Client-Server Multitasking by # HARVEY LUNENFELD 5 # TABLE OF CONTENTS | | | Table of Contents | . 1 | |-------------------------|----|---|------------| | | | Background of the Invention | . 4 | | | | Field of the Invention | . 4 | | | 10 | Background Art | 4 | | | | Summary | 13 | | | | Drawings | 24 | | | | Description | 11 | | teel had been then then | | I. System | l 1 | | | 15 | A. Overview4 | 1 | |) | | B. Typical Service and/or Information Entry Request Forms | 16 | | | | C. Typical Completed Service and/or Information Entry Request Forms | | | | | D. Typical Service and/or Information Response Forms | | | | | E. Optional Database | | | | 20 | F. Additional Details | | | | | II. A Particular User, User Interface, and Client on the Network | | | | | A. Overview | | | | | | | | | | B. Diagrammatic Regrouping9 | 1 | | | III. A Particular Service and/or Information Request and Associated Service and/ | or | |----|--|-------| | | Information Response on the Network | 99 | | | B. The Server PS (18) | 99 | | | C. Certain Ones of the Clients | 108 | | 5 | D. Formulating Query Information Groups | 119 | | | IV Process | 134 | | | V. Additional Details | 148 | | | A. User Input | 148 | | | B. User Interface Details | 151 | | 10 | C. Service and/or Information Request Details | 162 | | | D. Optional Instructions | 170 | | | E. Communicating the Service and/or Information Requests | 174 | | | F. Parsing, Processing, and/or Formatting the Service and/or Information Rec | uests | | | | 174 | | 15 | G. Formulating the Requests | 177 | | | H. Determining Queries and Servers to Make the Requests Thereof | 182 | | | I. Grouping the Queries and Sorting/Grouping Criteria | 186 | | | J. Communicating the Requests to the Servers | 198 | | | K. Replies from the Servers | 203 | | 20 | L. Parsing, Processing, Formatting, Sorting, Grouping, and Organizing Resp | onses | | | into Service and/or Information Responses | 208 | | | M. Additional Features and/or Other Considerations | 219 | | | Claims | 242 | Abstract 249 ### Client-Server Multitasking by ### HARVEY LUNENFELD 5 ### BACKGROUND OF THE INVENTION #### FIELD OF THE INVENTION The present invention relates generally to clients and servers and more particularly to client-server multitasking. ### BACKGROUND ART 15 Clients, servers, and client-server systems have been known. However there is a need for client-server multitasking. A client-server multitasking system and process are needed, which are capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. A requestor and/or user should be capable of making substantially multiple simultaneous same and/or different requests of same and/or different servers. The client server-multitasking system and process should be capable of organizing responses from the servers into service and/or information responses, and communicating the service and/or information responses to the requestors and/or users substantially simultaneously, and on-the-fly. 5 10 20 The requestors and/or users should be capable of making substantially simultaneous service and/or information requests of the same and/or different ones of servers and/or clients, using the same and/or different queries, and/or the same and/or different instructions. The client-server multitasking system and process should be capable of retrieving substantially multiple simultaneous services and/or information having the same and/or different criteria from the same and/or different servers, sorting, grouping, and/or organizing the responses from the servers and/or the clients into information and/or services responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The same and/or different ones of uniform resource locators, target resources, and/or paths may be used. The requestors and/or the users should be capable of making multiple simultaneous searches. The searches should be capable of having at least one or a plurality of same or different queries of the same and/or different servers and/or clients. The responses from the servers and/or the clients should be capable of being organized into the service and/or information response in a variety of formats. It should be possible to sort the responses within the service and/or information response, such as, for example, by category, query, group, page, order of importance, ascending and/or descending order, alphabetically and/or numerically, or other characteristics, as determined by the requestor, and/or the user, and/or the client-server multitasking system, or to combine the responses within the service and/or information response, such as, for example, interleaving the responses one with the other, such as, for example, by order of relevance or other parameters. The responses should be capable of being grouped by search criteria, server, order of importance, or by numerical factors such as value, price, or other numerical quantifier. For example, the responses should be presentable, for example, in ascending or descending order in interleaved format, such as top ones, twos, threes, and so on, or presentable separately to the requestor and/or the user. The order may be order of importance or relevance related, or, for example, numerically valued, such as price or stock market value. The client-server multitasking system and process should be capable of information and/or service retrieval from the same and/or different ones of the servers substantially simultaneously and on-the-fly, using the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process should be capable of substantially multiple simultaneous searching, using the same and/or different ones of queries of the same and/or different ones of the clients and/or servers, which may be search engines, and/or sites, and/or servers, and/or locations on the network, and additionally and/or alternatively building a client-server multitasking search engine and/or database. The client-server multitasking search engine and/or database should be capable of storing the information and/or services retrieved therefrom the search engines, and/or sites, and/or servers, and/or locations being queried on the network therein, and building the client-server search engine and/or database. The client-server multitasking search engine should also be capable of being queried either directly and/or in combination therewith the substantially simultaneous searching, using the same and/or different queries of the same and/or different search engines, sites, servers, and/or databases. The client-server multitasking search engine and/or database should also be capable of updating information and/or services stored therein by querying sites, servers, search engines, and/or databases containing information and/or services referenced in client-server multitasking search engine and/or database. The client-server multitasking system and process should also be capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks. 15 The client-server multitasking system and process should be capable of substantially simultaneous searching of the same and/or different ones of search engines and/or sites on the network substantially on-the-fly, with the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process should also be capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors, and/or the users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system and process should also be capable drilling down and/or up to different levels within the search engines, sites, and/or servers being queried. The client-server multitasking system and process should be capable of providing manual and/or timed updates. Such timed updates should allow for motion related presentation to the requestor and/or the user. - The client-server multitasking system and process should be capable of incorporating information and/or services thereinto a variety of user interfaces at different locations therein the user interfaces, grouping, and/or organizing the information and/or services, and optionally eliminating duplicate information and/or services. - 15 The client-server multitasking system and process should be capable of incorporating links, graphics, video, text, and audio, and/or combinations thereof, and selective advertising, according to selectable search, query, sorting, and/or grouping criteria, and/or combinations thereof thereinto the information and/or services to be delivered thereto the user interfaces. The user should also be capable of placing orders, such as purchases, and/or other types of orders, payments, confirmations thereof, and/or combinations thereof, either directly and/or therethrough servers and/or sites thereon the network. The client-server multitasking system should be capable of use in a variety of applications, and be capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system should be capable of, for example, determining best
query results, with respect to a plurality of search engine results; purchasing and/or price comparisons, viewing and/or reviewing prices/values and trends for different sites, determining lowest costs and lowest cost analyses for wholesale and retail purposes; product availability, e.g., airline tickets, pricing, and ticket availability, from different airlines to the same and/or different locations; purchasing of commodities and/or stocks form the same and/or different sites with updates every few seconds and/or minutes; obtaining prices and/or values in different stock markets substantially simultaneously; and searching for jobs on the same and/or different job sites, using the same and/or different job criteria, for example, on a daily basis, the job sites having changing job availability; and/or a combination thereof, all substantially simultaneously. The clientserver multitasking system should be capable of presenting information and/or services for review and/or updating from the same and/or different ones of sites, servers, and/or applications substantially simultaneously, and trend analysis thereof, using a variety of sorting, grouping and/or organizing criteria, according to the needs of the requestor, and/or the user, and/or resident within the client-server multitasking system. 20 10 15 A client server-multitasking system and process are needed, which are capable of service and/or information retrieval from at least one server, organization, communication, and presentation of such services and/or information to at least one 15 20 requestor, and/or the user, and/or optional storage, and/or retrieval of such services and/or information from the optional storage. The client-server multitasking system and process should be capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof. The client-server multitasking system search engine and/or database having stored information and/or services therein should also be searchable, be capable of full text searches thereof, and be searchable by the servers and/or the clients on the network, either separately and/or in combination therewith the substantially simultaneous multiple same and/or different searches and/or queries of the same and/or different servers on the network. Information therein the client-server multitasking system search engine and/or database should also be searchable and/or retrievable, and should be capable of being incorporated therein the service and/or information responses delivered thereto the user interfaces, according to search criteria, selectively and/or automatically, by the requestor, and/or the user. The client-server multitasking system search engine and/or database should also be capable of spidering, and/or roboting, and/or querying sites, services and/or information to be stored therein and/or stored therein the client-server multitasking system search engine and/or database, and updating the services and/or information to be stored and/or stored therein the clientserver multitasking system search engine and/or database. The client-server multitasking system and process should be capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating 20 services and/or information therefrom the same and/or different ones of the servers and/or clients having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto user responses for delivery to and use by the requestors and/or users. For the foregoing reasons, there is a need for a client-server multitasking system and process capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries of the same and/or different ones of the servers, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly, and communicating service and/or information responses to the requestors and/or users substantially simultaneously and on-the-fly. The client-server multitasking system and process should be capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and be capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. The client-server multitasking system and process should be capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors, and/or the users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system should also be capable of use in a variety of applications, and capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system and process should also be capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof, be capable of being searched and/or queried, querying sites referenced therein the client-server multitasking system search engine and/or database, and updating information and/or services stored therein. The client-server multitasking system and process should be capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers and/or clients having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto user responses for delivery to and use by the requestors and/or users. 20 #### **SUMMARY** The present invention is directed to a client-server multitasking system and process capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries of the same and/or different ones of the servers, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly, and communicating service and/or information responses to the requestors and/or users substantially simultaneously and on-the-fly. The client-server multitasking system and process is capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and be capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. The client-server multitasking system and process is capable of retrieving substantially multiple simultaneous services and/or information having the same and/or different criteria from the same and/or different servers, sorting, grouping, and/or organizing the responses from the servers and/or the clients into information and/or services responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The requestors and/or the users may make substantially simultaneous service and/or information requests of servers and clients, using the same and/or different queries, and/or the same and/or different instructions. 20 The same and/or different uniform resource locators, target resources, and/or paths may be used. The client-server multitasking system and process is capable of making multiple substantially simultaneous same and/or different requests of same and/or different servers, organizing responses from the servers into service and/or information responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The client-server multitasking system and process is also capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors and/or the users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system is capable of use in a variety of applications, and is capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system and process is also be capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof, be capable of being searched and/or queried, querying sites referenced therein the client-server multitasking system search engine and/or database, and updating information and/or services stored therein. The client-server multitasking system and process are capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. 5 A requestor and/or user is capable of making substantially multiple simultaneous same and/or different requests of same and/or different servers. The client servermultitasking system and process
is capable of organizing responses from the servers into service and/or information responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously, and on-the-fly. 15 20 The requestors and/or users are capable of making substantially simultaneous service and/or information requests of the same and/or different ones of servers and/or clients, using the same and/or different queries, and/or the same and/or different instructions. The client-server multitasking system and process is capable of retrieving substantially multiple simultaneous services and/or information having the same and/or different criteria from the same and/or different servers, sorting, grouping, and/or organizing the responses from the servers and/or the clients into information and/or services responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The same and/or different ones of uniform resource locators, target resources, and/or paths may be used. 20 The requestors and/or users are capable of making multiple simultaneous searches. The searches may have at least one or a plurality of same or different queries of the same and/or different servers and/or clients. The responses from the servers and/or the clients may be of being organized into the service and/or information response in a variety of formats. The responses may be sorted within the service and/or information response, such as, for example, by category, query, group, page, order of importance, ascending and/or descending order, alphabetically and/or numerically, or other characteristics, as determined by the requestor, and/or the user, and/or the client-server multitasking system, and/or the responses may be combined within the service and/or information response, such as, for example, interleaving the responses one with the other, such as, for example, by order of relevance or other parameters. The responses may also be capable of being grouped by search criteria, server, order of importance, or by numerical factors such as value, price, or other numerical quantifier. For example, the responses may be presentable, for example, in ascending or descending order in interleaved format, such as top ones, twos, threes, and so on, or presentable separately to the requestor and/or the user. The order may be order of importance or relevance related, or, for example, numerically valued, such as price or stock market value. The client-server multitasking system and process is be capable of information and/or service retrieval from the same and/or different ones of the servers substantially simultaneously and on-the-fly, using the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. 15 20 The client-server multitasking system and process is capable of substantially multiple simultaneous searching, using the same and/or different ones of queries of the same and/or different ones of the clients and/or servers, which may be search engines, and/or sites, and/or servers, and/or locations on the network, and additionally and/or alternatively building a client-server multitasking search engine and/or database. The client-server multitasking search engine and/or database is capable of storing the information and/or services retrieved therefrom the search engines, and/or sites, and/or servers, and/or locations being queried on the network therein, and building the clientserver search engine and/or database. The client-server multitasking search engine should is also capable of being queried either directly and/or in combination therewith the substantially simultaneous searching, using the same and/or different queries of the same and/or different search engines, sites, servers, and/or databases. The client-server multitasking search engine and/or database should is also capable of updating information and/or services stored therein by querying sites, servers, search engines, and/or databases containing information and/or services referenced in client-server multitasking search engine and/or database. The client-server multitasking system and process is also capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks. The client-server multitasking system and process are capable of substantially simultaneous searching of the same and/or different ones of search engines and/or sites on the network substantially on-the-fly, with the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process are also capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system and process are also capable drilling down and/or up to different levels within the search engines, sites, and/or servers being queried. The client-server multitasking system and process are capable of providing manual and/or timed updates. Such timed updates allow for motion related presentation to the requestor and/or the user. 15 The client-server multitasking system and process are capable of incorporating information and/or services thereinto a variety of user interfaces at different locations therein the user interfaces, grouping, and/or organizing the information and/or services, and optionally eliminating duplicate information and/or services. 20 The client-server multitasking system and process are capable of incorporating links, graphics, video, text, and audio, and/or combinations thereof, and selective advertising, according to selectable search, query, sorting, and/or grouping criteria, and/or 5 combinations thereof thereinto the information and/or services to be delivered thereto the user interfaces. The requestor and/or the user may place orders, such as purchases, and/or other types of orders, payments, confirmations thereof, and/or combinations thereof, either directly and/or therethrough servers and/or sites thereon the network. The client-server multitasking system is capable of use in a variety of applications, and is capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system is capable of, for example, determining best query results, with respect to a plurality of search engine results; purchasing and/or price comparisons, viewing and/or reviewing prices/values and trends for different sites, determining lowest costs and lowest cost analyses for wholesale and retail purposes; product availability, e.g., airline tickets, pricing, and ticket availability, from different airlines to the same and/or different locations; purchasing of commodities and/or stocks form the same and/or different sites with updates every few seconds and/or minutes; obtaining prices and/or values in different stock markets substantially simultaneously; and searching for jobs on the same and/or different job sites, using the same and/or different job criteria, for example, on a daily basis, the job sites having changing job availability; and/or a combination thereof, all substantially simultaneously. The client-server multitasking system is capable of presenting information and/or services for review and/or updating from the same and/or different ones of sites, servers, and/or applications substantially simultaneously, and trend analysis thereof, using a variety of sorting, grouping and/or organizing criteria, according to the needs of the requestor, and/or the user, and/or resident within the client-server multitasking system. The client server-multitasking system and process are capable of service and/or information retrieval from at least one server, organization, communication, and presentation of such services and/or information to at least one requestor and/or user, and/or optional storage, and/or retrieval of such services and/or information from the optional storage. The client-server multitasking system and process are capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof. The client-server multitasking system search engine and/or database having stored information and/or services therein are also searchable, are capable of full text searches thereof, and are searchable by the servers and/or the clients on the network, either separately and/or in combination therewith the substantially simultaneous multiple same and/or different searches and/or queries of the same and/or different servers on the network. Information therein the client-server multitasking system search engine and/or database are also searchable and/or retrievable, and are capable of being incorporated therein the service and/or information responses delivered thereto the user interfaces, according to search criteria, selectively and/or automatically, by the requestor and/or the user. The client-server multitasking system search engine and/or database are capable of spidering, and/or roboting, and/or querying sites, services and/or information to be stored therein and/or stored therein the client-server multitasking system search engine and/or database, and updating the services and/or information to be stored and/or stored therein the client-server multitasking system search engine and/or database. The client-server multitasking system and process are capable of retrieving, parsing, processing, formatting,
organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers and/or clients having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto user responses for delivery to and use by the requestors and/or users. The client-server multitasking system and process, then, are capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries of the same and/or different ones of the servers, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly, and communicating service and/or information responses to the requestors and/or users substantially simultaneously and on-the-fly. The client-server multitasking system and process are capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and are capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. The client-server multitasking system and process are capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, 15 in accordance with instructions from the requestors, and/or users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system is capable of use in a variety of applications, and capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system and process are capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof, is capable of being searched and/or queried, querying sites referenced therein the client-server multitasking system search engine and/or database, and updating information and/or services stored therein. The client-server multitasking system and process are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers and/or clients having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto user responses for delivery to and use by the requestors and/or users. A multitasking process having features of the present invention comprises: parsing, processing, and/or formatting a service and/or information request thereinto a current request group; opening connections therewith and making at least one request thereof at least one server; parsing, processing, formatting, grouping, and/or organizing at least one response therefrom the at least one server thereinto at least one addressable response information group; formulating information therefrom the current request group thereinto a request pointer/address group having at least one pointer/address; formulating at least one addressable query pointer/address group having at least one other pointer/address; incorporating information and/or services therefrom the at least one addressable response information group thereinto at least one addressable query information group; and incorporating the at least one addressable query information group thereinto a service and/or information response. A client-server multitasking system having features of the present invention comprises: means for parsing, processing, and/or formatting a service and/or information request thereinto a current request group; means for opening connections therewith and making at least one request thereof at least one server; means for parsing, processing, formatting, grouping, and/or organizing at least one response therefrom the at least one server thereinto at least one addressable response information group; means for formulating information therefrom the current request group thereinto a request pointer/address group having at least one pointer/address; means for formulating at least one addressable query pointer/address group having at least one other pointer/address; means for incorporating information and/or services therefrom the at least one addressable response information group thereinto at least one addressable query information group; and means for incorporating the at least one addressable query information group thereinto a service and/or information response. 15 #### **DRAWINGS** These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where: - FIG. 1 is a schematic representation of a client-server multitasking system, constructed in accordance with the present invention; - FIG. 2 is a more detailed schematic representation of the client-server multitasking system; - FIG. 3 is a schematic representation of user input UI_n from user U_n thereinto user interface I_n of the client-server multitasking system; - FIG. 4 is a schematic representation of a server S_z of the client-server multitasking system; - FIGS. 5A depicts a typical service and/or information entry request form \mathbf{IE}_n at the user interface \mathbf{I}_n , which the user \mathbf{U}_n may communicate typical user input \mathbf{UI}_n thereinto; - FIGS. 5B depicts the typical service and/or information entry request form IE_n at the user interface I_n of FIG. 5B with reference alphanumerics; - FIGS. 6 depicts another typical service and/or information entry request form **IE**_n at the user interface **I**_n, which the user **U**_n may communicate other typical user input **UI**_n thereinto; - FIGS. 7 depicts another typical service and/or information entry request form \mathbf{IE}_n at the user interface I_n , which the user U_n may communicate other typical user input UI_n thereinto; - FIGS. 8 depicts another typical service and/or information entry request form IE_n at the user interface I_n, which the user U_n may communicate other typical user input UI_n thereinto; - FIGS. 9 depicts another typical service and/or information entry request form IE_n at the user interface I_n , which the user U_n may communicate other typical user input UI_n thereinto; - FIGS. 10 depicts another typical service and/or information entry request form IE_n at the user interface I_n, which the user U_n may communicate other typical user input UI_n thereinto; - FIG. 11 depicts a typical completed service and/or information entry request form IF_n at the user interface I_n ; - FIG. 12 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n; - FIG. 13 depicts another typical completed service and/or information entry request form \mathbf{lF}_n at the user interface \mathbf{l}_n ; - FIG. 14A depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 14B depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 14C depicts another typical completed service and/or information entry request form IF_n at the user interface I_n ; - FIG. 15 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n ; - FIG. 16 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n; - FIG. 17 depicts another typical completed service and/or information entry request form $|\mathbf{F}_n|$ at the user interface $|\mathbf{I}_n|$; - FIG. 18 depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 19 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n; - FIG. 20 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n ; - FIG. 21 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n; - FIG. 22 depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 23 depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 24 depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 25 depicts another typical completed service and/or information entry request form IF_n at the user interface I_n ; - FIG. 26 depicts another typical completed service and/or information entry request form \mathbf{IF}_n at the user interface \mathbf{I}_n ; - FIG. 27 depicts a typical user response UR_n , as a typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 28 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 29 depicts another typical user response UR_n , as the typical service and/or information
response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 30 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 31 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 32 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 33 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 34 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 35 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 36 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 37 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 38 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 39 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 40 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 41 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 42 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 43 depicts another typical user response **UR**_n, as the typical service and/or information response form **IS**_n at the user interface I_n, which may be communicated thereto the user **U**_n; - FIG. 44 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 45 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 46 depicts another typical user response **UR**_n, as the typical service and/or information response form **IS**_n at the user interface **I**_n, which may be communicated thereto the user **U**_n; 10 15 - FIG. 47 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 48 depicts another typical user response UR_n, as the typical service and/or information response form IS_n at the user interface I_n, which may be communicated thereto the user U_n; - FIG. 49 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 50 depicts another typical user response UR_n, as the typical service and/or information response form IS_n at the user interface l_n, which may be communicated thereto the user U_n; - FIG. 51 depicts another typical user response \mathbf{UR}_n , as the typical service and/or information response form \mathbf{IS}_n at the user interface \mathbf{I}_n , which may be communicated thereto the user \mathbf{U}_n ; - FIG. 52 depicts another typical user response UR_n , as the typical service and/or information response form IS_n at the user interface I_n , which may be communicated thereto the user U_n ; - FIG. 53A is a schematic representation of a server **PS** of the client-server multitasking system having an optional database; - FIG. 53B is a schematic representation of a client C_n of the client-server multitasking system having an optional database; 10 15 - FIG. 54 is a schematic representation of a particular one of the clients $C_1...C_n$ of the client-server multitasking system, designated as the particular client C_n , communicating with ones of the servers $S_1...S_z$, in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$, corresponding to the requests $Q_{n1}...Q_{nm}$, therethrough the server PS; - FIG. 55 is a schematic representation of the particular client C_n of the client-server multitasking system communicating with ones of the servers $S_1...S_z$, in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$, corresponding to the requests $Q_{n1}...Q_{nm}$; - FIG. 56 is a schematic representation of the particular client C_n of the client-server multitasking system communicating with ones of the servers $S_1...S_z$, in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$, corresponding to the requests $Q_{n1}...Q_{nm}$, and also therethrough the server PS; - FIG. 57 is an alternate schematic representation of the client-server multitasking system of FIG.1, constructed in accordance with the present invention, regrouped diagrammatically and alternatively named for illustrative purposes only, to illustrate and visualize possible typical communication paths; - FIG. 58 is a schematic representation of a particular service and/or information request IQ_n; 10 - FIG. 59 is a schematic representation of a particular service and/or information request IQn parsed, processed, and/or formatted into a current request group QAnc, request groups QAn1...QAnz, and corresponding optional instructions VJn1...VJnk, and utilization of information therefrom to make the requests Qn1...Qnm, obtain the responses Rn1...Rnm, and incorporate information therefrom into a particular service and/or information response IRn; - FIG. 60 is a schematic representation of the particular service and/or information request IQ_n parsed, processed, and/or formatted into a current request group QA_{nc}, request groups QA_{n1}...QA_{nz}, and corresponding optional instructions VJ_{n1}...VJ_{nk}, and utilization of information therefrom to make the requests Q_{n1}...Q_{nm}, obtain the responses R_{n1}...R_{nm}, and incorporate information therefrom into the particular service and/or information response IR_n, having other grouping/sorting that may be used additionally and/or alternatively to that of FIG. 59; - FIG. 61 is a schematic representation of the particular service and/or information response IR_n having a service and/or information group G_n, additional request links SL_{n1}...SL_{nw}, optional order form, optional additional advertisements and/or links, optional hidden information, and the optional service and/or information entry request form; - FIG. 62 is a schematic representation of a particular user service and/or information request iqn; - FIG. 63 is a schematic representation of a particular user service and/or information request **iq**_n parsed, processed, and/or formatted into the current request group 10 15 20 $\mathbf{Q}\mathbf{A}_{nc}$, the request groups $\mathbf{Q}\mathbf{A}_{n1}...\mathbf{Q}\mathbf{A}_{nz}$, and the corresponding optional instructions $\mathbf{V}\mathbf{J}_{n1}...\mathbf{V}\mathbf{J}_{nk}$, and utilization of information therefrom to make the requests $\mathbf{Q}_{n1}...\mathbf{Q}_{nm}$, obtain the responses $\mathbf{R}_{n1}...\mathbf{R}_{nm}$, and incorporate information therefrom into the particular user service and/or information response $i\mathbf{r}_{n}$; FIG. 64 is a schematic representation of the particular user service and/or information request iq_n parsed, processed, and/or formatted into the current request group QA_{nc} , the request groups $QA_{n1}...QA_{nz}$, and the corresponding optional instructions $VJ_{n1}...VJ_{nk}$, and utilization of information therefrom to make the requests $Q_{n1}...Q_{nm}$, obtain the responses $R_{n1}...R_{nm}$, and incorporate information therefrom into the particular user service and/or information response ir_n , having other grouping/sorting that may be used additionally and/or alternatively to that of FIG. 63; FIG. 65 is a schematic representation of the particular user service and/or information response ir_n having the service and/or information group G_n , the additional request links SL_{nu} , the optional order form, the optional additional advertisements and/or links, the optional hidden information, and the optional service and/or information entry request form; FIG. 66A is a schematic representation of a response information group RG_{nm} having addressable individual information groups
