
 Exhibit 54

Case 1:14-cv-02396-PGG-SN Document 241-29 Filed 11/12/20 Page 1 of 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Pattern Recognition 41 (2008) 3467 - 3480

Waveprint: Efficient wavelet-based audio fingerprinting

Shumeet Baluja*, Michele Covell

Google, Inc., Mountain View, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 17 July 2007

Received in revised form 6 March 2008

Accepted 2 May 2008

In this paper, we present Waveprint, a novel method for audio identification. Waveprint uses a combina-

tion of computer-vision techniques and large-scale data-stream processing algorithms to create compact

fingerprints of audio data that can be efficiently matched. The resulting system has excellent identifica-

tion capabilities for small snippets of audio that have been degraded in a variety of manners, including

competing noise, poor recording quality and cell-phone playback. We explicitly measure the tradeoffs

Keywords:

Audio retrieval

Applications

Image/video retrieval

Pattern analysis

between performance, memory usage, and computation through extensive experimentation. The system

is more efficient in terms of memory usage and computation, while being more accurate when compared

with previous state of the art systems. The applications of Waveprint include song identification for

end-consumer use, copyright protection for audio assets, copyright protection for television assets and

synchronization of off-line audio sources, such as live television.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Audio fingerprinting provides the ability to link short, unlabeled

snippets of audio content to corresponding data about that content.

There are an immense number of applications for audio fingerprint-

ing. In the consumer space, it provides the ability for consumers to

automatically identify unknown audio, suchas songs] Songs can

be tagged automatically with the performing artist's name, album or

other metadata. Other applications include broadcast monitoring for

not only songs, but also other non-musical content. One such appli-
cation is to continuously monitor the number, time, and duration of
broadcasts of pre-recorded programs and advertisements. An appli-
cation that is rapidly growing in importance is the immediate identi-
fication of copyrighted material. As the ease and popularity of music

and video sharing increases the need to recognize copyrighted
content grows. For this task, audio fingerprinting is proving to be

useful for recognizing not only audio material, but also video content

(through the use of the audio track). Similarly, automatically rec-

ognizing ambient audio signals from television broadcasts has also

proven to be much easier than recognizing the video stream. This
has enabled numerous applications ranging from enhanced televi-
sion {5} to automatic advertisement detection and replacement

There are a number of issues that make fingerprinting a chal-

lenging task. The simplest approaches, directly comparing the au-

dio samples, will not work. The query and stored version of a song

*
Corresponding author.

0031-3203/$30.00 © 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j patcog.2008.05.006

may be aurally similar while having distinct sample values. Even di-
rect comparisons of spectrograms are susceptible to changes in qual-

ity settings, compression schemes, equalization settings, reference

codecs, etc. Further, if radio broadcasts are included in the probe set,
tempo and sometimes pitch changes may be introduced, since ra-

dio stations often change the speed of a song to fit their programing

requirements Finally, there are numerous issues introduced by
the many forms of playback available to the end-consumer. Music

that is played through a cell-phone, computer speakers, or high-end
audio equipment will have very different audio characteristics that

must be taken into account.

In this paper, we describe a system which can handle signals that

have been degraded by echoes, passed through a cell-phone codec,

recorded in the presence of structured noise, and modified in its

timing, with respect to either/both pitch and tempo. The system is

always tested where even coarse offsets into the matching song are

unknown (for example, cues such as “the snippet occurs with the

first 30s” will not be used). This offset-invariant testing is required
for broadcast monitoring and for edited-media identification. Most

open-source music-track identification systems (such as Foosic lib-

FoolD and MusicBrainz Picard Tagger {9}) are not designed for

use under this assumption. Instead, we compare ourselves to an-

other state-of-the-art open-source system {TOE allowing us to com-

pare memory usage and computational load as well as accuracy.
For our explorations, there are practical system-design con-

straints. The most restrictive are the memory requirements. To

minimize the number andsize of disk reads, we will keep as much

information in a computer's memory as possible. Therefore, the fin-

gerprints need to be compact. Second, the system must be designed
to be easily parallelizable to multiple machines. New audio content

GOOG-NETWORK-00610574

Case 1:14-cv-02396-PGG-SN Document 241-29 Filed 11/12/20 Page 2 of 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3468 S. Baluja, M. Covell / Pattern Recognition 41 (2008) 3467 - 3480

may be continuously added to the system. Third, the system must

be able to work with non-music information, such as the audio track

of television programs. The least restrictive of our requirements is

the computation speed; we need to recognize an audio-track as it is

being played. Therefore, it must be at least real-time.

