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Ex
luded Middle Vantage Point Forests for NearestNeighbor Sear
hPeter N. Yianilos�July 20, 1998(revised August 1, 1999)Abstra
tThe ex
luded middle vantage point forest is a newdata stru
ture that supports worst 
ase sublineartime sear
hes in a metri
 spa
e for nearest neighborswithin a �xed radius � of arbitrary queries. Worst
ase performan
e depends on the dataset but is nota�e
ted by the distribution of queries.Our analysis predi
ts vp-forest performan
e in sim-ple settings su
h as Lp spa
es with uniform randomdatasets | and experiments 
on�rm these predi
-tions. Another 
ontribution of the analysis is a newperspe
tive on the 
urse of dimensionality in the 
on-text of our methods and kd-trees as well. In our ide-alized setting the dataset is organized into a forestof O(N1��) trees, ea
h of depth O(logN). Here �may be viewed as depending on � , the distan
e fun
-tion, and on the dataset. The radius of interest �is an input to the organization pro
ess and the re-sult is a linear spa
e data stru
ture spe
ialized toanswer queries within this distan
e. Sear
hes thenrequire O(N1�� logN) time, or O(logN) time givenO(N1��) pro
essors.Our 
on
lusion is that these new data stru
turesexhibit useful behavior only for small radius sear
hes,where despite their variation in sear
h times, 
onven-tional kd-trees perform mu
h better.Keywords: Nearest neighbor sear
h, Vantage pointtree (vp-tree), kd-tree, Computational geometry, Metri
spa
e.�The author is with NEC Resear
h Institute, 4 Indepen-den
e Way, Prin
eton, NJ. Email: pny�resear
h.nj.ne
.
om

1 Introdu
tionWe 
onsider the radius-limited nearest neighborproblem in a metri
 spa
e. That is, given an Npoint dataset and a radius of interest � , produ
e adata stru
ture and asso
iated sear
h algorithm torapidly lo
ate the dataset point nearest to any queryq. Our fo
us is on pra
ti
al data stru
tures that pro-vide worst-
ase sear
h time bounds.Vantage point trees (vp-trees) [32℄ and kd-trees[15, 16, 4, 3℄ organize an N point dataset so thatsublinear time nearest neighbor sear
hes may be per-formed on an expe
ted basis for some �xed distribu-tion. Performan
e depends on the dataset and on theassumed distribution of queries.The ex
luded middle vantage point forest (vp-forest) is a new related data stru
ture that supportsworst 
ase sublinear time sear
hes for nearest neigh-bors within a �xed radius � of arbitrary queries.Worst 
ase performan
e depends on the dataset butis not a�e
ted by the distribution of queries.The dataset is organized into a forest of O(N1��)trees, ea
h of depth O(logN). Here � may be viewedas depending on � , the distan
e measure, and on thedataset. The radius of interest � is an input to theorganization pro
ess and the result is a data stru
turespe
ialized to answer queries within this distan
e.Ea
h element of the dataset o

urs in exa
tly onetree so that the entire forest remains linear spa
e.Sear
hes follow a single root-leaf path in ea
h tree.There is no ba
ktra
king when the sear
h is limitedto neighbors within distan
e � . Along its way everyneighbor within � is ne
essarily en
ountered. The1
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query's e�e
t is to guide the des
ent through ea
htree.There are no signi�
ant an
illary 
omputationalburdens at sear
h time. So upon 
reating the for-est, the user simply adds the depths of ea
h tree inthe forest to arrive at the maximum number of dis-tan
e evaluations ea
h sear
h will require. Ea
h treemay be sear
hed independently. Sear
hes then re-quire O(logN) time given one pro
essor for ea
h treein the forest.We also dis
uss design variations that trade spa
efor redu
tions in sear
h time | and 
