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Fuzzy vTe¢hniquresp not Pattern ,R‘?¢°l9fiiliO.n't
RisK_-.ClI.‘|d Claim Clidssificslfion. Q i t

T - ' Richard A. De'n-ig*--r-.*--- ’

Krzyszt-of M.*=0st‘aszew'skie '

”cABS11bkCTYvi*“ -xv

, Applications of fuzzy set theory to property-liability and lifezinsurance have emerged -' '
, . pin the last few years through the work of Lernaire (1990), and I_)en__-i_g__ (1-993, _

' r_1994),_and Ostaszewski (_l9_93f)‘. This article Vcontinuesithat linetof research providing an
overview of pattern recognition techniques arid"usin'g"the-n_1 ii1‘clu'ster'-i'r1'g for risk_ a.r1i:l' ‘

- -clairns classification. The clas§ic'c'lustei"ing problem if groujiifigftowns i'nto'rating.’_territo+ "
' Vries (DuMou'chel,'1983;- Conger, __'1987),-is revisited using: ‘these fu'zzy_rnethods_and'—1987'

through 199.0 Massachusetts automobile_.i_ns_ur_an'ce data.-The new-problem of classifying —. ,
claims in terms of suspected fraud is a1so_addressed_using. these same fuzzy methods and
data drawnfrom a study of 1989 bodily injury liability {claims in Massachusetts., _

“ ' Ifitfétiusiifiiiitn

In '-1'96-1', -Eilsberg presented the following-paradox. experiment -was

designed with two urns,-each containing 100-balls,‘ of which the first one was

known to contain'50-red-balls and 50 black ba1l’s§=whi1e no further'infor1natio'1_1
was giveniaboul: the contents‘ of the otl1er'i1rn. If asked to bet on the‘c'olor of

a ball drawn?-from one": of the urns, most people ‘were found ’-_indiffer¢ent"a's- to

which color they would choose no matter whether: the 5ball was drawn: from the

first or the second -On-the -other hand; Ellsberg found that if people‘ 5were

asked which -‘uni they would prefer to usepfotf betting on either-color; they.

Richard A. Derrig is Senior Vice President of the Autdmobile Insurers Bureau of Massachué
setts ‘and Vice President—Reseamh for the Insurance Fraud Bureau of Massachusetts. Krz-ysztof

Ostaszewski is Associate.Profcssor-of-Mathematics and Actuarial Program Director at the Univer~

sity_of_Louisvil1e. . i _- I _ — t ;_ _ _, - - -,

Kizysztof Ostaszewski has worked on this project at the University of Louisville with financial
support from the Actuarial Education and Research Fund, and support from AERF is grateful-

1y acknowledged. The authors thank Jeff Strong and Robert Roesch of the Automobile Insurers '
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_ and arrive at theeconclusions"thtat-I fl1'ere’are' two'mairf typesof uncertainty, cap-

sented vagueness of observationss, humanperceptions, and interpretations,

'set,.theory.'(‘FSTI')-. This field: of applied mathematics has become a-_d_yna'mic_

448 ‘The Journal of Risk and Insurance

consistently favored the first um (no matter what color they were asked to bet
on). .

What seems to be present in this experiment is the participants’ perception i
of uncertainty. When we say “uncertainty,” the usualassociation is with “prob-
ability.” The Ellsberg paradox illustrates that some other formof uncertainty F
can indeed exist. Probability theory provides no basis for the outcome of the

Ellsberg experiznent. 0 - e

Klir and Fo1gl,r:(l_9-‘88).._ analyze_ the semantic acontexti oftlie term “uncertain"

tured by the terms “vagueness? and"‘arnbiguity.” Vagueness is associated with

the difficulty of"making sharp orprecise distinctions among objects. “Ambigu-
ity” is caused by situations where the choice between two or more alternatives

is unspecified. The basic set of axioms ofprobability theory originating from
Kolmogorov, rests on the assumption that the outcome of a random event can_
be observed and identified with -precision. Any vagueness of observation is
considered negligible, or not significant topthe construction of the theoretical
model. Yet one caI_111'0_t escape the [conclusion that forms_ of uncertainty repre-

are missing from probabilisticmodels, which: equate uncertainty with random’-
ness i(i.te.,- a sophisticated version of «ambiguity).' '_ 7 - 0 V a

Several reasons ‘may exist for wanting to search‘ for models of a__form of
uncertainty other than randomness. One is that vagueness is unavoidable.’ Giv:—
en imprecision of natural language, or perception of the phenomena
observed, vagueness becomes a major factor in any attempt to model or predict-
the coursetof events.,But-there is more. When the .. phenomena observed be-
come so complex that exact-iineasurement involving all‘ features considered
significant would be impossible,‘ or_.longer than economically: feasible for
study, mathematical precision is often abandonediinc favor -of more workable

simple,- but vague, “common sen_se’_’ models. Thus, complexity of the problem
may be another cause_-of vagueness. : - , _ -

