${ }_{\text {(2) }}$ UK Patent Application
 (19) GB
 (11) 2143978 A

(43) Application published 20 Feb 1985
(21) Application No 8319438
(22) Date of filing 19 Jul 1983
(71) Applicant

William David Devine,
40 Rostherne Road, Sale, Cheshire M33 2RX
(72) Inventor

William David Devine
(74) Agent and/or Address for Service
\mathbf{M}^{\prime} Caw $\&$ Co,
41-51 Royal Exchange, Cross Street. Manchester M2 7BD
(51) $1 \mathrm{NT} \mathrm{CL}{ }^{3}$

B60K 28/00 G08B 19/00
(52) Domestic classification

G4N 1P $1 \times 2 A$ 4E 5A 5B 5C1 6E CA
U1S 1820 G4N
(56) Documents cited

GB A 2119574 GB A 2115196 EP A 0011087
(58) Field of search

G4N

(54) Vehicle safety device

(57) A vehicle safety device comprises a switch (18) controlled sensor (10) operable to detect the movement due to fatigue, illness or the like of a vehicle driver from a normal driving position, and to activate a warning device ($11,12,13$) either audible (11) and/or visual $(12,13)$. If the normal position is restored within a predetermined time the sensor (10) detects this and deactivates the warning device (11,12,13). If not the clutch (22) may be disengaged, vehicle brakes (15,17) applied, and/or engine stopped by interruption of fuel supply (27) or electrical supply (24). A programmable activating device (48) for the solenoid operated locks (47) of the vehicle (43) may immobilise the vehicle (43) and/or activate the warning device ($11,12,13$), the activating device (48) being operable in response to selection of predetermined digits stored in a memory of the activating device (48).

The drawings originally filed were informal and the print here reproduced is taken from a later filed formal copy.
The riaims ware filed later than the filing date within the neriod nerescribed bv Rule 25/1) of the Patents Rules 1982.

2143978

Page 001775

2143978

Page 001776

2143978

SPECIFICATION

Vehicle safety device

5 This invention relates to vehicle safety devices.

Many accidents occur as a result of a driver of a vehicle losing control of that vehicle due to a personal disability such as a heart attack,
10 dizziness, fainting, sleep or the like or due to a vehicle disability such as brake or steering failure. In many instances of personal disability, and in most cases of vehicle disability, there is little or no warning of the onset of the
15 trouble, which can occur at any time. It is an object of the present invention to provide means whereby the repercussions usually associated with the occurrence of any of the abovementioned disabilities are avoided or at
20 least substantially mitigated.
The invention provides a vehicle safety device comprising a warning device, and a sensor operable to detect the movement of a vehicle driver from a normal driving position vice.
The warning device may comprise an audible and/or a visual warning device. In the former case it may comprise a horn of the
30 vehicle or an independent audible device. In the latter case it may include hazard warning flashing lights and/or rear braking indicator lights.
The sensor may also be operable to interrupt the normal driving operation of the vehicle, and may be operable to apply braking to the vehicle and/or interruption of the vehicle driving system. In the former case the braking may be effected by a normally driver prated braking system or by braking means independent of the normally driver operated system. In the latter case the interruption of the vehicle driving system may be by disengagement of a clutch and also by stopping the engine, for example, by interruption of fuel flow to the engine or by interruption of the ignition circuit.
The sensor may be operable to interrupt the normal driving operation of the vehicle a
50 predetermined period after initiating operation of the warning device. The sensor may also be operable to detect the movement of the vehicle driver back into a normal driving position and to cause cessation of operation of the
55 warning device and non-interruption of the normal driving operation of the vehicle.
A plurality of sensors may be provided, each operable to detect the movement of a respective part of the vehicle driver from its
60 normal position during driving different from that part of the vehicle driver whose position is sensed by the or each other sensor. In this case operation of the warning device may be effected only in response to signals from all of

Switch means may be provided whereby said sensor or sensors may be in an operational or non-operational condition. The switch means may be operable by an ignition circuit of the vehicle, or by movement of a handbrake lever to brake-off position.

By means of the invention it is believed that loss of life, serious injury and damage to vehicles and other property as a result of the occurrence of a personal or vehicle disability can be prevented or substantially mitigated. However, another cause for concern is that of the number of vehicles stolen or otherwise taken without the owner's consent. It is provide means whereby such theft or unauthorised removal may be prevented or the risk thereof substantially reduced.

The invention provides a vehicle safety de5 vice comprising vehicle locking means and actuating means therefor, said actuating means being operable to activate said vehicle locking means and to interrupt the normal driving operation of the vehicle. The normal
agemen a clutch of the vehicle and/or by prevention of fuel and/or ignition supply to the engine. The vehicle safety device may also include a warning device and a second actuating means operable to activate said warning device, ing device. Said second actuating means may be operable in response to opening of said vehicle whilst said vehicle locking means is actuated.

Preferably said actuating means is operable in response to the selection of a predeter-
in response to the selection of a predeter-
mined plurality of digits, and said actuating means may include a programmable device having memory means in which said predeter-

> Embodiments of safety device in accordance Embodiments of safety device in accordance
with the invention will now be described with reference to the accompanying drawings in which:-

Figure 1 is a schematic layout of a first embodiment,

Figure 2 is a schematic layout of a second embodiment,

Figure 3 is a schematic perspective view of
120 part of a vehicle inporating the safety device of Fig. 1 or Fig. 2,

Figure $3 a$ is a scrap section of the steering wheel of Fig. 3, and

Figure 4 is a schematic perspective view of
125 a vehicle incorporating a third embodiment of safety device.

Referring now to Fig. 1 there is shown a sensor 10 which when activated causes operation of warning devices in the form of a horn driving operation of the vehicle may be interrupted by engagement of brakes to the vehicle and/or interruption of the vehicle driving system. Interruption of the vehicle driving system may be by disengagement of a clutch operable to activate said warning device, having memory means in which said predeter-
mined plurality of digits may be stored. Fig:-

[^0]rear braking indicator lights 13 of a vehicle (not shown). In order that there may not be an undue drain of the vehicle's battery (not shown) the sensor 10 provides a pulsed signal
5 to the warning devices 11,12 and 13 so that these devices operate intermittently. The sensor 10 is operable to detect movement of a driver of the vehicle from a normal driving position but is only operable when a switch
1018 is switched to an on-position by movement of the hand-brake lever 14 to the brakes-off position. In this way activation of the warning devices 11, 12, 13 is prevented when the driver gets out of the vehicle or simply moves
15 about whilst the vehicle is parked. As an alternative the sensor 10 may be operable only when the ignition circuit of the vehicle is switched on, or for added security when both handbrake lever 14 is in the brakes-off posi-
20 tion and the ignition circuit of the vehicle is switched on.

If the movement of the driver from his normal driving position is due to drowsiness, he may be aroused by the operation of the
25 horn 11 and/or by an indicator light (not shown) usually provided on the dashboard of the vehicle to indicate operation of the hazard warning lights. In such circumstances he will probably return rapidly to the normal driving position, in which case the sensor 10 will sense the same and cease activation of the warning devices $11,12,13$. By this means an accident as a consequence of the drowsiness of the vehicle driver may be avoided.
If the driver does not return to the normal driving position within a predetermined time interval, for example 2 second, the sensor 10 is then operable to interrupt the normal driving operation of the vehicle. In this case the
40 sensor 10 causes activation of a stepping motor 19 to apply the front and rear brakes 15,17 . The stepping motor 19 is connected to the piston (not shown) of the master cylinder 20 and brake fluid reservoir by means of
45 a screwed and slotted shaft 26 whilst the lever carrying the brake pedal 16 is slidable in the slot of shaft 26. By this means rotation of the shaft 26 by stepping motor 19 does not affect the position of brake pedal 16 and
50 operation of the brake pedal 16 does not affect the shaft 26 or stepping motor 19. A brake servo unit 25 of conventional form and having a vacuum inlet 23 may be provided as shown if required.
55 At the same time the sensor 10 is operable to open circuit a relay 24 in the ignition circuit of the vehicle and/or close a valve 27 to interrupt the fuel supply to the engine in . the case of petrol driven engines, or close
60 valve 27 to interrupt the fuel supply to the engine in the case of diesel engined vehicles.
In addition, the sensor 10 energises a solenoid 28 to open a valve 21 in a hydraulic fluid supply line 29 from the master cylinder
6520 to the clutch operating cylinder 22 ,
thereby causing disengagement of the clutch. Such disengagement of the clutch would not occur on normal operation of the brake pedal 16 since valve 21 would be closed.
By means of the above, if the driver does not return to his normal driving position a predetermined time after actuation of the warning devices $11,12,13$, the vehicle is brought to rest with the brakes 15,17 on, the engine stopped and clutch disengaged.
Referring now to Fig. 2 there is shown an arrangement which is similar in many respects to that shown in Fig. 1 and like parts are indicated by the same reference numerals in
80 the two cases. In the case of the embodiment of Fig. 2 the brakes 15, 17 are applied normally by means of brake pedal 16 operating through brake servo unit 25 and master cylinder 20 and the clutch disengaged nor-
85 mally by operation of the clutch cylinder 22 under pressure in the normal hydraulic fluid supply line 31. However, in each hydraulic fluid supply line 32 to the brakes 15, 17 and line 31 to the clutch cylinder 22 is provided a
90 separator valve 30 . Each valve 30 comprises a cylinder having inlets at opposed ends thereof and an outlet disposed centrally, and a valve member slidable within the cylinder so as to seal a low pressure inlet and provide a
95 fluid flow path between the outlet and a high pressure inlet. One of the inlets is connected to a normal supply line 32 or 31 whilst the other inlet is connected to an auxiliary supply line 33. The outlet is connected to a brake 15
100 or 17 or the clutch cylinder 22 as appropriate. By this means operation of the normal brake or clutch mechanisms does not affect the fluid in the auxiliary supply system and vice-versa. The auxiliary supply system comreservoir 34 to which the auxiliary supply line 33 is connected. The auxiliary supply system is activated by the sensor 10 a predetermined time interval after activation of the warning
110 devices 11, 12, 13 as in the previous embodiment, and interruption of the fuel supply to the engine and/or open circuiting of the ignition circuit may occur as described in respect of the previous embodiment.
115 Referring now to Figs. 3 and 3a there is shown two sensors 10 a and 10b. As previously mentioned the sensors $10 a, 10 b$ are only operable when the switch 18 is switched to the on position by means of handbrake
120 lever 14 being moved to the brake-off position shown in Fig. 3. Sensor 10a is located in the back of the driver's seat 35 and is responsive to pressure thereon by the driver when he is in a normal driving position. To avoid actuasensor $10 a$ in the devices 11 , 12, 13 by sensor $10 a$ in the event that a driver leans forward deliberatly whilst driving, a second sensor $10 b$ is provided in the steering wheel 36. Only when both sensors $10 a$ and 10b

130 detect movement of the driver from his nor-
mal driving position are the warning devices 11, 12, 13 activated. The sensor $10 b$ comprises sensor strip contacts 37, 38, contact 37 being secured to the core 39 of the wheel
536 whilst contact 38 is embedded in a resiliently flexible outer sheath 40.

So as to avoid either unduly harsh braking when a vehicle is moving slowly or insufficient braking when the vehicle is moving at high
10 speed the braking effort applied to the vehicle may be dependent upon the vehicle's speed. For this purpose a speed sensor 41 incorporated in the speed indicator 42 of the vehicle is connected in circuit with the sensor 10. The
15 speed sensor 41 comprises a potentiometer operable so that at high speed a relatively large current output from sensors 10 and 41 is transmitted to the stepper motor 19 or auxiliary master cylinder 34 to provide heavy
20 braking, whilst at low speed a relatively small current output is transmitted to provide only light braking.

Referring now to Fig. 4 there is shown a vehicle 43 of conventional form having a
25 bonnet 44, doors 45 and boot 46, each of which has a solenoid operated lock 47. All of the locks 47 are operated by a programmable controller 48 located within the vehicle 43, for example under the bonnet 44 as shown in
30 Fig. 4. Mounted on the side of vehicle 43 is a keyboard 49 connected with the controller 48 and the controller 48 is programmed so that the input of a predetermined selection of digits on the keyboard 49 causes unlocking of
35 locks 47 whilst the input of any other selection of digits activates one or more of the warning devices $11,12,13$, in particular the horn 11 and hazard warning flashing lights 12. Such an arrangement is preferably addi-

40 tional to the conventional key-operated locks so that the vehicle may be used by persons other than the owner, for example at a garage during servicing or repair, without revealing the predetermined digit selection. To facilitate
45 such security a module, programmed by the vehicle owner himself may be inserted in the controller 48 after purchase of the vehicle so that only the vehicle owner can known the correct digit selection. By this means vehicle
50 theft may be prevented or the risk thereof substantially reduced, possibly leading to lower insurance premiums for the vehicle owner.
The solenoid operated locks 47 are prefera-
55 bly of the mechanically latched type so that there is no undue loss of current to run down the vehicle's battery.

CLAIMS

1. A vehicle safety device comprising a warning device and a sensor operable to detect the movement of a driver of a vehicle from a normal driving position and to initiate operation of said warning device in response
65 to such movement.
2. A vehicle safety device according to claim 1 wherein said warning device comprises audible warning means.
3. A vehicle safety device according to claim 1 or claim 2 wherein said warning
4. A vehicle safety device according to any one of claims 1 to 3 wherein said sensor is operable to interrupt the normal driving movement.
5. A vehicle safety device according to claim 4 wherein said sensor is operable to interrupt the normal driving operation of a
80 vehicle a predetermined period after initiating operation of said warning device.
6. A vehicle safety device according to claim 5 wherein said sensor is operable to detect the return movement of a driver of a vele to a normal driving position and to cause cessation of operation of said warning device and non-interruption of the normal driving operation of a vehicle in response to said return movement.
7. A vehicle safety device according to any one of claims 4 to 6 comprising a plurality of sensors, each operable to detect the movement of a respective part of a driver of a vehicle from its normal driving position differpos tion is sensed by the or each other sensor.
8. A vehicle safety device according to claim 7 wherein operation of said warning device is effected only in response to signals
9. A vehicle safety device according to any one of claims 4 to 8 comprising switch means operable to put said sensor or sensors in an operational condition.
10. A vehicle safety device according to claim 9 when fitted to a vehicle having an ignition circuit wherein said switch means is operable on activation of said ignition circuit.
11. A vehicle safety device according to claim 9 or claim 10 when fitted to a vehicle having a hand operated brake means wherein said switch means is operable on release of said hand operated brake means.
12. A vehicle safety device according to 115 any one of claims 1 to 11 comprising vehicle locking means and actuating means therefor, said actuating means being operable to actuate said vehicle locking means and to interrupt the normal driving operation of a vehicle.
13. A vehicle safety device according to claim 12 wherein said locking means comprises a plurality of solenoid operated locks.
14. A vehicle safety device according to claim 13 wherein each of said locks has a in a locked position after actuation of said solenoid thereof.
15. A vehicle safety device according to any one of claims 12 to 14 comprising an activating device operable to initiate operation
of said warning device in response to opening of said vehicle whilst said locking means is actuated.
16. A vehicle safety device according to

5 any one of claims 12 to 15 wherein said actuating means is operable in response to the selection predetermined plurality of digits.
17. A vehicle safety device according to claim 16 wherein said actuating means com-
10 prises a programmable device having memory means in which said predetermined plurality of digits may be stored.
18. A vehicle safety device according to any one of claims 4 to 17 when fitted to a
15 vehicle having brake means wherein said interruption comprises activation of said brake means.
19. A vehicle safety device according to claim 18 comprising a vehicle speed sensor
20 operable to detect the speed of said vehicle and to adjust the activation of said brake means in accordance with the detected speed.
20. A vehicle safety device according to any one of claims 4 to 19 when fitted to a
25 vehicle having a drive transmission operable to drivingly engage drive wheels with an engine of said vehicle wherein said interruption comprises interruption of said drive transmission to disengage said drive wheels from said
30 engine.
21. A vehicle safety device according to claim 20 wherein said drive transmission means includes a clutch and said interruption comprises disengagement of said clutch.
22. A vehicle safety device according to any one of claims 4 to 21 when fitted to a vehicle having an engine and a fuel supply therefor wherein said interruption comprises interruption of said fuel supply to said engine.
23. A vehicle safety device according to any one of claims 4 to 22 when fitted to a vehicle having an engine and an electrical supply therefor wherein said interruption comprises interruption of said electrical supply to 5 said engine.
24. A vehicle safety device according to any one of claims 1 to 23 wherein said sensor is operable to transmit a pulsed signal to said warning device.
$50 \quad 25$. A vehicle safety device substantially as hereinbefore described with reference to and as illustrated in Fig. 1 or Fig. 2, Figs. 3 and 3a, or Fig. 4 of the accompanying drawings.

