EXHIBIT B

DOCKET ALARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

US008492359B2

(12) United States Patent

Yaworski et al.

(54) LIPID FORMULATIONS FOR NUCLEIC ACID DELIVERY

- (75) Inventors: Edward Yaworski, Maple Ridge (CA);
 Kieu Lam, Surrey (CA); Lloyd Jeffs, Delta (CA); Lorne Palmer, Vancouver (CA); Ian MacLachlan, Mission (CA)
- (73) Assignee: **Protiva Biotherapeutics, Inc.**, Burnaby, BC (CA)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 59 days.

This patent is subject to a terminal disclaimer.

- (21) Appl. No.: 13/253,917
- (22) Filed: Oct. 5, 2011

(65) **Prior Publication Data**

US 2012/0183581 A1 Jul. 19, 2012

Related U.S. Application Data

- (63) Continuation of application No. 12/424,367, filed on Apr. 15, 2009, now Pat. No. 8,058,069.
- (60) Provisional application No. 61/045,228, filed on Apr. 15, 2008.
- (51) Int. Cl.

C12N 15/11 (2006.01)
--------------	----------

(56) **References Cited**

U.S. PATENT DOCUMENTS

$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.0.	1 7 11 1/1 1	DOCOMENTS
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4,394,448	Α	7/1983	Szoka, Jr. et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4,438,052	Α	3/1984	Weder et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4,515,736	Α	5/1985	Deamer
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4,598,051	Α	7/1986	Papahadjopoulos et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4,897,355	Α	1/1990	Eppstein et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5,013,556	Α	5/1991	Woodle et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5,171,678	Α	12/1992	Behr et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5,208,036	Α	5/1993	Eppstein et al.
5,279,833 A 1/1994 Rose 5,283,185 A 2/1994 Epand et al. 5,283,185 A 2/1994 Epand et al. 5,283,185 A 2/1994 Eley et al. 5,334,761 A 8/1994 Gebeychu et al. 5,545,412 A 8/1996 Eppstein et al. 5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 8/1997 Busch et al. 5,667,4908 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,703,055 A 12/1998 Bally et al.	5,225,212	Α	7/1993	Martin et al.
5,283,185 A 2/1994 Epand et al. 5,320,906 A 6/1994 Eley et al. 5,334,761 A 8/1994 Gebeyehu et al. 5,34,761 A 8/1994 Gebeyehu et al. 5,545,412 A 8/1996 Eppstein et al. 5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 8/1997 Busch et al. 5,674,908 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,703,385 A 1/1998 Bally et al.	5,264,618	Α	11/1993	Felgner et al.
5,320,906 A 6/1994 Eley et al. 5,334,761 A 8/1994 Gebeyehu et al. 5,545,412 A 8/1996 Epstein et al. 5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,6541,662 A 6/1997 Debs et al. 5,654,743 A 8/1997 Busch et al. 5,656,743 A 8/1997 Busch et al. 5,674,908 A 10/1997 Haces et al. 5,705,385 A 1/1998 Bally et al.	5,279,833	Α	1/1994	Rose
5,334,761 A 8/1994 Gebeyehu et al. 5,545,412 A 8/1996 Eppstein et al. 5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 10/1997 Busch et al. 5,674,908 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,705,385 A 1/1998 Bally et al.	5,283,185	А	2/1994	Epand et al.
5,545,412 A 8/1996 Eppstein et al. 5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 8/1997 Busch et al. 5,656,743 A 8/1997 Haces et al. 5,676,755 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,705,385 A 1/1998 Bally et al.	5,320,906	Α	6/1994	Eley et al.
5,578,475 A 11/1996 Jessee 5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 8/1997 Busch et al. 5,656,743 A 10/1997 Haces et al. 5,676,735 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,705,385 A 1/1998 Bally et al.	5,334,761	Α	8/1994	Gebeyehu et al.
5,627,159 A 5/1997 Shih et al. 5,641,662 A 6/1997 Debs et al. 5,656,743 A 8/1997 Busch et al. 5,674,908 A 10/1997 Haces et al. 5,703,055 A 12/1997 Felgner et al. 5,705,385 A 1/1998 Bally et al.	5,545,412	А	8/1996	Eppstein et al.
5,641,662A6/1997Debs et al.5,656,743A8/1997Busch et al.5,674,908A10/1997Haces et al.5,703,055A12/1997Felgner et al.5,705,385A1/1998Bally et al.	5,578,475	Α	11/1996	Jessee
5,656,743A8/1997Busch et al.5,674,908A10/1997Haces et al.5,703,055A12/1997Felgner et al.5,705,385A1/1998Bally et al.	5,627,159	Α	5/1997	Shih et al.
5,674,908A10/1997Haces et al.5,703,055A12/1997Felgner et al.5,705,385A1/1998Bally et al.	5,641,662	Α	6/1997	Debs et al.
5,703,055 A 12/1997 Felgner et al. 5,705,385 A 1/1998 Bally et al.	5,656,743	Α	8/1997	Busch et al.
5,705,385 A 1/1998 Bally et al.	5,674,908	Α	10/1997	Haces et al.
	5,703,055	Α	12/1997	Felgner et al.
5,736,392 A 4/1998 Hawley-Nelson et al.	5,705,385	Α	1/1998	Bally et al.
	5,736,392	Α	4/1998	Hawley-Nelson et al.

