

AUTOMOTIVE ELECTRONICS HANDBOOK

Ronald K. Jurgen Editor in Chief

McGraw-Hill, Inc.

New York San Francisco Washington, D.C. Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

Page 000002

Library of Congress Cataloging-in-Publication Data

Automotive electronics handbook / Ronald Jurgen, editor in chief.

p. cm.
Includes index.
ISBN 0-07-033189-8
1. Automobiles—Electronic equipment. I. Jurgen, Ronald K.
TL272.5.A982 1994
629.25'49—dc 94-39724
CIP

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

1 2 3 4 5 6 7 8 9 0 AGM/AGM 9 0 9 8 7 6 5 4

ISBN 0-07-033189-8

The sponsoring editor for this book was Stephen S. Chapman, the editing supervisor was Virginia Carroll, and the production supervisor was Suzanne W. B. Rapcavage. It was set in Times Roman by North Market Street Graphics.

Printed and bound by Arcata Graphics/Martinsburg.

McGraw-Hill books are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please write to the Director of Special Sales, McGraw-Hill, Inc., 11 West 19th Street, New York, NY 10011. Or contact your local bookstore.

Information contained in this work has been obtained by McGraw-Hill, Inc. from sources believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors are supplying information, but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

This book is printed on acid-free paper.

Page 000003

11.24 CONTROL SYSTEMS

Ambient temperature under bias (TA) refers to the temperature range that the microcontroller is guaranteed to operate at within a given application. While powered-up or operating, a microcontroller must not be subjected to temperatures that exceed its specified ambient temperature range. The most common ambient temperature ranges in industry are:

Commercial 0 to +70 °CExtended -40 to +85 °CAutomotive -40 to +125 °C

11.2 MEMORY

Microcontrollers execute customized programs that are written by the user. These programs are stored in either on-chip or off-chip memory and are often referred to as the *user's code*. On-chip memory is actually integrated onto the same piece of silicon as the microcontroller and is accessed over the internal data bus. Off-chip memory exists on a separately packaged piece of silicon and is typically accessed by the microcontroller over an external address/data bus.

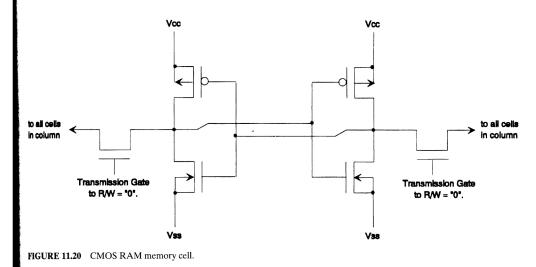
A memory map shows how memory addresses are arranged in a particular microcontroller. Figure 11.19 shows a typical microcontroller memory map.

Address	Memory Function		
0FFFFh 0A000h	External Memory		
9FFFh 2080h	Internal ROM/EPROM or External Memory		
207Fh 2000h	Internal ROM/EPROM or External Memory (Internupt vectors, CCB's, Security Key, Reserved locations, etc.)		
1FFFh 1F00h	Internal Special Function Registers (SFR's)		
1EFFh 0600h	External Memory		
05FFh 0400h	INTERNAL RAM (Address with indirect or indexed modes.) (Also know as Code RAM)		
03FFh 0100h	Register RAM	Upper Register File (Address with indirect or indexed modes or through windows.)	Register
00FFh 0018h	Register RAM	Lower Register File (Address with direct, indirect or indexed modes.)	File
0017h 0000h	CPU SFRs		

FIGURE 11.19 Microcontroller memory map.

Page 000004

Memory is commonly referred to in terms of Kbytes of memory. One Kbyte is defined as 1024 bytes of data. Memory is most commonly arranged in bytes which consist of 8 bits of data. For instance, a common automotive EPROM is referred to as a "256k × 8 EPROM". This EPROM contains 256-Kbytes 8-bit memory locations or 2,097,152 bits of information.


11.2.1 On-Chip Memory

On-chip microcontroller memory consists of some mix of five basic types: random access memory (RAM), read-only memory (ROM), erasable ROM (EPROM), electrically erasable ROM (EPROM), and flash memory. RAM is typically utilized for run-time variable storage and SFRs. The various types of ROM are generally used for code storage and fixed data tables.

The advantages of on-chip memory are numerous, especially for automotive applications, which are very size and cost conscious. Utilizing on-chip memory eliminates the need for external memory and the "glue" logic necessary to implement an address/data bus system. External memory systems are also notorious generators of switching noise and RFI due to their high clock rates and fast switching times. Providing sufficient on-chip memory helps to greatly reduce these concerns.

RAM. RAM may be defined as memory that has both read and write capabilities so that the stored information can be retrieved (read) and changed by applying new information to the cell (write). RAM found on microcontrollers is that of the static type that uses transistor cells connected as flip-flops. A typical six-transistor CMOS RAM cell is shown in Fig. 11.20. It consists of two cross-coupled CMOS inverters to store the data and two transmission gates, which provide the data path into or out of the cell. The most significant characteristic of static memory is that it loses its memory contents once power is removed. After power is removed, and once it is reapplied, static microcontroller RAM locations will revert to their default state of a logic "0". Because of the number of transistors used to construct a single cell, RAM memory is typically larger per bit than EPROM or ROM memory.

Although code typically cannot be executed from register RAM, a special type of RAM often referred to as *code RAM* is useful for downloading small segments of executable code. The difference between code and register RAM is that code RAM can be accessed via the

Page 000005

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