[^1]U UK Patent Application
(19)
GB
(11) $2225461_{\text {ts }} \mathrm{A}$
(43) Date of A publication 30.05.1990
(21) Application No 8924007.1
(22) Date of filing 25.10.1989
(30) Priority data
(31) 3327
(32) 04.11 .1988
(33) IE
(71) Applicant

Stellar International Limited
(Incorporated in Ireland)
Pan Atlantic House, Quincentennial Drive, Galway, Ireland
(72) Inventors

Anthony O'Donovan Johnstone
Mary Veronica Lonergan
(74) Agent and/or Address for Service

Serleants
25 The Crescent, King Street, Leicester, LE1 6RX, United Kingdom
(51) INTCL

G06F 15/21
(52) UK CL (Edition J)

G4A AUX
U1S S1820
(56) Documents cited

None
(58) Field of search

UK CL (Edition J) No search possible

(54) Computer system for car insurance

(57) The invention provides for computing a range of car insurance premiums in response to data being entered into the computer 2, by means of terminals 3 , in a predetermined data entry format. The entry format and entered data are displayed on the left hand side of a visual display screen 6 simultaneously with the display of premiums on the right hand side of the screen. Specific data fields are provided on the screen for data to be entered and for the premiums. Data is entered sequentially in the data fields, and sub routines control the entry and reading of the data, and validation of the entered data using look-up tables 10 .

Fig 2

216

Page 001785

$$
\text { Fi\& } 4
$$

46

$5 \mid 6$

Fig 6

616

The present invention relates to a method for operating a computer, and in particular for operating a computer to compute premiums of different types of insurance policies for vehicle insurance in response to data being entered into the computer in respect of an individual and a vehicle. The invention also relates to a computer programme operating according to the method of the invention and to a computer operating under the control of the computer programme.

Computers under the control of a computer programme are used to compute premiums for insurance policies in respect of motor vehicles and the like. In general, data in respect of the motor vehicle and the individual, the owner of the motor vehicle is entered into the computer through a keyboard. The entered data is displayed on a visual display screen, normally in a predetermined format and is accordingly entered in that format. Data fields are set aside for each piece of data to be entered and each piece of data is entered in the appropriate data field in response to a cursor appearing at the beginning of the field on the visual displar screen. The premiums for different types of insurance, for example, comprehensiye, third part, fire and theft and the like, are then computed and subsequently displayed on the screen.

Unfortunately. in all cases it has been necessar: to
use a number of pages of data to display all the entered data and the premiums. Thus, one has to switch from page to page on the visual display screen to review the entered data and the premiums. This it will be appreciated causes considerable inconvenience for an individual operating the computer. If the operator is dealing directly with a client while entering the data, after having the premiums displayed on the screen if the operator wishes to check a particular piece of data which has been entered, it is necessary to switch back to another page on the computer screen. This is time consuming and in many cases can lead to embarrassment.

There is therefore a need for a method for programming a computer to compute premiums for vehicle insurance which overcomes these problems. There is also a need for a computer programme operating according to the method of the invention which overcomes the problems of the prior art. Further, there is a need for a computer operating under the control of the computer programme.

According to the invention. there is provided a method for programming a computer for computing the premiums of different trpes of vehicle insurance in response to. data being entered into the computer in a
predetermined data entry format, and displaying the entered data and premiums on a display means, wherein the method comprises the step of displaying the entered data and the premiums simultaneously on the display means, the entered data being displayed in the predetermined data entry format and the premiums also being displayed in a predetermined format. Preferably, the data to be entered comprises details of an individual and of a vehicle to be insured. Advantageously, the data displayed in respect of the premiums includes a plurality of costs for each type of premium based on certain predetermined loadings and reductions.

In one embodiment of the invention, the data entry format together with the entered data is displayed substantially on one side of the display means, and the premiums displayed substantially on the other side of the display means. Preferably, the display means is a visual display screen.

In a further embodiment of the invention, the data to be entered is entered in fields of predetermined lengths and positions in the data entry format.

In a further embodiment of the invention, the methoc comprises the step of validating at least some of ti.i
data entered by comparing a piece of entered data with corresponding data in a look up table and stored in the computer, and if the entered data compares with any of the data in the look up table, displaying the valid status of the entered data on the display means, and in the event of the entered data not comparing with any of the data in the look up table, displaying the invalid status of the entered data on the display means. Advantageously, the method comprises the step of displaying the data in the look up table corresponding to the piece of entered data on the display means in the event of the entered data not comparing with any of the data in the look up table.

In a still further embodiment of the invention, the method comprises the additional step of computing the premiums from the entered data.

Advantageously, the method for computing the premiums comprises the step of retrieving the appropriate premiums from look up tables stored in the computer in response to the entered data, and computing additional loadings or reductions to be respectively added to or deducted from the premiums by multiplying the premiums by predetermined percentage points retrieved from look up tables stored in the computer in respect of the loadings or the reductions selected in response to the
entered data.

Addtionally, the invention provides a computer programme comprising the method of the invention.

Further, the invention provides a medium carrying the computer programme of the invention.

Additionally, the invention provides a computer comprising and operating under the control of the computer programme of the invention.

The invention will be more clearly understood from the following description of a preferred embodiment thereof, given by way of example only, with reference to the accompanying drawings, in which:

Fig. 1 is a diagrammatic representation of a computer system according to the invention,

Fig. 2 is a representation of data displayed on a screen of a visual display unit of the computer system of Fig. 1,

Fig 3 is a representation of data displayed or portion of a screen of a visual display of the computer system of Fig. 1,

Fig. 4 illustrates a flow chart of a sub routine of a computer programme for use in the computer system of Fig. 1,

Fig. 5 illustrates a flow chart of another sub routine of the computer programme of the computer system of Fig. 1,

Fig. 6 illustrates a flow chart of another sub routine of the computer programme of the computer system of Fig. 1, and

Fig. 7 is a representation of a typical look up table stored in the computer system of Fig . 1.

```
Referring to the drawings, and initially to Fig. 1 a
computer system according to the invention which is
controlled by a computer programme of the invention is
illustrated and indicated generally by the reference
numeral 1. In this case, the computer system is
programmed to compute and display a range of insurance
premiums in response to data on a motor vehicle and
the individual owner of the vehicle being entered.
The computer system 1 comprises a main computer 2
having a plurality of teminals 3 connected thereto.
Needless to say, any number of terminals 3 may be
connected to the computer 2. Each terminal comprises
```

a keyboard 5 through which the data is entered and a
cathode ray visual display screen 6 which displays the
entered data and premiums as is described below. The
computer 2 comprises a main central processing unit 7
and drivers 8 , which drive the terminal 3 under the
control of the central processing unit 7 . A computer
memory 9 stores a computer programme which will be
described below, which controls the operation of the
system 1 .

Storage registers form a plurality of look up tables 10 only four of which are illustrated. Each look up table 10 contains specific data which is described in more detail below, however, briefly the look up tables comprise rates of premiums for different types of insurance cover, for example comprehensive cover, third party cover and third party fire and theft cover. These premiums are tabulated against various cubic capacities of car engine. Various loadings, for example, age loading for drivers based on the age of the driver and the age of the car are also stored in look up tables. These loadings are given as a percentage, in other words, the percentage increase which is to be added on to the basic premium. Reductions relating to various aspects of the motor vehicle or the owner of the vehicle are also stored in look up tables 10. Look up tables 10 also store data
for use in validating data entered on both the individual and the vehicle through the keyboards 5 of the terminals 3. Typical validating data stored in the tables 10 comprises the valid names of the counties of the country in which the insurance is to be given, in this case the counties of Ireland. The valid names of towns of particular counties are also stored in look up tables 10 for validating a town of a particular county. Valid street designators, such as, for example, "street", "park", "avenue", "close" and the like are stored in a look up table 10 so that the designator used in a street address may be validated. Names of other insurance companies and their valid abbreviation are stored in a look up table 10. Thus, where an individual gives the details of his or her previous insurance company, the company name can be validated.

All the operations carried out in the computer under the control of the computer programme are carried out in the central processing unit 7. Thus, where data entered is validated by comparing the data entered with the valid data in the appropriate look up table 10, the comparison is carried out in the central processing unit 7. Similarly, the basic premiums having been obtained from the appropriate lock up tables 10 the loadings and reductions are computed is
the central processing unit 7 by operating on the basic premium by the appropriate percentages obtained from the appropriate look up tables 10.

The data entered on the individual and motor vehicle
2. through the keyboard 5 of each terminal 3 is displayed on the screen. When the premium has been computed by the central processing unit 7 of the computer 2 , the range of premiums is also simultaneously displayed on the screen of the visual display unit 6. A typical display on a screen 6 is illustrated in Fig. 2. As can be seen, substantially all the data entered in respect of the individual and the motor vehicle is displayed on the left hand side of the screen while the range of premiums is simultaneously displayed on the right hand side of the screen. This has many advantages and the principal advantage is that an operator can immediately inspect both the entered data and the premiums simultaneously without the need to switch from page to page on the screen.

This display is achieved by setting aside a specific data field for each piece of data to be entered and each piece of premium data to be displayed. In the present case, the left hand side of the screen is formatted so that data titles are provided against the data fields in which the data is to be entered.

Prompts are provided to the operator to enter the data in sequence by a cursor moving from one field to the next as each field is completed. In each case, the cursor is moved by the computer programme to the first character position of each data field.

Referring to Figs. 2 and 3 , the data fields will now be described. The first data field, data field 1 receives the first name of the individual. Data field 1 commences on the fifth line at character position 14 and extends to character position 33. The words "First Name' appear on the screen followed by a colon at the beginning of the fifth line to identify data field 1. The second data field, data field 2 is provided on the sixth line and receives the surname, and accordingly is preceded by the word "Surname" followed by a colon. The data field 2 extends from character position 14 to character position 33. Two data fields 3 and 4 are provided on line seven. The data field 3 extends from character positions 14 to 17 and receives the title of the individual: namely, "Mr'.", "Mrs.", "Miss" or the like. The qord "Title" identifying the data field is provided on the seventh line in front of the data field 3. The data field 4 is provided at character position 33 to indicate the sex of the individual by receiving the letters M or F to indicate male or female. Lines 8, 9 and 10 from
characters 14 to 43 form the address data fields 5, 6 and 7. Data fields 8, 9 and 10 provide for the date of birth of the individual to be entered at line 11. The data fields 8,9 and 10 are provided at character positions 14 to 15,17 to 18 and 20 to 21 for the day, month and year respectively. Data field 11 to receive the marital status of the individual is provided on line 11 at character position 32. A "Y" or an "N" indicating "yes" or "no" respectively as to whether the individual is married or not is entered in data field 11. Data field 12 appears on line 11 and is provided by character position 43 to receive a "Y" or an "N" to indicate whether one is a licence holder or otherwise.

Data field 13 on line 12 comprises one character at character position 6 to receive an indication of the employment status of the individual, "E" indicating employed, "U" indicating unemployed. Data field 14 on line 12 extends from character position 8 to character position 37 to receive details of an individuals employment. Data field 15 also in line 12 at character position 43 receives a single digit
indicating the class of vehicle use required for premium calculation purposes. A sub routine in the computer programme displars the various categories and types of emplorment together with the normal class of
vehicle use which would be required on the right hand side of the screen when data field 15 is being completed. This provides the operator with assistance when classifying the class of vehicle use required.

Data field 16 is provided to indicate the number of years one has had a no-claims bonus on their own insurance and data field 17 is provided to receive the number of years one has had a no-claims bonus on another insurance policy. Data fields 16 and 17 are provided on line 13 at character positions 14 and 15 , and 23 and 24 respectively.

Data field 18 comprises three character positions, namely character positions 14 to 16 in line 14 to indicate the details of the previous insurer of the individual. A three letter abbreviation of the insurer is entered in data field 18. A look up table 10 comprising the valid names of insurers with their corresponding three letter abbreviation is provided in the computer and on the request of an operator, this is displayed on the right hand side of the screen. Data fields 19 to 21 are provided at line 14 character positions 36 and 37.39 and 40 , and 42 and 43 for entering the renewal date of the previous insurers insurance policy.

Data field 22 comprising character positions 14 to 28 at line 15 is provided to receive the make of the car. Data field 23 at line 16 character positions 14 to 33 receives the model type of the car. The cubic capacity of the engine is entered in data field 24 at line 17 character positions 6 to 9 . Data field 25 at line 17 character positions 17 and 18 receives the year of manufacture of the vehicle. Data field 26 at line 17 character positions 40 to 43 receives the value of the vehicle. Data fields 27 A to E, 28 A to E and 29 A to E receive the age, type of licence and name respectively of individual drivers who are to be named on the policy. These data fields are provided on lines 19 to 23 at character positions 2 and 3,6 , and 9 to 38 . The home telephone number and car registration are entered in data fields 30 and 31. Data fields 30 and 31 are provided at line 19 character positions 60 to 71 and line 21 character positions 68 to 78. Data field 32 at line 23 , character position 43 receives a " Y " or " N " indicating Yes or No as to whether all data has been entered or not.