LG_{nm1}...LG_{nmr} showing optional addressable pointer/address indices IN_{nm1}...IN_{nmr} correspondingly associated therewith optional addressable individual information groups 10 $\mathsf{LG}_{\mathsf{nm1}}...\mathsf{LG}_{\mathsf{nmr}}$, which may be addressed/pointed therewith pointer/address $\mathsf{PP}_{\mathsf{nm1}}$; - FIG. 66B is a schematic representation of the addressable response information group \mathbf{RG}_{nm} having the addressable individual information groups $\mathbf{LG}_{nm1}...\mathbf{LG}_{nmr}$ showing the optional addressable pointer/address indices $\mathbf{IN}_{nm1}...\mathbf{IN}_{nmr}$ correspondingly associated therewith the optional addressable individual information groups $\mathbf{LG}_{nm1}...\mathbf{LG}_{nmr}$, which may be addressed/pointed therewith the pointer/address \mathbf{PP}_{nm2} ; - FIG. 66C is a schematic representation of the addressable response information group RG_{nm} having the addressable individual information groups LG_{nm1}...LG_{nmr} showing the optional addressable pointer/address indices IN_{nm1}...IN_{nmr} correspondingly associated therewith the optional addressable individual information groups LG_{nm1}...LG_{nmr}, which may be addressed/pointed therewith the pointer/address PP_{nmr}; - FIG. 67 is a schematic representation of the individual information groups LG_{nm1}...LG_{nmr} having corresponding optional links LD_{nm1}...LD_{nmr}, and/or corresponding optional descriptions DD_{nm1}...DD_{nmr}, and/or corresponding optional prices/values PD_{nm1}...PD_{nmr}, and/or corresponding optional images ID_{nm1}...ID_{nmr}; - FIG. 68 is a schematic representation of a labelled individual information group **LL**_{nmr}; - FIG. 69 is a schematic representation of an addressable query information group Gl_{nz} ; 10 15 - FIG. 70 is a schematic representation of steps of a client-server multitasking process of the present invention; - FIG. 70-1A is a schematic representation of a multitasking process of deriving the service and/or information response IR_n and/or the user service and/or information response ir_n , with reference to FIGS. 59 and 63; - FIG. 70-1B is a schematic representation of a multitasking process of deriving the service and/or information response IR_n and/or the user service and/or information response ir_n having other grouping/sorting that may be used additionally and/or alternatively to that of FIGS. 59 and 63, as shown with reference to FIGS. 60 and 64; - FIG. 70-1-1 is a schematic representation of a step of the multitasking process of FIGS. 70-1A and 70-1B shown in more detail; - FIG. 70-1-2A is a schematic representation of another step of the multitasking process of FIG. 70-1A shown in more detail; - FIG. 70-1-2B is a schematic representation of another step of the multitasking process of FIG. 70-1B shown in more detail; - FIG. 70-2 is a schematic representation of user review of user response \mathbf{UR}_n and/or selection of additional services and/or information; - FIG. 71 is a schematic representation of the user input UI_n thereinto the service and/or information entry request form IE_n; - FIG. 72 is a schematic representation of the service and/or information entry request form IE_n showing fields, links, and elements of the service and/or information entry request form IE_n ; 10 - FIG. 73 is a schematic representation of a completed service and/or information entry request form IF_n showing typical elements, values, and field names; - FIG. 74 is a schematic representation of the completed service and/or information entry request form IF_n , a user service and/or information request iq_n , and the client C_n of the client-server multitasking system; - FIG. 75 is a schematic representation of the user service an/or information request iqn; - FIG. 76 is a schematic representation of the service an/or information request **IQ**_n; - FIG. 77 is an alternate schematic representation of the user service an/or information request **iq**_n of FIG. 75; - FIG. 78 is an alternate schematic representation of the service an/or information request IQn of FIG. 76; - FIG. 79 is a more detailed schematic representation of the service and/or information request IQn of FIGS. 76 and FIG. 78 showing typical field names and values; - FIG. 80 is an alternate more detailed schematic representation of the service and/or information request IQn of FIGS. 76 and 78; - FIG. 81 is a schematic representation showing queries QQ_{n1}...QQ_{nm} and corresponding server addresses AQ_{n1}...AQ_{nm}; - FIG. 82 shows the schematic representation of FIG. 81 having typical values; - FIG. 83 shows the schematic representation of FIG. 81 having other typical values; - FIG. 84 shows the schematic representation of FIG. 81 having other typical values; - FIG. 85 shows the schematic representation of FIG. 81 having other typical values; - FIG. 86 is a schematic representation of information that may be used for formulating a typical particular one of the requests $\mathbf{Q}_{n1}...\mathbf{Q}_{nm}$, designated as the request \mathbf{Q}_{nm} , and optional instructions $\mathbf{VJ}_{nm1}...\mathbf{VJ}_{nk}$ from the particular service and/or information request \mathbf{IQ}_n and opening a connection \mathbf{OC}_{nm} ; - FIG. 87 is a schematic representation of information that may be used for formulating the typical particular one of the requests $\mathbf{Q}_{n1}...\mathbf{Q}_{nm}$, designated as the request \mathbf{Q}_{nm} , and the optional instructions $\mathbf{VJ}_{nm1}...\mathbf{VJ}_{nk}$ from the particular user service and/or information request \mathbf{iq}_n and opening the connection \mathbf{OC}_{nm} . - FIG. 88 is an alternate schematic representation of information that may be used for formulating the typical particular one of the requests $\mathbf{Q}_{n1}...\mathbf{Q}_{nm}$, designated as the request \mathbf{Q}_{nm} , and optional instructions $\mathbf{VJ}_{nm1}...\mathbf{VJ}_{nk}$ from the particular service and/or information request \mathbf{IQ}_n and opening a connection \mathbf{OC}_{nm} of FIG. 86; - FIG. 89 is an alternate schematic representation of information that may be used for formulating the typical particular one of the requests $\mathbf{Q}_{n1}...\mathbf{Q}_{nm}$, designated as the request \mathbf{Q}_{nm} , and the optional instructions $\mathbf{VJ}_{nm1}...\mathbf{VJ}_{nk}$ from the particular user service and/or information request \mathbf{iq}_n and opening the connection \mathbf{OC}_{nm} of FIG. 87; - FIG. 90 is a schematic representation of queries $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$, corresponding server addresses $\mathbf{AQ}_{n1}...\mathbf{AQ}_{nm}$, and optional instructions $\mathbf{VJ}_{nm1}...\mathbf{VJ}_{nk}$ that may be parsed, processed, and/or formatted from the service and/or 15 20 information request \mathbf{IQ}_n and/or the user service and/or information request \mathbf{iq}_n ; - FIG. 91 is a schematic representation of a request pointer/address group $\mathbf{QZ_{ns}}$, having a particular one of query pointer/address groups $\mathbf{QG_{nz}}$, designated as the query pointer/address group $\mathbf{QG_{nz}}$, associated ones of the addressable response information group s $\mathbf{RG_{n1}}$... $\mathbf{RG_{nm}}$, the pointers/addresses $\mathbf{PP_{n11}}$... $\mathbf{PP_{nmr}}$, and the query information group $\mathbf{GI_{nz}}$ associated therewith the query pointer/address group $\mathbf{QG_{nz}}$; - FIG. 92 is a schematic representation of a sorting criteria addressing scheme having a particular query pointer/address group \mathbf{QG}_{nz} , associated ones of response information groups \mathbf{RG}_{nm} , and query information group \mathbf{GI}_{nz} associated therewith the query pointer/address group \mathbf{QG}_{nz} ; - FIG. 93 is a schematic representation of an alternate sorting criteria addressing scheme having a particular query pointer/address group \mathbf{QG}_{nz} , associated ones of response information groups \mathbf{RG}_{nm} , and query information group \mathbf{GI}_{nz} associated therewith the query pointer/address group \mathbf{QG}_{nz} ; - FIG. 94 is a schematic representation of typical ones of the query pointer/address groups QG_{n1}...QG_{nz}, having the sorting criteria addressing scheme of FIG. 92, having typical ones of queries QQ_{n1}...QQ_{nz} and corresponding server addresses AQ_{n1}...AQ_{nz} associated therewith; - FIG. 95 is another schematic representation of the typical ones of the query pointer/address groups $\mathbf{QG_{nz}}$, having the sorting criteria addressing scheme of FIG. 92, having the typical ones of the of queries $\mathbf{QQ_{nz}}$... $\mathbf{QQ_{nz}}$ 15 20 - and the corresponding ones of the server addresses $AQ_{n1}...AQ_{nz}$ of FIG. 94 associated therewith; - FIG. 96 is a generic schematic representation of the query pointer/address groups $\mathbf{QG_{n1}...QG_{nz}}, \text{ having the sorting criteria addressing scheme of FIG. 92}, \\ \text{having the ones of queries } \mathbf{QQ_{n1}...QQ_{nz}} \text{ and the corresponding ones of the } \\ \text{server addresses } \mathbf{AQ_{n1}...AQ_{nz}} \text{ associated therewith;}$ - FIG. 97 is a schematic representation of a request **Q**_{nm} of the client-server multitasking system; - FIG. 98 is a schematic representation of a response R_{nm} of the client-server multitasking system; - FIG. 99 is a schematic representation of an entity body RH_{nm} of the response R_{nm} of FIG. 98 having optional response individual information groups LS_{nm1}...LS_{nmr}, and/or optional information Ll_{nm}; - FIG. 100 is a schematic representation of the addressable response information group RG_{nm} having the addressable individual information groups LG_{nm1}...LG_{nmr} parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto the addressable response information group RG_{nm} therefrom the optional entity body RH_{nm} of
FIG. 99; - FIG. 101 is a schematic representation of the optional response individual information group **LS**_{nmr} parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto the addressable individual information group **LG**_{nmr}; 15 20 FIG. 102 is a schematic representation of the optional links LD_{nm1}...LD_{nmr}, and/or the optional descriptions DD_{nm1}...DD_{nmr}, and/or the optional prices/values PD_{nm1}...PD_{nmr}, and/or the optional images ID_{nm1}...ID_{nmr} parsed individually and/or separately, and incorporated thereinto the addressable response information group RG_{nm} therefrom the optional entity body RH_{nm}; FIGS. 103 is a schematic representation of a typical one of the addressable query information group Gl_{nz} , based upon certain sorting and/or grouping criteria, having the labelled individual information groups $LL_{nz1}...LL_{nzu}$, the optional database labelled individual information groups $RL_{nz1}...RL_{nzx}$, the optional query description QT_{nz} , the optional server descriptions and/or links $ST_{nz1}...ST_{nzf}$, and the optional advertisements and/or links $LT_{nz1}...LT_{nzt}$ incorporated thereinto certain typical ones of the typical service and/or information response forms IS_n of FIGS. 27-52. FIGS. 104 is a another schematic representation of a typical one of the addressable query information group Gl_{nz} , based upon certain sorting and/or grouping criteria, having the labelled individual information groups $LL_{nz1}...LL_{nzu}$, the optional database labelled individual information groups $RL_{nz1}...RL_{nzx}$, the optional query description QT_{nz} , the optional server descriptions and/or links $ST_{nz1}...ST_{nzt}$, and the optional advertisements and/or links $LT_{nz1}...LT_{nzt}$ incorporated thereinto certain typical ones of the typical service and/or information response forms IS_n of FIGS. 27-52. X25/ ### DESCRIPTION The preferred embodiments of the present invention will be described with reference to FIGS. 1-141 FIGS. 1-140 of the drawings. Identical elements in the various figures are identified with the same reference alphanumerics. #### I. SYSTEM 10 15 # A. OVERVIEW FIGS. 1 and 2 show a client-server multitasking system 10 of the present invention, having requestors $U_1...U_n$ (12), hereinafter called users $U_1...U_n$ (12), corresponding user interfaces $I_1...I_n$ (14), corresponding clients $C_1...C_n$ (16), server PS (18), servers $S_1...S_z$ (20), and optional servers $SO_1...SO_p$ (22), constructed in accordance with the present invention, which reside on a network 24. Each of the users $U_1...U_n$ (12) communicate with the corresponding clients $C_1...C_n$ (16) therethrough the corresponding user interfaces $I_1...I_n$ (14). Each of the users $U_1...U_n$ (12) enter corresponding user inputs $UI_1...UI_n$ (25) having one or more same and/or different user requests $qu_{11}...qu_{nu}$ (26) thereinto the corresponding user interfaces $I_1...I_n$ (14), as shown in FIG. 3. The user requests $qu_{11}...qu_{nu}$ (26) are communicated from the user interfaces $I_1...I_n$ (14) to the corresponding clients $C_1...C_n$ (16) within corresponding user service and/or information requests $iq_1...iq_n$ (27), having the user requests $qu_{11}...qu_{nu}$ (26) and other optional information. The users $U_1...U_n$ (12) may enter the corresponding user inputs $UI_1...UI_n$ (25) at the same and/or different times. Each of the user interfaces $I_1...I_n$ (14) communicate the user service and/or information requests $iq_1...iq_n$ (27) thereto the corresponding clients $C_1...C_n$ (16), which optionally format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into corresponding service and/or information requests $IQ_1...IQ_n$ (28), as required. Each of the service and/or information requests $IQ_1...IQ_n$ (28) have information therein that may be used to formulate one or more same and/or different requests $Q_{11}...Q_{nm}$ (29) to be made of one or more of the same and/or different ones of the servers $S_1...S_z$ (20), which may hereinafter be called server designations $S_{11}...S_{nm}$ (30), in accordance with a designation scheme which designates the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), as shown in FIGS. 2 and 4. FIG. 4 shows the server designations $S_{11}...S_{nm}$ (30) for typical ones of the requests $Q_{11}...Q_{nm}$ (29) and a typical one of the servers S_z (20). Each of the requests $Q_{11}...Q_{nm}$ (29) may be the same and/or different one from the other and may be made of the same and/or different ones of the servers $S_1...S_z$ (20) at the same time and/or different times. Each of the service and/or information requests IQ₁...IQ_n (28) may be communicated thereto the server PS (18), which parses, processes, and/or formats the service and/or information requests IQ₁...IQ_n (28) into the requests Q₁₁...Q_{nm} (29). The corresponding clients $C_1...C_n$ (16) may also and/or alternatively optionally parse, process, and/or format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into one or more of the same and/or different requests $Q_{11}...Q_{nm}$ (29) to be made of one or more of the same and/or different ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{11}...S_{nm}$ (30), as required. Certain ones of the clients $C_1...C_n$ (16) may communicate corresponding certain ones of the service and/or information requests $IQ_1...IQ_n$ (28) to the server PS (18), which parses, processes and/or formats the certain ones of the service and/or information requests $IQ_1...IQ_n$ (28) into certain ones of the requests $Q_{11}...Q_{nm}$ (29), as required, and communicates the certain ones of the requests $Q_{11}...Q_{nm}$ (29) to the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding certain ones of the server designations $S_{11}...S_{nm}$ (30). 15 Alternate ones of the clients $C_1...C_n$ (16) may communicate corresponding alternate ones of the requests $Q_{11}...Q_{nm}$ (29) to corresponding alternate ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding alternate ones of the server designations $S_{11}...S_{nm}$ (30). 20 Other alternate ones of the clients $C_1...C_n$ (16) may communicate corresponding other alternate ones of the service and/or information requests $IQ_1...IQ_n$ (28) to the server PS (18), which parses, processes and/or formats the other alternate ones of the service 15 and/or information requests $IQ_1...IQ_n$ (28) into other alternate ones of the requests $Q_{11}...Q_{nm}$ (29), as required, communicates the other alternate ones of the requests $Q_{11}...Q_{nm}$ (29) to corresponding other alternate ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding other alternate ones of the server designations $S_{11}...S_{nm}$ (30); and additionally the other alternate ones of the clients $C_1...C_n$ (16) may also parse, process, and/or format the user service and/or information requests $iq_1...iq_n$ (27) into one or more of the same and/or different yet other alternate ones of the requests $Q_{11}...Q_{nm}$ (29), and communicate the yet other alternate ones of the requests $Q_{11}...Q_{nm}$ (29) to corresponding yet other alternate ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding yet other alternate ones of the server designations $S_{11}...S_{nm}$ (30). Each of the service and/or information requests $IQ_1...IQ_n$ (28) may, thus, be communicated therefrom the corresponding clients $C_1...C_n$ (16) to the server PS (18). The requests $Q_{11}...Q_{nm}$ (29) may be communicated therefrom the server PS (18) and/or therefrom the corresponding clients $C_1...C_n$ (16) to the servers $S_1...S_z$ (20), and may depend upon instructions from and/or generated by the corresponding users $U_1...U_n$ (12), and/or the corresponding user interfaces $I_1...I_n$ (14) and/or the corresponding clients $C_1...C_n$ (16), and/or information generated by the server PS (18) and/or the servers $S_1...S_z$ (20), and/or ancillary instructions, a combination thereof, and/or other suitable means. 15 20 Each of the servers $S_1...S_z$ (20) corresponding to the designation scheme $S_{11}...S_{nm}$ (30) replies to the server PS (18) and/or the clients $C_1...C_n$ (16), accordingly, and communicates corresponding responses $R_{11}...R_{nm}$ (32), associated with the requests $Q_{11}...Q_{nm}$ (29), to the server PS (18) and/or the clients $C_1...C_n$ (16) making the requests $Q_{11}...Q_{nm}$ (29), as shown in FIG. 2 for typical ones of the requests $Q_{11}...Q_{nm}$ (29) and the corresponding responses $R_{11}...R_{nm}$ (32). The server PS (18) and/or the appropriate clients $C_1...C_n$ (16) parse, process, format, sort, group, and/or organize the responses $R_{11}...R_{nm}$ (32) into corresponding service and/or information responses $IR_1...IR_n$ (34), having corresponding parsed, processed, formatted, sorted, grouped, and/or organized service and/or information groups $G_1...G_n$ (35) (shown later in FIGS. 27-52) acceptable to the corresponding clients $C_1...C_n$ (16) and the corresponding respective user interfaces $I_1...I_n$ (14). The server PS (18) communicates the appropriate service and/or information responses $IR_1...IR_n$ (34) to the corresponding clients $C_1...C_n$ (16). The clients C₁...C_n (16) format the service and/or information responses IR₁...IR_n (34) into corresponding user service and/or information responses ir₁...ir_n (36), as required, and communicate the user service and/or information
responses ir₁...ir_n (36) thereto the corresponding user interfaces I₁...I_n (14). The user interfaces I₁...I_n (14) incorporate the user service and/or information responses ir₁...ir_n (36) into corresponding user responses UR₁...UR_n (37), which are derived at the user interfaces I₁...I_n (14), and communicated by the user interfaces I₁...I_n (14) thereto the corresponding users $U_1...U_n$ (12). The users $U_1...U_n$ (12) review the corresponding user responses $UR_1...UR_n$ (37) at the user interfaces $I_1...I_n$ (14) and/or select additional services and/or information therefrom. # 5 B. TYPICAL SERVICE AND/OR INFORMATION ENTRY REQUEST FORMS FIGS. 5A, 5B, and 6-10 show typical ones of service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14), which the users U₁...U_n (12) may communicate typical ones of the user inputs UI₁...UI_n (25) thereinto, as requests for information and/or services. The typical ones of the service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14) shown in FIGS. 5A, 5B, and 6-10 are typical examples of the service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14), a much larger variety of which is possible. Names and/or links and/or other information are incorporated therein the typical ones of the service and/or information entry request forms IE₁...IE_n (38) shown in FIGS. 5A, 5B, and 6-10 for illustrative purposes, and are not intended to limit the large variety of the service and/or information entry request forms IE₁...IE_n (38) and the names and/or links and/or information that are possible, and that may be incorporated thereinto the service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14). 20 15 # C. TYPICAL COMPLETED SERVICE AND/OR INFORMATION ENTRY REQUEST FORMS FIGS. 11-26 show typical ones of completed service and/or information entry request forms $\mathbf{IF_1}...\mathbf{IF_n}$ (230) at the user interfaces $\mathbf{I_1}...\mathbf{I_n}$ (14). 5 10 FIG. 11 shows a typical particular one of the completed service and/or information entry request forms $IF_1...IF_n$ (230), hereinafter designated the completed service and/or information entry request form IF_n (230), at a particular one of the user interfaces $I_1...I_n$ (14), hereinafter designated the user interface I_n (14), having same and different ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). Typical same ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), are "Cat", "Dog", and "Mouse", which are different one from the other. FIG. 12 shows the typical completed service and/or information entry request forms IF_n (230), at the user interface I_n (14), having same and different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). Typical same ones of the typical queries QQ_{n1}...QQ_{nm} (53) are "Cat", "Dog", and "Mouse", which are different one from the other. Typical same ones of the typical server addresses AQ_{n1}...AQ_{nm} (54) are "HotBot", "WebCrawler", and "Dejanews", which are different one from the other, and which are also different from "Yahoo" and "LookSmart". The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) have 5 "URL's per Search Engine", which instructs the 10 15 client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 5 "URL's per Search Engine", rather than 10 "URL's per Search Engine", as instructed in FIG. 11. FIG. 13 shows the typical completed service and/or information entry request forms IF_n (230), at the user interface I_n (14) having a single typical one of the typical queries QQ_{n1}...QQ_{nm} (53) as "Big Elephants". FIGS. 14A, 14B, and 14C show the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having same and different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52), showing "Current Group" as "Group I", "Group II", and "Group III", in FIGS. 14A, 14B, and 14C, respectively. Typical same ones of the typical queries QQ_{n1}...QQ_{nm} (53) are "Catcher in the Rye", "Catcher", "Rye", "Sports", and "Rye Bread", which are different one from the other. The typical server addresses AQ_{n1}...AQ_{nm} (54) are different one from the other. The typical optional instructions VJ_{n1}...VJ_{nk} (52) have a 5 second "Timeout (seconds) per Search Engine" as in FIGS. 11-13. The "Timeout (seconds) per Search Engine" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) within a period of less than the "Timeout (seconds) per Search Engine" specified in the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). It should be noted that response times of less than one second per search engine are typical., and response times of substantially less than one second are quite common. However, the "Timeout (seconds) per Search Engine" has been incorporated herein for the user U_1 (12) to specify in the event of slow ones of the responses $R_{n1}...R_{nm}$ (32) from certain ones of the servers $S_1...S_z$ (20). FIG. 15 shows the typical completed service and/or information entry request forms IF_n (230), at the user interface I_n (14), having same and different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). Typical same ones of the typical queries QQ_{n1}...QQ_{nm} (53) are "Charles Dickens", "A Tale of Two Cities", and "Oliver Twist", which are different one from the other. All blank entries beneath the entry above take on the characteristics of the completed entry above. Therefore, Searches 2, 3, and 4 take on the typical queries QQ_{n2}...QQ_{n4} (53) of "Charles Dickens" of Search 1, above. Likewise, Searches 7, 8, and 9 take on the typical queries QQ_{n7}...QQ_{n9} (53) of "Oliver Twist" of Search 6, above. Search 5 takes on the typical query QQ_{n9} (53) of "A Tale of Two Cities". The typical optional instructions VJ_{n1}...VJ_{nk} (52) of FIG. 15 have "Separate", which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) in separate groups, i.e., grouped by the typical server addresses AQ_{n1}...AQ_{nm} (54), rather than interleaved one with the other, as instructed in FIGS. 11-14. The typical optional instructions VJ_{n1}...VJ_{nk} (52) "Interleaved" of FIGS. 11-14 instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having information and/or services therein the responses R_{n1}...R_{nm} (32) to be interleaved one with the other (or alternating one with the other) therein the appropriate addressable query information groups GI_{n1}...GI_{n2} (63). The labelled individual information groups LL_{n11}...LL_{n2u} (86) therein the addressable query information groups GI_{n1}...GI_{n2} (63) are alternatingly interleaved one with the other and labelled and/or identified and associated correspondingly therewith the responses R_{n1}...R_{nm} (32) therefrom the servers S₁...S_z (20). The "Interleaved" information and/or services may typically be incorporated therein the appropriate addressable query information groups GI_{n1}...GI_{nz} (63) in substantially the same sequence as the information and/or services are therein the responses R_{n1}...R_{nm} (32) communicated therefrom the servers S₁...S_z (20). However, other sorting/grouping criteria may optionally be used, as will be discussed later. The typical server addresses AQ_{n1}...AQ_{nm} (54) are different one from the other in FIG. 15. The typical optional instructions VJ_{n1}...VJ_{nk} (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 5 "Searches per Group", rather than 3 "Searches per Group", as in FIGS. 11-14. The typical optional instructions VJ_{n1}...VJ_{nk} (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 8 "URL's per Search Engine". FIG. 16 shows the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having the same ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). The typical optional instructions VJ_{n1}...VJ_{nk} (52) have "URL Details" as "List", which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) "List" format rather than "Summary" format, as instructed in FIGS. 11-15. The "URL Details" as "Summary" instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37) showing
descriptions and/or other information and/or services, in addition to links, therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface In (14), while "URL Details" as "List" instruct the client Cn (16) and/or the server PS (18) to return the typical user response UR_n (37) showing only links therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). Engine", which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 25 "URL's per Search Engine". The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 9 "Searches per Group". The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) at "Page" 3 of the "Current Group", rather than "Page" 1 of the "Current Group", as in FIGS. 11-15. The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) to use a 2 second "Timeout (seconds) per Search Engine". FIG. 17 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having the same ones of the typical queries QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). The typical optional instructions VJ_{n1}...VJ_{nk} (52) have 18 "URL's per Search Engine", which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 18 "URL's per Search Engine". The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) also instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) at "Group" 2, having 4 "Searches per Group", at "Page" 2 of the "Current Group", with a 2 second "Timeout (seconds) per Search Engine", and to return the results "Separately". FIG. 18 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). FIG. 19 shows another one of the typical completed service and/or information entry request form \mathbf{IF}_n (230), at the user interface \mathbf{I}_n (14), having different ones of the typical queries $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$ (53), as in FIG. 18, the same ones of the typical server addresses $\mathbf{AQ}_{n1}...\mathbf{AQ}_{nm}$ (54), and the typical optional instructions $\mathbf{VJ}_{n1}...\mathbf{VJ}_{nk}$ (52). FIG. 20 shows the typical completed service and/or information entry request forms IF_n (230), at the user interface I_n (14) having a single typical one of the typical queries QQ_{n1}...QQ_{nm} (53) as "sports". - FIG. 21 show another one of the typical completed service and/or information entry request forms IF_n (230), at the user interface I_n (14) having a single typical one of the typical queries $QQ_{n1}...QQ_{nm}$ (53) as "television". - FIG. 22 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having different ones of the typical queries QQ_{n1}...QQ_{nm} (53), .i.e., "sports" and "television", different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). FIG. 23 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having the same ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), i.e., "weather", different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). 15 FIG. 24 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14), having different ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), .i.e., "education", "universities," and "training", different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). 20 FIG. 25 shows another one of the typical completed service and/or information entry request form \mathbf{IF}_n (230), at the user interface \mathbf{I}_n (14), having different ones of the typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53), i.e., "weather", "climate," and "training", different ones of the typical server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54), and the typical optional instructions $\mathbf{VJ_{n1}...VJ_{nk}}$ (52). FIG. 26 shows another one of the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14) having a single typical one of the typical queries QQ_{n1}...QQ_{nm} (53) as "weather". The typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) shown in FIG. 11-26 are typical examples of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14), a much larger variety of which is possible. Typical queries QQ_{n1}...QQ_{nm} (53), typical server addresses AQ_{n1}...AQ_{nm} (54), and typical optional instructions VJ_{n1}...VJ_{nk} (52) therein the typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) shown in FIG. 11-26 are typical examples for illustrative purposes, and are not intended to limit the substantially infinite variety of the queries QQ_{n1}...QQ_{nm} (53), the server addresses AQ_{n1}...AQ_{nm} (54), and the optional instructions VJ_{n1}...VJ_{nk} (52) that may be entered thereinto the service and/or information entry request forms IE₁...IE_n (38), to derive the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14). Likewise, names and/or links and/or other information are incorporated therein the typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) shown in FIGS. 11-26 for illustrative purposes, and are not intended to limit the large variety of the completed service and/or information entry request forms $\mathbf{IF_1}...\mathbf{IF_n}$ (230) and the names and/or links and/or information that are possible, and that may be incorporated thereinto the completed service and/or information entry request forms $\mathbf{IF_1}...\mathbf{IF_n}$ (230) at the user interfaces $\mathbf{I_1}...\mathbf{I_n}$ (14). Any ones of the typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53), any values within the ranges allowable for the typical server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54), and any values allowable for the typical optional instructions $\mathbf{VJ_{n1}...VJ_{nk}}$ (52) may be incorporated thereinto the typical ones of service and/or information entry request forms $\mathbf{IE_{1}...IE_{n}}$ (38) at the user interfaces $\mathbf{I_{1}...I_{n}}$ (14) of FIGS. 5A, 5B, and 6-10, which the users $\mathbf{U_{1}...U_{n}}$ (12) enter to complete the typical ones of the completed service and/or information entry request forms $\mathbf{IF_{1}...IF_{n}}$ (230) at the user interfaces $\mathbf{I_{1}...I_{n}}$ (14) of FIGS. 11-26 Any values within the ranges allowable for "Search Engine Results"; "URL's per Search Engine"; "URL Details"; "Timeout (seconds) per Search Engine"; "Page"; "Searches per Group"; and "Group" may be incorporated thereinto the typical ones of service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14) of FIGS. 5A, 5B, and 6-10, which the users U₁...U_n (12) enter to complete the typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) of FIGS. 11-26. The users $U_1...U_n$ (12), for example, may enter: the typical queries $QQ_{n1}...QQ_{nm}$ (53); any values within the ranges allowable for the typical server addresses AQ_{n1}...AQ_{nm} (54); and any values allowable for the typical optional instructions VJ_{n1}...VJ_{nk} (52), such as, for example, any allowable "Search Engine Results"; "URL's per Search Engine"; "URL Details"; "Timeout (seconds) per Search Engine"; "Page"; "Searches per Group"; and "Group" thereinto the typical ones of service and/or information entry request forms $IE_1...IE_n$ (38) at the user interfaces $l_1...l_n$ (14) of FIGS. 5A, 5B, and 6-10, which the users $U_1...U_n$ (12) enter to complete the typical ones of the completed service and/or information entry request forms $\mathbf{IF}_1...\mathbf{IF}_n$ (230) at the user interfaces $I_1...I_n$ (14). The typical ones of the user responses $UR_1...UR_n$ (37), as typical service and/or information response forms IS1...ISn
(39) at the user interfaces 1,... In (14), may then be communicated thereto the corresponding ones of the users U₁...U_n (12), accordingly. FIGS. 27-52 show typical ones of the user responses UR₁...UR_n (37), as the typical service and/or information response forms IS₁...IS_n (39) at the user interfaces $l_1...l_n$ (14), which may be communicated thereto the corresponding ones of the users $U_1...U_n$ (12). The scope of the client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, however, is not limited to such values. Use of such values herein is meant only for illustrative purposes, in teaching certain aspects of the multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104 by example. ## D. TYPICAL SERVICE AND/OR INFORMATION RESPONSE FORMS FIGS. 27-52 show typical ones of the user responses $UR_1...UR_n$ (37), as typical service and/or information response forms $IS_1...IS_n$ (39) at the user interfaces $I_1...I_n$ (14), which may be communicated thereto the corresponding ones of the users $U_1...U_n$ (12). A typical particular one of the user responses $UR_1...UR_n$ (37), as a particular typical one of the service and/or information response forms $IS_1...IS_n$ (39) at the particular one of the user interfaces $I_1...I_n$ (14) may hereinafter be designated as the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14). 10 FIGS. 27-52 also show information therein each of the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), pertaining to the "Current Group", the "Previous Group", if appropriate, the "Next Group", if appropriate, and each "Group" by alphanumerics. FIGS. 27-52 also show information therein each of the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interfaces I_n (14), pertaining to links to additional selections, and/or links to previous selections, if appropriate, and/or links to future selections, if appropriate, that may be made by pointing to and clicking on the selections to be made. .20 FIGS. 27-29 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 11, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto Group I, Group II, and Group III, respectively. The user U_n (12) may optionally select Group II, and/or Group III therefrom the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) of FIG. 27, and/or Group I and/or Group III at the user interface I_n (14) of FIG. 28, and/or Group I, and/or Group II at the user interface I_n (14) of FIG. 29. The user U_n (12) may also select Group I, and/or Group II, and/or Group III by entering such into the typical one of the service and/or information entry request form IE_n (38) at the user interfaces $I_1...I_n$ (14), and completing the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14) therewith the appropriate selections to be made. The user U_n (12) may also make other selections by entering such into the typical one of the service and/or information entry request form IE_n (38) at the user interfaces $I_1...I_n$ (14), and completing the typical completed service and/or information entry request form IF_n (230), at the user interface I_n (14) therewith the appropriate selections to be made, and/or by making such selections therethrough the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). The user U_n (12) may typically make selections by pointing and clicking on the appropriate selections and/or by entering the desired information. Such information may be entered by any suitable means, including but not limited to mouse, keyboard entry, audible entry, and/or other suitable means. 20 FIGS. 27-29 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), having the service and/or information group G_n (35) having the addressable query information groups GI_{n1}...GI_{nz} (63) therein, the labelled individual information groups LL_{n11}...LL_{nzu} (86) therein the addressable query information groups GI_{n1}...GI_{nz} (63), the additional request links SL_{n1}...SL_{nw} (71), the optional service and/or information entry request form IE_n (38), and other information and/or services therein, resulting from the same and different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). FIGS. 27-29 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), resulting from the typical ones of the queries QQ_{n1}...QQ_{nm} (53), "Cat", "Mouse", and "Dog", the same ones of the typical queries QQ_{n1}...QQ_{n3} (53) and QQ_{n9} (53) being "Cat", other same ones of the typical queries QQ_{n4} (53) and QQ_{n7} (53) being "Mouse", but different from "Cat", and other same ones of the typical queries QQ_{n5}, QQ_{n6} (53), and QQ_{n8} (53) being "Dog", but different from "Cat" and/or "Mouse", the typical ones of the queries QQ_{n1}...QQ_{nm} (53), "Cat", "Dog", and "Mouse", being different one from the other. The typical same ones of the typical queries $QQ_{n1}...QQ_{n3}$ (53) as "Cat" are incorporated thereinto the addressable query information groups Gl_{n1} (63) of Group I. The typical one of the queries \mathbf{QQ}_{n4} (53) as "Mouse" is incorporated thereinto the addressable query information groups \mathbf{GI}_{n1} (63) of Group II. The other same ones of the typical queries \mathbf{QQ}_{n5} and \mathbf{QQ}_{n6} (53) as "Dog are incorporated thereinto the addressable query information groups \mathbf{GI}_{n2} (63) of Group II. The typical one of the queries QQ_{n7} (53) as "Mouse" is incorporated thereinto the addressable query information groups GI_{n1} (63) of Group III. The typical one of the queries QQ_{n8} (53) as "Dog" is incorporated thereinto the addressable query information groups GI_{n2} (63) of Group III. The typical one of the queries QQ_{n9} (53) as "Cat" is incorporated thereinto the addressable query information groups GI_{n3} (63) of Group III. 15 20 FIGS. 27-29 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 11 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as I, II, and III, respectively, for FIGS. 27-29. The typical optional instructions VJ_{n1}...VJ_{nk} (52) "URL's per Search Engine" as "10" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having substantially "10" ones of the typical labelled individual information groups LL_{n11}...LL_{nzu} (86) per each one of the typical server addresses AQ_{n1}...AQ_{nm} (54) in the typical "Current Group", retrieved therefrom the responses R_{n1}...R_{nm} (32). In this case, the typical labelled individual information groups LL_{n11}...LL_{nzu} (86) may be "Uniform Resource Locators", or "URL's" and/or other services and/or information associated therewith. 10 The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) "Searches per Group" as "3" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having "3 Searches per Group" for the group selected, which is designated in the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) having "Group" as "1". 15 "Group I", which is the "Current Group: I", has the first three searches ("Searches per Group" designated as "3"), i.e., Search 1, Search 2, and Search 3, having the typical queries $QQ_{n1}...QQ_{n3}$ (53) of "Cat", "Cat", and "Cat" and the typical server addresses $QQ_{n1}...QQ_{n3}$ (54) of "WebCrawler", "Altavista", and "Lycos". 20 The "Next Group: II" and/or the "Group: III" may be selected therefrom the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14). If the "Next Group: II" is selected, then Search 4, Search 5, and Search 6, having the typical queries QQ_{n4}...QQ_{n6} (53) of "Mouse", "Dog", and "Dog" and the typical server addresses AQ_{n4}...AQ_{n6} (54) of "Infoseek", "Excite", and "Yahoo" are selected and returned as the typical service and/or information response form IS_n (39) at the user interface I_n (14). If the "Group: III" is selected, then Search 7, Search 8, and Search 9, having the typical queries QQ_{n7}...QQ_{n9} (53) of "Mouse", "Dog", and "Cat" and the typical server addresses AQ_{n7}...AQ_{n9} (54) of "LookSmart", "HotBot", and "Dejanews" are selected and returned as the typical service and/or information response form IS_n (39) at the user interface I_n (14). 10 The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) having "URL's per Search
Engine" as "10" and "Searches per Group" as "3", then returns substantially "10 URL's per Search Engine" multiplied by "3 Searches per Group", which is substantially "30 URL's per Group", and/or other services and/or information associated therewith, returned therein the "Current Group". 15 The actual number of the typical "URL's per Group" may vary from the number of the "URL's per Search Engine" multiplied by the number of the "Searches per Group", as duplicate ones of the "URL's" and/or other services and/or information associated therewith may typically be optionally discarded. 20 therewith may typically be optionally disca The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) "Page" as "1" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having the first "10 URL's per Search Engine" which is substantially the first "30 URL's per Group", and/or other services and/or information associated therewith, therein the "Current Group". 5 15 20 The "Next Page" and/or other pages may be selected, which in this typical case may be Pages 1-25, therefrom the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14). If the "Next Page" is selected, then the next"10 URL's per Search Engine" which is substantially the next "30 URL's per Group", and/or other services and/or information associated therewith, therein the "Current Group" are selected and returned as the typical service and/or information response form IS_n (39) at the user interface I_n (14). If, for example, the third "Page' is selected, then the third "10 URL's per Search Engine" which is substantially the third "30 URL's per Group", and/or other services and/or information associated therewith, therein the "Current Group" are selected and returned as the typical service and/or information response form IS_n (39) at the user interface I_n (14). The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) of "Search Engine Results" as "Interleave" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having ones of the typical labelled individual information groups $LL_{n11}...LL_{nzu}$ (86) and/or other services and/or information associated therewith the typical queries $QQ_{n1}...QQ_{nm}$ (53) and the typical server addresses AQ_{n1}...AQ_{nm} (54) in the typical "Current Group", portions of which have been retrieved therefrom the responses R_{n1}...R_{nm} (32), interleaved one with the other (or alternating one with the other) therein the appropriate addressable query information groups Gl_{n1}...Gl_{nz} (63). The "Interleaved" information and/or services may typically be incorporated therein the appropriate addressable query information groups Gl_{n1}...Gl_{nz} (63) therein the "Current Group" in substantially the same sequence as the information and/or services are therein the responses R_{n1}...R_{nm} (32) communicated therefrom the servers S₁...S_z (20). However, other sorting/grouping criteria may optionally be used, as will be discussed later. In this case, the typical labelled individual information groups LL_{n11}...LL_{nzu} (86) may be "Uniform Resource Locators", or "URL's" and/or other services and/or information associated therewith. "Separate" may be selected therefrom the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) in "Separate" groups, i.e., grouped by the typical server addresses $AQ_{n1}...AQ_{nm}$ (54) incorporated therein the appropriate addressable query information groups $GI_{n1}...GI_{nz}$ (63) therein the "Current Group". 20 The typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) "URL Details" as "Summary" instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37) showing the typical labelled individual information groups $LL_{n11}...LL_{nzu}$ (86) showing descriptions and/or other information and/or services, in addition to links, and/or URL's therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). "List" may be selected therefrom the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) typically showing only links to URL's and/or other links therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). The "Timeout (seconds) per Search Engine" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) within a period of less than the "Timeout (seconds) per Search Engine" specified in the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). It should be noted that response times of less than one second per search engine are typical, and response times of substantially less than one second are quite common. However, the "Timeout (seconds) per Search Engine" has been incorporated herein for the user U_1 (12) to specify in the event of slow ones of the responses $R_{n1}...R_{nm}$ (32) from certain ones of the servers $S_1...S_z$ (20). 15 If the time it takes to retrieve information from certain ones of the servers S₁...S_z (20) having the typical ones of the queries QQ_{n1}...QQ_{nm} (53) at the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54) is greater than the "Timeout" selected, then the client C_n (16) and/or the server PS (18) typically incorporate a message and/or messages, such as "No Results Found for 'Query 'x'' at 'Server Address 'y'' within "z" seconds!" for each of the non-responding certain ones of the servers S₁...S_z (20), as shown later in FIG. 44. Information and/or services only from those ones of the servers S₁...S_z (20) responding within the "Timeout" period are then incorporated thereinto the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). FIGS. 30-32 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 12, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto Group I, Group II, and Group III, respectively. FIGS. 30-32 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), having the service and/or information group G_n (35) having the addressable query information groups GI_{n1}...GI_{nz} (63) therein, the labelled individual information groups LL_{n11}...LL_{nzu} (86) therein the addressable query information groups GI_{n1}...GI_{nz} (63), the additional request links SL_{n1}...SL_{nw} (71), the optional service and/or information 20 entry request form IE_n (38), and other information and/or services therein, resulting from the same and different ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), and the same and different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52), rather than results just from different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54) as in FIGS. 27-29. FIGS. 30-32 show the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), resulting from the typical ones of the queries QQ_{n1}...QQ_{nm} (53), "Cat", "Dog", and "Mouse", the same ones of the typical queries QQ_{n1}, QQ_{n3} (53), and QQ_{n9} (53) being "Cat", other same ones of the typical queries QQ_{n2} (53), QQ_{n5} (53), QQ_{n6} (53), and QQ_{n8} (53) being "Dog", but different from "Cat", and other same ones of the typical queries QQ_{n4} and QQ_{n7} (53) being "Mouse", but different from "Cat" and/or "Dog", the typical ones of the queries QQ_{n1}...QQ_{nm} (53), "Cat", "Dog", and "Mouse", being different one from the other. FIGS. 30-32 also show the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), resulting from the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54), "HotBot", "WebCrawler", "Yahoo", "LookSmart", and "Dejanews", the same ones of the typical server addresses AQ_{n1} and AQ_{n2} (54) being "HotBot", other same ones of the typical server addresses AQ_{n3}...AQ_{n5} (54), being "WebCrawler", but different from "HotBot", another one of the server addresses AQ_{n6} (54), being "Yahoo", but different from 15 "HotBot" and/or "WebCrawler", another one of the server addresses AQ_{n7} (54), being "LookSmart", but different from "HotBot" and/or "WebCrawler" and/or "Yahoo", and other same ones of the typical server addresses AQ_{n8} (54) and QQ_{n9} (54) being "Dejanews", but different from "HotBot" and/or "WebCrawler" and/or "Yahoo" and/or
