
EXHIBIT 5
PART 
1 OF 2 

Case 1:14-cv-02396-PGG-MHD   Document 148-15   Filed 05/30/19   Page 1 of 44Case 1:14-cv-02396—PGG-MHD Document 148-15 Filed 05/30/19 Page 1 of 44

EXHIBIT 5

PART

10F2



Keinosuke Fttkunaga 

h1tr'lJ(/uclilJ11 /(J Statistical 
Pattern 

Recognition 

Second &lition 

Case 1:14-cv-02396-PGG-MHD   Document 148-15   Filed 05/30/19   Page 2 of 44



Keinosuke Fukunaga 

Introduction to 

Statistical 
Pattern 
Recognition 
Second Edition 

This comp letely revised second edition 
presents an introduction to sta tis tical pat­
tern recognition. Pattern recognition in 
general ewe rs a wide range of problems: it 
is applied to enginee ring problems, such as 
character readers and wave form analysis, 
as well as to brain modeling in biology and 
psychology. Statistical decision and es tima­
tion, which are the ma in subjects of this 
book, are regarded as fundamental to the 
study of pattern recogni tion. This book 
is appropria te as a text for introductory 
courses in pattern recognition and as a ref­
erence book for people who work in the 
field. Each chapter also contains compu ter 
projects as well as exercises. 
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Chapter 11 

CLUSTERING 

In the preceding chapters, we have presented a considerable body of 

design theory for pattern recognition. Procedures for classifier design, parame­

ter estimation, and density estimation have been discussed in detail. We have 

consistently assumed the existence of a training set of classified samples. In 

this chapter, we will focus our attention on the classification of samples 

without the aid of a training set. We will refer to this kind of classification as 

clustering or unsupervised classification. 

There are many instances where classification must and can be per­

fonned without a priori knowledge . Consider, for example, the biological tax­

onomy problem. Over the years, all known living things have been classified 

according to certain observable characteristics. Of course, plants and animals 

have never borne labels indicating their kingdoms, phylae, and so on. Rather, 

they have been categorized according to their observable characteristics without 

outside supervision. 

The clustering problem is not well defined unless the resulting classes of 

samples are required to exhibit certain properties. The choice of properties or, 

equivalently, the definition of a cluster, is the fundamental issue in the cluster­

ing problem. Given a suitable definition of a cluster, it is possible to distin­

guish between good and bad classifications of samples. 

508 
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11 Clustering 509 

In this chapter, two approaches to clustering will be addressed. One is 

called the parametric approach and the other is the nonparametric approach. 

In most parametric approaches , clusterini criteria are defined, and given 

samples are classified to a number of clusters so as to optimize the criteria. 

The most commonly used criteria are the class separability measures which 

were introduced in Chapter 10. That is, the class assignment which maximizes 

the class separability measure is considered to be the best clustering result. In 

this approach, the structure (parametric form) of the classification boundary is 

determined by the criterion. The clustering algorithm, which determines 

efficiently the best classification with respect to the criterion, is normally an 

iterative algorithm. In another parametric approach, a mathematical form is 

assumed to express the distribution of the given data. A typical example is the 

summation of normal distributions. In this case, the clustering problem con­

sists of finding the parameter values for this distribution which best fit the data. 

On the other hand, neither clustering criteria nor assumed mathematical 

forms for the distribution are used in the nonparametric approach. Instead, 

samples are separated according to the valley of the density function. The val­

ley may be considered as the natural boundary which separates the modes of 

the distributions. This boundary could be complex and not expressible by any 

parametric form. 

In addition, clustering may be viewed as the selection of representatives. 

In general, a density function may be approximated by the Parzen density esti­

mate around the representatives. Then, we may try to reduce the number of 

representatives while maintaining the degree of approximation. An iterative 

procedure to choose the representatives is discussed in this chapter. 

11.1 Parametric Clustering 

In this section, we will present, first, a general-purpose clustering algo­

rithm based on a generalized criterion. Then, the discussion for a specific cri­

terion follows. 
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510 Introduction to Statistical Pattern Recognition 

General Clustering Algorithm 

The clustering algorithm developed in this section applies to a wide 

range of criteria. However, it is necessary to specify the fonn of the criterion 

as well as some other details of the clustering problem at the outset. 

Clustering criterion: Assume that we want to classify N samples, 

X 1, ••• ,XN. These vectors are not denoted as random vectors because, in the 

clustering problem, they are assumed to be fixed and known. Each sample is 

to be placed into one of L classes, ro1, ... ,ooL, where L is assumed to be given. 

The class to which the ith sample is assigned is denoted rok; (i = 1, ... ,N). 

For convenience, let the value of k; be an integer between I and L. A classifi­

cation Q is a vector made up of the ook; 's, and a configuration x* is a vector 

made up of the X; 's, that is, 

and 

x* = [Xf ... xrf. 
The clustering criterion J is a function of n and X • and can be written 

J = J(ook,, ... ,rok.v; Xi, ... ,XN) = J(Q;X*). 

By definition, the best classification Q0 satisfies either 

J(ilo;X*) = max or min J(Q;X·) 
n n 

( 11.2) 

( 11.3) 

(l l.4) 

depending on the criterion. For the remainder of this section, we will discuss 

only the minimization problem, since the maximization is similar. 

Example 1: Six vectors, X 1, ... ,X 6 , of Fig. 11-1 are given. The 

problem is to find class assignments of these vectors to one of two classes so 

as to minimize a criterion. Let J = tr(S;,1 S_.) be the criterion where S" and Sm 
are the within-class and mixture scatter matrices defined in (10.1) and (10.4). 

For each classification, for example {X 1,X 2 ,X 5 } E 00 1 and 

{X 3,X 4,X 61 E 002 as shown by dotted lines, or {X 1 ,X 2 ,X 3 I E 00 1 and 
{X4 ,X 5 ,X 6 } E 002 as shown by solid lines, the mean vectors and covariance 

matrices for ro1 and roi are estimated, and S.,, Sm, and J can be computed. 
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I I Clustering 
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Fig. 11-1 An example of clustering. 

511 

Note that S~. varies depending on Lhe dass assignment but S,,, does not. The 

class assignment by the solid lines would give the minimum J (the smallest 

within-class scatter) among all possible combinations of class assignments. 

