receiving parties.
In order to make use of the repository, the end user may

operate application software. In this example, the end user
may either make use of a standard application program (e.g.
a World Wide Web browser such as Mosaic), or they may
make use of application software provided by the repository
after completion of the registration process. If the end user
chooses to make use of the application software provided by

Page 00296

Page 00297

5,915,019

289

the repository, they may be able to avoid certain complexi-
ties of interaction that may occur if a standard package is
used. Although standardized packages are often relatively
easy to use, a customized package that incorporates VDE
aware functionality may provide an easier to use interface
for a user. In addition, certain characteristics of the reposi-
tory may be built in to the interface to simplify use of the
services (e.g. similar to the application programs provided
by America Online).

The end user may connect to the repository using the
network. In this example, after the user connects to the
repository, an authentication process will occur. This process
can either be directed by the user (e.g. through use of a login
and password protocol) or may be established by the end
user’s electronic appliance secure subsystems interacting
with a repository electronic appliance in a VDE authentica-
tion. In either event, the repository and the user must initially
ensure that they are connected to the correct other party. In
this example, if secured information will flow between the
parties, a VDE secured authentication must occur, and a
secure session must be established. On the other hand, if the
information to be exchanged has already been secured
and/or is available without authentication (e.g. certain cata-
log information, containers that have already been encrypted
and do not require special handling, etc.), the “weaker” form
of login/password may be used.

Once an end user has connected to the VDE repository
and authentication has occurred, the user may begin manipu-
lating and directing their user interface software to browse
through a repository content catalog 3322 (e.g. lists of
publications, software, games, movies, etc.), use the search
mechanism to help locate content of interest, schedule
content for delivery, make inquiries of account status, avail-
ability of usage analysis information, billing information,
registration and account profile information, etc. If a user is
connecting to obtain content, the usage requirements for that
content may be delivered to them. If the user is connecting
to deliver usage information to the repository, information
related to that transmission may be delivered to them. Some
of these processes are described in more detail below.

In this example, when an end user requests content from
the VDE repository (e.g. by selecting from a menu of
available options), the content system 3302A locates the
content either in the content references and/or in content

storage. The content system 3302A may then refer to infor-
mation stored in the content catalog 3322, the end user’s
account profile, and/or the author’s account profile to deter-
mine the precise nature of container format and/or control
information that may be required to create a VDE content
container to fulfill the end user’s request. The shipping
system then accesses the clearinghouse system 3302B to
gather any necessary additional control structures to include
with the container, to determine any characteristics of the
author’s and/or end user’s account profiles that may influ-
ence either the transaction(s) associated with delivering the
content to the end user or with whether the transaction may
be processed. If the transaction is authorized, and all ele-
ments necessary for the container are available, the controls
packager forms a package of control information appropriate
for this request by this end user, and the container packager
takes this package of control information and the content
and forms an appropriate container (including any permis-
sions that may be codeliverable with the container, incor-
porating any encryption requirements, etc.) If required by
the repository or the author’s account profile, transactions
related to delivery of content are recorded by the transaction
system of the shipping system. When the container and any

10

15

20

25

30

35

40

45

50

55

60

65

290

transactions related to delivery have been completed, the
container is transmitted across the network to the end user.

An end user may make use of credit and/or currency
securely stored within the end user’s VDE installation
secure subsystem to pay for charges related to use of VDE
content received from the repository, and/or the user may
maintain a secure credit and/or currency account remotely at
the repository, including a “virtual” repository where pay-
ment is made for the receipt of such content by an end user.
This later approach may provide greater assurance for
payment to the repository and/or content providers particu-
larly if the end user has only an HPE based secure sub-
system. If an end user electronic credit and/or currency
account is maintained at the repository in this example,
charges are made to said account based on end user receipt
of content from the repository. Further charges to such a
remote end user account may be made based on end user
usage of such received content and based upon content
usage information communicated to the repository clearing-
house system 3302B.

In this example, if an end user does not have a relationship
established with a financial provider (who has authorized the
content providers whose content may be obtained through
use of the repository to make use of their currency and/or
credit to pay for any usage fees associated with such
provider’s content) and/or if an end user desires a new
source of such credit, the end user may request credit from
the repository clearinghouse system 3302B. If an end user is
approved for credit, the repository may extend credit in the
form of credit amounts (e.g. recorded in one or more UDEs)
associated with a budget method managed by the repository.
Periodically, usage information associated with such a bud-
get method is transmitted by the end user to the audit system
of the repository. After such a transmission (but potentially
before the connection is terminated), an amount owing is
recorded for processing by the billing system, and in accor-
dance with the repository’s business practices, the amount of
credit available for use by the end user may be replenished
in the same or subsequent transmission. In this example, the
clearinghouse of the repository supports a billing system
with a paper system for resolving amounts owed through the
mail, a credit card system for resolving amounts owed
through charges to one or more credit cards, and an elec-
tronic funds transfer system for resolving such amounts
through direct debits to a bank account. The repository may
automatically make payments determined by the disburse-
ment system for monies owed to authors through use of
similar means. Additional detail regarding the audit process
is provided below.

As indicated above, end users 3310 in this example will
periodically contact the VDE repository to transmit content
usage information (e.g. related to consumption of budget,
recording of other usage activities, etc.), replenish their
budgets, modify their account profile, access usage analysis
information, and perform other administrative and informa-
tion exchange activities. In some cases, an end user may
wish to contact the repository to obtain additional control
structures. For example, if an end user has requested and
obtained a VDE content container from the repository, that
container is typically shipped to the end user along with
control structures appropriate to the content, the author’s
requirements and account profile, the end user’s account
profile, the content catalog 3322, and/or the circumstances
of the delivery (e.g. the first delivery from a particular
author, a subscription, a marketing promotion, presence
and/or absence of certain advertising materials, requests
formulated on behalf of the user by the user’s local VDE

Page 00297

Page 00298

5,915,019

291

instance, etc.) Even though, in this example, the repository
may have attempted to deliver all relevant control structures,
some containers may include controls structures that allow
for options that the end user did not anticipate exercising
(and the other criteria did not automatically select for
inclusion in the container) that the end user nonetheless
determines that they would like to exercise. In this case, the
end user may wish to contact the repository and request any
additional control information (including, for example, con-
trol structures) that they will need in order to make use of the
content under such option.

For example, if an end user has obtained a VDE content
container with an overall control structure that includes an

option that records of the number of times that certain types
of accesses are made to the container and further bases usage
fees on the number of such accesses, and another option
within the overall control structure allows the end user to

base the fees paid for access to a particular container based
on the length of time spent using the content of the container,
and the end user did not originally receive controls that
would support this latter form of usage, the repository may
deliver such controls at a later time and when requested by
the user. In another example, an author may have made
changes to their control structures (e.g. to reflect a sale, a
new discounting model, a modified business strategy, etc.)
which a user may or must receive in order to use the content
container with the changed control structures. For example,
one or more control structures associated with a certain VDE

content container may require a “refresh” for continued
authorization to employ such structures, or the control
structures may expire this allows (if desired) a VDE content
provider to periodically modify and/or add to VDE control
information at an end user’s site (employing the local VDE
secure subsystem).

Audit information (related to usage of content received
from the repository) in this example is securely received
from end users 3310 by the receipt system 3362 of the
clearinghouse. As indicated above, this system may process
the audit information and pass some or all of the output of
such a process to the billing system and/or transmit such
output to appropriate content authors. Such passing of audit
information employs secure VDE pathway of reporting
information handling techniques. Audit information may
also be passed to the analysis system in order to produce
analysis results related to end user content usage for use by
the end user, the repository, third party market researchers,
and/or one or more authors. Analysis results may be based
on a single audit transmission, a portion of an audit
transmission, a collection of audit transmissions from a
single end user and/or multiple end users 3310, or some
combination of audit transmissions based on the subject of
analysis (e.g. usage patterns for a given content element or
collection of elements, usage of certain categories of
content, payment histories, demographic usage patterns,
etc.) The response system 3364 is used to send information
to the end user to, for example, replenish a budget, deliver
usage controls, update permissions information, and to
transmit certain other information and/or messages
requested and/or required by an end user in the course of
their interaction with the clearinghouse. During the course
of an end user’s connections and transmissions to and from

the clearinghouse, certain transactions (e.g. time, date, and/
or purpose of a connection and/or transmission) may be
recorded by the transaction system of the audit system to
reflect requirements of the repository and/or authors.

Certain audit information may be transmitted to authors.
For example, author 3306A may require that certain infor-

10

15

20

25

30

35

40

45

50

55

60

65

292

mation gathered from an end user be transmitted to author
3306A with no processing by the audit system. In this case,
the fact of the transmission may be recorded by the audit
system, but author 3306A may have elected to perform their
own usage analysis rather than (or in addition to) permitting
the repository to access, otherwise process and/or otherwise
use this information. The repository in this example may
provide author 3306A with some of the usage information
related to the repository’s budget method received from one
or more end users 3310 and generated by the payment of
fees associated with such users’ usage of content provided
by author 3306A. In this case, author 3306A may be able to
compare certain usage information related to content with
the usage information related to the repository’s budget
method for the content to analyze patterns of usage (e.g. to
analyze usage in light of fees, detect possible fraud, generate
user profile information, etc.) Any usage fees collected by
the clearinghouse associated with author 3306A’s content
that are due to author 3306A will be determined by the
disbursement system of the clearinghouse. The disburse-
ment system may include usage information (in complete or
summary for) with any payments to author 3306A resulting
from such a determination. Such payments and information
reporting may be an entirely automated sequence of pro-
cesses occurring within the VDE pathway from end user
VDE secure subsystems, to the clearinghouse secure
subsystem, to the author’s secure subsystem.

In this example, end users 3310 may transmit VDE
permissions and/or other control information to the reposi-
tory 3302 permitting and/or denying access to usage infor-
mation collected by the audit system for use by the analysis
system. This, in part, may help ensure end user’s privacy
rights as it relates to the usage of such information. Some
containers may require, as an aspect of their control
structures, that an end user make usage information avail-
able for analysis purposes. Other containers may give an end
user the option of either allowing the usage information to
be used for analysis, or denying some or all such uses of
such information. Some users may elect to allow analysis of
certain information, and deny this permission for other
information. End users 3310 in this example may, for
example, elect to limit the granularity of information that
may be used for analysis purposes (e.g. an end user may
allow analysis of the number of movies viewed in a time
period but disallow use of specific titles, an end user may
allow release of their ZIP code for demographic analysis, but
disallow use of their name and address, etc.) Authors and/or
the repository 3302 may, for example, choose to charge end
users 3310 smaller fees if they agree to release certain usage
information for analysis purposes.

In this example, the repository 3302 may receive content
produced by more than one author. For example, author B,
author C, and author D may each create portions of content
that will be delivered to end users 3310 in a single container.
For example, author B may produce a reference work.
Author C may produce a commentary on author B’s refer-
ence work, and author D may produce a set of illustrations
for author B’s reference work and author C’s commentary.
Author B may collect together author Cs and author D’s
content and add further content (e.g. the reference work
described above) and include such content in a single
container which is then transmitted to the repository 3302.
Alternatively, each of the authors may transmit their works
to the repository 3302 independently, with an indication that
a template should be used to combine their respective works
prior to shipping a container to an end user. Still
alternatively, a container reflecting the overall content struc-

Page 00298

Page 00299

5,915,019

293

ture may be transmitted to the repository 3302 and some or
all of the content may be referenced in the content references
rather than delivered to the repository 3302 for storage in
content storage.

When an end user makes use of container content, their
content usage information may, for example, be segregated
in accordance with control structures that organize usage
information based at least in part on the author who created
that segment. Alternatively, the authors and/or the VDE
repository 3302 may negotiate one or more other techniques
for securely dividing and/or sharing usage information in
accordance with VDE control information. Furthermore,
control structures associated with a container may imple-
ment models that differentiate any usage fees associated
with portions of content based on usage of particular
portions, overall usage of the container, particular patterns of
usage, or other mechanism negotiated (or otherwise agreed
to) by the authors. Reports of usage information, analysis
results, disbursements, and other clearinghouse processes
may also be generated in a manner that reflects agreements
reached by repository 3302 participants (authors, end users
3310 and/or the repository 3302) with respect to such
processes. These agreements may be the result of a VDE
control information negotiation amongst these participants.

In this example, one type of author is a publisher 3308.
The publisher 3308 in this example communicates over an
“internal” network with a VDE based local repository 3302
and over the network described above with the public
repository 3302. The publisher 3308 may create or otherwise
provide content and/or VDE control structure templates that
are delivered to the local repository 3302 for use by other
participants who have access to the “internal” network.
These templates may be used to describe the structure of
containers, and may further describe whom in the publisher
3308’s organization may take which actions with respect to
the content created within the organization related to pub-
lication for delivery to (and/or referencing by) the repository
3302. For example, the publisher 3308 may decide (and
control by use of said temple) that a periodical publication
will have a certain format with respect to the structure of its
content and the types of information that may be included
(e.g. text, graphics, multimedia presentations,
advertisements, etc.), the relative location and/or order of
presentation of its content, the length of certain segments,
etc. Furthermore, the publisher 3308 may, for example,
determine (through distribution of appropriate permissions)
that the publication editor is the only party that may grant
permissions to write into the container, and that the organi-
zation librarian is the only party that may index and/or
abstract the content. In addition, the publisher 3308 may, for
example, allow only certain one or more parties to finalize
a container for delivery to the repository 3302 in usable form
(e.g. by maintaining control over the type of permissions,
including distribution permissions, that may be required by
the repository 3302 to perform subsequent distribution
activities related to repository end users 3310).