In all cases. a title identifying the data to be entered in each data field is provided in front of or adjacent each data field.
$-14-$

On all data being entered and a "Y" being entered in data field 32 , sub routines of the computer programme compute the insurance premiums. On the insurance premiums having been computed in the central processing unit 7 , the computer premiums are displayed in the format illustrated on the right hand side of the screen, illustrated in Fig. 2. As can be seen, a plurality of data fields are provided on the right hand side of the screen to display this data.

Data field 33A gives the monetary value of the basic premium for comprehensive insurance. Data field 33B gives the monetary value of the basic premium for third party fire and theft insurance, while data field $33 C$ gives the monetary value of the basic premium for third party insurance only. From here, the actual positions of only some of the data fields will be given, however, the remainder will be ciear from Fig. 2. Data field 34A gives the monetary value of the reduction if one bears the first 1150 of a comprehensive claim. There is no similar reduction for third party fire and theft, and third party insurances. Data field $35 B$ and C and $36 B$ and C gives the monetary value of the additional premium to be added to the third party fire and theft and third party premiums respectively if one wishes to cover damage to their windscreen. Since the windscrefr is
covered automatically in a comprehensive policy, there is no need for a monetary value in respect of the windscreen for the comprehensive premium. The term windscreen 1 relates to cover up to a certain value of windscreen, while the term windscreen 2 relates to cover to a higher value. Data fields 37A to C gives monetary values for the additional premiums if one wishes to insure their no claims bonus. Data fields 38 A to C indicate the additional premium if one wishes to insure their personal effects, while data fields 39 A to C gives the additional premiums if one wishes to insure personal accident. Data fields 40 A to C indicate the additional premiums if the insured wishes to be covered to drive other cars. In all cases, the data fields A are provided from character positions 56 to character positions 63 on the appropriate line. The data fields B extend from character positions 65 to character positions 72. The data fields C extend from character positions 74 to character positions 80.

Data field 41 provides for the entry of three characters Y, N or H to indicate respectively "Yes" the individual wishes to go on cover immediately. "Xo" does not wish to be covered, or "Hold" Where the individual wishes to hold the quotation open for a period of time. In the event that the answer in data field 41 is " l ", the type of cover selected is entered
in data field 42. Data fields 43 to 45 indicate respectively whether one wishes to take the reduction of data field 34 A by bearing the excess, which type of windscreen cover is required, and whether no claims bonus protcction is required. The data field 43 receives a "Y" or "N" indicating "yes" or "no", the data field 44 receives a 0,1 or 2 , "O" indicating no windscreen protection is required and " 1 " and " 2 " indicating the type of protection required. "Yes" or "No" is entered in the data field 45 to indicate "Yes" or "No as to whether or not "no claims bonus protection" is required. Data fields 46 to 48 are provided to receive a "Y" or an "N" indicating Yes or No as to whether or not personal effects, personal accident are required to be protected and whether or not the insured wishes to drive other cars.

The gross premium is then computed and displayed in data field 45. The form of payment is entered in data field 50. The date of commencement of the insurance policy is entered in data field 51. Data field 52 is provided to receive a "Y" or an "N" indicating whether or not everything in the right hand side has been completed.

Referring now to fig. 4. there is illustrated a flow chart of a sub routine of the computer programme whet
controls the entry of data into the computer. Block 1 displays the format on the left hand side of the screen in which the data is to be entered. Block 2 sets the data field number $N=1$, in other words, the first data field. Block 3 calls up the sub routine of Fig. 5 which reads each character entered in the data field N. This sub routine is described below. When all characters in the data field N have been read, the sub routine of $F i g$. 5 returns the programme to block 5 of the sub routine of Fig. 4. Block 5 checks if the value of the field number N is equal to a value X. If the value of N is equal to the value X, the sub routine moves to block 6. Depending on the value of X, block 6 calls up the appropriate sub routine to validate the value of the data entered. This is described below. When the validating sub routine has validated the data in the appropriate field, the sub routine moves on to block 7 , which increments the value of X to the value of the next data field in which the entered data is to be validated. The sub routine then moves on to block 8 . Where the value of N is not equal to X, the sub routine moves directly from block 5 to block 8 . Block 8 increments the value of the data field N by 1. Block 9 checks if all the data in all the data fields up to data field 32 has been entered. in other words, if N is less than or equal to in this case 32. Where N is less than or
equal to 32 , the sub routine moves to block 3 which calls up the sub routine of Fig. 5 to read the characters in the next data field. Where all data has been entered when N is greater than 32 the sub routine moves to block 10 which calls up the sub routine for calculating the premium and data in fields A to C.

The sub routine then moves to block 11 which displays this data. The computer programme then calls up a further sub routine with steps substantially similar to those of blocks 3 to 20 for inputting the data in the data fields 41 to 48 and 50 to 52 . A further sub routine is then called up for calculating the gross premium which is displayed in data field 49.

Referring now to Fig. 5, the flow chart of the sub routine for reading the characters in each data field is illustrated. In fact, this subroutine is used for reading all entered characters and is a general sub routine which may be called up by any part of the computer programme or other sub routines for reading a character or characters. However, since we are dealing mainly with the entry of data into the data fields, we will describe it particularly with reference to reading such characters from the data fields. The parameters which specify the screen location, namely the line number and column number fo:
the characters in each data field, as well as the validation codes are passed to this sub routine. The sub routine accepts the data from the screen and then returns the accepted field number and value contents which may be either numeric or alphanumeric to the calling programme or sub routine.

Block 40 initialises the data field N in which the data is to be entered and read. Block 41 checks if data field N is to be skipped. If the data field N is to be skipped, the sub routine moves on to block 42 , which increments the value of the data field by one. If the data field is not to be skipped, the sub routine moves on to block 43 which checks if the data field is less than or equal to 32. If not, in other words, if the data field is greater than 32 , the sub routine moves to block 44 , which returns control of the computer to the next block in the calling programme or sub routine which called up the sub routine of Fig. 5, in this case the control of the computer would be returned to block 5 of Fig. 4.

```
If the data field N is less than or equal to 32 the
sub routine of Fig. 5 moves on to block 45. Block 45
positions the cursor at the first character position
to be read in data field N. The sub routine ther
moves on to block 46, which accepts the character.
```

Block 47 checks if the character accepted by block 46 is a control character. If the character is a control character, the sub routine moves on to block 48, which is described below. If the character accepted by block 46 is not a control character, the sub routine moves on to block 49. Block 49 checks if the character is a valid character and if it is not, the sub routine moves back to block 46 to receive another character. If the character is a valid character, the sub routine moves on to block 50, which moves the character to a work field in the memory of the computer for storage until all characters in the data field N have been read. The sub routine then moves on to block 51, which increments the character position by one. Block 52 checks if the character position is greater than the last character position in the data field N. If it is not, the cursor is moved to the next character position in the data ficid N and the sub routine returns to block 46 which accepts the next character entered.

If the character position is greater than the last character position in the data field, the sub routine moves to block 53. On block 52 determining that the character position is greater than the last character position in the data field, all data to be entered into the data field N will have been entered and read.
and stored in the work field by block 50. Thus, block 53 moves all the characters stored in the work field to the appropriate location in the computer memory for subsequent operation. The sub routine then moves to block 54, which displays the characters on the screen, and block 55 returns control of the computer to the next block in the calling computer programme or sub routine which called up the sub routine of Fig. 5, In this case, control of the computer is returned to block 5 of Fig. 4. Returning now to block 48 of the sub routine of Fig. 5, if block 48 determines that the character entered is a carriage return, then the sub routine moves on to the block 53 and as already described the characters stored in the work field are moved to the appropriate location in the computer memory and the sub routine continues through block 54 and 55. Should block 48 determine that the control character is not a carriage return, the computer programme then moves to block 56 which interprets the control character and repositions the cursor in the appropriate position and then returns the sub routine to block 46 to accept the next character.

Referring now to $F i g$. 6 the sub routine for validating entered data in particular data fields is illustrated. Block 20 of the flow chart calls up the look up table 10 which contains the valid data corresponding to the
data in the field X. Block 21 compares the entered data sequentially with each piece of valid data in the look up table 10. If the entered data is similar to a piece of data in the look up table 10 , block 22 moves the sub routine to block 23 which validates the data. The sub routine then proceeds to block 24 which returns the control of the computer to block 7 of the sub routine of Fig. 4. Should the entered data not compare with any piece of data on the look up table, the sub routine moves to block 25. Block 25 displays a message on the top portion of the screen that the data entered is invalid data and the programme moves to block 26. Block 26 displays all the data in the look up table 10 on the right hand side of the screen showing the operator the type of data which would be accepted as valid data. Block 27 moves the cursor to the first character in the data field X to enable the operator to re-enter the data in data field X. The programme then moves on to block 28 which returns the sub routine to block 20 and the sub routine is repeated until the sub routine finally gets to block 23 where the data is validated and moves on to block 24 which returns control of the computer to block 7 of the sub routine of Fig. 4.
2. In this case, the data fields which are validated are as follows. Data field 4 is validated to check if the
sex entered corresponds with the title of the individual in data field 3 . The street designator in data field 5 is validated. The town in data field 6 is validated. The previous insurer in data field 18
is validated. The car make and model in data fields 22 and 23 are validated. The cubic capacity of the engine in data field 24 is validated.

A typical look up table 10 is illustrated in Fig. 7. This look up table 10 contains valid street designators. If the entered data contains a street designator then the street designator is flagged so that searches for valid street/town names will not be conducted on the designator. In this way, the speed of table lookup for valid street/town names is greatly enhanced.

Additional loadings for particular areas of residence of the individual seeking the insurance in the territory are also stored in look up tables against the particular areas. Thus, on all the data being entered, when computing the insurance premium, the appropriate sub routine applies the appropriate loading, if any, depending on the address entered in data fields 5, 6 and 7.

The sub routines for computing the values of insurance
premiums will be known to those skilled in the art and it is not intended to describe them here.

In use, when all the data has been entered and validated in data fields 1 to 32 under the control of the sub routines of Figs. 4, 5 and 6, the appropriate sub routines are called up to compute the insurance premiums, which are then displayed as already described. The remaining sub routines are then called up to enter the data in data fields 41 to 48 and 50 to 52 and the gross value of the premium is computed by a further sub routine and displayed in data field 49.

While not illustrated, it will be appreciated that a printer may also be networked to the computer 2 which then issues the insurance policy and an appropriate letter to the individual.

The advantages of the invention are many, however, the main advantage of the invention is achieved by virtue of the fact that the entered data and range of premiums are displayed on one page of the screen simultaneously, thereby permitting the operator to see simultaneously the data entered and the premium. This substantially facilitates the operator when dealing with a client.

A further advantage of the invention is that by virtue of the fact that certain of the data is validated, errors in computing the premium are reduced to a minimum.

While particular data has been described as being validated, only some of the data described may be validated, indeed in certain cases, more of the data may be validated. It will also be appreciated that while a particular configuration of computer has been described other suitable configurations may be used.

While the data fields have been described as being in particular positions on the screen and being of particular character lengths, data fields of other character lengths could be provided, and needless to say, it will be appreciated that the data fields may be provided in any other suitable or desired position on the screen without departing from the scope of the invention.

1. A method for programming a computer for computing the premiums of different types of vehicle insurance in response to data being entered into the computer in
a predetermined data entry format, and displaying the entered data and premiums on a display means, wherein the method comprises the step of displaying the entered data and the premiums simultaneously on the display means, the entered data being displayed in the predetermined data entry format and the premiums also being displayed in a predetermined format.
2. A method as claimed in Claim 1 in which the data to be entered comprises details of an individual and of a vehicle to be insured.
3. A method as claimed in Claim 1 or 2 in which the data displayed in respect of the premiums includes a plurality of costs for each type of premium based on certain predetermined loadings and reductions.
4. A method as claimed in any preceding claim in which the data entry format together with the entered data is displayed substantially on one side of the display means, and the premiums are displared substantially on the other side of the display mears.
5. A method as claimed in any preceding claim in which the display means is a visual display screen.
6. A method as claimed in any preceding claim in which the data to be entered is entered in fields of predetermined lengths and positions in the data entry format.
7. A method as claimed in Claim 6 in which the method includes providing a prompt means to the operator in respect of the piece of data to be entered.
8. A method as claimed in Claim 7 in which the prompt means comprises an illuminated cursor on the visual display screen.
9. A method as claimed in Claim 8 in which the method comprises the step of moving the cursor to the beginning of the data field in respect of the piece of data to be entered.
10. A method as claimed in any preceding claim in which the method comprises the step of validating at least some of the data entered by comparing a piece of entered data with corresponding data in a look up table and stored in the computer. and if the enterec
data compares with any of the data in the look up table, displaying the valid status of the entered data on the display means, and in the event of the entered data not comparing with any of the data in the look up table, displaying the invalid status of the entered data on the display means.
11. A method as claimed in Claim 10 in which the method comprises the step of displaying the data in the look up table corresponding to the piece of entered data on the display means in the event of tho entered data not comparing with any of the data in the look up table.
12. A method as claimed in Claim 10 or 11 in which the method comprises the validating of a street designator.
13. A method as claimed in Claim 12 in which the method comprises the step comparing the entered street designator with street designators in a look up table stored in the computer.
14. A method as claimed in any of Claims 10 to 13 in which the validity of a town of an address of the individual is validated, the method comprising the step of comparing the entered town with towns on a
look up table of towns for the area of the address stored in the computer.
15. A method as claimed in Claim 14 in which the towns of specific counties are stored on respective look up tables.
16. A method as claimed in any preceding claim in which the method includes the step of validating the details of a previous insurer of the individual entered in the entered data.

20
17. A method as claimed in any of Claims 10 to 16 in which the method comprises the step of validating the car make and model, the entered car make and model being compared to valid car makes and models in look up tables stored in the computer.
18. A method as claimed in any of Claims 10 to 17 in Which the cubic capacity entered in respect of the vehicle is validated by comparing the entered cubic capacity with valid cubic capacities corresponding to the particular make and model of the vehicle stored in a look up table.
19. A method as claimed in any preceding claim in which the method comprises the additional step of
computing the premiums from the entered data.
20. A method as claimed in Claim 19 in which the method for computing the premiums comprises the step of retrieving the appropriate premiums from look up tables stored in the computer in response to the entered data, and computing additional loadings or reductions to be respectively added to or deducted from the premiums by multiplying the premiums by predetermined percentage points retrieved from look up tables stored in the computer in respect of the loadings or the reductions selected in response to the entered data.
21. A method substantially as described herein with reference to and as illustrated in the accompanying
22. A computer programme comprising the method of any of Claims 1 to 21 for programming a computer.
23. A computer programme substantially as described herein with reference to and as illustrated in the accompanying drawings.
24. A medium carrying the computer programme of Claim 22 or 23.