"LookSmart", the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54), "HotBot", "WebCrawler", "Yahoo", "LookSmart", and "Dejanews", being different one from the other. The typical same ones of the typical queries QQ_{n1} and QQ_{n3} (53) as "Cat" are incorporated thereinto the addressable query information groups Gl_{n1} (63) of Group I. The typical one of the queries QQ_{n2} (53) as "Cat" is incorporated thereinto the addressable query information groups Gl_{n2} (63) of Group II. The typical one of the queries $\mathbf{QQ_{n4}}$ (53) as "Mouse" is incorporated thereinto the addressable query information groups $\mathbf{GI_{n1}}$ (63) of Group II. The other same ones of the typical queries $\mathbf{QQ_{n5}}$ and $\mathbf{QQ_{n6}}$ (53) as "Dog are incorporated thereinto the addressable query information groups $\mathbf{GI_{n2}}$ (63) of Group II. The typical one of the queries QQ_{n7} (53) as "Mouse" is incorporated thereinto the addressable query information groups GI_{n1} (63) of Group III. The typical one of the queries QQ_{n8} (53) as "Dog" is incorporated thereinto the addressable query information groups GI_{n2} (63) of Group III. The typical one of the queries QQ_{n9} (53) as "Cat" is incorporated thereinto the addressable query information groups Gl_{n3} (63) of Group III. FIGS. 30-32 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 12 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "5"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "5"; and "Group" as I, II, and III, respectively, for FIGS. 30-32. 10 15 20 Now again, FIGS. 30-32 show the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), resulting from the same and different ones of the typical queries $QQ_{n1}...QQ_{nm}$ (53), the same and different ones of the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52), but which also result from the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) having 5 "URL's per Search Engine", which instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) having 5 "URL's per Search Engine", rather than 10 "URL's per Search Engine", as in FIGS. 27-29. FIG. 33 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 13, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I, having the typical ones of the queries QQ_{n1}...QQ_{nm} (53) as "Big Elephants". The user U_n (12) may optionally select Group II, and/or Group III therefrom the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) of FIG. 33. FIG. 33 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 13 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as I. Groups I and/or II may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 33. FIGS. 34-36 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIGS. 14A, 14B, and 14C, respectively, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I, Group II, and Group III, respectively. FIGS. 34-36 show the results 15 20 "Interleaved". Typical ones of links, prices, descriptions, savings, and shipping schedules are indicated for products in Group I. The prices may be compared, for example, one with the other for the same and/or different items, shipping schedules compared, and a decision can be made as to which items to order, as a result of the information provided therein the typical one of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). Typical similar items may have the same and/or similar titles, such as for example in book titles, but publication dates, for example, and/or editions may be the same and/or different, and shipping schedules may be the same and/or different. Prices, and cost savings may be traded off against shipping schedules, packaging (i.e., for example, hardcover and/or soft cover), author, publisher, for example, and/or other factors important to the user U_n (12). The user U_n (12) may select the items and/or items to order therefrom such information that the user U_n (12) considers to be important. The user U_n (12) may place the order and/or orders directly therethrough the links and/or URL's therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14). The user U_n (12) may additionally and/or alternatively collect the order and/or orders therein a shopping cart and/or shopping carts associated with the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface l_n (14), and place the order and/or orders therethrough the client C_n (16) and/or the server PS (18). Now again, FIGS. 34-36 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), having the service and/or information group G_n (35) having the addressable query information groups GI_{n1}...GI_{nz} (63) therein, the labelled individual information groups LL_{n11}...LL_{nzu} (86) therein the addressable query information groups GI_{n1}...GI_{nz} (63), the additional request links SL_{n1}...SL_{nw} (71), the optional service and/or information entry request form IE_n (38), and other information and/or services therein, resulting from the same and different ones of the typical queries QQ_{n1}...QQ_{nm} (53), different ones of the typical server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52). Typical same ones of the typical queries QQ_{n1}...QQ_{nm} (53) are "Catcher in the Rye", "Catcher", "Rye", "Sports", and "Rye Bread", which are different one from the other. The typical server addresses AQ_{n1}...AQ_{nm} (54) are different one from the other. FIGS. 34-36 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIGS. 14A, 14B, and 14C having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "5"; "Page" as "1"; "Searches per Group as "3"; and "Group" as I, II, and III, respectively, for FIGS. 34-36. Now again, the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) have a 5 second "Timeout (seconds) per Search Engine", rather than a 3 second "Timeout (seconds) per 20 Search Engine" as in FIGS. 27-33. The "Timeout (seconds) per Search Engine" instructs the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) within a period of less than the "Timeout (seconds) per Search Engine" specified in the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52). It should be noted that response times of less than one second per search engine are typical, and response times of substantially less than one second are quite common. However, the "Timeout (seconds) per Search Engine" has been incorporated herein for the user U_1 (12) to specify in the event of slow ones of the responses $R_{n1}...R_{nm}$ (32) from certain ones of the servers $S_1...S_z$ (20). FIGS. 37-39 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 15, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I, Group II, and Group III, respectively. Links, Prices, descriptions, savings, and shipping schedules are indicated for products in Group I, and Group II. FIG. 38 shows the results "Separately" for Group II, and FIG. 39 shows the results "Interleaved" for Group II. Links, Prices, descriptions, savings, and shipping schedules are indicated for products in Groups I and II in FIGS. 37-39. FIGS. 37-39 show typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference 5 to FIG. 15 having: "Search Engine Results" as "Separate"; "URL's per Search Engine" as "8"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "1"; "Page" as "1"; "Searches per Group as "5"; and "Group" as I, II, and III, respectively for FIGS. 37-39. Now again, the typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) have "Separate", which instructs the client C_n (16) and/or the server PS (18) to
return the typical user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) in separate groups, i.e., grouped by the typical server addresses $AQ_{n1}...AQ_{nm}$ (54), rather than interleaved one with the other, as in FIGS. 27-36. FIG. 40 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 16, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto a single Group. FIG. 40 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 16 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "25"; "URL Details" as "List"; "Timeout (seconds) per Search Engine" as "2"; "Page" as "3"; "Searches per Group as "9"; and "Group" as I. Groups I and/or II may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 40. Now again, the "URL Details" as "Summary" instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37) showing descriptions and/or other information and/or services, in addition to links, therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), as in FIGS. 27-39, while "URL Details" as "List" instruct the client C_n (16) and/or the server PS (18) to return the typical user response UR_n (37) showing only links and/or URL's therein the typical ones of the user responses UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), as in FIG. 40. FIG. 41 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 17, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group II. FIG. 41 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 17 having: "Search Engine Results" as "Separate"; "URL's per Search Engine" as "18"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "1"; "Page" as "2"; "Searches per Group as "4"; and "Group" as "2". Groups I and/or III may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 41. - FIG. 42 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 18, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto a single Group. - FIG. 42 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 18 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "25"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "5"; "Page" as "1"; "Searches per Group as "9"; and "Group" as "1". FIG. 43 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 19, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto a single Group. FIG. 43 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 19 having: "Search Engine Results" as "Interleave"; "URL's per Search 20 15 Engine" as "25"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "9"; and "Group" as "1". FIG. 44 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 20, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I. FIG. 44 also shows the results of a "Timeout" occurring. 10 FIG. 44 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 20 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as I. Groups I and/or II may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 44. FIG. 45 show a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 21, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I. FIG. 45 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 21 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as I. Groups I and/or II may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 45. FIG. 46 shows a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 22, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto Group I. FIG. 46 also shows the links/advertisements/images automatically inserted thereinto the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), which may be associated therewith the typical queries $QQ_{n1}...QQ_{nm}$ (53). In the typical case shown in FIG. 46, links/advertisements/images associated therewith the typical queries $QQ_{n1}...QQ_{nm}$ (53) of "sports" and "television" have been automatically inserted thereinto the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14). and 48, full text search results associated therewith the typical query $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$ (53) of "weather" have been automatically inserted thereinto the typical ones of the user responses \mathbf{UR}_n (37), as the typical service and/or information response forms \mathbf{IS}_n (39) at the user interface \mathbf{I}_n (14), in addition to the typical queries $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$ (53) at the typical ones of the server addresses $\mathbf{AQ}_{n1}...\mathbf{AQ}_{nm}$ (54). The typical full text search results start and end with "Hotlist: Weather Science" in FIG. 47. The typical full text search results start with "Hotlist: Weather Science" and end with "search for: "weather" in FIG. 48. FIGS. 47 and 48 show the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 23 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as "1". Next Group: I and/or Group: III may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 47 and 48. FIG. 49 shows a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 24, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto Group I. FIG. 49 also shows the typical results of the server PS (18) and/or the client C_n (16) automatically optionally spidering the sites obtained as a result of the typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) at the typical ones of the server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54), and incorporating the spidered results thereinto the optional database 41 and/or the optional database 42. The spidered results incorporated thereinto the optional database 41 and/or the optional database 42 may be searched as in FIGS. 47 and 48 with reference to FIG. 23 and/or based upon other ones of the typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) at the typical ones of the server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54), and the full text search results may be obtained therefrom the additional optional responses $\mathbf{RA_{n1}...RA_{nm}}$ (40). FIG. 49 also shows the typical one of the user response UR_n (37),
as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 24 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as "1". Next Group: I and/or Group: III may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 49. FIGS. 50 shows a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 25, having information and/or services therefrom the responses $R_{n1}...R_{nm}$ (32) incorporated therein, and incorporated thereinto Group I. FIG. 50 also shows the typical results of the server PS (18) and/or the client C_n (16) semi-automatically optionally spidering the sites obtained as a result of the typical queries $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$ (53) at the typical ones of the server addresses $\mathbf{AQ}_{n1}...\mathbf{AQ}_{nm}$ (54), and incorporating the spidered results thereinto the optional database 41 and/or the optional database 42. The spidered results incorporated thereinto the optional database 41 and/or the optional database 42 may also be searched as in FIGS. 47 and 48 with reference to FIG. 23 and/or based upon other ones of the typical queries $\mathbf{QQ}_{n1}...\mathbf{QQ}_{nm}$ (53) at the typical ones of the server addresses $\mathbf{AQ}_{n1}...\mathbf{AQ}_{nm}$ (54), and the full text search results may be obtained therefrom the additional optional responses $\mathbf{RA}_{n1}...\mathbf{RA}_{nm}$ (40). - The user U_n (12) may optionally select those sites to be spidered and incorporated thereinto the optional database 41 and/or the optional database 42, as in the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14) in FIG. 50. FIG. 51 shows the typical results of the server PS (18) and/or the client C_n (16) optionally spidering the sites obtained as a result of the typical queries $QQ_{n1}...QQ_{nm}$ (53) at the typical ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54), and input resulting therefrom user selection of sites to be spidered therefrom FIG. 50, and incorporating the spidered results thereinto the optional database 41 and/or the optional database 42. - The results of the optional spidering typically obtained therefrom the typical process used therewith FIGS. 50 and 51 may be substantially the same as the typical process used therewith FIG. 49, if all the sites shown in FIG. 50 are selected for incorporation into the database **41** and/or the optional database **42**. The typical process of FIG. 49 offers an automatic approach to constructing the optional database **41** and/or the optional database **42**, and the typical process of FIGS. 50 and 51 offers the flexibility of weeding out and/or selecting sites to be incorporated thereinto the database **41** and/or the optional database **42**. J FIG. 50 also shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 25 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "10"; "URL Details" as "Summary"; "Timeout (seconds) per Search Engine" as "3"; "Page" as "1"; "Searches per Group as "3"; and "Group" as "1". Next Group: I and/or Group: III may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 50. 15 FIG. 52 shows a typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), with reference to FIG. 26, having information and/or services therefrom the additional optional responses RA_{n1}...RA_{nm} (40). FIG. 52 shows the results solely of a full text search of the optional database 41 and/or the optional database 42, which may be associated therewith the typical queries QQ_{n1}...QQ_{nm} (53). The full text search results are incorporated therefrom the additional optional responses RA_{n1}...RA_{nm} (40). The typical full text search results start with "Hotlist: Weather Science" and end with "High Plains Climate Center Home Page" in FIG. 52. The typical ones of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14) shown in FIG. 27-52 are typical examples of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), a much larger variety of which is possible. FIGS. 27-52 illustrate typical examples of typical ones of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14) to the typical queries QQ_{n1}...QQ_{nm} (53), the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52) having been entered therein the typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) shown in FIG. 11-26. The typical examples of the typical ones of the user responses $UR_1...UR_n$ (37), as typical service and/or information response forms $IS_1...IS_n$ (39) at the user interfaces $I_1...I_n$ (14) are for illustrative purposes, and are not intended to limit the substantially infinite variety of the user responses $UR_1...UR_n$ (37), as the service and/or information response forms $IS_1...IS_n$ (39) at the user interfaces $I_1...I_n$ (14), the queries $QQ_{n1}...QQ_{nm}$ (53), the server addresses $QQ_{n1}...QQ_{nm}$ (54), and the optional instructions $VJ_{n1}...VJ_{nk}$ (52) that may be entered thereinto the service and/or information entry request forms $IE_1...IE_n$ (38), to derive the to the completed service and/or information entry request forms $IF_1...IF_n$ (230), and which result in the user responses $UR_1...UR_n$ (37), as the service and/or information response forms $IS_1...IS_n$ 20 (39) at the user interfaces I₁...I_n (14). Likewise, names and/or links and/or other information are incorporated therein the typical ones of the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), shown in FIGS. 27-52 for illustrative purposes, and are not intended to limit the large variety of the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), and the names and/or links and/or information that are possible, and that may be incorporated thereinto the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14). F. OPTIONAL DATA BASE The server PS (18) and/or the clients $C_1...C_n$ (16) may also incorporate corresponding additional optional responses $RA_{11}...RA_{nm}$ (40) into the service and/or information responses $IR_1...IR_n$ (34), which may be obtained by accessing optional databases 41 and/or 42, shown in FIGS. 53A and 53B, which may be optionally resident within the server PS (18) and/or the clients $C_1...C_n$ (16), respectively. The server PS (18) and/or the clients $C_1...C_n$ (16) may optionally store the responses $R_{11}...R_{nm}$ (32) communicated therefrom the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the server designations $S_{11}...S_{nm}$ (30) in the optional databases 41 and/or 42, optionally resident within the server PS (18) and/or the clients $C_1...C_n$ (16), respectively, which may be optionally retrieved from the optional databases 41 and/or 42, and/or optionally incorporated into the service and/or information responses $IR_1...IR_n$ (34), and accessed as the additional optional responses $RA_{11}...RA_{nm}$ (40). The server PS (18) and/or the clients C₁...C_n (16) may optionally communicate with the optional servers SO₁...SO_p (22), and obtain information from each of the optional servers SO₁...SO_p (22), which may also be stored in the optional databases 41 and/or 42, which may be optionally resident within the server PS (18) and/or the clients C₁...C_n (16), respectively, and which may be optionally incorporated into the service and/or information responses IR₁...IR_n (34), and accessed as the additional optional responses RA₁₁...RA_{nm} (40). Each of the users $U_1...U_n$ (12) may optionally communicate corresponding additional optional requests $q_{11}...q_{np}$ (44) therethrough the corresponding user interfaces $I_1...I_n$ (14) and the corresponding clients $C_1...C_n$ (16) to the optional servers $SO_1...SO_p$ (22), based upon information in the service and/or information responses $IR_1...IR_n$ (34) and/or other information presented to and/or available and/or known to the users $U_1...U_n$ (12) therethrough the corresponding user interfaces $I_1...I_n$ (14). The optional servers $SO_1...SO_p$ (22) reply to the clients $C_1...C_n$ (16) with corresponding responses $r_{11}...r_{np}$ (46), which the clients $C_1...C_n$ (16) communicate therethrough the corresponding user interfaces $I_1...I_n$ (14) to the corresponding users $U_1...U_n$ (12), as shown in FIG. 2 for typical ones of the requests $q_{11}...q_{np}$ (44) and the corresponding responses $r_{11}...r_{np}$ (46). 20 A ## G. ADDITIONAL DETAILS E. ADDITIONAL DETAILS Now, in more detail, the clients $C_1...C_n$ (16) and the servers $S_1...S_z$ (20) reside on the network 24. The users $U_1...U_n$
(12) and the corresponding clients $C_1...C_n$ (16) communicate one with the other therethrough the corresponding user interfaces $I_1...I_n$ (14). The user U_1 (12), thus, communicates with the client C_1 (16), one with the other, therethrough the user interface I_1 (14); the user U_2 (12), thus, communicates with the client C_2 (16), one with the other, therethrough the user interface I_2 (14); the user U_n (12), thus, communicates with the client C_n (16), one with the other, therethrough the user interface I_n (14); and so on. Any particular user, designated user U_n (12), thus, communicates with corresponding client C_n (16), one with the other, through corresponding user interface I_n (14), as best shown later in FIGS. 54-56. The user U_n (12) may be used to designate any one of the users $U_1...U_n$ (12); the user interface I_n (14) may be used to designate any one of the user interfaces $I_1...I_n$ (14); the client C_n (16) may be used to designate any one of the users clients $C_1...C_n$ (16); and so on. The client-server multitasking system 10 may also have the server PS (18) and the optional servers $SO_1...SO_p$ (22) residing on the network 24. There may be n different or same the service and/or information requests $IQ_1...IQ_n$ (28) present on the network 24 at any time. Each of the service and/or information requests $IQ_1...IQ_n$ (28) may have one or more of the same and/or different requests $Q_{11}...Q_{nm}$ (29) to be made of one or more of the same and/or different ones of the servers $S_1...S_z$ (20), which are called server designations $S_{11}...S_{nm}$ (30), in accordance with the designation scheme which designates the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30). The service and/or information request IQ_n (28) may be used to designate any particular one of the service and/or information requests $IQ_1...IQ_n$ (28). Requests $Q_{n1}...Q_{nm}$ (29) may be used to designate the particular requests Q₁₁...Q_{nm} (29) associated therewith and corresponding to the service and/or information request IQ_n (28). Each of the requests $Q_{11}...Q_{1m}$ from the client C_1 (16) may each be different one from the other or the same; each of the requests $Q_{21}...Q_{2m}$ from the client C_2 (16) may each be different one from the other or the same; and each of the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) may each be different one from the other or the same, and so on. The requests $Q_{11}...Q_{1m}$ (29), the requests $Q_{21}...Q_{2m}$ (29), and the requests Q_{n1}...Q_{nm} (29), thus, may each be different one from the other, or the same, and so on. The requests $Q_{11}...Q_{nm}$ (29) from the clients $C_1...C_n$ (14), thus, may each be different, one from the other, or the same, and may be made of the same and/or different ones of the servers $S_1...S_z$ (20) at the same time and/or different times, in accordance with the corresponding server designations $S_{11}...S_{nm}$ (30). There may be m different or same ones of the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) at any time, and n x m different and/or same ones of the requests Q₁₁...Q_{nm} (29) of the same and/or different ones of the servers $S_1...S_z$ (20) present on the network 24 at any time. This designation format, in which the first alphanumeric subscript after the parameter of interest, for example, as in the parameters $Q_{n1}...Q_{nm}$ representing the requests $Q_{n1}...Q_{nm}$ (29), represents the particular parameters corresponding to the user U_n (12), and the second alphanumeric subscript after the parameter of interest represents the 1^{st} , 2^{nd} , 3^{rd} , through the mth one of the particular parameters, will be used as a designation scheme throughout. In this particular instance, for example, there are then m distinctly the same and/or different ones of the requests $Q_{n1}...Q_{nm}$ (29) associated with the m user m0, which is designated as the user m1. There are then the same and/or different m2. There are then the same and/or different m3. Show associated with the m4 user m5. The same and/or different requests m6. The same and/or different requests m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m6. The same and/or different ones of the servers m7. The same and/or different ones of the servers m8. The same and/or different ones of the servers m8. The same and/or different ones of the servers m8. The same and/or different ones of the servers m8. The same and/or different ones of the servers m8. The same and/or different ones of the servers m8. The same and/or different ones of the server designations m8. The same and/or different ones of the server designations m9. The same and/or different ones of the server designations m9. The same and/or different ones of the server designations m9. Each of the clients $C_1...C_n$ (16) may optionally also function as servers. Certain ones of the clients $C_1...C_n$ (16) may, therefore, function only as clients, while alternate ones of the clients $C_1...C_n$ (16) may function as clients and as servers. Each of the user interfaces $I_1...I_n$ (14) may be integral with the clients $C_1...C_n$ (16) or separate from the clients $C_1...C_n$ (16). Therefore, certain ones of the user interfaces $I_1...I_n$ (14) may be integral with the clients $C_1...C_n$ (16), while yet other ones of the user interfaces $I_1...I_n$ (14) may be separate from the clients $C_1...C_n$ (16). 15 20 The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, the server PS (18) and/or the clients $C_1...C_n$ (16) are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers $S_1...S_z$ (20), and/or the optional servers $SO_1...SO_p$ (22), and/or the clients $C_1...C_n$ (16), having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto the user responses $UR_1...UR_n$ (37) for delivery to the user interfaces $I_1...I_n$ (14) and use by the users $U_1...U_n$ (12). Now, the user interfaces $I_1...I_n$ (14) may each be different, one from the other, or the same, and may change characteristics over time. Each of the user interfaces $I_1...I_n$ (14) may change characteristics as a function of time, information, and/or instructions, and/or other means, which may be derived by the users $U_1...U_n$ (12) and/or the clients $C_1...C_n$ (16) and/or the servers $S_1...S_z$ (20), and/or the server PS (18), and/or the optional servers $SO_1...SO_p$ (22), and/or derived within the user interfaces $I_1...I_n$ (14). The user interface $I_1...I_n$ (14) may change state. The user interface $I_1...I_n$ (14) may also change as a function of optional timers and/or timed instructions associated therewith the user interfaces $I_1...I_n$ (14), and/or associated therewith the clients $C_1...C_n$ (16) and/or associated therewith the servers $S_1...S_z$ (20), and/or associated therewith the server PS (18), and/or associated therewith the optional servers $SO_1...SO_p$ (22), and/or instructions from the user $U_1...U_n$ (12). Changes in the user interface I_n (14) may appear continuous to the user U_n (12), spaced in time, staccato, or static depending upon the optional timers and/or the timed instructions. Other conditions may change the user interface $I_1...I_n$ (14), as well. The user interfaces $I_1...I_n$ (14) may be updated continuously, intermittently, manually, randomly, semi-automatically, automatically, repetitively, non-repetitively, singly, plurally, multiplexed, and/or a combination thereof or other suitable manner. The user interfaces I_{1...I_n} (14) may be visual, such as graphical user interfaces, aural, and/or tactile, a combination thereof, and/or other suitable means. The user interfaces I_{1...I_n} (14) may be integral with the clients C_{1...C_n} (16) or separate. ## 5 II. A PARTICULAR USER, USER INTERFACE, AND CLIENT ON THE NETWORK ### A. OVERVIEW FIGS. 54-56 show typical particular ones of the users U_n (12), the corresponding ones of the user interfaces U_n (12), the corresponding ones of the clients C_n (16), the server PS (18), the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30) corresponding to the requests $Q_{n1}...Q_{nm}$ (29) associated with the corresponding ones of the users U_n (12), and the optional servers $SO_1...SO_p$ (22) of the client-server multitasking system 10 of the present invention, which reside on the network 24. The user U_n (12) communicates with the corresponding client C_n (16) therethrough the corresponding user interface I_n (14). The user U_n (12) enters the corresponding user input UI_n (25) having one or more same and/or different user requests $qu_{n1}...qu_{nu}$ (26) thereinto the user interface I_n (14). The user requests $qu_{n1}...qu_{nu}$ (26) are communicated from the user interface I_n (14) to the client C_n (16) within the user service and/or information request iq_n (27), having the user requests $qu_{n1}...qu_{nu}$ (26) and other optional information. The user interface I_n (14) communicates the user service and/or information request iq_n (27) therethrough to the client C_n (16), which optionally formats the corresponding user service and/or information request iq_n (27) into the
corresponding service and/or information request IQ_n (28), as required. The service and/or information request IQ_n (28) may have one or more the same and/or different requests Q_{n1}...Q_{nm} (29) to be made of the servers S₁...S_z (20) designated by the server designations S_{n1}...S_{nm} (30) at the same time. The client C_n (16) may communicate the corresponding service and/or information request IQ_n (28) to the server PS (18). The server PS (18) parses, processes and/or formats the service and/or information request IQ_n (28) received from the client C_n (16) into the certain requests $Q_{n1}...Q_{nm}$ (29), and communicates the certain requests $Q_{n1}...Q_{nm}$ (29) to the corresponding certain ones of the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), as shown for typical ones of the certain requests $Q_{n1}...Q_{nm}$ (29) in FIG. 54. The client C_n (16) may alternatively parse, process and/or format the user service and/or information request iq_n (27) into the alternate requests $Q_{n1}...Q_{nm}$ (29), and communicate the alternate requests $Q_{n1}...Q_{nm}$ (29) to the corresponding alternate ones of the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), as shown for typical alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) in FIG. 55. The client C_n (16) may alternatively communicate the corresponding other alternate one of the service and/or information request IQ_n (28) to the server PS (18), which parses, processes and/or formats the other alternate one of the service and/or information request IQ_n (28) into the other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29), and communicates the other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) to the corresponding other alternate ones of the servers $S_{11}...S_{nm}$ (30), and additionally the client C_n (16) may also parse, process and/or format the user service and/or information request iq_n (27) into yet other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29), and communicate the yet other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) to the corresponding yet other alternate ones of the servers $S_{n1}...S_{nm}$ (30), as shown for typical other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) and typical yet other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) and typical yet other alternate ones of the requests $Q_{n1}...Q_{nm}$ (29) in FIG. 56. Each of the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30) replies to the server PS (18) and/or the client C_n (16), in accordance with the designation scheme corresponding to the corresponding certain ones of the server designations $S_{11}...S_{nm}$ (30), accordingly, and communicates the corresponding responses $R_{n1}...R_{nm}$ (32), associated with the requests $Q_{n1}...Q_{nm}$ (29), to the server PS (18) and/or the client C_n (16), accordingly. The server PS (18) and/or the client C_n (16) parse, format, process, group, and organize the responses $R_{n1}...R_{nm}$ (32) into the corresponding service and/or information response IR_n (34) and/or the user service and/or information response IR_n (35) acceptable to the client C_n (16) and the user interface I_n (14). The server PS (18) communicates the service and/or information response IR_n (34) to the client C_n (16), as required. The client C_n (16) formats the service and/or information responses $IR_1...IR_n$ (34) into the corresponding user service and/or information response ir_n (36), as required, and communicates the user service and/or information responses ir_n (36) thereto the user interfaces I_n (14). The user interface I_n (14) incorporates the user service and/or information response ir_n (36) into the user response UR_n (37), which is communicated by the user interfaces I_n (14) thereto the user U_n (12). 20 10 15 The server PS (18) and/or the client C_n (16) may optionally also incorporate the optional additional corresponding responses $RA_{n1}...RA_{nm}$ (40) (shown later in FIGS. 59, 60, 63, and 64) into the service and/or information response IR_n (34), which may be obtained by accessing the optional databases 41 and/or 42, which may be optionally resident within the server PS (18) and/or the client C_n (16), respectively The server PS (18) and/or the client C_n (16) communicate the service and/or information response IR_n (34) therethrough the user interface I_n (14) to the user U_n (12). The server PS (18) and/or the clients C_n (16) may optionally store the responses $R_{n1}...R_{nm}$ (32) communicated from the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30) in the optional databases 41 and/or 42, optionally resident within the server PS (18) and/or the client C_n (16), respectively, which may be optionally retrieved from the optional databases 41 and/or 42, and/or optionally incorporated into the service and/or information response IR_n (34), and accessed as the additional optional responses $RA_{n1}...RA_{nm}$ (40). 15 20 10 The server PS (18) and/or the client C_n (16) may optionally communicate with the optional servers $SO_1...SO_p$ (22), and obtain information from each of the optional servers $SO_1...SO_p$ (22), which may also be stored in the optional databases 41 and/or 42, which may be optionally resident within the server PS (18) and/or the client C_n (16), respectively, and which may be optionally incorporated into the service and/or information response IR_n (34), and accessed as the additional optional responses $RA_{n1}...RA_{nm}$ (40). The user U_n (12) may optionally communicate the corresponding additional optional requests $q_{n1}...q_{np}$ (44) therethrough the user interface I_n (14) and the client C_n (16) to the optional servers $SO_1...SO_p$ (22), based upon information in the service and/or information response IR_n (34) and/or other information presented to and/or available and/or known to the user U_n (12) therethrough the user interface I_n (14). The optional servers $SO_1...SO_p$ (22) reply to the client C_n (16) with the corresponding responses $r_{n1}...r_{np}$ (46), which the client C_n (16) communicates therethrough the user interface I_n (14) to the user U_n (12), as shown in FIGS. 54-56 for typical ones of the requests $q_{n1}...q_{np}$ (44) and the corresponding responses $r_{n1}...r_{np}$ (46). 10 #### **B. DIAGRAMMATIC REGROUPING** Now, in more detail, FIG. 57 shows a schematic representation of ones of the users $U_1...U_n$ (12), the corresponding user interfaces $I_1...I_n$ (14), the corresponding clients $C_1...C_n$ (16), the server PS (18), the servers $S_1...S_z$ (20), and the optional servers $SO_1...SO_p$ (22) of the client-server multitasking system 10 of the present invention, constructed in accordance with the present invention, which reside on the network 24, regrouped diagrammatically and alternatively named for illustrative purposes only, to illustrate and visualize possible typical communication paths. Other than FIG. 57, the nomenclature previously described and utilized will be used throughout. 20 15 Now, as shown in FIG. 57, for illustrative purposes only, ones of the clients C₁...C_n (16) communicating with the server PS (18), as in FIG. 54, may optionally be designated clients $CA_1...CA_w$ (16A), and so on. Ones of the clients $C_1...C_n$ (16) communicating with the servers $S_1...S_z$ (20), as in FIG. 55, may optionally be designated clients $CB_1...CB_x$ (16B), and so on. Ones of the clients $C_1...C_n$ (16) communicating with the server PS (18) and with the servers $S_1...S_z$ (20), as in FIG 56, may optionally be designated clients $CC_1...CC_y$ (16C), and so on. The users U₁...U_n (12) and the corresponding user interfaces I₁...I_n (14) corresponding to the clients C₁...C_n (16) may, likewise, optionally be designated in FIG. 57 only: correspondingly to the clients CA₁...CA_w (16A), as users UA₁...UA_w (12A) and user interfaces IA₁...IA_w (14A), respectively; correspondingly to the clients CB₁...CB_x (16B), as users UB₁...UB_x (12B) and user interfaces IB₁...IB_x (14B), respectively; and correspondingly to the clients CC₁...CC_y (16C), as users UC₁...UC_y (12C) and IC₁...IC_y (14C), respectively. The clients $C_1...C_n$ (16) being accounted for, the total of the clients $CA_1...CA_w$ (16A), $CB_1...CB_x$ (16B), and $CC_1...CC_y$ (16C) of FIG. 57 add up to n, where n may be any number greater or equal to one, such that the subscripts w + x + y = n. # III. A PARTICULAR SERVICE AND/OR INFORMATION REQUEST AND ASSOCIATED SERVICE AND/OR INFORMATION RESPONSE ON THE NETWORK ## B. THE SERVER PS (18) FIG. 58 shows a typical particular one of the service and/or information requests $IQ_1...IQ_n$ (28), designated as the service and/or information request IQ_n (28), having queries QQ_{n1}...QQ_{nm} (53), corresponding server addresses AQ_{n1}...AQ_{nm} (54), and optional instructions $VJ_{n1}...VJ_{nk}$ (52). The server addresses $AQ_{n1}...AQ_{nm}$ (54) and the optional instructions $VJ_{n1}...VJ_{nk}$ (52) may be optional, and may depend upon the user interface I_n (14), and/or other information resident within the server PS (18). 10 15 FIG. 59 shows the particular service and/or information request IQ_n (28) parsed, processed, and/or formatted into current request group QAnc (50), request groups $QA_{n1}...QA_{nz}$ (51), and optional instructions $VJ_{n1}...VJ_{nk}$ (52), and utilization of information therefrom to make the requests $Q_{n1}...Q_{nm}$ (29), obtain the responses R_{n1}...R_{nm} (32), and incorporate information therefrom into the particular service and/or information response IR_n (34). The current request group QA_{nc} (50) may be any particular one the request groups QAn1...QAnz (51), which may be selected by the user U_n (12). 20 Upon receipt of the