In this example, author 3306E is connected directly to the
publisher 3308, such that the publisher 3308 can provide
templates for that author that establish the character of
containers for author 3306E’s content. For example, if
author 3306E creates books for distribution by the publisher
3308, the publisher 3308 may define the VDE control
structure template which provides control method options
for author 3306E to select from and which provides VDE
control structures for securely distributing author 3306E’s
works. Author 3306E and the publisher 3308 may employ
VDE negotiations for the template characteristics, specific

10

15

20

25

30

35

40

45

50

55

60

65

294

control structures, and/or parameter data used by author
3306E. Author 3306E may then use the template(s) to create
control structures for their content containers. The publisher
3308 may then deliver these works to the repository 3302
under a VDE extended agreement comprising electronic
agreements between author 3306E and the publisher 3308
and the repository 3302 and the publisher 3308.

In this example, the publisher 3308 may also make author
3306E’s work available on the local repository 3302. The
editor may authorize (e.g. through distribution of appropri-
ate permissions) author F to create certain portions of
content for a publication. In this example, the editor may
review and/or modify author F’s work and further include it
in a container with content provided by author 3306E
(available on the local repository 3302). The editor may or
may not have permissions from the publisher 3308 to
modify author 3306E’s content (depending on any
negotiations) that may have occurred between the publisher
3308 and author 3306E, and the publisher 3308’s decision to
extend such rights to the editor if permissions to modify
author 3306E’s content are held in redistributable form by
the publisher 3308). The editor may also include content
from other authors by (a) using a process of granting
permissions to authors to write directly into the containers
and/or (b) retrieving containers from the local repository
3302 for inclusion. The local repository 3302 may also be
used for other material used by the publisher 3308’s orga-
nization (e.g. databases, other reference works, internal
documents, draft works for review, training videos, etc.),
such material may, given appropriate permissions, be
employed in VDE container collections of content created
by the editor.

The librarian in this example has responsibility for build-
ing and/or editing inverted indexes, keyword lists (e.g. from
a restricted vocabulary), abstracts of content, revision
histories, etc. The publisher 3308 may, for example, grant
permissions to only the librarian for creating this type of
content. The publisher 3308 may further require that this
building and/or editing occur prior to release of content to
the repository 3302.

EXAMPLE

Evolution and Transformation of VDE Managed
Content and Control Information

The VDE content control architecture allows content

control information (such as control information for gov-
erning content usage) to be shaped to conform to VDE
control information requirements of multiple parties. For-
mulating such multiple party content control information
normally involves securely deriving control information
from control information securely contributed by parties
who play a role in a content handling and control model (e.g.
content creator(s), provider(s), user(s), clearinghouse(s),
etc.). Multiple party control information may be necessary in
order to combine multiple pieces of independently managed
VDE content into a single VDE container object
(particularly if such independently managed content pieces
have differing, for example conflicting, content control
information). Such secure combination of VDE managed
pieces of content will frequently require VDE’s ability to
securely derive content control information which accom-
modates the control information requirements, including any
combinatorial rules, of the respective VDE managed pieces
of content and reflects an acceptable agreement between
such plural control information sets.

The combination of VDE managed content pieces may
result in a VDE managed composite of content. Combining

Page 00299

Page 00300

5,915,019

295

VDE managed content must be carried out in accordance
with relevant content control information associated with

said content pieces and processed through the use of one or
more secure VDE sub-system PPEs 650. VDE’s ability to
support the embedding, or otherwise combining, of VDE
managed content pieces, so as to create a combination
product comprised of various pieces of VDE content,
enables VDE content providers to optimize their VDE
electronic content products. The combining of VDE man-
aged content pieces may result in a VDE content container
which “holds” consolidated content and/or concomitant,
separate, nested VDE content containers.

VDE’s support for creation of content containers holding
distinct pieces of VDE content portions that were previously
managed separately allows VDE content providers to
develop products whose content control information reflects
value propositions consistent with the objectives of the
providers of content pieces, and further are consistent with
the objectives of a content aggregator who may be produc-
ing a certain content combination as a product for commer-
cial distribution. For example, a content product “launched”
by a certain content provider into a commercial channel
(such as a network repository) may be incorporated by
different content providers and/or end-users into VDE con-
tent containers (so long as such incorporation is allowed by
the launched product’s content control information). These
different content providers and/or end-users may, for
example, submit differing control information for regulating
use of such content. They may also combine in different
combinations a certain portion of launched content with
content received from other parties (and/or produced by
themselves) to produce different content collections, given
appropriate authorizations.

VDE thus enables copies of a given piece of VDE
managed content to be securely combined into differing
consolidations of content, each of which reflects a product
strategy of a different VDE content aggregator. VDE’s
content aggregation capability will result in a wider range of
competitive electronic content products which offer differing
overall collections of content and may employ differing
content control information for content that may be common
to such multiple products. Importantly, VDE securely and
flexibly supports editing the content in, extracting content
from, embedding content into, and otherwise shaping the
content composition of, VDE content containers. Such capa-
bilities allow VDE supported product models to evolve by
progressively reflecting the requirements of “next” partici-
pants in an electronic commercial model. As a result, a given
piece of VDE managed content, as it moves through path-
ways of handling and branching, can participate in many
different content container and content control information
commercial models.

VDE content, and the electronic agreements associated
with said content, can be employed and progressively
manipulated in commercial ways which reflect traditional
business practices for non-electronic products (though VDE
supports greater flexibility and efficiency compared with
most of such traditional models). Limited only by the VDE
control information employed by content creators, other
providers, and other pathway of handling and control
participants, VDE allows a “natural” and unhindered flow
of, and creation of, electronic content product models. VDE
provides for this flow of VDE products and services through
a network of creators, providers, and users who successively
and securely shape and reshape product composition
through content combining, extracting, and editing within a
Virtual Distribution Environment.

10

15

20

25

30

35

40

45

50

55

60

65

296

VDE provides means to securely combine content pro-
vided at different times, by differing sources, and/or repre-
senting differing content types. These types, timings, and/or
different sources of content can be employed to form a
complex array of content within a VDE content container.
For example, a VDE content container may contain a
plurality of different content container objects, each con-
taining different content whose usage can be controlled, at
least in part, by its own container’s set of VDE content
control information.

A VDE content container object may, through the use of
a secure VDE sub-system, be “safely” embedded within a
“parent” VDE content container. This embedding process
may involve the creation of an embedded object, or,
alternatively, the containing, within a VDE content
container, of a previously independent and now embedded
object by, at minimum, appropriately referencing said object
as to its location.

An embedded content object within a parent VDE content
container:

(1) may have been a previously created VDE content
container which has been embedded into a parent VDE
content container by securely transforming it from an
independent to an embedded object through the secure
processing of one or more VDE component assemblies
within a VDE secure sub-system PPE 650. In this
instance, an embedded object may be subject to content
control information, including one or more permissions
records associated with the parent container, but may
not, for example, have its own content control infor-
mation other than content identification information, or
the embedded object may be more extensively con-
trolled by its own content control information (e.g.
permissions records).

(2) may include content which was extracted from another
VDE content container (along with content control
information, as may be applicable) for inclusion into a
parent VDE content container in the form of an embed-
ded VDE content container object. In this case, said
extraction and embedding may use one or more VDE
processes which run securely within a VDE secure
sub-system PPE 650 and which may securely remove
(or copy) the desired content from a source VDE
content container and place such content in a new or
existing container object, either of which may be or
become embedded into a parent VDE content con-
tainer.

(3) may include content which was first created and then
placed in a VDE content container object. Said receiv-
ing container may already be embedded in a parent
VDE content container and may already contain other
content. The container in which such content is placed
may be specified using a VDE aware application which
interacts with content and a secure VDE subsystem to
securely create such VDE container and place such
content therein followed by securely embedding such
container into the destination, parent container.
Alternatively, content may be specified without the use
of a VDE aware application, and then manipulated
using a VDE aware application in order to manage
movement of the content into a VDE content container.

Such an application may be a VDE aware word
processor, desktop and/or multimedia publishing
package, graphics and/or presentation package, etc. It
may also be an operating system function (e.g. part of
a VDE aware operating system or mini-application

Page 00300

Page 00301

5,915,019

297

operating with an O/S such as a Microsoft Windows
compatible object packaging application) and move-
ment of content from “outside” VDE to within a VDE

object may, for example, be based on a “drag and drop”
metaphor that involves “dragging” a file to a VDE
container object using a pointing device such as a
mouse. Alternatively, a user may “cut” a portion of
content and “paste” such a portion into a VDE con-
tainer by first placing content into a “clipboard,” then
selecting a target content object and pasting the content
into such an object. Such processes may, at the direc-
tion of VDE content control information and under the

control of a VDE secure subsystem, put the content
automatically at some position in the target object, such
as at the end of the object or in a portion of the object
that corresponds to an identifier carried by or with the
content such as a field identifier, or the embedding
process might pop-up a user interface that allows a user
to browse a target object’s contents and/or table of
contents and/or other directories, indexes, etc. Such
processes may further allow a user to make certain
decisions concerning VDE content control information
(budgets limiting use, reporting pathway(s), usage reg-
istration requirements, etc.) to be applied to such
embedded content and/or may involve selecting the
specific location for embedding the content, all such
processes to be performed as transparently as practical
for the application.

(4) may be accessed in conjunction with one or more
operating system utilities for object embedding and
linking, such as utilities conforming to the Microsoft
OLE standard.

In this case, a VDE container may be associated with an
OLE “link.” Accesses (including reading content from, and
writing content to) to a VDE protected container may be
passed from an OLE aware application to a VDE aware OLE
application that accesses protected content in conjunction
with control information associated with such content.

A VDE aware application may also interact with compo-
nent assemblies within a PPE to allow direct editing of the
content of a VDE container, whether the content is in a
parent or embedded VDE content container. This may
include the use of a VDE aware word processor, for
example, to directly edit (add to, delete, or otherwise
modify) a VDE container’s content. The secure VDE pro-
cesses underlying VDE container content editing may be
largely or entirely transparent to the editor (user) and may
transparently enable the editor to securely browse through
(using a VDE aware application) some or all of the contents
of, and securely modify one or more of the VDE content
containers embedded in, a VDE content container hierarchy.

The embedding processes for all VDE embedded content
containers normally involves securely identifying the appro-
priate content control information for the embedded content.
For example, VDE content control information for a VDE
installation and/or a VDE content container may securely,
and transparently to an embedder (user), apply the same
content control information to edited (such as modified or
additional) container content as is applied to one or more
portions (including all, for example) of previously “in place”
content of said container and/or securely apply control
information generated through a VDE control information
negotiation between control sets, and/or it may apply control
information previously applied to said content. Application
of control information may occur regardless of whether the
edited content is in a parent or embedded container. This
same capability of securely applying content control infor-

10

15

20

25

30

35

40

45

50

55

60

65

298

mation (which may be automatically and/or transparently
applied), may also be employed with content that is embed-
ded into a VDE container through extracting and embedding
content, or through the moving, or copying and embedding,
of VDE container objects. Application of content control
information normally occurs securely within one or more
VDE secure sub-system PPEs 650. This process may
employ a VDE template that enables a user, through easy to
use GUI user interface tools, to specify VDE content control
information for certain or all embedded content, and which
may include menu driven, user selectable and/or definable
options, such as picking amongst alternative control meth-
ods (e.g. between different forms of metering) which may be
represented by different icons picturing (symbolizing) dif-
ferent control functions and apply such functions to an
increment of VDE secured content, such as an embedded
object listed on an object directory display.

Extracting content from a VDE content container, or
editing or otherwise creating VDE content with a VDE
aware application, provides content which may be placed
within a new VDE content container object for embedding
into said parent VDE container, or such content may be
directly placed into a previously existing content container.
All of these processes may be managed by processing VDE
content control information within one or more VDE instal-

lation secure sub-systems.
VDE content container objects may be embedded in a

parent object through control information referenced by a
parent object permissions record that resolves said embed-
ded obj ect’s location and/or contents. In this case, little or no
change to the embedded obj ect’s previously existing content
control information may be required. VDE securely man-
aged content which is relocated to a certain VDE content
container may be relocated through the use of VDE sub-
system secure processes which may, for example, continue
to maintain relocated content as encrypted or otherwise
protected (e.g. by secure tamper resistant barrier 502) during
a relocation/embedding process.

Embedded content (and/or content objects) may have
been contributed by different parties and may be integrated
into a VDE container through a VDE content and content
control information integration process securely managed
through the use of one or more secure VDE subsystems. This
process may, for example, involve one or more of:

(1.) securely applying instructions controlling the embed-
ding and/or use of said submitted content, wherein said
instructions were securely put in place, at least in part,
by a content provider and/or user of said VDE con-
tainer. For example, said user and/or provider may
interact with one or more user interfaces offering a
selection of content embedding and/or control options
(e.g. in the form of a VDE template). Such options may
include which, and/or whether, one or more controls
should be applied to one or more portions of said
content and/or the entry of content control parameter
data (such a time period before which said content may
not be used, cost of use of content, and/or pricing
discount control parameters such as software program
suite sale discounting). Once required and/or optional
content control information is established by a provider
an/or user, it may function as content control informa-
tion which may be, in part or in full, applied automati-
cally to certain, or all, content which is embedded in a
VDE content container.