These reasons.were thezdriving force behind the develop‘men,t.of. the fuzzy

 

research and applications field, with success stories ranging from a fuzzy logic
rice cooker to an artificial intelligence in control of Japan’s Sendai subway
system. The main idea of fuzzy set theory is to -propose a model of uncertainty
different from that given by probability, precisely because a different form-of
uncertaintyisbeing modeledf - _' . M j- - , -

Fuzzy set theory was created in -Zadeh’s (1965) historic article. To present
this basic idea, recall that a characteristic fimction of a subset E of a universe
of discou‘rse'U is defined as ‘ ' l ' E ' E

.--- . E Iif I-E
A7580‘) = {0 if E,

' In other words, the characteristic function describes the membership ofan _
element x in a set E. It equals one if x is a member of E, and zero otherwise.
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Fuzzy Techniques of Pattern'Recognition in Risk ‘and Claim Classification 449'

Zadeh challenged the idea that membership in all sets behaves -in the man4
ner described above. -One example would be the set of “tall people.” We con-‘
sistently talk about the set of “tall people,” yet understand that the concept
used. is not precise. A person who is 5"11" is tall only to a certain degree, and

yet such a person is not “not tall.”' Zadeh writes, ' ‘ '

The notion of fuzzy set provides a convenient point of departure for the_ construction

of a conceptual framework which parallels in many respects the framework used in -
' the case of ordinary sets, but is more general than the latter and, potentially, may ' '

prove to have a much-wider scope of applicability, particularly in the fields of pat- ,
tern classification and information processing, Essentially, such a framework pro-= _

vides a natural way of dealing with problems in which the source of imprecision is _
the absence of sharply defined criteria of class membership rather than the presence__
of "random variables._ ' " ' ' h

In the fuzzy set theory, membership of an element in a set is described by
the membership function 'of“the set.'I‘f U"is tlieiuiiverseof discourse, and E" is

_a, fuzzy subset of U, the membership function ].1-,3:lLl-—>[_(_),.1] assigns to every‘
element x in the set Iii its degree of membership pE(ir)_. We write either (E,}1Ee)f
or E~ for that fuzzy set, to distinguish from the standard set notation E. The.
membership function is a .generalization of the characteristic _function,of arr

ordinary set. Ordinary sets are termed crisp sets in fuzzysets theory. They are

considered a special case—a, fuzzy setaiscgrlsp if, and only if, its membership
function does not have fractional values, '

 
 On the basis ofthis definition, one_then.de.velops such concepts asset

retic operations on fuzzy sets (union, intersection, etc.),_a_s well as the notions
of fuzzy numbers, fuzzy relations, fuzzy ari_th_me_tic,i and approztimate reasoning '
(known popularly as“fuzzy l0,gic”).:Pa_ttem recognitio,n,_or_the search for
structure in data, provided the early impetus for deve1o_pinggFS'.l‘ becauseof
fundamental involvement of human perception (Dubois and Prade, l9_.8Q)_ and
the inadequacy of standard mathematics" to deal ‘with compleqg. and ill-defined
systems (Bezdek and Pal,‘ 19.92). The formal development began with. Zadeh
(196_-_5_)i'int1ioducing the principal concepts of FS_T. Acomplete presentation of . i
FST is "provided in Zimmennan (1991). , . ,_ _;

The first recognitionof _FST applicability to the problem of insurance._under¥
is due to DeWit (1982). Lernaire (1990) sets out a more extensive

agenda for FST in insurance theory, most.,not_ably in the financial aspects
the business._ Under the auspices of the Society of Actuaries,_Osta'sze_wski
(1993) assembled a large number of possible applications of fuzzy set theory
in actuarial science. His presentation-includes such areas as'.econorni_cs of rislc,
time value of money, individual and collective models or risk, classification,
assumptions, conservatism, and adjustment. and Deirig ('_19,93, 1994)
complement that work by exploringrrapplications of fuzzy sets to property-_
liability insurance, forecasting: and pricing p_r_ob1em_s., H ', _ _, .