In Section 2, we review previous approaches to audio identifi-

cation, with special attention to those systems that influenced our

own approach. In Section 3, we present and explain the methods

we have used for our system, termed Waveprint {TT} Section 4 ex-

plores the tradeoffs across computational complexity, memory usage
and recognition accuracy, as a function of the parameter settings.
Section 5 provides detailed performance results and compares the

performance to the best previously published system {TO In recog-
nition of the importance of scaling properties, Section 6 analyzes,

in practice, the accuracy and computation required as a function of

known-audio database size. Finally, Section 7 concludes the paper
and outlines several directions for further exploration.

2. Previous approaches

A good overview of the audio fingerprinting field can be found in

Refs. {12,13} Most track-based approaches, such as Foosic libFoolD

and MusicBrainz Picard Tagger often make use of starting-
time constraints in matching fingerprints. Some commercial prod-
ucts are targeted at broadcast or edited content

One of the most widely used systems {T8§ uses overlapping win-
dows of audio to extract interesting features. Thirty-three Bark-

frequency cepstral coefficient (BFCC) bands, covering 300-2000 Hz,

are used for the spectral representation, with spectral slices taken ev-

ery 11.6ms and with eachslice based on 370 msof audio. This large

overlap ensures that the sub-fingerprints slowly vary over time, pro-

viding fine-grain shift invariance to the representation. A vector of 32

bits, called a sub-fingerprint, are extracted from each slice position

according to the increasing/decreasing difference pairs across suc-

cessive bands and successive spectral slices. These sub-fingerprints
are largely insensitive to small changesin the audio signal since no

actual difference values are kept; instead, only the sign bits com-

pose the sub-fingerprint. Comparisons with these fingerprints are

efficient; a simple Hamming distance can be used.

For a database of 10,000 songs of average length 5 min, approx-

imately 250,000,000 sub-fingerprints were generated During
retrieval from this reference set, the entire database cannot be exam-

ined. Instead, the authors of Ref. assume that, even with poten-
tial audio degradations,at least one sub-fingerprint from each query
sound will have a (correct) exact match in the database. This allows

them to use a hash table to find exact copies. Once an exact match

is found, the temporal sequencing of the indexed song is used to

analyze the surrounding sub-fingerprints. This allows a simple com-

putation of the Hamming distance over the full snippet length. The

only “search” done is over candidates that are retrieved by one or

more exact matches. If extreme distortions are expected, such that

even a single exact match is not guaranteed, their approach is mod-

ified to search for vectors that are small Hamming distances away
from the original sub-fingerprints.

A recent extension to the above work was presented in Ref. {70}
Based on Ref. {T8§ Ke introduced a learning approach into the fea-

ture selection process. An important insight provided by Ref. [TOF

is that the 1-D audio signal can be processed as an image when

viewed in a 2-D time-frequency representation. Their learning sys-

tem finds features that integrate the energy in selected frequencies
over time via AdaBoost learning The basis of feature selection

is the discriminative power of the region in differentiating between

two matching frames (within a distortion set) and two mismatched

frames. Thirty-two “boxlet” features are selected, each yielding a bi-

nary value. These 32 bits are then used in an analogous procedure to

the 32-bit features found by Ref. {18} Temporal coherence is mea-

sured by a simple transition model.

An alternate approach is explored in Refs. {20;2T} Their work

uses a perceptually weighted log spectrogram as the feature set.

This log spectrogram is sampled only once every 186 ms and uses

372 ms of data to provide 2048 frequency samples between DC and

5.05 kHz. Burges et al. extract noise-tolerant fingerprints from this

spectrogram using distortion discriminant analysis (DDA). The fin-

gerprints are more complex than in the studies by Refs. but

also summarize longer segments of audio than in the other work.

DDA is based on a variant of linear discriminant analysis (LDA) called

oriented principal components analysis (OPCA). OPCA assumes that
distorted versions of the training samples are available. OPCA se-

lects a set of directions for modeling the subspace that maximizes

the signal variance while minimizing the noise power. OPCA yields
a set of potentially non-orthogonal vectors that account for noise

statistics {2T§ The final result of their system effectively maps 110K

inputs into 64 outputs. These 64 outputs are the sub-fingerprints
that are matched. The experiments conducted in Refs. have

found that the fingerprints are resistant to problems with alignment
and types of noise not found in the training set.

3. Description of the Waveprint system

Our system builds on the insight from Ref. computer-vision

techniques can be a powerful method for analyzing audio data. How-

ever, instead of a learning approach, we examine the applicability
of a wavelet-based approach developed by Ref. {22} for efficiently

performing image queries in large databases. To make the algorithm

scale, we employ hashing approaches from large-scale data-stream

processing. The sub-fingerprints that we develop are more compre-
hensive than used in Refs. since they will represent a longer
time period, in a manner closer to the work presented in Ref.