service and/or information requests IQ1...IQn (28) at the server PS (18), communicated therefrom the corresponding clients C₁...C_n (16), the server PS (18) parses, processes, and/or formats each of the service and/or information requests $IQ_1...IQ_n$ (28) into the corresponding current request groups $QA_{1c}...QA_{nc}$ (50) having corresponding queries $QQ_{11}...QQ_{nm}$ (53) and corresponding server addresses $AQ_{11}...AQ_{nm}$ (54) to open connections with and make the requests $Q_{11}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), shown for a particular one of the service and/or information requests IQ_n (28) in FIG. 59. The server **PS** (18) also parses, processes, and/or formats each of the service and/or information requests IQ₁...IQ_n (28) into the corresponding request groups QA₁₁...QA_{nz} (51) having corresponding other queries QQ_{1a}...QQ_{nz} (55) and corresponding other server addresses AQ_{1a}...AQ_{nz} (56), and the corresponding optional instructions VJ₁₁₁...VJ_{nk} (52), also shown for a particular one of the service and/or information requests IQ_n (28) in FIG. 59. The server PS (18) opens connections with and makes the requests $Q_{n1}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), shown for the particular one of the service and/or information requests IQ_n (28) corresponding to the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses AQ_{n1}...AQ_{nm} (54) therein the current request group QA_{nc} (50). - The servers S₁...S_z (20) corresponding to the server designations S₁₁...S_{nm} (30), designated in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q_{n1}...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), respond to the requests Q_{n1}...Q_{nm} (29) with the corresponding responses R_{n1}...R_{nm} (32). - The server **PS** (18) parses, and/or processes, and/or formats, and/or groups, and/or organizes each of the responses R_{n1}...R_{nm} (32) received from the servers S₁...S_z (20) corresponding to the server designations S_{n1}...S_{nm} (30) into corresponding addressable response information groups RG_{n1}...RG_{nm} (57). - The server PS (18) may also make additional optional requests QP_{n1}...QP_{nm} (58) of the optional database 41, which may be optionally resident within the server PS (18), and which may reply with the corresponding additional optional responses RA_{n1}...RA_{nm} (40). The server PS (18) parses, and/or processes, and/or formats, and/or groups, and/or organizes each of the additional optional responses RA_{n1}...RA_{nm} (40) into corresponding response information groups RC_{n1}...RC_{nm} (59). Information from the current request group QA_{nc} (50) having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) is formulated into a corresponding request pointer/address group QZ_n (60) having pointers/addresses PG_{n1}...PG_{nz} (61) associated therewith. Each of the pointers/addresses PG_{n1}...PG_{nz} (61) are directed to point/address corresponding addressable query pointer/address groups QG_{n1}...QG_{nz} (62) associated therewith, which aid in obtaining information and/or services therefrom certain ones of addressable response information groups RG_{n1}...RG_{nm} (57) to be incorporated thereinto addressable query information groups GI_{n1}...GI_{nz} (63). Grouping and/or sorting criteria may be incorporated thereinto the optional instructions VJ_{n1}...VJ_{nk} (52), which may be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). Grouping and/or sorting criteria may additionally and/or alternatively be optionally resident within the server PS (18) and/or the client C_n (16). 15 The grouping and/or sorting criteria gives the user U_n (12) the ability to formulate the query information groups $GI_{n1}...GI_{nz}$ (63) and the way in which information and/or services from the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is presented to the user U_n (12) therethrough the user interface I_n (14). 20 Each of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) are associated therewith the corresponding ones of the addressable query information groups $Gl_{n1}...Gl_{nz}$ (63). The addressable query pointer/address group QG_{n1} (62) is, thus, 20 associated therewith the addressable query information group GI_{n1} (63); the addressable query pointer/address group QG_{n2} (62) is, thus, associated therewith the addressable query information group GI_{n2} (63); the addressable query pointer/address group QG_{nz} (62) is, thus, associated therewith the addressable query information group GI_{nz} (63), and so on. Each of the addressable query pointer/address groups $\mathbf{QG_{n1}...QG_{nz}}$ (62) is formulated based upon the grouping and/or sorting criteria, which may be incorporated thereinto the optional instructions $\mathbf{VJ_{n1}...VJ_{nk}}$ (52), and/or which may additionally and/or alternatively optionally be resident within the server PS (18) and/or the client $\mathbf{C_n}$ (16), and/or information within the current request group $\mathbf{QA_{nc}}$ (50). Each of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) has pointers/addresses $PP_{n11}...PP_{nmr}$ (64) directed to address/point information therein the addressable response information groups $RG_{n1}...RG_{nm}$ (57) based upon the grouping and/or sorting criteria, which may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), and/or which may additionally and/or alternatively optionally be resident within the server PS (18) and/or the client C_n (16), and/or the corresponding queries $QQ_{n1}...QQ_{nm}$ (53), and/or the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) within the current request group QA_{nc} (50). Information and/or services within each of the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is addressed therewith the pointers/addresses $PP_{n11}...PP_{nmr}$ (64) therefrom the query pointer/address groups $QG_{n1}...QG_{nz}$ (62), and information and/or services therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is incorporated thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63) corresponding to the pointers/addresses $PP_{n11}...PP_{nmr}$ (64), which are formulated by the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62), in accordance with the grouping and/or sorting criteria. The corresponding other queries QQ_{na}...QQ_{nz} (55) and the corresponding other server addresses AQ_{na}...AQ_{nz} (56) therein the corresponding request groups QA_{n1}...QA_{nz} (51) may be used for other ones of the requests Q_{n1}...Q_{nm} (29), and may be incorporated into the service and/or information response IR_n (34), as part of other information OI_n (65), for future use. Each of the addressable query information groups $Gl_{n1}...Gl_{nz}$ (63) is incorporated thereinto the service and/or information group G_n (35). The service and/or information group G_n (35) and the other information OI_n (65) are incorporated thereinto the service and/or information response IR_n (34). The optional instructions VJ_{n1}...VJ_{nk} (52) may be used by the server PS (18) in making the requests Q_{n1}...Q_{nm} (29) and/or the additional optional requests QP_{n1}...QP_{nm} (58) of the optional database 41, and/or in processing, formatting, grouping, and organizing the responses R_{n1}...R_{nm} (32) from the ones of the servers S₁...S_z (20) corresponding to the server designations S_{n1}...S_{nm} (30), and/or the additional optional responses $RA_{n1}...RA_{nm}$ (40), into the corresponding service and/or information responses $IR_1...IR_n$ (34), for grouping and/or sorting criteria instructions, and/or may be used for other purposes. - FIG. 60 is a schematic representation of the particular service and/or information request IQ_n (28) parsed, processed, and/or formatted into a current request group QA_n (50), request groups QA_{n1}...QA_{nz} (51), and corresponding optional instructions VJ_{n1}...VJ_{nk} (52), and utilization of information therefrom to make the requests Q_{n1}...Q_{nm} (29), obtain the responses R_{n1}...R_{nm} (32), and incorporate information therefrom into the particular service and/or information response IR_n (34), having simpler grouping/sorting that may be used additionally and/or alternatively to that of FIG. 59. - The user U_n (12) is typically given the option therethrough the optional instructions $VJ_{n1}...VJ_{nk}$ (52) as to the grouping and/or sorting criteria to be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). The user U_n (12) is typically given the choice as to the grouping and/or sorting criteria to be used as in FIG. 59, and/or the grouping and/or sorting criteria of FIG. 60. - Information from the current request group QA_{nc} (50) having the corresponding queries QQ_{n1}...QQ_{nm} (53) and the corresponding server addresses AQ_{n1}...AQ_{nm} (54) is formulated into a corresponding request pointer/address group QY_n (68) having pointers/addresses PF_{n11}...PF_{nmr} (69) associated therewith, as shown in FIG. 60. Each of the
pointers/addresses $PF_{n11}...PF_{nmr}$ (69) are directed to point/address the corresponding addressable response information groups $RG_{n1}...RG_{nm}$ (57), and aid in obtaining information and/or services therefrom the corresponding addressable response information groups $RG_{n1}...RG_{nm}$ (57) to be incorporated thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63), as shown in FIG. 60. The grouping and/or sorting criteria allow the user U_n (12) to direct the server PS (18) and/or the client C_n (16) to sort information and/or services therefrom the responses the responses $R_{n1}...R_{nm}$ (32) and/or the additional optional responses $RA_{n1}...RA_{nm}$ (40) therefrom the optional database 41, such as, for example, by category, query, group, page, order of importance, ascending and/or descending order, alphabetically and/or numerically, value, price, and/or other characteristics, and/or to combine and/or interleave the information and/or services therefrom the responses the responses $R_{n1}...R_{nm}$ (32) and/or the additional optional responses $RA_{n1}...RA_{nm}$ (40) one with the other, such as, for example, by order of relevance and/or other parameters. FIG. 61 shows the particular service and/or information response IR_n (34) having a service and/or information group G_n (35), additional request links $SL_{n1}...SL_{nw}$ (71), optional order form 72, optional additional advertisements and/or links 73, optional hidden information 74, and the optional service and/or information entry request form IE_n (38). 20 The service and/or information group G_n (35) has the query information groups $Gl_{n1}...Gl_{nz}$ (63), optional database response groups 75, and optional additional advertisements and/or links 76. The additional request links SL_{n1}...SL_{nw} (71) allow the user U_n (12) to make additional optional selections, based upon information and/or services previously requested by the user U_n (12). The additional request links SL_{n1}...SL_{nw} (71), which are optional, may typically have Current Group/Next Group/Previous Group/Group Number Links, Server Names in Each Group, Queries in Each Group, Current Page/Next Page/Previous Page/Page Number Links, Search Display/Link and/or Description Placement/Interleave/Separate, and Link Description Options/Summary/Minimize. Other additional ones of the additional requests links SL_{n1}...SL_{nw} (71) and/or combinations thereof may also be incorporated thereinto the service and/or information response IR_n (34). The optional order form 72 allows direct placement and/or confirmation of orders and/or purchases therewith the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22), which reside on the network 24. The user U_n (12) may enter the order placement thereinto the user interface I_n (14) therethrough the user input UI_n (25), and receive order confirmation therethrough the user interface I_n (14). The client C_n (16) may communicate the order placement therefrom the user interface I_n (14) thereto the server PS (18), which may communicate the order placement thereto the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22). The server PS (18) may alternatively and/or additionally communicate the order confirmation received therefrom the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22) thereto the client C_n (16), which may communicate the order confirmation thereto the user interface I_n (14) for presentation to the user U_n (12). The order placement and/or the order confirmation may be stored within the server PS (18) and/or the client C_n (16). The order placement and/or the order confirmation is typically secure, and may be encrypted, and is typically communicated using secure communications means. #### C. CERTAIN ONES OF THE CLIENTS - Certain ones of the clients C₁...C_n (16) may alternatively and/or additionally make the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29), and formulate the corresponding user service and/or information response ir₁...ir_n (36), as previously described. - FIG. 62 shows a typical particular one of the user service and/or information requests $iq_1...iq_n$ (27), designated as the user service and/or information request iq_n (27), having the queries $QQ_{n1}...QQ_{nm}$ (53), the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54), and the optional instructions $VJ_{n1}...VJ_{nk}$ (52). The server addresses $AQ_{n1}...AQ_{nm}$ (54) and the optional instructions $VJ_{n1}...VJ_{nk}$ (52) may be optional, and may depend upon the user interface I_n (14), and/or other information resident within the client C_n (16). FIG. 63 shows the particular user service and/or information request iq_n (27) parsed, processed, and/or formatted into the current request group QA_{nc} (50), the request groups $QA_{n1}...QA_{nz}$ (51), and the corresponding optional instructions $VJ_{n1}...VJ_{nk}$ (52), and utilization of information therefrom to make the requests $Q_{n1}...Q_{nm}$ (29), obtain the responses $R_{n1}...R_{nm}$ (32), and incorporate information therefrom into the particular user service and/or information response ir_n (36); 10 The server PS (18) makes the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), as shown in FIG. 59, and certain ones of the clients C₁...C_n (16) may additionally and/or alternatively make the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), as shown in FIG. 63. 20 The clients C_n (16) may parse, process, and/or format the user service and/or information requests iq_n (27) and/or organize and/or group information and/or services therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63) substantially the same as the server PS (18) parses, processes, and/or formats the service and/or information requests IQ_n (28) therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63), except that the client C_n (16) may organize the addressable query information groups $GI_{n1}...GI_{nz}$ (63) thereinto the user service and/or information response Ir_n (36), as in FIG. 63, and the server PS (18) organizes the addressable query information groups $GI_{n1}...GI_{nz}$ (63) thereinto the corresponding service and/or information response IR_n (34), as in FIG. 59. 10 20 Upon receipt of the user service and/or information requests $iq_1...iq_n$ (27) at the corresponding clients $C_1...C_n$ (16), certain ones of the corresponding clients $C_1...C_n$ (16) may parse, process, and/or format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into the corresponding current request groups $QA_{1c}...QA_{nc}$ (50) having the corresponding queries $QQ_{11}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{11}...AQ_{nm}$ (54) to open connections with and make the requests $Q_{11}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), shown for a particular one of the user service and/or information requests $iq_1...iq_n$ (27) in FIG. 63. The corresponding clients C₁...C_n (16) may also parse, process, and/or format the corresponding user service and/or information response ir₁...ir_n (36) into the corresponding request groups QA₁₁...QA_{nz} (51) having the corresponding other queries QQ_{1a}...QQ_{nz} (55) and the corresponding other server addresses AQ_{1a}...AQ_{nz} (56), and the corresponding optional instructions VJ₁₁₁...VJ_{nk} (52), also shown for a particular one of the user service and/or information requests iq_n (27) in FIG. 63. A particular one of the corresponding clients $C_1...C_n$ (16), designated as the client C_n (16), may open connections with and make the requests $Q_{n1}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), shown for the particular one of the user service and/or information requests iq_n (27) corresponding to the corresponding queries $Q_{n1}...Q_{nm}$ (53) and the corresponding server addresses $Q_{n1}...Q_{nm}$ (54) therein the current request group Q_{nc} (50). The servers $S_1...S_z$ (20) corresponding to the server designations $S_{11}...S_{nm}$ (30), designated in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), respond to the requests $Q_{n1}...Q_{nm}$ (29) with the corresponding responses $R_{n1}...R_{nm}$ (32). The client C_n (16) may parse, and/or process, and/or format, and/or group, and/or organize each of the responses $R_{n1}...R_{nm}$ (32) received
from the servers $S_1...S_z$ (20) corresponding to the server designations $S_{n1}...S_{nm}$ (30) into the corresponding addressable response information groups $RG_{n1}...RG_{nm}$ (57). 5 The client C_n (16) may also make additional optional requests $QP_{n1}...QP_{nm}$ (58) of the optional database 42, which may be optionally resident within the client C_n (16), and which may reply with the corresponding additional optional responses $RA_{n1}...RA_{nm}$ (40). The client C_n (16) may parse, and/or process, and/or format, and/or group, and/or organize each of the additional optional responses $RA_{n1}...RA_{nm}$ (40) into the corresponding response information groups $RC_{n1}...RC_{nm}$ (59). Now again, for the client C_n (16), information from the current request group QA_{nc} (50) having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) is formulated into the corresponding request pointer/address group QZ_n (60) having the pointers/addresses $PG_{n1}...PG_{nz}$ (61) associated therewith. Now again, for the client C_n (16), each of the pointers/addresses $PG_{n1}...PG_{nz}$ (61) are directed to point/address the corresponding addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) associated therewith, which aid in obtaining information and/or services therefrom certain ones of the addressable response information groups $RG_{n1}...RG_{nm}$ (57) to be incorporated thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63). Yet again, for the client C_n (16), grouping and/or sorting criteria may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), which may be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). Grouping and/or sorting criteria may additionally and/or alternatively optionally resident within the server PS (18) and/or the client C_n (16). - Now again, the grouping and/or sorting criteria gives the user U_n (12) the ability to formulate the query information groups $Gl_{n1}...Gl_{nz}$ (63) and the way in which information from the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is presented to the user U_n (12) therethrough the user interface I_n (14). - Now again, for the client C_n (16), each of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) are associated therewith the corresponding ones of the addressable query information groups $QG_{n1}...QG_{nz}$ (63). Each of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) is formulated based upon the grouping and/or sorting criteria, which may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), and/or which may additionally and/or alternatively optionally be resident within the server PS (18) and/or the client C_n (16), and/or information within the current request group QA_{nc} (50). Now again, for the client C_n (16), each of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) has pointers/addresses PP_{n11}...PP_{nmr} (64) directed to address/point services and/or information therein the addressable response information groups RG_{n1}...RG_{nm} (57) based upon the grouping and/or sorting criteria, which may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), and/or which may additionally and/or alternatively optionally be resident within the server PS (18) and/or the client C_n (16), and/or the corresponding queries $QQ_{n1}...QQ_{nm}$ (53), and/or the corresponding server addresses AQ_{n1}...AQ_{nm} (54) within the current request group QA_{nc} (50). 10 15 Yet again, for the client C_n (16), the information and/or services therein each of the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is addressed therewith the pointers/addresses PP_{n11}...PP_{nmr} (64) therefrom the query pointer/address groups QG_{n1}...QG_{nz} (62), and information and/or services therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is incorporated thereinto the addressable query information groups $Gl_{n1}...Gl_{nz}$ (63) corresponding to the pointers/addresses PP_{n11}...PP_{nmr} (64), which are formulated by the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62), in accordance with the grouping and/or sorting criteria. 20 Yet again, for the client C_n (16), the corresponding other queries $QQ_{na}...QQ_{nz}$ (55) and the corresponding other server addresses AQna...AQnz (56) therein the corresponding request groups QA_{n1}...QA_{nz} (51) may be used for other ones of the requests $Q_{n1}...Q_{nm}$ (29), and may be incorporated into the user service and/or information response ir_n (36), as part of other information OI_n (65), for future use. Now again, for the client C_n (16), each of the addressable query information groups $GI_{n1}...GI_{nz}$ (63) is incorporated thereinto the service and/or information group G_n (35). The service and/or information group G_n (35) and the other information OI_n (65) are incorporated thereinto the service and/or information response IR_n (34). The optional instructions $VJ_{n1}...VJ_{nk}$ (52) may be used by the client C_n (16), in making the requests $Q_{n1}...Q_{nm}$ (29) and/or the additional optional requests $QP_{n1}...QP_{nm}$ (58) of the optional database 42, and/or in processing, formatting, grouping, and organizing the responses $R_{n1}...R_{nm}$ (32) from the ones of the servers $S_1...S_2$ (20) corresponding to the server designations $S_{n1}...S_{nm}$ (30), and/or the additional optional responses $RA_{n1}...RA_{nm}$ (40), into user service and/or information response Ir_n (36), for grouping and/or sorting criteria instructions, and/or may be used for other purposes. FIG. 64 is a schematic representation of the particular user service and/or information request iq_n (27) parsed, processed, and/or formatted into the current request group QA_{nc} (50), the request groups QA_{n1}...QA_{nz} (51), and the corresponding optional instructions VJ_{n1}...VJ_{nk} (52), and utilization of information therefrom to make the requests Q_{n1}...Q_{nm} (29), obtain the responses R_{n1}...R_{nm} (32), and incorporate information therefrom into the particular user service and/or information response ir_n 15 20 (36), having simpler grouping/sorting that may be used additionally and/or alternatively to that of FIG. 63. The user U_n (12) is typically given the option therethrough the optional instructions $VJ_{n1}...VJ_{nk}$ (52) as to the grouping and/or sorting criteria to be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). The user U_n (12) is typically given the choice as to the grouping and/or sorting criteria of FIG. 63, and/or the grouping and/or sorting criteria of FIG. 64. Now again, the client C_n (16) may parse, process, and/or format the user service and/or information requests iq_n (27) and/or organize and/or group information and/or services therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63) substantially the same as the server PS (18) parses, processes, and/or formats the service and/or information requests IQ_n (28) therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63), except that the client C_n (16) may organize the addressable query information groups $GI_{n1}...GI_{nz}$ (63) thereinto the user service and/or information response ir_n (36), as in FIG. 64, and the server PS (18) organizes the addressable query information groups $GI_{n1}...GI_{nz}$ (63) thereinto the corresponding service and/or information response IR_n (34), as in FIG. 60. 20 Now again, for the client C_n (16), information from the current request group QA_{nc} (50) having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) is formulated into the corresponding request pointer/address group QY_n (68) having the pointers/addresses $PF_{n11}...PF_{nmr}$ (69) associated therewith, as shown in FIG. 64. Now again, for the client C_n (16), each of the pointers/addresses $PF_{n11}...PF_{nmr}$ (69) are directed to point/address the corresponding addressable response information groups $RG_{n1}...RG_{nm}$ (57), and aid in obtaining information and/or services therefrom the corresponding addressable response information groups $RG_{n1}...RG_{nm}$ (57) to be incorporated thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63), as shown in FIG. 64. Again, the grouping and/or sorting criteria allow the user U_n (12) to direct the server PS (18) and/or the client C_n (16) to sort information and/or services therefrom the responses the responses $R_{n1}...R_{nm}$ (32) and/or the additional optional responses $RA_{n1}...RA_{nm}$ (40) therefrom the optional database 41, such as, for example, by category, query, group, page, order of importance, ascending and/or descending order, alphabetically and/or numerically, value, price, and/or other characteristics, and/or to combine and/or interleave the information and/or services therefrom the responses the responses $R_{n1}...R_{nm}$ (32) and/or the additional optional responses $R_{n1}...R_{nm}$ (40) one with the other, such as, for example, by order of relevance and/or other parameters. FIG. 65 shows the particular user service and/or information response ir_n (36) having the service and/or information group G_n (35), the additional request links $SL_{n1}...SL_{nw}$ (71), the optional order form 72, the optional additional advertisements and/or links 73, the optional hidden information 74, and the optional service and/or information entry
request form IE_n (38). Now again, the service and/or information group G_n (35) has the query information groups $Gl_{n1}...Gl_{nz}$ (63), the optional database response groups 75, and the optional additional advertisements and/or links 76. 10 20 Yet again, the additional request links $SL_{n1}...SL_{nw}$ (71) allow the user U_n (12) to make additional optional selections, based upon information and/or services previously requested by the user U_n (12). The additional request links $SL_{n1}...SL_{nw}$ (71), which are optional, may typically have Current Group/Next Group/Previous Group/Group Number Links, Server Names in Each Group, Queries in Each Group, Current Page/Next Page/Previous Page/Page Number Links, Search Display/Link and/or Description Placement/Interleave/Separate, and Link Description Options/Summary/Minimize. Other additional ones of the additional request links $SL_{n1}...SL_{nw}$ (71) and/or combinations thereof may also be incorporated thereinto the user service and/or information response ir_n (36). Now again, for the client C_n (16), the optional order form 72 allows direct placement and/or confirmation of orders and/or purchases therewith the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22), which reside on the network 24. The user U_n (12) may enter the order placement thereinto the user interface I_n (14) therethrough the user input UI_n (25), and receive order confirmation therethrough the user interface I_n (14). The client C_n (16) may communicate the order placement therefrom the user interface I_n (14) thereto the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22), and/or receive the order confirmation therefrom, and communicate the order confirmation therefrom the servers $S_1...S_z$ (20) and/or the optional servers $SO_1...SO_p$ (22) thereto the user interface I_n (14) for presentation to the user U_n (12). The order placement and/or the order confirmation may be stored within the server PS (18) and/or the client C_n (16). The order placement and/or the order confirmation is typically secure, and may be encrypted, and is typically communicated using secure communications means. ## D. FORMULATING QUERY INFORMATION GROUPS Each of the particular addressable response information groups RG_{n1}...RG_{nm} (57), designated as the addressable response information group RG_{nm} (57), has optional addressable individual information groups LG_{nm1}...LG_{nmr} (80), which may be addressed therewith the pointers/addresses PP_{nm1}...PP_{nmr} (64), as shown in FIGS. 59, 63, 66A, 66B, and 66C. 20 15 Each of the addressable response information groups RG_{n1}...RG_{nm} (57) and each of the optional addressable individual information groups LG_{n11}...LG_{nmr} (80) therein 20 each of the addressable response information groups RG_{n1}...RG_{nm} (57) may be addressed therewith the pointers/addresses PP_{n11}...PP_{nmr} (64). Now again, the addressable response information group RG_{nm} (57) has the optional addressable individual information groups LG_{nm1}...LG_{nmr} (80), which may be addressed therewith the pointers/addresses PP_{nm1}...PP_{nmr} (64). Each of the addressable individual information groups LG_{nm1}...LG_{nmr} (80) therein the addressable response information group RG_{nm} (57) may be pointed/addressed by the server PS (18) and/or the client C_n (16) to retrieve all and/or a portion and/or combinations thereof of specific ones of the addressable individual information groups LG_{nm1}...LG_{nmr} (80), therefrom the addressable response information group RG_{nm} (57), and incorporate information and/or services therefrom the addressable individual information groups LG_{nm1}...LG_{nmr} (80) thereinto certain ones of the addressable query information groups GI_{n1}...GI_{nz} (63), in accordance with the grouping and/or sorting criteria addressing scheme. The addressable response information group RG_{nm} (57) having the optional addressable individual information groups $LG_{nm1}...LG_{nmr}$ (80) may have optional addressable pointer/address indices $IN_{nm1}...IN_{nmr}$ (81) correspondingly associated therewith the optional addressable individual information groups $LG_{nm1}...LG_{nmr}$ (80), which may be addressed/pointed therewith the pointers/addresses $PP_{nm1}...PP_{nmr}$ (64), and which may be pointed/addressed by the server PS (18) and/or the client C_n (16) to retrieve all and/or a portion and/or combinations thereof of specific ones of the addressable individual information groups LG_{nm1}...LG_{nmr} (80), and incorporate information and/or services therefrom the addressable individual information groups LG_{nm1}...LG_{nmr} (80) thereinto the certain ones of the addressable query information groups GI_{n1}...GI_{nz} (63), in accordance with the grouping and/or sorting criteria addressing scheme. FIGS. 66A, 66B, and 66C show the addressable response information group RG_{nm} (57) having the addressable individual information groups LG_{nm1}...LG_{nmr} (80) showing the optional addressable pointer/address indices IN_{nm1}...IN_{nmr} (81) correspondingly associated therewith the optional addressable individual information groups LG_{nm1}...LG_{nmr} (80), which may be addressed/pointed therewith the pointer/addresses PP_{nm1} (64), PP_{nm2} (64), and PP_{nmr} (64), respectively. The optional addressable pointer/address index IN_{nm1} (81) is correspondingly associated therewith the optional addressable individual information group LG_{nm1} (80). The optional addressable pointer/address index IN_{nm2} (81) is correspondingly associated therewith the optional addressable individual information group LG_{nm2} (80), and so on. The optional addressable pointer/address index IN_{nmr} (81) is, thus, correspondingly associated therewith the optional addressable individual information group LG_{nm1} (80). The pointers/addresses $PG_{n1}...PG_{nz}$ (61) may be formulated as arrays and/or lists. The pointers/addresses $PP_{nm1}...PP_{nmr}$ (64) and/or the pointers/addresses **PF**_{nm1}...**PF**_{nmr} **(69)** may be formulated as arrays and/or lists. The arrays may be multidimensional arrays, and the lists may be lists within lists. The optional addressable individual information group LG_{nmr} (80) is associated therewith and corresponds to a particular one of the addressable individual information groups LG_{nm1}...LG_{nmr} (80) therein a particular one of the addressable response information groups RG_{n1}...RG_{nm} (57), designated as the addressable response information group RG_{nm} (57). The first subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to the particular service and/or information request IQ_n (28) and/or the user service and/or information request iq_n (27). The second subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to a particular one of "1" through "m" i.e., 1......m, of the addressable response information group RG_{n1}...RG_{nm} (57). The third subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to a particular one of "1" through "r" i.e., 1......r, of the optional addressable individual information group LG_{nmr} (80) within the addressable response information group LG_{nm1}...LG_{nmr} (80) within the addressable response information group RG_{nm} (57). The subscripts of the optional addressable pointer/address indices IN_{nm1}...IN_{nmr} (81) are correspondingly associated therewith the subscripts of the corresponding addressable individual information groups LG_{nm1}...LG_{nmr} (80). A number and variety of pointing/addressing schemes are possible, which may be used for a variety of grouping and sorting criteria schemes and addressing/pointing schemes. For example, the pointers/addresses PG_{n1}...PG_{nz} (61) of the request pointer/address group QZn (60) may be pointed/addressed thereto certain ones of the addressable query pointer/address groups QGn1...QGnz (62), in accordance with certain grouping and/or sorting criteria schemes and/or pointing/addressing schemes. The pointers/addresses $PP_{n11}...PP_{nmr}$ (64) of each of the pointed/addressed addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) may be pointed thereto the pointer/address indices IN_{n11}...IN_{nmr} (81) of the optional addressable individual information groups $LG_{nm1}...LG_{nmr}$, i.e., 1.....r, and the pointers/addresses $PP_{n11}...PP_{nmr}$ (64), i.e., 1.....m, corresponding to the addressable response information groups RG_{n1}...RG_{nm} (57) formulated by the addressable query pointer/address groups QG_{n1}...QG_{nz}.(62) may be pointed thereto certain ones of the addressable response information groups RG_{n1}...RG_{nm} (57), in accordance with certain grouping and/or sorting criteria schemes and/or addressing schemes. This subprocess may be repeated until the information and/or services from the optional addressable individual information groups LG_{nm1}...LG_{nmr} from the addressable response information groups RG_{n1}...RG_{nm} (57) is incorporated thereinto the certain ones of the addressable query information groups Gl_{n1}...Gl_{nz} (63), in accordance with the grouping and/or sorting criteria addressing scheme, as formulated by the addressable query pointer/address groups $\mathbf{QG}_{n1}...\mathbf{QG}_{nz}$ (62) and the request pointer/address group QZ_n (60). Alternatively and/or additionally, the pointers/addresses $PG_{n1}...PG_{nz}$ (61) of the request pointer/address group QZn (60) may be incremented therethrough each of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62). The pointers/addresses PP_{n11}...PP_{nmr} (64) of each of the pointed/addressed addressable query pointer/address groups QG_{n1}...QG_{nz} (62) may be pointed to the
pointer/address indices IN_{n11}...IN_{nmr} (81) of the optional addressable individual information groups LG_{nm1}...LG_{nmr}, i.e., 1.....r, and incremented once, and then the pointers/addresses PP_{n11}...PP_{nmr} (64), i.e., 1.....m, corresponding to the addressable response information groups RGn1...RGnm (57) formulated by the addressable query pointer/address groups QGn1...QGnz (62) may be incremented therethrough each of the addressable response information groups RG_{n1}...RG_{nm} (57). This subprocess may be repeated until the information and/or services from the optional addressable individual information groups LG_{nm1}...LG_{nmr} from the addressable response information groups RG_{n1}...RG_{nm} (57) is incorporated thereinto the certain ones of the addressable query information groups $Gl_{n1}...Gl_{nz}$ (63), in accordance with the grouping and/or sorting criteria addressing scheme, and as formulated by the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62). Alternatively and/or additionally, the pointers/addresses PP_{n11}...PP_{nmr} (64), i.e., 1.....m, may be incremented, corresponding to the addressable response information group s RG_{n1}...RG_{nm} (57) formulated by the addressable query pointer/address groups QG_{n1}...QG_{nz} (62), and then the pointers/addresses PP_{n11}...PP_{nmr} (64), i.e., 1.....r, pointing to the pointer/address indices IN_{n11}...IN_{nmr} (81) of the optional addressable individual information groups $LG_{nm1}...LG_{nmr}$ may then be incremented. This subprocess may be repeated until the information and/or services from the optional addressable individual information groups $LG_{nm1}...LG_{nmr}$ from the addressable response information group s $RG_{n1}...RG_{nm}$ (57) is incorporated thereinto the certain ones of the addressable query information groups $GI_{n1}...GI_{nz}$ (63), in accordance with the grouping and/or sorting criteria addressing scheme, and as formulated by the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62). Alternatively and/or additionally, the pointers/addresses PFnm1...PFnmr (69), i.e., 1.....m, may be incremented, corresponding to the addressable response information group s RGn1...RGnm (57) formulated by the addressable query pointer/address groups QGn1...QGnz (62), and then the pointers/addresses PFnm1...PFnmr (69), i.e., 1.....r, pointing to the pointer/address indices INn11...INnmr (81) of the optional addressable individual information groups LGnm1...LGnmr may then be incremented. This subprocess may be repeated until the information and/or services from the optional addressable individual information groups LGnm1...LGnmr from the addressable response information group s RGn1...RGnm (57) is incorporated thereinto the certain ones of the addressable query information groups GIn1...GInz (63), in accordance with the grouping and/or sorting criteria addressing scheme, and as formulated by the addressable query pointer/address groups QGn1...QGnz (62). The typical sorting and/or grouping criteria and the addressing/pointing schemes mentioned immediately above, for example, may group certain ones of the queries QQ_{n1}...QQ_{nm} (53) having the same and/or substantially the same values grouped therein a particular one of the query information groups Gl_{nz}...Gl_{nz} (63), designated as the query information group Gl_{nz} (63), as shown in certain ones of FIGS. 27-52. The grouping and/or sorting criteria and schemes and the addressing/pointing schemes mentioned herein are but only a small portion of a much larger variety of grouping and/or sorting criteria and schemes and addressing/pointing schemes and/or combinations thereof that the client-server multitasking system 10 of the present invention may use and is capable of. The above mentioned examples are included herein to illustrate but a few examples of the capabilities of the client-server multitasking system 10 of the present invention. The addressable individual information groups $LG_{nm1}...LG_{nmr}$ (80) are typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other, as the addressable individual information groups $LG_{nm1}...LG_{nmr}$ (80) are incorporated thereinto the addressable response information group s $RG_{n1}...RG_{nm}$ (57) therefrom the responses $R_{n1}...R_{nm}$ (32). Alternatively and/or additionally the addressable individual information groups LG_{nm1}...LG_{nmr} (80) may be incorporated thereinto the addressable response information group s RG_{n1}...RG_{nm} (57) therefrom the responses R_{n1}...R_{nm} (32) in an as-is condition and/or in raw form. The optional addressable individual information groups $LG_{nm1}...LG_{nmr}$ (80) therein the addressable response information group RG_{nm} (57), having information and/or services parsed and/or processed, and/or formatted, and/or grouped therefrom the response R_{nm} (32), may be correspondingly associated therewith the locations of the information and/or services therein the response R_{nm} (32). Each of the addressable individual information groups LG_{nm1}...LG_{nmr} (80) may have and/or be parsed, and/or processed, and/or formatted, and/or organized, and/or grouped into corresponding optional links LD_{nm1}...LD_{nmr} (82), and/or corresponding optional descriptions DD_{nm1}...DD_{nmr} (83), and/or corresponding optional prices/values PD_{nm1}...PD_{nmr} (84), and/or corresponding optional images ID_{nm1}...ID_{nmr} (85), as shown in FIG. 67. The optional links LD_{nm1}...LD_{nmr} (82), the corresponding optional descriptions DD_{nm1}...DD_{nmr} (83), the corresponding optional prices/values PD_{nm1}...PD_{nmr} (84), and the corresponding optional images ID_{nm1}...ID_{nmr} (85), corresponding to the addressable individual information groups LG_{nm1}...LG_{nmr} (80) are typically associated correspondingly one with the other. The optional link LD_{nm1} (82), the corresponding optional description DD_{nm1} (83), the corresponding optional price/value PD_{nm1} (84), and the corresponding optional image ID_{nm1} (85), corresponding to the optional individual information group LG_{nm1} (80) are typically associated correspondingly one with the other. The optional link LD_{nm2} (82), the corresponding optional description DD_{nm2} (83), the corresponding optional price/value PD_{nm2} (84), and the corresponding optional image ID_{nm2} (85), corresponding to the addressable individual information group LG_{nm2} (80) are typically associated correspondingly one with the other, and so on. The optional link LD_{nmr} - (82), the corresponding optional description DD_{nmr} (83), the corresponding optional price/value PD_{nmr} (84), and the corresponding optional image ID_{nmr} (85), corresponding to the addressable individual information group LG_{nmr} (80) are, thus, typically associated correspondingly one with the other. - The addressable individual information groups LG_{nm1}...LG_{nmr} (80), which may have the corresponding optional links LD_{nm1}...LD_{nmr} (82), and/or the corresponding optional optional descriptions DD_{nm1}...DD_{nmr} (83), and/or the corresponding optional prices/values PD_{nm1}...PD_{nmr} (84), and/or the corresponding optional images ID_{nm1}...ID_{nmr} (85) are appended therewith labels/identifiers, as shown in FIG. 68, and incorporated thereinto certain ones of the addressable query information groups GI_{n1}...GI_{nz} (63), depending upon the grouping and/or sorting criteria. FIG. 69 shows a particular one of the addressable query information groups GI_{n1}...GI_{nz} (63), designated as the query information group GI_{nz} (63). - Now again, the optional addressable individual information group LG_{nmr} (80) is associated therewith and corresponds to a particular one of the addressable individual information groups LG_{nm1}...LG_{nmr} (80) therein a particular one of the addressable response information group s RG_{n1}...RG_{nm} (57), designated as the addressable response information group RG_{nm} (57). The first subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to the particular service and/or information request IQ_n (28) and/or the user service and/or information request iq_n (27). The second subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to a particular one of "1" through "m" i.e., 1.....m, of the addressable response information group RG_{n1}...RG_{nm} (57). The third subscript of the optional addressable individual information groups LG_{nmr} (80) is associated therewith and corresponds to a particular one of "1" through "r", i.e., 1.....r, of the optional addressable individual information group LG_{nm1}...LG_{nmr} (80) within the addressable response information group RG_{nm} (57). FIG. 68 shows a labelled individual information group LL_{nzu} (86) associated therewith a particular one of the addressable query information groups Gl_{n1}...Gl_{nz} (63), designated as the addressable query information group Gl_{nz} (63), having optional group identifier GL_{nc} (87), optional query link identifier LN_{ncu} (88), optional resource location identifier SU_{nw} (89), optional server and/or query identifier SI_{nm} (90), and/or optional server link identifier LX_{nmr} (91) appended thereto the addressable individual information group LG_{nmr} (80). 20 The first alphanumeric subscript of the labelled individual information group LL_{nzu} (86) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36). The second alphanumeric subscript of the labelled individual information group LL_{nzu} (86) is associated therewith and corresponds to a particular one of "1" through "z", i.e., 1.....z, of the addressable query information groups