- 31 -

25. A medium as claimed in Claim 24 in which the medium is a magnetic tape or disc.
26. A medium as claimed in Claim 24 or 25 in which the medium is a hard disc.

5 27. A computer comprising a computer programme as claimed in Claim 22 or 23.
28. A computer substantially as described herein with reference to and as illustrated in the accompanying drawings.

Diagnostic device for on-vehicle computer

AB

(JP03004660)
PURPOSE: To diagnose a vehicle at site moved at a remote location by constituting the diagnostic device with a means monitoring an on-vehicle computer to fetch diagnostic information and a radio transmitter sending the fetched diagnostic information to a diagnostic analyzer fixed at the outside of a vehicle by radio communication.
CONSTITUTION: A diagnostic device of an on-vehicle computer 2 consists of a connection means and a diagnostic analyzer, and the connection means includes a measuring instrument 4 carried easily in a car body 1 being a car body to be diagnosed with the operator 3 , and having a connector 4A connecting to a socket 2 A of the on-vehicle computer 2 to fetch the diagnostic information. A diagnostic analyzer 11 receives the diagnostic information sent from the car body 1 and sends it to an analysis computer 12. Since the diagnostic analyzer 11 is arranged fixedly to the center 21 , the shape and the size are optional. Thus, an input operation keyboard 15, a display section 16, a memory section 17 and a recording output section 18 operated by the operator 9 are optional.
COPYRIGHT: (C)1991,JPO\&Japio
IN UCHIDA HIDEKI

PA HINO MOTORS

PAO (A) HINO MOTORS LTD

Published As

Publ. number	Pub. date	Appl. number	Appl. date	Publ. Stage
JP3004660	19910110	1989JP 0138764	19890531	\wedge - Doc. laid opon to publ. inspoc.

PR
1989 JP-0138764 19890531
IC
G06F-011/22
H04B-007/26
H04M-011/00
H04Q-007/38

ICAA

G06F-011/22 [2006-01 A F IR M JP];
H04B-007/26 [2006-01 A - I R M EP];
H04M-011/00 [2006-01 A L | R M JP];
H04Q-007/38 [2006-01 A L. I R M JP]
ICCA
G06F-011/22 [2006 C FIR M JP];
H04B-007/26 [2006 C - I R M EP];
H04M-011/00 [2006 C L I R M JP];
H04Q-007/38 [2006 C L IR M JP]

FI
G06F11/22 330H;

H04B7/26 109M
H04M11/00 303;
H04Q7/00 106;
H04Q7/00 152;
FTM
5B048 AA15;
5B048 BB01
5B048 CC15;
5K067 AA21
5K067 AA42
5K067 BB03;
5K067 BB27
5K067 DD04;
5K067 DD53;
5K067 EE02;
5K067 EE10;
5K067 LL05;
5K067 LL14;
5K101 KK12;
5K101 LL12;
5K10: MM04;
5K101 VV02;

（51）Int． $\mathrm{Cl}^{\text {s }}$		識別記号		庁内整理番号		（83）公開	平成3年（1991）1月10日		
$\begin{array}{cccc} H & 04 & \mathrm{M} & 11 / 00 \\ \mathrm{G} & 06 & \mathrm{~F} & 11 / 22 \\ \mathrm{H} & 04 & \mathrm{~B} & 7 / 26 \end{array}$		303		$7117-5 \mathrm{~K}$					
		330	H	$7343-5 \mathrm{~B}$					
		109	M	7608－5K					
					審査請求	未請求	請求項の数	2	（全5頁）

（64）発明の名称 車載用コンビユータの診断装置
（21）特 願 平1－138764
（22）出 願 平1（1989）5月31日
（22）発 明 者 内 田 樹 東京都日野市日野台 3 丁目 1 番地 1 日野自動車工業株式会社内
（71）出 願 人 日野自動車工業株式会
東京都日野市日野台 3 T目 I 番地 1
（744）代理人 升理士 井出 直孝

明 細

1．発明の名称
里戴用コンビュータの診断凖置

2．特許請求の範囲
1．車両に搭載されたコンビュータの診断情報を取り込むためにそのコンビュータに接続される接続手段を，

この接稅手段を介して取り込まれた診断情報を解析する務断解析装置と

を潇えた車載用コンビュータの榇断装置にない て，
前記毅断解析装置は，前記車両の外に固定的に配罟され，

前記接続手段は，前記車両に搭䥫された無線送信装置と，前記診断解析装置に接続された無線受传装置とを含む
ことを特徵とする車載用コンピュータの診断表置。

2．無線送信装置および無線受信装置は，自動車用電狧装面が利用されたことを特徽よする請求項 1 記載の車載用コンビュータの缷断装置。

3．発明の詳細な説明
「㸁上の利用分野〕
本発明は，コンビュータを搭載する里両に利用
する。
本発明は，車两に荅載されたコンピュータの診断に利用される。

〔概要〕

本発明は，車両に搭載されたコンピュータに接続してその診断情報を取り込む接続手段と，この取り込ん犬診断倩報を解析する紾断解析装置とを俌えた車両用コンビュータの竝断装置において，

車外に固定された榇断解析装置に，接続手段よ り無線通信で渇断情報を送信することにより，

経龭のそしい作業者が接続手段を操作しても，完全な診断が行われるとともに，車西の診断情報 の記録かよびその解析が容易に行われるようにし

たものである。
〔従来の技術〕
最近，車両，ことに自䡃車の各部の制御装置に プログラム制御回路か用いられている。これらを制御する車梚コンビュータには，万一故陣が生じ ても，これに対処する安全装犆を厝えている。し たかってこの安全装置を含む車載コンビュータは，適宜その作動状熊の診断を行う必要がある。

このため車载コンピニータには，あらかじめ須断装直の接続手段を受け入れるソケットが設けら れ，このソケットに受け入れられた接続手䝘を分 して取口込まれた榇断情報を殄断解析装置で彰断 する。この埥断解析装置は操作入力端，表示部， メモリなどを含む解析コンビュータから楆成され る。

埥断を行うときには作業者は，これら接続手段 と翏断解析装置とを借えた診断装置を被觖甽車两 に接近させ，車報コンビニータのソケットに接続 し，入力掍作部と表示部とにより一般診断を行い，問題点が㭘出されると，この問題点に対する特侏

の新断を行って，これに対する処置をして，車両 を完全なものに整備していた。

〔発明が解決しようとする問題点〕
 に行えない。
また，暗断装置を被暗断車両に搭越して使用す るには赘断装置を可数型にしなければならない。 そのため型状に制限があり，十分な能力のある装置とすることができない。

きらに，多致の够断䒾置が各其地などに分散配備されることになるので，車両全体の謬断記録作成や珫計処理に不向きである。

本発明は，このような問題点を解決して，経験 の少ない作菜員が行っても十分な溇断を行うこと ができ，さらに遠属地に移動した車両を現地で診断することができ，かつ㳣断記録作業が間単に行 うことができる車䡛用コンビニータの効断装置を提供することを目的とする。

〔問題点を解決するための手段〕
本発明は，車両に搭戴されたコンビュータの彰

断情報を取り込むためにそのコンビュータに接続 される接綄手段亡，この接続手段を介して取り込 まれた榇断倩報を解析する䝩断解析装置とを備え た車载用コンビュータの㣍断装置において，

㳣断解析装置は，車两の外に固定的に配置され，接続手䝘は，車両に搭載された無線送信装置と，前記趁断解析䒾置に接続された無線受哈装置とを合むことを特敬とする。
無線送信装置むよび無線受信装置は，自動車用電話䒾置を利用することができる。

〔作用】
披榇断車両の車戴コンビュータに摭帯して持ち込む接続手段は，車載コンビュータにモニタして診断情報を取り込む手段と，この取り込んた診断情報を車外の固定された埥断解析装㯰に舞線通信 により送信する無線送信萲置とで構成されるから小型のものとすることができ，したかって作葉者 を丑速かつ容易に被診断車两が存在する遠塥の地 まで派逼することが可能である。
さらに接続手段は，固定された診断解析装置に

接続された無線受信荒置を含むもので，披參断車両から送信された跈断情報を受倍して解析し翏断 できる。この敖断装㯰は固定されており，その形状や寸法に制限がないので，十分に解析できる能力のあるものとすることができる。
車両に据帯する複数の接統手段を無線通信によ り， 1 つの多断解析䒾置で処理できるので，多数 の暏断情報を記録し，統計し，分析することによ り多数の車報コンピュータを効事よく管理できる とともに，新たな開発情報を得ることができる。
派造される作菜者は新断処理を行わないので経験の少い者でも十分に対応できる。

万一，被多断車両の車載コンビュータに異常が発生した場合は，田速にその処理を行うことがで きる。
無線の送信䒾置および受信装置を自勤車用電話装置を利用する場合は，伝送されるデータの品買 が向上するとともに通信地域が全国的に拡大でき る。さらに車両崱にハンドセットを付加すること により，車両唰と固定局㑡との各作業者は音声に

ょり，打合せを行うことができる。〔実施例〕
次に本発明の実施例を図面を荢照して蜕明する。
第1図は本発明一実施例の全体横成棁明図であ り，第2図は同実施例のプロック構成図である。

図において，車両1はバス用自動車で，その通転席に車载コンビュータ2が搭载される。作業者 3 はセンタ21より派運されて，前記車両1の車载 コンビュータ2を䛰断する。診断は定期的に行わ れる一般望断と，特に異常が発生したときに行う臨時診断とがある。

車載コンビュータ2の新断装置は，接続手風上多断解析装置とから搮成され，接続手䝘には作菜者るが披㐱断里两である車両1に容易に据帯して持ち込め，車執コンビュータ2のソケット2Aに接続して紾断情報を取り込むコネタタ4 Aを俌え た測定器4を含む。この測定器4には作業者3が手動により跈断操作を行う入力操作端5Aを備え たモニタ部5を含む。埥断解析装置11は測定器4 か取り込む敖断情乵を解析する解析コンピニータ

12を含む。
ここに本発明の特徵とするところは，䊽断解析䒾置11は車両1の外のせンタ21に固定的に硙置き れ，接統手段は前記剖定器 4 とともに車両 1 に搭载される無線送信䒾置として，前記モ二タ部5が取り込んた彰断情報にハンドセット6Aにより作業者3の音声を多重化する多重化回路6と，この多重化回路 6 の出力をインタフェース7Aを介し て受け取り無緑信号用の信号波形に変調するモデ ム7．およだこのモデム7の出力を饭設アンテナ 8 Aを介して自動車用電話細 22 に無線伊号として送出する無線送受信部8を含み，前記診断解折溒四 11は車両1より送出された埥断情報を受信する無線受信趇置として，前記自動事用霓話粡 22 から引込み端11Aを介して入力する榇断情報を復調する モデム13と，このモテム13の出カをインタフェー ス 13 A を介して受け取り前記解所コンビュータ12 に送出するとよもに必要によりこの秂断解析装置 11を㨐作する作業者9が前記作業者3に前記ハン ドセット6 Aを介して音声による通話を行うハン

ドせット14Aを備えた多重化回路14とを含むこと にある。
すなわち，暗断解析装置11はンセタ21に固定的 に配置されているので，その形状や寸法は任意の ものとすることができる。したがって作業者のが操作する入力㨐作端15，表示部16，メモリ部17お よび記録出力部18は通当なものが選択できる。ま た坂設アンテナ 8 A は吸着部 8 B により技榇断車両である車而1のルーフ部に容易に設置できる。

つきに本実施例の操作を説明する。作業者3は車両1のルーフ部に仮設アンテナ 8 A を設置し，剂定器4のコネクタ4Aを車載コンビュータ2の ソケット2Aに接続し，入力推作端5Aを㨐作し てモニタ部5を始動する。これにより無線送受信部8は自勤車用電舕稀22を介してセンタ21」交信準備がなされる。惖断揚作に先立ち，作業者るは ハンドセット6Aによりセンタ21の作業者9を報知囬14Bにより呼び出し，作業者9はハンドセッ ト14Aにより作業者3と音声により打合わせを行 う。

榇断が一般暗断である場合，作業者3は定めら
 コンビュータ2の㳣断情報をセンタ21に送出する。 せンタ21の作業者9は解析コンビュータ12の解所結果を麦示部16の表示により检討して異帯の有無 を検出する。異帯があった場合，作業者 gは入力操作端15を提作して車鐡コンピュータ2に直接接触するか，またはハンドセットによろ音声交信に より作業者 3 がその入力端末端 5 A の操作により異常の発生原因を追究して，これに対する処置を行う。このようにして榇断が終了すると，作菜者 9 は趁断結果をメモリ部 17 のファイルに格納して車両1の車偖コンビュータ2の履歴として保存し，必要により記録出力部18で出力する。
夕2において発生した異常状態を再現するように作業者3が入力提作端5Aの唯作を行う。センタ 21の作業者9はこの診断情龍による解析結果を判定して，作葉者るに車輌コンビニータ2の点検を行わせ，異帯発生の原因の除去を行う。

このように診断情報の判定はセンタ21の作業者 のが行うので，被診断車両に派䢥される作業者 3 は経䂊の少いものでよい。剂定器4には表示部16 および記録出力部18は不要であり，入力操作端5 Aも簡单なものでよい。したかって測定器 4 は小型ですみ，擭帯に容易な形状にできる。また披診断車両が多数のとき错数の作業者を派遣する必要 がある。診断結果を個々の測定器で記録するよう なものでは，全車両の診断履歷は別の情報処理装直で胶理しなければならぬか，本実拃例ではこの ような必要がない。

また無線送信饻置すよび無線受信饻置を本実施例のように自動車用鼋話装置の網を利用する場合 は，被診断車両の所在位置が広い地域にわたって も 1 つのセンタで管理ができ，しかも診断情報や音声交信の伝送路上の通信品質が劣化しない。

この場合は，同 回線上で，デ－タの伝送信号 と音声の伝送信号とが重䄑しても，それぞれを明䁚に認識できる。

〔発明の効果〕

以上説明したように，本発明によれば，披診断
者が㨐作して十分に行すれるとともに，その診断 データの整理が容易に行われるので，車両の管理 が微底化され，異状の発生の未然防止かはかれる効果がおる。また万一異状が発生しても，田速に対処できる。

4．娚面の間单な説明
第1図は，本発明一実施例の全体構成説明図。
第2図は，同実施例のブロック構成図。
$1 \cdots$ 車両， $2 \cdots$ 車載コンピュータ，2A…ソケ \％ト， 3 ， $9 \cdots$ 作葉者， $4 \cdots$ 例定器， $4 \mathrm{~A} \cdots$ コ采 ク夕， $5 \cdots$ モニ夕部， $5 \mathrm{~A}, ~ 15 \cdots$ 入力操作端， 6 ， $14 \cdots$ 多重化回路， $6 \mathrm{~A}, ~ 14 \mathrm{~A} \cdots$ ハンドセット，7， $13 \cdots$ モデム， 7 A ，13A…ィンタフェース， $8 \cdots$無線送受信部， $8 \mathrm{~A} \cdot$ 仮設アンテナ， $8 \mathrm{~B} \cdot$ •吸着部， $11 \cdots$ 診断解析装置， $11 \mathrm{~A} \cdots$ 引込み端， $12 \cdots$ 解析コンピュー夕，14B…報知器， $16 \cdots$ 表示部， 17
…メモリ部， $18 \cdots$ 記緑出力部， $21 \cdots$ センタ， $22 \cdots$

自動車用電話網。

特許出願入
代理人 并理士 井 出 直 孝 ：

RISK EVALUATING DEVICE AND INSURANCE PREMIUM DETERMINING DEvice

Publication numb	JP4182868 (A)	Also published as:
Publication date:	1992-06-30	DJP2917502 (B2)
Inventor(s):	KOSAKA MASATSUNE +	
Applicant(s):	OHRON TATEIS: ELECTRONICS CO +	
Classification:		
- international:	G06F9/44; GOSN7/O2; G06Q30/00; G06F9/44; G06N7/O0;	

- European:

Application number: JP19900313737 19901119
Priority number(s): JP19900313737 19901119

Abstract of JP 4182868 (A)
PURPOSE To obtain an accurate risk evaluated value by providing a defection state for a risk contribution state to be evaluated and a risk
evaluation part which employs fuzzy reasoning. CONSTITUTION:The state of the contribution of a moving body or its driver to be evaluated to risk is detected by a Dopplef radar main body 30 , a speed detector 38 , a main engine rotating speed detector 43, and a steering operation detection part 44 respectively. A risk evaluation unit 42 receives their signals indicating the risk contribution state as fuzzy input values and performs the fizzy reasoning to perform continuous risk evaluation. When the evaluated value exceeds a constant value, an alarm 45 warns the driver.; Thus, the risk can be evaluated matching human emp rical evaluation without measuring the absolute value of an object distance, so wrong risk evaluation based upon a false signa: is not performed.

