Case 1:14-cv-02396-PGG-SN Document 234-13 Filed 11/11/20 Page 1 of 32

Exhibit 11

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

An Optimal Algorithm for Approximate Nearest Neighbor
Searching in Fixed Dimensions*

Sunil Arya ' David M. Mount! ~ Nathan S. Netanyahu® Ruth Silverman9
Angela Y. Wl

July 6, 1998

Abstract

Consider a set S of n data points in real d-dimensional space, R?, where distances are mea-
sured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data
structure, so that given any query point ¢ € R?, the closest point of S to ¢ can be reported
quickly. Given any positive real €, a data point p is a (1 + €)-approzimate nearest neighbor of q
if its distance from ¢ is within a factor of (1 + €) of the distance to the true nearest neighbor.
We show that it is possible to preprocess a set of n points in R? in O(dnlogn) time and O(dn)
space, so that given a query point ¢ € R?, and € > 0, a (1 + €)-approximate nearest neighbor of
¢ can be computed in O(cq,clogn) time, where ¢4, < d[1+ 6d/ €]* is a factor depending only
on dimension and e. In general, we show that given an integer & > 1, (1 4 €)-approximations to
the k nearest neighbors of ¢ can be computed in additional O(kdlogn) time.

Key words: Nearest neighbor searching, post-office problem, closest-point queries, approxima-
tion algorithms, box-decomposition trees, priority search.

1 Introduction.

Nearest neighbor searching is the following problem: we are given a set S of n data points in a
metric space, X, and the task is to preprocess these points so that, given any query point g € X,
the data point nearest to g can be reported quickly. This is also called the closest-point problem

*A preliminary version of this paper appeared in the Proc. of the Fifth Annual ACM-SIAM Symp. on Discrete
Algorithms, 1994, pp. 573-582.

tDepartment of Computer Science, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong. The work of this author was partially supported by HK RGC grant HKUST 736/96E. Part
of this research was conducted while the author was visiting the Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany. Email: arya@cs.ust.hk

¥Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College
Park, Maryland. The support of the National Science Foundation under grant CCR-9712379 is gratefully acknowl-
edged. Email: mount@cs.umd.edu

$Center for Automation Research, University of Maryland, College Park, Maryland, and Space Data and Com-
puting Division, NASA Goddard Space Flight Center, Greenbelt, Maryland. This research was carried out, in part,
while the author held a National Research Council NASA Goddard Associateship. Email: nathan@cfar.umd.edu

TDepartment of Computer Science, University of the District of Columbia, Washington, DC, and Center for Au-
tomation Research, University of Maryland, College Park, Maryland. The support of the National Science Foundation
under grant CCR-9310705 is gratefully acknowledged. Email: ruth@cfar.umd.edu

IDepartment of Computer Science and Information Systems, The American University, Washington, DC. Email:
awuQamerican.edu

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and the post office problem. Nearest neighbor searching is an important problem in a variety
of applications, including knowledge discovery and data mining [FPSSU96|, pattern recognition
and classification [CH67, DH73], machine learning [CS93], data compression [GG91], multimedia
databases [FSNT95], document retrieval [DDF*90], and statistics [DW82].

High-dimensional nearest neighbor problems arise naturally when complex objects are repre-
sented by vectors of d numeric features. Throughout we will assume the metric space X is real
d-dimensional space R%. We also assume distances are measured using any Minkowski L,, dis-
tance metric. For any integer m > 1, the L,-distance between points p = (p1,p2,--.,pq) and
q=(q1,q9,...,qq) in R% is defined to be the m-th root of >; ;<4 |pi — ¢:|™. In the limiting case,
where m = oo, this is equivalent to maxi<;<q|p; — ¢;|- The L1, Ly, and Lo, metrics are the well-
known Manhattan, Euclidean and max metrics, respectively. We assume that the distance between
any two points in R% can be computed in O(d) time. (Note that the root need not be computed
when comparing distances.) Although this framework is strong enough to include many nearest
neighbor applications, it should be noted that there are applications that do not fit within this
framework (e.g., computing the nearest neighbor among strings, where the distance function is the
edit distance, the number of single character changes).

Obviously the problem can be solved in O(dn) time through simple brute-force search. A number
of methods have been proposed which provide relatively modest constant factor improvements
(e.g., through partial distance computation [BG85], or by projecting points onto a single line
[FBS75, GK92, LC94]). Our focus here is on methods using data structures that are stored in
main memory. There is a considerable literature on nearest neighbor searching in databases. For
example, see [BBKK97, BKK96, LJF94, RKV95, WJ96].

