
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Denormalization Effects on Performance of RDBMS

G. Lawrence Sanders

Management Science & Systems
State Univeristy of New York at Buffalo

mgtsand@mgt.buffalo.edu

Seungkyoon Shin
Management Science & Systems

State Univeristy of New York at Buffalo
ss27@acsu.buffalo.edu

Abstract
In this paper, we present a practical view of
denormalization, and provide fundamental guidelines for
incorporating denormalization. We have suggested, using
denormalization as an intermediate step between logical
and physical modeling to be used as an analytic
procedure for the design of the applications requirements
criteria. Relational algebra and query trees are used to
examine the effect on the performance of relational
systems. The guidelines and methodology presented are
sufficiently general, and they can be applicable to most
databases. It is concluded that denormalization can
enhance query performance when it is deployed with a
complete understanding of application requirements.

1. Normalization vs. Denormalization

Normalization is the process of grouping attributes
into refined structures. The normal forms and the process
of normalization have been studied by many researchers,
since Codd [5] initiated the subject. First Normal Form
(1NF), Second Normal Form (2NF), and Third Normal
Form (3NF) were the only forms originally proposed by
Codd, and they are the normal forms supported by
commercial case tools. The higher form of normalization
such as Boyce/Codd Normal Form, the Fourth Normal
Form (4NF), and the Fifth Normal Form (5NF) are
academically important but are not widely implemented.

The objective of normalization is to organize data into
stable structures, and thereby minimize update anomalies
and maximize data accessibility. Although normalization
is generally regarded as the rule for the statue of relational
database design, there are still times when database
designers may turn to denormalizing a database in order
to enhance performance and ease of use. Even though
normalization results in many benefits, there is at least
one major drawback – poor system performance
[22],[13], [15], [24], [18], [7].

Normalization can also be used as a supplemental tool
to provide an additional check on the stability and
0-7695-0981-9/01 $1Find authenticated court docume
integrity of an Entity Relationship Diagram (ERD) and
produce naturally normalized relational schemas.
However, converting the conceptual entity-relationship
model into database tables does not guarantee the best
performance, nor the ideal geometrical distribution of the
data [20]. Thus, even though conceptual data models
encourage us to generalize and consolidate entities to
better understand the relationships between them, such
generalization can lead to more complicated database
access path [2]. Furthermore, normalization can create
retrieval inefficiencies where a comparatively small
amount of information is being sought and retrieved from
the database [24]. As a consequence, database designers
occasionally trade off the aesthetics of data normalization
with the reality of system performance.

Denormalization can be described as a process for
reducing the degree of normalization with the aim of
improving query processing performance. One of the
main purposes of denormalization is to reduce the number
of physical tables that must be accessed to retrieve the
desired data by reducing the number of joins needed to
derive a query answer [17].

Denormalization has been utilized in many strategic
database implementations to boost database performance
and reduce query response times. One of the most useful
areas for applying denormalization techniques is in data
warehousing implementations for data mining
transactions. The typical data warehouse is a subject-
oriented corporate database that involves multiple data
models implemented on multiple platforms and
architectures. The goal of the data warehouse is to put
enterprise data at the disposal of organizational decision
makers. The retrieval, conversion and migration of data
from the source to the target computing environments is
one of many tasks charged to the data warehouse
administrator. The transformation of that data in a manner
that ensures that the target database holds only accurate,
timely, integrated, valid and credible data represents the
most complex task on the technical agenda. This is also
an area where the tools and techniques are not abundant.
It is not enough to simply capture the data needed for the
0.00 (c) 2001 IEEE 1

Versata Exh. 2017
Callidus v. Versata
CBM2013-00052

f
nts without watermarks at docketalarm.com.

myrickk
Rectangle

https://www.docketalarm.com/

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
data warehouse. It is also necessary to optimize the
potential of the data warehouse.

Denormalization is particularly useful in dealing with
the proliferation of star schemas that are found in many
data warehouse implementations. In this case,
denormalization provides better performance and a more
intuitive data structure for data warehouse users to
navigate [1]. The goal of most analytical processes
against the data warehouse is to access aggregates such as
sums, averages, and trends. While typical production
systems usually contain only the basic data, data
warehousing users expect to find aggregated and time-
series data that is in a form ready for immediate display.

Important and common components in a data
warehouse that are good candidates for denormalization
include: multidimensional analysis in a complex
hierarchy, aggregation, and complicated calculations.
Time is a good example of a multidimensional hierarchy
(e.g. year, quarter, month, and date). Basic design
decisions such as how many dimensions to define and
what facts to aggregate can affect database size and query
performance.