(10) Patent No.: US 8,492,359 B2

(45) **Date of Patent:** *Jul. 23, 2013

5,885,613 A	3/1999	Holland et al.
5,958,901 A	9/1999	Dwyer et al.
5,976,567 A	11/1999	Wheeler et al.
5,981,501 A	11/1999	Wheeler et al.
6,020,202 A	2/2000	Jessee
6,020,526 A	2/2000	Schwartz et al.
6,034,135 A	3/2000	Schwartz et al.
6,051,429 A	4/2000	Hawley-Nelson et al.
6,075,012 A	6/2000	Gebeyehu et al.
6,165,501 A	12/2000	Tirosh et al.
6,172,049 B1	1/2001	Dwyer et al.
6,251,939 B1	6/2001	Schwartz et al.
6,284,267 B1	9/2001	Aneja
6,287,591 B1	9/2001	Semple et al.
6,339,173 B1	1/2002	Schwartz et al.
6,376,248 B1	4/2002	Hawley-Nelson et al.
6,534,484 B1	3/2003	Wheeler et al.
6,586,410 B1	7/2003	Wheeler et al.
6,638,529 B2	10/2003	Schwartz et al.
6,649,780 B1	11/2003	Eibl et al.
6,671,393 B2	12/2003	Hays et al.
6,696,424 B1	2/2004	Wheeler
6,815,432 B2	11/2004	Wheeler et al.
6,858,224 B2	2/2005	Wheeler et al.

(Continued)

FOREIGN PATENT DOCUMENTS

2309727 A1 4/1999 2271582 A1 11/1999

(Continued)

OTHER PUBLICATIONS

Arpicco, S., et al., "Preparation and Characterization of Novel Cationic Lipids Developed for Gene Transfection," Proceed. Int'l Symp. Control. Rel. Bioact. Mater. (Controlled Release Society, Inc.), 1999, vol. 26, pp. 759-760.

Arpicco, S., et al., "Synthesis, characterization and transfection activity of new saturated and unsaturated cationic lipids," IL Farmaco, 2004, vol. 59, pp. 869-878.

Ballas, N., et al., "Liposomes bearing a quaternary ammonium detergent as an efficient vehicle for functional transfer of TMV-RNA into plant protoplasts," Biochimica et Biophysica Acta, 1988, vol. 939, pp. 8-18.

Barinaga, M., "Step Taken Toward Improved Vectors for Gene Transfer," Science, 1994, vol. 266, p. 1326.