For uniformly distributed point sets, good expected case performance can be achieved by algo-
rithms based on simple decompositions of space into regular grids. Rivest [Riv74] and later Cleary
[CleT9] provided analyses of these methods. Bentley, Weide, and Yao [BWY80] also analyzed a grid-
based method for distributions satisfying certain bounded-density assumptions. These results were
generalized by Friedman, Bentley, and Finkel [FBF77] who showed that O(n) space and O(logn)
query time are achievable in the expected case through the use of kd-trees. However, even these
methods suffer as dimension increases. The constant factors hidden in the asymptotic running time
grow at least as fast as 2¢ (depending on the metric). Sproull [Spr91] observed that the empiri-
cally measured running time of kd-trees does increase quite rapidly with dimension. Arya, et al.
[AMNO95] showed that if n is not significantly larger than 2¢, as arises in some applications, then
boundary effects mildly decrease this exponential dimensional dependence.

From the perspective of worst-case performance, an ideal solution would be to preprocess the
points in O(n logn) time, into a data structure requiring O(n) space so that queries can be answered
in O(logn) time. In dimension 1 this is possible by sorting the points, and then using binary search
to answer queries. In dimension 2, this is also possible by computing the Voronoi diagram for the
point set and then using any fast planar point location algorithm to locate the cell containing the
query point. (For example, see [dBvKOS97, Ede87, PS85].) However, in dimensions larger than 2,
the worst-case complexity of the Voronoi diagram grows as O(n[d/ 2]). Higher dimensional solutions
with sublinear worst-case performance were considered by Yao and Yao [YY85]. Later Clarkson
[Cla88] showed that queries could be answered in O(logn) time with O(n[4/2149) space, for any
0 > 0. The O-notation hides constant factors that are exponential in d. Agarwal and Matousek
[AM93a] generalized this by providing a tradeoff between space and query time. Meiser [Mei93]
showed that exponential factors in query time could be eliminated by giving an algorithm with
O(d®logn) query time and O(n%t?) space, for any § > 0. In any fixed dimension greater than 2,
no known method achieves the simultaneous goals of roughly linear space and logarithmic query

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

time.

The apparent difficulty of obtaining algorithms that are efficient in the worst case with respect
to both space and query time for dimensions higher than 2, suggests that the alternative approach
of finding approzimate nearest neighbors is worth considering. Consider a set S of data points in
R? and a query point ¢ € R%. Given ¢ > 0, we say that a point p € S is a (1 + €)-approzimate
nearest neighbor of g if

dist(p, q) < (1 + €)dist(p™, q),

where p* is the true nearest neighbor to ¢q. In other words, p is within relative error e of the true
nearest neighbor. More generally, for 1 < k < n, a kth (1 + €)-approximate nearest neighbor of ¢ is
a data point whose relative error from the true kth nearest neighbor of g is €. For 1 < k < n, define
a sequence of k approximate nearest neighbors of query point ¢ to be a sequence of k£ distinct data
points, such that the ith point in the sequence is an approximation to the ith nearest neighbor of
q. Throughout we assume that both d and e are fixed constants, independent of n, but we will
include them in some of the asymptotic results to indicate the dependency on these values.

The approximate nearest neighbor problem has been considered by Bern [Ber93]. He proposed
a data structure based on quadtrees, which uses linear space and provides logarithmic query time.
However, the approximation error factor for his algorithm is a fixed function of the dimension. Arya
and Mount [AM93c| proposed a randomized data structure which achieves polylogarithmic query
time in the expected case, and nearly linear space. In their algorithm the approximation error
factor € is an arbitrary positive constant, fixed at preprocessing time. In this paper, we strengthen
these results significantly. Our main result is stated in the following theorem.

Theorem 1 Consider a set S of n data points in R%. There is a constant cqe < d[1+ 6d/e],
such that in O(dnlogn) time it is possible to construct a data structure of size O(dn), such that
for any Minkowski metric:

(i) Given any e > 0 and q € R, a (1+ €)-approzimate nearest neighbor of q in S can be reported
in O(cq,c logn) time.

(ii) More generally, given € > 0, ¢ € R, and any k, 1 < k < n, a sequence of k (1+¢€)-approzimate
nearest neighbors of g in S can be computed in O((cq,c + kd)logn) time.

In the case of a single nearest neighbor and for fixed d and ¢, the space and query times given in
Theorem 1 are asymptotically optimal in the algebraic decision tree model of computation. This is
because O(n) space and O(logn) time are required to distinguish between the n possible outcomes
in which the query point coincides with one of the data points. We make no claims of optimality
for the factor cq .