Although denormalization techniques have been
utilized for various types of database design,
denormalization is still one issue that lacks solid
principles and guidelines. There has been little research
related to illustrating how denormalization enhances
database performance and reduces query response time.
This paper aims at providing a comprehensive guideline
regarding when and how to effectively exercise
denormalization. The main contribution is to provide
unambiguous principles for conducting denormalization.
In regards to the organization of the paper, we start by
giving an overview of prior research on denormalization
in Section 2. A generally applicable denormalization
process model and commonly accepted denormalization
techniques are to be presented, in Sections 3 and 4. In
Section 5 respectively, we use relational algebra and
query trees to develop a mechanism to access the effect of
denormalization on the performance of Relational
Database Management Systems (RDBMS). Finally,
Section 6 presents a summary of our findings.

2. Previous work on denormalization

It is commonly believed by database professionals and
researchers that normalization degrades response time. A
full normalization results in a number of logically
separate entities that, in turn, result in even more
physically separate stored files. The net effect is that join
processing against normalized tables requires an
additional amount of system resources.
Find authenticated court docum
Normalization may also cause significant
inefficiencies when there are few updates and many query
retrievals involving a large number of join operations. On
the other hand, denormalization may boost query speed,
but also degrade data integrity.

The trade-offs inherent in normalization/
denormalization should be a natural area for scholarly
activity. However, this has not been the case. The
pioneering work by Schkolnick and Sorenson [22]
introduced the notion of denormalization. In that work,
They argues that, to improve performance quality of a
database design, the data model viewed by the user has to
be capable of notifying the user about semantic
constraints. The goals of this paper are to illustrate how
semantic constraints can be exhibited and to illustrate an
algorithm to carry out the denormalization process.

Hanus [12] developed a list of normalization and
denormalization types, and suggested that
denormalization should be carefully used according to
how the data will be used. A limitation of this work is that
the approach to be used in denormalization was not
described in sufficient detail.

Tupper [23] proposed two separate dimensions for
denormalization. In the first approach, the ERD is used to
collapse the number of logical objects in the model. This
will in effect shorten application call paths that traverse
the database objects when the structure is transformed
from logical to physical objects. This approach should be
exercised when validating the logical model. In the
second approach, denormalization is accomplished by
moving or consolidating entities, and creating entities or
attributes to facilitate special requests, and by introducing
redundancy or synthetic keys to encompass the movement
or change of structure within the physical model. One
deficiency in this approach is that future development and
maintenance are not considered.

Date [8] argued that denormalization should be done at
the physical storage level, not at the logical or base
relation level. He argued further that denormalization
usually has the side effect of corrupting a clear logical
design with undesirable consequences.

Hahnke [11] illustrated the positive effects of
denormalization on analytical business applications. In
designing analytical systems, a more denormalized data
model provides better performance and a more intuitive
data structure for users to navigate. The two primary
components of denormalized data models, facts and
dimensions, are also provided to solve the complexity of
hierarchies that are an important component of
multidimensional analysis when they support drill-down
functions in navigation functions. (Facts are the data
elements of interest contained in the result set returned by
f
ents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
a query and dimensions define the constraints used to
select the facts.)

Cerpa [4] proposes a pre-physical database design
process as an intermediate step between logical and
physical modeling and provides a practical view of
logical database refinement before the physical design.
He maintained that the refinement process requires a high
level of expertise on the part of the database designer, as
well as appropriate knowledge of application
requirements.

Rodgers [20] discusses the general trade-offs of
denormalization and some of the more common situations
in which a database designer should consider
denormalization. For example, denormalization is useful
when there are two entities with a One-to-One
relationship and a Many-to-Many relationship with non-
key attributes.

Bolloju and Toraskar [2] present an approach to avoid
or minimize the need for denormalization. They introduce
the concept of data clustering as an alternative to
denormalization. This approach is important in view of
the current popularity of object-oriented techniques for
information system analysis and design. One problem
with the use of data clustering is that it is limited to a
particular type of physical data organization.

Another possible drawback of denormalization relates
to flexibility. Coleman [6] argues that denormalization
decisions usually involve the trade-offs between
flexibility and performance, and denormalization requires
an understanding of flexibility requirements, awareness of
the update frequency of the data, and knowledge of how
the database management system, the operating system
and the hardware work together to deliver optimal
performance.

It is apparent from the previous discussions that there
has been little research regarding a comprehensive
taxonomy and procedure model for the denormalization
process. The next question of this paper sets the stage for
the development of an analytical approach for
denormalization.

3. A denormalization process model

As noted above, the primary goals of denormalization
are to improve query performance and to present the end-
user with a less complex and more user-oriented view of
data. This is in part accomplished by reducing the number
of physical tables and reducing the number of actual joins
necessary to derive the answer to a query.

