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Abstract

The excluded middle vantage point forest is a new
data structure that supports worst case sublinear
time searches in a metric space for nearest neighbors
within a fixed radius 7 of arbitrary queries. Worst
case performance depends on the dataset but is not
affected by the distribution of queries.

Our analysis predicts vp-forest performance in sim-
ple settings such as L, spaces with uniform random
datasets — and experiments confirm these predic-
tions. Another contribution of the analysis is a new
perspective on the curse of dimensionality in the con-
text of our methods and kd-trees as well. In our ide-
alized setting the dataset is organized into a forest
of O(N'~*) trees, each of depth O(log N). Here p
may be viewed as depending on 7, the distance func-
tion, and on the dataset. The radius of interest T
is an input to the organization process and the re-
sult is a linear space data structure specialized to
answer queries within this distance. Searches then
require O(N'"?log N) time, or O(log N) time given
O(N'~*) processors.

Our conclusion is that these new data structures
exhibit useful behavior only for small radius searches,
where despite their variation in search times, conven-
tional kd-trees perform much better.

Keywords: Nearest neighbor search, Vantage point
tree (vp-tree), kd-tree, Computational geometry, Metric
space.

*The author is with NEC Research Institute, 4 Indepen-
dence Way, Princeton, NJ. Email: pny@Qresearch.nj.nec.com
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1 Introduction

We consider the radius-limited nearest neighbor
problem in a metric space. That is, given an N
point dataset and a radius of interest 7, produce a
data structure and associated search algorithm to
rapidly locate the dataset point nearest to any query
g. Our focus is on practical data structures that pro-
vide worst-case search time bounds.

Vantage point trees (vp-trees) [32] and kd-trees
[15, 16, 4, 3] organize an N point dataset so that
sublinear time nearest neighbor searches may be per-
formed on an expected basis for some fixed distribu-
tion. Performance depends on the dataset and on the
assumed distribution of queries.

The excluded middle vantage point forest (vp-
forest) is a new related data structure that supports
worst case sublinear time searches for nearest neigh-
bors within a fixed radius 7 of arbitrary queries.
Worst case performance depends on the dataset but
is not affected by the distribution of queries.

The dataset is organized into a forest of O(N'~*)
trees, each of depth O(log N). Here p may be viewed
as depending on 7, the distance measure, and on the
dataset. The radius of interest 7 is an input to the
organization process and the result is a data structure
specialized to answer queries within this distance.

Each element of the dataset occurs in exactly one
tree so that the entire forest remains linear space.
Searches follow a single root-leaf path in each tree.
There is no backtracking when the search is limited
to neighbors within distance 7. Along its way every
neighbor within 7 is necessarily encountered. The
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query’s effect is to guide the descent through each
tree.

There are no significant ancillary computational
burdens at search time. So upon creating the for-
est, the user simply adds the depths of each tree in
the forest to arrive at the maximum number of dis-
tance evaluations each search will require. Each tree
may be searched independently. Searches then re-
quire O(log N) time given one processor for each tree
in the forest.

We also discuss design variations that trade space
for reductions in search time — and compare forests
with single trees constructed similarly.

The general idea behind vp-forests is easily under-
stood. Both vp-trees and kd-trees recursively divide
the dataset. At each node the remaining dataset el-
ements have an associated value, and the node has
a corresponding fixed threshold that is roughly cen-
tral in the distribution of values. Elements below
this threshold are assigned to, say, the left child, and
those above to the right. For kd-trees these values
are those of individual coordinates within each data
vector. For vp-trees they are the distance of a metric
space element to some fixed vantage point.

Elements near to the threshold lead to backtrack-
ing during search. When building a vp-forest, such
elements are deleted from the tree and added instead
to a bucket. Once the tree is complete, the bucket
is organized into a tree in the same way, resulting
in another (smaller) bucket of elements. This con-
tinues until the forest is built. This effectively elim-
inates backtracking. Because elements near to the
threshold are recursively deleted, and this threshold
lies near the middle of the distribution of values, we
refer to our data structure as an excluded middle van-
tage point forest. Both vp-trees and kd-trees may be
regarded as trivial instances of vp-forests with no ex-
cluded middle.

We present an idealized analysis that allows us to
predict vp-forest performance in simple settings such
as L, spaces with uniform random datasets. Exper-
iments are reported that confirm these predictions.
One contribution of this analysis is an interesting new
perspective on the so called curse of dimensionality
(that is that nearest neighbor search increases in dif-
ficulty with dimension). In Euclidean space given a
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uniform random dataset drawn from the hypercube,
we observe that the worst-case difficulty of vp-forest
search for any fixed 7 ought to be asymptotically con-
stant with respect to dimension and our experi-
ments confirm this. Using L; we expect constant dif-
ficulty if 7 is allowed to increase with d'/? (d denotes
dimension), and this too is confirmed by experiment.