Recently there have been a number of results showing that with significantly more storage, it
is possible to improve the dimensional dependencies in query time. Clarkson [Cla94] showed that
query time could be reduced to O((1/€)%?logn) with O((1/€)%?(log p)n) space, where p is the
ratio between the furthest-pair and closest-pair interpoint distances. Later Chan [Cha97] showed
that the factor of log p could be removed from the space complexity. Kleinberg [K1e97] showed
that it is possible to eliminate exponential dependencies on dimension in query time, but with
O(nlogd)?? space. Recently, Indyk and Motwani [IM98] and independently Kushilevitz, Ostrovsky
and Rabani [KOR98], have announced algorithms that eliminate all exponential dependencies in
dimension, yielding a query time O(d log®®(dn)) and space (dn)°®"). Here the O-notation hides
constant factors depending exponentially on ¢, but not on dimension.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

There are two important practical aspects of Theorem 1. First, space requirements are com-
pletely independent of € and are asymptotically optimal for all parameter settings, since dn storage
is needed just to store the data points. In applications where n is large and € is small, this is an
important consideration. Second, preprocessing is independent of € and the metric, implying that
once the data structure has been built, queries can be answered for any error bound ¢ and for any
Minkowski metric. In contrast, all the above mentioned methods would require that the data struc-
ture be rebuilt if € or the metric changes. In fact, setting e = 0 will cause our algorithm to compute
the true nearest neighbor, but we cannot provide bounds on running time, other than a trivial
O(dnlogn) time bound needed to search the entire tree by our search algorithm. Unfortunately,
exponential factors in query time do imply that our algorithm is not practical for large values of
d. However, our empirical evidence in Section 6 shows that the constant factors are much smaller
than the bound given in Theorem 1 for the many distributions that we have tested. Our algorithm
can provide significant improvements over brute-force search in dimensions as high as 20, with a
relatively small average error. There are a number of important applications of nearest neighbor
searching in this range of dimensions.

The algorithms for both preprocessing and queries are deterministic and easy to implement.
Our data structure is based on a hierarchical decomposition of space, which we call a balanced boz-
decomposition (BBD) tree. This tree has O(logn) height, and subdivides space into regions of O(d)
complexity defined by axis-aligned hyperrectangles that are fat, meaning that the ratio between
the longest and shortest sides is bounded. This data structure is similar to balanced structures
based on box-decomposition [BET93, CK95, Bes95], but there are a few new elements that have
been included for the purposes of nearest neighbor searching and practical efficiency. Space is
recursively subdivided into a collection of cells, each of which is either a d-dimensional rectangle
or the set-theoretic difference of two rectangles, one enclosed within the other. Each node of the
tree is associated with a cell, and hence it is implicitly associated with the set of data points lying
within this cell. Each leaf cell is associated with a single point lying within the bounding rectangle
for the cell. The leaves of the tree define a subdivision of space. The tree has O(n) nodes and can
be built in O(dnlogn) time.

Here is an intuitive overview of the approximate nearest neighbor query algorithm. Given the
query point g, we begin by locating the leaf cell containing the query point in O(logn) time by a
simple descent through the tree. Next, we begin enumerating the leaf cells in increasing order of
distance from the query point. We call this priority search. When a cell is visited, the distance
from ¢ to the point associated with this cell is computed. We keep track of the closest point seen so
far. For example, Figure 1(a) shows the cells of such a subdivision. Each cell has been numbered
according to its distance from the query point.

Let p denote the closest point seen so far. As soon as the distance from ¢ to the current leaf cell
exceeds dist(q,p)/(1 + €) (illustrated by the dotted circle in Figure 1(a)), it follows that the search
can be terminated, and p can be reported as an approximate nearest neighbor to g. The reason is
that any point located in a subsequently visited cell cannot be close enough to g to violate p’s claim
to be an approximate nearest neighbor. (In the example shown in the figure, the search terminates
just prior to visiting cell 9. In this case p is not the true nearest neighbor, since that point belongs
to cell 9, which was never visited.) We will show that, by using an auxiliary heap, priority search
can be performed in time O(dlogn) times the number of leaf cells that are visited.

We will also show that the number of cells visited in the search depends on d and €, but not
on n. Here is an intuitive explanation (and details will be given in Lemma 5). Consider the last
leaf cell to be visited that did not cause the algorithm to terminate. If we let r denote the distance
from g to this cell, and let p denote the closest data point encountered so far, then because we do

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