Clustering algorithm: For a given clustering problem, the configuration 

X • is fixed. The clustering algorithm varies only the classification n. Ordi­

nary steepest descent search techniques cannot be applied because of the 

discrete and unordered nature of n. Still, it is possible to define an iterative 

search algorithm based on variations in J with respect to variations in n. 
Suppose, at the eth iteration, the classification is Qe). where 

( I 1.5) 

If the ith sample is reclassified from its present class ki(e) to class j, the cluster­

ing criterion varies by an amount !V (i ,j, f), which is given by 

( 11.6) 

If !V (i,j ) ) is negative, reclassification of the ith sample to class j yields a 

classification that is improved in terms of J. This fact is the basis of the fol­

lowing algorithm: 
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512 Introduction to Statistical Pattern Recognition 

(I) Choose an initial classification ne0) . 

e2) Given the tth classification ne o . calculate Ii/ (i ,j, t) for 

j = 1,2, .. . ,Landi= 1,2, . . . ,N. 

e3) For i = 1,2, ... ,N, reclassify the ith sample to class t, where 

lif(i,t,n = min li/(i,j,e). 
j 

e11.7) 

Decide ties involving j = k;ee> in favor of the present classification. Decide 

other ties arbitrarily. This step forms nee + I). 

e4) If ne e + I)* n(l), return to Step e2). Otherwise the algorithm is 

complete. 

The algorithm is simply the iterative application of a classification rule 

based on the clustering criterion. Here, we adopted a procedure in which all of 

the samples are reclassified simultaneously at each iteration. An alternative 

approach is to reclassify each sample one at a time, resulting in similar but 

slightly different clusters . In these iterative procedures, there is no guarantee 

that the algorithm converges. Even if it does converge, we cannot be certain 

that the absolute minimum of J has been obtained. Therefore, we must depend 

on empirical evidence to justify the algorithm. 

In contrast to these potential weaknesses, the algorithm described above 

is very efficient. Like any good search algorithm, it surveys a small subset of 

classifications in a systematic and adaptive manner. It is easily programmable 

for any criterion of the form of e 11.3). 

Determining the number of clusters: So far, we have ignored the prob­

lem of determining the number of classes L, and have assumed that L is given. 

However, in practice, L is rarely known . We not only need to determine L but 

also the proper class assignment. For that purpose, we may run the clustering 
procedure for the various values of L, and find the best classification for each 

value of L. Let J~ be the optimal criterion value for a given L after the cluster­

ing procedure has converged. If J~ decreases as L increases, and either reaches 

the minimum point at L 0 or becomes flat after Lo, then we may use L 0 as the 

proper number of classes. Unfortunately, many of the popular criteria do not 

have this favorable property. For example , consider J = tres;, 1 Sw) of Example 
I. As L increases, samples are divided into smaller groups, and consequently 

the within-class scatter becomes smaller. This means that J might decrease 
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11 Clustering 513 

monotonically with L. Finally, when L becomes N, the total number of sam­

ples, each class consists of one sample only, and there is no within-class scatter 

(J = 0). Although L = N minimizes this criterion, this is obviously not the 

solution we want. 

It appears, therefore, that some external method of controlling L is neces­

sary. Unfortunately, no unified theory for determining L has been fully 

developed and accepted. 

Merging and splitting: After a number of classes is obtained, we may 

consider the merging of two classes into a single class or the splitting of a 

class into a number of classes. 

Basically, merging is desirable in two instances. The first is when two 

classes are very similar. The similarity may be measured in a number of ways. 

The Euclidean distance between two mean vectors is the simplest measure but 

is not an accurate one. The Bhattacharyya distance of (3.152), based on the 

normal assumption, could be a reasonable compromise between simplicity and 

accuracy. The second instance in which merging may be appropriate is when 

the population of a class is very small. In this case, the class may be merged 

with the most similar class, even when the similarity is not very close. 

Deciding whether or not a class is to he split is a more complex problem. 

Too large a population suggests that the class is a candidate for a split. Mul­

timodal and nonsymmetric distributions as well as distributions with large vari­

ances along one direction are also candidates for splitting. In order to identify 

these characteristics, various tests are necessary. Splitting a class may be car­

ried out by applying the clustering procedure to the samples in the class. 

It goes without saying that this kind of merging and splitting is very 

heuristic. Its merit lies in the fact that it is efficient and requires a minimum of 

human interaction. 

Multiple dichotomy: It is somewhat more satisfying to adopt an 

approach which depends entirely on the clustering criterion J. One such 

approach has been suggested [ 1] and is outlined as follows. 

Suppose that for L = 2 there are several distinct classifications which 

yield a nearly minimal value of J. If these classifications differ only in the 

classification of a few samples, there is no reason to suppose the existence or 
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514 Introduction to Statistical Pattern Recognition 

more than two classes . If the classifications are grossly different, however, 

then it is evident that several classes are actually present. 

/ 
/ 

2nd dichotomy 
/ 

Q,/0 
/ -------7----------------//// 
0 

Isl dichotomy 

/ A, 
/ 

/ 

Fig. 11-2 Multiple dichotomy of three classes of samples . 

Figure 11-2 illustrates two possible dichotomies of a collection of sam­

ples apparently containing three classes A 1, A 2 , and A 3• One dichotomy 

separates the samples into A I u A 2 and A 3, while the other results in the two 

classes A I and A 2 uA 3 • Thus , A 3 , A 1, and A I uA 3 = A 2 are seen to be dis­

tinct classes (A is the complement of the set A.) 

Now let us consider the more general case where there are k dichotomies 

of a collection of samples containing L classes. Each dichotomy separates 

these samples into two groups. Let SiJ be the set of all samples assigned to 

group j by the ith dichotomy for j = 1,2 and i = I, . .. ,k. Assume that the fol­

lowing two conditions hold. 

(a) A dichotomy places each class into only one group, that is, classes 

are not split by dichotomies. 

(b) For each pair of classes, there is at least one dichotomy which does 
not assign the two classes to the same group. 

Select one group from each of the k dichotomies and form a subset C as 
the intersection of these k groups. By condition (a), if C contains one sample, 

then it must contain all of the samples of that class. By condition (b), for any 

other class, there is at least one of the k selected groups to which that class 
does not belong. Therefore , if C is nonempty, then C contains one and only 

one class. Hence. in order to construct all the L classes, we consider the 2t 

subsets of the form. 
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I I Clustering 515 

k 

c U 1, . .. ,h -) = nsiJ 
i=I ' 

( 11.8) 

where each j equals or 2. Each nonempty C is a class. In our example, we 

have 

S11=A1UA2, S12=A3, S21=A1, S22=A2UA3, 

so that 

C(I, I) =S 11 nS 21 =A 1 , 

C(l,2)=S 11 nS 22 =A2, 

C(2, l)=S 12nS21 =0, 

C(2, 2)=S12nS22 =A3, 

which is in agreement with our earlier argument. 