(2.) secure VDE managed negotiation activities, including
the use of a user interface interaction between a user at

a receiving VDE installation and VDE content control

Page 00301

Page 00302

5,915,019

299

information associated with the content being submit-
ted for embedding. For example, such associated con-
trol information may propose certain content informa-
tion and the content receiver may, for example, accept,
select from a plurality, reject, offer alternative control
information, and/or apply conditions to the use of
certain content control information (for example,
accept a certain one or more controls if said content is
used by a certain one or more users and/or if the volume
of usage of certain content exceeds a certain level).

(3.) a secure, automated, VDE electronic negotiation
process involving VDE content control information of
the receiving VDE content container and/or VDE
installation and content control information associated

with the submitted content (such as control information
in a permissions record of a contributed VDE object,
certain component assemblies, parameter data in one or
more UDEs and/or MDES, etc.).

Content embedded into a VDE content container may be
embedded in the form of:

(1.) content that is directly, securely integrated into pre-
viously existing content of a VDE content container
(said container may be a parent or embedded content
container) without the formation of a new container
object. Content control information associated with
said content after embedding must be consistent with
any pre-embedding content control information
controlling, at least in part, the establishment of control
information required after embedding. Content control
information for such directly integrated, embedded
content may be integrated into, and/or otherwise com-
prise a portion of, control information (e.g. in one or
more permissions records containing content control
information) for said VDE container, and/or

(2.) content that is integrated into said container in one or
more objects which are nested within said VDE content
container object. In this instance, control information
for said content may be carried by either the content
control information for the parent VDE content
container, or it may, for example, be in part or in full
carried by one or more permissions records contained
within and/or specifically associated with one or more
content containing nested VDE objects. Such nesting of
VDE content containing objects within a parent VDE
content container may employ a number of levels, that
is a VDE content container nested in a VDE content

container may itself contain one or more nested VDE
content containers.

VDE content containers may have a nested structure
comprising one or more nested containers (objects) that may
themselves store further containers and/or one or more types
of content, for example, text, images, audio, and/or any other
type of electronic information (object content may be speci-
fied by content control information referencing, for example,
byte offset locations on storage media). Such content may be
stored, communicated, and/or used in stream (such as
dynamically accumulating and/or flowing) and/or static
(fixed, such as predefined, complete file) form. Such content
may be derived by extracting a subset of the content of one
or more VDE content containers to directly produce one or
more resulting VDE content containers. VDE securely man-
aged content (e.g. through the use of a VDE aware appli-
cation or operating system having extraction capability) may
be identified for extraction from each of one or more
locations within one or more VDE content containers and

may then be securely embedded into a new or existing VDE
content container through processes executing VDE controls

10

15

20

25

30

35

40

45

50

55

60

65

300

in a secure subsystem PPE 650. Such extraction and embed-
ding (VDE “exporting”) involves securely protecting,
including securely executing, the VDE exporting processes.

AVDE activity related to VDE exporting and embedding
involves performing one or more transformations of VDE
content from one secure form to one or more other secure

forms. Such transformation(s) may be performed with or
without moving transformed content to a new VDE content
container (e.g. by component assemblies operating within a
PPE that do not reveal, in unprotected form, the results or
other output of such transforming processes without further
VDE processes governing use of at least a portion of said
content). One example of such a transformation process may
involve performing mathematical transformations and pro-
ducing results, such as mathematical results, while retaining,
none, some, or all of the content information on which said
transformation was performed. Other examples of such
transformations include converting a document format (such
as from a WordPerfect format to a Word for Windows

format, or an SGML document to a Postscript document),
changing a video format (such as a QuickTime video format
to a MPEG video format), performing an artificial intelli-
gence process (such as analyzing text to produce a summary
report), and other processing that derives VDE secured
content from other VDE secured content.

FIG. 79 shows an example of an arrangement of com-
mercial VDE users. The users in this example create,
distribute, redistribute, and use content in a variety of ways.
This example shows how certain aspects of control infor-
mation associated with content may evolve as control infor-
mation passes through a chain of handling and control.
These VDE users and controls are explained in more detail
below.

Creator A in this example creates a VDE container and
provides associated content control information that
includes references (amongst other things) to several
examples of possible “types” of VDE control information. In
order to help illustrate this example, some of the VDE
control information passed to another VDE participant is
grouped into three categories in the following more detailed
discussion: distribution control information, redistribution
control information, and usage control information. In this
example, a fourth category of embedding control informa-
tion can be considered an element of all three of the

preceding categories. Other groupings of control informa-
tion are possible (VDE does not require organizing control
information in this way). The content control information
associated with this example of a container created by
creator A is indicated on FIG. 80 as CA. FIG. 80 further
shows the VDE participants who may receive enabling
control information related to creator A’s VDE content

container. Some of the control information in this example
is explained in more detail below.

Some of the distribution control information (in this
example, control information primarily associated with
creation, modification, and/or use of control information by
distributors) specified by creator A includes: (a) distributors
will compensate creator A for each active user of the content
of the container at the rate of $10 per user per month, (b)
distributors are budgeted such that they may allow no more
than 100 independent users to gain access to such content
(i.e. may create no more than 100 permissions records
reflecting content access rights) without replenishing this
budget, and (c) no distribution rights may be passed on in
enabling control information (e.g. permissions records and
associated component assemblies) created for distribution to
other participants.

Page 00302

Page 00303

5,915,019

301

Some of the content redistribution control information (in
this example, control information produced by a distributor
within the scope permitted by a more senior participant in a
chain of handling and control and passed to user/providers
(in this example, user/distributors) and associated with con-
trols and/or other requirements associated with redistribu-
tion activities by such user/distributors) specified by creator
A includes: (a) a requirement that control information
enabling content access may be redistributed by user/
distributors no more than 2 levels, and further requires that
each redistribution decrease this value by one, such that a
first redistributor is restricted to two levels of redistribution,
and a second redistributor to whom the first redistributor

delivers permissions will be restricted to one additional level
of redistribution, and users receiving permissions from the
second redistributor will be unable to perform further redis-
tribution (such a restriction may be enforced, for example,
by including as one aspect of a VDE control method
associated with creating new permissions a requirement to
invoke one or more methods that: (i) locate the current level
of redistribution stored, for example, as an integer value in
a VDE associated with such one or more methods, (ii)
compare the level of redistribution value to a limiting value,
and (iii) if such level of redistribution value is less than the
limiting value, increment such level of redistribution value
by one before delivering such a VDE to a user as an aspect
of content control information associated with VDE man-

aged content, or fail the process if such value is equal to such
a limiting value), and (b) no other special restrictions are
placed on redistributors.

Some of the usage control information (in this example,
control information that a creator requires a distributor to
provide in control information passed to users and/or user/
distributors) specified by creator A may include, for
example: (a) no moves (a form of distribution explained
elsewhere in this document) of the content are permitted,
and (b) distributors will be required to preserve (at a
minimum) sufficient metering information within usage per-
missions in order to calculate the number of users who have

accessed the container in a month and to prevent further
usage after a rental has expired (e.g. by using a meter
method designed to report access usages to creator A
through a chain of handling and reporting, and/or the use of
expiration dates and/or time-aged encryption keys within a
permissions record or other required control information).

Some of the extracting and/or embedding control infor-
mation specified by creator Ain this example may include a
requirement that no extracting and/or embedding of the
content is or will be permitted by parties in a chain of
handling and control associated with this control
information, except for users who have no redistribution
rights related to such VDE secured content provided by
Creator A. Alternatively, or in addition, as regards different
portions of said content, control information enabling cer-
tain extraction and/or embedding may be provided along
with the redistribution rights described in this example for
use by user/distributors (who may include user content
aggregators, that is they may provide content created by,
and/or received from, different sources so as to create their

own content products).
Distributor A in this example has selected a basic

approach that distributor A prefers when offering enabling
content control information to users and/or user/distributors

that favors rental of content access rights over other
approaches. In this example, some of the control information
provided by creators will permit distributor A to fulfill this
favored approach directly, and other control structures may

10

15

20

25

30

35

40

45

50

55

60

65

302

disallow this favored approach (unless, for example, dis-
tributorA completes a successful VDE negotiation allowing
such an approach and supporting appropriate control
information). Many of the control structures received by
distributor A, in this example, are derived from (and reflect
the results of) a VDE negotiation process in which distribu-
tor A indicates a preference for distribution control infor-
mation that authorizes the creation of usage control infor-
mation reflecting rental based usage rights. Such distribution
control information may allow distributor A to introduce
and/or modify control structures provided by creators in
such a way as to create control information for distribution
to users and/or user/distributors that, in effect, “rent” access
rights. Furthermore, distributor A in this example services
requests from user/distributors for redistribution rights, and
therefore also favors distribution control information nego-
tiated (or otherwise agreed to) with creators that permits
distributor A to include such rights as an aspect of control
information produced by distributor A.

In this example, distributor A and creator A may use VDE
to negotiate (for example, VDE negotiate) for a distribution
relationship. Since in this example creator Ahas produced a
VDE content container and associated control information

that indicates creator A’s desire to receive compensation
based on rental of usage rights, and such control information
further indicates that creator A has placed acceptable restric-
tions in redistribution control information that distributor A

may use to service requests from user/distributors, distribu-
torAmay accept creator A’s distribution control information
without any negotiated changes.

After receiving enabling distribution control information
from creator A, distributor Amay manipulate an application
program to specify some or all of the particulars of usage
control information for users and/or user/distributors

enabled by distributor A (as allowed, or not prevented, by
senior control information). Distributor A may, for example,
determine that a price of $15 per month per user would meet
distributor A’s business objectives with respect to payments
from users for creator A’s container. Distributor A must

specify usage control information that fulfill the require-
ments of the distribution control information given to dis-
tributor A by creator A. For example, distributor A may
include any required expiration dates and/or time-aged
encryption keys in the specification of control information in
accordance with creator A’s requirements. If distributor A
failed to include such information (or to meet other
requirements) in their specification of control information,
the control method(s) referenced in creator A’s permissions
record and securely invoked within a PPE 650 to actually
create this control information would, in this example, fail to
execute in the desired way (e.g. based on checks of proposed
values in certain fields, a requirement that certain methods
be included in permissions, etc.) until acceptable informa-
tion were included in distributor A’s control information

specification.
In this example, user A may have established an account

with distributor A such that user A may receive VDE
managed content usage control information from distributor
A. User A may receive content usage control information
from distributor A to access and use creator A’s content.

Since the usage control information has passed through (and
been added to, and/or modified by) a chain of handling
including distributor A, the usage control information
requested from distributor A to make use of creator A’s
content will, in this example, reflect a composite of control
information from creator A and distributor A. For example,
creator A may have established a meter method that will

Page 00303

Page 00304

5,915,019

303

generate an audit record if a user accesses creator A’s VDE
controlled content container if the user has not previously
accessed the container within the same calendar month (e.g.
by storing the date of the user’s last access in a UDE
associated with an open container event referenced in a
method core of such a meter method and comparing such a
date upon subsequent access to determine if such access has
occurred within the same calendar month). Distributor A
may make use of such a meter method in a control method
(e.g. also created and/or provided by creator A, or created
and/or provided by distributor A) associated with opening
creator A’s container that invokes one or more billing and/or
budget methods created, modified, referenced in one or more
permissions records and/or parameterized by distributorAto
reflect a charge for monthly usage as described above. If
distributor A has specified usage and/or redistribution con-
trol information within the boundaries permitted by creator
A’s senior control information, a new set of control infor-

mation (shown as DA(CA) in FIG. 80) may be associated
with creator A’s VDE content container when control infor-

mation associated with that container by distributor A are
delivered to users and/or user/distributors (user A, user B,
and user/distributor A in this example).

In this example, user A may receive control information
related to creator A’s VDE content container from distribu-

tor A. This control information may represent an extended
agreement between user A and distributor A (e.g. regarding
fees associated with use of content, limited redistribution

rights, etc.) and distributor A and creator A (e.g. regarding
the character, extent, handling, reporting, and/or other
aspects of the use and/or creation of VDE controlled content
usage information and/or content control information
received, for example, by distributor A from creator A, or
vice versa, or in other VDE content usage information
handling). Such an extended agreement is enforced by
processes operating within a secure subsystem of each
participant’s VDE installation. The portion of such an
extended agreement representing control information of
creator A as modified by distributor A in this example is
represented by DA(CA), including, for example, (a) control
structures (e.g. one or more component assemblies, one or
more permissions records, etc.), (b) the recording of usage
information generated in the course of using creator A’s
content in conformance with requirements stated in such
control information, (c) making payments (including auto-
matic electronic credit and/or currency payments “executed”
in response to such usage) as a consequence of such usage
(wherein such consequences may also include electronically,
securely and automatically receiving a bill delivered through
use of VDE, wherein such a bill is derived from said usage),
(d) other actions by user A and/or a VDE secure subsystem
at user A’s VDE installation that are a consequence of such
usage and/or such control information.