ompare forestswith single trees 
onstru
ted similarly.The general idea behind vp-forests is easily under-stood. Both vp-trees and kd-trees re
ursively dividethe dataset. At ea
h node the remaining dataset el-ements have an asso
iated value, and the node hasa 
orresponding �xed threshold that is roughly 
en-tral in the distribution of values. Elements belowthis threshold are assigned to, say, the left 
hild, andthose above to the right. For kd-trees these valuesare those of individual 
oordinates within ea
h datave
tor. For vp-trees they are the distan
e of a metri
spa
e element to some �xed vantage point.Elements near to the threshold lead to ba
ktra
k-ing during sear
h. When building a vp-forest, su
helements are deleted from the tree and added insteadto a bu
ket. On
e the tree is 
omplete, the bu
ketis organized into a tree in the same way, resultingin another (smaller) bu
ket of elements. This 
on-tinues until the forest is built. This e�e
tively elim-inates ba
ktra
king. Be
ause elements near to thethreshold are re
ursively deleted, and this thresholdlies near the middle of the distribution of values, werefer to our data stru
ture as an ex
luded middle van-tage point forest. Both vp-trees and kd-trees may beregarded as trivial instan
es of vp-forests with no ex-
luded middle.We present an idealized analysis that allows us topredi
t vp-forest performan
e in simple settings su
has Lp spa
es with uniform random datasets. Exper-iments are reported that 
on�rm these predi
tions.One 
ontribution of this analysis is an interesting newperspe
tive on the so 
alled 
urse of dimensionality(that is that nearest neighbor sear
h in
reases in dif-�
ulty with dimension). In Eu
lidean spa
e given a

uniform random dataset drawn from the hyper
ube,we observe that the worst-
ase diÆ
ulty of vp-forestsear
h for any �xed � ought to be asymptoti
ally 
on-stant with respe
t to dimension | and our experi-ments 
on�rm this. Using L1 we expe
t 
onstant dif-�
ulty if � is allowed to in
rease with d1=2 (d denotesdimension), and this too is 
on�rmed by experiment.Our analysis also suggests that kd-trees should ex-hibit the same dimension invarian
e for �xed sear
hradii, and experiments 
on�rm this. For a worst
ase query, kd-tree sear
h visits essentially the en-tire dataset, but on average performs far less workthan the vp-forest.The vp-forests des
ribed in this report stimulatedthe developments of [33℄, but do not themselves ap-pear to have immediate pra
ti
al value.We 
on
lude our introdu
tion with a brief dis
us-sion of the nearest neighbor sear
h problem and lit-erature. See [32℄ for additional dis
ussion.Nearest neighbor sear
h is an important task fornon-parametri
 density estimation, pattern re
ogni-tion, information retrieval, memory-based reasoning,and ve
tor quantization. See [11℄ for a survey.The notion of a mathemati
al metri
 spa
e [20℄provides a useful abstra
tion for nearness. Exam-ples of metri
 spa
es in
lude Eu
lidean spa
e, theMinkowski Lp spa
es, and many others. Exploit-ing the metri
 spa
e triangle inequality to eliminatepoints during nearest neighbor sear
h has a long his-tory. Our work belongs to this line. This paper ex-tends it by i) introdu
ing stru
tures that give worst
ase time bounds for limited radius sear
hes, ii) pro-viding analysis for them, iii) introdu
ing a methodfor trading spa
e for time, and iv) de�ning our datastru
tures and algorithms in terms of abstra
t pro-je
tors, whi
h 
ombines approa
hes that use distan
efrom a distinguished element with those su
h as kd-trees that use the value of a distinguished 
oordinate.In early work Burkhard and Keller [7℄ des
ribemethods for nearest neighbor retrieval by evaluatingdistan
es from distinguished elements. Their datastru