Here, we present a method of flizzyipattern rccovgnitionrfor risk,pa._nvd claims

 
classification. We applygfuzzy patt_e1jn.re_cognition to two problems in Massa} _
chusetts private passenger automobile insurance: defining rating territories and

classifying claims with regard to their suspected fraud content. Dubois and
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gfication re‘sts‘on the "fact'th'at most real-*v'vor1d*cIasses are ifiizzy in-natars.'* 'I_‘h'is

‘The designer 'may"choose"fror_ri among-syntactic, numeric'a'1, contextual, rule-

_ the classification of -B-ezdek and Pal (1:9_9_2)',i it can be described ‘as ‘ta numerical

450 _ M ._ M - ,_-T.{ze;Jourfnpal of Risk and -Insurance

Prade (1930), Bezdek (1981), and Kandel(1982)__p_1:ovide-oyerviews of fuzzy
techniques p'in.pa_tten1 recognition. Zimmerman -(1991) and Bezdelg and Pal
(1992) provide other valuable references on the subject, it p . .;_ .

M Tl1e._concept_of a fuzzy set_-and_ the_mat_her_natical a1gorithrns_ ineededtto-:-irn;
plement classification using fuzzy techniques._is-describedin the next section.
Grouping towns in Massachusetts into rating territories for risk [classification
purposes is viewed asa'_'fuzzy clustering ‘problein becauseniany "town's" can be
strongly're_Ia'ted to tp\_ivo,.orfmorei_territo1ies, thereby creatingjavhordcr problem:
to which of several related territories should a town be assigned.~We also
explore the--influenceof geographical--proximityr on the‘ resulting..fuzz-by territo-
ries and classification -of-claims by their suspected fraudulent-'content.“A final

section summarizes’and"-providessome alternatiiie ‘directions for
FST in risk and claims classification problems. i '

7.] 7A1”g.ofrit!i!sS.£9?eF!iiériCié§éifi¢étisiILiL g 1 “

" i L¢maae'c1990) Ostaszeitrski (1993) point out that :insu‘rance*r'isk=-ciassi= .
fication often resorts ‘either to vague‘ rnethods_—”asi in the case of using niii1tiple- t
ill-’c_lefi'netl»pe"rsonal criteria-_'to identify "good‘ ti: methods

that are_ezces§iye1y precise'%4—as'i11‘the"case ofa person ‘who to-classify as"
apreferred iriis’l'c*for life‘ insurance application beeausethis‘ or her body ‘weight
eirceeds the stated Iiniit by'ha]f ‘a pound. Kandel (-‘li98'2),'w‘17'i'ti'r‘1g f1‘orr1'a' differ-
ent perspective, says: A “In a very fimdamentaI’w"ay; the"intirna'te - relation be—'-
tween t_lIe';th'eory”of fuzzy sets‘ and the theory of pattern recognition and ciassi- _

 

isjexactly t11e'reason" that we propose to utilize"-the n1ethodoio'gy'of 'fiizzy;clu'sf—
te_r'in'g- in‘ ‘tenitoiial-"cl’as'sification to e_XteI'1d= that method ‘to“-_‘-classifyinitgj
c1‘a'ir'I1s_fo'r susPi‘:§3tecl”fraud. ' "i . ' 0“ * 4-
j Kaindel (1"9's-2) classifies" irariousi te'ch‘niques”of_ fuzzy pattern ireéiogifitioii.
Syntactic: ‘techniques’ apply "When the pattern 3sojtight' "is" related . toithe” ‘foirnal
structure of tl1e'languag'e.-Seimémtic techniques’Aapply‘to’tiiose "producing fuzzy
partitions‘ of data sets.‘-According: to‘ Eezdek and ‘Pal-"('ip992);' are first choice
faced by a pattern recognition system designer‘ is 'that”of process description; '

 

based,’ hybrid," and‘ fi1zz'y- prdeess descriptions." Feature e'analysis_’-‘is theinext
design"step,j in Which‘ (generally given iniithe -form of -a data" vector-*co'r'1"—

inforrn‘ati'o'n- "about the analyzed objects) r'nay'”be ‘s1'ibjected"to p‘repi‘o‘4
cessing, displays, and extraction. Next, semantic clustering a1g‘orithms,‘genei'ati
' g actuaI‘sti1ictu£res data, are”3idei1'tified. Finally, the designer 4-addresses
ciiiste*r'irL'3ilidity and__opti'rna1ity.' _ 7 s T‘ " T

 

- We use a fuzzy pa-ttern‘ recogriition 'tec‘hni'que‘ given" by Bezdek _(19’s1)-: In

process description, fuzzy c-means iterative semantic algoritiin-1.‘_'Becaiise the
data We analyze 'are’in'the' form of numerical vectors (i:e:, vectors- in a-e’1iclide—
an space), with'a11um'ber of clusters sou_ght'predeterr'nii1ed, we "consider ‘the

I-,  
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