
Incremental Maintenance for Materialized Views over

Semistructured Data
�

Serge Abitebouly Jason McHughz Michael Rysz Vasilis Vassalosz Janet L. Wienerz

y INRIA-Rocquencourt
F-78153 Le Chesnay, France
Serge.Abiteboul@inria.fr

z Stanford University
Stanford, CA 94305, USA
Firstname.Lastname@cs.stanford.edu
http://www-db.stanford.edu/lore

Abstract

Semistructured data is not strictly typed like relational
or object-oriented data and may be irregular or incom-
plete. It often arises in practice, e.g., when heteroge-

neous data sources are integrated or data is taken from
the World Wide Web. Views over semistructured data
can be used to �lter the data and to restructure (or pro-

vide structure to) it. To achieve fast query response time,
these views are often materialized. This paper proposes
an incremental maintenance algorithm for materialized
views over semistructured data. We use the graph-based

data model OEM and the query language Lorel, devel-
oped at Stanford, as the framework for our work. Our
algorithm produces a set of queries that compute the up-

dates to the view based upon an update of the source.
We develop an analytic cost model and compare the cost
of executing our incremental maintenance algorithm to

that of recomputing the view. We show that for nearly
all types of database updates, it is more e�cient to ap-
ply our incremental maintenance algorithm to the view

than to recompute the view from the database, even when
there are thousands of updates.

1 Introduction

Database views increase the
exibility of a database
system by adapting the data to user or application
needs [37, 44]. Views are frequently materialized to
speed up querying when the underlying data is remote
or response time is critical [28, 9]. Once a view is ma-
terialized, however, its contents must be maintained in
order to preserve its consistency with the base data.
Maintenance can be performed either by recomputing
the view contents from the database or by comput-

�Research partially supported by NSF grant IRI{96{31952,
Air Force contract F33615{93{1{1339, the Swiss National Sci-
ence Foundation, and the Lilian Voudouri Foundation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference

New York, USA, 1998

ing the incremental updates to the view based on the
updates to the database. In this paper, we study the
maintenance of materialized views for semistructured
data. We propose a simple view speci�cation mecha-
nism and an algorithm for incremental maintenance.
We then demonstrate the algorithm's strengths (and
weaknesses) with a maintenance cost analysis.

Unlike relational or object-oriented data, semistruc-
tured data need not conform to a �xed schema. The
data may be irregular or incomplete, and often arises
in practice, e.g., when heterogeneous data sources are
integrated or data is extracted from the World Wide
Web [32, 1, 34, 10]. Views over semistructured data
can be used to �lter the data and to restructure (or
provide structure to) it [34]. Filtering is crucial since
semistructured data is often encountered by applica-
tions interested in a very small portion of the available
data (e.g., some speci�c data from the Web). Further-
more, a view is the only way in which we can restruc-
ture semistructured data that is outside of our control.

For performance reasons, views over semistructu-
red data often need to be materialized. Queries over
semistructured data (possibly traversing long paths)
are expensive to evaluate, as Mike Carey argued re-
cently [13]. A materialized view can be used to isolate
the data of interest, allowing subsequent queries to
run over a smaller, often more structured, data set.
Materialized views can also be used to rewrite queries
over the base data and improve the query performance
[36]. Furthermore, queries over the materialized view
may be able to take advantage of standard query opti-
mization techniques and access methods for structured
data, even though the underlying base data of the view
is semistructured.

View mechanisms and algorithms for materialized
view maintenance have been studied extensively in
the context of the relational model [9, 24, 23, 38, 22].
Incremental maintenance has been shown to dra-
matically improve performance for relational views
[25]. Views are much richer in the object world [2]
and, subsequently, languages for specifying and query-
ing materialized views are signi�cantly more intricate
[2, 7, 42, 41, 39].

Previous results on incremental view maintenance

AMERICAN EXPRESS v. METASEARCH
CBM2014-00001 EXHIBIT 2020-1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Guide

RestaurantRestaurant

Name Rating

5

&6

&2

Name Rating Entree

Name
Ingredient

&4

Ingredient

&13

Entree

Restaurant

&1

Entree

Name Ingredient

Name Rating

&3

Entree

&9

Ingredient
"Baghdad

Cafe"

&7

9

&8

"Eats"

&11

"Four Stars"

&12

"Thai City"

&5

"Beef Stew"

&14

"Mushroom"

&15

"Tomato"

&16

"Cheeseburger
Club"

&17

"Cheese"

&18

"Beef"

&19

&10

Figure 1: A Simple OEM Database

for object databases [39, 40] and nested data [26] are
based on the extensive use of type information. Semi-
structured data provides no type information, so the
same techniques do not apply. In particular, subobject
sharing along with the absence of a schemamake it dif-
�cult to detect if a particular update a�ects a view.
Gluche and colleagues [20] use a view maintenance
scheme that is limited to linear OQL view de�nitions.
Because of subobject sharing, most nontrivial semi-
structured view de�nitions are not linear, making their
approach inapplicable in our context.