Bass, "The Short Answer," Nature, 2001, 411: 428-9.

Beale, G., et al., "Gene Silencing Nucleic Acids Designed by Scanning Arrays: Anti-EGFR Activity of siRNA, Ribozyme and DNA Enzymes Targeting a Single Hybridization-accessible Region using the Same Delivery System," Journal of Drug Targeting, 2003, vol. 11, No. 7, pp. 449-456.

(Continued)

Primary Examiner — Brian Whiteman

(74) Attorney, Agent, or Firm — Kilpatrick Townsend & Stockton LLP

(57) **ABSTRACT**

The present invention provides novel, stable lipid particles comprising one or more active agents or therapeutic agents, methods of making the lipid particles, and methods of delivering and/or administering the lipid particles. More particularly, the present invention provides stable nucleic acid-lipid particles (SNALP) comprising a nucleic acid (such as one or more interfering RNA), methods of making the SNALP, and methods of delivering and/or administering the SNALP.

Find authenticated court documents without watermarks at docketalarm.com.

CA CA

U.S. PATENT DOCUMENTS

	0.0.1		DOCOMENTS
7,166,745	B1	1/2007	Chu et al.
7,422,902	B1	9/2008	Wheeler et al.
7,479,573	B2	1/2009	Chu et al.
7,601,872		10/2009	Chu et al.
7,687,070		3/2010	Gebeyehu et al.
	B2	6/2010	Heyes et al.
7,799,565		9/2010	MacLachlan et al.
7,803,397		9/2010	Heyes et al.
7,807,815		10/2010	MacLachlan et al.
7,838,658		11/2010	MacLachlan et al.
7,901,708		3/2011	MacLachlan et al.
7,915,450		3/2011	Chu et al.
7,982,027		7/2011	MacLachlan et al.
8,058,068		11/2011	Hawley-Nelson et al.
8,058,069		11/2011	Yaworski et al 435/458
8,158,827		4/2012	Chu et al.
8,227,443	B2	7/2012	MacLachlan et al.
2001/0048940	A1	12/2001	Tousignant et al.
2003/0069173	A1	4/2003	Hawley-Nelson et al.
2003/0077829	A1	4/2003	MacLachlan
2003/0143732	A1	7/2003	Fosnaugh et al.
2004/0063654	A1	4/2004	Davis et al.
2004/0142892	Al	7/2004	Finn et al.
2004/0253723	A1	12/2004	Tachas et al.
2004/0259247	A1	12/2004	Tuschl et al.
2005/0064595	A1	3/2005	MacLachlan et al.
2005/0118253	A1	6/2005	MacLachlan et al.
2005/0260757	A1	11/2005	Gebeyehu et al.
2006/0008910	Al	1/2006	MacLachlan et al.
2006/0147514	Al	7/2006	Gebeyehu et al.
2006/0228406	Al	10/2006	Chiou et al.
2007/0042031	A1	2/2007	MacLachlan et al.
2007/0202598		8/2007	Chu et al.
2007/0202600	Al	8/2007	Chu et al.
2009/0143583	Al	6/2009	Chu et al.
2009/0291131	Al	11/2009	MacLachlan et al.
2010/0159593	Al	6/2010	Chu et al.
2012/0136073	Al	5/2012	Yang et al.
2012/0238747		9/2012	Chu et al.
2012/02/07/17		J, 2012	