As a rule, denormalization should be considered only
when performance is an issue and then only after there
has been a thorough analysis of the various impacted
Find authenticated court docum
systems. For example, if additional system development
is under way, denormalization may not be appropriate and
could lead to additional data anomalies and reduce
flexibility, integrity, and accessibility. Consequently,
denormalization should be deployed only when
performance issues indicate that it is needed, and then
only after there has been a thorough analysis of the
problem domain and the application requirements.

It has been asserted by Inmon [14] that data should be
firstly normalized as the design is being conceptualized
and then denormalized in response to the performance
requirements. Prior to the denormalization procedure, the
database designer should develop a logical entity
relationship model that indicates; 1) cardinality for each
relationship, 2) volume estimation for each entity, and
defines 3) process decompositions for the application.
Point 3 could be accomplished via data flow diagrams.
Figure 1 illustrates the up-front activities that that should
be attended to before proceeding to denormalization.

• Development of a conceptual data model (ER
Diagram).

• Refinement and Normalization.
• Identifying candidates for denormalization.
• Determining the effect of denormalizing entities

on data integrity.
• Identifying what form the denormalized entity may

take.
• Map conceptual scheme to physical scheme.

Figure 1. DB Design Cycle with Denormalization.

A typical implementation of the database design

process includes the following phases: conceptual
database design, logical database design, and physical
database design [21]. Conceptual data models encourage
the generalization and consolidation of entities. In
practice, however, the generalization process leads to
more complex database access paths. Physical database
design means merely converting the conceptual entity-
relationship model into database tables. However, this
approach does not account for the trade-offs necessary for
performance or for geographic distribution of the
database. Therefore, denormalization can be separated
from both steps because it involves aspects that are
neither purely logical nor purely physical. We propose
that the denormalization process should be implemented
between the data model mapping and the physical
database design so that the procedure can be based on
logical and physical database design.
f
ents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Figure 2. Criteria for Denormalization

The criteria for denormalization should address both

logical and physical issues. After an exhaustive review of
journal articles and experts’ recommendations in
professional journals, we have identified four criteria
(Figure 2) that have been used as the rationale for turning
to denormalization. These criteria are focused on reducing
database access costs, and are affected by database
activity, computer system characteristics and physical
factors [19]. They also take into account that the
dynamics of applications requires that a database design
should be reviewed according to maintenance and
development plans for the application system.

A primary goal of denormalization relates to how it
improves the effectiveness and efficiency of the logical
model implementation and how it fulfills application
requirements. This requires an analysis of the advantages
and disadvantages of possible model implementation. As
in any denormalization process, it may not be possible to
accomplish a full denormalization that meets all the
criteria specified. In such cases, the database designer
should exploit knowledge about the application
requirements in order to evaluate the degree of
importance of each criterion in conflict.

Finally, in Figure 3, in order to contribute to database
designers’ seamless knowledge in addition to criteria
previously specified, we identified a list of variables from
literature [10] [3] that should be taken into account when
considering an absolute denormalization.

Denormalization has many drawbacks, such as data
duplication, more complex data-integrity rules, update
anomalies, and increased difficulty in expressing the type
of access [16], [20]. The denormalization process can
easily lead to data duplication and that in turn leads to
update anomaly issues requiring increased database
storage requirements.

An update anomaly problem can generally be resolved
with database management techniques such as triggers,
application logic, and batch reconciliation [9]. A trigger
can update duplicated or derived data anytime the base
data changes. Triggers provide the best solution from an
integrity point of view, although they can be costly in
terms of performance. In addition, application logic can
be included into transactions in each application in order
to update denormalized data to ensure that changes are

• General application performance requirements
indicated by business needs.

• On-line response time requirements for
application queries, updates ad processes.

• Minimum number of data access paths.
• Minimum amount of storage.
Find authenticated court docume
atomic. Finally, a batch reconciliation process can be run
at appropriate intervals to bring the denormalized data
back into agreement. Using application logic to manage
denormalized data is risky, because the same logic must
be used and maintained in all applications that modify the
data.

Denormalization usually speeds up retrieval, but it can
slow the data modification processes. It is noteworthy that
both on-line and batch system performance is adversely
affected by a high degree of normalization [15]. The
golden rule is: When in doubt, don’t denormalize. The
next section of this paper will provide a strategy for
increasing performance, but at the same time, minimizing
the deleterious effects related to denormalization.

Figure 3. Other Considerations of Denormalization

4. Denormalizing for performance

In this Section, we discuss denormalization patterns
that have been commonly adopted by experienced
database designers. After an exhaustive literature review,
we identified and classified four prevalent strategies for
denormalization in Figure 4. They are collapsing tables,
splitting a table, adding redundant columns and adding
derived columns.