In addition to control information DA(CA), user A may
enforce her own control information on her usage of creator
A’s VDE content container (within the limits of senior
content control information). This control information may
include, for example, (a) transaction, session, time based,
and/or other thresholds placed on usage such that if such
thresholds (e.g. quantity limits, for example, self imposed
limits on the amount of expenditure per activity parameter)
are exceeded user A must give explicit approval before
continuing, (b) privacy requirements of user A with respect
to the recording and/or transmission of certain usage related
details relating to user A’s usage of creator A’s content, (c)
backup requirements that userAplaces on herself in order to
help ensure a preservation of value remaining in creator A’s

10

15

20

25

30

35

40

45

50

55

60

65

304
content container and/or local store of electronic credit

and/or currency that might otherwise be lost due to system
failure or other causes. The right to perform in some or all
of these examples of user A’s control information, in some
examples, may be negotiated with distributor A. Other such
user specified control information may be enforced inde-
pendent of any control information received from any con-
tent provider and may be set in relationship to a user’s, or
more generally, a VDE installation’s, control information for
one or more classes, or for all classes, of content and/or
electronic appliance usage. The entire set of VDE control
information that may be in place during user N’s usage of
creator A’s content container is referred to on FIG. 80 as

UA(DA(CA)). This set may represent the control information
originated by creator A, as modified by distributor A, as
further modified by user A, all in accordance with control
information from value chain parties providing more senior
control information, and therefore constitutes, for this
example, a “complete” VDE extended agreement between
user A, distributor A, and creator A regarding creator A’s
VDE content container. User B may, for example, also
receive such control information DA(CA) from distributor A,
and add her own control information in authorized ways to
form the set UB(DA(CA)).

User/distributor A may also receive VDE control infor-
mation from distributorArelated to creator A’s VDE content

container. User/distributor A may, for example, both use
creator A’s content as a user and act as a redistributor of

control information. In this example, control information
DA(CA) both enables and limits these two activities. To the
extent permitted by DA(CA), user/distributor A may create
their own control information based on DA(CA)—UDA(DA
(CA))—that controls both user/distributor A’s usage (in a
manner similar to that described above in connection with

user A and user B), and control information redistributed by
user/distributor A (in a manner similar to that described
above in connection with distributor A). For example, if
user/distributor A redistributes UDA(DA(CA)) to user/
distributor B, user/distributor B may be required to report
certain usage information to user/distributor A that was not
required by either creator Aor distributor A. Alternatively or
in addition, user/distributor B may, for example, agree to pay
user/distributor A a fee to use creator A’s content based on
the number of minutes user/distributor B uses creator A’s

content (rather than the monthly fee charged to user/
distributor Aby distributor A for user/distributor B’s usage).

In this example, user/distributor A may distribute control
information UDA(DA(CA)) to user/distributor B that permits
user/distributor B to further redistribute control information

associated with creator A’s content. User/distributor B may
make a new set of control information UDB(DA(DA(CA))). If
the control information UDA(DA(CA)) permits user/
distributor B to redistribute, the restrictions on redistribution
from creator A in this example will prohibit the set UDB
(UDA(DA(CA))) from including further redistribution rights
(e.g. providing redistribution rights to user B) because the
chain of handling from distributor A to user/distributor A
(distribution) and the continuation of that chain from user/
distributor A to user/distributor B (first level of
redistribution) and the further continuation of that chain to
another user represents two levels of redistribution, and,
therefore, a set UDB(UDA(DA(CA))) may not, in this
example, include further redistribution rights.

As indicated in FIG. 79, user B may employ content from
both user/distributor B and distributorA(amongst others). In
this example, as illustrated in FIG. 80, user B may receive
control information associated with creator A’s content from

Page 00304

Page 00305

5,915,019

305

distributor A and/or user/distributor B. In either case, user B
may be able to establish their own control information on
DA(CA) and/or UDB(UDA(DA(CA))), respectively (if allowed
by such control information. The resulting set(s) of control
information, UB(DA(CA)) and/or UB(UDB(UDA(DA(CA))))
respectively, may represent different control scenarios, each
of which may have benefits for user B. As described in
connection with an earlier example, user B may have
received control information from user/distributor B along a
chain of handling including user/distributor Athat bases fees
on the number of minutes that user B makes use of creator

A’s content (and requiring user/distributor A to pay fees of
$15 per month per user to distributor A regardless of the
amount of usage by user B in a calendar month). This may
be more favorable under some circumstances than the fees

required by a direct use of control information provided by
distributor A, but may also have the disadvantage of an
exhausted chain of redistribution and, for example, further
usage information reporting requirements included in UDB
(UDA(DA(CA))). If the two sets of control information
DA(CA) and UDB(UDA(DA(CA))) permit (e.g. do not require
exclusivity enforced, for example, by using a registration
interval in an object registry used by a secure subsystem of
user B’s VDE installation to prevent deregistration and
reregistration of different sets of control information related
to a certain container (or registration of plural copies of the
same content having different control information and/or
being supplied by different content providers) within a
particular interval of time as an aspect of an extended
agreement for a chain of handling and control reflected in
DA(CA) and/or UDB(UDA(DA(CA)))), user B may have both
sets of control information registered and may make use of
the set that they find preferable under a given usage scenario.

In this example, creator B creates a VDE content con-
tainer and associates a set of VDE control information with

such container indicated in FIG. 81 as CB. FIG. 81 further
shows the VDE participants who may receive enabling
control information related to creator B’s VDE content

container. In this example, control information may indicate
that distributors of creator B’s content: (a) must pay creator
B $0.50 per kilobyte of information decrypted by users
and/or user/distributors authorized by such a distributor, (b)
may allow users and/or user/distributors to embed their
content container in another container while maintaining a
requirement that creator B receive $0.50 per kilobyte of
content decrypted, (c) have no restrictions on the number of
enabling control information sets that may be generated for
users and/or user/distributors, (d) must report information
concerning the number of such distributed control informa-
tion sets at certain time intervals (e.g. at least once per
month), (e) may create control information that allows users
and/or user/distributors to perform up to three moves of their
control information, (f) may allow redistribution of control
information by user/distributors up to three levels of
redistribution, (g) may allow up to one move per user
receiving redistributed control information from a user/
distributor.

In this example, distributor A may request control infor-
mation from creator B that enables distributorA to distribute

control information to users and/or user/distributors that is
associated with the VDE container described above in

connection with creator B. As stated earlier, distributor Ahas
established a business model that favors “rental” of access

rights to users and user/distributors receiving such rights
from distributor A. Creator B’s distribution control infor-

mation in this example does not force a model including
“rental” of rights, but rather bases payment amounts on the

10

15

20

25

30

35

40

45

50

55

60

65

306

quantity of content decrypted by a user or user/distributor. In
this example, distributor A may use VDE to negotiate with
creator B to include a different usage information recording
model allowed by creator B. This model may be based on
including one or more meter methods in control structures
associated with creator B’s container that will record the

number of bytes decrypted by end users, but not charge users
a fee based on such decryptions; rather distributor A
proposes, and creator B’s control information agrees to
allow, a “rental” model to charge users, and determines the
amount of payments to creator B based on information
recorded by the bytes decrypted meter methods and/or
collections of payment from users.

Creator B may, for example, (a) accept such a new control
model with distributor A acting as the auditor (e.g. trusting
a control method associated with processing audit informa-
tion received by distributor A from users of creator B’s
content using a VDE secure subsystem at distributor A’s
site, and further to securely calculate amounts owed by
distributor A to creator B and, for example, making pay-
ments to creator B using a mutually acceptable budget
method managing payments to creator B from credit and/or
currency held by distributor A), (b) accept such a new
control model based on distributor A’s acceptance of a third
party to perform all audit functions associated with this
content, (c) may accept such a model if information asso-
ciated with the one or more meter methods that record the

number of bytes decrypted by users is securely packaged by
distributor B’s VDE secure subsystem and is securely,
employing VDE communications techniques, sent to creator
B in addition to distributor A, and/or (d) other mutually
acceptable conditions. Control information produced by
distributor A based on modifications performed by distribu-
tor A as permitted by C3 are referred to in this example as
Dace).

User A may receive a set of control information DA(CB)
from distributor A. As indicated above in connection with

content received from creator A via a chain of handling
including distributor A, user A may apply their own control
information to the control information DA(CB), to the extent
permitted by DA(CB), to produce a set of control information
UA(DA(CB)). The set of control information DA(CB) may
include one or more meter methods that record the number

of bytes of content from creator B’s container decrypted by
user A (in order to allow correct calculation of amounts
owed by distributor A to creator B for user A’s usage of
creator B’s content in accordance with the control informa-

tion of CB that requires payment of $0.50 per kilobyte of
decrypted information), and a further meter method associ-
ated with recording usage such that distributor Amay gather
sufficient information to securely generate billings associ-
ated with user A’s usage of creator B’s content and based on
a “rental” model (e.g. distributor A may, for example, have
included a meter method that records each calendar month

that user A makes use of creator B’s content, and relates to
further control information that charges user A $10 per
month for each such month during which user A makes use
of such content.)

User/distributor A may receive control information CB
directly from creator B. In this case, creator B may use VDE
to negotiate with user/distributor A and deliver a set of
control information CB that may be the same or differ from
that described above in connection with the distribution

relationship established between creator B and distributor A.
For example, user/distributor A may receive control infor-
mation CB that includes a requirement that user/distributorA
pay creator B for content decrypted by user/distributor A

Page 00305

Page 00306

5,915,019

307

(and any participant receiving distributed and/or redistrib-
uted control information from user/distributor A) at the rate
of $0.50 per kilobyte. As indicated above, user/distributor A
also may receive control information associated with creator
B’s VDE content container from distributor A. In this

example, user/distributor A may have a choice between
paying a “rental” fee through a chain of handling passing
through distributor A, and a fee based on the quantity of
decryption through a chain of handling direct to creator B.
In this case, user/distributorAmay have the ability to choose
to use either or both of CB and DA(CB) As indicated earlier
in connection with a chain of handling including creator A
and distributor A, user/distributor A may apply her own
control information to the extent permitted by C3 and/or
DA(CB) to form the sets of control information UDA(CB) and
UDA(DA(CB)), respectively.

As illustrated in FIG. 81, in this example, user B may
receive control information associated with creator B’s VDE

content container from six different sources: CB directly
from creator B, DA(CB) from distributor A, UDB(TDA(DA
(CB))) and/or UDB(UDA(CB)) from user/distributor B,
DC(CB) from distributor C, and/or DB(DC(CB)) from dis-
tributor B. This represents six chains of handling through
which user B may enter into extended agreements with other
participants in this example. Two of these chains pass
through user/distributor B. Based on a VDE negotiation
between user/distributor B and user B, an extended agree-
ment may be reached (if permitted by control information
governing both parties) that reflects the conditions under
which user B may use one or both sets of control informa-
tion. In this example, two chains of handling and control
may “converge” at user/distributor B, and then pass to user
B (and if control information permits, later diverge once
again based on distribution and/or redistribution by user B).

In this example, creator C produces one or more sets of
control information CC associated with a VDE content
container created by creator C, as shown in FIG. 82. FIG. 82
further shows the VDE participants who may receive
enabling control information related to creator C’s VDE
content container. The content in such a container is, in this
example, organized into a set of text articles. In this example
control information may include one or more component
assemblies that describe the articles within such a container

(e.g. one or more event methods referencing map tables
and/or algorithms that describe the extent of each article).
CC may further include, for example: (a) a requirement that
distributors ensure that creator C receive $1 per article
accessed by users and/or user/distributors, which payment
allows a user to access such an article for a period of no more
than six months (e.g. using a map-type meter method that is
aged once per month, time aged decryption keys, expiration
dates associated with relevant permissions records, etc.), (b)
control information that allows articles from creator C’s
container to be extracted and embedded into another con-

tainer for a one time charge per extract/embed of $10, (c)
prohibits extracted/embedded articles from being
reextracted, (d) permits distributors to create enablinag
control information for up to 1000 users or user/distributors
per month, (e) requires that information regarding the num-
ber of users and user/distributors enabled by a distributor be
reported to creator C at least once per week, (f) permits
distributors to enable users or user/distributors to perform up
to one move of enabling control information, and (g) permits
up to 2 levels of redistribution by user/distributors.

In this example, distributor B may establish a distribution
relationship with creator C. Distributor B in this example
may have established a business model that favors the

10

15

20

25

30

35

40

45

50

55

60

65

308
distribution of control information to users and user/

distributors that bases payments to distributor B based on the
number of accesses performed by such VDE participants. In
this example, distributor B may create a modified set D3(CC)
of enabling control information for distribution to users
and/or user/distributors. This set D3(CC) may, for example,
be based on a negotiation using VDE to establish a fee of
$0.10 per access per user for users and/or user/distributors
who receive control information from distributor B. For

example, if one or more map-type meter methods have been
included in CC to ensure that adequate information may be
gathered from users and/or user/distributors to ensure cor-
rect payments to creator C by distributor B based on CC,
such methods may be preserved in the set D3(CC), and one
or more further meter methods (and any other necessary
control structures such as billing and/or budget methods)
may be included to record each access such that the set
D3(CC) will also ensure that distributor B will receive
payments based on each access.

The client administrator in this example may receive a set
of content control information D3(CC) that differs, for
example, from control information received by user B from
distributor B. For example, the client administrator may use
VDE to negotiate with distributor B to establish a set of
control information for content from all creators for whom

distributor B may provide enabling content control infor-
mation to the client administrator. For example, the client
administrator may receive a set of control information
D3(CC) that rejects the results of a VDE negotiation between
the client administrator and distributor B. The client admin-

istrator may include a set of modifications to DB(CC) and
form a new set CA(DB(CC)) that includes control informa-
tion that may only be available to users and user/distributors
within the same organization as the client administrator (e.g.
coworkers, employees, consultants, etc.) In order to enforce
such an arrangement, CA(DB(CC)) may, for example,
include control structures that examine name services infor-

mation associated with a user or user/distributor during
registration, establish a new budget method administered by
the client administrator and required for use of the content,
etc.

