

EXHIBIT O

Case 1:14-cv-02396-PGG-MHD Document 153-16 Filed 06/28/19 Page 1 of 8Case 1:14-cv-02396—PGG-MHD Document 153-16 Filed 06/28/19 Page 1 of 8

EXHIBIT 0

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Efficient Similarity Search in Digital Libraries

Christian Böhm Bernhard Braunmüller Hans-Peter Kriegel Matthias Schubert

Computer Science Institute, University of Munich
E-mail: {boehm, braunmue, kriegel, schubera}@dbs.informatik.uni-muenchen.de

Abstract
Digital libraries are a core information technology.

When the stored data is complex, e.g. high-resolution
images or molecular protein structures, simple query types
like the exact match query are hardly applicable. In such
environments similarity queries, particularly range queries
and k-nearest neighbor queries, turn out to be important
query types. Numerous approaches have been proposed for
the processing of similarity queries which mainly concen-
trate on highly dynamic data sets where insertion, update,
and deletion operations permanently occur. However, only
little effort has been devoted to the case of rather static data
sets - a case that frequently occurs in digital libraries. In this
paper, we introduce a novel technique for efficient similarity
search on top of static or rarely changing data sets. In par-
ticular, we propose a special sorting order on the data
objects which can be effectively exploited to substantially
reduce the total query time of similarity queries. An exten-
sive experimental evaluation with real-world data sets
emphasizes the practical impact of our technique.

1. Introduction
In recent years, digital libraries have become a core

information technology [10, 17]. Among the various impor-
tant aspects of digital libraries the search for similar objects
in the huge amount of digitized data has become an essential
task. The QBIC system, for instance, contains a large image
library which can be effectively searched for similar images
by using similarity queries [22, 9]. The Brookhaven Protein
Data Bank currently provides the atomic coordinates of sev-
eral thousand proteins [2]. Here, the solution of the impor-
tant molecular docking problem is supported by applying
similarity queries on docking segments [19]. Another exam-
ple are industrial CAD repositories which can effectively be
used to reduce the cost of developing and producing new
parts by maximizing the reuse of existing parts [21, 4].
Again, similarity queries are the most important query type
in this process. Several other examples exist, e.g. geograph-
ical repositories, image collections and medical libraries.

The most common approach for efficient similarity
search is to map data objects into some high-dimensional
vector space (the so-called feature space). Similarity

between two data objects is assumed to correspond to the
distance of their feature vectors. Thus, searching for similar
objects to a given query object is transformed into the prob-
lem of finding feature vectors which are close to the query
feature vector. Popular examples of feature vectors are color
histograms [8, 26], shape descriptors [15, 13], Fourier vec-
tors [11, 1] and multi-parametric surface functions [18].

Typically, range queries and k-nearest neighbor (k-nn)
queries are applied for the process of finding feature vectors
which are close to a given query feature vector. Range que-
ries retrieve all feature objects within a given radius ε from
the query feature vector. For k-nn queries, the user provides
a number k and receives the k feature vectors which are clos-
est to the query vector. In general, a similarity query is a
CPU and I/O intensive task and the conventional approach
to address this problem is to use some multidimensional
index structure [25, 12]. Unfortunately, even specialized
index structures like the TV-tree [20] or the X-tree [6] often
fail to process similarity queries efficiently when the dimen-
sionality d of the feature space is too high (d > 10). How-
ever, this is a frequently encountered situation since the
dimensionality of the feature space directly corresponds to
the accuracy of the similarity search. In such environments,
scan-based techniques like the VA-file [27] provide the most
efficient query processing. These approaches mainly con-
sider the case of highly dynamic environments with frequent
insertion, update, and deletion operations. Only little effort
has been devoted to the important case of static data sets.
Obviously, static data sets provide more optimization poten-
tial than highly dynamic data sets. However, this optimiza-
tion potential is not exploited by techniques which were
developed for dynamic environments.

In this paper, we concentrate on the situation of static or
rarely changing data sets (where the data set is known in
advance) as they frequently occur in digital libraries. In par-
ticular, we introduce a novel technique (the landmark file) to
significantly improve the query performance of scan
approaches when storing static data sets. The main idea of
the landmark file is to introduce a special order on the fea-
ture objects which can be exploited to substantially reduce
the total amount of data which has to be scanned during the
similarity search process.