FOREIGN PATENT DOCUMENTS

CA	2330741 A1	11/1999
CA	2397016 A1	7/2001
ЛЬ	03-126211	5/1991
JP	05-202085	8/1993
ЛЬ	06-080560	3/1994
WO	WO 91/16024 A1	10/1991
WO	WO 93/05162 A1	3/1993
WO	WO 93/12240 A1	6/1993
WO	WO 93/12756 A2	7/1993
WO	WO 93/24640 A2	12/1993
WO	WO 93/25673 A1	12/1993
WO	WO 95/02698 A1	1/1995
WO	WO 95/18863 A1	7/1995
WO	WO 95/35301 A1	12/1995
WO	WO 96/02655 A1	2/1996
WO	WO 96/10390 A1	4/1996
WO	WO 96/41873 A1	12/1996
WO	WO 98/51285 A2	11/1998
WO	WO 00/03683 A2	1/2000
WO	WO 00/15820 A1	3/2000
WO	WO 00/62813 A2	10/2000
WO	WO 01/05374 A1	1/2001
WO	WO 01/05873 A1	1/2001
WO	WO 02/34236 A2	5/2002
WO	WO 02/087541 A1	11/2002
WO	WO 03/097805 A2	11/2003
WO	WO 2004/065546 A2	8/2004
WO	WO 2004/110499 A1	12/2004
WO	WO 2005/007196 A2	1/2005
WO	WO 2005/026372 A1	3/2005
WO	WO 2005/035764 A1	4/2005
WO	WO 2005/120152 A2	12/2005
WO	WO 2006/002538 A1	1/2006

WO	WO 2010/048228 A2	4/2010
WO	WO 2010/088537 A2	8/2010
WO	WO 2010/105209 A1	9/2010

OTHER PUBLICATIONS

Behr, J.-P., "Synthetic Gene-Transfer Vectors," Acc. Chem. Res., 1993, vol. 26, pp. 274-278.

Brigham, K., et al., "Rapid Communication: In vivo Transfection of Murine Lungs with a Functioning Prokaryotic Gene Using a Liposome Vehicle," The American Journal of the Medical Sciences, vol. 298, No. 4, pp. 278-281, 1989.

Brummelkamp, et al., "A System for Stable Expression of Short Interfering RNAs in Mammalian Cells," Science, 2002, V. 296. pp. 550-553.

Cevc, G., "How Membrane Chain-Melting Phase-Transition Temperature is Affected by the Lipid Chain Asymmetry and Degree of Unsaturation: An Effective Chain-Length Model," Biochemistry, 1991, vol. 30, pp. 7186-7193.

Chonn et al., "Recent advances in liposomal drug-delivery systems," Current Opinion in Biotechnology, 1995, vol. 6, pp. 698-708.

Cortesi, R., et al., "Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA," International Journal of Pharmaceutics, 1996, vol. 139, pp. 69-78.

Crystal, R., "Transfer of Genes to Humans: Early Lessons and Obstacles to Success," Science, 1995, vol. 270, pp. 404-410.

Culver K., "The First Human Gene Therapy Experiment," Gene Therapy: A Handbook for Physicians, 1994, pp. 33-40.

Duzgunes, N., "Membrane Fusion," Subcellular Biochemistry, 1985, vol. 11, pp. 195-286.

Dwarki, V.J., et al., "Cationic Liposome-Mediated RNA Transfection," Methods in Enzymology, 1993, vol. 217, pp. 644-654.

Elbashir, et a., "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells," Nature, May 2001, pp. 494-498, vol. 411.

Enoch, H., et al., "Formation and properties of 1000-Å-diameter, single-bilayer phospholipid vesicles," Proc. Natl. Acad. Sci. USA, 1979, vol. 76, No. 1, pp. 145-149.

Felgner, J., et al., "Cationic Lipid-Mediated Transfection in Mammalian Cells: 'Lipofection," J. Tiss. Cult. Meth., 1993, vol. 15, pp. 63-68.

Felgner, J., et al., "Enhanced Gene Delivery and Mechanism Studies with a Novel Series of Cationic Lipid Formulations," The Journal of Biological Chemistry, 1994, vol. 269, No. 4, pp. 2550-2561.

Felgner, P., et al., "Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure," Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 7413-7417.

Felgner, P.L., et al., "Cationic Liposome Mediated Transfection," Proc. West. Pharmacol. Soc., 1989, vol. 32, pp. 115-121.