Suciu [43] also considers incremental view mainte-
nance for semistructured data. The view speci�ca-
tion language is limited to select-project queries and
only considers database insertions. Our approach al-
lows joins in the view query and handles database in-
sertions, deletions, and updates. Zhuge and Garcia-
Molina [45] also investigate graph structured views
and their incremental maintenance. However, their
views consist of object collections only, while we in-
clude edges (structure) between objects. Also, their
maintenance algorithms only work for select-project
views over tree-structured databases, while our ap-
proach handles joins and arbitrary graph-structured
databases.

Our work is based on the Object Exchange Model
(OEM) [35] for semistructured data. In OEM, a
database is a directed, labeled graph. OEM has strong
similarities to XML [32], a proposed standard for a uni-
versal format for data on the Web. Our view speci�ca-
tion language is based on the Lorel query language for
OEM [5]. We propose a view speci�cation extension to
Lorel that introduces two sets of objects in the view:
(1) the select-from-where part speci�es the primary ob-
jects imported to the view and (2) the new with part
speci�es paths from the primary objects to adjunct

objects. Both the paths and the adjunct objects ap-
pear in the view. The distinction between the two sets
of objects is invisible to the user { it is only used to
simplify the discussion of the incremental maintenance
algorithm. Given a view and a database update, the
algorithm produces a set of maintenance statements,

evaluates them on the database to yield a set of view
updates, and installs the updates in the view.

We demonstrate the advantages of our algorithm
with a cost model and a performance evaluation. We
compare the cost of recomputation to the cost of incre-
mentally computing the new view. Our results show
that the incremental maintenance algorithm is several
orders of magnitude faster than recomputing the view
for insertion and deletion of edges between objects.
In addition, incremental maintenance is cheaper for
small numbers of atomic value changes. However, in
some cases, such as when a substantial portion of the
database is updated, it may be cost e�ective to recom-
pute the view.

The presented maintenance algorithm can be used
both for immediate maintenance [9] and for deferred
maintenance [38, 17] of the views. The techniques
presented here are also applicable to other query
languages for semistructured data [12], for the Web
[27, 31], and (to some extent) to query languages for
hypertext documents [15, 6].

2 View Speci�cation

We use the Lore system [29] to investigate material-
ized view maintenance over semistructured data. We
now introduce OEM, the data model used by Lore; the
Lorel query language; the view speci�cation language;
and the update operations. [5] and [3] provide further
details on Lorel and the view speci�cation language,
respectively.

2.1 The OEM Data Model

An OEM database is a labeled, directed graph
such as the small example database given in Fig-
ure 1. Each vertex in the graph represents an
object; each object has a unique object identi�er

(oid) such as &2. Atomic objects contain a value
from one of the atomic types, e.g., integer, real,
string, gif, java, audio. All other objects are
complex objects and (in the Lore system) have a set
of hlabel; subobjectoidi pairs as their value. In Fig-
ure 1, object &5 is atomic and has the value \Thai

AMERICAN EXPRESS v. METASEARCH
CBM2014-00001 EXHIBIT 2020-2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

City". Object &4 is complex and has as its value
fhEntree;&10i; hName;&11i; hRating;&12i; hEntree;
&13ig. Names are special labels that each serve as an
alias for a single object, and are used as entry points
into the database. In Figure 1, Guide is a name that
denotes object &1.

There is no notion of a schema in an OEM database.
Semantic information is included in the labels, which
are part of the data and can change dynamically.
In this respect, an OEM database is self-describing.
OEM has been designed to handle incompleteness of
data, as well as the structural and type heterogeneity
as exhibited in Figure 1. For example, observe that
the Restaurant object &2 has no Entree subobjects,
while Restaurants &3 and &4 each have two.

