SPRS030A - APRIL 1995 - REVISED APRIL 1996

- Powerful 16-Bit TMS320C5x CPU
- 20-, 25-, 35-, and 50-ns Single-Cycle Instruction Execution Time for 5-V Operation
- 25-, 40-, and 50-ns Single-Cycle Instruction Execution Time for 3-V Operation
- Single-Cycle 16 × 16-Bit Multiply/Add
- 224K × 16-Bit Maximum Addressable External Memory Space (64K Program, 64K Data, 64K I/O, and 32K Global)
- 2K, 4K, 8K, 16K, 32K × 16-Bit Single-Access On-Chip Program ROM
- 1K, 3K, 6K, 9K × 16-Bit Single-Access On-Chip Program/Data RAM (SARAM)
- 1K Dual-Access On-Chip Program/Data RAM (DARAM)
- Full-Duplex Synchronous Serial Port for Coder/Decoder Interface
- Time-Division-Multiplexed (TDM) Serial Port
- Hardware or Software Wait-State Generation Capability
- On-Chip Timer for Control Operations
- Repeat Instructions for Efficient Use of Program Space
- Buffered Serial Port
- Host Port Interface

- Multiple Phase-Locked Loop (PLL) Clocking Options (×1, ×2, ×3, ×4, ×5, ×9 Depending on Device)
- Block Moves for Data/Program Management
- On-Chip Scan-Based Emulation Logic
- Boundary Scan
- Five Packaging Options
 - 100-Pin Quad Flat Package (PJ Suffix)
 - 100-Pin Thin Quad Flat Package (PZ Suffix)
 - 128-Pin Thin Quad Flat Package (PBK Suffix)
 - 132-Pin Quad Flat Package (PQ Suffix)
 - 144-Pin Thin Quad Flat Package (PGE Suffix)
- Low Power Dissipation and Power-Down Modes:
 - 47 mA (2.35 mA/MIP) at 5 V, 40-MHz Clock (Average)
 - 23 mA (1.15 mA/MIP) at 3 V, 40-MHz Clock (Average)
 - 10 mA at 5 V, 40-MHz Clock (IDLE1 Mode)
 - 3 mA at 5 V, 40-MHz Clock (IDLE2 Mode)
 - 5 μA at 5 V, Clocks Off (IDLE2 Mode)
- High-Performance Static CMOS Technology
- IEEE Standard 1149.1[†] Test-Access Port (JTAG)

description

The TMS320C5x generation of the Texas Instruments (TITM) TMS320 digital signal processors (DSPs) is fabricated with static CMOS integrated circuit technology; the architectural design is based upon that of an earlier TI DSP, the TMS320C25. The combination of advanced Harvard architecture, on-chip peripherals, on-chip memory, and a highly specialized instruction set is the basis of the operational flexibility and speed of the 'C5x[‡] devices. They execute up to 50 million instructions per second (MIPS).

The 'C5x devices offer these advantages:

- Enhanced TMS320 architectural design for increased performance and versatility
- Modular architectural design for fast development of spin-off devices
- Advanced integrated-circuit processing technology for increased performance
- Upward-compatible source code (source code for 'C1x and 'C2x DSPs is upward compatible with 'C5x DSPs.)
- Enhanced TMS320 instruction set for faster algorithms and for optimized high-level language operation
- New static-design techniques for minimizing power consumption and maximizing radiation tolerance

DOCKE.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TI is a trademark of Texas Instruments Incorporated.

[†] IEEE Standard 1149.1–1990, IEEE Standard Test-Access Port and Boundary-Scan Architecture

‡ References to 'C5x in this document include both TMS320C5x and TMS320LC5x devices unless specified otherwise.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments		Copyright © 1996, Texas Instruments Incorporated
---	---------	--

Progressive Exhibit 2018 Liberty Mutual v. Progressive

Find authenticated court documents without watermarks $GB\underline{M2013H00009m}$.

SPRS030A – APRIL 1995 – REVISED APRIL 1996

description (continued)

Table 1 provides a comparison of the devices in the 'C5x generation. It shows the capacity of on-chip RAM and ROM memories, number of serial and parallel I/O ports, execution time of one machine cycle, and type of package with total pin count.

	ON-CHIP MEMORY (16-BIT WORDS)								
TMS320 DEVICES	DARAM		SARAM	ROM		PORTS			PACKAGE
	DATA	DATA + PROG	DATA + PROG	PROG	SERIAL	PARALLEL [†]	(V)	(ns)	QFP [‡]
TMS320C50	544	512	9K	2K§	2	64K	5	50/35/25	132 pin
TMS320LC50	544	512	9K	2K§	2	64K	3.3	50/40/25	132 pin
TMS320C51	544	512	1K	8K§	2	64K	5	50/35/25/20	100/132 pin
TMS320LC51	544	512	1K	8K§	2	64K	3.3	50/40/25	100/132 pin
TMS320C52	544	512	-	4K§	1¶	64K	5	50/35/25/20	100 pin
TMS320LC52	544	512	-	4K§	1¶	64K	3.3	50/40/25	100 pin
TMS320C53	544	512	ЗK	16K§	2	64K	5	50/35/25	132 pin
TMS320LC53	544	512	ЗK	16K§	2	64K	3.3	50/40/25	132 pin
TMS320C53S	544	512	ЗK	16K§	2¶	64K	5	50/35/25	100 pin
TMS320LC53S	544	512	ЗK	16K§	2¶	64K	3.3	50/40/25	100 pin
TMS320LC56	544	512	6K	32K	2 #	64K	3.3	35/25	100 pin
TMS320LC57	544	512	6K	32K	2 #	64K + HPI∥	3.3	35/25	128 pin
TMS320C57S	544	512	6K	2K§	2 #	64K + HPI	5	50/35/25	144 pin
TMS320LC57S	544	512	6K	2K§	2 #	64K + HPI	3.3	50/35	144 pin

Table 1. Characteristics of the 'C5x Processors

[†] Sixteen of the 64K parallel I/O ports are memory mapped.