（19）日本国特許序（JP）
 （12）公 開 特 許 公 報（A）

（11）特許出颜公開

平4－182868

（94）発明の名称 リスク評価装置および保険料決定装置

| （2））特 | 願 $2-313737$ |
| :--- | :--- | :--- |
| （22）出 | 願 $2(1990) 11 月 19 日 ~$ |

明 䋑 雷

1．発明の杂妳
リスク㽬価装道および保健料決定装雷
2．特許声求の範囲
（1）リスク評価対承のリスクに寄与する状熙を検出するリクス寄与状態检出手段と，

その状態に基ついてリスクを評洒するリスク評価手段と，

を㦃え，前記リスク評価于段はファジィ推話に よるリスク評価部を有するこさを特微さするリス $ク$ 評価装冝。
（2）リスク評価対族は操絴されている移動体立 たはその㮛核者であり，リスク寄与㧋䐴険出手段 は先行移動体との相対速度を検出する相対速度梭出手段およびその積分手段亡，先行格動体からの反籿波しベルを睃出する手段とを備え，前記つ フ シィ推祫は前記積分手段の出力および前記反射波 レベルを入力僆として行うことを特徵とする，靗求項1記或のリスク評偪装学。
（3）移動体の移動状態を検出する手段を蒇え，

この検出値が前記ファジィ推詥の入力値に含まれ ることを特溦とする，請求項1記載のリスク呯価㱔宣。
（4）移動体の㨐㣵操作密度の評価值を検出する手段を備え，この語価値が前記ファジィ推詥の入力値に含まれることを特橵しする。請求項3記載 のリスク評価装責。
（5）䙲価されたリスクの度合いが一定以上の」 きに警報を笔する手段を備える，請求項1記載の リスク㽬価装置。
（6）請求項1記儎のリスク評価装查と，リスク泙価対象を保险客体としてリスク評価值より保险客体に対する保険料赤動分を決定する保险料変動分決定手段とを有することを特徴とする保险料決定装䨌。
（7）决定した保険料変動分に基つく金頡を前払 い金に対して決済する手段を有すきことを特花し する請求項 6 記載の保险料決定装悳。
（8）汏定した保险科寗動分に基けく金額を与信决漳する手段を有することを特徵とす吕請求項 6

諨䕙の保険枓決定装冝。
（9）リスク評価対家であむ保険客体のリスクに㟢与する代热を検出するリスク寄与状热轺出手段 と，

その状態に基ついてリスクを評価するリスク竍価手段と，

前記リスクの評価値から保险客体に対する保険料変動分を決定する保険料変動分决定手段と，

を備えてなる保険料決定装至。
（1）決定した保険料変動分に基づく金額を前扎 い金に対して決済する手段を有することを特做と する誚求項 9 記戒の保険料決定装冝。

のリ 决定した保険料変動分に基つく金額を与な信決済する手段を有すること特徎とする譡求項9記或の保険料決定装面。
（22）リスク寄与状態検出手段が保険客体内部の狘垫を険出する手段である，請求項9記匭の保险料決定装面。

畞 リスク萳与状態険出手段が保険客体の外部 の状腎を検出する手段であ石謂求項9婄截の保険

対するリスクを評亚するリスク部価装惪，および をのリスク評価装䡒を使用した保険料決定装面に関する。

> (か)従来の技術

移動体（乗物）に対するリスク評洒は，往来，特開昭 $60-85045$ ，特開昭 $62-5818$ 1．特開昭63－32388などに示されている ように，先行移動体や固定物体などに対する対物距離を計溂することによって評価情報を掺成し， この評価情報に基づいて警報信号の発生有無など を判断している。

また，従来の保険料決定システムは書面による保険㗉約をそのままオンライン化したものて，契粎客体の静的屈性からリスクを呼価して料率を決定している。
（c）発明が解決しようとする門題
上記公開公報に示されている技術は，対物距㒕 を計剆するためにバルスレーダ方式を採用してい ま。ところか，この方式は回路が裇雑化すること と，路上または内水面て使用するときに重重反时

科決定装置。
（44）リスク寄与㧋热検出手段およびリスク評価手段はリアルタイムで動作することを特敵とする請求項 9 記载の保険料決定装置。
 ムで動作することを特徵とする請求項14記載の保健料决定装霜。
（6．）リスク評価手段はファジィ推論によるリス ク評価部を有することを特徵とする誚求項 9 記教 の保険料沈定装冝。

の7リスク寄与状態検出手段は静水圧センサお よび水温センサからなる外界せンサと，ダイバー の脈拍を検出する脈拍センサからなる内界センサ とで搭成され，リスク評価手段亦よび保険料変娌分決定手段はリアルタイムで動作することを特微 とする請求項 9 記裁 σ 保険料決定装暻。

3．発明 0 詳杆な説明
（a）産業上の利用分野
この発明法，移動体（乗物）まだは保険客体に

伝㨦路の影㧘により伪信号が受信されその識別が電めて困敬であるという問題がある。

また，従来の書面による保险契約を単にオソラ ィン化したシステムでは，保険契約客体の理境し行動がリスク確率を支配しているにも係わらず，保险乫約佒の状胞に無関保な保険料が算出される という問題がある。

例えば，面による保险契約の一つである自動車閣供责任保险では，常に安全運転を行っている運転者と時折危険な運転を行う連転者とで，保険料に差かないのが等通である。しかし，両者を同 じ保険料にするのは不公平であると考えられる。 この発明の目的は，計䇯と推論によって対物距離の絶対値に代替可能なリスク評価梿を求めるリ スケ啴価装冝を提供することを目的上する。京た －保険客体のリスクに起因する状崩を㯖出するこ とにより，保険料変動分を継統的に求めて保険料 を㘿娍することのてきる保险料決定装雵を提供す ることを目的とする。
（d）課題を解泱するたの手段

この発昭のリスク評価装置および保険料決定装雷は以下の構成からなっている。

リスク評俩対聚のリスクに惫与する状態を検出 するリタス寄与犾態険出手段と，

その状態に基ついてリスクを評価するリスク評価手段と

を備え，前記りスク䜾価手段はフォジィ推論に よるリスク呼価部を有することを特徵とする。

リスク評価対象は程縰吉れている移動体志たは その操継者であり，リスク㟢与状照娭出手段は先行移動体との相対速度を娭出する相対速度搔出手段およびその稙分手段と，先行栘動体からの反射波レベルを検出する手段とを備え，前記ファジィ推詥は前記㩊分手段の出力雨よび前記反射波しべ ルを入力値として行う。

また，移動体の移動状態を検出する手段を備文 －この検出値が前記ファジィ推論の入力值に含ま れることを特徽とする。移動体の㙅縙橾作密度の評偳値を検出する手段を備え，この評価値を前記 ファジ推論の入力値に含志世ることも出来頁。

評価されたリスクの度合いが一定以上のときに警㷁を発する手段を備えることもてきる。
 を保健客体としてリスク評価値より保险客体に対 する保险料変動分を浃走す号保跧料㴔陲分決定手段とで構成される。

上諨決定した倈健料要動分に基つく金額を前扎 い金に対して決济す白手段を有し，耍た，与倍決済する手段を有する。

宗た，この発明は，リスタ評佂対象である保健安体のリスクに䓫与する状態を検出するりスク寄与汱觡検出手段と，

その状態に基ついてリスタを評価するりスタ評価手段と，

前記リスクの評価値から保険客体に対する保险料变動分を決定する保険料寗動分決定手段と，

を傋えてなることを特え微とする。
決定した保険料変動分に學つく金額を前払い金 に対して決済ずる手段を有し，また，与信決済す る手臤索有ずる。

上記リスク寄与杖媳検出手段は保険客体内部の状態を検出する手段であり，或いは，保険字体の外部の状態を检出する手段である。

また，上記りスク㝯与获態楧出手段およびりス夕評価手段はリアルタイムで動作することを特致 とし，保険料変期分決定手段もさらにリアルタィ么で動作することを特徽とする。

言た，上記りスタ秤価手段はファジィ推詥によ るリスク評価部を有すること在特做さする。

さらに，リスク寄与扰熊を検出手段としては，静水圧せンサおよび水温センサからなる外界せン サと，ダイバーの质拍を检出する脈拍センサから なる内界センサとで權成され，リスク評価手段お よび保険料绦動分決定手段はリアルタイムで動作 することを特敞とする。
（e）作用
誚求項（1）記載の！スクク評価装且は，リスク評価対象のリスクに寄与する状腎，例えば移動体（乗物）と先行する乗物（栘動体）との相対速度を模出し，その状趗に基ついてファシャ推論により！

クスを評俩する。ファジィ推論により人間の経駿的极評価に整合したリスク評俩値在得ることがて きる。
請求項（2）ではファジィ推論によふりスク評価部 の入力値として，先行鄪動体の相対速度の積分値 および先行䅡動体からの反射波しがルを用いる。 これにより，先行する移動体（前方の移動体）に関するりスタ呯伿値を得ることがてきる。

請求項（3），（は）では更にファシィ推論の入力值と して，移動体の移動状熟少よび操縌操作密度の評価値を用いる。これにより，移動体自身の扰䬯を
運転者（自己）の内部扰䜿に関する！スタ評価値 ち加えることができる。つまり，乗物おょび铝䋐者の状䫥を総合評洒して人間の経験的な部亚に整合したリスタ評価値を得られる。

請求項らでは上記のようにして得られたリスタ の度合が一定以上の時に警報を発する。この警報手段により運転者に安全運転の注意を喚起するこ とができる。

誚求項（6）ではりスタ評価対圐を保険客体として
－ファジィ推論により得られたリスク評価値より保険客体に対する保険料の変動分を決定する。こ れにより，時事または日ヶ変動するリスク評価対象の外界きたは内界の犾態に応じて密化するリス ク評価値に梘応した保険料を決めることができる

誚求項（7）においては，前記決定した保险料恋動分に基つく金皟を前扎い金に対して決済する。例 えばプリベィドカードからの引蕗等が考えられる －この前払い金に対する決済に代えて，クレシッ トカードを使用した与信浃済も可能である。

請求項（9）ではリスク評価対象である保険客体の リスクに寄与する状態を検出し，その状態に基コ いてリスクを評価し，更にそのリスコの評亚值か ら保険客体に対する保险料交钦分を決定する。

龦求項想，請求項めでは，保険料変動分に基つ く金䫓を前払い金または与信により決済する。
また，誚求項眼，ばでは，保险客体のリスンに寄与する状態を检出する手段上して，保険客体内部の状熊を検出したり，保険客体の外部の状然を

険出したりする。
請求項（4），（15）ては，保险客体のリスクに寄与す る枤態の検出やりスクの評価がリアルタイムで行 われたり，更に保険料路動分の決定もりアルタイ ムで行われる。

また，誚求項弫ではりスク評価手段がファジィ推論部を傋える。リスク評価をファジィ推論で行 うことにより，人間の経験的知識が導入され，奏際に則した総合的なリスク評価値が求められる。

また，誚求項听では保険客体のリスクに寄与す る状態を検出する手段として，静水无センサおよ び水温せンサからなる外界センサと，ダイバーの所拕を検出する眽拍せシサからなる内界せンサと で構成し，リスク䙲価と保険枓変動分決定をリア ルタイムで作動させる。つまり，ダイバーの水中 での作葉中に水深やダイバー自身の肉体的，精神的な扰態に基ついてリスクを時事垀価していき， その評価值に基ついて保险料の変動分を决定して いく。
（f）靑施例

第1図はこの発昭の実施例の保険料決定システ ムの構成図である。

リスク評価対象である保険客体のリスクに宛与 する状滤を検出する手段として，外界せン゙ザお よび内界センサ2を使用する。外界せンサ1は，保険客体のリスクに寄与する外界の桭境デークを取得する。列として陸上の乗物においては気温，宇宙の乗物においては宇宙船暴辢当量の計測手段 がある。また，内界せンサ2は保険客体内部に存在するリスクに答与するデータを取得する。例と して乗物においては乗物の物理的状热の㐫たは操維者の生理的または心理的状態の計測手段がある －

上㸉外界センサ1および内界センサ2の出力は ファシィ推詥部3にファジィ入力值として与えら れる。このファジィ推詥部3は内界計測データ出 よび外界計涮データを入力として䁔昧な経験的知識を洉用した推論により総合的なリスクを求める －ファジィメモリ4洔予めオフラインでファジィ推諗が害行された時のリスク啴䛧値を記愷する。

料金計算部もはリスク評価値を時間積分演箿して保険料金（保险契約の特粷に保属する夜動性料金 ）を算出する。時間積分を行うためにこの料金計算部 6 にはシステム時計 5 が接続される。出力イ ンターフェース7はインターロック系を持つ前扎金額消去手段や為替送金做頼電文発行手段等を備 える。会頟ファイル部8は前払金残高の記録され たメモリや达元倒為替オシラインシステムて構成 される。