A distributor may provide redistribution rights to a client
administrator which allows said administrator to redistribute

rights to create permissions records for certain content
(redistribute rights to use said content) only within the
administrator’s organization and to no other parties.
Similarly, such administrator may extend such a “limited”
right to redistribute to department and/or other administrator
within his organization such that they may redistribute such
rights to use content based on one or more restricted lists of
individuals and/or classes and/or other groupings of orga-
nization personnel as defined by said administrator. This
VDE capability to limit redistribution to certain one or more
parties and/or classes and/or other groupings of VDE users
and/or installations can be applied to content by any VDE
content provider, so long as such a control is allowed by
senior control information.

User D in this example may receive control information
from either the client administrator and/or user/distributor C.

User/distributor C may, for example, distribute control infor-
mation UDC(CA(DB(CC))) to user D that includes a depart-
mental budget method managed by user/distributor C to
allow user/distributor C to maintain an additional level of

control over the actions of user D. In this case, UDC(CA
(D3(CC))) may include multiple levels of organizational
controls (e.g. controls originating with the client adminis-
trator and further controls originating with user/distributor

Page 00306

Page 00307

5,915,019

309

C) in addition to controls resulting from a commercial
distribution channel. In addition or alternatively, the client
administrator may refuse to distribute certain classes of
control information to user D even if the client administrator

has adequate control information (e.g. control information
distributed to user/distributor C that allows redistribution to

users such as user D) to help ensure that control information
flows through the client administrator’s organization in
accordance with policies, procedures, and/or other admin-
istrative processes.

In this example, user E may receive control information
from the client administrator and/or distributor B. For

example, user E may have an account with distributor B
even though some control information may be received from
the client administrator. In this case, user E may be permitted
to request and receive control information from distributor B
without restriction, or the client administrator may have, as
a matter of organizational policy, control information in
place associated with user E’s electronic appliance that
limits the scope of user E’s interaction with distributor B. In
the latter case, the client administrator may, for example,
have limited user E to registering control information with
the secure subsystem of user B’s electronic appliance that is
not available from the client administrator, is from one or
more certain classes of distributors and/or creators, and/or

has a cost for usage, such as a certain price point (e.g. $50
per hour of usage). Alternatively or in addition, the client
administrator may, for example, limit user E to receiving
control information from distributor B in which user E

receives a more favorable price (or other control information
criteria) than the price (or other criteria) available in control
information from the client administrator.

In this example, creator D may create a VDE content
container that is designed primarily for integration with
other content (e.g. through use of a VDE extracting/
embedding process), for example, content provided by cre-
ator B and creator C. FIG. 83 shows the VDE participants
who may receive enabling control information related a
VDE content container produced by creator D. Control
information associated with creator D’s content (CD in FIG.
83) may include, for example: (a) a requirement that dis-
tributors make payment of either $1.50 per open per user, or
$25 per user for an unlimited number of opens, (b) a
discount of 20% for any user that has previously paid for an
unlimited number of opens for certain other content created
by creator D (e.g. implemented by including one or more
billing methods that analyze a secure database of a users
VDE installation to determine if any of such certain other
containers are registered, and further determines the char-
acter of rights held by a user purchasing rights to this
container), (c) a requirement that distributors report the
number of users and user/distrbutors enabled by control
information produced in accordance with CD after such
number exceeds 1000, (d) a requirement that distributors
limit the number of moves by users and/or user/distributors
to no more than one, (e) a requirement that distributors limit
user/distributors to no more than four levels of

redistribution, and (f) that distributors may create enabling
control information that permits other distributors to create
control information as distributors, but may not pass this
capability to such enabled distributors, and further requires
that audit information associated with use of control infor-

mation by such enabled distributors shall pass directly to
creator D without processing by such enabling distributor
and that creator D shall pay such an enabling distributor 10%
of any payments received by creator D from such an enabled
distributor.

10

15

20

25

30

35

40

45

50

55

60

65

310

In this example, distributor C may receive VDE content
containers from creator B, creator C, and creator D, and
associated sets of control information CB, CC, and CD.
Distributor C may use the embedding control information
and other control information to produce a new container
with two or more VDE objects received from creator B,
creator C, and creator D. In addition or alternatively, dis-
tributor C may create enabling control information for
distribution to users and/or user/distributors (or in the case
of CD, for distributors) for such received containers indi-
vidually. For example, distributor C may create a container
including content portions (e.g. embedded containers) from
creator B, creator C, and creator D in which each such
portion has control information related to its access and use
that records, and allows an auditor to gather, sufficient
information for each such creator to securely and reliably
receive payments from distributor C based on usage activi-
ties related to users and/or user/distributors enabled by
distributor C. Furthermore, distributor C may negotiate
using VDE with some or all of such creators to enable a
model in which distributor C provides overall control infor-
mation for the entire container based on a “uniform” fee (e.g.
calculated per month, per access, from a combined model,
etc.) charged to users and/or user/distributors, while pre-
serving the models of each such creator with respect to
payments due to them by distributor C based on C3, CC,
and/or CD, and, for example, resulting from each of their
differing models for the collection of content usage infor-
mation and any related (e.g. advertising) information.

In this example, distributor B may receive a VDE content
container and associated content control information CE
from creator E as shown in FIG. 83. If CE permits, distribu-
tor B may extract a portion of the content in such a container.
Distributor B may then, for example, embed this portion in
a container received from distributor C that contains an

aggregation of VDE objects created by creator B, creator C,
and creator D. Depending on the particular restrictions
and/or permissions in the sets of control information
received from each creator and distributor C, distributor B
may, for example, be able to embed such an extracted
portion into the container received from distributor C as an
independent VDE object, or directly into content of “in
place” objects from creator B, creator C, and/or creator D.
Alternatively, or in addition, distributor B may, if permitted
by CE, choose to distribute such an extracted portion of
content as an independent VDE object.

User B may, in this example, receive a VDE content
container from distributor C that is comprised of VDE
objects created by creator B, creator C, and creator D. In
addition, user B may receive a VDE content container from
distributor B that contains the same content created by
creator B, creator C, and creator D in addition to one or more
extracted/embedded portions of content created by creator
E. User B may base decisions concerning which of such
containers they choose to use (including which embedded
containers she may wish to use), and under which
circumstances, based on, for example, the character of such
extracted/embedded portions (e.g. multimedia presentations
illustrating potential areas of interest in the remainder of the
content, commentary explaining and/or expositing other
elements of content, related works, improved application
software delivered as an element of content, etc.); the
quality, utility, and/or price (or other attributes of control
information) of such portions; and other considerations
which distinguish the containers and/or content control
information received, in this example, from distributor B
and distributor C.

Page 00307

Page 00308

5,915,019

311

User B may receive content control information from
distributor B for such a VDE content container that permits
user B to add and/or modify content contained therein. User
B may, for example, desire an ability to annotate content in
such a container using a VDE aware word processor or other
applications). If permitted by senior control information,
some or all of the content may be available to user B for
modification and/or additions. In this case, user B is acting
as a VDE creator for added and/or modified content. User B

may, for example, provide new control information for such
content, or may be required (or desire to) make use of
existing control information (or control information
included by senior members of a chain of handling for this
purpose) to manage such content (based on control infor-
mation related to such a container and/or contained objects).

In this example, VDE 100 has been used to enable an
environment including, for example, content distribution,
redistribution, aggregation (extracting and/or embedding),
reaggregation, modification, and usage. The environment in
this example allows competitive models in which both
control information and content may be negotiated for and
have different particulars based on the chain of handling
through which control information and/or content has been
passed. Furthermore, the environment in this example per-
mits content to be added to, and/or modified by, VDE
participants receiving control information that enables such
activities.

EXAMPLE

Content Distribution Through a Content VDE
Chain of Handling

FIG. 84 reflects certain aspects of a relatively simple
model 3400 of VDE content distribution involving several
categories of VDE participants. In this instance, and for
simplicity of reference purposes, various portions of content
are represented as discrete items in the form of VDE content
container objects. One or more of such content portions may
also be integrated together in a single object and may (as
may the contents of any VDE content container object if
allowed by content control information) be extracted in
whole or part by a user. In this example, publishers of
historical/educational multimedia content have created VDE

content containers through the use of content objects avail-
able from three content resources:

a Video Library 3402 product available to Publishers on
optical discs and containing video clip VDE objects
representing various historical situations,

an Internet Repository 3404 which stores history infor-
mation text and picture resources in VDE objects which
are available for downloading to Publishers and other
users, and

an Audio Library 3406, also available on optical discs,
and containing various pieces of musical performances
and vocal performances (for example, historical
narrations) which can be used alone or to accompany
other educational historical materials. The information

provided in library 3402, repository 3404, and library
3406 may be provided to different publishers 3408(a),
3408(b), . . . , 3408(n). Publishers 3408 may, in turn,
provide some or all of the information they obtain to
end users 3410.

In this example, the Video Library 3402 control informa-
tion allows publishers to extract objects from the Video
Library product container and content control information
enabling use of each extracted object during a calendar year

10

15

20

25

30

35

40

45

50

55

60

65

312

if the object has a license cost of $50 or less, and is shorter
than 45 minutes in duration, and 20,000 copies of each of
any other extracted objects, and further requires all video
objects to be VDE fingerprinted upon decryption. The Audio
Library 3404 has established similar controls that match its
business model. The Internet Repository 3406 VDE
containers, including encrypts, selected object content as it
streams out of the Repository in response to an online, user
request to download an object. The Repository 3406 may
fingerprint the identification of the receiving VDE installa-
tion into its content prior to encryption and communication
to a publisher, and may further require user identification
fingerprinting of their content when decrypted by said
Publisher or other content user.

The Publishers 3408 in this example have selected, under
terms and conditions VDE negotiated (or otherwise agreed
to) with the providing resources, various content pieces
which they combine together to form their VDE object
container products for their teacher customers. Publisher
3408(A) has combined vide objects extracted from the
Video Library 3402 (as indicated by circles), text and image
objects extracted from the Internet Repository 3404
(indicated by diamonds), and one musical piece and one
historical narration extracted from the Audio Library 3406
(as indicated by rectangles). Publisher 3408(B) has extracted
a similar array of objects to be combined into his product,
and has further added graphical elements (indicated by a
hexagon) created by Publisher 3408(B) to enhance the
product. Publisher 3408(C) has also created a product by
combining objects from the Internet Repository 3404 and
the Audio Library 3406. In this example, all publisher
products are delivered, on their respective optical discs, in
the form of VDE content container objects with embedded
objects, to a modern high school for installation on the high
school’s computer network.

In this particular example, End-Users 3410 are teachers
who use their VDE node’s secure subsystems to access the
VDE installation on their high school server that supports
the publishers’ products (in an alternative example, the high
school may maintain only a server based VDE installation).
These teachers license the VDE products from one or more
of the publishers and extract desired objects from the VDE
product content containers and either download the
extracted VDE content in the for of VDE content containers

for storage on their classroom computers and/or as appro-
priate and/or efficient. The teachers may store extracted
content in the form of VDE content containers on server

mass storage (and/or if desired and available to an end-user,
and further according to acceptable pricing and/or other
terms and conditions and/or senior content control

information, they may store extracted information in “clear”
unencrypted form on their nodes’ and/or server storage
means). This allows the teachers to play, and/or otherwise
use, the selected portions of said publishers’ products, and as
shown in two instances in this example, add further teacher
and/or student created content to said objects. End-user
3410(2), for example, has selected a video piece 1 received
from Publisher A, who received said object from the Video
Library. End-user 3410(3) has also received a video piece 3
from the same Publisher 3408(A) wherein said piece was
also available to her from Publisher 3408(B), but perhaps
under not as favorable terms and conditions (such as a
support consultation telephone line). In addition, end-user
3410(3) has received an audio historical narration from
Publisher 3408(B) which corresponds to the content of
historical reference piece 7. End-user 3410(3) has also
received a corresponding historical reference piece 7 (a

Page 00308

Page 00309

5,915,019

313

book) from publisher 3408(2) who received said book from
the Internet Repository 3404. In this instance, perhaps
publisher 3408(2) charged less for said book because end-
user 3410(3) has also Licensed historical reference piece 7
from him, rather than publisher 3408(1), who also carried the
same book. End-user 3410(3), as a teacher, has selected the
items she considers most appropriate for her classes and,
through use of VDE, has been able to flexibly extract such
items from resources available to her (in this instance,
extracting objects from various optical products provided by
publishers and available on the local high school network
server).

EXAMPLE

Distribution of Content Control Information Within

an Organization

FIG. 85 shows two VDE content containers, Container

300(A) and Container 300(B), that have been distributed to
a VDE Client Administrator 3450 in a large organization. As
shown in the figure, Container 300(A) and Container 300
(B), as they arrive at the corporation, carry certain control
information specifying available usage rights for the orga-
nization. As can be further seen in FIG. 85, the client
administrator 3450 has distributed certain subsets of these

rights to certain department administrators 3452 of her
organization, such as Sales and Marketing Administrator
3452(1), Planning Administrator 3452(2), and Research and
Development Administrator 3452(k). In each instance, the
Client Administrator 3450 has decided which usage options
and how much budget should be made available to each
department.