0-7695-0659-3/00 $10.00 � 2000 IEEE

Case 1:14-cv-02396-PGG-MHD Document 153-16 Filed 06/28/19 Page 2 of 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The rest of our paper is organized as follows. In section 2,
we review the problem of similarity search in the context of
index-based and scan-based access methods. We present our
approach in section 3 and section 4. We performed an exten-
sive experimental evaluation in order to show the efficiency
of our approach. The results are presented in section 5 and
section 6 concludes the paper.

2. Similarity search in feature spaces
Range queries and k-nn queries are the most important

similarity queries [7]. In the following, we formally define
both query types.

Definition 1: Range Query

Let DB denote a set of feature vectors v ∈ and let
dist: denote a distance function that mea-
sures the (dis-) similarity of two feature vectors
v1, v2 ∈ . Then, for a query feature vector q ∈ and a
query range ε ∈ , the range query returns the set

RQ(q, ε) = {v ∈ DB | dist(q, v) ≤ ε}

Definition 2: k-Nearest Neighbor Query

For a query feature vector q ∈ and a query parameter
k ≥ 1, the k-nearest neighbor query returns the set
NNq(k) ⊆ DB that contains k feature vectors from DB, and
for which the following condition holds:

: dist(q, v) ≤ dist(q, v’)

Note that possibly several feature vectors exist which
have the same distance to the query vector as the k-th feature
vector in the answer set. In this case, the k-th feature vector
in NNq(k) is a non-deterministic selection of one of those
equally distanced feature vectors. Several distance functions
for measuring the (dis-) similarity have been discussed. The
Euclidean distance metric L2, for instance, is one of the most
frequently used similarity distance function, e.g. in the area
of images, protein structures, CAD objects, or stock data.

Many sophisticated index structures have been proposed
for efficiently processing similarity queries, but, only few
techniques consider the case of static feature sets. In [24] a
compaction technique for “packing” and reducing dead-
space on R-trees [14] has been proposed for static pictorial
feature sets. Other approaches follow the concept of bulk-
loading when the feature set is completely known in
advance. The Hilbert R-tree [16], for instance, uses the Hil-
bert space-filling curve to decompose the feature set into
contiguous sequences which are stored in the data pages. In
[5] a variant of the well-known Quicksort algorithm is used
for a generic bulk loading method. Since index structures
like the R-tree have been developed for low-dimensional
feature spaces (d < 5) they offer only poor query perfor-
mance for high-dimensional feature sets. In recent years,

this problem has been addressed by developing high-dimen-
sional index structures. The TV-tree [20], for example, uses
so-called Telescope Vectors, i.e. feature vectors which may
be dynamically shortened. The underlying assumption is
that only dimensions with high variance are important for
the query processing and therefore feature values of dimen-
sions with low variance can be neglected. Another example
is the X-tree [6] which uses the concept of directory supern-
odes. Whenever the split of a directory node would lead to a
high overlap of the resulting nodes or to overlap minimal but
extremely unbalanced nodes, the overflowing node is trans-
formed into a supernode, i.e. a node with a larger than usual
block size.

The main advantage of index-based access methods is the
index selectivity during query processing, i.e. only a small
fraction of the feature vectors has to be considered. This,
however, induces costly random seek operations since the
accessed index pages are generally not stored in contiguous
disk blocks.

While these high-dimensional indexing techniques per-
form well for dimensions up to 10, even their performance
often degenerates for higher dimensions. The reason for this
effect is the so-called curse of dimensionality: Most of the
measures one could define in a d-dimensional vector space,
such as volume, area, or perimeter are exponentially depen-
dent on the dimensionality of the space. Due to this effect,
scan-based techniques, particularly the VA-file [27], turn
out to provide better query performance when accessing
high-dimensional feature spaces. The VA-file follows the
idea of vector quantization. The feature space is divided into
grid cells using α-quantiles in each dimension. Each feature
vector is then represented by the address of the grid cell in
which the feature vector lies. The main advantage of scan-
based techniques is the sequential nature of their I/O opera-
tions which results in the absence of expensive random
seeks. However, there is no selectivity in the query process
involved and therefore all feature vectors have to be consid-
ered. Additionally, to the best of our knowledge, no optimi-
zation techniques have been proposed for scan-based
techniques when the stored feature set is static.

3. The landmark file
As we have discussed in section 2, both query processing

paradigms, indexing and sequentially scanning, have advan-
tages and disadvantages. Our solution combines the advan-
tages of both approaches and avoids their disadvantages. It
adopts the idea of the scan, to read only from a single, con-
tiguous interval of the file and avoids uncontrolled random
seek operations. But our solution does not read and process
the complete feature set. Thus, our solution inherits the
selectivity from the indexing approach.