第2図は上記保険料決定システムを潜水用計器 と組み合わせた実施例を示す。図の10はダイバ一の手首に巻かれるウォッチ型の潜水用計器本体 てある。この計器本体10は表示部11，12，解水圧センサ13，水温センサ14求よび表示部切換スイッチ15を僙える。表示部11は静水仼 センサ13，水温センサ14，後述の脈抽センサ の㖕測値やりスク評洒値，料金，前払金残嘴等を表示する。表示部切模スイッチ15はこれらの表示データを表示部11または12に桪換表示し，言た各データの茢化悹の最大の値の自動表示を行

うモードを逥抧したり童る。光通倍結合部を兼用 する䟤拍せソサ16はダイバーの入差指先端部に取り估けら扎る。このせン少は指先を㳖れる面流 を検出する近赤多光せンサで構成される。言た。計器本体10が前扎金更新モ一ドに設定されてい る時には権促指（図示せず）に内蔵した光通信結合部との間でデータの転送を行う。第1国の内界 せンサ2はこの脈胉センサ16に対応する。㐫た第1図の外界センサ1は觧水圧せンサ13，氷温 センサ14に対応している。市た，ダイバーの足 に取り付けられる足酳17には電碦波を送信する ためけアンテナ18が取ぬ付けられる。このアン テナ18は，計器本体10での推詥出力が姃急し バルの時，浮標あるいは支琵越の受俉器に间けて緊急信号を送信する。なお，アンテナ18に代え て超亯波発娮子を設け超音波で䜿急信号を这信す ることも可能でおる。

第3図は上記保䝢料決定システムが組み合わさ れた潜水用計器のブロック図である。

表示部11．12，静水圧センサ13，水温せ

をソァジィ入力値としてファシィ推論を行う。な お，表際にはオフラインでROM19上にファジ 1ROMが形成されているために，これらのデー夕に対応したアドレスに記憶されているリスク評価值を醀み取る（n7）。なお，ここでROMに記憶されているリスク評価値はタイマにもットす る値である。この値が小さいほどりスクか大きい －ROMから読み出されたリスク評価值が＂NU L＂であれば現在の状呮では保险料を增減する程度のリスクがないと判定し，n1！に進んでィン ターロックBをロック㧋腎におく。1シターロッ クBはアンロック状態において前払金額の消却を行うモードを設定する。 n 8で，ROMから読み出されたデータが・NUL＂でなければインター ロックBをアンロック状態にし（n9），更にを のROMの内容をタイアにとットする（目10） －一方，上記口2で静水圧せンサ13の検出デ…夕が一定值d0未満であればn12に進む。ここ ではインターロックAをロック状想にし，前払金 の更卯モードを設定する。

ソサ14，脈拍センサ16，表示部切換スイッチ 15，アンテナ13はそれそ記論理部21に㹉続
 ッサコニットやAノD変換器肉蔵のASICで構成するとよかできる。また，この論理部21にば ROM1 S およびRAM20も接続されている。第4図（A）～（C）は，上記論理部21の撤略の動作を示すフローチャートである。

第4図（A），（B），（C）留タイマ割り込 み以よって一穴時間每に実行される。まず，第4図（A）に示ず動作が実行されると，最初に静水 Aせンサ13の䊺取りが行われる（n 1）。そし て，この静水圧の值が一定以上であれば，つま゙り水深が一定以上の大きさであればインターロック Aをアンロック状態にして（n3），ファジィ推論によるリスク呼価涟を読み出せるようにする。 なお，「ンターロックAがロック状態であるよ，後述の前执い金更新モードとなる。
n4では，水温データを読取りn5で胍拍デー夕を淕取り口1，の4，に5で読み取ったデータ

次に第4図（B）の動作について説明する。 n 20 ，「21においてインターロックA，B の状態を判定し，両方が共にアンロック状態であ れば，前扎金から単位料金分の消去を行うモード となめ，n22以下に進む。まず，か22では第 4 図のn 10 でセットされたタイアがカウントア ップしだかどうかの判定を行う。カウントアップ していなけれはこのフローを妼ける。カウントア
 る。なお，タイマがカウントアッブしたか上゙うか は，タイアカウントアッブと呼に机るフラゲの決態から判定する。このフラダがせットしていれば タイマかカウントアップ扰腎にある。上記の23 でカウンタを一つ進めた後は，このフラグをリセ ットして再びタイマががントアッブするのを待 コ。タイテはカシントアッゲすると再び0からカ ウントを開始する。上䟕力ウンタの内容をn25 で判定し，このカウソタが＂FUL＂になればn 2 6に進んで前払金から単位料金の消去処理を行 う。なお，論理部21には予め地上て支払われた

前扎盆が記憶されて的り，この前払金から単位料会の消去処理が行われる。

第4园（C）如前払金の更新気一トの動作を示 している。
n 30でインターロックAがロック状腎がどう かの判定を行う。このインターロック Aがロック梑態てあれば前払金の更新モ一トである。この洔 には，吉ず光通信結合部を菜用する即指センサ1 6 からデータを堎み取る。この時，眽拍センサ1 6には殿似指が内蔵志れ，潜水用㖕器本体10に対して，払い込まれた前扎金に対応するデータが入力される（ 1 3 2）。 また，図示はしていない が前执金の入力に際して暗証コ一ドの碓認も行っ ているためにの33でこの醀認を行う。暗䠐コ一 ドが一致した場合にのみn34以下に進む。の3 4では更新モードを＂1・に設定し，n35で前払金 σ 更新処理を行う。続いて更新モードを＂0 ＂に設定し（n36），脈拍さンサ16を哌拕毕一夕を㭌出できる状態に設定する（n37）。

推論によらなくてもよく，予的決めた通常の保検用テープルを使用することも可能である。

次にこの発明の他の実施例について說明する。
第5図は要物（自動事）以搭载されたリスク評価装置に保险料浃定システムを組み合わせむ装置 ○棤成図をある。

図において30はドップラーレーダー本体であ り，極超短波の電波または10kHz帯のFO波を用いて対物相対速度を検出する。起音波を使用す る場合には水路を伝畄䅅路とすることがてきる。

このドッブラー本体30は送信部31，ふく射 および結合部 32 ，受信部 33 を侕える。送信部 31 は，出力が安定化された発振器を含んでいる －ふく射および結合部 32 は例えば極超短波を使用するる場合送受共用の指间性アンテナを導波管型結合器て搆成され，空中超宣波を使成する場合に は反射器付き環状圧電せラミック美子で樶成きれ －水中超音波を使用する場合には整合磯付きラン シュバン型圧電せラミック素子で構成され，それ ぞ扎に 3 炎線変成器が網が合わされる。むた，受

タのリスク評価値が非常に高い場合にはアンテナ 18を驅動して支援脡受信器士たは浮墂に対して緊色信号を送信する。

以上の動作によって，この潜水用計器では時ヶ刻ヶ寗化するりスクを評価しなからその話価値に応じて保険料を決定し，保険料変動分の決济を前执金に対して行うことができる。

な出，決渚を前払金に対して行うのではなく， クレジットカートを使用して与信決済とすること もできむ。这らに，為替送全依頼電文を作成して送信することも出来る。高た，害施列では外界せ ソサと内界せンサを共に使用したが，この回れか一方であってもあよい。古た，多界せンサおよび内界センサによるリスクに寄与する状態の検出やつ ァジ推論によるリスタ評価値の演算をリアルタ イムで行うようにしたが，リスク評価値を後に求 めることもでき，言たその求めたりスタ評価值か ら保险料変動分を嵝で計筫することも可能てある －更にこの実施例ではりスク評価値を求める手段 にファシィ推論を使用した亦，必ずしもつコジィ

佮部33は，ふく射出よび䍄合部32を介して海元い亚微弱な送信波成分 34 を間部発脈周波数 としてホモダイン検波を行い，ドッブラ一成分を分離高る。この送倍波成分34は伝播媒体中を監
 た，受信波 35 は監視対条物で反射し，ドッブラ一周波数の偏格を発けた信号，㑡ちfao＋f。お よび「。ロ＋ケッである。第6図は送信波と受信波 のスペクト小を再している。

前記ドップラーレーダ本体30からは検波出力 として得られたドップラー成分 36，すなわち f。およびf＊が出力される。f。は不動構造物か $ら の 反$ 射で自事（琏）の䖞地速度に相当し，f＊ は前方の移動体からの反射に相当する。この倍号 は信号前然理ユニット37に入力する。このコニ ット37はドッブラーレーダの出力から移動体 σ速度の成分を分離し，速度信号としべル信号（反射波の強度に相当）を得る。この処理のために信号前処理ユニット37に対して情，速度険出器 3 8からの出力が導かれている。この速度検出器は

自己の対地速度を計測主る。例文ば自動事の場合 は車軸に保合するエンコーダで構成され，船の場合には流逨捕正されな実航口ダて满成される。こ の速度轺出器 38 の出力 V 。は，上記信号前処理 ユニット37に導かれるとともに，システム起動制御部3 9 にも導かれている。このシステム起動制澥部は，自己の速度V。が整定値を超えた時に システムを作動状態にずる制御を行う。なお，こ れに代えて移動体が関門通過時に地上からの偪号 を受けてシスデムを作動状熊にするようにしても よい。

前記倍号前処理ユニット37で得られた速度倍号40（Px）上反射波の強度に相普する差信号 41 （ Ex_{x} ）と狤りスク評価ユニット42 た出力 される。このリスク評価ユニット42は，これら の情報とともに，自車（渡）の状態信号からファ ジィ推論を含む信号処理過程により操銤中のリス クの度合をリアルタイム評価する。自車（脡）の扰態信号は，上記速度検出器38からの自己の対地眉度をVaとともに，主機関回軽数検出器43
－主機関回転数娭出器43および操絽操作険出部 44 でそれぞれ険出される。リスタ評価コニット 42 はこれらのリスク寄与状態を表す信号をファ ジィ入力値としてファジィ推論を行いリスタ評価 を達続的に行っていく。そしてその評価値があも一定値を超えた場合に緊告器45て操維者に対し て登告を行う。このような挴成により，対物距離 の絶対値を計測しなくても人間の経験的な評価に整合したリスクを評䛧することができるために，偽信号によって袺ったリスク㽬価が行われたりす ることがない。なお，ファシャ推論の入力值とし ては，移動体の移動状態の移動状䜿のみを使用し てもよい。この実施例では，それに加えて移動体 の操継操作密度の評価値をファジィ入力として加 えているために，よりファジィ推論の笙果が適正 なものとなる。更に，この実施例では，リスク評価を行うだけてなく保険料決定システムを缃み合 わせているが，このようにすることで旅行中に時々刻々と変化する！スク語価を保険料に反暎させ ることがききるようになる。

で検出される回䡈数を含む。豆らに，この実施姑 では，操铺操作検出部44の検出データもファシ ィ入力値上する。操維操作模出部44は，例元以操能機構の整定值以上の偏移等，明らかに意㼄的 な操作を检出畐。
前記りスク評価ユニット42の出力は撆告器4 5と金額ファイル部46に出力される。紫告器4 5 はリスク評価ニニット42の作動により音響，音声，振動その他の！スクの存在を㢣告する。金
 リを有する。この金頡ファイル部46は，リスク評価ユニット42から出力されたリスク評価値に対応する保険料変致分を前払金残高から消切して いく。なお，この金額ファイル部46を送元側為替才ンラインシステムで構成することも可能であ る。また，データ通信端末を設けることによりク レジット処理を行うことも可能である。

上記の樽成において，リスク評価対象である移動体玄たはその操維者のリスクに寄与まる状腎は ，ドッブラーレーゲー本体 30 ，速度険出器 38

第7図以下は上記第5図に示すシステムの要部 の詳細な橧成㘣等を示す。

第7図は信号前処理ユニット37の異体的な構成図である。

50は平衡変調器てあり，例えばりンダ変調器 で掉成される。（fo，fx）とfッoの信号波の積値を出力する。第8図はこの信号処理部に打け る各信号かスペトルを示す。図において，f＊ は前方の移動体によふド，ブラー成分を示す。 －は不動の満造物によるトッブラ一成分を示す。
信号はfvaの区分範囲に応じたチャンネルの帯域通過る波器により阻止される。fe一fvoは疑似搬送波との差による下側帯波である。この信号は ，理想的な計測条件て車䡢の滑走，空䡴がなけれ ば発生しない。なお，この信号を利用することに より位相比較によって車輪の滑走，空転の検出を行うことができる。

51は可変周波数発振器である。この可要周波数発振器51は自己の対地速度V。を表すアナ口

夕信号を人力として線型関保の周波数を出力する －例広ば，可变容鱼かイオートを有するLC発長器で满成される。また，自己の対地速度を赵す信号がバルスレートであるアナロダ信号の時に法え の可変周波数発桭器51を周波数ていばい器で權成することができる。この可変周波数発振器51 て形成された周波数沬平衡変調器50に導かれる
 ィル夕 52 に护力它れ，ここでフィルタ起理が何 われる。このフィルタ52は，例えはスイッチド キャバシタフィルタで梅成することができる。f
 から分䊒して出力する。このフィルタは，PLL検波器で構成することも可能である。53はチャ ソネル選択部であり，対地速度V。の值の領域に応己゙て可変带域通過フィルタ52の通過莦域を趡散的に選択する。54はAM検波器である。ここ ではfvo－fx信号波の㹉幅成分，即ち前方の移動体からの反射波の強さを表すぞ上ロダ信号を检

いるインパルス波形を樍分し，平滑した後にその平滑値から操作頖度指標を求める。この值はリス ク評価のためのファシィ入力值として第2のファ シャ推論部64に出力される。言た，この第2の ファジィ推論部64には，更に対地速度信号V。 と主機関回転数かつっショ入力値として導かれる －結局，この第2のファジィ推論部64は自己の内部扰態に関するリスク評価値を推論する。また －第1のファジィ推論部62は前方の移動体に関 するりスク評価梿を推論する。

上記第1のファジィ推論部62と第2のファジ
ィ推論部 64の出力は第3のファシャィ推論部65 につっジィ入力値として導かれる。モしてこの第
評価値は出力制行部 66 に出力され，ここで推論出力のレベルと保持時間のレバルに応じて出力を紫報器45と金額ファイル部46に配信される。

第 10 図（A）～（E）はファジィ推論部 62 64 ， 65 のそれぞれの言語値メンバシップ関数を示している。同図（A）は第1 のファジィ推

出し，P＊としてリスク棌侕コニット42に出力 する。京た55はFM検波器であり，ここで1。
口グ信号をE（fvoーf＊）として出力する。作
 すアナログ信号v。を受けて，前方の移動体との相対速度を表すアナログ俉号 E （x）を楊元して リスク絆価ユニット42に出力方る。

第9国はリスク評俩ユニット420見体的な桖成廌である。60は樻分器である。この榬分器 6 －は移動体の棫対速度を表す信号E（x）を積分 して相対速度から接近した距䊒を算出する。初期化部 61 は反射波しバルを信号 $\mathrm{P} \times \mathrm{L}$ 上監視して －その反射波しベルが整定値以下の時にリセント信号を発生して積分器 60 をリれットする。 62 は第1のファジィ推論部である。この第1のファ シィ推論部ではMIN－MAX出力を平滑化した後に非つナジィ化する機能を有ずす。