tures are multi-way trees 
orresponding to inte-gral valued metri
s.Fukunaga in [18, 19℄ exploits 
lustering te
hniques[27℄ to produ
e a hierar
hi
al de
omposition of Eu-
lidean Spa
e. During a bran
h and bound sear
h,2
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the triangle inequality is used to rule out an entire
luster if the query is far enough outside of it. Whileexploring a 
luster he observes that the triangle in-equality may be used to eliminate some distan
e 
om-putations. A key point missed is that when the queryis well inside of a 
luster, the exterior need not besear
hed.Colle
tions of graphs are 
onsidered in [14℄ as anabstra
t metri
 spa
e with a metri
 assuming dis
retevalues only. This work is related to the 
onstru
tionsof [7℄. In their 
on
luding remarks the authors 
learlyanti
ipate generalization to 
ontinuous settings su
has Rn .The idea that vantage points near the 
orners ofthe spa
e are better than those near the 
enter wasdes
ribed in [28℄ and mu
h later in [32℄.More re
ent papers des
ribing vantage-point ap-proa
hes are [30, 29, 25℄ and [32℄ who des
ribe vari-ants of what we refer to as a vantage-point tree.Also see [10℄ for very re
ent work on sear
h in metri
spa
es.The well-known kd-tree of Friedman and Bentley[15, 16, 4, 3℄ re
ursively divides a pointset in Rd byproje
ting ea
h element onto a distinguished 
oordi-nates. Improvements, distribution adaptation, andin
remental sear
hes, are des
ribed in [13℄, [21℄, and[6℄ respe
tively. In our framework kd-trees 
orre-spond to unit ve
tor proje
tion with the 
anoni
albasis.More re
ently, the Voronoi digram [2℄ has provideda useful tool in low- dimensional Eu
lidean settings{ and the overall �eld and outlook of ComputationalGeometry has yielded many interesting results su
has those of [31, 9, 8, 17℄ and earlier [12℄. It appearsthat [12℄ may be the �rst work fo
using on worst 
asebounds.Very re
ently Kleinberg [22℄ gives two algorithmsfor an approximate form of the nearest neighbor prob-lem. The spa
e requirements of the �rst are pro-hibitive but the se
ond, whi
h almost always �ndsapproximate nearest neighbors seems to to be of morepra
ti
al interest. The re
ent work reported in [1℄also 
onsiders an approximate form of the problem.Their analysis gives exponential dependen
e on d butthe heuristi
 version of their approa
h they des
ribemay be of pra
ti
al interest.

For 
ompleteness, early work dealing with two spe-
ial 
ases should be mentioned. Retrieval of similarbinary keys is 
onsidered by Rivest in [26℄ and theL1 setting is the fo
us of [34℄.See [5℄ for worst 
ase data stru
tures for the rangesear
h problem. This problem is related to but dis-tin
t from nearest neighbor sear
h sin
e a neighbor
an be nearby even if a single 
oordinate is distant.But the L1 nearest neighbor problem may be viewedas an instan
e of range sear
h. Their paper also de-s
ribes a parti
ular approa
h to trading spa
e fortime via an overlapping 
over. Our dis
ussion of thistopi
 in se
tion 5 also takes this general approa
h.2 Vantage Point ForestsWe begin by formalizing the ideas and 
onstru
tionsket
hed in the introdu
tion.De�nition 1 Consider an ordered set X =fx1; : : : ; xNg and a value m 2 [0; 1℄. Let w = bmN
and a = b(N�w)=2
. Then the m-split of X 
onsistsof left, middle, and right subsets de�ned by:L = fxiji � agM = fxiji > a; i � a+ wgR = fxiji > a+ wgThat is, a balan
ed 3-way partition of X with a 
en-tral proportion of approximately m.Algorithm 1 Given a 
olle
tion of points H and a1-1 proje
tion fun
tion �G : H ! R de�ned for anynonempty G � H, de�ne �G(G) to be the ordered setof distin
t real values 
orresponding to the image ofG under �G. Now for m 2 [0; 1℄:1. 