Gao, X., et al., "A Novel Cationic Liposome Reagent for Efficient Transfection of Mammalian Cells," Biochem. Biophys. Res. Comm., 1991, vol. 179, No. 1, pp. 280-285.

Gershon, H., et al., "Mode of Formation and Structural Feature of DNA-Cationic Liposome Complexes Used for Transfection," Biochemistry, 1993, vol. 32, pp. 7143-7151.

Global Newswire, retrieved from http://globalnewswire.com on Feb. 27, 2013, Tekmira sues Alnylam Pharmaceuticals for repeated misuse of tradescrets and confidential information, Mar. 16, 2011, pp. 1-3.

Guy-Caffey, J., et al., "Novel Polyaminolipids Enhance the Cellular Uptake of Oligonucleotides," The Journal of Biological Chemistry, 1995, vol. 270, No. 52, pp. 31391-31396.

Hawley-Nelson, P., et al., "LipofectAmine[™] Reagent: A New, Higher Efficiency Polycationic Liposome Transfection Reagent," Focus, 1993, vol. 15, No. 3, pp. 73-80.

Heyes et al., "Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids," Journal of Controlled Release, 2005, vol. 107, pp. 276-287.

Heyes et al., "Synthesis of novel cationic lipids: effect of structural modification on the efficiency of gene transfer," J. Med. Chem., 2002, vol. 45, pp. 99-114.

Hyde, S., et al., "Correction of the ion transport defect in cystic

Jiang, L., et al., "Comparison of protein precipitation methods for sample preparation prior to proteomic analysis," Journal of Chromatography A, 2004, vol. 1023, pp. 317-320.

Juliano, R., et al., "The Effect of Particle Size and Charge on the Clearance Rates of Liposomes and Liposome Encapsulated Drugs," Biochem. Biophys. Res. Commun., 1975, vol. 63, No. 3, pp. 651-658. Keough, K., "Influence of chain unsaturation and chain position on thermotropism and intermolecular interactions in membranes," Biochem. Soc. Transactions, 1990, vol. 18, No. 5, pp. 835-837.

Lawrence et al. "The formation, characterization and stability of non-ionic surfactant vesicles," S.T.P. Pharma Sciences, 1996, vol. 6, No. 1, pp. 49-60.

Lawrence et al., "Synthesis and aggregation properties of dialkyl polyoxyethylene glycerol ethers," Chemistry and Physics of Lipids, 1996, 82(2):89-100.

Legendre, J.-Y. et al., "Delivery of Plasmid DNA into Mammalian Cell Lines Using pH-Sensitive Liposomes: Comparison with Cationic Liposomes," Pharm. Res., 1992, vol. 9, No. 10, pp. 1235-1242.

Leventis, R., et al., "Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles," Biochem. Biophys. Acta, 1990, vol. 1023, pp. 124-132.

Liu, et al., "Cationic Liposome-mediated Intravenous Gene Delivery", J. Biol. Chem., 1995, V. 270, pp. 24864-24870.

Marshall, E., "Gene Therapy's Growing Pains," Science, 1995, vol. 269, pp. 1050-1055.

Murahashi et al., "Synthesis and evaluation of neoglycolipid for liposome modification," Biol. Pharm. Bull., 1997, 20(6):704-707.

Orkin, S., et al., NIH Report, Report and Recommendations of the Panel to Assess the NIH Investment in Research on Gene Therapy, 1995.

Parr et al., Factors influencing the retention and chemical stability of polly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles, Biochimica et Biophysica Acta, 1994, 1195:21-30.

Paul, C., et al., "Effective expression of small interfering RNA in human cells," Nature Biotech., 2002, vol. 20, pp. 505-508.

Puyal, C., et al., "A new cationic liposome encapsulating genetic material: A potential delivery system for polynucleotides," Eur. J. Biochem., 1995, vol. 228, pp. 697-703.