( 11. 9) 

(I I. 10) 

The multiple dichotomy approach has a stronger theoretical basis than 

the merging and splitting procedure. Further, it relies on no numerical criterion 

other than 1. However, implementation of the multiple dichotomy approach 

can be difficult, especially when the true number of classes is large. In addi­

tion, the conditions (a) and (b) mentioned above are rarely satisfied in practice. 

These difficulties may be overcome somewhat by imposing a hierarchical 

structure on the classes . The samples are divided into a small number of 

cla~ses, each class is divided further, and so on. Under this strategy, we need 

not find every possible dichotomy of the entire collection of samples. 

At this point, we depart from general discussion of the clustering algo­

rithm. Obviously, the discussion is incomplete. We have a basis, however, co 

develop and implement clustering procedures. Therefore, let us tum our atten­

tion to the detailed derivations of clustering procedures . 

Nearest Mean Reclassification Algorithm [2-5) 

In this section, we will discuss clustering procedures based on parame­

ters such as mean vectors and covariance matrices . We will show that the cri­

teria of class separability discussed in Chapter IO play an important role, and 

that the iterative algorithms of the previous section take on simple forms . 
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516 Introduction to Statistical Pattern Recognition 

Criteria: Clustering can be considered as a technique to group samples 

so as to maximize class separability. Then, all of the criteria which were dis­

cussed in Chapter IO may be used as clustering criteria. In this section only 

functions of scatter matrices are discussed due to the following reasons: 

(I) The extension to multiclass problems is straightforward. In this 

respect, the Bhattacharyya distance has a severe disadvantage, since it can be 

applied only to two-class problems. 

(2) Most clustering techniques are based on the scatter of mean vectors. 

Finding clusters based on covariance-differences is extremely difficult, unless 

some mathematical structure is imposed on the distribution. Therefore, the 

functions of scatter matrices fit well to clustering problems. 

(3) The simplicity of the criteria is a significant advantage, because in 

clustering we have the additional complexity of unknown class assignment. 

For feature extraction, we could choose any combination of Sh, S,.., and 

Sm as S I and S 2 to forrn a criterion J = tr(S21 S 1 ). However, for clustering it is 

preferable to use Sm as S 2 , because Sm is independent of class assignment. It 

would be too complicated if we had to recompute the inverse of S 2 each time 

the class assignment was altered in iteration. Therefore, our choice is limited 

to either tr(S;,1 Sb) or tr(S;,1 S,..). These two criteria are the same, because 

tr(S;,' Sh) = tr! s;,1 (Sm-Sw)) = n - tr(S;,1 S"'). In this chapter, we will use 

J = tr(S;,' S,..). 

Another important consideration in selecting criteria for clustering is to 

ensure that the clustering procedures give the same classification for a given set 

of samples regardless of the coordinate system of these samples. The chosen 

criterion, J = tr(S;,1 S".), satisfies this condition, since the criterion is invariant 

under any nonsingular linear transforrnation. 

Clustering algorithm: Let us assume that M O = 0 and Sm = I without 

losing generality. If the given samples do not satisfy these conditions, we can 

shift the coordinate origin and whiten the data with respect to S,,,. Then, using 

(IO.I) the criterion is rewritten as 
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11 Clustering 517 

J - (' - ~ N, I ~ x(r) T (r) - tr.," . - kJ--kJ( J - M,.) (X 1 - M,.) 
r=I N N,. j=I 

I L N, 

= - LL llxy) - M,.112 
. 

N r=l)=I 

(II.II) 

Changing the class assignment of X; from the current class k; to class j at the 

~th iteration , we delete from ( 11.11) the term IIX; - Mk, mll2 and insert a new 

term IIX; - M/i.')l12 • Thus, 

6..J(i,J.n = _!_1 llx; - M1(oll2 
- llx; - Mde)l12 l . (11.12) 

N ' 

Since the second term of ( 11.12) is independent of j, the reclassification of X; 

at the 1th iteration can be carried out by 

IIX; - M,(011 = min IIX; - M/DII ~ XE w, . (11.13) 
1 

In words. the algorithm becomes: 

(I) Choose an initial classification, Q(0), and calculate 

M 1 (0), ... ,ML (0). 

(2) Having calculated sample mean vectors M 1 (i'), ... ,Md t) at the tth 

iteration, reclassify each X; according to the nearest M,-(t). 

(3) If the classification of any X; is changed, calculate the new sample 

mean vectors M I C+ I), ... ,ML e + I) for the new class assignment, and 

repeat from Step (2). Otherwise, stop. 

This algorithm is called the nearest mean reclassification rule. 

Figure 11-3 shows how the iterative process works. At the !th step. 

samples are divided to three clusters, and their sample means, M;(O's, are com­

puted. All samples are now reclassified according to the nearest means . That 

is, the new boundary is piecewise linear, bisecting each pair of M;( C)'s. In Fig. 

11-3, there are three clearly separated clusters. We can see that the boundary 

is indeed improved by thi s operation. 

From the above discussion, some properties of the nearest mean 

reclassification algorithm become evident. They are: 

(I) Clusters are divided by piecewise linear bisectors. Only the means 

contribute to determine the boundary and covariance matrices do not affect the 

boundary. 

Case 1:14-cv-02396-PGG-MHD   Document 148-15   Filed 05/30/19   Page 17 of 44



518 Introduction to Statistical Pattern Recognition 

J-th step 
X X 

X X X 

~,, -x-?:-M1(J) 

; X 
>4 X X 

', ... : X ,a_x X X 

/x X X 
M3(J) X X 

Fig. 11-3 An example of the nearest mean reclassification algorithm. 

(2) The number of clusters must be preassigned. 

(3) The initial classification. il(0), may be given randomly. No matter 

how Q(0) is given, the M;(0)'s are computed and the reclassification of sam­

ples according to the nearest M;(0)'s results in a piecewise linear boundary. 

This is equivalent to selecting the number of vectors, M;(0)'s, initially accord­

ing to the number of clusters. Random class assignment does not impose any 

extra instability on the algorithm. 

In order to verify the algorithm, the following experiment was con­

ducted. 

Experiment 1: One hundred samples were generated from each of Data 

/-A, and mixed together to form 200 samples. Then, these samples were 

classified to two clusters. Table 11-1 shows the confusion matrix of this 

experiment [5]. All I 00 samples from ro1 with 19 samples from CJ½ were 
assigned to one cluster, and 81 samples from mi are assigned to the other clus­
ter. The error rate is 19/200 = 0.095. Recall that we got 5% error for this data 

by designing the optimum linear classifier in Chapter 4. Considering the fact 
that any covariance information was not used in this clustering algorithm, the 
error rate of 9.5% is reasonable. Furthermore, since all error samples came 

from one class, we could improve the error rate simply by adjusting the deci­

sion threshold. 