もう一つの積分器 63 H ，操繾操作検出部 44 からの出力をイバント信号をして予か定䓩されて

論部62の入力関数をホす。同図（B）は第1 の $フ ァ シ ィ$ 推論部 62 の出力開数むよび第 3 のファ ジィ挂論部 65の第1の入力関数を示す。この関数を使用することで前方の移動体に開するリスク評価値を得る。同図（C）は第2のファジィ推論部64の入力関数を示す。同図（D）は第2のフ フシィ推論部64の出力関数および第3のファジ ィ推論部650第2の入力関数を示す。この関数 で自己の内部状態に関するソスク評価呌を得る。同国（E）は第 3 のファシィ推論部65の出力関数を示す。この関数で最観的に緿合判定によるり スク評価値を得る。

第11图（A）～（C）は各ファシィ推論部の ルールを示している。図において＊は後件部が存在しないことを表す。

以上の構成によって，この素施例ではバルスレ ーダー方式を使用しなくても，経験的な部侕を加 えた認識経路によりリスク評洒を行うことがき ，その評価値が一定以上の時に操経者に対して警報を発することができる。また，保险料浃定シス

テムと組み合わされているために，時ね刻々と変化するリスタに応じた保険料恋動分をその都度消却して洽涪していくことが可能である。したがっ て，従来の損害保険事搏とは巽なった，より公平 な保険システムを横築することかてきる。
（g）発明の効果
ミの発明かりスク評価装置によれば，つァジィ推論を利用することによってリスタ評価に対もて経験に等づいた評価を加えることがてきるた列に －外來ノイズ等に影響哀れ難い占り正確なりスか評価値を期待することができる。この場合，この リスタ評価装䈯を移動体に適䩤した場合，従来佳用されていたバルスレーダ－．．方式を探男する必要 がないために，回路が镇雑化することがなく，寺 た多重反射伍送路の影譻を受けることもない。こ のため，より正確な撆報を出すことのできる安全装冥を棲成することができる。この正確さは移動体の移動状朢を検出するのに加えて移郵体 操絃操作密度の評価値を検岓することに点って更に問上させることが可能を古る。实た，評俩された！

る評価部を必すしも含言なくてもよい。もして， この保険料決定システムては，上記に述ふたよう
 シスデムををのます流用てきるために簡単な構成 でより使い易いシステムを構繄することがてきる

4．図面の閪単な詋明
第1図はこの発明の実施例の保跧料決定システ
潜水用計器に級み合わせた場合の潛水用計器の外勧図，第3図は潜水用計器O構成図，第4図（A ）～（C）は同潜水网計器の動作を示すフローチ ＋ートてある。また，第5図はこの発明の第2の奏施列を示し，リスク評洒装直と保険料决定シス テムを組み合わせた場合の構成図を示し，第6図 は同実施别の送信波と受信波のスペクトルを示し ，第7図は信号前処理ユニットの構成図，第8図 は信号前処理エニットに少けるスベクトル示し，

第9図はリスク評価ユニットの構成図，第10図 （A）～（E）は同！リク評洒ユニットロファジ

スクの度合が一定以下の時浽灌告吉れないよう にしているために，ノイズか影墥を更に少なくで きる一方低ぐに回復を意るような単発的なり大き以対する警告を避けることがてきる。志た，この ファジ推論によるリスク㽬伿部を有するリスタ評価装䩤と保険料決定システ」を組み合わせるこ とで，常に変動するりスク評価値に対虑した保强料変動分をリアルタイムで決济していくことがで き，保険をより公平化することかできる。そして
 うようにすれ洔，プリベイド多ードやクレシット カードを使用する従来のシステムをその要文利用 できるためにより使い易いものとなる。

更に，ごの発明では，リスタ㬐侕応行うことの てもふリスク評価手段を合むリスク評価装港上上記の保险料変動分を決定守手手段上を組み合わせ ることにより，時々変化するりスク評価対象のリ スタの度合に応じた保险料を决定てきることによ り，点り公平な保険システムにできる利点がある。この場合，リスタ䋛価手段洁つァジイ推論によ

ィ推諲部に使茅されるメン゙バシッブ関数，第11国（A）～（C）はファジィルールを示す闵であ る。

1－外界センサ，2－内界せンサ，3－ファジ推論部，4－ファジィメモリ，6－料金計算部， 7－出功イターフェース部，8－金顫ファイル部。

出願人 才ム口ン株式会社代理人 弁理土 小森入夫

$-430-$

送唐波と要冨波のスペクトル
 footfo：不動の植造物からの反反射波

第 11 図
（A）

fexdt	S	M	B
S	$*$	S	M
M	S	M	B
B	S	M	B

FIU－Iのルール
（c）

FIU－I	S	M	B
FIU－II	S	$*$	S
M	S	M	M
B	M	B	B

FIU－HIOルール

(19)

(11) Publication number:

05104985 A
Generated Document

PATENT ABSTRACTS OF JAPAN

(21) Application number: $\mathbf{0 3 2 6 3 8 6 2}$
(51) Intl. Cl.: B60K 41/00 F02D 29/02 F02D 45/00
(22) Application date:

11.10 .91

(30) Priority:		
(43) Date of application publication:	27.04 .93	(71) Applicant: NISSAN MOTOR CO LTD (72) Inventor: ISHIGAMI KAZUHIRO
(84) Designated contracting states:		(74) Representative:

(54) DATA RECORDING

DEVICE FOR AUTOMOBILE

(57) Abstract:

PURPOSE: To record data even in case of an accident by a driving error by detecting a car stoppage time before an engine stoppage by combination of at least two of a car velocity, an engine rotation number, and an ignition switch off, and recording and holding driving data before and after car stoppage for about three times before the engine stoppage.

CONSTITUTION: For a control unit 20, signals from a crank angle sensor 6 , an accelerate-ion sensor 8 for detecting a stepped angle of an acceleration pedal, a car velocity sensor 10 to detect a car velocity based on an output shaft rotation of a transmission 9, and an ignition switch 11 are inputted, and a CPU 21 detects these constantly for using them for control, and it records the data in a RAM 32. A car stoppage is determined when the car velocity becomes $0 \mathrm{~km} / \mathrm{h}$, and after recording the data till about 10 sec . passes after the car stoppage, the data in the RAM 32 are transferred to an EPROM 23. An engine stoppage is determined by the ignition switch 11 , and data for the engine stoppage are recorded and held in the EPROM 23.

COPYRIGHT: (C)1993,JPO\&Japio

（57）［要等］
一方を記緑てをるむらにする。

（2）
1

［i） 91 〕

【0）（2］

 と象加以事る。

「．CPUは，常時，エンジン回标鈴ぶアクセル開度等

記気录ずる。

 1），エンストぞない場台は，フラグMEMOたがく

ップを路す返し行すせる。

 にして，エンジン回坛ゆ妃，旨新のデー分をRAMの所

 がすことなる。
「1』について，エンスト前1移舀とエンスト㖟1移間の
「．電子シーステム診断テスターの要求に占ね，通信䋛能

 できることは明らかりで施る。
［9）09】

 た。

的む家る。
50 【i） 12 〕
 イッチェッらの信号为入方されている。尚，図中12は宣㒺電気㲊前を示している。
［0021］シントロールニニット20ic゙，CPU21，R AM22，EEPROM23．入力回路24及承出力回路25を

子システム馀断デスター3一多交換办できる。

内のデー多をEEPROM23んし移す。

 （イダニッシノョンスイッシ11オフ）前3回召の信事前楊 のデータをEEPROM23上に記优㑑持する。尚，EE

 きる。

 フウゲFMEMOをかにして撹，スデッブ3でRAM用 アドレスウウンタNなウンントアック゚する。尚，Nが20

 なる。

 10移経過守る前は，ステップ $3 \sim 7$ を実行して，上記の RAM22への記䐂を語ける。

5
 EMOO半定鯰，ステップ10CFMEMO＝1をしてか 6．ステップさ1へ道む。ステップ゙でで，EEPROM

 トアッブされて！～のまでを緸り返すエンジン停止ウウ
 の上位子ドルス䄸定用として周いちれる。

 で，EEPRPM23の下位アドース䄸定用として用しっら れる。

 L）$\times 20000+19999$ 済域へ言込を。また，ステップ15

 $+(\mathrm{P} \times 3+\mathrm{i}) \times 2+1$ 否迎に亮这を。

 をるになる。との䅡は，FMEMO＝1 「゙あるたと，ス テップ9カラスデッブ17（図6）へ進を。
【0031］スデップロででは，イタニッションスイッチ 11がすこかっ垔が判定し，オ゙フとなったせ場合は，ステッ

［0032］スデップ19では，EEPROM23000006

（4）

特關平5－104985

 5アップを紿り返し行わせむる次のスデッグ23でる。カウ ントアッブされ広エンジン停止ウウンタMO觬をEEP ROM230600050，600051啡轵へ言込を。
 PROM230列の䞄域に，最新の3回分の停車前倹のデ

 1回分の京行について，全てエンジン傹止前3回分，計

〔9035］

 ションスイッシャ2つ以上が組台わを学用しっるこをによ

 20 守るととができる。
［図面め）階学学祱酎］

ステム図

［図6］同上実施䞄のフローチャート（でのて）

［符号の説明］

エンシン

6 クランク自をンか
19 車速なンサ
11 イグニッジァンスイッシ
20 コントロールコニット
21 CPU
22 RAM
23 EEPROM
4030 電子ジスデム診断すスター

〔回3）

【図？ 7

［國5］

［図6］

* NOTICES *

JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]
[Claim 1] The data recorder for automobiles characterized by having a means to record the performance data of an automobile to the timing determined with these at least two combination while having a means to detect turning on and off of the vehicle speed of an automobile, an engine speed, or an ignition switch.
[Claim 2] Said timing is a data recorder for automobiles according to claim 1 characterized by being at the stop time before an engine shutdown.
[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely.
$2 .{ }^{* * * *}$ shows the word which can not be translated.
3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]
 [0001]
 [Industrial Application] This invention relates to the equipment which records the performance data at the time of the abnormal occurrence of an automobile in detail about the data recorder for automobiles.