Our analysis also suggests that kd-trees should ex-
hibit the same dimension invariance for fixed search
radii, and experiments confirm this. For a worst
case query, kd-tree search visits essentially the en-
tire dataset, but on average performs far less work
than the vp-forest.

The vp-forests described in this report stimulated
the developments of [33], but do not themselves ap-
pear to have immediate practical value.

We conclude our introduction with a brief discus-
sion of the nearest neighbor search problem and lit-
erature. See [32] for additional discussion.

Nearest neighbor search is an important task for
non-parametric density estimation, pattern recogni-
tion, information retrieval, memory-based reasoning,
and vector quantization. See [11] for a survey.

The notion of a mathematical metric space [20]
provides a useful abstraction for mearness. Exam-
ples of metric spaces include Euclidean space, the
Minkowski L, spaces, and many others. Exploit-
ing the metric space triangle inequality to eliminate
points during nearest neighbor search has a long his-
tory. Our work belongs to this line. This paper ex-
tends it by i) introducing structures that give worst
case time bounds for limited radius searches, ii) pro-
viding analysis for them, iii) introducing a method
for trading space for time, and iv) defining our data
structures and algorithms in terms of abstract pro-
jectors, which combines approaches that use distance
from a distinguished element with those such as kd-
trees that use the value of a distinguished coordinate.

In early work Burkhard and Keller [7] describe
methods for nearest neighbor retrieval by evaluating
distances from distinguished elements. Their data
structures are multi-way trees corresponding to inte-
gral valued metrics.

Fukunaga in [18, 19] exploits clustering techniques
[27] to produce a hierarchical decomposition of Eu-
clidean Space. During a branch and bound search,
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the triangle inequality is used to rule out an entire
cluster if the query is far enough outside of it. While
exploring a cluster he observes that the triangle in-
equality may be used to eliminate some distance com-
putations. A key point missed is that when the query
is well inside of a cluster, the exterior need not be
searched.

Collections of graphs are considered in [14] as an
abstract metric space with a metric assuming discrete
values only. This work is related to the constructions
of [7]. In their concluding remarks the authors clearly
anticipate generalization to continuous settings such
as R”.

The idea that vantage points near the corners of
the space are better than those near the center was
described in [28] and much later in [32].

More recent papers describing vantage-point ap-
proaches are [30, 29, 25] and [32] who describe vari-
ants of what we refer to as a vantage-point tree.
Also see [10] for very recent work on search in metric
spaces.

The well-known kd-tree of Friedman and Bentley
[15, 16, 4, 3] recursively divides a pointset in R? by
projecting each element onto a distinguished coordi-
nates. Improvements, distribution adaptation, and
incremental searches, are described in [13], [21], and
[6] respectively. In our framework kd-trees corre-
spond to wunit vector projection with the canonical
basis.

More recently, the Voronoi digram [2] has provided
a useful tool in low- dimensional Euclidean settings
— and the overall field and outlook of Computational
Geometry has yielded many interesting results such
as those of [31, 9, 8, 17] and earlier [12]. It appears
that [12] may be the first work focusing on worst case
bounds.

Very recently Kleinberg [22] gives two algorithms
for an approximate form of the nearest neighbor prob-
lem. The space requirements of the first are pro-
hibitive but the second, which almost always finds
approximate nearest neighbors seems to to be of more
practical interest. The recent work reported in [1]
also considers an approximate form of the problem.
Their analysis gives exponential dependence on d but
the heuristic version of their approach they describe
may be of practical interest.
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For completeness, early work dealing with two spe-
cial cases should be mentioned. Retrieval of similar
binary keys is considered by Rivest in [26] and the
L setting is the focus of [34].

See [5] for worst case data structures for the range
search problem. This problem is related to but dis-
tinct from nearest neighbor search since a neighbor
can be nearby even if a single coordinate is distant.
But the L, nearest neighbor problem may be viewed
as an instance of range search. Their paper also de-
scribes a particular approach to trading space for
time via an overlapping cover. Our discussion of this
topic in section 5 also takes this general approach.

2 Vantage Point Forests

We begin by formalizing the ideas and construction
sketched in the introduction.

Definition 1 Consider an ordered set X =
{z1,...,zN} and a value m € [0,1]. Let w = |[mN|
and a = | (N —w)/2]. Then the m-split of X consists
of left, middle, and right subsets defined by:

L = {z;li<a}
M = {xi>ai<a+w}
R = {z;i>a+w}

That is, a balanced 3-way partition of X with a cen-
tral proportion of approzimately m.