Convergence [5]: The nearest mean reclassification algorithm is not 

guaranteed to converge . In this section, we will discuss the conditions under 

Case 1:14-cv-02396-PGG-MHD   Document 148-15   Filed 05/30/19   Page 18 of 44



11 Clustering 

TABLE 11-1 

CONFUSION MATRIX FOR THE NEAREST MEAN 

RECLASSIFICATION ALGORITHM 

Assigned class 

2 

Actual I I 00 0 

class 2 19 81 

519 

which the separating hyperplane converges for two nonnal distributions with 

equal covariance matrices. 

Let us assume that two nonnal distributions are Nx(M 1,L 1) and 

Nx(M 2,L 2) after nonnalization and that r, = r 2 = r. The nonnalization 

makes S,,, = I and M O = 0. The Bayes classifier in this case becomes linear as 

(11.14) 

where c is a constant. Since Sm=l=L+P 1M 1Mf +P 2M 2Mf and 

M0 =0=P 1M 1 +P 2M 2 , 

Using (2.160), 

P2 T 
-M?M? 
pl - -

r-' = I + -----­
P 2 T 

I - -M?M? 
P, - -

Substituting ( 11.16) and ( 11.17) into ( 11.14 ), the Bayes classifier is 

I 
----1-· -MIX + C = 0 . 
P 1-P 2M2M2 

(11.15) 

(11.16) 

(11.17) 

( I 1.18) 

Thus, the optimum hyperplane for the equal covariance case is always in the 
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520 Introduction to Statistical Pattern Recognition 

direction of M 2 which is the same as the mean-difference vector M 2-M 1• 

This property, which the original coordinate system does not have, is a 

significant advantage of the normalized coordinate system. 

For the equal covariance case, we can show that the algorithm converges 

to M 2-M I from a wide range of initial classifications. After a given iteration, 

samples are separated by a hyperplane whose direction is, say V (llvll = I), as 

shown in Fig. 11-4. Also, the position of the hyperplane is specified by t 1 and 

V 

Fig. 11-4 Separation of two distributions. 

¼ which are the distances of M I and M 2 from the hyperplane. Let Dp and Dn 
be the centers of probability mass for the positive and negative sides of the 

hyperplane. Then, following the nearest mean reclassification rule, the direc­

tion of the succeeding hyperplane will be Dp-Dn. So, our convergence proof 
is to show that the angle between Dp-Dn and M 2-M 1 is smaller than the angle 

between V and M 2-M 1• 

Since the hyperplane separates each distribution into two parts, the posi­
tive and negative sides, we have four probability masses Rij (i = 1,2; j = p,n ), 
as shown in Fig. 11-4. Let Dij and% be the mean vectors and populations of 

these probability masses. Then, 
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a; 
D;p = M; + --1:;V , 

<J;h; 

a 
D;/1 = M; - I I:; V • 

a;(l-h ; ) 

q,p = P;b;, 

q;,, = P;(l-h ; ) , 

where 

[ ' l 2 I = I ? I I I,; 

a, = ~c l;exp[--1;-Jdl; = _,---expl- 1 - J. 
2n: _ ,,a; 2 'V2n: _ a, 

I f~ 1 [ C; I h; = C _ expl--1; 2 ]di;= I - cJ> ±-
" 2n: ±!,la, 2 a, 

2 T a, = V I:;V. 
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( 11.19) 

( I 1.20) 

( I 1.21) 

(11.22) 

( 11.23) 

(11.24) 

(I 1.25) 

and cJ> is the normal error function. The sign + or - is selected, depending on 

whether M1 is located in R;11 or R;JJ. The details of the derivation of (11.19) 

through ( 11.25) are left to the reader. However , the following information 

could be helpful in deriving (11.19) through ( 11.25) . Since X is normal. 

y = V1 X is also normal with the variance of ( I 1.25) . In they-space, the proba ­

bility of mass for the positive side , h;, can be computed by ( 11.24 ). The vector 

D,j - M; has the direction of 1:;V, and the projections of D,; - M; on 

V (j = p.n) are \11 (D;JJ - M;) = a;<J;l h1 and V 1(D;,, - M;) = -a;<J;l(l-h;). 

These are obtained by computing the expected values of y for the positive and 

negative sides. From D;; and q;j, D
1
, and D11 are obt ained as 

q IJJD ,,, + q2pD2,, 
D JJ = ---''----'------'----''-

q Ip + Q 2p 

(11.26) 

q ,,,D ,,, + q 2,,D 211 
D,1 == -------

q 111 + q 2 11 

( 11.27) 

Substituting ( 11.19) through ( 11.22) into ( 11.26) and ( 11.27). 
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(11.28) 

For the equal covariance case, 

(11.29) 

Furthermore, under the normalization of Sm = I and M O = 0, I: and M 2-M I are 

expressed as functions of M 2 as in (I I. 15) and (11.16). Therefore, (11.28) 

becomes 

where 

P2(h2-b 1 )-(1/cr)(P 2/P 1 )(P I a 1 +P2a2)MIV 

<P1b1+P2b2)1 l-(P1b1+P2b2)l 

( 1/a)(P I a 1 +P 2n 2) 

(11.30) 

(11.31) 

(11.32) 

The normal of the new hyperplane has a component in the direction of V 

and another in the direction of M 2 • If the coefficient of M 2 , c 1, has the same 

sign as MI V, the successive hyperplane becomes more nearly parallel to M 2 . 

Since c 2 and the denominator of c I are positive, we need to show that the 

numerator of c I and MIV have the same sign. We examine only the case 

where MI V > 0. The discussion for MIV < 0 is similar to the one for 

MIV > 0. For MIV > 0, we see from Fig. 11-4 that 

e1 + ½ = (M2-MJv = *Miv. (11.33) 

Using ( 11.33), the condition for convergence becomes 

(11.34) 

It is easily seen that the inequality of ( 11.34) is not satisfied for certain 
combinations of parameters. However, the region of parameters where ( 11.34) 

is satisfied can be calculated numerically . The result is shown in Fig. 11-5. 
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Fig. 11-5 Region of convergence. 

523 

Equations (11.23) and (11.24) with (11.34) show that we have three parameters 

in (l l.34U 1/cr, ~la, and P 1 (P 2 = I - P 1 ), or 

(11.35) 

In Fig. 11-5, the convergence regions of y and P 1 are plotted for various 

values of k [5]. The figure shows that convergence is quite likely in practice, 

except for either extreme P 1 's or y's. 