For static data sets, we can achieve this goal by keeping
the feature set in a sort order according to an appropriate

ℜ d

ℜ d ℜ d× ℜ +
0→

ℜ d ℜ d

ℜ +
0

ℜ d

v∀ NNq k()∈ v'∀ DB NNq k()–∈,

0-7695-0659-3/00 $10.00 � 2000 IEEE

Case 1:14-cv-02396-PGG-MHD Document 153-16 Filed 06/28/19 Page 3 of 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

sorting key. For each query, the query processing algorithm
determines the lower and upper bound of the sorting key and
performs a sequential scan of the corresponding interval of
the feature file. To choose the sorting key of the feature vec-
tors, there are several possibilities, such as the projection to
a single dimension. To assess the quality of a sorting key,
recall the general objective: a substantial reduction of the
number of scanned feature vectors. The interval into which
the query is translated has to contain few feature vectors. In
other words, the sorting key must distinguish as much as
possible between different feature vectors. Obviously, the
projection to a single dimension could fail to reach such a
high distinguishing power. Therefore, our sorting key con-
siders all relevant dimensions. A general approach is to use
the Euclidean distance between a selected reference point
and the feature vectors. If, for instance, the origin is selected
as reference point, the sorting key corresponds to the sum of
the squared dimension values. We will show in section 4,
how an optimal reference point can be chosen.

3.1 Structure of the landmark file

In the following we show how the idea of sorting the fea-
ture vectors can be applied to establish selectivity in scan-
based query processing. A point of the feature space (not
necessarily contained in the data set) is chosen as reference
point. This point is called the landmark point (cf. figure 1
left). The feature vectors are sorted in ascending distance to
the landmark point (the sorting key is called the landmark
distance).

We keep three representations of the feature vector file.
In the exact representation, we store the full geometry of all
feature vectors, i.e. the floating point values of the dimen-
sions. In the compressed representation, we adopt the idea
of the VA-file and store a quantized version of all feature
vectors, i.e. the address (number) of the grid cell in which
the corresponding feature vector lies (typically a few bits per
dimension, cf. figure 1 right). The compressed representa-
tion requires substantially less space on secondary storage,
and, therefore, the I/O cost compared to the exact represen-
tation is approximately reduced by the compression factor.
On the other hand, the position of a feature vector is not
exactly known such that a single access to the exact repre-
sentation may be necessary.

The third representation of the feature vector file is the
distance file. This file does not contain information about
each feature vector of the data set, but only for one vector
out of i where i is a user-provided parameter, the chunk
parameter. The landmark distance of each i-th vector of the
ordered feature set is stored. This distance file partitions the
feature space into spherical shells which contain a constant
number i of feature vectors. The landmark shells for i = 2
are depicted in figure 1 left. There are no explicit pointers or
links between the different representations of the files. As
the sort order of the feature vectors is identical in all three
representations, and since the length of each feature vector
representation is constant, this reference is implicitly given
by the position of the feature vector in the file (cf. figure 2).

Every query processing algorithm first considers the dis-
tance file and determines the landmark shells which poten-
tially include query results. The corresponding part of the
file with the compressed representation is scanned and can-
didates are collected. For every candidate which cannot be
definitely classified as a query result by the compressed rep-
resentation, a lookup to the exact representation is per-
formed.

To process rare insertions, deletions, and updates we pro-
pose to store new or updated points in a separate file which
is scanned sequentially without any optimizations for query
processing. Whenever this overflow area becomes too large,
the complete landmark file is reconstructed from scratch.

3.2 Query processing using landmarks

When the region of the query is exactly known in
advance (such as in range queries), then query processing is
straightforward:

• The distance file is loaded.

• Using the distance file, those shells are determined
which are intersected by the query (cf. figure 3).

• For the intersected shells, the compressed representa-
tion is scanned.

• If necessary, the exact representation is accessed for

landmark point
landmark distance

3

2

1

0

0 1 2 3

Figure 1. Landmark approx. (l.) and quantization (r.)

distance file (i = 2)

compressed representation

exact representation

Figure 2. The landmark file

query

intersected
shells

Figure 3. Range queries on the landmark file

0-7695-0659-3/00 $10.00 � 2000 IEEE

Case 1:14-cv-02396-PGG-MHD Document 153-16 Filed 06/28/19 Page 4 of 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

each feature vector for which a decision cannot be
made using the compressed representation only.