2.2 The Lorel Query Language

Lorel, for Lore Language, uses the familiar select-from-

where syntax of SQL, and can be considered an exten-
sion to OQL [14] that provides powerful path expres-
sions for traversing the data and extensive coercion
rules for a more forgiving type system. Both features
are useful when operating in a semistructured environ-
ment. Consider the Lorel query in Example 1.

Example 1 (Lorel Query)
select e
from Guide.Restaurant r, r.Entree e
where r.Name = \Baghdad Cafe"
and e.Ingredient = \Mushroom"; 2

The query asks for allEntree subobjects of aRestau-
rant object where the restaurant's name is \Baghdad
Cafe" and one of the ingredients of the entree has the
value \Mushroom". The result of this query over the
database in Figure 1 is the set f&9g.

The expression Guide.Restaurant r, r.Entree e is
a path expression describing a traversal through the
database. In this paper, a path expression is com-
posed of one-step paths of the form x:L y, where x is
bound to a set of objects, L is the label for some out-
going edge, and y designates the set of objects that
are reached by starting from an object in the set x

and traversing an edge labeled L. Each one-step path
describes a single step traversal through the data and
can be written hx; L; yi.

While Lorel supports many ways for specifying
paths (for example, by combining one-step path ex-
pressions, eliminating variables, or using wild cards),
in this paper, we use one-step paths for clarity. Path
expressions appearing in the where clause that are not
quanti�ed by the from clause are implicitly existen-
tially quanti�ed according to Lorel semantics.

2.3 View Speci�cation in Lorel

A view speci�cation statement in Lorel [3] imports ob-
jects and edges from a source database into a view.
In addition, new objects and edges can be created in
the view. Our view speci�cation language can: (1)

identify objects within a graph; (2) import arbitrary
subgraphs; (3) add or remove objects appearing in
the view. To specify views, we use Lorel's query and
update operations and extend the select-from-where

statement with a with clause.
The with clause is composed of path expressions

where each path begins from a variable appearing in
the select clause. Each object and edge along a path in
the with clause is included in the view. Intuitively, the
select-from-where statement returns a
at set of ob-
jects. The with clause imports some of the structure
of the database in the view. It is a compromise be-
tween returning everything or nothing reachable from
selected objects.

We call the objects included in the view by the
select-from-where part of the view speci�cation the
primary objects and the objects included in the view
by the with clause the adjunct objects. An object can
be both a primary and an adjunct object in a view.
Although a view de�nition may consist of several view
speci�cation statements, in this paper, we concentrate
on views de�ned by a single statement.

The view speci�cation in Example 2 de�nes a view
for the result of the query in Example 1 (now written
in an OQL-like syntax [5]) along with all Name and
Ingredient subobjects of each Entree.

Example 2 (Canonical View Speci�cation)

de�ne view FavoriteEntrees as Entrees =
select e
from Guide.Restaurant r, r.Entree e
where exists x in r.Name: x = \Baghdad Cafe"
and exists y in e.Ingredient: y = \Mushroom"
with e.Name n, e.Ingredient i; 2

The objects bound to e are primary objects, while
all the subobjects discovered by the with clause are
adjunct objects. Without the with clause, a view is
a simple collection of objects that satisfy the query,
without edges or subobjects present.

2.4 Materialized Views

We now explain how views are materialized in Lore,
using a simple top-down query evaluation strategy [29].
First, the from then where clauses are evaluated to
obtain bindings for variables that appear in the from

clause and satisfy the where clause. The select clause
is evaluated for these bindings. Each primary object
identi�ed by the select clause is then augmented with
the subobjects and edges in the with clause. In the
view, each imported database object is represented by
a new delegate object.

Figure 2 shows the materialized view for Example 2
applied to the database in Figure 1. The objects &9,
&14, and &15 in Figure 1 provide bindings for e, n and
i; the sole primary object &9' and the adjunct objects
&14' and &15' are the corresponding delegate objects
in the view.

AMERICAN EXPRESS v. METASEARCH
CBM2014-00001 EXHIBIT 2020-3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Entrees

Entree

Name Ingredient

"Beef Stew" "Mushroom"
&14’ &15’

&99

&9’

Figure 2: The materialized view for Example 2

2.5 Update Operations

The Lorel update statements [5] contain three elemen-
tary update operations that can a�ect a materialized
view:

� Insertion and deletion of the edge with label L from
the object with oid o1 to the object with oid o2,
denoted hIns; o1; L; o2i and hDel; o1; L; o2i.

� Change of value of the atomic object with oid o1
from OldVal to NewVal, denoted hChg; o1;OldVal;
NewVali.