Branch and bound procedure [6]: The nearest mean reclassification 

algorithm works fine for many applications. However, there is no guarantee of 

the convergence of the iterative process. Also, the process might stop at a 

locally minimum point and fail to find the globally minimum point. 

Since assigning a class to each sample is a combinatorial problem, the 

branch and hound procedure discussed in Chapter 10 may be applied to find 

the optimum class assignment. 

Figllre 11-6 shows a solution tree for the clustering problem with four 

samples and three clusters. ln general, there are LN different Q's for classify-
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A 
Fig. 11-6 A solution tree for clustering. 

ing N sample vectors into L clusters. However, since the label of each cluster 

may be chosen arbitrarily, each classification could have several different 

expressions for n. For example, n = [ 1 1 2 2] and Q = [2 2 3 3] are the same 

classification, both indicating that X I and X 2 are in one cluster and X 3 and X 4 

are in one of the other clusters. In order to eliminate this duplication, we 

assign the first sample X I to cluster I, the second sample X 2 to either cluster I 

or 2, and so on, as shown in Fig. 11-6. 

In order for the branch and bound procedure to work effectively, we 

need to have a criterion which satisfies the monotonicity condition. Let lm(Qm) 

be the criterion to be minimized for n,,, = [wk, ... wk,.,], where the subscript m 

indicates the number of sample vectors involved. Then, the monotonicity con­

dition is stated as 

(11.36) 

That is, the J of a node is smaller than the J's for all nodes which are succes­

sors of the node. 

Let a be the value of J N which is the current smallest among all cases 

tested so far for the classification of N samples (for example, a= J(A)). Then, 

the branch and bound procedure checks at each node (for example, at B) 

whether or not the following inequality is satisfied 
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Jlll(Q/1/) ~a · (11.37) 

If yes, then from ( 11.36), all successors of this node have J 's larger than a. It 

means that the optimum classification does not exist in the subtree under the 

node. Thus, the subtree is rejected without further tests, and the search back­

Lracks to the next node (for example, C). This elimination of sublrees makes 

the branch and bound procedure a very efficient tree search technique. When 

( 11.37) is not satisfied, the search moves down to a node in the next level. The 

node selected for the next evaluation is determined by 

1111+ 1 (Q 111,t) = min lm+l (Q 111J) . (11.38) 

That is. X,,,+1 is assigned to cluster t, and the search goes on. 

The criterion J = tr(S;,l S"') satisfies the monotonicity condition with a 

minor modification . Again , assuming S,,, = I. ( 11.11) is the criterion to be 

minimized. Since the number of samples is determined by the level of the 

solution tree and is independent of Q, let us delete it from the criterion and 

rewrite the criterion form samples, X 1, ••• ,X,,,, as 

L m, 

lm(Q"') = r,r,11xy1 
- M,.112

• (11.39) 
r=IJ=I 

where m, is the number of w,.-samples among X 1, .•• ,Xm. When Xm+ 1 is 

added into cluster f , M, must be modified to M,', including the effect of X111+ 1 • 

and IIX111+ 1 - M,' 11
2 must be added to the summation. Thus, 

where 

II/ , 

. - II '112 II (;) '112 II I·) 112 !!.JU- X,,,+I -M ; + L { X; -M , - X; -M . ) . 
j=I 

The new :-class mean, M.,. can be obtained as 

or 

I Ill M: = ---(I,X\' 1 +XIII +!) 
m . + I J=I 

I 
= M , + ---(Xn,+I - M .) . 

m . + I 

( 11 .40) 

(11.41) 

(11.42) 
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X(O -M ; = (X( il - M 1) - -
1-(X 1 - M -). 

1 • 1 . m, + I m+ ' 

Substituting ( 11.43) into (11.41) and using M1 = (l/m ,:)1:~ 1XJ \ 

AI(e) = ~llx,,,+ 1 - MJ2 ~o. 
m 1 + I 

(11.43) 

(11.44) 

Since A/ (e) ~o. from (11 .40) the criterion has the monotonicity property . 

Note that ( 11 .40), ( 11.44 ), and ( 11.42) provide recursive equations for 

computing J,,,+1(il 111,€) and M; from J111(il,,,), M1, and Xm+l · Also, (11.38), 

(11.40), and (11.44) indicate that the selection of the next node can be made by 

minimizing A/( €) with respect to e. 

For a large N, the number of nodes is huge. Thus, the initial selection of 

a becomes critical. One way of selecting a reasonably low initial a is to apply 

the iterative nearest mean reclassification algorithm to get a suboptimal solu­

tion and use the resulting criterion value as the initial a. The branch and 

bound procedure gives the final solution which is guaranteed to be optimum 

globally. 

Also, it is possible to make the procedure more efficient by reordering 

the samples [6]. 

Normal Decomposition 

Piecewise quadratic boundary: The nearest mean reclassification rule 

can be extended to include more complex boundaries such as quadratic ones. 

Following the same iterative process, the algorithm would be stated as follows: 

( 1) Choose an initial classification, il(0), and calculate P;(0), M;(0) and 

1:;(0) (i = 1, ... ,l). 

(2) Having calculated class probabilities, P;( t ), and sample means and 

covariance matrices, M;(e) and 1:;(t) , at the eth iteration, reclassify each Xj 

according to the smallest (l/2)(XrM;/" l:;-1(XrM;)+(l/2) lnlI:; 1-lnP;. The 

class probability for CO; is estimated by the number of CO;-samples divided by 

the total number of samples. 

(3) If the classification of any Xj is changed, calculate the P;(e+ I), 

M;(t+ I) and 1:;(t+ I) for the new class assignment, and repeat from Step (2). 
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Otherwise stop. 

This process is identical to the nearest mean reclassification algorithm, 

but results in a piecewise quadratic boundary. Also, since the estimation of the 

covariance matrices is involved, the process is more computer-time consuming 

and more sensitive to parameters such as sample size, dimensionality, distribu­

tions, and so on. 

More fundamentally. the clustering techniques mentioned above may 

have a serious shortcoming, particularly when a mixture distribution consists of 

several overlapping distributions. An important goal of finding clusters is to 

decompose a complex distribution into several normal-like distributions. If we 

could approximate a complex distribution by the summation of several normal 

distributions, it would be much easier to discuss all aspects of pattern recogni­

tion, including feature extraction, classifier design, and so on. However, the 

clustering procedures discussed above decompose a mixture as in Fig. 11-7(b) 

rather than as in Fig. 11-7(a). The hatched distribution of cluster I in Fig. I l-
7(b) includes the tail of the <.oi-distribution and does not include the tail of the 

w1 -distribution. As a result, the mean and covariance matrix of the hatched 

distribution in Fig. I 1-7(b) could be significantly different from the ones for 

the hatched distribution of Fig. l 1-7(a). Thus, the representation of a complex 

distribution by the parameters obtained from the clustering procedures 

described above could be very poor. 