Gl_{n1}...Gl_{nz} (63), designated as the addressable query information group Gl_{nz} (63), which the labelled individual information group LL_{nzu} (86) is incorporated therein. The third alphanumeric subscript of the labelled individual information group LL_{nzu} (86) is associated therewith and corresponds to a particular one of "1" through "u", i.e., 1.....u, of labelled individual information groups LL_{nz1}...LL_{nzu} (86) within the addressable query information group Gl_{nz} (63). 10 20 The optional group identifier GL_{nc} (87) labels and/or identifies the current request group QA_{nc} (50). The optional group identifier GL_{nc} (87) is associated therewith and corresponds to the current request group QA_{nc} (50), which may be any particular one the request groups $QA_{n1}...QA_{nz}$ (51) selected by the user U_n (12). The first alphanumeric subscript of the optional group identifier GL_{nc} (87) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user service and/or information response Ir_n (36). The second subscript of the optional group identifier GL_{nc} (87) is associated therewith and corresponds to the particular one of the request groups $QA_{n1}...QA_{nz}$ (51) selected by the user U_n (12) as the current request group QA_{nc} (50). The optional query link identifier LN_{ncu} (88) is also associated therewith and corresponds to the current request group QA_{nc} (50). The optional query link identifier LN_{ncu} (88) labels and/or identifies the labelled individual information group LL_{nzu} (86). The first alphanumeric subscript of the optional query link identifier LN_{ncu} (88) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36). The second subscript of the optional query link identifier LN_{ncu} (88) is also associated therewith and corresponds to the particular one of the request groups QA_{n1}...QA_{nz} (51) selected by the user U_n (12) as the current request group QA_{nc} (50). The third alphanumeric subscript of the optional query link identifier LN_{ncu} (88) is associated therewith and corresponds to a particular one of "1" through "u", i.e., 1.....u, of the labelled individual information groups LL_{nz1}...LL_{nzu} (86) therein the addressable query information group GI_{nz} (63). The optional resource location identifier SU_{nw} (89) labels and/or identifies resource locations of information and/or services associated therewith and corresponding to the optional addressable individual information group LG_{nmr} (80) therein the labelled individual information group LL_{nzu} (86). The optional resource location identifier SU_{nw} (89) indicates and is associated therewith and corresponds to resource locations of information and/or services associated therewith certain ones of the optional servers $SO_1...SO_p$ (22) and/or certain ones of the servers $S_1...S_z$ (20). The optional resource location identifier SU_{nw} (89) may be obtained from certain information therein the optional addressable individual information group LG_{nmr} (80). The first alphanumeric subscript of the optional resource location identifier SU_{nw} (89) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user 15 service and/or information response ir_n (36). The second alphanumeric subscript of the optional resource location identifier SU_{nw} (89) is associated therewith and corresponds to a particular one of "1" through "w", i.e., 1.....w, of the optional resource location identifiers $SU_{n1}...SU_{nw}$ (89) therein the labelled individual information group LL_{nzu} (86). The optional server and/or query identifier SI_{nm} (90) labels and/or identifies the query QQ_{nm} (53) and/or the corresponding server address AQ_{nm} (54) associated therewith and corresponding to the optional addressable individual information group LG_{nmr} (80) therein the corresponding labelled individual information group LL_{nzu} (86) of the current request group QA_{nc} (50). The first alphanumeric subscript of the optional server and/or query identifier SI_{nm} (90) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user service and/or information response IR_n (36). The second alphanumeric subscript of the optional server and/or query identifier SI_{nm} (90) is associated therewith and corresponds to a particular one of "1" through "m", i.e., 1.....m, of the optional server and/or query identifiers $SI_{n1}...SI_{nm}$ (90), which may be correspondingly associated therewith the corresponding ones of the queries $QQ_{n1}...QQ_{nm}$ (53) and/or the corresponding ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54). 20 The optional server link identifier LX_{nmr} (91) labels and/or identifies the location of the optional addressable individual information group LG_{nmr} (80) therein the corresponding addressable response information groups RG_{nm} (57). The first alphanumeric subscript of the optional server link identifier LX_{nmr} (91) is associated therewith and corresponds to the service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36). The second alphanumeric subscript of the optional server link identifier LX_{nmr} (91) is associated therewith and corresponds to the addressable response information group RG_{nm} (57). The third alphanumeric subscript of the optional server link identifier LXnmr (91) is associated therewith and corresponds to a particular one of "1" through "r", i.e., 1.....r, of the optional server link identifiers $\mathsf{LX}_{\mathsf{nm1}}...\mathsf{LX}_{\mathsf{nmr}}$ (91), which may be correspondingly associated therewith the locations of certain ones of the optional addressable individual information group LG_{nm1}...LG_{nmr} (80) therein the addressable response information groups RG_{nm} (57). The certain ones of the optional addressable individual information groups LG_{nm1}...LG_{nmr} (80) therein the addressable response information group RG_{nm} (57), having information and/or services parsed and/or processed, and/or formatted, and/or grouped therefrom the response R_{nm} (32), which are labelled and/or identified therewith the optional server link identifiers LX_{nm1}...LX_{nmr} (91), are correspondingly associated therewith the locations of the information and/or services therein the response R_{nm} (32). The optional server link identifiers LX_{nm1}...LX_{nmr} (91), thus, identify and/or label the location of services and/or information therein the response R_{nm} (32). 20 10 15 FIG. 69 shows the addressable query information group Gl_{nz} (63) having the labelled individual information groups $LL_{nz1}...LL_{nzu}$ (86), optional database labelled individual information groups $RL_{nz1}...RL_{nzx}$ (92), optional query description QT_{nz} (93), optional FIG. 46 shows the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 22 having: "Search Engine Results" as "Interleave"; "URL's per Search Engine" as "15"; "URL Details" as "Summary"; "Timeout (seconds) per Search - Engine" as "3"; "Page" as "1"; "Searches per Group as "5"; and "Group" as "1". Next Group: II may be selected therefrom the typical one of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14) of FIG. 46. - FIGS. 47 and 48 show a typical ones of the user response UR_n (37), as the typical service and/or information response forms IS_n (39) at the user interface I_n (14), with reference to FIG. 23, having information and/or services therefrom the responses R_{n1}...R_{nm} (32) incorporated therein, and incorporated thereinto Group I. FIGS. 47 and 48 also shows the results of a full text search of the optional database 41 and/or the optional database 42, which may be associated therewith the typical queries QQ_{n1}...QQ_{nm} (53), and which additionally and/or alternatively may function as an internal search engine. The full text search results are incorporated therefrom the additional optional responses RA_{n1}...RA_{nm} (40). The results of the full text search of the optional database 41 and/or the optional database 42 may be additionally and/or alternatively automatically inserted thereinto the typical one of the user response UR_n (37), as the typical service and/or information response form IS_n (39) at the user interface I_n (14), in addition to the typical queries QQ_{n1}...QQ_{nm} (53) at the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54). In the typical case shown in FIGS. 47 server descriptions and/or links ST_{nz1}...ST_{nzf} (94), and optional advertisements and/or links LT_{nz1}...LT_{nzt} (95). The first and second subscripts of the optional database labelled individual information groups RL_{nz1}...RL_{nzx} (92), the optional query description QT_{nz} (93), the optional server descriptions and/or links ST_{nz1}...ST_{nzf} (94), and the optional advertisements and/or links LT_{nz1}...LT_{nzt} (95) are associated therewith and correspond to the addressable query information group GI_{nz} (63). The third subscripts of the optional database labelled individual information groups RL_{nz1}...RL_{nzx} (92), the optional server descriptions and/or links ST_{nz1}...ST_{nzf} (94), and the optional advertisements and/or links LT_{nz1}...LT_{nzt} (95) are associated therewith and correspond to ones of the optional database labelled individual information groups RL_{nz1}...RL_{nzx} (92), the optional server descriptions and/or links ST_{nz1}...ST_{nzf} (94), and the optional advertisements and/or links LT_{nz1}...LT_{nzt} (95), ## 15 IV PROCESS
respectively. FIG. 70 shows steps of a client-server multitasking process 99 of the present invention. The client-server multitasking process 99 is shown for the client-server multitasking system 10 for a particular one of the users $U...U_n$ (12), designated as the user U_n (12), the corresponding particular one of the user interfaces $I...I_n$ (14), designated as the user interface I_n (14), the corresponding particular one of the clients $C...C_n$ (16), designated as the client C_n (16), the server PS (18), the servers $S_1...S_z$ (20), and the optional servers $SO_1...SO_p$ (22), which reside on the network 24. The client-server multitasking process 99 starts at step 101. The user U_n (12) enters the user input UI_n (25) thereinto the user interface I_n (14) (step 102). The user input UI_n (25) is formulated thereinto the user service and/or information request iq_n (27) at the user interface I_n (14) and communicated thereto the client C_n (16) (step 103). The user service and/or information request iq_n (27) may be formulated thereinto the service and/or information request IQ_n (28) at the client C_n (16) and communicated thereto the server PS (18) (also step 103). The service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36) are derived at the server PS (18) and/or the client C_n (16), respectively, at step 104, which in itself is a process, and may hereinafter be referred to as the multitasking process 104. The multitasking process 104 will be discussed in more detail later with reference to FIGS. 70-1A and 70-1B. Now, continuing with FIG. 70, the user service and/or information response **ir**_n (36) may be derived at the client C_n (16) (step 104) therefrom the service and/or information response IR_n (34), which may be communicated thereto the client C_n (16) therefrom the server PS (18) (also step 104), and/or alternatively and/or additionally therefrom the responses R_{n1}...R_{nm} (32), which may be communicated thereto the client C_n (16) (step 104). Now, the client C_n (16) may communicate the service and/or information request IQ_n (28) thereto the server PS (18) (step 103). The service and/or information response IR_n (34) is then derived at the server PS (18) (step 104) and communicated thereto the client C_n (16) (also step 104). The user service and/or information response Ir_n (36) may be derived therefrom the service and/or information response IR_n (34) (also step 104). Now, in more detail, if the service and/or information request IQ_n (28) is communicated thereto the server PS (18) (step 103), then the server PS (18) makes the requests $Q_{n1}...Q_{nm}$ (29) and/or certain ones of the requests $Q_{n1}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30), utilizing information therefrom the service and/or information request IQ_n (28). The service and/or information response IR_n (34) is then derived at the server PS (18) (step 104) therefrom the responses $R_{n1}...R_{nm}$ (32) received from the servers $S_1...S_z$ (20) corresponding to the server designations $S_{n1}...S_{nm}$ (30), and communicated thereto the client C_n (16). Now, again, the user service and/or information response IR_n (34) (also step 104). Now, also in more detail, alternatively and/or additionally, the client C_n (16) may make the requests $Q_{n1}...Q_{nm}$ (29) and/or certain other ones of the requests $Q_{n1}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30), utilizing information therefrom the user service and/or information request iq_n (27). Now, again, the user service and/or information response ir_n (36) may also be derived at the client C_n (16) (step 104) therefrom the responses $R_{n1}...R_{nm}$ (32) communicated thereto the client C_n (16) (step 104) and/or alternatively and/or additionally therefrom the service and/or information response iR_n (34) communicated thereto the client iR_n (34) therefrom the server iR_n (38) (also step 104). The user service and/or information response ir_n (36), thus, may be derived therefrom the service and/or information response IR_n (34) communicated therefrom the server PS (18) thereto the client C_n (16) and/or alternatively and/or additionally therefrom the responses $R_{n1}...R_{nm}$ (32) communicated thereto the client C_n (16) (step 104). The user service and/or information response ir_n (36) is communicated thereto the user interface l_n (14) (step 105) and incorporated thereinto the user response UR_n (37). 15 The user U_n (12) reviews the user response UR_n (37) and/or selects additional services and/or information (step 106). Step 106 will be discussed in more detail later with reference to FIG. 70-2. The process 99 ends at step 107. The process 99 will be FIGS. 1-141 described in more detail with reference to FIGS. 1-104 of the drawings. 20 R The service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36) are derived at the server PS (18) and/or the client C_n 15 (16), respectively, at step 104 in FIG. 70, and shown in more detail in FIGS. 70-1A and 70-1B. FIG. 70-1A shows the multitasking process 104 of deriving the service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36), with reference to FIGS. 59 and 63. FIG. 70-1B shows the multitasking process 104 of deriving the service and/or information response IR_n (34) and/or the user service and/or information response ir_n (36) having other grouping/sorting that may be used additionally and/or alternatively to that of FIGS. 59 and 63, as shown with reference to FIGS. 60 and 64. The multitasking process 104 will also be described in more detail with reference to FIGS. 1-104 of the drawings. The server PS (18) and/or the client C_n (16) parse, process, and/or format the service and/or information request IQ_n (28) and/or the user service and/or information request iq_n (27) into the current request group QA_{nc} (50), the request groups QA_{n1}...QA_{nz} (51), and the optional instructions VJ_{n1}...VJ_{nk} (52) (step 104-1), as shown in FIGS. 70-1A and 70-1B. Information therefrom the current request group QA_{nc} (50) and the optional instructions $VJ_{n1}...VJ_{nk}$ (52) may be used to make the requests $Q_{n1}...Q_{nm}$ (29), obtain the responses $R_{n1}...R_{nm}$ (32), and incorporate information therefrom into the service and/or information response IR_n (34) and/or the user service and/or information response IR_n (36), as shown in FIGS. 70-1A and 70-1B with reference to FIGS. 59, 60, 63, and 64. The current request group QA_{nc} (50) may be any particular one the request groups $QA_{n1}...QA_{nz}$ (51), which may be selected by the user U_n (12). The current request group QA_{nc} (50) has the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) to open connections with and make the requests $Q_{n1}...Q_{nm}$ (29) thereof the servers $S_{1}...S_{z}$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_{1}...S_{z}$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $Q_{n1}...Q_{nm}$ (30), shown for the particular service and/or information request Q_{n1} (28) and/or the particular user service and/or information request Q_{n1} (27). The server PS (18) and/or the client C_n (16) open connections with and make the requests $Q_{n1}...Q_{nm}$ (29) having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) therein the current request group QA_{nc} (50) thereof the servers $S_1...S_z$ (20) (step 104-2) as shown in FIGS. 70-1A and 70-1B, in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30). 20 The servers $S_1...S_z$ (20) corresponding to the server designations $S_{n1}...S_{nm}$ (30), designated in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), respond to the requests $Q_{n1}...Q_{nm}$ (29) with the corresponding responses $R_{n1}...R_{nm}$ (32). The server PS (18) and/or the client C_n (16) parse, and/or process, and/or format, and/or group, and/or organize each of the responses R_{n1}...R_{nm} (32) received from the servers S₁...S_z (20) (step 104-3), as shown in FIGS. 70-1A and 70-1B with reference to FIGS. 99-101, corresponding to the server designations S_{n1}...S_{nm} (30) thereinto the corresponding addressable response information groups RG_{n1}...RG_{nm} (57). The server **PS** (18) and/or the client **C**_n (16) may also make additional optional requests **QP**_{n1}...**QP**_{nm} (58) of the optional databases 41 and/or 42 (also step 104-2 of FIGS. 70-1A and 70-1B), which may be optionally resident within the server **PS** (18) and/or the client **C**_n (16), and which may reply with the corresponding additional optional responses **RA**_{n1}...**RA**_{nm} (40). The server **PS** (18) and/or the client **C**_n (16) parse, and/or
process, and/or format, and/or group, and/or organize each of the additional optional responses **RA**_{n1}...**RA**_{nm} (40) into the corresponding response information groups **RC**_{n1}...**RC**_{nm} (59) (also step 104-3 of FIGS. 70-1A and 70-1B). Now, step 104-3 of FIGS. 70-1A and 70-1B is shown in more detail in FIG. 70-1-1. As discussed later, and shown in FIGS. 99-101, entity body RH_{nm} (353) of the response R_{nm} (32) has optional response individual information groups LS_{nm1}...LS_{nmr} (360). Each of the optional response individual information groups $LS_{n11}...LS_{nmr}$ (360) and/or portions thereof therefrom the entity bodies $RH_{n1}...RH_{nm}$ (353) of the responses $R_{n1}...R_{nm}$ (32) may be optionally compared one with the other, and duplicate ones of the optional response individual information groups $LS_{n11}...LS_{nmr}$ (360) may be optionally discarded (step 104-3-1), as shown in FIG. 70-1-1. The remaining optional response individual information groups LS_{n11}...LS_{nmr} (360) are parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto corresponding ones of the addressable individual information groups LG_{n11}...LG_{nmr} (80) as the addressable individual information groups LG_{n11}...LG_{nmr} (80) are incorporated thereinto the addressable response information group s RG_{n1}...RG_{nm} (57) therefrom the responses R_{n1}...R_{nm} (32) (step 104-3-2), as shown in FIG. 70-1-1. 15 20 The addressable individual information groups $LG_{n11}...LG_{nmr}$ (80) are typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other, as the addressable individual information groups $LG_{n11}...LG_{nmr}$ (80) are incorporated thereinto the addressable response information group s $RG_{n1}...RG_{nm}$ (57) therefrom the responses $R_{n1}...R_{nm}$ (32). The server PS (18) and/or the client C_n (16) may formulate information from the current request group QA_{nc} (50) having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) 15 20 and the corresponding server addresses AQ_{n1}...AQ_{nm} (54) into the corresponding request pointer/address group QZ_n (60) having the pointers/addresses PG_{n1}...PG_{nz} (61) associated therewith (step 104-4 of FIG. 70-1A with reference to FIGS. 59, 63, and 91). Alternatively and/or additionally, the server PS (18) and/or the client C_n (16) may formulate information from the current request group QA_{nc} (50) having the corresponding queries QQ_{n1}...QQ_{nm} (53) and the corresponding server addresses AQ_{n1}...AQ_{nm} (54) into a corresponding request pointer/address group QY_n (68) having the pointers/addresses PF_{n11}...PF_{nmr} (69) associated therewith (step 104-4 of FIG. 70-1B with reference to FIGS. 60 and 64). The server PS (18) and/or the client C_n (16) may formulate the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) (step 104-5 of FIG. 70-1A with reference to FIGS. 59, 63, 91, 96, and typical ones of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) in FIGS. 92 and 93), depending upon the grouping and/or sorting criteria used. Each of the pointers/addresses PG_{n1}...PG_{nz} (61) may be directed to point/address the corresponding addressable query pointer/address groups QG_{n1}...QG_{nz} (62) associated therewith, which aid in obtaining information and/or services therefrom certain ones of addressable response information groups RG_{n1}...RG_{nm} (57) to be incorporated thereinto addressable query information groups Gl_{n1}...Gl_{nz} (63). Each of the addressable query pointer/address groups $\mathbf{QG_{n1}...QG_{nz}}$ (62) has the pointers/addresses $\mathbf{PP_{n11}...PP_{nmr}}$ (64) directed to address/point information therein the addressable response information groups $RG_{n1}...RG_{nm}$ (57) based upon the grouping and/or sorting criteria. The grouping and/or sorting criteria may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), which may be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). Grouping and/or sorting criteria may additionally and/or alternatively optionally resident within the server PS (18) and/or the client C_n (16). - The grouping and/or sorting criteria gives the user U_n (12) the ability to formulate the query information groups $GI_{n1}...GI_{nz}$ (63) and the way in which information and/or services from the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is presented to the user U_n (12) therethrough the user interface I_n (14). - Information and/or services within each of the addressable response information groups RG_{n1}...RG_{nm} (57) is addressed therewith the pointers/addresses PP_{n11}...PP_{nmr} (64) therefrom the query pointer/address groups QG_{n1}...QG_{nz} (62), and information and/or services therefrom the addressable response information groups RG_{n1}...RG_{nm} (57) is incorporated thereinto the addressable query information groups GI_{n1}...GI_{nz} (63) corresponding to the pointers/addresses PP_{n11}...PP_{nmr} (64) (step 104-6 of FIG. 701A), which are formulated by the addressable query pointer/address groups QG_{n1}...QG_{nz} (62), in accordance with the grouping and/or sorting criteria, as shown in FIG. 70-1A with reference to FIGS. 59, 63, 66A, 66B, 66C, 67 – 69, 91, 96, typical ones of the addressable query pointer/address groups $\mathbf{QG_{n1}...QG_{nz}}$ (62) in FIGS. 92 and 93, and a typical one of the addressable query information groups $\mathbf{GI_{n1}...GI_{nz}}$ (63), designated as the addressable query information group $\mathbf{GI_{nz}}$ (63), in FIG. 103. Alternatively and/or additionally, each of the pointers/addresses PF_{n11}...PF_{nmr} (69) may directed to point/address the corresponding addressable response information groups RG_{n1}...RG_{nm} (57), and aid in obtaining information and/or services therefrom the corresponding addressable response information groups RG_{n1}...RG_{nm} (57) to be incorporated thereinto the addressable query information groups GI_{n1}...GI_{nz} (63) (step 104-6) as shown FIG. 70-1B with reference to FIGS. 60, 64, 66A, 66B, 66C, 67 – 69, and another typical one of the addressable query information groups GI_{n1}...GI_{nz} (63), designated as the addressable query information group GI_{nz} (63), in FIG. 104. Now, step **104-6** of FIG. 70-1A is shown in more detail in FIG. 70-1-2A with reference to FIGS. 59, 63, 66A, 66B, 66C, 67 – 69, 91, 96, typical ones of the addressable query pointer/address groups **QG**_{n1}...**QG**_{nz} (62) in FIGS. 92 and 93, and a typical one of the addressable query information groups **GI**_{n1}...**GI**_{nz} (63), designated as the addressable query information group **GI**_{nz} (63), in FIG. 103. Step **104-6** of FIG. 70-1B is shown in more detail in FIG. 70-1-2B with reference to FIGS. 60, 64, 66A, 66B, 66C, 67 – 69, and another typical one of the addressable query information groups **GI**_{n1}...**GI**_{nz} (63), designated as the addressable query information group **GI**_{nz} (63), in FIG. 104. 10 15 The optional addressable individual information groups $LG_{n11}...LG_{nmr}$ (80) therein each of the addressable response information groups $RG_{n1}...RG_{nm}$ (57) may be addressed therewith the pointers/addresses $PP_{n11}...PP_{nmr}$ (64) (step 104-6-1) as shown FIG. 70-1-2A with reference to FIGS. 59 and 63 and FIG. 70-1A. The optional addressable individual information groups LG_{n11}...LG_{nmr} (80) therein each of the addressable response information groups RG_{n1}...RG_{nm} (57) may alternatively and/or additionally be addressed therewith the pointers/addresses PF_{n11}...PF_{nmr} (69) (step 104-6-1) as shown FIG. 70-1-2B with reference to FIGS. 60 and 64 and FIG. 70-1B. The addressed optional addressable individual information groups LG_{n11}...LG_{nmr} (80) an/or portions thereof may be optionally labelled with labels and/or identifiers and incorporated thereinto the labelled individual information groups LL_{nz1}...LL_{nzu} (86) (step 104-6-2), as shown in FIGS. 70-1-2A and 70-1-2B. The labelled individual information groups LL_{nz1}...LL_{nzu} (86) may be incorporated thereinto certain ones of the addressable query information groups Gl_{n1}...Gl_{nz} (63), depending upon the grouping and/or sorting criteria (step 104-6-3), as shown in FIGS. 70-1-2A and 70-1-2B. The addressed optional addressable individual information groups LG_{nmr} (80) an/or portions thereof are typically appended with the labels and/or identifiers, thus creating the labelled individual information groups $LL_{nz1}...LL_{nzu}$ (86), as each of the labelled individual information groups $LL_{nz1}...LL_{nzu}$ (86) are incorporated thereinto the certain ones of the addressable query information groups $Gl_{n1}...Gl_{nz}$ (63). The steps 104-6-2 and 104-6-3 are thus typically consolidated into a single step. 5 10 The addressable query information groups $GI_{n1}...GI_{nz}$ (63) may then be incorporated thereinto the service and/or information response IR_n (34) (step 104-7), as shown in FIGS. 70-1A and 70-1B with reference to FIG. 61, and/or the user service and/or information response ir_n (36) (also step 104-7), as also shown in FIGS. 70-1A and 70-1B but with reference to FIG. 65. The user U_n (12) reviews the user response UR_n (37) the user interface I_n (14) and/or selects additional services and/or information at step 106 in FIG. 70, and shown in more detail in FIG. 70-2. The step 106 will also be described in more detail with FIGS. 1-141 reference to FIGS. 1-104 of the drawings. 15 The user U_n (12) selects additional services and/or information therethrough the user interface I_n (14) (step 106-1) or exits to the end of the process 99 at step 107. If the user U_n (12) selects additional services and/or information therethrough the user interface I_n (14) (step 106-1), the
user U_n (12) may optionally enter one or more orders thereinto an order form and/or order forms thereat and therethrough the user interface I_n (14) (step 106-2). The order and/or orders may be, for example, for purchases, and/or instructions, and/or payment, and/or other information and/or services to be directed to and/or requested thereof third parties, and/or combinations thereof, of the optional servers $SO_1...SO_p$ (22), and/or the servers $S_1...S_z$ (20), and/or other ones of the clients $C_1...C_n$ (16) therethrough the server PS (18) and/or the client C_n (16). The order and/or orders may, thus, be placed therethrough and thereby the server PS (18) and/or the client C_n (16), eliminating the need for the user U_n (12) to place separate ones of the orders with the third parties, the optional servers $SO_1...SO_p$ (22), and/or the servers $S_1...S_z$ (20) separately and/or individually. The server PS (18) and/or the client C_n (16) process the orders and/or communicate the orders to the third parties, the optional servers $SO_1...SO_p$ (22), and/or the servers $S_1...S_z$ (20), and/or other ones of the clients $C_1...C_n$ (16) (step 106-3). The server PS (18) and/or the client C_n (16) confirm the order (step 106-4). The user U_n (12) may select additional services and/or information therethrough the user interface I_n (14) (step 106-1) or exit to the end of the process 99 at step 107. 15 If the user U_n (12) selects additional services and/or information therethrough the user interface I_n (14) (step 106-1), the user U_n (12) may alternatively and/or additionally optionally enter information and/or service requests of the optional servers $SO_1...SO_p$ (22), and/or the servers $S_1...S_z$ (20) therethrough the user interface I_n (14) (step 106-5) and/or exit to the end of the process 99 at step 107. If the user U_n (12) selects additional services and/or information therethrough the user interface I_n (14) (step 106-1), the user U_n (12) may alternatively and/or additionally optionally enter additional requests as the user input UI_n (25) thereat and therethrough the user interface I_n (14) (step 106-6) and enter the process 99 at step 102. ### V. ADDITIONAL DETAILS #### A. USER INPUT 5 10 20 The user input UI_n (25), which the user U_n (12) makes therethrough the user interface I_n (14), may have one or a plurality of the same and/or different ones of the queries $QQ_{n1}...QQ_{nm}$ (53) to be made by the server PS (18) and/or the client C_n (16) of the same and/or different ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30) at the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54). The server PS (18) and/or the client C_n (16) parse, process, format, sort, group, and/or organize each of the responses $R_{n1}...R_{nm}$ (32) to the corresponding requests $Q_{n1}...Q_{nm}$ (29), received therefrom the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), and/or each of the additional optional responses $RA_{n1}...RA_{nm}$ (40) therefrom the server PS (18) and/or the client C_n (16). The parsed, processed, formatted, sorted, grouped, and/or organized results therefrom the server PS (18) and/or the client C_n (16) are communicated thereto the user U_n (12) therethrough the user interface I_n (14) as the user response UR_n (37), which the user U_n (12) may review, interact therewith, and/or select additional services and/or information therefrom. - The user U_n (12) enters the user input UI_n (25) having one or more of the same and/or different user requests $qu_{n1}...qu_{nu}$ (26) thereinto user interface I_n (14), as shown in FIG. 3. The user requests $qu_{n1}...qu_{nu}$ (26) are communicated from the user interface I_n (14) to the client C_n (16) within the user service and/or information request I_n (27), having the user requests $qu_{n1}...qu_{nu}$ (26) and other optional information. - The user **U**_n (12) may enter the user input **U**I_n (25) having one or more of the same and/or different user requests **qu**_{n1}...**qu**_{nu} (26) thereinto the service and/or information entry request form **IE**_n (38) at the user interface **I**_n (14), or thereinto the user interface **I**_n (14) therethrough other suitable means. - The user interfaces I_{1...I_n} (14) have suitable input means and/or suitable presentation and/or display means, which allow the corresponding users U_{1...U_n} (12) to communicate therewith the corresponding clients C_{1...C_n} (16). FIGS. 5A, 5B, and 6-10 show typical ones of the service and/or information entry request forms IE_{1...IE_n} (38) at the user interfaces I_{1...I_n} (14), as graphical user interfaces (GUI's), which the users U_{1...U_n} (12) may enter the corresponding user inputs UI_{1...UI_n} (25) thereinto. FIGS. 71 and 72 are schematic representations of the service and/or information entry request form IE_n (38) showing fields, links, and elements of the service and/or information entry request form IE_n (38). 15 20 The user U_n (12) may enter the user input UI_n (25) thereinto the service and/or information entry request form IE_n (38) at the user interface I_n (14), as shown schematically in FIG. 71. The user input UI_n (25) may be entered as user input values thereinto fields or alternate request links of the service and/or information entry request form IE_n (38). The user U_n (12) may enter the user input UI_n (25) as one or more of the same and/or different user requests $qu_{n1}...qu_{nu}$ (26), which may have the query values $QV_{n1}...QV_{nu}$ (200), server name values $AV_{n1}...AV_{nu}$ (201), optional instruction values $VV_{n1}...VV_{nv}$ (202), and/or alternate request links $QL_{n1}...QL_{na}$ (203), and/or server request links $UL_{n1}...UL_{ns}$ (204), and/or the additional request links $UL_{n1}...UL_{ns}$ (204), and/or information entry request form IE_n (38). The user input UI_n (25), thus, has one or more of the same and/or different user requests qu_{n1}...qu_{nu} (26), which may be entered as the query values QV_{n1}...QV_{nu} (200) of the same and/or different servers S₁...S_z (20), designated in accordance with the designation scheme corresponding to the corresponding certain ones of the server designations S₁₁...S_{nm} (30) having the corresponding server name values AV_{n1}...AV_{nu} (201), the optional instruction values VV_{n1}...VV_{nv} (202), and/or the alternate request links QL_{n1}...QL_{na} (203), and/or the server request links UL_{n1}...UL_{ns} (204), and/or the additional request links SL_{n1}...SL_{nw} (71) thereinto the service and/or information entry request form IE_n (38). Each of the different user requests $qu_{n1}...qu_{nu}$ (26) may be the same and/or different one from the other. Each of the query values $QV_{n1}...QV_{nu}$ (200) may be the same and/or different one from the other. The query values $QV_{n1}...QV_{nu}$ (200) may be entered for the same and/or different ones of the servers $S_1...S_z$ (20). The optional instruction values $VV_{n1}...VV_{nv}$ (202) may be the same and/or different one from the other. The user U_n (12) may also enter the user input UI_n (25) and request services and/or information therethrough one of the alternate request links $QL_{n1}...QL_{na}$ (203), or one of the server request links $UL_{n1}...UL_{ns}$ (204), or one of the additional request links $SL_{n1}...SL_{nw}$ (71) thereat the user interface I_n (14). ## **B.** USER INTERFACE DETAILS The client-server multitasking system 10 of the present invention may have any suitable user interface I_n (14) acceptable to and/or preferred by the user U_n (12), and acceptable to the client C_n (16). The user interface I_n (14) may be, for example, a graphical user interface, visual, aural, and/or tactile user interface, and/or combination thereof, or other suitable interface. The user interface I_n (14) may be integral with the client C_n (16) or separate therefrom. The user interface I_n (14) may be hardware based, and/or computer based, and/or process based, and/or a combination thereof, and may be a graphical user interface, such as, for example, a browser and/or combinations thereof, varieties of which are commonly used on the internet. 5 The service and/or information entry request form IE_n (38) may be optionally available to the user U_n (12) at the user interface I_n (14), or the user U_n (12) may optionally request the service and/or information entry request form IE_n (38) therethrough the user interface I_n (14). 10 15 Now, as shown in FIGS. 5A, 5B, and 6-10 and schematically in FIGS. 71 and 72, the service and/or information entry request form IE_n (38) at the user interface I_n (14) has user client request fields QD_{n1}...QD_{nu} (206) accessible to the user U_n (12) and hidden client request elements HU_{n1}...HU_{nh} (207) hidden from the user U_n (12). The user client request fields QD_{n1}...QD_{nu} (206) accessible to the user U_n (12) has server requests portion 208, optional instructions portion 209, an optional execute request element 210, and alternate requests portion 212. The hidden client request elements HU_{n1}...HU_{nh} (207) hidden from the user U_n (12) have optional server requests portion 214, optional instructions portion 216, and optional information element HE_n (218). 20 The server requests portion 208 of the user client request fields $QD_{n1}...QD_{nu}$ (206) accessible to the user U_n (12) has server query fields $QF_{n1}...QF_{nu}$ (220), which the user U_n (12) may enter corresponding server query values $QV_{n1}...QV_{nu}$ (200) thereinto, as a portion of the user input UI_n (25). The user U_n (12) may also optionally enter