DOCKE⁻

RM

Sawada et al., "Microemulsions in supercritical CO_2 utilizing the polyethyleneglycol dialkylglycerol and their use for the solubilization of hydrophiles," Dyes and Pigments, 2005, pp. 64-74, vol. 65. Shin, et al. "Acid-triggered release via dePEGylation of DOPE liposomes containing acid-labile vinyl ether PEG-lipids," Journal of Controlled Release, 2003, vol. 91, pp. 187-200.

Song et al., "Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes," Biochimica et Biophysica Acta, 2002, 1558:1-13. Sorensen, et al., "Gene Silencing by Systemic Delivery of Synthetic

Sorensen, et al., "Gene Silencing by Systemic Delivery of Synthetic siRNAs in Adult Mice", J. Biol. Chem., 2003, V. 327, pp. 761-766. Spagnou, S., et al., "Lipidic Carriers of siRNA: Differences in the Formulation, Cellular Uptake, and Delivery with Plasmid DNA,"

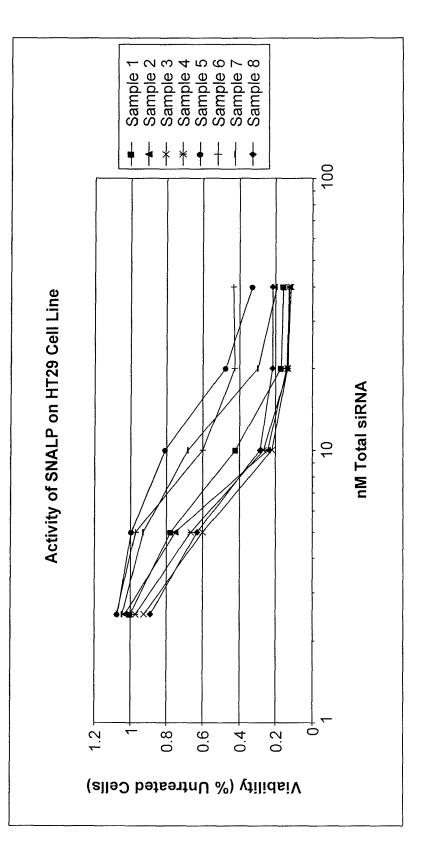
Biochemistry, 2004, vol. 43, pp. 13348-13356. Stamatatos, L., et al., "Interactions of Cationic Lipid Vesicles with Negatively Charged Phospholipid Vesicles and Biological Membranes," Biochemistry, 1988, vol. 27, pp. 3917-3925.

Szoka, F., et al., "Comparative Properties and Methods of Preparation of Lipid Vesicles (Liposomes)," Ann. Rev. Biophys. Bioeng., 1980, vol. 9, pp. 467-508.

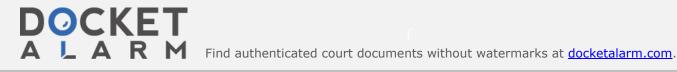
Szoka, F., et al., "Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation," Proc. Natl. Acad. Sci. USA, 1978, vol. 75, No. 9, pp. 4194-4198.

Templeton, "Cationic Liposome-mediated Gene Delivery in vivo", Bioscience Reports, 2002, vol. 22, No. 2, pp. 283-295.

Van Der Woude, I., et al., "Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system," Biochimica et Biophysica Acta, 1995, vol. 1240, pp. 34-40.


Wheeler, et al., "Stabilized Plasmid-lipid Particles: Constructions and Characterization," Gene Therapy, V. 6, pp. 271-281, 1999.

Wilson, R., et al., "Counterion-Induced Condensation of Deoxyribonucleic Acid," A Light-Scattering Study, Biochemistry, 1979, vol. 18, No. 11, pp. 2192-2196.


Woodle, M.C., et al., "Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes," Biochimica et Biophysica Acta, 1992, vol. 1105, pp. 193-200.

Zhu, N., et al., "Systemic Gene Expression After Intravenous DNA Delivery into Adult Mice," Science, 1993, vol. 261, pp. 209-211.

* cited by examiner

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.