Decomposition of a distribution into a number of normal distributions 

has been studied extensively [7]. The two most common approaches are the 

method of moments and maximum likelihood estimation. In the former method, 

the parameters of normal distributions are estimated from the higher order 

moments of the mixture distribution (for example, the third and fourth order 

moments (8)). This approach is complex and not very reliable for high­

dimensional cases. Therefore, in this chapter, only the latter approach is 

presented in detail. 

Maximum likelihood estimate (9-10]: In order to obtain the hatched 

distribution of Fig. I l-7(a) from p(X), it is necessary to impose a mathematical 

structure. Let us assume that p (X) consists of L normal distributions as 
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P1p1(X) 

m, 

(a) 

m; 

(b) 

Fig. 11-7 An example of the shortcoming of the clustering technique. 

L 

p (X) = "'f,P;p;(X) , ( I 1.45) 
i=I 

where p;(X) is normal with the expected vector M; and covariance matrix L;. 

Under this assumption, our problem is to estimate P;, M;, and L; from N avail­

able samples, X 1, •• • ,XN, drawn from p (X). One way of solving this problem 

is to apply the maximum likelihood estimation technique. The maximum likeli­

hood estimates may be obtained by maximizing nJ=tP (Xi) with respect to P;, 

M;, and I; under a constraint :r,1-=1 P; = I. Taking the logarithm of TTJ=1p (Xj), 

the criterion to be maximized is 

N L 
J = l:In p(Xi) - µ(l:P; - I), (11.46) 

j=l i=I 

where µ is a Lagrange multiplier. 
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First, computing the derivative of .I with respect to Pi, 

c)J N p/X 1) I N 
- - ~ -- µ - - ~q (X ) - µ - 0 JP - ~ (X) - - p . ~ ; i - , 

1 ,=1P J ' J= I 

(11.47) 

where q;(X) = P;p;(X) lp(X) is the a posteriori probability of W;, and satisfies 

:r.f-=1q,(X) = I. Since :r.f-=1P/d.l ldP;) =L f=1(L;= 1q;(Xi)) - (L;=1P;)µ 
= N -µ = 0, 

µ=N, (11.48) 

and from ( 11.47) 

( I 1.49) 

Next, the derivative of .I with respect to M; can be computed as 

o.l N P; dp;(X;) N - I 

JM = L J(X) JM = Lq;(XJ)L; (X;-M;) = 0. 
t j= l f ./ I J=i 

( I 1.50) 

Using r7=1 (f; (X ; ) =NP; = N; where N; is the number of W;-samples. ( 11.50) 

can be solved for M;, resulting in 

( 11.51) 

At last, the derivative of .I with respect to L; is. from (A.9) and (A.23), 

-,] N p . dp (X) 
_u_ = L--'- , 1 

dL; i=l p (Xj ) dL; 

N 

= LCf;(Xj)[I;- 1 (Xj-M; )(X;-M;}°FI;-1-r;- 1 

;~ 1 

- _!_diag[:f,-:-1(X -M)(X -M)r:r, -:-1-I -:-1 
]] = 0 2 I / I / I / / ' 

( I 1.52) 

where diag[A] is a diagonal matrix , keeping only the diagonal terms of /\ . 

Equation ( 11.52) can be solved for I, yielding 

( 11.53) 
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By solving (11.49), ( 11.5 I), and (I 1.53 ), we can obtain the optimum 

solution. However, since q;(X) is a function of Pt, Mt, and rk (k = I, . .. ,L), 

it is very difficult to obtain the solution explicitly . Therefore, we must solve 

these equations iteratively. The process can be described as follows. 

(I) Choose an initial classification, Q(O), and calculate P;, M;, and 

r; (i = I, ... ,L). 

(2) Having calculated pfl, Mf>, and q\il(X 1), compute Pj '+IJ, Mji+IJ, and 

rF+IJ by (11.49), (I 1.51 ), and (11.53), respectively. The new qjl+I >(x1) can be 

calculated as 

pj•+llpf :+l\X1) 

L 

Lpy+l>pf+l)(X 1) 
k=l 

(11.54) 

where the superscript indicates the (t+ I )st iteration , and pj '+1\X) is a normal 

density function with mean M\ 1+IJ and covariance matrix rj '+IJ. Note that each 

sample x1 carries L probability values q 1 (X1), .. . ,qi.(X 1) instead of being 

assigned to one of the L classes. 

(3) When q\1+ 1l(X) = qj1\X 1) for all i = I, . . . ,Land j = I, ... ,N, then 

stop. Otherwise, increase t by I and go to Step (2) . 

In the maximum likelihood estimation technique, the criterion (the first 

term of ( 11.46)) may be used to determine the number of clusters . The max­

imized criterion value, JL, is obtained for a given L, and the procedure is 

repeated for various values of L. The criterion JL tends to increase with 

increasing L, and reach a flat plateau at L 0 . This means that, even if we use 

more normal distributions than L 0 , the mixture distribution cannot be better 

approximated. Therefore, L 0 is the proper number of clusters to use in approx­

imating the mixture distribution. 

In order to verify the procedure, the following two experiments were run. 

Experiment 2: One hundred samples per class were generated from 

two-dimensional normal distributions specified by 

rol [ I -0.7] r , 0.7] 
MI = M 2 = lo J . r I = -0. 7 I • and r2 = lo. 7 I . (11.55) 

The sample means and covariance matrices of the generated samples were 
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A [--0•061 
Mi= 0.21 j' 

A - [0.91 --0.65] 
Li - -0.65 1.17 ' 

A fo.111 
M2 = l0.19J. 

A _ I I .03 0.62] 
L2 - l0.62 0.81 · (11.56) 

These two hundred samples were mixed, and initially assigned to either 001 or 

roi depending on x 2 ~O or x 2 < 0 (x 2 is the second variable). After 10 itera­

tions, the parameters became 

p I = 0.6 ( , p 2 = 0.39 , 

A ,o.071 
M1 = l0.36J ' 

A - [0.87 --0.47] 
2.i - --0.47 1.04 ' 

, _ f--0.04] 
M2 - l--0.06 

A - 11.12 0.66 l 
2-i - lo.66 o.78J · (11.57) 

Note that the two distributions share the same mean and are heavily over­

lapped . This means that finding clusters must be very difficult. Despite the 

expected difficulty, the procedure found two reasonable clusters successfully. 