the server name values $AV_{n1}...AV_{nu}$ (201) thereinto server name fields $AF_{n1}...AF_{nu}$ (224). The user U_n (12) may enter the server name values $AV_{n1}...AV_{nu}$ (201) as another portion of the user input UI_n (25). The user U_n (12) may also optionally enter the optional instruction values $VV_{n1}...VV_{nv}$ (202) thereinto optional instruction fields $VF_{n1}...VF_{nv}$ (228) of the optional instructions portion 209 of the user client request fields $QD_{n1}...QD_{nu}$ (206) accessible to the user U_n (12). The user U_n (12) may enter the optional instruction values $VV_{n1}...VV_{nv}$ (202) as yet another portion of the user input UI_n (25). Upon the user U_n (12) entering the user input UI_n (25) of the server query values $QV_{n1}...QV_{nu}$ (200) and/or the server name values $AV_{n1}...AV_{nu}$ (201) and/or the optional instruction values $VV_{n1}...VV_{nv}$ (202) thereinto the service and/or information entry request form IE_n (38) at the user interface I_n (14), the completed service and/or information request form IF_n (230) results, shown schematically in FIGS. 73 and 74. The user U_n (12) may instruct the user interface I_n (14) to communicate the user service and/or information requests iq_n (27), shown in FIG. 74, having the server query values QV_{n1}...QV_{nu} (200) and/or the server name values AV_{n1}...AV_{nu} (201) and/or the optional instruction values VV_{n1}...VV_{nv} (202), from the already completed service and/or information request form IF_n (230) at the user interface I_n (14) thereto the client C_n (16) by entering the optional execute request element 210, using a point and click device, such as a mouse, light pen, tactile monitor, by entering a carriage return, therethrough other user interface controls, or therethrough other suitable means. FIG. 75 shows a schematic representation of the user service and/or information request iq_n (27). The user U_n (12) may alternatively enter the alternate request links $QL_{n1}...QL_{na}$ (203) or the server request links $UL_{n1}...UL_{ns}$ (204) or the additional request links $SL_{n1}...SL_{nw}$ (71) thereinto the service and/or information entry request form IE_n (38) therewith a point and click device, such as a mouse, a light pen, tactile monitor, or therewith alternative and/or other user interface controls or other suitable means, and instruct the user interface I_n (14) to communicate the user service and/or information request iq_n (27), having information associated with the alternate request links QL_{n1}...QL_{na} (203) or the server request links UL_{n1}...UL_{ns} (204) or the additional request links SL_{n1}...SL_{nw} (71), thereto the client C_n (16). The server name fields $AF_{n1}...AF_{nu}$ (224) and the optional instruction fields $VF_{n1}...VF_{nv}$ (228) of the service and/or information entry request form IE_n (38) may optionally have the server name values $AV_{n1}...AV_{nu}$ (201) and/or the optional instruction values $VV_{n1}...VV_{nv}$ (202) entered thereinto, respectively, as changeable and/or fixed pre-set or preselected values, drop down menu selections, and/or as blank fields, or a combination thereof. The preselected values may be replaced with values of the user's U_n (12) choice or may remain fixed, depending upon choices offered therein the service and/or information entry request form IE_n (38). The drop down menu selections may be changed to ones of a number of preselected choices offered in the drop down menu selections, which the user U_n (12) may optionally scroll through to determine which choice to make. Blank ones of the server name fields $AF_{n1}...AF_{nu}$ (224) and/or blank ones of the optional instruction fields $VF_{n1}...VF_{nv}$ (228) allow the user U_n (12) to optionally enter the server name values $AV_{n1}...AV_{nu}$ (201) and/or the optional instruction values $VV_{n1}...VV_{nv}$ (202), respectively, therein, accordingly. The server query fields QF_{n1}...QF_{nu} (220), which the user U_n (12) enters the corresponding server query values QV_{n1}...QV_{nu} (200) thereinto, therethrough the user input UI_n (25), may also have changeable and/or fixed preselected values, drop down menu selections, and/or blank fields, or a combination thereof. However, the server query fields QF_{n1}...QF_{nu} (220) may generally be presented to the user U_n (12) as blank fields, at least for the first user input UI_n (25). The alternate requests portion 212 of the user client request fields $QD_{n1}...QD_{nu}$ (206) accessible to the user U_n (12) has the alternate request links $QL_{n1}...QL_{na}$ (203), the server request links $UL_{n1}...UL_{ns}$ (204), and the additional request links $SL_{n1}...SL_{nw}$ (71). The user U_n (12) may alternatively request services and/or information therethrough one of the alternate request links $QL_{n1}...QL_{na}$ (203), or one of the server request links $UL_{n1}...UL_{ns}$ (204), or one of the additional request links $SL_{n1}...SL_{nw}$ (71). The alternate request links $\mathbf{QL_{n1}}...\mathbf{QL_{na}}$ (203) allow the user $\mathbf{U_n}$ (12) to make the service and/or information request $\mathbf{IQ_1}...\mathbf{IQ_n}$ (28) with preconfigured optional default selections already placed therein the service and/or information request $\mathbf{IQ_1}...\mathbf{IQ_n}$ (28) for the user $\mathbf{U_n}$ (12). The server request links $\mathbf{UL_{n1}}...\mathbf{UL_{nw}}$ (204) may be advertisements, advertising links, and/or links to ones of the optional servers $\mathbf{SO_1}...\mathbf{SO_p}$ (22). The user $\mathbf{U_n}$ (12) may, for example, make requests for additional services and/or information therefrom ones of the optional servers $\mathbf{SO_1}...\mathbf{SO_p}$ (22), using the server request links $\mathbf{UL_{n1}}...\mathbf{UL_{nw}}$ (204). The additional request links $\mathbf{SL_{n1}}...\mathbf{SL_{nw}}$ (71) allow the user $\mathbf{U_n}$ (12) to make additional optional selections, based upon information and/or services previously requested by the user U_n (12). The optional server requests portion 214 of the hidden client request elements HU_{n1}...HU_{nh} (207) hidden from the user U_n (12) has hidden query elements Qh_{n1}...Qh_{nh} (236) and corresponding associated hidden server name elements Ah_{n1}...Ah_{nh} (238). The optional instructions portion 216 of the hidden client request elements HU_{n1}...HU_{nh} (207) hidden from the user U_n (12) may have optional hidden instruction elements Vh_{n1}...Vh_{ni} (240). The hidden client request elements HU_{n1}...HU_{nh} (207) hidden from the user U_n (12) may also have the hidden optional information element HE_n (218), which may have optional information and/or statistics. The user U_n (12) may, thus, request the services and/or information by completing entry of the server requests portion 208 and the optional instructions portion 209 20 therewith the optional execute request element 210, after entering the server query values $QV_{n1}...QV_{nu}$ (200) and/or the server name values $AV_{n1}...AV_{nu}$ (201) and/or the optional instruction values $VV_{n1}...VV_{nv}$ (202), or by alternatively requesting the services and/or information therethrough one of the alternate request links $QL_{n1}...QL_{na}$ (203), or one of the server request links $UL_{n1}...UL_{ns}$ (204), or one of the additional request links $SL_{n1}...SL_{nw}$ (71). Upon completion of the user input UI_n (25), the completed service and/or information request form IF_n (230), as shown in FIGS. 73 and 74, has user client request elements QM_{n1}...QM_{nu} (246) accessible to the user U_n (12) having server request elements 242 and optional instruction elements VE_{n1}...VE_{nv} (244); and/or alternate request elements 248 of the user client request elements QM_{n1}...QM_{nu} (246) accessible to the user U_n (12); and/or optional server request elements 250, optional instruction elements 252, and/or hidden client request elements HP_{n1}...HP_{nh} (256) hidden from the user U_n (12). The user U_n (12) may instruct the user interface I_n (14) to communicate the user service and/or information request iq_n (27) derived from the service and/or information request form IF_n (230) to the client C_n (16), as shown in FIG. 75, therewith the optional execute request element 210 or therewith the other suitable means; or the user U_n (12) may alternatively communicate the user service and/or information request iq_n (27) by entering the alternate request links $QL_{n1}...QL_{na}$ (203) or the server request links $UL_{n1}...UL_{ns}$ (204) or the additional request links $SL_{n1}...SL_{nw}$ (71) thereinto the service and/or information entry request form IE_n (38) or thereinto the completed service and/or information request form IF_n (230) therewith a point and click device, such as a mouse, a light pen, tactile monitor, or therewith alternative and/or other user interface controls or other suitable means, and instruct the user interface I_n (14) to communicate the user service and/or information request iq_n (27), having information associated with the alternate request links $QL_{n1}...QL_{na}$ (203) or the server request links $UL_{n1}...UL_{ns}$ (204) or the additional request links $SL_{n1}...SL_{nw}$ (71), thereto the client C_n (16). FIGS. 73 and 74 are schematic representations of the completed service and/or information entry request form IF_n (230) showing typical elements, values, field names, name-value pairs, optional instructions, and alternate requests, resulting from the user U_n (12) entering the user input UI_n (25) of the server query values QV_{n1}...QV_{nu} (200) and/or the server name values AV_{n1}...AV_{nu} (201) and/or the optional instruction values VV_{n1}...VV_{nv} (202) thereinto the service and/or information entry request form IE_n (38) at the user interface I_n (14). Now, the completed service and/or information entry request
form IF_n (230) has the user client request elements $QM_{n1}...QM_{nu}$ (246) accessible to the user U_n (12) having the server request elements 242, which has query elements $QE_{n1}...QE_{nu}$ (258) and corresponding associated server name elements $AE_{n1}...AE_{nu}$ (260). 10 15 20 Each of the query elements $QE_{n1}...QE_{nu}$ (258) have query field names $QN_{n1}...QN_{nu}$ (262) of the associated corresponding server query fields $QF_{n1}...QF_{nu}$ (220) and the corresponding server query values $QV_{n1}...QV_{nu}$ (200) associated therewith, which the requests $Q_{11}...Q_{nm}$ (29) may be derived therefrom. Each of the server name elements $AE_{n1}...AE_{nu}$ (260) have server field names $AN_{n1}...AN_{nm}$ (264) of the associated corresponding server name fields $AF_{n1}...AF_{nu}$ (224) and the corresponding server name values $AV_{n1}...AV_{nu}$ (201) associated therewith, which server addresses $A_{n1}...A_{nu}$ (265) may be derived therefrom. The user client request elements $QM_{n1}...QM_{nu}$ (246) accessible to the user U_n (12) also have the optional instruction elements $VE_{n1}...VE_{nv}$ (244) having optional instruction field names $VN_{n1}...VN_{nv}$ (266) of the associated corresponding optional instruction fields $VF_{n1}...VF_{nv}$ (228) and the corresponding optional instruction values $VV_{n1}...VV_{nv}$ (202) associated therewith. The user client request elements $QM_{n1}...QM_{nu}$ (246) accessible to the user U_n (12) also have the alternate request elements 246 having the alternate request links $QL_{n1}...QL_{na}$ (203), or the server request links $UL_{n1}...UL_{ns}$ (204), or the additional request links $SL_{n1}...SL_{nw}$ (71). The hidden client request elements $HP_{n1}...HP_{nh}$ (256) hidden from the user U_n (12) have the hidden query elements $Qh_{n1}...Qh_{nh}$ (236), which may have hidden query field names $Qn_{n1}...Qn_{nh}$ (268) and corresponding hidden query values $Qv_{n1}...Qv_{nh}$ (270) associated therewith. The hidden server name elements Ahn1...Ahnh (238) may have hidden server field names Ann1...Annh (272) and corresponding server hidden request name values $Av_{n1}...Av_{nh}$ (274) associated therewith. 5 10 15 20 The hidden client request elements $HP_{n1}...HP_{nh}$ (256) hidden from the user U_n (12) may also have the optional hidden instruction elements Vhn1...Vhni (240), which may have optional hidden instruction field names Vnn1...Vnni (275) and corresponding optional hidden instruction values $Vv_{n1}...Vv_{ni}$ (276) associated therewith. The hidden client request elements $HP_{n1}...HP_{nh}$ (256) hidden from the user U_n (12) may also have the hidden optional information element HE_n (218), which may have optional hidden information element field name Jn_n (277) and optional hidden information element value Jv_n (278) associated therewith. Now again, the user interfaces $l_1...l_n$ (14) may each be different, one from the other, or the same, and may change characteristics over time. Each of the user interfaces I1...In (14) may change characteristics as a function of time, information, and/or instructions, and/or other means, which may be derived by the users $U_1...U_n$ (12) and/or the clients $C_1...C_n$ (16) and/or the servers $S_1...S_z$ (20), and/or the server PS (18), and/or the optional servers $SO_1...SO_p$ (22), and/or derived within the user interfaces $l_1...l_n$ (14). The user interface $I_1...I_n$ (14) may change state. The user interface $I_1...I_n$ (14) may also change as a function of optional timers and/or timed instructions associated therewith the user interfaces $I_1...I_n$ (14), and/or associated therewith the clients $C_1...C_n$ (16) and/or associated therewith the servers $S_1...S_z$ (20), and/or associated therewith the server PS (18), and/or associated therewith the optional servers $SO_1...SO_p$ (22), and/or instructions from the user $U_1...U_n$ (12). Changes in the user interface I_n (14) may appear continuous to the user U_n (12), spaced in time, staccato, or static depending upon the optional timers and/or the timed instructions. Other conditions may change the user interface $I_1...I_n$ (14), as well. The user interfaces I_{1...I_n} (14) may be updated continuously, intermittently, manually, randomly, semi-automatically, automatically, repetitively, non-repetitively, singly, plurally, multiplexed, and/or a combination thereof or other suitable manner. The user interfaces $I_1...I_n$ (14) may be visual, such as graphical user interfaces, aural, and/or tactile, a combination thereof, and/or other suitable means. The user interfaces $I_1...I_n$ (14) may be integral with the clients $C_1...C_n$ (16) or separate therefrom. The user interfaces I₁...I_n (14) may change in response to the user inputs UI₁...UI_n (25), the service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14), the completed service and/or information request forms IF_n (230), the user service and/or information requests iq₁...iq_n (27), the optional execute request elements 210, accessing the alternate request links QL₁₁...QL_{1a} (203), accessing the server request links UL₁₁...UL_{1s} (204), accessing the additional request links $SL_{11}...SL_{1w}$ (71), the service and/or information responses $IR_1...IR_n$ (34), the service and/or information response forms $IS_1...IS_n$ (39). Other conditions may change the user interface $I_1...I_n$ (14), as well. Portions of the user responses $UR_1...UR_n$ (37) may be mapped into and/or onto different portions of the user interfaces $I_1...I_n$ (14) to facilitate interaction with and the needs of each of the users $U_1...U_n$ (12). Such mappings may be optionally customized by the users $U_1...U_n$ (12). # 10 C. SERVICE AND/OR INFORMATION REQUEST DETAILS Each of the users $U_1...U_n$ (12) communicate the corresponding user service and/or information requests $iq_1...iq_n$ (27) therethrough the corresponding user interfaces $I_1...I_n$ (14) to the corresponding clients $C_1...C_n$ (16), which optionally format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into the corresponding service and/or information requests $IQ_1...IQ_n$ (28), as required. Now, again, the user U_n (12) may instruct the user interface I_n (14) to communicate the user service and/or information requests iq_n (27), having the server query values $QV_{n1}...QV_{nu}$ (200) and/or the server name values $AV_{n1}...AV_{nu}$ (201) and/or the optional instruction values $VV_{n1}...VV_{nv}$ (202), from the already completed service and/or information request form IF_n (230) at the user interface I_n (14) thereto the client C_n (16) by entering the optional execute request element 210, using a point and click device, such as a mouse, light pen, tactile monitor, by entering a carriage return, therethrough other user interface controls, or therethrough other suitable means. FIG. 75 shows a schematic representation of the user service and/or information request iqn (27). 5 The user U_n (12) may alternatively enter the alternate request links $QL_{n1}...QL_{na}$ (203) or the server request links $UL_{n1}...UL_{ns}$ (204) or the additional request links $SL_{n1}...SL_{nw}$ (71) thereinto the service and/or information entry request form IE_n (38) therewith a point and click device, such as a mouse, a light pen, tactile monitor, or therewith alternative and/or other user interface controls or other suitable means, and instruct the user interface I_n (14) to communicate the user service and/or information request I_n (27), having information associated with the alternate request links I_n ... I_n (204) or the additional request links I_n ... I_n (203) or the server request links I_n ... I_n (204) or the additional 15 The user service and/or information request iq_n (27) is communicated from the user interface l_n (14) to the client C_n (16), which acts upon the user service and/or information request iq_n (27) to derive the service and/or information request iq_n (28) therefrom. FIGS. 75-80 are schematic representations of the service and/or information request iq_n (28) and/or the user service and/or information request iq_n (27). 20 The service and/or information request IQ_n (28) has information and/or elements, which may be used by the server PS (18) to make the requests $Q_{n1}...Q_{nm}$ (29) of the 15 20 servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30). The client C_n (16) may additionally and/or alternatively make the requests $Q_{n1}...Q_{nm}$ (29) of the servers $S_1...S_z$ (20), using information and/or elements within the user service and/or information request iq_n (27). The service and/or information request IQ_n (28) has user client requests $QC_{n1}...QC_{nu}$ (280) accessible to the user U_n (12) and hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12). The user client requests $QC_{n1}...QC_{nu}$ (280) accessible to the user U_n (12) and/or the hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12) have address and/or location information and/or instructions, and/or other information corresponding to information and/or services to be requested of the servers $S_1...S_z$ (20), and/or information and/or instructions to be utilized by the server PS (18) and/or ones of the clients $C_1...C_n$ (16). The user client requests $QC_{n1}...QC_{nu}$ (280) accessible to the user U_n (12) have server requests portion SQ_n (282), optional instructions portion V_n (283), and alternate request portion AL_n (284). The hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12) has optional hidden server
requests portion HQ_n (285), optional hidden instructions portion HQ_n (286), and optional hidden information portion J_n (287). - The server requests portion SQ_n (282) of the service and/or information request IQ_n (28) has queries QS_{n1}...QS_{nu} (288), which may be derived from the query field names QN_{n1}...QN_{nu} (262) and the corresponding server query values QV_{n1}...QV_{nu} (200) of the query elements QE_{n1}...QE_{nu} (258). - The server requests portion SQ_n (282) of the service and/or information request IQ_n (28) may also have the server addresses A_{n1}...A_{nu} (265), which may be derived from the server field names AN_{n1}...AN_{nm} (264) and the corresponding server name values AV_{n1}...AV_{nu} (201) of the server name elements AE_{n1}...AE_{nu} (260). - The optional instructions portion VO_n (283) of the user client requests QC_{n1}...QC_{nu} (280) accessible to the user U_n (12) of the service and/or information request IQ_n (28) may have optional instructions V_{n1}...V_{nv} (289), which may be derived from the optional instruction field names VN_{n1}...VN_{nv} (266) and the corresponding optional instruction values VV_{n1}...VV_{nv} (202). The optional instructions V_{n1}...V_{nv} (289) may optionally be used by the client C_n (16) and/or the server PS (18), and/or incorporated into the requests Q_{n1}...Q_{nm} (29) to be made of the servers S₁...S_z (20) designated by the server designations S_{n1}...S_{nm} (30), corresponding to the requests Q_{n1}...Q_{nm} (29) associated with the user U_n (12). The alternate request portion AL_n (284) of the user client requests $QC_{n1}...QC_{nu}$ (280) accessible to the user U_n (12) of the service and/or information request IQ_n (28) may be derived from one of the alternate request links $QL_{n1}...QL_{ne}$ (203), or one of the server request links $UL_{n1}...UL_{ns}$ (204), or one of the additional request links $SL_{n1}...SL_{nw}$ (71). The optional hidden server requests portion $HQ_{n1}...HQ_{nh}$ (281) of the hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12) may have hidden queries $QH_{n1}...QH_{nh}$ (290) and corresponding hidden server addresses $AH_{n1}...AH_{nh}$ (291). The hidden queries $QH_{n1}...QH_{nh}$ (290) of the optional hidden server requests portion $HQ_{n1}...HQ_{nh}$ (281) of the service and/or information request IQ_n (28) may be derived from the hidden query field names $Qn_{n1}...Qn_{nh}$ (268) and the corresponding hidden query values $Qv_{n1}...Qv_{nh}$ (270). The hidden server addresses $AH_{n1}...AH_{nh}$ (291) of the optional hidden server requests portion $HQ_{n1}...HQ_{nh}$ (281) of the service and/or information request IQ_n (28) may be derived from the hidden server field names $An_{n1}...An_{nh}$ (272) and the corresponding server hidden server name values $Av_{n1}...Av_{nh}$ (274). The hidden queries $QH_{n1}...QH_{nh}$ (290) may optionally be appended to the queries $QS_{n1}...QS_{nu}$ (288) to be made of the servers $S_{1}...S_{z}$ (20). The hidden server 20 addresses $AH_{n1}...AH_{nh}$ (291) may optionally be appended to the server addresses $A_{n1}...A_{nu}$ (265). The appended queries $QS_{n1}...QS_{nu}$ (288) may then be made of the servers $S_{1}...S_{z}$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), corresponding to the resulting appended requests $Q_{n1}...Q_{nm}$ (29) associated with the user U_{n} (12), in accordance with the appended server addresses $A_{n1}...A_{nu}$ (265). The appended requests $Q_{n1}...Q_{nm}$ (29) will hereinafter be used synonymously with the requests $Q_{n1}...Q_{nm}$ (29), the appended queries $QS_{n1}...QS_{nu}$ (288) will hereinafter be used synonymously with the queries $QS_{n1}...QS_{nu}$ (288), and the appended server addresses $A_{n1}...A_{nu}$ (265) will hereinafter be used synonymously with the server addresses $A_{n1}...A_{nu}$ (265). The optional hidden instructions portion HO_n (286) of the hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12) of the service and/or information request IQ_n (28) have optional hidden instructions $H_{n1}...H_{ni}$ (292), which may be derived from the hidden instruction field names $Vn_{n1}...Vn_{ni}$ (275) and the corresponding optional hidden instruction values $Vv_{n1}...Vv_{ni}$ (276). The optional hidden instructions $H_{n1}...H_{ni}$ (292) may optionally be appended to the optional instructions $V_{n1}...V_{nv}$ (289) and/or may optionally be used by the client C_n (16) and/or the server PS (18), and/or incorporated into the requests $Q_{n1}...Q_{nm}$ (29) to be made of the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), corresponding to the requests $Q_{n1}...Q_{nm}$ (29) associated with the user U_n (12). The 20 appended instructions $V_{n1}...V_{nv}$ (289) will hereinafter be used synonymously with the instructions $V_{n1}...V_{nv}$ (289). The optional hidden information portion J_n (287) of the hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the user U_n (12) of the service and/or information request IQ_n (28) may be derived from the optional hidden information element field name Jn_n (277) and the optional hidden information element value Jv_n (278), and may optionally be used by the client C_n (16) and/or the server PS (18), and/or incorporated into the requests $Q_{n1}...Q_{nm}$ (29) to be made of the servers $S_1...S_z$ (20) designated by the server designations $S_{n1}...S_{nm}$ (30), corresponding to the requests $Q_{n1}...Q_{nm}$ (29) associated with the user U_n (12). Now, again, each of the users $U_1...U_n$ (12) communicate the corresponding user service and/or information requests $iq_1...iq_n$ (27) therethrough the corresponding user interfaces $I_1...I_n$ (14) to the corresponding clients $C_1...C_n$ (16), which optionally format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into the corresponding service and/or information requests $IQ_1...IQ_n$ (28), as required. The user service and/or information requests $iq_1...iq_n$ (27) may be communicated therefrom the completed service and/or information entry request forms $IF_1...IF_n$ (230) at the user interfaces $l_1...l_n$ (14) thereto the clients $C_1...C_n$ (16) or alternatively therefrom the service and/or information entry request forms $IE_1...IE_n$ (38) at the corresponding the user interfaces $l_1...l_n$ (14) therethrough the alternate request links $QL_{11}...QL_{na}$ (203) or the server request links $UL_{11}...UL_{ns}$ (204) or the additional request links $SL_{11}...SL_{nw}$ (71). The user service and/or information requests iq₁...iq_n (27) may be communicated as the elements, values, field names, optional instructions, and/or alternate requests entered thereinto the completed service and/or information entry request form IF_n (230) therefrom the corresponding user interfaces I₁...I_n (14) to the corresponding clients C₁...C_n (16). - The users U₁...U_n (12) may, thus, communicate the corresponding user service and/or information requests iq₁...iq_n (27) to the clients C₁...C_n (16) therethrough the user interfaces I₁...I_n (14), upon entering the corresponding user inputs UI₁...UI_n (25) thereinto the corresponding service and/or information entry request forms IE₁...IE_n (38) at the corresponding the user interfaces I₁...I_n (14). The completed service and/or information entry request forms IF₁...IF_n (230) are derived therefrom the user inputs UI₁...UI_n (25) having the corresponding user service and/or information requests iq₁...iq_n (27), which may be entered as values or alternate requests thereinto the corresponding service and/or information entry request forms IE₁...IE_n (38). - The user U₁...U_n (12) may alternatively communicate the user service and/or information requests iq₁...iq_n (27) by entering the alternate request links QL₁₁...QL_{na} (203) or the server request links UL₁₁...UL_{ns} (204) or the additional request links SL₁₁...SL_{nw} (71) thereinto the service and/or information entry request form IE₁...IE_n (38) or thereinto the completed service and/or information request form IF₁...IF_n (230). The server PS (18) and/or the C_n (16) may alternatively and/or additionally use information resident within the server PS (18) and/or the client C_n (16), such as default information, and/or information communicated therefrom the user U_n (12) therethrough the user interface I_n (14) to the client C_n (16) to make the requests Q_{n1}...Q_{nm} (29) of the servers S₁...S_z (20), in accordance with the designation scheme which designates the ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30). FIG. 81 is a schematic representation showing queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) and corresponding server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54). FIGS. 82-85 shows the schematic representation of FIG. 81 having typical values. ## D. OPTIONAL INSTRUCTIONS Typically, information within the optional instructions $V_{11}...V_{nv}$ (289), and/or the optional hidden instructions $H_{11}...H_{ni}$ (292), and/or the optional hidden information portion J_n (287) are used by the server PS (18) and/or specific ones of the clients $C_1...C_n$ (16), but may also be used by the servers $S_1...S_z$ (20). 20 Now, in yet more detail, the user inputs $Ul_1...Ul_n$ (25) may have one or more of the same and/or different optional instruction values $VV_{11}...VV_{nv}$ (202). The optional instruction values $VV_{11}...VV_{nv}$ (202) may typically have instructions, which may be used by the server PS (18) and/or the clients $C_1...C_n$ (16), such as, for example, as instructions on how to request, organize, present and/or display, and/or retrieve services and/or information from the servers $S_1...S_z$ (20) and/or other suitable instructions.
Typical information that may be incorporated into the optional instruction values $VV_{n1}...VV_{nv}$ (202) may include, for example, Searches per Group 311 and Group 312, shown in FIGS. 5A, 5B, and 6-10 for a particular one of the service and/or information entry request forms IE_n (38) at the user interface I_n (14) shown in FIGS. 75-80. The Searches per Group 311 is considered to be the number of the server query values $QV_{n1}...QV_{nu}$ (200), associated therewith corresponding ones of the server name values $AV_{n1}...AV_{nu}$ (201), corresponding to the requests $Q_{n1}...Q_{nm}$ (29) to make of the servers $S_1...S_z$ (20). The Group 312 is considered to be the group of the server query values $QV_{n1}...QV_{nu}$ (200) to communicate thereto ones of the servers $S_1...S_z$ (20) associated therewith the corresponding ones of the server name values $AV_{n1}...AV_{nu}$ (201), in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30), corresponding to the requests $Q_{n1}...Q_{nm}$ (29). Page 313, which includes certain service and/or information location information, which may be incorporated into the requests $Q_{n1}...Q_{nm}$ (29) to be made of the associated corresponding ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30), may also be typically incorporated into the optional instruction values $VV_{n1}...VV_{nv}$ (202). Timeout per Search Engine 314, which is substantially the maximum time for the server PS (18) and/or the particular client C_n (16) making the requests $Q_{n1}...Q_{nm}$ (29) to wait for each of the responses $R_{n1}...R_{nm}$ (32) therefrom certain ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30), may also be typically incorporated into the optional instruction values $VV_{n1}...VV_{nv}$ (202). 15 20 URL's per Search Engine 315, which is the number of links and/or descriptions to be returned to the user interface I_n (14) from each of the responses $R_{n1}...R_{nm}$ (32), may also be typically incorporated into the optional instruction values $VV_{n1}...VV_{nv}$ (202). Search Engine Results 316 and URL Details 317, each of which designate different presentation and/or display schemes to be presented at the user interface I_n (14), may also be typically incorporated into the optional instruction values $VV_{n1}...VV_{nv}$ (202). In those instance in which, for example, the service and/or information entry request form IE_n (38) at the user interface I_n (14) has only one entry field for one of the requests Q_{n1} (29), as in FIGS. 6, 8, and 10, and the optional instruction values VV₁₁...VV_{nv} (202) are not visible, the server PS (18) and/or the particular client C_n (16) may then have default values resident therein for the Searches per Group 311, and/or the Group 312, and/or the Page 313, and/or the Timeout per Search Engine 314, and/or the URL's per Search Engine 315, and/or the Search Engine Results 316, and/or the URL Details 317, and/or other suitable ones of the optional instruction values VV₁₁...VV_{nv} (202), and/or the server PS (18) and/or the particular client C_n (16) may establish the default values, and/or the default values may be incorporated into the optional hidden instruction values Vv_{n1}...Vv_{ni} (276). The server PS (18) and/or the particular client C_n (16) may make the requests $Q_{n1}...Q_{nm}$ (29) of the servers $S_1...S_z$ (20), according to the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30), and the optional instruction values $VV_{n1}...VV_{nv}$ (202), typically having the Searches per Group 311, and/or the Group 312, and/or the Page 313, and/or the Timeout per Search Engine 314, and/or the URL's per Search Engine 315, and/or the Search Engine Results 316, and/or the URL Details 317, and/or the default values which may be established or be resident within the server PS (18) and/or the particular client C_n (16), and/or the optional hidden instruction values $Vv_{n1}...Vv_{ni}$ (276), and/or other information incorporated into the hidden client request elements $HP_{n1}...HP_{nh}$ (256) hidden from the user U_n (12). 15 20 #### E. COMMUNICATING THE SERVICE AND/OR INFORMATION REQUESTS Now, each of the users $U_1...U_n$ (12) communicate the corresponding user service and/or information requests $iq_1...iq_n$ (27) therethrough the corresponding user interfaces $I_1...I_n$ (14) to the corresponding clients $C_1...C_n$ (16), which optionally format the corresponding user service and/or information requests $iq_1...iq_n$ (27) into the corresponding service and/or information requests $IQ_1...IQ_n$ (28). The clients $C_1...C_n$ (16) communicate the corresponding service and/or information requests $IQ_1...IQ_n$ (28) thereto the server PS (18) and/or use the corresponding user service and/or information requests $iq_1...iq_n$ (27) internally to formulate the requests $Q_1...Q_{nm}$ (29). # F. Parsing, Processing, and/or Formatting the Service and/or Information Requests The server PS (18) and/or the clients C₁...C_n (16) parse, process, and/or format the service and/or information requests IQ₁...IQ_n (28) into the requests Q₁₁...Q_{nm} (29), the optional instructions VJ₁₁...VJ_{nk} (52), and information to open connections OC₁₁...OC_{nm} (323). FIG. 86 shows a particular one of the requests Q_{nm} (29), the optional instructions VJ_{n1}...VJ_{nk} (52), and the information to open connections OC₁₁...OC_{nm} (323), which may be parsed, processed, and/or formatted from a particular one of the service and/or information requests IQ_n (28). The clients C₁...C_n (16) may alternatively and/or additionally parse, process, and/or format the user service and/or information requests $iq_1...iq_n$ (27) directly into the requests $Q_{11}...Q_{nm}$ (29), and/or the optional instructions $VJ_{11}...VJ_{nk}$ (52) and the information required to open the connections $OC_{11}...OC_{nm}$ (323), as required. - Upon receipt of the service and/or information requests IQ1...IQn (28) at the server PS (18), communicated therefrom the clients C1...Cn (16), the server PS (18) parses, processes, and/or formats each of the corresponding service and/or information requests IQ1...IQn (28) into the corresponding queries QQ11...QQnm (53), the corresponding server addresses AQ11...AQnm (54) to open connections OC11...OCnm (323) with and make the requests Q11...Qnm (29) thereof the servers S1...Sz (20), in accordance with the designation scheme which designates the certain ones of the servers S1...Sz (20) to be communicated with corresponding to the requests Q11...Qnm (29), and/or the optional instructions VJ11...VJnk (52) to be used by the server PS (18) in making the requests Q11...Qnm (29) and/or in processing, formatting, grouping, and organizing the responses R11...Rnm (32) from the ones of the servers S1...Sz (20) corresponding to the server designations S11...Snm (30), and/or the additional optional responses R41...Rnm (40), into the corresponding service and/or information responses IR1...IRn (34), as shown in FIG. 86. - Alternatively and/or additionally, upon receipt of the user service and/or information requests iq1...iqn (27) at the corresponding clients C1...Cn (16), the corresponding clients C1...Cn (16) may parse, process, and/or format each of the user service and/or information requests iq1...iqn (27) into corresponding queries QQ11...QQnm (53), (323) with and make the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29), and/or the optional instructions VJ₁₁...VJ_{nk} (52) to be used by the corresponding clients C₁...C_n (16) in making the requests Q₁₁...Q_{nm} (29) and/or in processing, formatting, grouping, and organizing the responses R₁₁...R_{nm} (32) from the ones of the servers S₁...S_z (20) corresponding to the server designations S₁₁...S_{nm} (30), and/or the additional optional responses RA₁₁...RA_{nm} (40), into the corresponding user service and/or information responses ir₁...ir_n (36). The server PS (18) parses, processes, and/or formats each of the service and/or information requests IQ1...IQn (28) into queries, server addresses to make the queries of, query groups and/or server groups, and instructions to be used by the server PS (18), typically when the server PS (18) makes the requests Q11...Qnm (29) of the servers S1...S2 (20) corresponding to the server designations S11...Snm (30) and/or the server PS (18) processes, formats, groups, and organizes the responses R11...Rnm (32) from the ones of the servers S1...S2 (20) corresponding to the server designations S11...Snm (30) at the server PS (18). Otherwise, the clients C1...Cn (16) may parse, process, and/or format each of the user service and/or information requests iq1...iqn (27) into queries, server addresses to make the queries of, query groups and/or server groups, and instructions, typically when the clients C1...Cn (16) make the requests Q1...Qnm (29) of the servers S1...S2 (20) corresponding to the server designations $S_{11}...S_{nm}$ (30) and/or the clients $C_{1}...C_{n}$ (16) process, format, group, and organize the responses $R_{11}...R_{nm}$ (32) from the ones of the servers $S_{1}...S_{z}$ (20) corresponding to the server designations $S_{11}...S_{nm}$ (30) at the corresponding clients $C_{1}...C_{n}$ (16). Choice as to whether the server PS (18) and/or the clients $C_{1}...C_{n}$ (16) makes the requests
$Q_{11}...Q_{nm}$ (29) of the servers $S_{1}...S_{z}$ (20) corresponding to the server designations $S_{11}...S_{nm}$ (30) and/or process, format, group, and organize the responses $R_{11}...R_{nm}$ (32) are dependent on processing capabilities of the server PS (18) and/or the clients $C_{1}...C_{n}$ (16) and other factors. Ones of the requests Q₁₁...Q_{nm} (29) may require further formatting and/or processing by the server PS (18) and/or the corresponding clients C₁...C_n (16), and/or other ones of the requests Q₁₁...Q_{nm} (29) may already be formatted in accordance with requirements with respect to communications protocols, the service and/or information requests IQ₁...IQ_n (28), the servers S₁...S_z (20), and/or the optional servers SO₁...SO_p (22), and/or the server PS (18), and/or other requirements of the network 24 of the client-server multitasking system 10. The server PS (18) and/or the clients C₁...C_n (16) parse, process, and/or format the requests Q₁₁...Q_{nm} (29), as required. ### G. FORMULATING THE REQUESTS Each of the optional instructions $VJ_{11}...VJ_{nk}$ (52) is typically parsed, and/or processed, and/or formatted, and/or grouped, and/or organized into particular ones of the optional instructions $VJ_{n1}...VJ_{nk}$ (52) for use by the server PS (18) and/or particular ones of the clients $C_1...C_n$ (16), a particular one of the clients $C_1...C_n$ (16) being designated as the client C_n (16). - Each of the alternate request links $QL_{n1}...QL_{na}$ (203) and the additional request links $SL_{11}...SL_{nw}$ (71) are also typically parsed, and/or processed, and/or formatted, and/or grouped, and/or organized for use by the server PS (18) and/or particular ones of the clients $C_1...C_n$ (16), a particular one of the clients $C_1...C_n$ (16) being designated as the client C_n (16). - The alternate request links QL_{n1}...QL_{na} (203) allow the user U_n (12) to make the service and/or information request IQ₁...IQ_n (28) with preconfigured optional default selections already placed therein the service and/or information request IQ₁...IQ_n (28) for the user U_n (12). The additional request links SL_{n1}...SL_{nw} (71) allow the user U_n (12) to make additional optional selections, based upon information and/or services previously requested by the user U_n (12). Typical ones of the optional instructions $VJ_{n1}...VJ_{nk}$ (52) and the additional request links $SL_{n1}...SL_{nw}$ (71) that may be parsed, processed, and/or formatted from the service and/or information request IQ_n (28) and/or the user service and/or information request iq_n (27) are shown in FIG. 90. The requests $Q_{11}...Q_{nm}$ (29) may be made by the server PS (18) and/or the corresponding clients $C_{1}...C_{n}$ (16) of the associated corresponding ones of the servers $S_1...S_z$ (20), according to the designation scheme corresponding to the corresponding ones of the server designations $S_{11}...S_{nm}$ (30), in accordance with the optional instructions $VJ_{11}...VJ_{nk}$ (52) and/or default values for the optional instructions $VJ_{11}...VJ_{nk}$ (52) resident within the server PS (18) and/or the corresponding clients $C_1...C_n$ (16). The service and/or information responses IR₁...IR_n (34) and/or the corresponding user service and/or information responses ir₁...ir_n (36) may be formulated by the server PS (18) and/or the corresponding clients C₁...C_n (16), in accordance with the optional instructions VJ₁₁...VJ_{nk} (52) and/or default values for the optional instructions VJ₁₁...VJ_{nk} (52) resident within the server PS (18) and/or the corresponding clients C₁...C_n (16). The optional instructions VJ_{n1}...VJ_{nk} (52) and the additional request links SL₁₁...SL_{nw} (71) for a particular one of the service and/or information requests IQ_n (28) may typically have Searches per Group 326, and/or Group 327, and/or Page 328A and/or Page 328B, and/or Timeout per Search Engine 329, and/or URL's per Search Engine 330, and/or Search Engine Results 331A and/or Search Display 331B, and/or URL Details 332A and/or Description and/or List 332B, as shown in FIG. 90. Default values may additionally and/or alternatively be established or be resident for any and/or all of the optional instructions VJ₁₁...VJ_{nk} (52) within the server PS (18) and/or the clients C₁...C_n (16). The Searches per Group 326 are typically considered to be the number of the queries $QQ_{n1}...QQ_{nm}$ (53) to make of the servers $S_1...S_z$ (20) thereof at the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to make the requests $Q_{n1}...Q_{nm}$ (29) thereof as the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30). The Group 327 is considered to be the group of the queries $QQ_{n1}...QQ_{nm}$ (53) to make of the servers $S_1...S_z$ (20) thereof at the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to make the requests $Q_{n1}...Q_{nm}$ (29) thereof as the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30). The Page 328A and the Page 328B have certain service and/or information location information, which may be incorporated into the requests $Q_{n1}...Q_{nm}$ (29) to be made of the associated corresponding ones of the servers $S_1...S_z$ (20) thereof, at the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54), in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30). The Timeout per Search Engine 329 is considered to be substantially the maximum time for the server PS (18) and/or the particular client C_n (16) making the requests Q_{n1}...Q_{nm} (29) to wait for each of the responses R_{n1}...R_{nm} (32) therefrom certain ones of the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{n1}...Q_{nm}$ (29) as the corresponding server designations $S_{n1}...S_{nm}$ (30). The URL's per Search Engine 330, is considered to be the number of links, and/or descriptions, and/or prices/values, and/or images to be returned to the user interface I_n (14) from each of the responses R_{n1}...R_{nm} (32). The Search Engine Results **331A** and the Search Display **331B** each designate presentation and/or display schemes to be presented at the user interface I_n (14). The URL Details **332A** and the Description and/or List **332B** each also designate presentation and/or display schemes to be presented at the user interface I_n (14). The optional instructions VJ_{n1}...VJ_{nk} (52) may also typically have Next Group 333 and Previous Group 334, which are considered to be the next group and the previous group, respectively, to make the queries QQ_{n1}...QQ_{nm} (53) thereof at the next and previous ones of the corresponding groups of the queries QQ_{n1}...QQ_{nm} (53) to make of the servers S₁...S_z (20) thereof at the corresponding server addresses AQ_{n1}...AQ_{nm} (54), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to make the requests Q_{n1}...Q_{nm} (29) thereof as the corresponding ones of the server designations S_{n1}...S_{nm} (30). Information about Current Group 337 having the queries QQ_{n1}...QQ_{nm} (53) and the server addresses AQ_{n1}...AQ_{nm} (54) is also shown. Current Page Number 338 is also indicated. The optional instructions VJ_{n1}...VJ_{nk} (52) for a particular one of the service and/or information requests IQ_n (28) may also typically have Next Page 335 and Previous Page 336, each of which has certain different service and/or information location information, which may be incorporated into the requests Q_{n1}...Q_{nm} (29) to be made of the associated corresponding ones of the servers S₁...S_z (20), in accordance with the designation scheme corresponding to the corresponding ones of the server designations S_{n1}...S_{nm} (30). - H. DETERMINING QUERIES AND SERVERS TO MAKE THE REQUESTS THEREOF The server PS (18) and/or the clients C₁...C_n (16) evaluate the optional instructions VJ₁₁...VJ_{nk} (52), determine the queries QQ₁₁...QQ_{nm} (53) and the servers S₁...S₂ (20) to make the requests Q₁₁...Q_{nm} (29) thereof at the corresponding server addresses AQ₁₁...AQ_{nm} (54), in accordance with the designation scheme which designates the certain ones of the servers S₁...S₂ (20) to be communicated with as the server designations S₁₁...S_{nm} (30), corresponding to the requests Q₁₁...Q_{nm} (29), and group the queries QQ₁₁...QQ_{nm} (53) and the corresponding server addresses AQ₁₁...AQ_{nm} (54) associated therewith. - FIG. 90 shows typical ones of the queries QQ_{n1}...QQ_{nm} (53), the corresponding server addresses AQ_{n1}...AQ_{nm} (54), and the optional instructions VJ_{n1}...VJ_{nk} (52) that may be parsed, processed, and/or formatted from the service and/or information request IQ_n (28) and/or the user service and/or information request iq_n (27). The queries QQ₁₁...QQ_{nm} (53) and the servers S₁...S_z (20) to make the requests Q₁₁...Q_{nm} (29) thereof are typically based upon the values designated therein and parsed from the queries QQ₁₁...QQ_{nm} (53) and the values designated therein and parsed from the corresponding server addresses AQ₁₁...AQ_{nm} (54), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with as the server designations S₁₁...S_{nm} (30), corresponding to the requests Q₁₁...Q_{nm} (29), and the Searches per Group 326, the Group 327, the Page 328A and/or the Page 328B within the optional instructions VJ₁₁...VJ_{nk} (52). The server PS (18) and/or the clients $C_1...C_n$ (16) evaluate the values therein the