For (1-) nearest neighbor queries, the query region is not
known in advance. Such queries are usually evaluated by
increasing the radius of the query sphere until the nearest
neighbor is covered by the query sphere. We adapt this algo-
rithm for the landmark file (cf. figure 4):

• The distance file is loaded.

• Using the distance file, the shell containing the query
vector is determined. This is the start shell.

• Beginning with the start shell, the unprocessed shell
which is closest to the query vector is scanned succes-
sively. The scanned part of the compressed representa-
tion is extended, alternating at its upper and lower end.
Whenever a feature vector is found which is closer
than the current candidate, it is stored in a variable.

• This step is repeated until the distance between the
next shell and the query vector is larger than the dis-
tance to the current candidate.

It is straightforward to extend this algorithm for k-nn
search: Instead of a single candidate, the algorithm has to
maintain a list with k candidates, and the distance to the last
candidate is used as the stopping condition. For both query
types, the algorithm must perform lookups to the exact rep-
resentation in tie situations.

3.3 Parameter optimization
The chunk parameter i, which determines the size of the

blocks for scanning in the nearest neighbor algorithm, is
obviously a critical parameter. If it is chosen too small, the
compressed representation is scanned in too small portions,
which induces non-negligible I/O overhead. In contrast, if it
is chosen too large, many compressed feature vectors may
be scanned unnecessarily. To minimize the query processing
time, the parameter i must be optimized.

Optimization problems like this are often solved by cost
models such as [3]. In this special case, however, the estima-
tion of the cost may be difficult because the intersection vol-
umes between sphere shells and the query sphere must be
computed. Therefore, we base our optimization on statisti-
cal information from previous runs of the algorithm or from
tentative runs on a sample.

The information we are gathering is the means µ and the
standard deviation σ of the number a of feature vectors with

a landmark distance in the range from to ,
where L(q) is the landmark distance of the query vector and
r is the distance of the nearest neighbor of q. The number a
corresponds to the number of vectors (= the number of
shells) which must be processed by a query when .

For a known parameter a, we obtain the following cost
function:

(1)

where ttr is the transfer time per compressed feature vec-
tor, tpos is the positioning time and tlat is the latency time
(rotational delay) of the disk drive. The first term of t(i,a)
indicates, that a compressed feature vectors are scanned
during query processing, with an additional overhead of one
block (i compressed feature vectors), because, on the aver-
age, half a block too much is scanned at the lower and the
upper end of the scanned interval, respectively. In the sec-
ond term of t(i,a), the fraction represents the num-
ber of separate I/O requests during query processing, for
each of which a seek operation with arm positioning and
rotational delay is required. This cost t(i,a) can be mini-
mized by setting the derivative to 0:

(2)

Only the positive solution is valid, and it corresponds to a
minimum, because the second derivative is (constantly)
positive.

This solution optimizes the chunk parameter i for a
known parameter a. However, this parameter is not constant
for all queries. Therefore, we have to optimize i for a variety
of different parameters a occurring in different queries. It
turned out in our experiments that a is normally distributed.
Under this assumption we can extend our model to optimize
i for an a which is normally distributed with means µ and
standard deviation σ:

(3)

This formula assigns to each cost t(i,a) the probability of
the corresponding a. The average over all possible a can be
determined by integration with a ranging from 0 to infinity.
In eq. (3), i can again be optimized by setting the derivative

 to zero:

(4)

The result is independent of the variance σ2 and equal to
the result of eq. (2) for a known a, where a is replaced by the
means µ.

query

accessed
shells

Figure 4. Nearest neighbor queries

1
2

3

L q() r– L q() r+

i 1=

t i a,() a i+() ttr⋅ a
i
--- 1+

 tpos tlat+()⋅+=

a i⁄ 1+

∂
∂i
---- t i a,() 0= iopt⇒ a

tpos tlat+

ttr
---------------------⋅±=

t̃ i()
1

σ 2π
--------------e

a µ–()2–
2σ2

t i a,()⋅

da

0

∞

∫=

∂ t̃ i() ∂i⁄

iopt µ
tpos tlat+

ttr
---------------------⋅=

0-7695-0659-3/00 $10.00 � 2000 IEEE

Case 1:14-cv-02396-PGG-MHD Document 153-16 Filed 06/28/19 Page 5 of 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