Without imposing the mathematical structure of ( 11 .45), no other clustering 

technique works properly for this example. 

Experiment 3: One hundred samples per class were generated from 8-

dimensional normal distributions of Data /-A, and initially assigned to either 

(1) 1 or 002 depending on x 8 ~O or x 8 > 0 (x 8 is the eighth variable). After 20 

iterations. samples were classified to either 001 or 002, depending on whether 

q 1 (X) > q 2 (X) or q 1 (X) < q 2 (X ). Table I 1-2 shows the resulting confusion 

matrix. This error of 2.5% is very close to the Bayes error of 1.9%, and is 

much better than the 9.5% error of the nearest mean reclassification algorithm 

[see Table 11-1]. 

In order to confirm that the mixture distribution was properly decom­

posed into two normal distributions, a quadratic classifier was designed based 

on P;, M;. and I:; obtained from the two clusters. Independently, 100 samples 

per class were generated according to Data /-A, and classified by the quadratic 

classifier. The resulting error was 2.5%. Considering the fact that the holdout 

method (design and test samples are selected independently) always produces 

an error larger than the Bayes error. the designed classifier was very closed to 

the Bayes. 
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TABLE 11-2 

CONFUSION MATRIX FOR THE MAXIMUM 

LIKELIHOOD ESTIMATION ALGORITHM 

Assigned class 

2 

Actual I 98 2 

class 2 3 97 

In order to determine the proper number of clusters , the experiment was 

repeated for various values of L. For a given L, P; and p;(X) (i = I , ... L) of 

( 11 .45) were estimated, and subsequently the first term of ( 11.46), 

J = rJ=1 lnp (Xj), was computed. Figure 11-8 shows JIN vs. L. The curves 

are flat for L 2!:2 and N = 400, 800, indicating that two normal distributions are 

adequate to represent this data. The number of samples assigned to each clus­

ter is NIL on the average. Therefore, when NIL become s smaller (for example 

NIL = 50 for N = 200 and L = 4), each cluster may not have an adequate sam­

ple size to estimate the covariance matrix properly. This is the reason that the 

curve decreases as L increases for N = 200 in Fig. I 1-8. 

So far, we have presented the recursive equations to estimate a priori 

probabilities, mean vectors, and covariance matrices. However, in some appli­

cations, we can assume some of the parameter values or the relationship among 

the parameters as follows: 

(I) all covariance matrices are equal [see Problem 2], 

(2) all mean vectors are equal, or 

(3) a priori probabilities are known [see Problem 3). 

With the above conditions, the maximum likelihood estimation technique can 
be applied to estimate the remaining parameters . Because of the additional 

information, we can obtain a better estimate with faster convergence. 
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Fig. 11-8 Criterion value vs. L for Data /-J\.. 

11.2 Nonparametric Clustering 

533 

When a mixture density function has peaks and valleys as shown in Fig. 

11-9, it is most natural to divide the samples into clusters according to the 

valley. However. the valley may not have a parametric structure such as 

hyperplanes. quadratic surfaces, and so on. As discussed in the previous sec­

tion , the parametric structure of the boundary comes from either the use of a 

parametric criterion or from the underlying assumption that the distribution 

consists of several nonnal distributions. For the distribution of Fig. 11-9, we 

cannot expect to get reasonable clusters by a parametric boundary. 

In order to find the valley of a density function in a high-dimensional 

space, we need a nonparametric technique to characterize rhe local structure of 

the valley. There are many nonparametric clustering procedures available. 

However, most of them are implicitly or explicitly based on the esrimate of the 

density gradient. In Fig. 11-9. if we estimate the gradient of the density func-
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(1)2 

Fig. 11-9 Clusters separated by the valley. 

lion at each existing sample point (as indicated by arrows) and move the sam­

ple toward the direction of the gradient, samples move away from the valley 

area. Repeating this process, the valley becomes wider at each iteration, and 

samples fonn compact clusters. This procedure is called the valley-seeking 

procedure. 

Thus, the valley-seeking procedure consists of two problems: one is how 

to estimate the gradient of a density function, and the other is how to utilize 

the estimate to fonn clusters . 

Estimation of Density Gradient 

In this section, we develop the estimation technique of the density gra­
dient, and discuss how to apply this technique to pattern recognition problems. 

Estimation of density gradient [11): In order to estimate the gradient of 

a density function at X, let us select an ellipsoidal local region r(X) with radius 
r, specified by 

r(X) = IY: d(Y,X) ~ r), (I 1.58) 

where 

Case 1:14-cv-02396-PGG-MHD   Document 148-15   Filed 05/30/19   Page 34 of 44



11 Clustering 535 

d 2(Y,X) = (Y-X{A- 1 (Y-X) (11.59) 

and A is the metric to measure the distance. The expected vector of Y in f(X), 

which is called the local mean, can be computed as 

where 

M(X)=El(Y-X)lf(X)}=f (Y-X)p(Y) dY, 
+cxi u 0 

u 0 =f p(Y)dY=p(X)v 
+<Xl 

(11.60) 

( I 1.61) 

and r is the volume of f(X). The term u 0 is the coverage of f(X), and 

p(Y)!u 0 of (11.60) gives the conditional density function of Y given f(X). 

Expanding p (Y) around X by a Taylor series 

p(Y) =p(X) + (Y-XfVp(X). (11.62) 

Substituting ( 11.6 I) and (11.62) into ( 11.60), 

M(X)=f (Y-X)(Y-X{_!_dY Vp(X) =~A Vp(X) 
+cxi v p(X) n+2 p(X) 

(11.63) 

or 

Vp(X) =n+2A_ 1M(X), 
p (X) r 2 

(11.64) 

where the integration of ( 11.63) is obtained from (8.6). Equation ( 11.64) indi­

cates that, by measuring the local mean M (X) in f(X), V p (X)!p (X) can be 

estimated. Particularly, the formula becomes simpler if the Euclidean metric 

A = I is used. 

The normalization of Vp (X) by p (X) has an advantage, particularly in 

clustering. In clustering, it is desirable that samples around the valley area 

have stronger signal as to which direction the gradients point. Since p (X) is 

low at the valley, Vp(X) is amplified by being divided by p(X). On the other 

hand, at the peak area, p (X) is high and V p (X) is depressed by being divided 

by p (X). 

Figure 11-10 illustrates how the local mean is related to the gradient of a 

density function. In f(X), we tend to have more samples from the higher den­

sity side than from the lower density side. As a result, the sample mean of 

local samples generally points in the direction of the higher density side. 
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Fig. 11-10 Local mean as the gradient estimate. 