Group 327, the Searches per Group 326, the queries $QQ_{11}...QQ_{nm}$ (53), the corresponding server addresses $AQ_{11}...AQ_{nm}$ (54), and determine the servers $S_1...S_z$ (20) corresponding to the corresponding server addresses $AQ_{11}...AQ_{nm}$ (54) within the Group 327, in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with as the server designations $S_{11}...S_{nm}$ (30) to make the requests $Q_{11}...Q_{nm}$ (29) thereof, and the Page 328A and/or the Page 328B. The Group 327 and the Searches per Group 326 are used to determine which of the servers $S_1...S_z$ (20) to make the requests $Q_{11}...Q_{nm}$ (29) thereof. The server PS (18) and/or the clients C₁...C_n (16) determine the size of the Group 327 from the Searches per Group 326 and the Group 327, and the servers S₁...S_z (20) associated with the corresponding server addresses AQ₁₁...AQ_{nm} (54) within the Group 327, in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with as the server designations S₁₁...S_{nm} (30). The Searches per Group 326 and the Group 327 are used to formulate the current request groups $QA_{1c}...QA_{nc}$ (50) having the corresponding queries $QQ_{11}...QQ_{nm}$ (53) and the corresponding server addresses $AQ_{11}...AQ_{nm}$ (54) to open connections with and make the requests $Q_{11}...Q_{nm}$ (29) thereof the servers $S_{1}...S_{z}$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_{1}...S_{z}$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) thereof as the server designations $S_{11}...S_{nm}$ (30), corresponding to the requests $Q_{11}...Q_{nm}$ (29), for corresponding ones of the service and/or information requests $Q_{11}...Q_{nm}$ (28) and/or the user service and/or information requests $Q_{11}...Q_{nm}$ (27). The queries QQ₁₁...QQ_{nm} (53), the server addresses AQ₁₁...AQ_{nm} (54), and the Page 328A and/or the Page 328B provide the location of information and/or services to the server PS (18) and/or the clients C₁...C_n (16) within the Group 327, in accordance with the Searches per Group 326, to make the requests Q₁₁...Q_{nm} (29) thereof, in accordance with the designation scheme which designates the ones of the servers 20 $S_1...S_z$ (20) to make the requests $Q_{11}...Q_{nm}$ (29) thereof as the server designations $S_{11}...S_{nm}$ (30), corresponding to the requests $Q_{11}...Q_{nm}$ (29). The URL's per Search Engine 330 determine whether the server PS (18) and/or the clients $C_1...C_n$ (16) communicate additional ones of the requests $Q_{11}...Q_{nm}$ (29) of the servers $S_1...S_z$ (20), depending upon the number of the links, and/or descriptions, and/or prices/values, and/or images requested by ones of the user $U_1...U_n$ (12) to be returned to the user interfaces $I_1...I_n$ (14), and the number of links, and/or descriptions, and/or prices/values, and/or images available within each of the corresponding ones of the responses $R_{11}...R_{nm}$ (32). If insufficient ones of the links, and/or descriptions, and/or prices/values, and/or images are not available within the responses $R_{11}...R_{nm}$ (32) to satisfy delivery of the number of the URL's per Search Engine 330 requested by certain ones the users $U_1...U_n$ (12), the server PS (18) and/or the clients $C_1...C_n$ (16) may yet make additional ones of the requests $Q_{11}...Q_{nm}$ (29) of the servers $S_1...S_z$ (20), in order deliver the number of the links, and/or descriptions, and/or prices/values, and/or images requested in the number of the URL's per Search Engine 330 to the user interfaces $I_1...I_n$ (14) requested by certain ones of the user $U_1...U_n$ (12). If the optional instructions do not indicate which ones of the servers $S_1...S_z$ (20) to make the requests $Q_{11}...Q_{nm}$ (29) thereof, in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with as the server designations $S_{11}...S_{nm}$ (30), corresponding to the requests $Q_{11}...Q_{nm}$ 20 (29), default values may be used. The default values may be resident within the server PS (18) and/or the clients $C_1...C_n$ (16). If all and/or a portion of the optional instructions $VJ_{11}...VJ_{nk}$ (52) are absent and/or are not communicated thereto the server PS (18) and/or the clients $C_1...C_n$ (16), default values may be used. The default values may be resident within the server PS (18) and/or the clients $C_1...C_n$ (16). ## I. GROUPING THE QUERIES AND SORTING/GROUPING CRITERIA Upon receipt of the service and/or information requests IQ₁...IQ_n (28) at the server PS (18), communicated therefrom the corresponding clients C₁...C_n (16), the server PS (18) parses, processes, and/or formats each of the service and/or information requests IQ₁...IQ_n (28) into the corresponding current request groups QA_{1c}...QA_{nc} (50) having the corresponding queries QQ₁₁...QQ_{nm} (53) and the corresponding server addresses AQ₁₁...AQ_{nm} (54) to open connections with and make the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), shown for a particular one of the service and/or information requests IQ_n (28) in FIG. 59. The process 104 of deriving the service and/or information response IR_n (34) for the grouping and/or sorting criteria of FIG. 59 is shown in FIG. 70-1A. 15 20 The server PS (18) also parses, processes, and/or formats each of the service and/or information requests IQ₁...IQ_n (28) into the corresponding request groups QA₁₁...QA_{nz} (51) having the corresponding other queries QQ_{1a}...QQ_{nz} (55) and the corresponding other server addresses AQ_{1a}...AQ_{nz} (56), and the corresponding optional instructions VJ₁₁...VJ_{nk} (52), also shown for a particular one of the service and/or information requests IQ_n (28) in FIG. 59. Certain ones of the clients $C_1...C_n$ (16) may alternatively and/or additionally make the requests $Q_{11}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), and formulate the corresponding user service and/or information response $ir_1...ir_n$ (36), as previously described, as shown in FIG. 63. The process **104** of deriving the user service and/or information response **ir**_n **(36)** for the grouping and/or sorting criteria of FIG. 59 is shown in FIG. 70-1A. corresponding clients C₁...C_n (16), certain ones of the corresponding clients C₁...C_n (16) may parse, process, and/or format the corresponding user service and/or information requests iq₁...iq_n (27) into the corresponding current request groups QA_{1c}...QA_{nc} (50) having the corresponding queries QQ₁₁...QQ_{nm} (53) and the corresponding server addresses AQ₁₁...AQ_{nm} (54) to open connections with and make Upon receipt of the user service and/or information requests iq1...iqn (27) at the the requests $Q_{11}...Q_{nm}$ (29) thereof the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29), shown for a particular one of the user service and/or information requests iq_n (27) in FIG. 63. The corresponding clients $C_1...C_n$ (16) may also parse, process, and/or format the corresponding user service and/or information response $ir_1...ir_n$ (36) into the corresponding request groups $QA_{11}...QA_{nz}$ (51) having the corresponding other queries $QQ_{1a}...QQ_{nz}$ (55) and the corresponding other server addresses $AQ_{1a}...AQ_{nz}$ (56), and the corresponding optional instructions $VJ_{11}...VJ_{nk}$ (52), also shown for a particular one of the user service and/or information requests iq_n (27) in FIG. 63. The server PS (18) makes the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), as shown in FIG. 59, and certain ones of the clients C₁...C_n (16) may additionally and/or alternatively make the requests Q₁₁...Q_{nm} (29) thereof the servers S₁...S_z (20), in accordance with the designation scheme which designates the certain ones of the servers S₁...S_z (20) to be communicated with corresponding to the requests Q₁₁...Q_{nm} (29) as the corresponding server designations S₁₁...S_{nm} (30), as shown in FIG. 63. The Searches per Group **326** and the Group **327** are used to formulate the current request group QA_{nc} (50) having the corresponding queries QQ_{n1}...QQ_{nm} (53) and the 20 corresponding server addresses $\mathbf{AQ_{n1}...AQ_{nm}}$ (54) to open connections with and make the requests $\mathbf{Q_{n1}...Q_{nm}}$ (29) thereof the servers $\mathbf{S_1...S_z}$ (20), in accordance with the designation scheme which designates the certain ones of the servers $\mathbf{S_1...S_z}$ (20) to be communicated with corresponding to the requests $\mathbf{Q_{n1}...Q_{nm}}$ (29) thereof as the server designations $\mathbf{S_{11}...S_{nm}}$ (30), corresponding to the requests $\mathbf{Q_{11}...Q_{nm}}$ (29), for the service and/or information request $\mathbf{IQ_n}$ (28) and/or the user service and/or information request $\mathbf{IQ_n}$ (27). Information from the current request group QA_{nc} (50)
having the corresponding queries QQ_{n1}...QQ_{nm} (53) and the corresponding server addresses AQ_{n1}...AQ_{nm} (54) is formulated into the corresponding request pointer/address group QZ_n (60) having the pointers/addresses PG_{n1}...PG_{nz} (61) associated therewith, as shown in FIGS. 59 and 63. Each of the pointers/addresses PG_{n1}...PG_{nz} (61) are directed to point/address the corresponding addressable query pointer/address groups QG_{n1}...QG_{nz} (62) associated therewith, which aid in obtaining services and/or information therefrom the certain ones of the addressable response information group s RG_{n1}...RG_{nm} (57) to be incorporated thereinto the query information groups GI_{n1}...GI_{nz} (63). Ones of the addressable query information groups $GI_{n1}...GI_{nz}$ (63) may be associated therewith corresponding ones of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62). Each of the addressable query pointer/address groups $\mathbf{QG_{n1}}...\mathbf{QG_{nz}}$ (62) associated with the service and/or information request $\mathbf{IQ_n}$ has the pointers/addresses $\mathbf{PP_{n11}}...\mathbf{PP_{nmr}}$ (64) directed to address/point services and/or information therein the addressable response information groups $\mathbf{RG_{n1}}...\mathbf{RG_{nm}}$ (57), based upon the grouping and/or sorting criteria. Information and/or services therein the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is addressed therewith the pointers/addresses $PP_{n11}...PP_{nmr}$ (64) therefrom the query pointer/address groups $QG_{n1}...QG_{nz}$ (62), and information and/or services therefrom the addressable response information groups $RG_{n1}...RG_{nm}$ (57) is incorporated thereinto the addressable query information groups $GI_{n1}...GI_{nz}$ (63) corresponding to the pointers/addresses $PP_{n11}...PP_{nmr}$ (64), which are formulated by the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62), in accordance with the grouping and/or sorting criteria. FIGS. 59 and 63 show the request pointer/address group QZ_n (60), the addressable query pointer/address groups QG_{n1}...QG_{nz} (62), the pointers/addresses PP_{n11}...PP_{nmr} (64), associated ones of the addressable response information groups RG_{n1}... RG_{nm} (57), and the query information group GI_{nz} (63) associated therewith the query pointer/address group QG_{nz} (62). FIGS. 59 and 63 show the rth pointers/addresses PP_{n1r}...PP_{nmr} (64), which point to the rth optional addressable pointer/address indices IN_{nmr}...IN_{nmr} (81) of the corresponding rth individual information groups LG_{n1r}...LG_{nmr} (80) of the addressable response information group s RG_{n1}... RG_{nm} (57) associated therewith the query pointer/address group QG_{nz} (62) and the associated query information group GI_{nz} (63). FIG. 91 shows the request pointer/address group QZ_n (60), a particular one of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62), designated as the query pointer/address group QG_{nz} (62), the pointers/addresses PP_{n11}...PP_{nmr} (64), associated ones of the addressable response information group s RG_{n1}... RG_{nm} (57), and the query information group GI_{nz} (63) associated therewith the query pointer/address group QG_{nz} (62). The addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) each have corresponding ones of query information groups $GI_{n1}...GI_{nz}$ (63) associated therewith. Each of the query information groups $GI_{n1}...GI_{nz}$ (63) have information and/or services therein, which are derived therefrom information and/or services obtained from the certain ones of the addressable response information groups $RG_{n1}...RG_{nm}$ (57), which are addressed to provide such information therewith the aid of the corresponding pointers/addresses $PP_{n11}...PP_{nmr}$ (64). Each of the pointers/addresses $PP_{n11}...PP_{nmr}$ (64) are directed to point/address information and/or services therein the corresponding response information groups $RG_{n1}...RG_{nm}$ (57) associated therewith, which the information and/or services incorporated into the ones of the query information groups $GI_{n1}...GI_{nz}$ (63) associated therewith the corresponding addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) is obtained therefrom. The addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) may be used to aid in formulating the query information groups $GI_{n1}...GI_{nz}$ (63), having information obtained the addressable response information group s RG_{nm} (57), resulting from certain ones of the queries $QQ_{n1}...QQ_{nm}$ (53) grouped one with the other and/or the associated ones of the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54). The query information groups $GI_{n1}...GI_{nz}$ (63) may be presented thereto the user U_n (12) therethrough the user interface I_n (14). The addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) may be derived therefrom query criteria in the optional instructions $VJ_{11}...VJ_{nk}$ (52) and/or using default criteria resident within the server PS (18) and/or the client C_n (16). Query grouping criteria giving the user U_n (12) the ability to formulate the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) may be incorporated thereinto the optional instructions VJ₁₁...VJ_{nk} (52), which may be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). Typically, however, the queries QQ_{n1}...QQ_{nm} (53) having the same and/or substantially the same values are grouped one with the other therein individual ones of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62). Default criteria may be resident within the server PS (18) and/or the client C_n (16). The size of the request pointer/address group QZ_n (60) and which particular ones of the queries QQ_{n1}...QQ_{nm} (53) and the corresponding ones of the server addresses AQ_{n1}...AQ_{nm} (54) to use therein the requests Q_{n1}...Q_{nm} (29), and thus construction and/or formulation of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) to incorporate thereinto the particular request pointer/address group QZ_n (60), and, thus, delivery of information therein the query information groups GI_{n1}...GI_{nz} (63) is determined by the current request groups QA_{1c}...QA_{nc} (50), which may be determined from the Group 327 and the Searches per Group 326, the queries QQ_{n1}...QQ_{nm} (53) and the corresponding ones of the server addresses AQ_{n1}...AQ_{nm} (54) therein. 10 15 Certain ones of the queries $QQ_{n1}...QQ_{nm}$ (53) may be grouped one with the other in the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62), which have the certain ones of the queries $QQ_{n1}...QQ_{nm}$ (53) and the corresponding ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54) associated therewith, and the corresponding pointers/addresses $PP_{n11}...PP_{nmr}$ (64) associated therewith the certain ones of the queries $QQ_{n1}...QQ_{nm}$ (53), the corresponding ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54), and certain ones of response information groups $RG_{n1}...RG_{nm}$ (57). 20 T Typical sorting and/or grouping criteria, for example, may group certain ones of the queries QQ_{n1}...QQ_{nm} (53) having the same and/or substantially the same values grouped therein a particular one of the query information groups Gl_{nz}...Gl_{nz} (63), designated as the query information group Gl_{nz} (63), as shown in FIG. 92 and in certain ones of FIGS. 27-52. Alternatively and/or additionally, other typical sorting and/or grouping criteria, for example, may group certain ones of the server addresses AQ_{n1}...AQ_{nm} (54), having the same and/or substantially the same values grouped therein a particular one of the query information groups Gl_{nz}...Gl_{nz} (63), designated as the query information group Gl_{nz} (63), as shown in FIG. 93. FIGS. 91-93 show the rth pointers/addresses PP_{ner} (64), PP_{nrr} (64), and PP_{nwr} (64), which point to the rth optional addressable pointer/address indices IN_{ner} (81), IN_{nrr} (81), and IN_{nwr} (81) of the corresponding rth individual information groups LG_{ner} (80), LG_{nrr} (80), and LG_{nwr} (80) of the addressable response information group s RG_{ne} (57), RG_{nr} (57), and RG_{nw} (57) associated therewith the query pointer/address group QG_{nz} (62) and the associated query information group GI_{nz} (63). Alternatively and/or additionally, the user U_n (12) may select query grouping criteria, which simply provides information to the user interface I_n (14), separately with respect to the individual server addresses $AQ_{n1}...AQ_{nm}$ (54), as shown in FIGS. 60 and 64 and in certain ones of FIGS. 27-52. For example, the query information groups $GI_{n1}...GI_{nz}$ (63), may alternatively and/or additionally be correspondingly associated with the server address $AQ_{n1}...AQ_{nm}$ (54), and, thus, may be correspondingly associated with the addressable response information group s $RG_{n1}...RG_{nm}$ (57). The query 15 64 is shown in FIG. 70-1B. information group GI_{n1} (63) may, thus, be associated therewith the server address AQ_{n1} (54), the addressable response information group RG_{n1} (57), and the query information group GI_{n2} (63) may, thus, be associated therewith the server address AQ_{n2} (54), the addressable response information group RG_{n2} (57), and the query information group RG_{n2} (63), and so on; and the query information group RG_{n2} (63) may, thus, be associated therewith the server address RQ_{n2} (54), the addressable response information group RG_{n2} (57), and the query information group RG_{n2} (53), as shown in FIGS. 60 and 64. The process 104 of deriving the service and/or information response RG_{n2} (34) and/or the user service and/or information response ir_n
(36) for the grouping and/or sorting criteria of FIGS. 60 and The pointing/addressing scheme of FIGS. 60 and 64 is, of course, a much simpler pointing/addressing scheme than the pointing/addressing scheme of FIGS. 59 and 63, and does not require incorporating the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) thereinto the request pointer/address group QZ_{n} (60). Each of the pointers/addresses $PF_{n11}...PF_{nmr}$ (69), of FIGS. 60 and 64, may then be directed to point/address the corresponding response information groups $RG_{n1}...RG_{nm}$ (57) directly therefrom the request pointer/address group QY_{ns} (68), to obtain information therefrom the corresponding response information groups $RG_{n1}...RG_{nm}$ (57) and incorporation thereinto corresponding ones of the corresponding query information groups $GI_{n1}...GI_{nz}$ (63), as shown in FIGS. 60 and 64. In this case, the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) may be bypassed and/or eliminated completely, thus simplifying the process. Of course, then, in this case, the resulting sorting and grouping is not as sophisticated, and allows for such simplification. The above sorting criteria addressing schemes are meant only as typical examples of sorting criteria addressing schemes that may be used. Yet other sorting criteria addressing schemes and/or combinations thereof may be used. FIG. 94 shows typical ones of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62) having the typical ones of the queries QQ_{n1}...QQ_{nm} (53), the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54), and the corresponding ones of typical ones of the pointers/addresses PP_{n11}...PP_{nmr} (64) having the same ones of the queries QQ_{n1}...QQ_{nm} (53) grouped one with the other therein individual ones of the addressable query pointer/address groups QG_{n1}...QG_{nz} (62). More particularly, FIG. 94 shows the query pointer/address group QG_{n1} (62), the query pointer/address group QG_{n2} (62), and the query pointer/address group QG_{n3} (62). The query pointer/address group QG_{n1} (62) of FIG. 94 has the same ones of the queries QQ_{n1} (53), QQ_{n2} (53), QQ_{n3} (53), and QQ_{n9} (53), the ones of the server addresses AQ_{n1} (54), AQ_{n2} (54), AQ_{n3} (54), and AQ_{n9} (54), and the ones of the pointers/addresses PP_{n1r} (64), PP_{n2r} (64), PP_{n3r} (64), and PP_{n9r} (64) associated therewith. The query pointer/address group QG_{n2} (62) of FIG. 94 has the same ones of the queries QQ_{n4} (53) and QQ_{n7} (53), the ones of the server addresses AQ_{n4} (54) and AQ_{n7} (54) the ones of the pointer/addresses PP_{n4r} (64) and PP_{n7r} (64) associated 20 therewith. The query pointer/address group QG_{n3} (62) of FIG. 94 has the same ones of the query values QQ_{n5} (53), QQ_{n6} (53), and QQ_{n8} (53), the ones of the server addresses AQ_{n5} (54), AQ_{n6} (54), and AQ_{n8} (54) and the ones of the pointers/addresses PP_{n5r} (64), PP_{n6r} (64), and PP_{n8r} (64) associated therewith. The addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62), however, may alternatively and/or additionally be grouped, for example, by the server addresses $AQ_{n1}...AQ_{nm}$ (54) and have the corresponding query values $QQ_{n1}...QQ_{nm}$ (53) associated therewith. Ones of the same and/or substantially the same ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54), for example, having the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) associated therewith may be used as the grouping criteria. FIG. 95 shows another schematic representation of the typical ones of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) having the typical ones of the queries $QQ_{n1}...QQ_{nm}$ (53), the typical ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54), and the typical the ones of the pointer/addresses $PP_{n11}...PP_{nmr}$ (64) of FIG. 94 associated therewith. FIG. 96 is a generic schematic representation of the addressable query pointer/address groups $QG_{n1}...QG_{nz}$ (62) having the queries $QQ_{n1}...QQ_{nm}$ (53), the server addresses $AQ_{n1}...AQ_{nm}$ (54), and the pointers/addresses $PP_{n11}...PP_{nmr}$ (64) associated therewith. 10 15 20 Certain information therein the addressable response information groups $RG_{n1}...RG_{nm}$ (57) may be associated with the corresponding queries $QQ_{n1}...QQ_{nm}$ (53) and/or the corresponding server addresses $AQ_{n1}...AQ_{nm}$ (54) within the current request group QA_{nc} (50), and may optionally be used by the server PS (18) and/or the client C_n (16). Certain information therein the addressable response information groups $RG_{n1}...RG_{nm}$ (57) may also be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52). Such information may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52) may also be additionally and/or alternatively optionally resident within the server PS (18) and/or the client C_n (16). ## J. COMMUNICATING THE REQUESTS TO THE SERVERS The server PS (18) and/or the clients C₁...C_n (16) contact and open the connections OC₁₁...OC_{nm} (323) with ones of the servers S₁...S_z (20), according to the server designations S₁₁...S_{nm} (30) at the corresponding server addresses A₁₁...A_{nu} (265) at corresponding ports W₁₁...W_{nm} (343). The server PS (18) and/or the clients C₁...C_n (16) communicate the requests Q₁₁...Q_{nm} (29) of one or more of the same and/or different ones of the servers S₁...S_z (20), designated within the Group 327 and the Searches per Group 326 to make the requests Q₁₁...Q_{nc} (29) thereof, in accordance with the designation scheme corresponding to the corresponding ones of the server designations S₁₁...S_{nm} (30), corresponding to the requests Q₁₁...Q_{nm} (29). If the 15 Group 327 is not specified and/or the Searches per Group 326 are not specified by the users $U_1...U_n$ (12), default values may additionally and/or alternatively values be used. A particular one of the requests Q₁₁...Q_{nm} (29), hereinafter designated as the request Q_{nm} (29), corresponding to one request within the requests Q_{n1}...Q_{nm} (29) corresponding to the user U_n (12), is shown schematically in FIG. 97. Information 344 that may be used for formulating a typical particular one of the requests Q_{nm} (29) from the service and/or information request IQ_n (28), and parsing, processing, and/or formatting the optional instructions $VJ_{n1}...VJ_{nk}$ (52), and opening the connection OC_{nm} (323) is shown in FIGS. 86-89. Now, in more detail, the request Q_{nm} (29) may have a corresponding request line L_{nm} (345), corresponding optional request header fields $JH_{n1}...JH_{ns}$ (346), and a corresponding optional entity body EH_{nm} (347). The request line L_{nm} (345) may have a corresponding method M_{nm} (348), a corresponding target resource P_{nm} (349), which may have information associated with the corresponding query QQ_{nm} (53), and corresponding protocol B_{nm} (350). The user U_n (12), the server PS (18) and/or the client C_n (16) may optionally specify the port W_{nm} (343) to communicate the request Q_{nm} (29) therethrough, and/or the method M_{nm} (348), and/or the protocol B_{nm} (350). The port W_{nm} (343), and/or the method M_{nm} (348), and/or the protocol B_{nm} (350) may optionally be resident within the server PS (18) and/or the client C_n (16). Default values may also be used for the port W_{nm} (343) and/or the protocol B_{nm} (350). Typically, information within or from any and/or all or a portion of the queries QQ_{nm} (53) may be incorporated into the corresponding ones of the target resources P₁₁...P_{nm} (349) and/or the corresponding ones of the optional entity bodies EH₁₁...EH_{nm} (347), and may in certain instances depend upon the method M₁₁...M_{nm} (348). However, information that may be used for opening the connections $OC_{11}...OC_{nm}$ (323) and formulating the requests $Q_{11}...Q_{nm}$ (29) from the service and/or information requests $IQ_1...IQ_n$ (28) may be derived from any and/or all or a portion of the user client requests $QC_{11}...QC_{nu}$ (280) accessible to the users $U_1...U_n$ (12) and/or the hidden client requests $HC_{n1}...HC_{nh}$ (281) hidden from the users $U_1...U_n$ (12), and/or a combination thereof, and/or may also have information and/or instructions to be utilized by the server PS (18) and/or ones of the clients $C_1...C_n$ (16). Alternatively information from the alternate request links $QL_{11}...QL_{na}$ (203), and/or the server request links $UL_{11}...UL_{ns}$ (204), and/or the additional request links $SL_{11}...SL_{nw}$ (71), and/or a combination thereof, may be used by the server PS (18) and/or ones of the clients $C_{1}...C_{n}$ (16) to formulate the requests $Q_{11}...Q_{nm}$ (29). There may be **m** different or same ones of the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) at any time, and $n \times m$ different and/or same ones of the requests $Q_{11}...Q_{nm}$ (29) of the same and/or different ones of the servers $S_1...S_z$ (20) present on the network 24 at any time. The queries \mathbf{QQ}_{nn} ... \mathbf{QQ}_{nm} (53) may each be different, one from the other, or the same. The queries \mathbf{QS}_{n1} ... \mathbf{QS}_{nu} (288) accessible to the user \mathbf{U}_n (12) may each be different, one from the other, or the same. The hidden queries \mathbf{QH}_{n1} ... \mathbf{QH}_{nh} (290) may each be different, one from the other, or the same. The number of the queries \mathbf{QQ}_{n1} ... \mathbf{QQ}_{nm} (53) "m" may be substantially the sum of the queries \mathbf{QS}_{n1} ... \mathbf{QS}_{nu} (288) accessible to the user \mathbf{U}_n (12) and the hidden queries \mathbf{QH}_{n1} ... \mathbf{QH}_{nh} (290), i.e., $\mathbf{m} = \mathbf{u} + \mathbf{h}$. 10 There may be m different or same ones of the queries
$QQ_{n1}...QQ_{nm}$ (53) corresponding to the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) at any time, and $n \times m$ different and/or same ones of the queries $QQ_{11}...QQ_{nm}$ (53) corresponding to the requests $Q_{11}...Q_{nm}$ (29) of the same and/or different ones of the servers $S_1...S_z$ (20) present on the network 24 at any time. 15 The server addresses $AQ_{n1}...AQ_{nm}$ (54) may each be different, one from the other, or the same. The server addresses $A_{n1}...A_{nu}$ (265) accessible to the user U_n (12) may each be different, one from the other, or the same. The hidden server addresses $AH_{n1}...AH_{nh}$ (291) may each be different, one from the other, or the same. The number of the server addresses $AQ_{n1}...AQ_{nm}$ (54) "m" may be substantially the sum of the server addresses $A_{n1}...A_{nu}$ (265) accessible to the user U_n (12) and the hidden server addresses $AH_{n1}...AH_{nh}$ (291), i.e., m = u + h. There may be m different or same ones of the server addresses $AQ_{n1}...AQ_{nm}$ (54) corresponding to the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) at any time, and $n \times m$ different and/or same ones of the server addresses $AQ_{11}...AQ_{nm}$ (54) corresponding to the requests $Q_{11}...Q_{nm}$ (29) of the same and/or different ones of the servers $S_1...S_z$ (20) present on the network 24 at any time. The optional instructions $VJ_{n1}...VJ_{nk}$ (52) may each be different, one from the other, or the same. The optional instructions $V_{n1}...V_{nv}$ (289) accessible to the user U_n (12) may each be different, one from the other, or the same. The optional hidden instructions $H_{n1}...H_{ni}$ (292) may each be different, one from the other, or the same. The number of the optional instructions $VJ_{n1}...VJ_{nk}$ (52) "k" may be substantially the sum of the optional instructions $V_{n1}...V_{nv}$ (289) accessible to the user U_n (12) and The optional hidden instructions $H_{n1}...H_{ni}$ (292), i.e., k = v + i. 15 10 There may be $\mathbf{m} \times \mathbf{k}$ different or same ones of the optional instructions $VJ_{n1}...VJ_{nk}$ (52) corresponding to the requests $Q_{n1}...Q_{nm}$ (29) from the client C_n (16) at any time, and $\mathbf{n} \times \mathbf{m} \times \mathbf{k}$ different and/or same ones of the optional instructions $VJ_{11}...VJ_{nk}$ (52) corresponding to the requests $Q_{11}...Q_{nm}$ (29) of the same and/or different ones of the servers $S_1...S_z$ (20) present on the network 24 at any time. The requests $Q_{11}...Q_{nm}$ (29) of the servers $S_1...S_z$ (20) may be made at the same and/or different times. One or more of the requests $Q_{11}...Q_{nm}$ (29) may be made of 15 each of the servers $S_1...S_z$ (20) by the same/and or different ones of the clients $C_1...C_n$ (16) and/or the server PS (18) at the same and/or different times. The server PS (18) and/or the client C_n (16) may make one or more of the requests $Q_{n1}...Q_{nm}$ (29) of the same and/or different ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme corresponding to the corresponding ones of the server designations $S_{n1}...S_{nm}$ (30), in order to fulfill the services and/or information requirements of the user U_n (12). ## K. REPLIES FROM THE SERVERS Each of the servers $S_1...S_z$ (20) communicated therewith replies to the server PS (18) and/or the clients $C_1...C_n$ (16), in accordance with the designation scheme which designates the servers $S_1...S_z$ (20) being communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30), and communicates the corresponding responses $R_{11}...R_{nm}$ (32), associated therewith the requests $Q_{11}...Q_{nm}$ (29), to the server PS (18) and/or the clients $C_1...C_n$ (16) making the requests $Q_{11}...Q_{nm}$ (29). Now, ones of the servers S₁...S_z (20) having been contacted by the server PS (18) and/or the clients C₁...C_n (16) and the connections opened OC₁₁...OC_{nm} (323) therewith, corresponding to the requests Q₁₁...Q_{nm} (29), according to the server designations S₁₁...S_{nm} (30) at the corresponding server addresses A₁₁...A_{nu} (265) at the corresponding ports $W_{11}...W_{nm}$ (343) reply to the server PS (18) and/or the contacting clients $C_1...C_n$ (16) with the corresponding responses $R_{11}...R_{nm}$ (32). A particular one of the responses R_{n1}...R_{nm} (32), hereinafter designated as the response R_{nm} (32), corresponding to one response within the responses R_{n1}...R_{nm} (32), the response R_{nm} (32) corresponding to the request Q_{nm} (29), and the responses R_{n1}...R_{nm} (32) corresponding to the requests Q_{n1}...Q_{nm} (29), is shown schematically in FIG. 98. Now, the response R_{nm} (32) may have a corresponding response header line LR_{nm} (351), corresponding optional response header fields JR_{n1}...JR_{nt} (352), and a corresponding optional entity body RH_{nm} (353). The optional entity body RH_{nm} (353) typically has links, and/or descriptions, and/or other information. The request header line LR_{nm} (351) may have a corresponding protocol BR_{nm} (354), a corresponding status SR_{nm} (355), and a corresponding status explanation SE_{nm} (356). Ones of the connections may be closed after ones of the responses $R_{11}...R_{nm}$ (32) are communicated to the PS (18) and/or to the requesting corresponding ones of the clients $C_{1}...C_{n}$ (16). 20 Again, the Timeout per Search Engine 329 is considered to be substantially the maximum time for the server PS (18) and/or the particular client C_n (16) making the requests $Q_{n1}...Q_{nm}$ (29) to wait for each of the responses $R_{n1}...R_{nm}$ (32) therefrom certain ones of the servers $S_1...S_z$ (20), in accordance with the designation scheme which designates the certain ones of the servers $S_1...S_z$ (20) to be communicated with corresponding to the requests $Q_{11}...Q_{nm}$ (29) as the corresponding server designations $S_{11}...S_{nm}$ (30). 5 20 If certain ones of the servers $S_1...S_z$ (20) do not open connections $OC_{11}...OC_{nm}$ (323) therewith and/or communicate the responses $R_{11}...R_{nm}$ (32) thereto the server PS (18) and/or the clients $C_1...C_n$ (16), and/or if certain other ones of the servers $S_1...S_z$ (20) do not communicate the responses $R_{11}...R_{nm}$ (32) thereto the server PS (18) and/or the clients $C_1...C_n$ (16) once connections therewith may have been opened $OC_{11}...OC_{nm}$ (323), corresponding to the requests $Q_{11}...Q_{nm}$ (29), according to the server designations $S_{11}...S_{nm}$ (30), within the timeout set by the Timeout per Search Engine 329, the certain ones of requests $Q_{n1}...Q_{nm}$ (29) of such nonresponding ones of the servers $S_1...S_z$ (20) may then be cancelled by the server PS (18) and/or the clients $C_1...C_n$ (16). Information about such ones of the nonresponding ones of the servers $S_1...S_z$ (20) may then be communicated therefrom the server PS (18) and/or the clients $C_1...C_n$ (16) therethrough the corresponding ones of the user interfaces $I_1...I_n$ (14) thereto the corresponding ones of the users $U_1...U_n$ (12), according to the server designations $S_{11}...S_{nm}$ (30) corresponding to the certain ones of requests $Q_{n1}...Q_{nm}$ (29) of such nonresponding ones of the servers $S_1...S_z$ (20). In certain instances, the server PS (18) and/or certain ones of the clients $C_1...C_n$ (16) may contact certain ones of the servers $S_1...S_z$ (20) and open the connections 15 $OC_{11}...OC_{nm}$ (323) therewith, corresponding to the requests $Q_{11}...Q_{nm}$ (29), according to the server designations $S_{11}...S_{nm}$ (30), one or more additional times, in order to satisfy the needs of the users $U_{1}...U_{n}$ (12), and/or certain requirements within the optional instructions $VJ_{n1}...VJ_{nk}$ (52), such as, for example, the URL's per Search Engine 330, and/or as a result of certain information communicated to the PS (18) and/or certain ones of the clients $C_{1}...C_{n}$ (16) within the responses $R_{11}...R_{nm}$ (32). If, for example, less links, and/or descriptions, and/or prices/values, and/or images are returned within certain ones of the responses $R_{11}...R_{nm}$ (32), which may be considered to be first ones of the responses $R_{11}...R_{nm}$ (32), than are requested by certain ones of the users $U_1...U_n$ (12) within certain ones of the URL's per Search Engine 330, the server PS (18) and/or certain ones of the clients $C_1...C_n$ (16) may contact certain ones of the servers $S_1...S_2$ (20), open the connections $OC_{11}...OC_{nm}$ (323) therewith, and make additional ones of the requests $Q_{11}...Q_{nm}$ (29), according to the server designations $S_{11}...S_{nm}$ (30), one or more additional times, in order to satisfy the needs of the users $U_1...U_n$ (12). The links, and/or the descriptions, and/or the images returned within and/or parsed therefrom additional ones of the responses $R_{11}...R_{nm}$ (32) thereto the additional ones of the links, and/or the corresponding ones of the descriptions, and/or the corresponding ones of the descriptions, and/or the corresponding ones of the images returned within and parsed therefrom the first ones of the responses $R_{11}...R_{nm}$ (32) The servers S₁...S_z (20) communicate the responses R₁₁...R_{nm} (32) to the requests Q₁₁...Q_{nm} (29) thereto the server PS (18) and/or specific ones of the clients C₁...C_n (16), in accordance with the designation scheme corresponding to the corresponding ones of the server designations S₁₁...S_{nm} (30). Alternatively, and/or additionally, in certain instances, certain ones of the servers S₁...S_z (20), corresponding to certain ones of the server designations S₁₁...S_{nm} (30), may request additional information of the server PS (18) and/or specific ones of the clients C₁...C_n (16), prior to communicating the responses R₁₁...R_{nm} (32)