We structure our discussion of the Waveprint system in three

stages. The first is the creation of a compact representation of songs

that will be inserted into our database for retrieval. The second stage
is the creation and organization of that database. The third stage
is an efficient procedure to lookup a candidate match when a new

query audio snippet is received.

3.1, Fingerprint creation

The overall architecture of the fingerprint creation procedure,
described in this section, is shown inFig. Fig. also showsa typical

spectrogram and its decomposition into a sparse representation that

will be converted into the signatures stored in our database.

3.1.1. Spectral-image creation

We begin by converting the audio input into a spectrogram {23}
The simplest spectrogram extracts overlapping segments of audio,

tapers each audio slice to reduce the sensitivity to end effects,

takes the Fourier transform of each audio slice to give a short-time

frequency representation, and then discards the phase component,

keeping only Fourier magnitudes on the positive frequency bands.

We create the spectrograms using parameter settings that worked

well in previous audio fingerprinting studies We use slices that

are 371 ms long, taken every 11.6ms, reduced to 32 logarithmically

spaced frequency bins between 318Hz and 2kHz. An important

consequence of the slice length/spacing combination of parameters
is that the spectrogram varies slowly in time, providing matching
robustness to position uncertainty (in time). The use of logarithmic

spacing in frequency was selected based on simplicity, since the

detailed band-edge locations are unlikely to have a strong effect

under such coarse sampling (only 32 samples across frequency).

GOOG-NETWORK-00610575

Case 1:14-cv-02396-PGG-SN Document 241-29 Filed 11/12/20 Page 3 of 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

S. Baluja, M. Covell / Pattern Recognition 41 (2008) 3467 - 3480 3469

We then extract spectral images, 11.6 +wms long, each sampling
offset apart. The sampling offsets that we use are constant in the

database-creation process (s sec separation) but are non-uniform in

the probe sampling process. We discuss the parameter choices (s

and w) further in Section 4. Extracting known-length spectral images
from the spectrograms allows us to create sub-fingerprints that in-

clude some temporal structure without been unduly susceptible to

gradual changesin timing. At this point in the processing, we treat

the spectral images as if they were components in an image-query

system. Rather than performing retrieval by directly comparing the

“pixels” of the spectral image, we will use a representation based on

wavelets.

3.1.2. Wavelets on spectral images

Wavelets are a mathematical tool for hierarchically decomposing
functions. They allow a function to be described by its overall shape,

plus successively increasing details. A good description of wavelets

can be found in Ref. We use wavelets in this audio-retrieval task

1. Given the spectrogram of a song, divide the audio into

smaller spectral images.

For each spectral image:

2. Compute the wavelets on the spectral images.

3 Extract the top-t wavelets, measured by magnitude.

4. Create a binary representation of the top-wavelets.

Fig. 1. Overall architecture for fingerprint creation.

due to their successful use in image retrieval {22} In Ref. rather

than comparing images directly in the pixel space, they first decom-

posed the image through the use of multi-resolution Haar wavelets.

Samples of the wavelet decomposition, for a typical image and for

a spectrogram image, are shown inj
query images that were hand drawn or low quality sketches of the

target image. The results were better than those achieved through

simple histogram or pixel differences.

In our system, for each of the spectral images, Haar wavelets are

computed. By itself, the wavelet image is not resistant to noise or

audio degradations. To provide this resistance, instead of using the

entire set of wavelets, we only keep the ones that most characterize

the image, by selecting the top-t wavelets (by magnitude), where t <
image_pixels. When we look at the wavelets for successive images

for two songs, we see easily identifiable patterns both in the wavelet

space and even more clearly when the top-t wavelets are kept. This

is shown in Fig.
One of the important findings by Jacobs {22§ was that only sign

bits (not the full coefficients) for the top wavelets were needed.

This allows a bit-vector representation in which each wavelet was

represented as only two bits—which is ideal for applications, such as

this one, with stringent memory requirements. For each of the top-
t magnitude wavelets, it is labeled as 10 (for positive values) or 01

(for negative values). The majority of wavelets, which are not in the

top-t set are labeled with 00. This representation makes the resulting
bit vector extremely sparse and amenable to further dimensionality
reduction. For the next step of dimensionality reduction, we use

Min-Hash, which is described in the next section.