3 View Maintenance

When an update operation a�ects a materialized view,
the view must be maintained to keep it consistent with
the database. A view V is considered consistent with
the database DB if the evaluation of the view speci-
�cation S over the database yields the view instance
(V = S(DB)). Therefore, when the database DB is
updated to DB0, we need to update the view V to
V 0 = S(DB0) in order to preserve its consistency.

Our incremental maintenance algorithm computes
the new state of the materialized view from the cur-
rent state of the database, the view, and the database
updates. Similar to relational view maintenance al-
gorithms, the incremental maintenance algorithm uses
the database updates to minimize the portion of the
database examined when computing the view updates
[23].

The algorithm applies to an important subset of
Lorel [3]. More speci�cally, it handles every view spec-
i�cation statement without wild cards, subqueries, or
negation (except on atomic objects, e.g., x 6= 5 is per-
mitted). To simplify the presentation, in our examples
the select clause is of the form \select y" (generalizing
for any select clause is straightforward).

3.1 Overview of the Maintenance Algorithm

We treat the primary and adjunct objects (Vprim and
Vadj) separately during maintenance. The algorithm's
input is shown in Figure 3.

The view speci�cation S, the database update U ,
and the database state DB0 after the update are
used to compute the view maintenance statements in
Lorel syntax.1 These statements generate the sets

1We extendLorel to allow the use of explicit object identi�ers
wherever names are allowed within a statement.

1. View speci�cation statement S:
select vi
from v0:L1 v1, . . . , vj:Lk vk, . . . , vn�1:Ln vn

// vj can be any variable that
// already appeared in the sequence

where conditions(v1; : : : ; vn)
with vi:L11 w11, w11:L12 w12, . . . , w1(p�1):L1p w1p,

uj:Lj1 wj1, . . . , wj(k�1):Ljk wjk, . . . ,
wj(q�1):Ljq wjq

// where uj is vi or wkl

// (2 � j, 1 � k � (j � 1), 1 � l)

2. Update U : hIns; o1; L; o2i, hDel; o1; L; o2i, or
hChg; o1;OldV al; NewV ali

3. New database state DB0

4. View instance V

Figure 3: Incremental maintenance algorithm input

ADDprim , DELprim, ADDadj , and DELadj of ob-
jects and edges to add to and remove from the view.
In Figure 3, we abbreviate the where clause with
\conditions(v1; : : : ; vn)." Conditions are written in
disjunctive normal form using boolean expressions,
such as y = \Mushroom", as in SQL.

1. Check for relevance of update U to the view instance
V de�ned by the view speci�cation S. Generate a set
of relevant variables R. If R is empty, stop.

2. Generate maintenance statements and create
ADDprim and DELprim using U , S, and R.

3. Generate maintenance statements and create
ADDadj and DELadj using U , S, R, and ADDprim

or DELprim.

4. Install ADDprim, DELprim, ADDadj, and DELadj

in V .

Figure 4: Basic structure of the incremental mainte-
nance algorithm

Figure 4 outlines the steps of the view maintenance
algorithm. We describe the algorithm as it operates on
a single update. First, it checks whether the update is
relevant to the view, that is, if update U could cause
a change to the view instance V . If so, the algorithm
creates the Lorel statements that generate ADDprim

and DELprim . The statements identify the primary
objects to add and remove by explicitly binding the
objects in the update to the view speci�cation. The
algorithm then creates the sets of maintenance state-
ments that generate ADDx

adj and DELxadj . ADDx
adj

and DELxadj contain the adjunct objects and edges to
add and remove for each with clause variable x. Ad-
junct objects may be a�ected in three ways: (1) by
newly inserted or deleted primary objects; (2) by cur-
rent adjunct objects that are the source of an inserted
or deleted edge; and (3) by atomic value changes.

3.2 Relevance of an Update

To avoid generating (and evaluating!) unnecessary
maintenance statements, we �rst perform some sim-

AMERICAN EXPRESS v. METASEARCH
CBM2014-00001 EXHIBIT 2020-4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

function RelevantVars(Update U , View speci�cation S)
// If updated object is not in RelevantOids, then it's not
// relevant. RelevantOids is fhoid; queryvariableig.
if ho1(U); �i =2 RelevantOids then return ;;
// Find out which variables are relevant to the update
vars ;; relvars ;;
foreach v 2 variables(S) do

// If updated object is not in RelevantOids, then it's
// not relevant
if ho1(U); vi 2 RelevantOids then vars vars [fvg;