to the requests Q₁₁...Q_{nm} (29). Upon receiving such additional information from the server PS (18) and/or the specific ones of the clients C₁...C_n (16), the certain ones of the servers S₁...S_z (20), corresponding to the certain ones of the server designations S₁₁...S_{nm} (30), may then communicate the responses R₁₁...R_{nm} (32) to the requests Q₁₁...Q_{nm} (29) thereto the server PS (18) and/or the specific ones of the clients C₁...C_n (16). In such certain instances, in more detail, the server PS (18) and/or certain ones of the clients C₁...C_n (16) may contact certain ones of the servers S₁...S_z (20) and open the connections OC₁₁...OC_{nm} (323) therewith, corresponding to the requests Q₁₁...Q_{nm} (29), according to the server designations S₁₁...S_{nm} (30), one or more additional times, as a result of certain information communicated to the PS (18) and/or certain ones of the clients C₁...C_n (16) within the responses R₁₁...R_{nm} (32), such as, for example, information obtained from and/or parsed from the responses R₁₁...R_{nm} (32). This information is typically within certain ones of the response header fields JR₁₁...JR_{nt} (352), but may also be within the corresponding optional entity bodies RH₁₁...RH_{nm} (353) and/or the corresponding response header lines LR₁₁...LR_{nm} (351). Now, in such certain instances, the certain ones of the servers $S_1...S_z$ (20) request the information from the server PS (18) and/or certain ones of the clients $C_1...C_n$ (16), prior to communicating the responses $R_{11}...R_{nm}$ (32) thereto the server PS (18) and/or the certain ones of the clients $C_1...C_n$ (16). The server PS (18) and/or the certain ones of the clients $C_1...C_n$ (16) being requested such information may then respond to the requests for such information, by communicating the requested information to the ones of the requesting servers $S_1...S_z$ (20). Upon receipt of the requested information at the ones of the requesting servers $S_1...S_z$ (20), the requesting ones of the servers $S_1...S_z$ (20) reply thereto the server PS (18) and/or the certain ones of the clients $C_1...C_n$ (16) with the responses $R_{11}...R_{nm}$ (32). Such requests for information from the servers $S_1...S_z$ (20) may occur not at all, and/or one or more times. 15 shown in FIG. 99. ## L. Parsing, Processing, Formatting, Sorting, Grouping, and Organizing Responses into Service and/or Information Responses A particular one of the optional entity bodies RH₁₁...RH_{nm} (353), designated as the entity body RH_{nm} (353), of a particular one of the responses R₁₁...R_{nm} (32), designated as the response R_{nm} (32), may have optional response individual information groups LS_{nm1}...LS_{nmr} (360) and optional information LI_{nm} (361), as 15 20 Each of the optional response individual information groups LS_{nm1}...LS_{nmr} (360) may have and/or be parsed into corresponding optional response links LK_{nm1}...LK_{nmr} (362), and/or corresponding optional response descriptions DK_{nm1}...DK_{nmr} (363), and/or corresponding optional response prices/values PK_{nm1}...PK_{nmr} (364), and/or corresponding optional response images IK_{nm1}...IK_{nmr} (365), as shown in FIG. 99. The optional response links LK_{nm1}...LK_{nmr} (362), the corresponding optional response descriptions DK_{nm1}...DK_{nmr} (363), the corresponding optional response prices/values PK_{nm1}...PK_{nmr} (364), and the corresponding optional response images IK_{nm1}...IK_{nmr} (365), corresponding to the optional response individual information groups LS_{nm1}...LS_{nmr} (360) are typically associated correspondingly one with the other. The optional response link LK_{nm1} (362), the corresponding optional response description DK_{nm1} (363), the corresponding optional response price/value PK_{nm1} (364), and the corresponding optional response image IK_{nm1} (365), corresponding to the optional response individual information group LS_{nm1} (360) are typically associated correspondingly one with the other. The optional response link LK_{nm2} (362), the corresponding optional response description DK_{nm2} (363), the corresponding optional response price/value PK_{nm2} (364), and the corresponding optional response image IK_{nm2} (365), corresponding to the optional response individual information group LS_{nm2} (360) are typically associated correspondingly one with the other, and so on. The optional response link LK_{nmr} (362), the corresponding optional discarded. response description DK_{nmr} (363), the corresponding optional response price/value PK_{nmr} (364), and the corresponding optional response image IK_{nmr} (365), corresponding to the optional response individual information group LS_{nmr} (360) are, thus, typically associated correspondingly one with the other. The optional information LI_{nm} (361) may have additional links, and/or additional descriptions, and/or additional images, and/or prices/values, and/or other information, and/or services, and/or media, all and/or a portion of which may be used and/or discarded by the server PS (18) and/or the clients $C_1...C_n$ (16). The optional information LI_{nm} (361) is typically filtered from the optional entity body RH_{nm} (353) and discarded, and/or other unwanted information and/or media is also typically filtered from the response R_{nm} (32), and/or the optional entity body RH_{nm} (353), and The optional response individual information groups LS_{nm1}...LS_{nmr} (360) are typically parsed and/or processed and/or formatted therefrom the entity body RH_{nm} (353) of the response R_{nm} (32), and/or parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto the addressable individual information groups LG_{nm1}...LG_{nmr} (80) of the addressable response information group RG_{nm} (57), correspondingly associated therewith the response R_{nm} (32), as shown in FIGS. 100 and 101. FIG. 100 shows the addressable response information group RG_{nm} (57) having the addressable individual information groups LG_{nm1}...LG_{nmr} (80) parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto the addressable response information group RG_{nm} (57) therefrom the optional entity body RH_{nm} (353) of FIG. 99. FIG. 101 shows a particular one of the optional response individual information groups LS_{nm1}...LS_{nmr} (360), designated as the optional response individual information group LS_{nmr} (360), parsed, and/or processed, and/or formatted, and/or organized, and/or grouped thereinto a particular one of the addressable individual information groups LG_{nm1}...LG_{nmr} (80), designated as the addressable individual information group LG_{nmr} (80). The addressable individual information groups LG_{nm1}...LG_{nmr} (80) are typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other, as the addressable individual information groups LG_{nm1}...LG_{nmr} (80) are incorporated thereinto the addressable response information group s RG_{n1}...RG_{nm} (57) therefrom the responses R_{n1}...R_{nm} (32). Alternatively and/or additionally the addressable individual information groups LG_{nm1}...LG_{nmr} (80) may be incorporated thereinto the addressable response information group s RG_{n1}...RG_{nm} (57) therefrom the responses R_{n1}...R_{nm} (32) in an as-is condition and/or in raw form. The optional response links LK_{nm1}...LK_{nmr} (362) are typically parsed, and/or processed, and/or formatted thereinto the corresponding optional links LD_{nm1}...LD_{nmr} (82). The optional response descriptions DK_{nm1}...DK_{nmr} (363) are typically parsed, and/or processed, and/or formatted thereinto the optional descriptions DD_{nm1}...DD_{nmr} (83). The optional response prices/values PK_{nm1}...PK_{nmr} (364) are typically parsed, and/or processed, and/or formatted thereinto the corresponding optional prices/values PD_{nm1}...PD_{nmr} (84). The optional response images IK_{nm1}...IK_{nmr} (365) are typically parsed, and/or processed, and/or formatted thereinto the corresponding optional images ID_{nm1}...ID_{nmr} (85). Each of the optional links LD_{m1}...LD_{mr} (82) are also typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other. Alternatively and/or additionally the optional links LD_{nm1}...LD_{nmr} (82) may be retained in an as-is condition and/or in raw form. Each of the optional descriptions $DD_{nm1}...DD_{nmr}$ (83) are also typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other. Alternatively and/or additionally the optional links optional descriptions $DD_{nm1}...DD_{nmr}$ (83) may be retained in an as-is condition and/or in raw form. Each of the optional prices/values PD_{nm1}...PD_{nmr} (84) are also typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other. Alternatively and/or additionally the optional prices/values PD_{nm1}...PD_{nmr} (84) may be retained in an as-is condition and/or in raw form. Each of the optional images ID_{nm1}...ID_{nmr} (85) are also typically parsed, and/or processed, and/or formatted for consistency of presentation and/or appearance one with the other. Alternatively and/or additionally the optional images ID_{nm1}...ID_{nmr} (85) may be retained in an as-is condition and/or in raw form. The optional links LD_{nm1}...LD_{nmr} (82), and/or the optional descriptions DD_{nm1}...DD_{nmr} (83), and/or the optional prices/values PD_{nm1}...PD_{nmr} (84), and/or the optional images ID_{nm1}...ID_{nmr} (85), correspondingly associated therewith the response R_{nm} (32), may additionally and/or alternatively be parsed individually and/or separately, and incorporated thereinto the addressable response information group RG_{nm} (57) therefrom the optional entity body
RH_{nm} (353), as shown in FIG. 102. The response header line LR_{nm} (351) and/or the optional response header fields $JR_{n1}...JR_{nt}$ (352) may also have information, which the server PS (18) and/or the clients $C_1...C_n$ (16) may use. The optional information Ll_{nm} (361) and/or certain information and/or media within the response R_{nm} (32), particularly within the optional entity body RH_{nm} (353), may be optionally used by the server PS (18) and/or the clients C₁...C_n (16), and/or optionally incorporated thereinto the addressable response information group RG_{nm} (57). Each of the optional response individual information groups LS_{nm1}...LS_{nmr} (360) therefrom each of the responses R_{n1}...R_{nm} (32) may be compared one with the other, and duplicate ones of the of the optional response individual information groups LS_{nm1}...LS_{nmr} (360) may be discarded. Alternatively and/or additionally, each of the optional addressable individual information groups LG_{n11}...LG_{nmr} (80) therefrom each of the addressable response information group s RG_{n1}...RG_{nm} (57) may be compared one with the other, and duplicate ones of the optional addressable individual information groups LG_{n11}...LG_{nmr} (80) may be discarded. Each of the optional response individual information groups LS₁₁₁...LS_{nmr} (360) and/or portions thereof therefrom the entity bodies RH₁₁...RH_{nm} (353) of the responses R₁₁...R_{nm} (32) may also be optionally compared one with the other, and duplicate ones of the of the optional response individual information groups LS₁₁₁...LS_{nmr} (360) may be optionally discarded. 20 Alternatively and/or additionally, each of the optional links $LK_{n11}...LK_{nmr}$ (362), and/or the optional descriptions $DK_{n11}...DK_{nmr}$ (363), and/or the optional prices/values $PD_{nm1}...PD_{nmr}$ (365), and/or the optional images $IK_{n11}...IK_{nmr}$ (365), therefrom each of the responses R_{n1}...R_{nm} (32) may be compared one with the other of like kind, and duplicate ones of the optional links LK_{n11}...LK_{nmr} (362), and/or the optional descriptions DK_{n11}...DK_{nmr} (363), and/or the optional prices/values PK_{nm1}...PK_{nmr} (364), and/or the optional images IK_{n11}...IK_{nmr} (364), and/or a combination thereof may be discarded. Alternatively and/or additionally, each of the optional links LD_{n11}...LD_{nmr} (82), and/or the optional descriptions DD_{n11}...DD_{nmr} (83), and/or the optional prices/values PD_{nm1}...PD_{nmr} (84), and/or the optional images ID_{n11}...ID_{nmr} (85) therefrom each of the addressable response information group s RG_{n1}...RG_{nm} (57) may be compared one with the other of like kind, and duplicate ones of the optional links LD_{n11}...LD_{nmr} (82), and/or the optional descriptions DD_{n11}...DD_{nmr} (83), and/or the optional prices/values PD_{nm1}...PD_{nmr} (85), and/or the optional images ID_{n11}...ID_{nmr} (85), and/or a combination thereof may be discarded. 15 20 The optional links LK_{n11}...LK_{nmr} (362) are typically compared one with the other, and duplicate ones of the corresponding optional links LK_{n11}...LK_{nmr} (362), and/or the corresponding optional descriptions DK_{n11}...DK_{nmr} (363), and/or the corresponding optional images IK_{n11}...IK_{nmr} (364), and/or the corresponding optional prices/values PK_{nm1}...PK_{nmr} (365) are discarded, leaving only one of any ones of the duplicate optional links LK_{n11}...LK_{nmr} (362) and/or the corresponding optional descriptions DK_{n11}...DK_{nmr} (363), and/or the corresponding optional images IK_{n11}...IK_{nmr} (364), and/or the optional prices/values PK_{nm1}...PK_{nmr} (365) remaining. The optional prices/values $PD_{nm1}...PD_{nmr}$ (84) and/or the corresponding optional links $LD_{n11}...LD_{nmr}$ (82) and/or the corresponding optional descriptions $DD_{n11}...DD_{nmr}$ (83), and/or the corresponding optional images $ID_{n11}...ID_{nmr}$ (85) may be sorted with respect to the optional prices/values $PD_{nm1}...PD_{nmr}$ (84), in accordance with sorting criteria in the optional instructions $VJ_{n1}...VJ_{nk}$ (52) and/or in accordance with default criteria resident within the server PS (18) and/or the client C_n (16). The optional links LD_{n11}...LD_{nmr} (82), and/or the corresponding optional descriptions DD_{n11}...DD_{nmr} (83), and/or the corresponding optional prices/values PD_{nm1}...PD_{nmr} (84), and/or the corresponding optional images ID_{n11}...ID_{nmr} (85) may be sorted, for example, in ascending order with respect to the optional prices/values PD_{nm1}...PD_{nmr} (84) having the lowest price therein being presented to the user U_n (12) at the user interface I_n (14) first and the highest price therein last. 15 20 Alternatively and/or additionally, the optional links LD_{n11}...LD_{nmr} (82), and/or the corresponding optional descriptions DD_{n11}...DD_{nmr} (83), and/or the corresponding optional prices/values PD_{nm1}...PD_{nmr} (84), and/or the corresponding optional images ID_{n11}...ID_{nmr} (85) may be sorted, for example, in ascending or descending alphabetical order with respect to the optional links LD_{n11}...LD_{nmr} (82) and/or the corresponding optional descriptions DD_{n11}...DD_{nmr} (83) being presented to the user U_n (12) at the user interface I_n (14). Other sorting criteria may be used for the optional links $LD_{n11}...LD_{nmr}$ (82), and/or the optional descriptions $DD_{n11}...DD_{nmr}$ (83), and/or the optional prices/values $PD_{nm1}...PD_{nmr}$ (84), and/or the optional images $ID_{n11}...ID_{nmr}$ (85), and may depend upon needs of the user U_n (12). The sorting criteria may be determined by the user U_n (12). Sorting criteria gives the user U_n (12) the ability to formulate how information is presented to the user U_n (12) at the user U_n (12), and may be incorporated thereinto the optional instructions $VJ_{n1}...VJ_{nk}$ (52), which may be entered thereinto the user interface I_n (14) therethrough the user input UI_n (25) by the user U_n (12). The sorting criteria may additionally and/or alternatively be resident within the server PS (18) and/or the client C_n (16). Now again, the labelled individual information group LL_{nzu} (86) associated therewith the addressable query information group Gl_{nz} (63) has the optional group identifier GL_{nc} (87), the optional query link identifier LN_{ncu} (88), the optional resource location identifier SU_{nw} (89), the optional server and/or query identifier SI_{nm} (90), and/or the optional server link identifier LX_{nmr} (91) appended thereto the addressable individual information group LG_{nmr} (80), as shown in FIG. 68. 20 10 15 FIGS. 103 and 104 show typical ones of the addressable query information group Gl_{nz} (63), based upon certain sorting and/or grouping criteria, having the labelled individual information groups $LL_{nz1}...LL_{nzu}$ (86), the optional database labelled individual information groups RL_{nz1}...RL_{nzx} (92), the optional query description QT_{nz} (93), the optional server descriptions and/or links ST_{nz1}...ST_{nzf} (94), and the optional advertisements and/or links LT_{nz1}...LT_{nzt} (95) incorporated thereinto certain typical ones of the typical service and/or information response forms IS_n (39) of FIGS. 27-52. The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, the server PS (18) and/or the clients $C_1...C_n$ (16), then, are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers $S_1...S_z$ (20), and/or the optional servers $SO_1...SO_p$ (22), and/or the clients $C_1...C_n$ (16), having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto the user responses $UR_1...UR_n$ (37) for delivery to the user interfaces $I_1...I_n$ (14) and use by the users $U_1...U_n$ (12). The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, the server PS (18) and/or the clients C₁...C_n (16), then, are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of each of the optional response individual information groups LS₁₁₁...LS_{nmr} (360), and/or the optional response links LK₁₁₁...LK_{nmr} (362), and/or the optional response descriptions DK₁₁₁...DK_{nmr} (363), and/or the optional 15 20 response prices/values $PK_{111}...PK_{nmr}$ (364), and/or the optional response images $IK_{nm1}...IK_{nmr}$ (365) therefrom the entity bodies $RH_{11}...RH_{nm}$ (353) of the responses $R_{11}...R_{nm}$ (32), having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto the user responses $UR_{1}...UR_{n}$ (37) for delivery to the user interfaces $I_{1}...I_{n}$ (14) and use by the users $U_{1}...U_{n}$ (12). ## M. Additional Features and/or Other Considerations The present invention is directed to a client-server multitasking system and process capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries of the same and/or different ones of the servers, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly, and communicating service and/or information responses to the requestors and/or users substantially
simultaneously and on-the-fly. The client-server multitasking system and process is capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and be capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. 15 The client-server multitasking system and process is capable of retrieving substantially multiple simultaneous services and/or information having the same and/or different criteria from the same and/or different servers, sorting, grouping, and/or organizing the responses from the servers and/or the clients into information and/or services responses, and communicating the service and/or information responses to the requestors and/or users substantially simultaneously. The requestors and/or the users may make substantially simultaneous service and/or information requests of servers and clients, using the same and/or different queries, and/or the same and/or different instructions. The same and/or different uniform resource locators, target resources, and/or paths may be used. The client-server multitasking system and process is capable of making multiple substantially simultaneous same and/or different requests of same and/or different servers, organizing responses from the servers into service and/or information responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The client-server multitasking system and process is also capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors, and/or the users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system is capable of use in a variety of applications, and is capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system and process is also be capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof, be capable of being searched and/or queried, querying sites referenced therein the client-server multitasking system search engine and/or database, and updating information and/or services stored therein. The client-server multitasking system and process are capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. A requestor and/or user is capable of making substantially multiple simultaneous same and/or different requests of same and/or different servers. The client servermultitasking system and process is capable of organizing responses from the servers into service and/or information responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously, and on-the-fly. 20 10 15 The requestors and/or users are capable of making substantially simultaneous service and/or information requests of the same and/or different ones of servers and/or clients, using the same and/or different queries, and/or the same and/or different instructions. The client-server multitasking system and process is capable of retrieving substantially multiple simultaneous services and/or information having the same and/or different criteria from the same and/or different servers, sorting, grouping, and/or organizing the responses from the servers and/or the clients into information and/or services responses, and communicating the service and/or information responses to the requestors and/or the users substantially simultaneously. The same and/or different ones of uniform resource locators, target resources, and/or paths may be used. The requestors and/or users are capable of making multiple simultaneous searches. The searches may have at least one or a plurality of same or different queries of the same and/or different servers and/or clients. The responses from the servers and/or the clients may be of being organized into the service and/or information response in a variety of formats. The responses may be sorted within the service and/or information response, such as, for example, by category, query, group, page, order of importance, ascending and/or descending order, alphabetically and/or numerically, or other characteristics, as determined by the requestor, and/or the user, and/or the client-server multitasking system, and/or the responses may be combined within the service and/or information response, such as, for example, interleaving the responses one with the other, such as, for example, by order of relevance or other parameters. The responses may also be capable of being grouped by search criteria, server, order of importance, or by numerical factors such as value, price, or other numerical quantifier. For example, the responses may be presentable, for example, in ascending or descending order in interleaved format, such as top ones, twos, threes, and so on, or presentable separately 15 to the requestor and/or the user. The order may be order of importance or relevance related, or, for example, numerically valued, such as price or stock market value. The client-server multitasking system and process is be capable of information and/or service retrieval from the same and/or different ones of the servers substantially simultaneously and on-the-fly, using the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process is capable of substantially multiple simultaneous searching, using the same and/or different ones of queries of the same and/or different ones of the clients and/or servers, which may be search engines, and/or sites, and/or servers, and/or locations on the network, and additionally and/or alternatively building a client-server multitasking search engine and/or database. The client-server multitasking search engine and/or database is capable of storing the information and/or services retrieved therefrom the search engines, and/or sites, and/or servers, and/or locations being queried on the network therein, and building the client-server search engine and/or database. The client-server multitasking search engine should is also capable of being queried either directly and/or in combination therewith the substantially simultaneous searching, using the same and/or different queries of the same and/or different search engines, sites, servers, and/or databases. The client-server multitasking search engine and/or database should is also capable of updating information and/or services stored therein by querying sites, servers, search engines, and/or databases containing information and/or services referenced in client-server multitasking search engine and/or database. The client-server multitasking system and process is also capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks. The client-server multitasking system and process are capable of substantially simultaneous searching of the same and/or different ones of search engines and/or sites on the network substantially on-the-fly, with the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process are also capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors and/or the users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system and process are also capable drilling down and/or up to different levels within the search engines, sites, and/or servers being queried. 20 5 The client-server multitasking system and process are capable of providing manual and/or timed updates. Such timed updates allow for motion related presentation to the requestor and/or the user. The client-server multitasking system and process are capable of incorporating information and/or services thereinto a variety of user interfaces at different locations therein the user interfaces, grouping, and/or organizing the information and/or services, and optionally eliminating duplicate information and/or services. The client-server multitasking system and process are capable of incorporating links, graphics, video, text, and audio, and/or combinations thereof, and selective advertising, according to selectable search, query, sorting, and/or grouping criteria, and/or combinations thereof thereinto the information and/or services to be delivered thereto the user interfaces. The requestor and/or the user may place orders, such as purchases, and/or other types of orders, payments, confirmations thereof, and/or combinations thereof, either directly and/or therethrough servers and/or sites thereon the network. The client-server multitasking system is capable of use in a variety of applications, and is capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system is capable of, for example, determining best query results, with respect to a plurality of search engine results; purchasing and/or price comparisons, viewing and/or reviewing prices/values
and trends for different sites, determining lowest costs and lowest cost analyses for wholesale and retail purposes; product availability, e.g., airline tickets, pricing, and ticket availability, from different airlines to the same and/or different locations; purchasing of commodities and/or stocks form the 15 same and/or different sites with updates every few seconds and/or minutes; obtaining prices and/or values in different stock markets substantially simultaneously; and searching for jobs on the same and/or different job sites, using the same and/or different job criteria, for example, on a daily basis, the job sites having changing job availability; and/or a combination thereof, all substantially simultaneously. The client-server multitasking system is capable of presenting information and/or services for review and/or updating from the same and/or different ones of sites, servers, and/or applications substantially simultaneously, and trend analysis thereof, using a variety of sorting, grouping and/or organizing criteria, according to the needs of the requestor, and/or the user, and/or resident within the client-server multitasking system. The client server-multitasking system and process are capable of service and/or information retrieval from at least one server, organization, communication, and presentation of such services and/or information to at least one requestor and/or user, and/or optional storage, and/or retrieval of such services and/or information from the optional storage. The client-server multitasking system and process are capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof. The client-server multitasking system search engine and/or database having stored information and/or services therein are also searchable, are capable of full text searches thereof, and are searchable by the servers and/or the clients on the network, either separately and/or in combination therewith the substantially simultaneous multiple same and/or different searches and/or queries of the same and/or different servers on the network. Information therein the client-server multitasking system search engine and/or database are also searchable and/or retrievable, and are capable of being incorporated therein the service and/or information responses delivered thereto the user interfaces, according to search criteria, selectively and/or automatically, by the requestor and/or the user. The client-server multitasking system search engine and/or database are capable of spidering, and/or roboting, and/or querying sites, services and/or information to be stored therein and/or stored therein the client-server multitasking system search engine and/or database, and updating the services and/or information to be stored and/or stored therein the client-server multitasking system search engine and/or database. The client-server multitasking system and process, then, are capable of information and/or service retrieval from the same and/or different ones of servers substantially simultaneously and on-the-fly, using the same and/or different ones of queries of the same and/or different ones of the servers, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly, and communicating service and/or information responses to the requestors and/or users substantially simultaneously and on-the-fly. The client-server multitasking system and process are capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and are capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. The client-server multitasking system and process are capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, 15 in accordance with instructions from the requestors, and/or users, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system are capable of use in a variety of applications, and capable of information comparison and/or trend analysis of information from the same and/or different sources substantially simultaneously. The client-server multitasking system and process are capable of building a client-server multitasking system search engine and/or database therefrom responses returned from the servers, search engines, and/or sites being queried and/or searched, and/or having requests made thereof, is capable of being searched and/or queried, querying sites referenced therein the client-server multitasking system search engine and/or database, and updating information and/or services stored therein. The client-server multitasking system and process are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers and/or clients having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto user responses for delivery to and use by the requestors and/or users. 20 The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, the server PS (18) and/or the clients $C_1...C_n$ (16), then, are capable of retrieving, parsing, processing, formatting, organizing, grouping, sorting, and consolidating services and/or information therefrom the same and/or different ones of the servers $S_1...S_z$ (20), and/or the optional servers $SO_1...SO_p$ (22), and/or the clients $C_1...C_n$ (16), having the same and/or different structures, formats, organizations, groupings, and/or data structures, and incorporating the parsed, processed, formatted, organized, grouped, sorted, and consolidated services and/or information thereinto the user responses $UR_1...UR_n$ (37) for delivery to the user interfaces $I_1...I_n$ (14) and use by the users $U_1...U_n$ (12). The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, which in itself is a process, the user interfaces $l_1...l_n$ (14), and/or the clients $C_1...C_n$ (16), and/or the server PS (18), and/or the servers $S_1...S_2$ (20), and/or the optional servers $SO_1...SO_p$ (22) may be constructed of hardware, firmware, software, machines, and/or operating systems, and/or combinations thereof, and/or other suitable means, and/or other components and/or systems, and/or operating systems, and/or combinations thereof, other components and/or systems, and/or other suitable means, and/or combinations thereof may have therein and/or be resident therein, but are not limited to computer components and/or systems, television and/or telecommunications components and/or systems, merger of television and/or computer systems, and/or merger of television and/or computer and/or telecommunications systems, interactive technologies and/or systems, cybernetics and/or cybernetic systems, and/or combinations thereof. The clients C₁...C_n (16), the server PS (18), the servers S₁...S_z (20), and/or the optional servers SO₁...SO_p (22) may be search engines, and/or sites, and/or servers, and/or clients, and/or URL's, and/or databases, and/or locations on the network, and/or other suitable components and/or systems, and/or other suitable means, and/or combinations thereof, which may be capable of communicating on the network 24. The scope of the client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, however, is not limited to search engines, and/or sites, and/or servers, and/or clients, and/or URL's, and/or databases, and/or locations on the network, and/or other suitable components and/or systems, and/or other suitable means, and/or combinations thereof, which may be capable of communicating on the network 24, as it is recognized that other components, systems, technologies, and/or operating systems exist and/or emerge that may make use of the benefits of the present invention, and are either on the horizon and/or are recognized to be forthcoming. 15 20 The client-server multitasking system **10** of the present invention, the client-server multitasking process **99**, and the multitasking process **104**, which in itself is a process, the user interfaces I₁...I_n (**14**), and/or the clients C₁...C_n (**16**), and/or the server PS (**18**), and/or the servers S₁...S_z (**20**), and/or the optional servers SO₁...SO_p (**22**), may then be hardware, firmware, software, and/or machines, and/or operating systems, and/or other suitable means, and/or combinations thereof, and may have and/or be resident within general purpose computers, special purpose computers, televisions, computer-television combinations, telecommunications systems, networks, mergers of computer and/or television technology and/or telecommunications technology and/or network technology, media, film, entertainment, interactive technologies and/or systems, cybernetics and/or cybernetic systems and/or technology, components, and/or systems, and/or other suitable means, and/or combinations thereof, and may be integrated one with the other and/or with other components and/or systems of one another, and may each be substantially the same and/or different one from the other. The client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, which in itself is a process, the user interfaces I₁...I_n
(14), and/or the clients C₁...C_n (16), and/or the server PS (18), and/or the servers S₁...S_z (20), and/or the optional servers SO₁...SO_p (22) may each have the same and/or different hardware, firmware, software, and/or ones of operating systems, and/or other suitable means, and/or combinations thereof. The optional databases 41 and/or 42 may also be hardware, firmware, software, and/or machine based, and/or other suitable means, and/or a combinations thereof, have the same and/or different ones of operating systems and/or combinations thereof, and may have memory components associated therewith. The client-server multitasking system and process is capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks. Such networks may be Earth based, satellite based, and/or space based, and/or other suitable means, and/or combinations thereof. The scope of the client-server multitasking system 10 of the present invention, the client-server multitasking process 99, and the multitasking process 104, however, is not limited to such components, systems, technologies, operating systems and/or networks, as other components, systems, technologies, and/or operating systems exist and/or emerge that may make use of the benefits of the present invention, and are either on the horizon and/or are recognized to be forthcoming. Determination as to whether the server PS (18) performs the multitasking process 104, and/or whether particular ones of the clients $C_1...C_n$ (16) perform the multitasking process 104, may optionally be made at the particular ones of the clients $C_1...C_n$ (16) and/or the server PS (18). Such determination may optionally be made by the users $U_1...U_n$ (12), and/or be based upon processing power, capabilities, and/or configurations of the particular ones of the clients $C_1...C_n$ (16), the server PS (18), and the network 24 considerations (traffic, load, and/or other considerations). The client-server multitasking search engine and/or database is capable of updating information and/or services stored therein by querying sites, servers, search engines, and/or databases containing information and/or services referenced in client-server multitasking search engine and/or database. The client-server multitasking system and process is capable of use on a variety of networks, such as global area networks, and in particular the internet, metropolitan area networks, wide area networks, and local area networks, and is capable of searching search engines and/or other sites substantially simultaneously and on-the-fly. The client-server multitasking system and process is capable of substantially simultaneous searching of the same and/or different ones of search engines and/or sites on the network substantially on-the-fly, with the same and/or different ones of the queries, and sorting, grouping, and/or organizing responses therefrom substantially on-the-fly. The client-server multitasking system and process is also capable of sorting, grouping, and/or organizing results therefrom the servers, search engines, and/or sites, in accordance with instructions from the requestors, and/or instructions resident within the client-server multitasking system and/or process. The client-server multitasking system and process is also capable drilling down and/or up to different levels within the search engines, sites, and/or servers being queried. Now again, the typical ones of the service and/or information entry request forms $IE_1...IE_n$ (38) at the user interfaces $I_1...I_n$ (14) shown in FIGS. 5A, 5B, and 6-10 are typical examples of the service and/or information entry request forms $IE_1...IE_n$ (38) at the user interfaces $I_1...I_n$ (14), a much larger variety of which is possible. Names and/or links and/or other information are incorporated therein the typical ones of the service and/or information entry request forms $IE_1...IE_n$ (38) shown in FIGS. 5A, 5B, and 6-10 for illustrative purposes, and are not intended to limit the large variety of the 20 service and/or information entry request forms $IE_1...IE_n$ (38) and the names and/or links and/or information that are possible, and that may be incorporated thereinto the service and/or information entry request forms $IE_1...IE_n$ (38) at the user interfaces $I_1...I_n$ (14). Now again, The typical ones of the completed service and/or information entry request forms $\mathbf{IF_1}...\mathbf{IF_n}$ (230) at the user interfaces $\mathbf{I_1}...\mathbf{I_n}$ (14) shown in FIG. 11-26 are typical examples of the completed service and/or information entry request forms $\mathbf{IF_1}...\mathbf{IF_n}$ (230) at the user interfaces $\mathbf{I_1}...\mathbf{I_n}$ (14), a much larger variety of which is possible. Typical queries $QQ_{n1}...QQ_{nm}$ (53), typical server addresses $AQ_{n1}...AQ_{nm}$ (54), and typical optional instructions $VJ_{n1}...VJ_{nk}$ (52) therein the typical ones of the completed service and/or information entry request forms $IF_1...IF_n$ (230) at the user interfaces $I_1...I_n$ (14) shown in FIG. 11-26 are typical examples for illustrative purposes, and are not intended to limit the substantially infinite variety of the queries $QQ_{n1}...QQ_{nm}$ (53), the server addresses $AQ_{n1}...AQ_{nm}$ (54), and the optional instructions $VJ_{n1}...VJ_{nk}$ (52) that may be entered thereinto the service and/or information entry request forms $IF_1...IF_n$ (230) at the user interfaces $I_1...I_n$ (14). Likewise, names and/or links and/or other information are incorporated therein the typical ones of the completed service and/or information entry request forms $IF_1...IF_n$ (230) shown in FIGS. 11-26 for illustrative purposes, and are not intended to limit the large variety of the completed service and/or information entry request forms $IF_1...IF_n$ (230) and the names and/or links and/or information that are possible, and that may be incorporated thereinto the 20 completed service and/or information entry request forms $IF_1...IF_n$ (230) at the user interfaces $I_1...I_n$ (14). Now again, the typical ones of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14) shown in FIG. 27-52 are typical examples of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), a much larger variety of which is possible. FIGS. 27-52 illustrate typical examples of typical ones of the user responses UR₁...UR_n (37), as typical service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14) to the typical queries typical queries QQ_{n1}...QQ_{nm} (53), the typical ones of the server addresses AQ_{n1}...AQ_{nm} (54), and the typical optional instructions VJ_{n1}...VJ_{nk} (52) having been entered therein the typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) shown in FIG. 11-26. The typical examples of the typical ones of the user responses $UR_1...UR_n$ (37), as typical service and/or information response forms $IS_1...IS_n$ (39) at the user interfaces $I_1...I_n$ (14) are for illustrative purposes, and are not intended to limit the substantially infinite variety of the user responses $UR_1...UR_n$ (37), as the service and/or information response forms $IS_1...IS_n$ (39) at the user interfaces $I_1...I_n$ (14), the queries $QQ_{n1}...QQ_{nm}$ (53), the server addresses $QI_n...QI_n$ (54), and the optional instructions $II_n...II_n$ (52) that may be entered thereinto the service and/or 20 information entry request forms IE₁...IE_n (38), to derive the to the completed service and/or information entry request forms IF₁...IF_n (230), and which result in the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14). Likewise, names and/or links and/or other information are incorporated therein the typical ones of the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), shown in FIGS. 27-52 for illustrative purposes, and are not intended to limit the large variety of the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), and the names and/or links and/or information that are possible, and that may be incorporated thereinto the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14). The server addresses AQ_{n1}...AQ_{nm} (54), such as WebCrawler, Altavista, Lycos, Infoseek, Excite, Yahoo, LookSmart, HotBot, Dejanews, Amazon, Borders, BarnesandNoble, and/or others that may have been used herein are for illustrative purposes, to illustrate typical ones of the service and/or information entry request forms IE₁...IE_n (38) at the user interfaces I₁...I_n (14) shown in FIGS. 5A, 5B, and 6-10, typical ones of the completed service and/or information entry request forms IF₁...IF_n (230) at the user interfaces I₁...I_n (14) shown in FIG. 11-26, and/or typical ones of the user responses UR₁...UR_n (37), as the service and/or information response forms IS₁...IS_n (39) at the user interfaces I₁...I_n (14), shown in FIGS. 27-52, and other examples used herein, are used merely to illustrate typical examples of the server 20 addresses AQ_{n1}...AQ_{nm} (54) and results therefrom that may be possible. The examples shown in FIGS. 5A, 5B, and 6-10, 11-26, and FIGS. 27-52, and other examples used herein, are examples of the substantially infinite variety of the server addresses AQ_{n1}...AQ_{nm} (54) that may be used with the client-server multitasking system 10 of the present invention and the
results that may be obtained therefrom. The typical server addresses AQ_{n1}...AQ_{nm} (54), such as WebCrawler, Altavista, Lycos, Infoseek, Excite, Yahoo, LookSmart, HotBot, Dejanews, Amazon, Borders, BarnesandNoble, and/or others that may have been used herein are for illustrative purposes only and are not intended to limit the scope of the client-server multitasking system 10 of the present invention. It should also be obvious that the typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) used in the examples shown in FIGS. 5A, 5B, and 6-10, 11-26, and FIGS. 27-52 and other examples used herein are for illustrative purposes and are merely typical examples of the substantially infinite variety of the queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) that may be used with the client-server multitasking system 10 of the present invention and the results that may be obtained therefrom, and are not intended to limit the substantially infinite variety of the queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) that may be used with the client-server multitasking system 10 of the present invention and the results that may be obtained therefrom. The typical queries $\mathbf{QQ_{n1}...QQ_{nm}}$ (53) used in the examples shown in FIGS. 5A, 5B, and 6-10, 11-26, and FIGS. 27-52 and other examples used herein are for illustrative purposes only and are not intended to limit the scope of the client-server multitasking system 10 of the present invention.