= QFP = Quad flatpack

§ ROM boot loader available

¶ TDM serial port not available

Includes auto-buffered serial port (BSP) but TDM serial port not available

|| HPI = Host port interface

DOCKE.

RM

Δ

Pinouts for each package are device-specific.

SPRS030A - APRIL 1995 - REVISED APRIL 1996

NOTE: NC = No connect (These pins are reserved.)

DOCKE

R

Μ

Δ

Lia

Find authenticated court documents without watermarks at docketalarm.com.

SPRS030A – APRIL 1995 – REVISED APRIL 1996

Pin Functions for Devices in the PQ Package

SIGNAL	TYPE	DESCRIPTION			
	PARALLEL INTERFACE BUS				
A0-A15	I/O/Z	16-bit external address bus (MSB: A15, LSB: A0)			
D0-D15	I/O/Z	16-bit external data bus (MSB: D15, LSB: D0)			
PS, DS, IS	O/Z	Program, data, and I/O space select outputs, respectively			
STRB	I/O/Z	Timing strobe for external cycles and external DMA			
R/W	I/O/Z	Read/write select for external cycles and external DMA			
RD, WE	O/Z	Read and write strobes, respectively, for external cycles			
READY	I	External bus ready/wait-state control input			
BR	I/O/Z	Bus request. Arbitrates global memory and external DMA			
	-	SYSTEM INTERFACE/CONTROL SIGNALS			
RS	I	Reset. Initializes device and sets PC to zero			
MP/MC	I	Microprocessor/microcomputer mode select. Enables internal ROM			
HOLD	I	Puts parallel I/F bus in high-impedance state after current cycle			
HOLDA	O/Z	Hold acknowledge. Indicates external bus in hold state			
XF	O/Z	External flag output. Set/cleared through software			
BIO	I	I/O branch input. Implements conditional branches			
TOUT	O/Z	Timer output signal. Indicates output of internal timer			
IAQ	O/Z	Instruction acquisition signal			
IACK	O/Z	Interrupt acknowledge signal			
INT1-INT4	I	External interrupt inputs			
NMI	I	Nonmaskable external interrupt			
		SERIAL PORT INTERFACE (SPI)			
DR	I	Serial receive-data input			
DX	O/Z	Serial transmit-data output. In high-impedance state when not transmitting			
CLKR	I	Serial receive-data clock input			
CLKX	I/O/Z	Serial transmit-data clock. Internal or external source			
FSR	I	Serial receive-frame-synchronization input			
FSX	I/O/Z	Serial transmit-frame-synchronization signal. Internal or external source			
TDM SERIAL-PORT INTERFACE					
TDR	I	TDM serial receive-data input			
TDX	O/Z	TDM serial transmit-data output. In high-impedance state when not transmitting			
TCLKR	I	TDM serial receive-data clock input			
TCLKX	I/O/Z	TDM serial transmit-data clock. Internal or external source			
TFSR / TADD	I/O/Z	TDM serial receive-frame-synchronization input. In the TDM mode, TFSR/TADD is used to output/ input the address of the port.			
TFSX/TFRM	I	TDM serial transmit-frame-synchronization signal. Internal or external source. In the TDM mode, TFSX/TFRM becomes TFRM, the TDM frame synchronization.			

LEGEND:

I = Input

DOCKET

RM

Δ

O = Output

Z = High impedance

Find authenticated court documents without watermarks at docketalarm.com.

SPRS030A - APRIL 1995 - REVISED APRIL 1996

Pin Functions for Devices in the PQ Package (Continued)

EMULATION/IEEE STANDARD 1149.1 TEST ACCESS PORT (TAP)			
TDI	I	TAP scan data input	
TDO	O/Z	TAP scan data output	
TMS	I	TAP mode select input	
ТСК	I	TAP clock input	
TRST	I	TAP reset (with pulldown resistor). Disables TAP when low	
EMU0	I/O/Z	Emulation control 0. Reserved for emulation use	
EMU1/OFF	I/O/Z	Emulation control 1. Puts outputs in high-impedance state when low	
CLOCK GENERATION AND CONTROL			
X1	0	Oscillator output	
X2/CLKIN	I	Clock/oscillator input	
CLKIN2	I	Clock input	
CLKMD1, CLKMD2	I	Clock-mode select inputs	
CLKOUT1	O/Z	Device system-clock output	
POWER SUPPLY CONNECTIONS			
V _{DDA}	S	Supply connection, address-bus output	
V _{DDD}	S	Supply connection, data-bus output	
VDDC	S	Supply connection, control output	
V _{DDI}	S	Supply connection, internal logic	
VSSA	S	Supply connection, address-bus output	
VSSD	S	Supply connection, data-bus output	
VSSC	S	Supply connection, control output	
V _{SSI}	S	Supply connection, internal logic	

LEGEND:

DOCKET

Δ

I = Input

O = Output

S = Supply

Z = High impedance

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