FIG. 85 is a simplified example and, for example, the
Client Administrator 3450 could have added further VDE

controls created by herself and/or modified and/or deleted in
place controls (if allowed by senior content control
information) and/or (if allowed by control information) she
could have further divided the available monetary budget (or
other budgets) among specific usage activities. In this
example, departmental administrators have the same rights
to determine the rights of departmental end-users as the
client administrator has in regard to departments. In
addition, in this example (but not shown in FIG. 85) the
client administrator 3450 and/or content providers) may also
determine certain control information which must directly
control (including providing rights related to) end-user con-
tent usage and/or the consequences of said usage for all or
certain classes of end-users. In the example shown in FIG.
85, there are only three levels of VDE participants within the
organization:

a Client Administrator 3450,

department administrators 3452, and
end-users 3454.

In other examples, VDE will support many levels of VDE
administration (including overlapping groups) within an
organization (e.g., division, department, project, network,
group, end-users, etc). In addition, administrators in a VDE
model may also themselves be VDE content users.

Within an organization, VDE installations may be at each
end-user 3454 node, only on servers or other multiple user
computers or other electronic appliances, or there may be a
mixed environment. Determination as to the mix of VDE

server and/or node usage may be based on organization
and/or content provider security, performance, cost
overhead, or other considerations.

In this example, communications between VDE partici-
pants in FIG. 85 employs VDE secure communication

10

15

20

25

30

35

40

45

50

55

60

65

314

techniques between VDE secure subsystems supporting
PPEs and other VDE secure system components at each
VDE installation within the organization.

EXAMPLE

Another Content Distribution Example

Creators of VDE protected content may interact with
other VDE participants in many different ways. A VDE
creator 102 may, for example, distribute content and/or
content control information directly to users, distribute
content and/or content control information to commercial

content repositories, distribute content and/or content con-
trol information to corporate content repositories, and/or
distribute content and/or content control information to other

VDE participants. If a creator 102 does not interact directly
with all users of her content, she may transmit distribution
permissions to other VDE participants that permit such
participants to further distribute content and/or content con-
trol information. She may also allow further distribution of
VDE content and/or content control information by, for
example, not restricting redistribution of control
information, or allowing a VDE participant to act as a
“conduit” for one or more permissions records that can be
passed along to another party, wherein said permissions
record provides for including the identification of the first
receiving party and/or the second receiving party.

FIG. 86 shows one possible engagement of VDE partici-
pants. In this example, creator 102 may employ one or more
application software programs and one or more VDE secure
subsystems to place unencrypted content into VDE pro-
tected from (i.e., into one or more VDE content containers).
In addition, creator 102 may produce one or more distribu-
tion permissions 3502 and/or usage permissions 3500 as an
aspect of control information associated with such VDE
protected content. Such distribution and/or usage permis-
sions 3500, 3502 may be the same (e.g., all distribution
permissions may have substantively all the same
characteristics), or they may differ based on the category
and/or class of participant for whom they are produced, the
circumstances under which they are requested and/or
transmitted, changing content control models of either cre-
ator 102 or a recipient, etc.

In this example, creator 102 transmits (e.g., over a
network, via broadcast, and/or through transfer of physical
media) VDE protected content to user 112a, user 112b,
and/or user 1126. In addition, creator 102 transmits, using
VDE secure communications techniques, usage permissions
to such users. User 112a, user 112b, and user 1126 may use
such VDE protected content within the restrictions of con-
trol information specified by usage permissions received
from creator 102. In this case, creator 102 may, for example,
manage all aspects of such users activities related to VDE
protected content transmitted to them by creator 102.
Alternatively, creator 102 may, for example, include refer-
ences to control information that must be available to users

that is not provided by creator 102 (e.g., component assem-
blies managed by another party).

Commercial content repository 200g, in this example,
may receive VDE protected (or otherwise securely
delivered) content and distribution, permissions and/or other
content usage control information from creator 102. Com-
mercial content repository 200g may store content securely
such that users may obtain such, when any required condi-
tions are met, content from the repository 200g. The distri-
bution permissions 3502 may, for example, permit commer-

Page 00309

Page 00310

5,915,019

315

cial content repository 200g to create redistribution
permissions and/or usage permissions 3500, 3502 using a
VDE protected subsystem within certain restrictions
described in content control information received from

creator 102 (e.g., not to exceed a certain number of copies,
requiring certain payments by commercial content reposi-
tory 200g to creator 102, requiring recipients of such per-
missions to meet certain reporting requirements related to
content usage information, etc.). Such content control infor-
mation may be stored at the repository installation and be
applied to unencrypted content as it is transmitted from said
repository in response to a user request, wherein said content
is placed into a VDE container as a step in a secure process
of communicating such content to a user. Redistribution
permissions may, for example, permit a recipient of such
permissions to create a certain number of usage permissions
within certain restrictions (e.g., only to members of the same
household, business other organization, etc.). Repository
200g may, for example, be required by control information
received from creator 102 to gather and report content usage
information from all VDE participants to whom the reposi-
tory has distributed permissions.

In this example, power user 112d may receive VDE
protected content and redistribution permissions from com-
mercial content repository 200g using the desktop computer
3504. Power user 112d may, for example, then use applica-
tion software in conjunction with a secure subsystem of such
desktop computer 3504 in order to produce usage permis-
sions for the desktop computer 3504, laptop computer 3506
and/or settop appliance 3508 (assuming redistribution per-
missions received from commercial content repository 200g
permit such activities). If permitted by senior control infor-
mation (for example, from creator 102 as may be modified
by the repository 200g), power user 112d may add her own
restrictions to such usage permissions (e.g., restricting cer-
tain members of power user 112d’s household using the
settop appliance to certain times of day, amounts of usage,
etc. based on their user identification information). Power
user 112d may then transmit such VDE protected content
and usage permissions to the laptop computer 3506 and the
settop appliance 3508 using VDE secure communications
techniques. In this case, power user 112d has redistributed
permissions from the desktop computer 3504 to the settop
appliance 3508 and the laptop computer 3506, and periodi-
cally the settop appliance and the laptop computer may be
required to report content usage information to the desktop
computer, which in turn may aggregate, and/or otherwise
process, and report user usage information to the repository
200g.

User 1126 and/or user 112fmay receive usage permissions
and VDE protected content from commercial content reposi-
tory 200g. These users may be able to use such content in
ways authorized by such usage information. In contrast to
power user 112d, these users may not have requested and/or
received redistribution permissions from the repository
200g. In this case, these users may still be able to transfer
some or all usage rights to another electronic appliance 600,
and/or they may be permitted to move some of their rights
to another electronic appliance, if such transferring and/or
moving is permitted by the usage permissions received from
the repository 200g. In this case, such other appliances may
be able to report usage information directly to the repository
200g.

In this example, corporate content repository 702 within
corporation 700 may receive VDE protected content and
distribution permissions from creator 102. The distribution
permissions received by corporate repository 702 may, for

10

15

20

25

30

35

40

45

50

55

60

65

316

example, include restrictions that limit repository 702 to
distribution activities within corporation 700.

The repository 702 may, for example, employ an auto-
mated system operating in conjunction with a VDE secure
subsystem to receive and/or transmit VDE protected
content, and/or redistribution and/or usage permissions. In
this case, an automated system may, for example, rely on
criteria defined by corporate policies, departmental policies,
and/or user preferences to determine the character of per-
missions and/or content delivered to various parties
(corporation groups and/or individuals) within corporation
700. Such a system may, for example, automatically produce
redistribution permissions for a departmental content reposi-
tory 704 in response to corporation 700 receiving distribu-
tion permissions from creator 102, and/or produce usage
permissions for user 1121' and/or user 112k.

The departmental repository 704 may automatically pro-
duce usage permissions for user 112g, user 112k, and/or user
1121'. Such users may access content from the corporate
content repository 702, yet receive usage permissions from
departmental repository 704. In this case, user 112g, user
112k, and/or user 1121' may receive usage permissions from
departmental repository 704 that incorporate departmental
restrictions in addition to restrictions imposed by senior
control information (in this example, from creator 102, as
may be modified by corporate repository 702, as may be
further modified by departmental repository 704, that resect
a VDE extended agreement incorporating commercial
requirements of creator 102 and corporation 700 in addition
to corporate and/or departmental policies and agreements
with corporate personnel of corporation 700).

EXAMPLE

“Virtual Silicon Container”

As discussed above, VDE in one example provides a
“virtual silicon container” (“virtual black box”) in that
several different instances of SPU 500 may securely com-
municate together to provide an overall secure hardware
environment that “virtually” exists at multiple locations and
multiple electronic appliances 600. FIG. 87 shows one
model 3600 of a virtual silicon container. This virtual

container model 3600 includes a content creator 102, a
content distributor 106, one or more content redistributors
106a, one or more client administrators 700, one or more
client users 3602, and one or more clearinghouses 116. Each
of these various VDE participants has an electronic appli-
ance 600 including a protected processing environment 655
that may comprise, at least in part, a silicon-based semicon-
ductor hardware element secure processing unit 500. The
various SPUs 500 each encapsulate a part of the virtual
distribution environment, and thus, together form the virtual
silicon container 3600.

EXAMPLE

Testing/Examinations

A scheduled SAT examination for high school seniors is
prepared by the Educational Testing Service. The examina-
tion is placed in a VDE container for scheduled release on
Nov. 15, 1994 at 1:00 PM Eastern Standard time. The SAT
prepares one copy of the container for each school or other
location which will conduct the examination. The school or

other location (“test site”) will be provided with a distributed
examination container securely containing the VDE identi-
fication for the “administration” electronic appliance and/or

Page 00310

Page 00311

5,915,019

317

test administrator at the test site (such as, a testing
organization) and a budget enabling, for example, the cre-
ation of 200 test VDE content containers. Each container

created at the test site may have a permissions record
containing secure identification information for each elec-
tronic appliance 600, on the test site’s network, that will be
used by a test taker, as well as, for example, an identification
for the student who will take the test. The student identifi-

cation could, for example, be in the form of a secure PIN
password which is entered by the student prior to taking the
test (a test monitor or administrator might verify the student
identification by entering in a PIN password). Of course,
identification might the the firm of automated voice
recognition, handwriting recognition (signature
recognition), fingerprint information, eye recognition, or
similar one or more recognition forms which may be used
either to confirm the identity of the test taker (and/or test
monitor/administrator) and/or may be stored with the test
results in a VDE container or the like or in a location pointed
to by certain container information. This identification may
be stored in encrypted or unencrypted form. If stored in
encrypted or otherwise protected form, certain summary
information, such as error correction information, may be
stored with the identification information to authenticate the

associated test as corresponding to the identification.
As the student takes the test using the computer terminal,

the answers selected may be immediately securely stored
(but may be changed by the student during the test session).
Upon the completion of the test, the student’s answers, along
with a reference to the test, are securely stored in a VDE
reporting object which is passed along to the network to the
test administrator and the administration electronic appli-
ance 600. All test objects for all students could then be
placed in a VDE object 300 for communication to the
Educational Testing Service, along with whatever other
relevant information (which may also be secured by VDE
100), including summary information giving average and
mean scores, and other information that might be desirable
to summarize and/or act as an authentication of the test

objects sent. For example, certain information might be sent
separately from each student summary object containing
information which helps validate the object as an “authen-
tic” test object.

Applying VDE to testing scenarios would largely elimi-
nate cheating resulting from access to tests prior to testing
(normally the tests are stolen from a teacher or test
administrator). At ETS, individuals who have access to tests
could be limited to only a portion of the test to eliminate the
risk of the theft of a “whole” test. Employing VDE would
also ensure against processing errors or other manipulation
of test answers, since absolutely authentic test results can be
archived for a reasonable period of time.

Overall, employing VDE 100 for electronic testing will
enable the benefits of electronic testing to be provided
without the substantial risks associated with electronic

storing, communicating, and processing of test materials and
testing results. Electronic testing will provide enormous
efficiency improvements, significantly lowering the cost of
conducting and processing tests by eliminating printing,
shipping, handling, and human processing of tests. At the
same time, electronic testing will allow users to receive a
copy (encrypted or unencrypted) of their test results when
they leave the test sessions. This will help protect the tested
individual against lost of, or improperly processed, test
results. Electronic testing employing VDE 100 may also
ensure that timing related variables of testing (for example
precise starting, duration, and stopping times) can be reli-

10

15

20

25

30

35

40

45

50

55

60

65

318

ably managed. And, of course, proper use of VDE 100 for
the testing process can prevent improper access to test
contents prior to testing and ensure that test taking is
properly audited and authenticated, that is which person
took which test, at which time, on which electronic
appliance, at which location. Retesting due to lost, stolen,
improperly timed, or other variables can be avoided or
eliminated.

VDE assisted testing may, of course, be employed for
many different applications including secure identification
of individuals for security/authentication purposes, for
employment (e.g. applying for jobs) applications, and for a
fill range of evaluation testing. For example, an airline pilot,
or a truck, train, or bus driver might take a test immediately
prior to departure or during travel, with the test evaluating
alertness to test for fatigue, drug use, etc. Acertain test may
have a different order and/or combination of test activities

each time, or each group of times, the test is taken. The test
or a master test might be stored in a VDE container (the
order of, and which, test questions might be determined by
a process executed securely within an PPE 650). The test
responses may be encrypted as they occur and either locally
stored for aggregated (or other test result) transmission or
dynamically transmitted (for example, to a central test
administration computer). If the test taker “flunks” the test,
perhaps he or she is then prevented from operating the
vehicle, either by a local PPE 650 issuing control instruc-
tions to that effect on some portion of the vehicle’s elec-
tronic control system or a local PPE failing to decrypt or
otherwise provide certain key information required for
vehicle operation.