onsider the m-split L;M;R of �(G), and de�nethe split GL; GM ; GR of G 
orresponding to thepreimages of L;M;R respe
tively.2. Given G � H 
onstru
t a binary tree by form-ing GL; GM ; GR, dis
arding GM , and then doingthe same re
ursively for GL and GR until singleelements remain forming the tree's leaves.3
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3. Starting with H build a tree T1 as des
ribed aboveand denote its membership by M1. Let H0 = Hand de�ne H1 = H0 � M1, i.e. the elementsdis
arded building T1.4. For k > 1 and Hk�1 6= ; de�ne Tk as the treebuilt as above for Hk�1, denote the tree's mem-bership by Mk, and de�ne Hk = Hk�1 �Mk.De�nition 2 We refer to the result of algorithm 1as the idealized ex
luded middle vantage point forestindu
ed by � with 
entral proportion m. When H isa metri
 spa
e and the proje
tion fun
tions � satisfyj�(x)��(y)j � d(x; y);8x; y 2 H, this forest is of usefor nearest neighbor sear
h and we further de�ne � tobe one half of the minimum diameter of a middle setdis
arded during 
onstru
tion.We remark that ea
h tree of the forest may beviewed as analogous to the Cantor set from real anal-ysis. That is, the subset of [0; 1℄ 
onstru
ted by re-moving the 
entral third of the interval | and pro-
eeding re
ursively for both the left and right thirds.Our forest then 
orresponds to a de
omposition ofthe spa
e into a union of Cantor sets.Two important examples of a suitable family of� fun
tions are vantage point proje
tion for generalmetri
 spa
es, and unit ve
tor proje
tion for Eu-
lidean spa
e.A vantage point proje
tor �p is de�ned for anyp 2 H by �p(x) = d(p; x). The split points in tree
onstru
tion 
orrespond to abstra
t spheres about p.It is easily veri�ed that j�p(x) � �p(y)j � d(x; y) asrequired. The range of this proje
tor is the nonnega-tive reals. Letting m = 0 gives rise to a vantage pointtree [32℄.The unit ve
tor proje
tor �p is de�ned for anyp 6= 0 as �p(x) =< p; x > =kpk. This is easilyseen to satisfy the required inequality as well, andits range is not limited to nonnegative values. Herethe split points 
orrespond to hyperplanes. Choosingp as 
anoni
al unit ve
tors and letting m = 0 buildsa form of kd-tree [15, 16, 4, 3℄. It is important tonote that < p; x > may be 
omputed more rapidlyfor 
anoni
al unit ve
tors | in 
onstant time withrespe
t to dimension. Also, we remark that when-ever orthogonal ve
tors are used, proje
tion distan
es

are, in a sense, additive, and that this fa
t 
an beexploited (as kd-trees do) when designing solutionsspe
ialized for Lp spa
es. We do not 
onsider eitherof these optimizations in this paper.Proposition 1 Consider an idealized Vantage PointForest with 
entral proportion m and 
orrespondingvalue � . De�ne � = 1=(1� log2 (1�m)). Then:1. There are �(N1��) trees in the forest, havingmaximum depth �(logN).2. A sear
h for nearest neighbors within distan
e� of a query requires �(N1�� logN) time, andlinear spa
e | independent of the query.3. The sear
h requires �(logN) time given�(N1��) independent pro
essors.4. Assuming ea
h proje
tor �G 
an be 
onstru
tedin 
onstant time, and that it 
an also be eval-uated in 
onstant time, and that m > 0, thenO(N2��) time is required to 
onstru
t the forest.proof: At ea
h step in the 
onstru
tion the 
entralproportion of m elements is removed so that the leftand right subsets are ea
h of size (1 � m)=2. The�rst tree's depth is then [1=log2(2=(1�m))℄log2N =�(logN). So the number of elements left in the treeis N1=(1�log2(1�m)) = N�.The number of elements left after the �rst tree hasbeen 
onstru
ted is then N �N�. After the se
ondN � N� � (N � N�)� are left, and so on. Clearly
(N1��) trees are required to redu
e the populationto any �xed size.On
e the population has been redu
ed to 1=2 of itsoriginal size, the number of elements removed as ea
htree is built will have de
lined to (N=2)� = (1=2)�N�.Sin
e (1=2)� > 1=2 no fewer than N�=2 are removed.So the number of steps required to rea
h N=2 is nomore than N1��. The number required to rea
h N=4is then (1=2)1��N1�� | and so on forming a geomet-ri
 series. So the number required to rea
h any �xedlevel is O(N1��). The number of trees in the forest isthen �(N1��) | and the total spa
e is 
learly linear.A sear
h for nearest neighbors within distan
e �is then made by following a single root-leaf path in4
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