// If update is atomic change, do simple syntactic check
if type(U) = Chg then

foreach v 2 vars do
// Let constants(S, v) be the constants appearing
// in S compared to v, e.g., using = here
foreach c 2 constants(S, v) do

// See if there's a predicate in the view spec
// whose value may have changed
if (OldVal(U) 6= c and NewVal(U) = c) or

(OldVal(U) = c and NewVal(U) 6= c) then
relvars relvars[fvg;

elserelvars vars;
return relvars;

Figure 5: RelevantVars returns the view speci�cation
variables for which the update U is relevant.

ple relevance checks. We use an auxiliary data struc-
ture, RelevantOids, to keep information that would be
available from the schema in a structured database.
RelevantOids contains the object identi�er of every ob-
ject touched during the evaluation of a view speci�ca-
tion, paired with the variable to which it was bound,
whether or not the object eventually appears in the
view. It is used to check quickly whether a database
update could possibly a�ect the view. For example, if
object o1 in a Chg update does not appear in Relevan-

tOids, then it was not examined during view evaluation
and the update can be ignored.

We also use syntactic checks that indicate whether
speci�c atomic value changes could a�ect the view.
For each comparison in the view speci�cation where

clause that involves a constant value, we compare the
constant to the update's OldVal and NewVal. If both
or neither of OldVal and NewVal satisfy the compari-
son, then the change cannot a�ect the view.

Figure 5 presents the function RelevantVars, which
determines the set of variables appearing in the query
that the update could be bound to given a view spec-
i�cation.

For example, suppose that the value of object &5
in Figure 1 is changed from \Thai City" to \Hunan
Wok". We can infer that this update does not a�ect
the view in Example 2, because the view speci�cation
mentions neither \Thai City" nor \Hunan Wok". On
the other hand, if the value of &5 is changed to \Bagh-
dad Cafe", which is the constant used in the compari-
son x.Name = \Baghdad Cafe", then the update may
be relevant.

We do not attempt to quantify the savings achieved
by using RelevantOids in this paper. However, we

note that for views de�ned over a small portion of the
database, most updates are irrelevant.

3.3 Generating Maintenance Statements

We now describe how to generate the maintenance
statements for each type of update: edge insertion,
edge deletion, or atomic value change. Consider �rst
the edge insertion and edge deletion cases. For each
one-step path in the view speci�cation, we generate
a maintenance statement that checks whether the up-
dated edge binds to it. If so, the statement produces
updates to the view. We use auxiliary data structures
to represent the one-step paths appearing in the view
speci�cation. OneStepPathfrom , OneStepPathprim,
and OneStepPathadj contain all the one-step paths
that appear in the from clause, from and where

clauses, and with clause, respectively. For example,
OneStepPathprim for the view speci�cation in Exam-
ple 2 is fGuide.Restaurant r, r.Entree e, r.Name x,

e.Ingredient yg. Note that each OneStepPath set is
small since it depends on the query and not on the
database.

3.3.1 Edge Insertion

For edge insertion, let the update be hIns; o1; L; o2i.
We generate a primary object maintenance statement
for every possible pair of bindings of o1 and o2 using
the procedure GenAddPrim in Figure 6.

Example 3 (Generating ADDprim)
Suppose that update hIns;&10; Ingredient;&15i is
performed on the database in Figure 1. The Bagh-
dad Cafe restaurant now has two entrees with the in-
gredient \Mushroom". Given the view speci�cation,
RelevantVars returns the set feg. GenAddPrim then
generates one statement.

ADDprim +=

select e
from Guide.Restaurant r, r.Entree e
where exists x in r.Name: x = \Baghdad Cafe"
and exists &15 in &10.Ingredient:

&15 = \Mushroom"
and e = &10;

This maintenance statement can be evaluated more
e�ciently than the original view speci�cation, as we
show in Section 4. 2

We then generate the maintenance statements for
the adjunct objects. There are two cases to consider:
(1) adjunct objects attached to the new primary ob-
jects in ADDprim and (2) adjunct objects that are
newly connected to the view by the inserted edge from
o1 to o2 (when o1 is an adjunct object).

For the �rst case, we generate maintenance state-
ments starting from the set ADDprim . For the second
case, we �rst test whether the inserted edge matches
a relevant (adjunct object) variable and has a match-
ing label. If so, then we generate a set of maintenance

AMERICAN EXPRESS v. METASEARCH
CBM2014-00001 EXHIBIT 2020-5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