EXAMPLE

Appliance Rental

Through use of the present invention, electronic appli-
ances can be “leased” or otherwise provided to customers
who, rather than purchasing a given appliance for unlimited
usage, may acquire the appliance (such as a VCR, television,
microwave oven, etc.) and be charged according to one or
more aspects of use. For example, the charge for a micro-
wave might be for each time it is used to prepare an item
and/or for the duration of time used. A telephone jack could
be attached, either consistently or periodically, to an inex-
pensive modem operatively attached or within the micro-
wave (the modem might alternatively be located at a loca-
tion which services a plurality of items and/or functions—
such as burglar alarm, light and/or heat control).
Alternatively, such appliances may make use of a network
formed by the power cables in a building to transmit and
receive signals.

At a periodic interval, usage information (in summary
form and/or detailed) could be automatically sent to a
remote information utility that collects information on appli-
ance usage (the utility might service a certain brand, a
certain type of appliance, and/or a collection of brands
and/or types). The usage information would be sent in VDE
form (e.g. as a VDE object 300). The information utility
might then distribute information to financial clearinghouse
(s) if it did not itself perform the billing function, or the
information “belonging” to each appliance manufacturer
and/or lessor (retailer) might be sent to them or to their
agents. In this way a new industry would be enabled of
leased usage of appliances where the leases might be analo-
gous to car leasing.

With VDE installed, appliances could also be managed by
secure identification (PIN, voice or signature recognition,

Page 00311

Page 00312

5,915,019

319

etc.). This might be required each time a unit is used, or on
some periodic basis. Failure to use the secure identification
or use it on a timely basis could disable an appliance if a PPE
650 issued one or more instructions (or failed to decrypt or
otherwise provide certain information critical to appliance
operation) that prevented use of a portion or all of the
appliance’s functions. This feature would greatly reduce the
desirability of stealing an electronic appliance. A further,
allied use of VDE is the “registration” of a VDE secure
subsystem in a given appliance with a VDE secure sub-
system at some control location in a home or business. This
control location might also be responsible for VDE remote
communications and/or centralized administration

(including, for example, restricting your children from view-
ing R rated movies either on television or videocassettes
through the recognition of data indicating that a given
movie, song, channel, game, etc. was R rated and allowing
a parent to restrict viewing or listening). Such a control
location may, for example, also gather information on con-
sumption of water, gas, electricity, telephone usage, etc.
(either through use of PPEs 650 integrated in control means
for measuring and/or controlling such consumption, or
through one or more signals generated by non-VDE systems
and delivered to a VDE secure subsystem, for example, for
processing, usage control (e.g. usage limiting), and/or
billing), transmit such information to one or more utilities,
pay for such consumption using VDE secured electronic
currency and/or credit, etc.

In addition, one or more budgets for usage could be
managed by VDE which would prevent improper, excessive
use of a certain, leased appliance, that might, for example
lead to failure of the appliance, such as making far more
copies using a photocopier than specified by the duty cycle.
Such improper use could result in a message, for example on
a display panel or television screen, or in the form of a
communication from a central clearinghouse, that the user
should upgrade to a more robust model.

While the invention has been described in connection

with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

We claim:

1. A method of operating on a first secure container
arrangement having a first set of controls associated
therewith, said first secure container arrangement at least in
part comprising a first protected content file, said method
comprising the following steps performed within a virtual
distribution environment including at least one electronic
appliance:

using at least one control associated with said first secure
container arrangement for governing, at least in part, at
least one aspect of use of said first protected content file
while said first protected content file is contained in
said first secure container arrangement;

creating a second secure container arrangement having a
second set of controls associated therewith, said second
set of controls governing, at least in part, at least one
aspect of use of any protected content file contained
within said second secure container arrangement;

transferring at least a portion of said first protected
content file to said second secure container

arrangement, said portion made up of at least some of
said first protected content file; and

10

15

20

25

30

35

40

45

50

55

60

65

320

using at least one rule to govern at least one aspect of use
of said first protected content file portion while said
portion is contained within said second secure con-
tainer arrangement;

in which

said first secure container arrangement comprises a third
secure container arrangement comprising a third set of
controls and said first protected content file, and

said first secure container arrangement further comprises
a fourth secure container arrangement comprising a
fourth set of controls and a second protected content
file.

2. A method as in claim 1 in which said step of creating
a second secure container arrangement is governed, at least
in part, by a first subset of controls contained within said first
set of controls.

3. A method as in claim 1 in which said step of creating
a second secure container arrangement includes a step of
creating said second set of controls by copying said third set
of controls.

4. A method as in claim 2 in which said step of creating
a second secure container arrangement is governed in part
by controls contained within said third set of controls.

5. A method as in claim 4 in which said second set of

controls comprises controls copied from said first set of
controls and controls copied from said third set of controls.

6. A method as in claim 5 in which said second set of

controls further comprises controls not copied from either
said first set of controls or said third set of controls.

7. A method as in claim 4 in which said step of creating
a second secure container arrangement is governed in part
by controls not contained within said first set of controls or
said third set of controls.

8. A method of operating on a first secure container
arrangement having a first set of controls associated
therewith, said first secure container arrangement at least in
part comprising a first protected content file, said method
comprising the following steps performed within a virtual
distribution environment including at least one electronic
appliance:

using at least one control associated with said first secure
container arrangement for governing, at least in part, at
least one aspect of use of said first protected content file
while said first protected content file is contained in
said first secure container arrangement;

creating a second secure container arrangement having a
second set of controls associated therewith said second

set of controls governing, at least in part, at least one
aspect of use of any protected content file contained
within said second secure container arrangement;

transferring at least a portion of said first protected
content file to said second secure container arrange-
ment said portion made up of at least some of said first
protected content file; and

using at least one rule to govern at least one aspect of use
of said first protected content file portion while said
portion is contained within said second secure con-
tainer arrangement,

in which said step of creating said second secure container
arrangement occurs at a first site, and said step of
transferring further comprises said second secure con-
tainer arrangement being transferred to a second site
distinct from said first site; and

in which said first site is associated with a content

distributor;
said second site is associated with a user of content; and

Page 00312

Page 00313

5,915,019

321

said user directly or indirectly initiating communication
with said first site;

in which said step of said user directly or indirectly
initiating communication with said first site includes a
step of transmitting a third secure container arrange-
ment to said first site, said third secure container
arrangement comprising a third set of controls.

9. A method as in claim 8 in which said third set of

controls comprises at least a REGISTER control.
10. A method as in claim 8 in which said third set of

controls comprises at least a WANT control.
11. A method as in claim 8 in which said third set of

controls comprises controls specifying content desired by
said user and terms under which said user is willing to obtain
said content.

12. A method as in claim 11 in which said step of creating
said second secure container arrangement is governed, at
least in part, by controls from said first set of controls, and
controls from said third set of controls.

13. A method as in claim 12 in which said second set of

controls comprises controls created through an interaction
between said first set of controls and said third set of
controls.

14. A method as in claim 12 in which said second set of

controls comprises controls copied from said first set of
controls and controls copied from said third set of controls.

15. A method as in claim 13 in which said second set of

controls comprises at least some controls not found in said
first set of controls and said third set of controls.

16. A method as in claim 13 in which said second set of

controls includes controls governing the use by said user of
said first protected content file portion.

17. A method as in claim 16 in which said second set of

controls includes controls governing the price to be paid by
said user for use of said first protected content file portion.

18. A method as in claim 16 in which said second set of

controls includes controls governing the auditing method to
be used in connection with use by said user of said first
protected content file portion.

19. A method as in claim 16 in which said second set of

controls includes controls specifying the clearinghouse to be
used for payment by said user for use of said first protected
content file portion.

20. A method as in claim 16 in which said second set of

controls includes controls specifying information to be pro-
vided by said user in return for use of said first protected
content file portion.

21. A method of operating on a first secure container
arrangement having a first set of controls associated
therewith, said first secure container arrangement at least in
part comprising a first protected content file, said method
comprising the following steps performed within a virtual
distribution environment including at least one electronic
appliance:

using at least one control associated with said first secure
container arrangement for governing, at least in part, at
least one aspect of use of said first protected content file
while said first protected content file is contained in
said first secure container arrangement;

creating a second secure container arrangement having a
second set of controls associated therewith, said second
set of controls governing, at least in part, at least one
aspect of use of any protected content file contained
within said second secure container arrangement;

transferring at least a portion of said first protected
content file to said second secure container

arrangement, said portion made up of at least some of
said first protected content file; and

10

15

20

25

30

35

40

45

50

55

60

65

322

using at least one rule to govern at least one aspect of use
of said first protected content file portion while said
portion is contained within said second secure con-
tainer arrangement,

in which said step of creating said second secure container
arrangement occurs at a first site, and said step of
transferring further comprises said second secure con-
tainer arrangement being transferred to a second site
distinct from said first site; and

in which said first site is associated with a content

distributor;

said second site is associated with a user of content; and

said user directly or indirectly initiating communication
with said first site;

further comprising
establishing a level of compensation required for said

transferring step, and
calling a budget method to establish whether one or

more budgets associated with said user are sufficient
to satisfy said required compensation.

22. A method as in claim 21 further comprising

failing to perform to said step of transferring if said
budget method establishes that said one or more bud-
gets associated with said user are not sufficient to
satisfy said required compensation.

23. A method as in claim 21 in which said budget method
is governed by controls contained in said first set of controls.

24. A method as in claim 21 in which said budget method
is governed by controls contained in said third set of
controls.

25. A method as in claim 23 in which said budget method
is also governed by controls contained in said third set of
controls.

26. A method of operating on a first secure container
arrangement having a first set of controls associated
therewith, said first secure container arrangement at least in
part comprising a first protected content file, said method
comprising the following steps performed within a virtual
distribution environment including at least one electronic
appliance:

using at least one control associated with said first secure
container arrangement for governing, at least in part, at
least one aspect of use of said first protected content file
while said first protected content file is contained in
said first secure container arrangement;

creating a second secure container arrangement having a
second set of controls associated therewith, said second
set of controls governing, at least in part, at least one
aspect of use of any protected content file contained
within said second secure container arrangement;

transferring at least a portion of said first protected
content file to said second secure container

arrangement, said portion made up of at least some of
said first protected content file; and

using at least one rule to govern at least one aspect of use
of said first protected content file portion while said
portion is contained within said second secure con-
tainer arrangement;

in which said steps of transferring at least a portion of said
first protected content file and creating said second
secure container arrangement are governed at least in
part by the same control or set of controls,

in which said first set of controls includes controls which

determine, at least in part, the permitted uses of said
first protected content file while said first protected

Page 00313

Page 00314

5,915,019

323
content file is contained within said first secure con-

tainer arrangement
in which said second set of controls includes controls

which determine, at least in part, the permitted uses of
said transferred portion of said first protected content
file while said transferred portion of said first protected
content file is contained within said second secure

container arrangement
in which said first set of controls includes at least a second

subset of controls which determine, at least in part, the
controls contained in said second set of controls; and

in which said first secure container arrangement further
comprises a third secure container arrangement.

27. A method as in claim 5 in which said creation of said

second secure container arrangement further comprises
using a template which specifies one or more of the controls
contained in said second set of controls.

28. A method as in claim 6 in which said creation of said

second secure container arrangement further comprises
using a template which specifies one or more attributes of
said second secure container arrangement.

29. A method as in claim 7 in which said creation of said

second secure container arrangement further comprises
using a template which specifies one or more of the controls
contained in said second set of controls.

30. An electronic appliance comprising:

a memory storing a first secure container comprising a
first set of rules and a first protected file;

a secure processing unit comprising:
a container creator that creates a second secure con-

tainer comprising a second set of rules;
an extractor that extracts at least a first portion of said

first protected file from said first secure container;
a file transfer arrangement that transfers said first

portion of said first protected file from said first
secure container to said second secure container, said
file transfer arrangement operating under the control
of said first set of rules; and

a control element that uses said second set of rules to

govern at least one operation involving said first
portion of said first protected file while said first
portion is contained in said second secure container;

in which said container creator comprises:
means for copying at least one rule from said first set

of rules; and
means for incorporating said at least one rule in said

second set of rules,

further comprising means by which at least one rule from
said first set of rules governs said container creator,

wherein said memory also stores a third secure container
comprising a third set of rules, said first secure con-
tainer being stored within said third secure container.

31. An electronic appliance as in claim 30 further com-
prising means by which at least one rule from said third set
of rules governs said container creator.

32. An electronic appliance as in claim 31 further com-
prising means by which at least one rule from said third set
of rules is incorporated in said second set of rules.

33. Adata processing arrangement comprising at least one
storing arrangement that at least temporarily stores a first
secure container comprising first protected data and a first
set of rules governing use of said first protected data, and at
least temporarily stores a second secure container compris-
ing second protected data different from said first protected
data and a second set of rules governing use of said second
protected data; and

10

15

20

25

30

35

40

45

50

55

60

65

324

a data transfer arrangement, coupled to at least one storing
arrangement, for transferring at least a portion of said
first protected data and a third set of rules governing use
of said portion of said first protected data to said second
secure container,

further comprising
means for creating and storing, in said at least one

storing arrangement, a third secure container;
said data transfer arrangement further comprising

means for transferring said portion of said first
protected data and said third set of rules to said third
secure container, and means for incorporating said
third secure container within said second secure
container.