 [0002][Description of the Prior Art] As this kind of a data recorder for automobiles conventionally by mounting what is called an electronic system diagnostic circuit tester, connecting with a control unit, and setting this as automatic-recording mode At the time of the abnormal occurrence of the newest result of a nonconformity judging of a control unit, and an engine failure There are some on which the performance data of the automobile before and behind an abnormal occurrence was recorded automatically (refer to the Nissan Motor Co., Ltd. issuance "Nissan KONSARUTO electronic system diagnostic circuit tester operation manual engine editing" 27th page). Thereby, a cause of fault can be presumed with a sufficient probability from the data recorded at the time of failure.
[0003] The conventional example is explained further in full detail. Although the control unit for engine control is constituted including CPU, RAM, EEPROM, and an I/O circuit, CPU and the electronic system diagnostic circuit tester which can do the data exchange by communication link are connected to this. In such a system, always CPU detects an engine speed, an accelerator opening, etc., and uses them for control, and also it records data on RAM. In this case, the field which records the data for for 20 seconds is secured to RAM, and data are overwritten and recorded in a cycle of 20 seconds.
[0004] And an engine speed is 20 rpm . The data of the predetermined field in [after recording data] RAM are moved to the predetermined field of EEPROM until it judges it as an engine failure and 10 seconds pass after an engine failure, when it becomes below. Thereby, as shown in drawing 7 , the data for [before engine failure detcction] 10 seconds and for 10 seconds after engine failure detection are memorized in EEPROM.
[0005] The detail of record actuation is as the program shown in the flow chart of drawing 8 . For this program, it performs repeatedly every $10 \mathrm{msec}(\mathrm{s})$ and each time and an engine speed are 20 rpm . Whether it is the following performs an engine failure judging (S51), when it is not an engine failure, Flag FMEMO is set to 0 and an address counter N is counted up the back (S52) (S 53). In addition, when N is set to 2000 , it returns to $0(S 54, S 55)$, and thereby, count-up to $0-1999$ is repeated, and is made to perform.
[0006] And the record data D1 - D10 are inputted (S56), and it writes in and records on Nx10th - the $\mathrm{Nx} 10+9$ th street in RAM corresponding to N which repeats even $0-1999$ (S57). The value of D1-D10 is an engine speed, or is engine-coolant water temperature. Thus, the data for for 20 seconds are always recorded by writing in in order during an engine revolution, overwriting the newest data to the predetermined field of RAM.
[0007] When an engine failure is carried out, before it judges whether 10 seconds passed after the engine failure (S58) and 10 seconds pass it When record to the above-mentioned RAM is continued (S53-S57) and 10 seconds pass The data for for (S60) to 20 seconds are written in 0th - the 19999th street of read-
out and EEPROM from 0th - the 19999th street of RAM as FMEMO=1 after the judgment (S59) of Flag FMEMO (S 61). Moreover, similarly the value of the address counter N which shows the newest data location at this time is written in the 20000 or 200001st street of EEPROM (S62). After this, a power source becomes off by the judgment (S59) of Flag FMEMO.
[0008] By doing in this way, storage maintenance of the thing for [before an engine failure] 10 seconds and for 10 seconds after an engine failure can be carried out about data D1-D10 at EEPROM. And the data before and behind the engine failure which carried out storage maintenance can be transmitted by demand of an electronic system diagnostic circuit tester using communication facility. The above is the conventional example of the data recorder for automobiles. Although this example explained the case at the time of an engine failure, it is clear that the record maintenance of the engine failure can be similarly carried out as a time of failure generating.
[0009]
[Problem(s) to be Solved by the Invention] However, since it was not failure when a step on difference was carried out accidentally [accelerator pedal / a brake pedal and] and accident occurred by an operator's service abuse although it was recordable at the time of an engine failure and fault detection if it was in such a conventional data recorder for automobiles, data were not recorded, for this reason had the trouble that a cause could not be studied in case of accident.
[0010] In such a case, since it is especially becoming a problem at the occurrence time of accident, the method which detects accident and carries out storage maintenance of the data is considered easily. And in order to carry this out, approaches, such as using the decision part of the air bag already commercialized, can be considered. However, now, in slight accident, it could not detect and the costs which this takes also had troubles, such as being high.
[0011] This invention aims at being able to record data by the high probability also in the case of a service abuse, and offering the cheap data recorder for automobiles in view of such a conventional trouble.
[0012]
[Means for Solving the Problem] For this reason, in the data recorder for automobiles, this invention is considered as the configuration which has a means to record the performance data of an automobile to the timing determined with these at least two combination while it has a means to detect turning on and off of the vehicle speed of an automobile, an engine speed, or an ignition switch, as shown in drawing 1.
[0013] Here, as for said timing, it is desirable to consider as the time of the stop before an engine shutdown.
[0014]
[Function] In this invention, when there is generally trouble of traffic after stopping a car and on-site preservation or during preservation at the time of the occurrence of accident, after putting away a car, it usually came out to once stop an engine and it paid its attention to a certain thing. Thus, it stops at the time of the occurrence of accident, and if there was accident when saying to reverse since the engine was usually stopped near the, it can be said that it is it at the about one - three stop time before an engine shutdown.
[0015] So, in this invention, the time of the stop before an engine shutdown is detected, and it is made to carry out record maintenance of the data before and behind that with the vehicle speed, an engine speed, or at least two combination of turning on and off of an ignition switch. Although it is common to see the vehicle speed as an approach of detecting a stop, you may judge with a stop with an engine speed being below a predetermined value.
[0016] Moreover, although it is common to detect the ON state of an ignition switch as an approach of detecting engine shutdown before, you may judge by the engine speed. Therefore, the vehicle speed, an engine speed, or at least two combination of turning on and off of an ignition switch determine the timing of data logging.
[0017] By doing in this way, accident is detectable by the high probability in the limited memory size. [0018]
http://www4.ipdl.ncipi.go.jp/cgi-bin/tran_web_cgi_ejje
[Example] One example of this invention is explained below. The system chart of a data recorder is shown in drawing 2 . In addition, below taking the case of the data recorder to the control unit for engine control including electronic formula throttle control, it explains.
[0019] In drawing 2 , closing motion actuation of the throttle valve 3 is carried out by the throttle actuator 2, the inhalation air content to an engine 1 is controlled, and the amount of fuel supply is controlled by the fuel injection valve 4 . and the inhalation in an engine $1-$ - having ignition timing controlled, it is lit by the ignition plug 5 and gaseous mixture burns. Here, the throttle actuator 2, a fuel injection valve 4 , and an ignition plug 5 are controlled by the signal from a control unit 20.
[0020] The signal from the crank angle sensor 6 which detects an engine speed, the accelerator sensor 8 which accelerator BEDARU 7 steps on and detects an angle (accelerator opening), the speed sensor 10 which detects the vehicle speed from the output-shaft revolution of transmission 9 , and an ignition switch 11 is inputted into the control unit 20 for this control. In addition, 12 in drawing shows car electric load.
[0021] The control unit 20 is constituted including CPU21, RAM22, EEPROM23, the input circuit 24, and the output circuit 25 . And the electronic system diagnostic circuit tester 30 is connected to a control unit 20, and this electronic system diagnostic circuit tester 30 can do the data exchange by communication link with CPU21.
[0022] In such a system, always CPU21 detects an engine speed, an accelerator opening, etc., and uses them for control, and also it records data on RAM22. In this case, the field which records the data for for 20 seconds is secured to RAM22, and data are overwritten and recorded in a cycle of 20 seconds. And the data in [after recording data] RAM22 are moved to EEPROM23 until it judges it as a stop and 10 seconds pass after a stop, when the vehicle speed becomes $0 \mathrm{~km} / \mathrm{h}$.
[0023] Moreover, an engine shutdown is judged with an ignition switch 11, and as shown in drawing 3 , storage maintenance of the data before and behind the stop of front [an engine shutdown (ignition switch 11 OFF)] 3 batch is carried out on EEPROM23. In addition, the field which records $10=303 \mathrm{x}$ data for for 20 seconds (data for [before a stop] 10 seconds and for 10 seconds after a stop) as shown in drawing 4 is secured to EEPROM23, and the ten-piece record maintenance of the data before and behind the stop of front [engine shutdown] 3 batch shown in drawing 3 can be carried out.
[0024] The detail of record actuation is as the program shown in the flow chart of drawing 5 and drawing 6 (drawing 6 is a continuation of drawing 5). This program is performed repeatedly every $10 \mathrm{msec}(\mathrm{s})$. Step 1 (it is described as S 1 in drawing.) In order to carry out record maintenance of the data fundamentally in it being the same as that of the following at the time of a stop, based on the signal from a speed sensor 10 , it judges whether the vehicle speed is $0 \mathrm{~km} / \mathrm{h}$. In addition, you may judge with the time of a stop with an engine speed being below a predetermined value.
[0025] When the vehicle speed is not $0 \mathrm{~km} / \mathrm{h}$, Flag FMEMO is set to 0 at step 2, and the address counter N for RAM is counted up at step 3 the back. In addition, when N is set to 2000, it returns to 0 (steps 4 and 5), and thereby, count-up to 0-1999 is repeated, and is made to perform. And it writes in and records on Nx10th - the Nx10+9th street in RAM corresponding to N which inputs the record data D1-D10 at step 6, and repeats even 0-1999 at step 7.
[0026] Thus, when the vehicle speed is larger than $0 \mathrm{~km} / \mathrm{h}$, the data for for 20 seconds are always recorded by writing in in order, overwriting the newest data to the predetermined field (the 0-19999th street) of RAM22. When the vehicle speed becomes $0 \mathrm{~km} / \mathrm{h}$, before it judges whether 10 seconds passed and 10 seconds pass it at step 8, steps 3-7 are performed and record to above-mentioned RAM22 is continued.
[0027] After the judgment of the flag FMEMO in step 9, after setting after 10 -second progress to FMEMO $=1$ at step 10, it progresses to step 11. At step 11, the value of the engine shutdown counter M which counts up for every engine shutdown by steps 20-22 later mentioned from the 600060 or 600061 st street (area for M storing of drawing 4) of EEPROM23, and repeats even 0-9 is read. This counter M is used as an object for upper address assignment of EEPROM23.
[0028] Next, the stop counter L is counted up at step 12. In addition, when L is set to 3 , it returns to 0 (steps 13 and 14), and thereby, count-up to 0-2 is repeated, and is made to perform. Therefore, this
counter L is counted up for every stop, and is used as an object for lower address assignment of EEPRPM23 [$2 / 0-\mathrm{]}$.
[0029] And at step 15, they are read-out and 23 EEPROMs x(Mx3+L) 20000 from 0th - the 19999th street of RAM22 about the record data for 20 seconds. Address -(Mx3+L) x20000+19999 It writes in an address. Moreover, at step 16, the value of the counter N which shows the newest data location is written in the 2 nd $[600000+(\mathrm{Mx3} 3 \mathrm{~L}) \mathrm{x}] 600000+(\mathrm{Mx} 3+\mathrm{L}) \times 2+1$ street among the area for N storing of EEPROM23 (refer to drawing 4 ; the 600000-600059th street).
[0030] Thereby, they are 23 EEPROMs $x(M x 3) 20000$ by L repeating even 0-2. Address -(Mx3+2) x20000+19999 It comes to be recorded on it, the data before and behind the stop of the three newest batches always being overwritten by the field of an address. Since it is $\mathrm{FMEMO}=1$ after this, it progresses to step 17 (drawing 6) from step 9.
[0031] At step 17, when an ignition switch 11 judges whether it is ON and becomes off, it judges whether 10 seconds passed after off at step 18, and when 10 seconds pass, it progresses to step 19. That is, 10 seconds after an ignition switch 11 becomes off, an engine shutdown is detected because it is, and it progresses to step 19. In addition, an engine shutdown may be judged from an engine speed.
[0032] In step 19, the value of the engine shutdown counter M is read from the 600060 or 600061 st street of EEPROM23, and the value of the engine shutdown counter M is counted up at step 20. In addition, when M is set to 10 , it returns to 0 (steps 21 and 22), and thereby, count-up to $0-9$ is repeated, and is made to perform. At the following step 23, the value of the counted-up engine shutdown counter M is written in the 600060 or 600061 st street of EEPROM23.
[0033] Thereby, record maintenance of the data before and behind the stop of the three newest batches is performed to another field of EEPROM23 at the time of the transit after the next start up. Thus, in this example, M can carry out [by] storage maintenance of the data for [before and after a stop] 20 seconds of front [engine shutdown] 3 batch and a total of 30 batches altogether about transit of the ten batches till then, when taking the value to $0-9$ and reading data in a service station.
[0034] And it becomes a quite high probability that the data in case of accident are in this. [0035]
[Effect of the Invention] The cheap data recorder for automobiles can be realized by enabling it to detect cheaply, without using the accident judgment function used for raising, an air bag, etc. in detection precision by using the vehicle speed, an engine speed, and two combination or more of an ignition switch in order to detect accident according to this invention, as explained above.
[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] As this kind of a data recorder for automobiles conventionally by mounting what is called an electronic system diagnostic circuit tester, connecting with a control unit, and setting this as automatic-recording mode At the time of the abnormal occurrence of the newest result of a nonconformity judging of a control unit, and an engine failure There are some on which the performance data of the automobile before and behind an abnormal occurrence was recorded automatically (refer to the Nissan Motor Co., Ltd. issuance "Nissan KONSARUTO electronic system diagnostic circuit tester operation manual engine editing" 27th page). Thereby, a cause of fault can be presumed with a sufficient probability from the data recorded at the time of failure.
[0003] The conventional example is explained further in full detail. Although the control unit for engine control is constituted including CPU, RAM, EEPROM, and an I/O circuit, CPU and the electronic system diagnostic circuit tester which can do the data exchange by communication link are connected to this. In such a system, always CPU detects an engine speed, an accelerator opening, etc., and uses them for control, and also it records data on RAM. In this case, the field which records the data for for 20 seconds is secured to RAM, and data are overwritten and recorded in a cycle of 20 seconds.
[0004] And an engine speed is 20 rpm . The data of the predetermined field in [after recording data] RAM are moved to the predetermined field of EEPROM until it judges it as an engine failure and 10 seconds pass after an engine failure, when it becomes below. Thereby, as shown in drawing 7 , the data for [before engine failure detection] 10 seconds and for 10 seconds after engine failure detection are memorized in EEPROM.
[0005] The detail of record actuation is as the program shown in the flow chart of drawing 8 . For this program, it performs repeatedly every $10 \mathrm{msec}(\mathrm{s})$ and each time and an engine speed are 20 rpm . Whether it is the following performs an engine failure judging (S51), when it is not an engine failure, Flag FMEMO is set to 0 and an address counter N is counted up the back (S52) (S53). In addition, when N is set to 2000, it returns to $0(\mathrm{~S} 54, \mathrm{~S} 55)$, and thereby, count-up to $0-1999$ is repeated, and is made to perform.
[0006] And the record data D1 - D10 are inputted (S56), and it writes in and records on Nx10th - the $\mathrm{Nx} 10+9$ th street in RAM corresponding to N which repeats even $0-1999$ (S57). The value of D1-D10 is an engine speed, or is engine-coolant water temperature. Thus, the data for for 20 seconds are always recorded by writing in in order during an engine revolution, overwriting the newest data to the predetermined field of RAM.
[0007] When an engine failure is carried out, before it judges whether 10 seconds passed after the engine failure (S58) and 10 seconds pass it When record to the above-mentioned RAM is continued (S53-S57) and 10 seconds pass The data for for (S60) to 20 seconds are written in 0th - the 19999th street of readout and EEPROM from 0th - the 19999th street of RAM as FMEMO $=1$ after the judgment (S59) of Flag FMEMO (S61). Moreover, similarly the value of the address counter N which shows the newest data location at this time is written in the 20000 or 200001 st street of EEPROM (S62). After this, a power source becomes off by the judgment (S59) of Flag FMEMO.
[0008] By doing in this way, storage maintenance of the thing for [before an engine failure] 10 seconds
and for 10 seconds after an engine failure can be carried out about data D1-D10 at EEPROM. And the data before and behind the engine failure which carried out storage maintenance can be transmitted by demand of an electronic system diagnostic circuit tester using communication facility. The above is the conventional example of the data recorder for automobiles. Although this example explained the case at the time of an engine failure, it is clear that the record maintenance of the engine failure can be similarly carried out as a time of failure generating.
[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] The cheap data recorder for automobiles can be realized by enabling it to detect cheaply, without using the accident judgment function used for raising, an air bag, etc. in detection precision by using the vehicle speed, an engine speed, and two combination or more of an ignition switch in order to detect accident according to this invention, as explained above.
[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] However, since it was not failure when a step on difference was carried out accidentally [accelerator pedal / a brake pedal and] and accident occurred by an operator's service abuse although it was recordable at the time of an engine failure and fault detection if it was in such a conventional data recorder for automobiles, data were not recorded, for this reason had the trouble that a cause could not be studied in case of accident.
[0010] In such a case, since it is especially becoming a problem at the occurrence time of accident, the method which detects accident and carries out storage maintenance of the data is considered easily. And in order to carry this out, approaches, such as using the decision part of the air bag already commercialized, can be considered. However, now, in slight accident, it could not detect and the costs which this takes also had troubles, such as being high.
[0011] This invention aims at being able to record data by the high probability also in the case of a service abuse, and offering the cheap data recorder for automobiles in view of such a conventional trouble.
[0012]
[Translation done.]

```
* NOTICES *
JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
```

1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

MEANS

[Mcans for Solving the Problem] For this reason, in the data recorder for automobiles, this invention is considered as the configuration which has a means to record the performance data of an automobile to the timing determined with these at least two combination while it has a means to detect turning on and off of the vehicle speed of an automobile, an engine speed, or an ignition switch, as shown in drawing 1.
[0013] Here, as for said timing, it is desirable to consider as the time of the stop before an engine shutdown.
[Translation done.]

* NOTICES *

```
JPO and NCIPI are not responsible for any
damages caused by the use of this translation.
```

1.This document has been translated by computer. So the translation may not reflect the original precisely.
2.**** shows the word which can not be translated.
3.In the drawings, any words are not translated.

OPERATION

[Function] In this invention, when there is generally trouble of traffic after stopping a car and on-site preservation or during preservation at the time of the occurrence of accident, after putting away a car, it usually came out to once stop an engine and it paid its attention to a certain thing. Thus, it stops at the time of the occurrence of accident, and if there was accident when saying to reverse since the engine was usually stopped near the, it can be said that it is it at the about one - three stop time before an engine shutdown.
[0015] So, in this invention, the time of the stop before an engine shutdown is detected, and it is made to carry out record maintenance of the data before and behind that with the vehicle speed, an engine speed, or at least two combination of turning on and off of an ignition switch. Although it is common to see the vehicle speed as an approach of detecting a stop, you may judge with a stop with an engine speed being below a predetermined value.
[0016] Moreover, although it is common to detect the ON state of an ignition switch as an approach of detecting engine shutdown before, you may judge by the engine speed. Therefore, the vehicle speed, an engine speed, or at least two combination of turning on and off of an ignition switch determine the timing of data logging.
[0017] By doing in this way, accident is detectable by the high probability in the limited memory size.
[Translation done.]

[^0]: 11, hazard warning flashing lights 12 and

[^1]: Printed in the United Kingdom for
 Her Majesty's Stationery Office, Dd 8818935, 1985, 4235.
 London, WC2A 1AY, from which copies may be obtained