• Collapsing Tables.

- Two entities with a One-to-One relationship.
- Two entities with a Many-to-Many

relationship.
• Splitting Tables (Horizontal/Vertical Splitting).
• Adding Redundant Columns (Reference Data).
• Derived Attributes (Summary, Total, and

Balance).
Figure 4. Denormalization Strategies.

4.1. Collapsing Tables

• Application performance criteria.
• Future application development and

maintenance considerations.
• Volatility of application requirements.
• Relations between transactions and relations of

entities involved.
• Transaction type (update/query, OLTP/OLAP).
• Transaction frequency.
• Access paths needed by each transaction.
• Number of rows accessed by each transaction.
• Number of pages/blocks accessed by each

transaction.
• Cardinality of each relation.
f
nts without watermarks at docketalarm.com.

https://www.docketalarm.com/

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
TB1
COL1 COL2

TB2
COL1 COL3

TB1�

COL1 COL2 COL3

One of the most common and secure denormalization
techniques is the collapsing of One-to-One relationships.
This situation occurs when for each row of entity A, there
is only one related row in entity B. While the key
attributes for the entities may or may not be the same,
their equal participation in a relationship indicates that
they can be treated as a single unit. For example, if users
frequently need to see COL1, COL2, and COL3 at the
same time and the data from the two tables is in a One-to-
One relationship, the solution is to collapse the two tables
into one (See Figure 5).

There are several nice advantages of this technique in
the form of reduced number of foreign keys on tables,
reduced number of indexes (since most indexes are
created based on primary/foreign keys), reduced storage
space, and reduced amount of time for data modification.
Moreover, combining the attributes does not change the
business view but does decrease access time by having
fewer physical objects and reducing overhead. In general,
collapsing tables in One-to-One relationship has fewer
drawbacks than others.

Figure 5. Collapsing Tables.

A Many-to-Many relationship can also be a candidate

for the table collapsing. The typical Many-to-Many
relationship is represented in the physical database
structure by three tables: one table for each of two
primary entities and another table for cross-referencing
them. A cross-reference or intersection between the two
entities in many instances also represents a business
entity. These three tables can be merged into two if one of
the entities has little data apart form its primary key (i.e.
there are not many functional dependencies with the
primary key). Such an entity could be merged into the
cross-reference table by duplicating the attribute data.
There is of course a drawback to this approach. Because
data redundancy may interfere with updates, update
anomalies may occur when the merged entity has
instances that do not have any entries in the cross-

A) Normalized Entities B) Denormalized Entity
Find authenticated court docum
reference table. Collapsing the tables in both One-to-One
and One-to-Many eliminates the join, but the net result is
that there is a significant loss at the abstract level because
there is no conceptual separation of the data. In general,
collapsing tables in Many-to-Many relationship has a
significant number of problems compared to other
denormalization approaches.

4.2. Splitting Tables

When separate parts of a table are used by different
applications, the table may be split into a denormalized
table for each application processing group. In this case,
the table can be split either vertically or horizontally.
However, it should be noted that there are cases that the
whole table should be able to be used for a single
transaction.

A vertical split involves splitting a table by columns so
that a group of columns is placed into the new table and
the remaining columns are placed in another new table
(Figure 6). Vertical splitting can be used when some
columns are rarely accessed rather than other columns or
when the table has wide rows. The net result of splitting a
table is that it may reduce the number of pages/blocks that
need to be read because of the shorter row length in the
main table. With more rows per page, I/O is decreased
when large numbers of rows are accessed in physical
sequence. A vertically split table should contain one row
per primary key in the split tables as this facilitates data
retrieval across tables. In actuality, a view of the joined
tables may make this split transparent to the users. This
technique has been particularly effective when there are
lengthy text fields in a long row. If the text fields are
rarely accessed, they may be placed in a separate table.

A horizontal split involves a row split, resulting rows
classified into groups by key ranges (Figure 6). This is
similar to partitioning a table, except that each table has a
different name. A horizontal split can be used when a
table is large, and reducing its size reduces the number of
index pages read in a query. B-tree indexes are generally
very flat, and large numbers of rows can be added to a
table with small index keys before the B-tree requires
more levels. However, an excessive number of index
levels may be an issue with tables that have very large
keys. Thus, as long as the index keys are short, and the
indexes are used for queries on the table rather than on
whole table scan, a horizontal split prevents doubling or
tripling the number of rows in the table. The result is that
the number of disk reads required for a query by only one
index level is reduced.

A horizontal split is usually applied when the table
split corresponds to a natural separation of the rows such
f
ents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