34. A data processing arrangement as in claim 33 further
comprising means for applying said third set of rules to
govern at least one aspect of use of said portion of said first
protected data.

35. A data processing arrangement as in claim 34 further
comprising means for applying said second set of rules to
govern at least one aspect of use of said portion of said first
protected data.

36. A method comprising the following steps:
generating a first secure container comprising a first set of

rules and a first protected file;
generating a second secure container comprising a second

set of rules and a second protected file;
transferring a first portion of said first protected file to said

second secure container, said transferring step gov-
erned by said first set of rules and comprising:
copying said first portion,
creating a third set of rules, and
storing said copied first portion and said third set of

rules in said second secure container, and

further comprising:
storing said first secure container in a memory located

at a first site, and storing said second secure con-
tainer in a memory located at a second site remote
from said first site; and

wherein said transferring step further comprises:
creating a third secure container comprising a fourth set

of rules,
storing said third secure container at said second site,
communicating said third secure container from said

second site to said first site,
storing said third secure container at said first site,
transferring said copied first portion of said first pro-

tected file from said first secure container to said

third secure container,
transferring said third set of rules to said third secure

container, and
communicating said third secure container containing

said first portion of said first protected file and said
third set of rules from said first site to said second
site.

37. A method as in claim 36 in which said step of storing
said copied first portion and said third set of rules in said
second secure container further comprises storing said third
secure container in said second secure container.

38. A method as in claim 36 in which said step of storing
said copied first portion and said third set of rules in said
second secure container further comprises:

removing said copied first portion from said third secure
container and transferring said copied first portion to
said second secure container; and

removing said third set of rules from said third secure
container and transferring said third set of rules to said
second secure container.

Page 00314

Page 00315

5,915,019

325

39. A method as in claim 38 in which said step of
transferring said third set of rules to said second secure
container further comprises creating a fourth set of rules.

40. Amethod as in claim 39 further comprising use of said
fourth set of rules to govern at least one aspect of use of said
copied first portion.

41. A method comprising performing the following steps
within a virtual distribution environment comprising one or
more electronic appliances and a first secure container, said
first secure container comprising (a) a first control set, and
(b) a second secure container comprising a second control
set and first protected information:

using at least one control from said first control set or said
second control set to govern at least one aspect of use
of said first protected information while said first
protected information is contained within said first
secure container;

creating a third secure container comprising a third con-
trol set for governing at least one aspect of use of
protected information contained within said third
secure container;

incorporating a first portion of said first protected infor-
mation in said third secure container, said first portion
made up of some or all of said first protected informa-
tion; and

using at least one control to govern at least one aspect of
use of said first portion of said first protected informa-
tion while said first portion is contained within said
third secure container.

42. A method as in claim 41, in which said first secure
container further includes a fourth secure container com-

prising a fourth control set and second protected information
and further comprising the following step:

using at least one control from said first control set or said
fourth control set to govern at least one aspect of use of
said second protected information while said second
protected information is contained within said first
secure container.

43. Amethod as in claim 41, in which said step of creating
a third secure container includes:

creating said third control set by incorporating at least one
control from said first control set.

44. A method as in claim 43, in which said step of
incorporating at least one control from said first control set
is accomplished in a secure manner.

45. Amethod as in claim 41, in which said step of creating
a third secure container includes:

creating said third control set by incorporating at least one
control from said second control set.

46. A method as in claim 45, in which said step of
incorporating at least one control from said second control
set is accomplished in a secure manner.

47. Amethod as in claim 41, in which said step of creating
a third secure container includes:

creating said third control set by incorporating at least one
control not found in said first control set or said second
control set.

48. A method as in claim 47 in which said step of
incorporating at least one control not found in said first
control set or said second control set is accomplished in asecure manner.

49. Amethod as in claim 41, in which said step of creating
a third secure container is governed at least in part by at least
one control contained within said first control set.

50. Amethod as in claim 41, in which said step of creating
a third secure container is governed at least in part by at least
one control contained within said second control set.

10

15

20

25

30

35

40

45

50

55

60

65

326

51. Amethod as in claim 41 in which said step of creating
a third secure container is governed at least in part by at least
one control not contained within said first control set or said
second control set.

52. Amethod as in claim 41 in which said step of creating
a third secure container occurs at a first site, and further
comprising:

copying or transferring said third secure container from
said first site to a second site located remotely from said
first site.

53. A method as in claim 52 in which said first site is
associated with a content distributor.

54. A method as in claim 53 in which said second site is
associated with a user of content.

55. A method as in claim 54 further comprising the
following step:

said user directly or indirectly initiating communication
with said first site.

56. Amethod as in claim 55 in which said step of said user
directly or indirectly initiating communication with said first
site includes

transmitting a fourth secure container to said first site, said
fourth secure container comprising a fourth control set.

57. A method as in claim 56 in which said fourth control
set includes at least a REGISTER control.

58. A method as in claim 56 in which said fourth control
set includes at least a WANT control.

59. A method as in claim 56 in which said fourth control

set includes one or more controls specifying content desired
by said user and terms under which said user is willing to
obtain said content.

60. Amethod as in claim 56 in which said step of creating
said third secure container is governed, at least in part, by at
least one control from said fourth control set.

61. A method as in claim 56 in which said third control set

includes one or more controls created at least in part through
an interaction among said first control set, said second
control set and said fourth control set.

62. A method as in claim 56 in which said third control set

includes at least one control incorporated from said first
control set, one control incorporated from said second
control set and one control incorporated from said fourth
control set.

63. A method as in claim 56 in which said third control set
includes at least one control not found in said first control

set, said second control set or said fourth control set.
64. A method as in claim 54 in which said third control set

includes one or more controls at least in part governing the
use by said user of at least a portion of said first portion of
said first protected information.

65. A method as in claim 64 in which said third control set

includes one or more controls at least in part governing the
price to be paid by said user for use of at least a portion of
said first portion of said first protected information.

66. A method as in claim 64 in which said third control set

includes one or more controls at least in part governing or
specifying an auditing method to be used in connection with
use by said user of at least a portion of said first portion of
said first protected information.

67. A method as in claim 66 wherein at least some

auditing performed in accordance with said auditing method
is performed at said second site.

68. A method as in claim 66 in which said third control set

includes one or more controls at least in part specifying one
or more allowed clearinghouses to receive payment infor-
mation from said user for use of at least a portion of said first
portion of said first protected information.

Page 00315

Page 00316

5,915,019

327
69. A method as in claim 66 in Which said third control set

includes one or more controls at least in part specifying
information to be provided by said user in return for use of
at least a portion of said first portion of said first protected
information.

70. A method as in claim 69 further comprising the step
of:

encrypting at least a portion of said information to be
provided by said user.

71. A method as in claim 52 further comprising

establishing a level of compensation required for at least
one of (a) said copying or transferring step, or (b) at
least one aspect of use at said second site of at least a
portion of said first portion of said first protected
information, and

calling a budget method to establish Whether one or more
budgets associated With said user are sufficient to
satisfy said required compensation.

72. A method as in claim 71 further comprising

blocking said copying or transferring step and/or said at
least one aspect of use if said budget method estab-
lishes that said one or more budgets associated With
said user are not sufficient to satisfy said required
compensation.

73. Amethod as in claim 71 in Which said budget method
is governed at least in part by one or more controls contained
in said first control set.

74. Amethod as in claim 71 in Which said budget method
is governed at least in part by one or more controls contained
in said second control set.

75. Amethod as in claim 74 in Which said budget method
is also governed at least in part by one or more controls
contained in said first control set.

76. A method as in claim 41 in Which said creation of said

third secure container further comprises using a template
Which specifies one or more of the controls contained in said
third control set.

77. A method as in claim 49 in Which said creation of said

third secure container further comprises using a template
Which specifies one or more attributes of said third secure
container.

78. A method as in claim 52 in Which said creation of said

third secure container further comprises using a template
Which specifies one or more of the controls contained in said
third control set.

79. An electronic appliance comprising:

a memory storing:

a first secure container comprising a first rule set and first
protected information, and

a second secure container comprising a second rule set,
said first secure container being stored Within said
second secure container;

a secure processing unit comprising:
means for creating a third secure container comprising

a third rule set, said means further comprising:
means for copying and/or removing at least one rule

from said first rule set or said second rule set; and
means for incorporating said at least one rule in said

third rule set;

means by Which at least one rule from said first rule set or
said second rule set governs, at least in part, said means
for creating a third secure container;

means for extracting at least a first portion of said first
protected information from said first secure container;
and

5

10

15

20

25

30

35

40

45

50

55

60

65

328

means for copying or transferring said first portion of said
first protected information from said first secure con-
tainer to said third secure container;

said means for copying or transferring operating at least
in part under the control of said first rule set and/or said
second rule set.

80. An electronic appliance as in claim 79 further com-
prising means by Which at least one rule from said first or
second rule set is incorporated in said third rule set.

81. A data processing arrangement comprising:
a first secure container comprising first protected infor-

mation and a first rule set governing use of said first
protected information;

a second secure container comprising a second rule set;
means for creating and storing a third secure container;

and

means for copying or transferring at least a portion of said
first protected information and a third rule set govern-
ing use of said portion of said first protected informa-
tion to said second secure container, said means for
copying or transferring comprising:
means for incorporating said third secure container

Within said second secure container.

82. A data processing arrangement as in claim 81 further
comprising:

means for applying at least one rule from said third rule
set to at least in part govern at least one factor related
to use of said portion of said first protected information.

83. A data processing arrangement as in claim 82 further
comprising:

means for applying at least one rule from said second rule
set to at least in part govern at least one factor related
to use of said portion of said first protected information.

84. A data processing arrangement as in claim 82 in
Which:

said third rule set includes at least one rule from said first
rule set.

85. A method comprising the following steps:
creating a first secure container comprising a first rule set

and first protected information;
storing said first secure container in a first memory;
creating a second secure container comprising a second

rule set;

storing said second secure container in a second memory;
copying or transferring at least a first portion of said first

protected information to said second secure container,
said copying or transferring step comprising:
creating a third secure container comprising a third rule

set;

copying said first portion of said first protected infor-
mation;

transferring said copied first portion of said first pro-
tected information to said third secure container; and

copying or transferring said copied first portion of said
first protected information from said third secure
container to said second secure container.

86. A method as in claim 85 wherein said steps of creating
said second secure container, creating said third secure
container, and copying said first portion of said first pro-
tected information, are securely performed by one or more
protected processing environments.

87. A method as in claim 85 in Which said copied first
portion of said first protected information consists of the
entirety of said first protected information.

88. A method as in claim 85 in Which said copied first
portion of said first protected information consists of less
than the entirety of said first protected information.

Page 00316

Page 00317

5,915,019

329
89. A method as in claim 85 in Which

said first memory is located at a first site,

said second memory is located at a second site remote
from said first site, and

said step of copying or transferring said first portion of
said first protected information to said second secure
container further comprises copying or transferring
said third secure container from said first site to said
second site.

90. A method as in claim 85 in Which

said first memory and said second memory are located at
the same site.

91. A method as in claim 90 in Which

said first memory comprises first addressable memory
locations, and

said second memory comprises second addressable
memory locations in the same address space as said
first addressable memory locations.

92. A method as in claim 91 in Which

said first addressable memory locations and said second
addressable memory locations are located Within the
same physical memory device.

93. A method as in claim 85 in Which

said step of copying transferring said copied first portion
of said first protected information from said third
secure container to said second secure container further

comprises storing said third secure container in said
second secure container.

94. A method as in claim 85 further comprising:

creating a fourth rule set.
95. A method as in claim 94 further comprising:

using said fourth rule set to govern at least one aspect of
use of said copied first portion of said first protected
information.

96. A method comprising performing the following steps
Within a virtual distribution environment comprising one or
more electronic appliances and a first secure container, said
first secure container comprising a first control set and first
protected information:

using at least one control from said first control set to
govern at least one aspect of use of said first protected
information While said first protected information is
contained Within said first secure container;

creating a second secure container comprising a second
control set for governing at least one aspect of use of
protected information contained Within said second
secure container;

10

15

20

25

30

35

40

45

330

incorporating a first portion of said first protected infor-
mation in said second secure container, said first por-
tion made up of some or all of said first protected
information;

using at least one control to govern at least one aspect of
use of said first portion of said first protected informa-
tion While said first portion is contained Within said
second secure container; and

incorporating said second secure container containing
said first portion of said first protected information
Within a third secure container comprising a third
control set.

97. An electronic appliance comprising:
a memory storing:

a first secure container comprising a first rule set and
first protected information, and

a second secure container comprising a second rule set;
a secure processing unit comprising:

means for creating a third secure container comprising
a third rule set, said means further comprising:
means for copying and/or removing at least one rule

from said first rule set; and
means for incorporating said at least one rule in said

third rule set;
means by Which at least one rule from said first rule set

governs, at least in part, said means for creating said
third secure container;

means for extracting at least a first portion of said first
protected information from said first secure con-
tainer;

means for copying or transferring said first portion of
said first protected information from said first secure
container to said third secure container;

said means for transferring operating at least in part
under the control of said first rule set and/or said

third rule set; and
means for incorporating said third secure container

Within said second secure container.

98. A method as in claim 1 further comprising
calling a method to govern, at least in part, the creation of

said second set of controls.

99. A method as in claim 1 in Which said first protected
content file includes attribute data.

100. A method as in claim 2 in Which said first protected
content file includes classification data.

101. A method as in claim 3 in Which said first protected
content file comprises attribute data.

Page 00317