Algorithm 1 Given a collection of points H and a
1-1 projection function wg : H — R defined for any
nonempty G C H, define n(G) to be the ordered set
of distinct real values corresponding to the image of
G under ng. Now for m € [0,1]:

1. consider the m-split L, M, R of 7(G), and define
the split G1,,Gpn,GRr of G corresponding to the
preimages of L, M, R respectively.

2. Given G C H construct a binary tree by form-
ing Gr,,Gn,Gr, discarding Gy, and then doing
the same recursively for G, and G until single
elements remain forming the tree’s leaves.
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3. Starting with H build a tree T\ as described above
and denote its membership by M,. Let Hy = H
and define Hy = Hy — My, i.e. the elements
discarded building T .

4. For k > 1 and Hy_1 # 0 define Ty as the tree
built as above for Hy_1, denote the tree’s mem-
bership by My, and define Hy = Hy,_1 — M;,.

Definition 2 We refer to the result of algorithm 1
as the idealized excluded middle vantage point forest
induced by ™ with central proportion m. When H is
a metric space and the projection functions w satisfy
|m(x) —7(y)| < d(z,y),Yz,y € H, this forest is of use
for nearest neighbor search and we further define T to
be one half of the minimum diameter of a middle set
discarded during construction.

We remark that each tree of the forest may be
viewed as analogous to the Cantor set from real anal-
ysis. That is, the subset of [0, 1] constructed by re-
moving the central third of the interval  and pro-
ceeding recursively for both the left and right thirds.
Our forest then corresponds to a decomposition of
the space into a union of Cantor sets.

Two important examples of a suitable family of
m functions are wantage point projection for general
metric spaces, and wunit vector projection for Eu-
clidean space.

A vantage point projector m, is defined for any
p € H by m,(x) = d(p,x). The split points in tree
construction correspond to abstract spheres about p.
It is easily verified that |m,(z) — mp(y)| < d(z,y) as
required. The range of this projector is the nonnega-
tive reals. Letting m = 0 gives rise to a vantage point
tree [32].

The unit vector projector m, is defined for any
p # 0 as mp(z) =< p,x > [||pl|. This is easily
seen to satisfy the required inequality as well, and
its range is not limited to nonnegative values. Here
the split points correspond to hyperplanes. Choosing
p as canonical unit vectors and letting m = 0 builds
a form of kd-tree [15, 16, 4, 3]. It is important to
note that < p,z > may be computed more rapidly
for canonical unit vectors — in constant time with
respect to dimension. Also, we remark that when-
ever orthogonal vectors are used, projection distances
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are, in a sense, additive, and that this fact can be
exploited (as kd-trees do) when designing solutions
specialized for L, spaces. We do not consider either
of these optimizations in this paper.

Proposition 1 Consider an idealized Vantage Point
Forest with central proportion m and corresponding
value 7. Define p = 1/(1 —log, (1 —m)). Then:

1. There are ©(N'~F) trees in the forest, having
mazimum depth ©(log N).

2. A search for nearest neighbors within distance
T of a query requires O(N'~Plog N) time, and
linear space — independent of the query.

3. The search requires ©(logN)
O(N'~*) independent processors.

time given

4. Assuming each projector wg can be constructed
in constant time, and that it can also be eval-
uated in constant time, and that m > 0, then
O(N?2~7) time is required to construct the forest.

proof: At each step in the construction the central
proportion of m elements is removed so that the left
and right subsets are each of size (1 — m)/2. The
first tree’s depth is then [1/log2(2/(1 — m))]loga N =
O(log N). So the number of elements left in the tree
is N1/ (1=log2(1—m)) _ Np,

The number of elements left after the first tree has
been constructed is then N — N?. After the second
N — NP — (N — N?)? are left, and so on. Clearly
Q(N'~*) trees are required to reduce the population
to any fixed size.

Once the population has been reduced to 1/2 of its
original size, the number of elements removed as each
tree is built will have declined to (N/2)? = (1/2)? N°*.
Since (1/2)? > 1/2 no fewer than N” /2 are removed.
So the number of steps required to reach N/2 is no
more than N'~7. The number required to reach N/4
is then (1/2)}?N'~#  and so on forming a geomet-
ric series. So the number required to reach any fixed
level is O(N'~*). The number of trees in the forest is
then ©(N!~*) — and the total space is clearly linear.

A search for nearest neighbors within distance 7
is then made by following a single root-leaf path in
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