3.2. Min-Hash-based sub-fingerprints

The final step of sub-fingerprint creation is to determine a com-

pact but nearest-neighbor indexable representation of the sparse
wavelet-vector described in the previous section; for this we explore

the use of Min-Hash [25 To support efficient nearest-neighbor

retrieval, we require that sub-fingerprint v1 and sub-fingerprint v2

are highly similar if and only if wavelet signature (v1) and wavelet

signature (v2) are highly similar. Because we retain only the top-t
wavelet coefficients, we determine similarity based on those top

wavelets, without rewarding matches on the zeroed positions. For

the purposes of this discussion, given two vectors v1 and v2, we refer

to match types as being of four types a, b,c,d,as shown in {fablek de-

pending on the corresponding bits in the vectors. Given these types
of matches/mismatches, we note that for sparse vectors, most of the

Fig. 2. Wavelet examples for a typical image (left) and a spectrogram image (right). These are computed in the “standard” manner—one dimension at a time.

GOOG-NETWORK-00610576

Case 1:14-cv-02396-PGG-SN Document 241-29 Filed 11/12/20 Page 4 of 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3470 S. Baluja, M. Covell / Pattern Recognition 41 (2008) 3467 - 3480

The Dave Matthews Band Lie

Fig. 3. The representation for three songs—five consecutive frames shown for each, skipping For each song, the top row is the original spectrogram image, the second

row is the wavelet magnitudes, the third row shows the top-200 (¢ = 200) wavelets. Note that the top wavelets have a distinctive pattern for each of the three songs. (For
each song, the Lop 2 cows in the figure have been extensively visually enhanced to be visible when printed on paper.)

Table 1

Types of match/mismatch between single bits of two binary vectors

bit positions will be of type d. To avoid computing similarity based

on the uninformative zeroed rows, we will define the similarity of

two vectors to be the relative number of rows that are of type a from

the other non-zero rows: i.e., Similarity (v1; v2) = a/(a + b +c).
The Min-Hash technique works with binary vectors as follows:

Select a random, but known, reordering ofall the vector positions. Re-

order each vector by this permutation. With this new ordering, deter-

mine in which position the first “1” occurs. It is important to note for

two vectors, v1 and v2, the probability that first_1_occurrence(v1) =

first_1_occurrence(v2) is the same as the probability of finding a row

that has a 1 in both v1 and v2, from the set of rows that have 1 in

either v1 or v2. Therefore, for a given permutation, the hash values

agree if the first position with a 1 is the same in both bit vectors, and

they disagree if the first such position is a row where one but not

both, vectors contained a 1. Note that this is exactly what is required;
it measures the similarity of the sparse bit vectors based on matching
“on” positions.

We repeat the above procedure multiple times, each time witha
new permutation of bit positions. If we repeat the process p times,

with p unique permutations, we get p largely independent projec-
tions of the bit vector. These p values are the signature for the bit

vector. We can compare the similarity of the bit vectors by look-

ing at the exact matches in the signatures of length p; for a large

enough p, it will be very close to the similarity of the original vectors.

In our system, we do not keep the intermediate bit representation
described in the previous section. Instead, we store the Min-Hash

computed signature; this is the final sub-fingerprint of the spectral

image. We experimented with a variety of values for p; these are

presented in Section 4. An in-depth description of the Min-Hash pro-
cess is given in Ref. Methods to make the matching process ef-

ficient given these signatures will be presented with the description
of the retrieval process.

On a pragmatic note, because memory efficiency is paramount
for deployment, each signature element must be small. Instead of

tracking the first position in which a “1” occurs, we truncate the

computation at position 255.If the first 1 occurs after position 255,

it is demarcated as if it occurred at position 255. This allows us

to keep each component of the signature as a single byte. Fig.
shows a histogram of the position of the first 1 computed for the

snippets in our database, for three values of t (the number of top
wavelets kept). Note that the cumulative probability of occurring
after 255 is very low when more than 50 top coefficients are

kept; this indicates that the single-byte representation loses little
accuracy.

In this study, Min-Hash reduces the size of the signatures from

the intermediate wavelet representation described in this previous
section to a compact representation of p-bytes. There are numer-

ous other techniques that are commonly used for dimensionality

reduction—among them techniques such as principal components

analysis (PCA). We chose Min-Hash due to a chain of reasons. We

require discriminative power across our top-wavelet signatures,
not descriptive power. This requirement means that PCA may not

be the best representation and instead has traditionally been han-

dled by LDA-based methods Since our top wavelet signatures
are already a sparse-vector representation, we employed tech-

niques explicitly designed to handle probabilistic matching across

sparse vectors, and did not require transformation to continuous

values. Min-Hash is such a method and has been used exten-

sively (and successfully) in data-stream processing for this class of

problems.

GOOG-NETWORK-00610577

Case 1:14-cv-02396-PGG-SN Document 241-29 Filed 11/12/20 Page 5 of 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