The estimate of the density gradient can be applied to many patlem 

recognition problems besides clustering. They are briefly discussed as follows . 

Gradient of q;(X): The Bayes classifier is the hypersurface on which X 

satisfies q 1 (X) = q 2(X) = 0.5 for two-class problems. The vector perpendicular 

to this hypersurface at X is the gradient of q 1 (X), \7q 1 (X), which indicates the 

local linear classifier, classifying local samples Y around X as 

w, 

Vqf (X)(Y-X) ~O . ( 11.65) 
w, 

q1(X)=0.5 -.-~ ...... 

• -W1 

r(X) 

Fig. 11-11 The gradient of q 1 (X). 

Figure 11-11 shows an example. Note that \7q 2(X)=-Vq 1(X), since 

q 1(X) + q2(X) = I. 
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The gradient V q 1 (X) can be estimated from the local means as 

(11.66) 

where the Euclidean metric A = I is used. Since q 1 (X)q 2 (X) is a scalar, the 

direction of the vector Vq 1(X) is determined by M 1(X)-M 2 (X), as shown in 

Fig. 11-11. 

Normality test I 12]: When p (X) is normal with zero mean and covari­

ance matrix /, Vp(X)/p(X) can be obtained by differentiating lnp(X) with 

respect to X [see (B.11)], resulting in 

Vp(X) =-X _ 
p(X) 

(11.67) 

Equation ( 11.67) suggests that, by adding the estimate of Vp (X)lp (X) to X, the 

resulting vector should point toward the coordinate origin if X is normally dis­

tributed. This property can be used to test the normality of a given set of sam­

ples. The procedure is described as follows. 

(I) Whiten the samples. After the whitening process, the samples have 

zero mean and covariance matrix /. 

(2) Estimate Vp(X)/p(X) by the local mean M(X) of (11.60), and add it 

to X. Use A = I. 
(3) The data passes the normality test by satisfying 

I NII 11+2 112 -l:, X, + -?-M(X,) <I. 
N i=I ,.-

( 11.68) 

where t is a threshold. Various properties of this test as well as the selection 

procedures of related parameters, including I, can be found in [ 12]. 

Data filter [ll]: A data filter eliminates noise from a given set of sam­

ples and produces the skeleton hyperswface. The filter could be an effective 

tool for determining the intrinsic dimensionality of samples. Figure 11-12 
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Fig. 11-12 Noisy data set. 
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shows a distribution of samples which, judged subjectively, is intrinsically one­

or two-dimensional. Let us assume that the distribution is one-dimensional, 

and that unwanted noise is responsible for the two-dimensional scatter. As dis­

cussed in Chapter 6, the intrinsic dimensionality is determined by observing 

the local dimensionalities. Selecting a local region, as shown in Fig. I 1-12, the 

dimensionality in the local region is two, because the two-dimensional scatter 

of noise has the same order of magnitude as the size of the local region. In 

order to eliminate the noise, we can measure the density gradient at each sam­

ple point Xj, and move Xj toward the direction of the gradient. The amount of 

the move could be controlled by another parameter, which is multiplied to the 

local mean vector M (X). Repeating this process , samples are merged to a 

curve having little two-dimensional scatter. This curve is the skeleton of the 

distribution. After obtaining the skeleton, the local dimensionality is measured, 

which is one in the example of Fig. I 1-12. 

Clustering Algorithms 

After estimating the gradient of a density function, we now need an algo­

rithm to find clusters. As discussed in data filter, one way of finding clusters is 

to move samples toward the direction of the gradient by pM (X) where p is a 

control parameter. The procedure must be repeated until all samples in each 

cluster converge to one vector. This is conceptually simple, but computation­

ally cumbersome. So, if pos sible , we would like to change only class 
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assignment without altering sample vectors. Also , it is preferable to avoid 

iterative operations. There are many ways to accomplish this. However, in 

this section we present only two: one is a non-iterative process. and the other is 

an iterative one. 

Graph theoretic approach (13]: One way to avoid an iterative opera­

tion is to fonn trees as shown in Fig . 11-13 . In this figure a node representing 

Valley 

\~ ! ,!/ 
Y/) .=)I~/ 
;;J~' '"1 x__. 

aom- / \ b ! /71\::" 
Fig. 11-13 Graph theoretic clustering . 

X 10 initiates a branch (or an arrow) pointing another node X 51 • which is called 

the predecessor of X 10• Then, X 51 initiates another branch to point to X )2, and 

so on. Thus, each sample becomes an initial node and leads into a final node 

through a series of branches, each branch pointing from one node to its prede­

cessor. A series of branches is called a directed path. We will implement an 

algorithm such that there is no directed path from a node to itself (i.e. no 

cycle). At the top of a tree. the final node (such as X 32) does not have a prede­

cessor and is called the root of a tree. Note that each node except the final 

node has one and only one predecessor, but each could be the predecessor of a 

number of nodes. including zero. This type of tree is called a directed tree . 

Since the concept of this tree-fonnation comes from graph theory. we call this 

the graph theoretic approach. 

In order to fonn directed trees for the clustering problem, we need an 
algorithm to select the predecessor of each sample. If we could select, as the 

predecessor of X, a sample along the steepest ascent path stat1ing from X. sam­

ples will be divided by the valley of the density function. and a tree is fonned 
for each cluster as shown in Fig. 11-13. The quality of the result depends 

wholly on the quality of the estimation technique for the density gradient. par­

ticularly in the low density area of the valley. 
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The density gradient at X can be estimated by the local mean M (X) as in 

(11.64). Asymptotically, the sample at the local mean can be the predecessor 

of X. However, in practice, with a finite number of samples, none of the exist­

ing local samples in f(X) is located exactly at the local mean. Therefore, we 

need a procedure to pick up an existing local sample which is closest to the 

local mean. 

When two samples are located close together, the steepness of the slope 

from Xi to X I can be measured by 

( 11.69) 

Then, the predecessor Xk is the one which has the steepest slope from X1 
among samples in f(Xi), satisfying 

(11.70) 

Equation (11.69) has another interpretation. Expanding p (X,) around Xi 

by a Taylor series 

p(XJ S.p(Xi) + VpT(Xi)(X ,-Xi) 

X --X · 
= p (X1) + llx(-x)IVT P (Xi) 

11 
' '

11 X .;-Xi 
(11.71) 

Thus 

(11.72) 

where 0u is the angle between the two vectors, Vp (Xi) and (X ,-Xi). Since 

IIVp(X 1)11 is independent ore, (11.70) and (11.72) suggest that Xk is the sample 

which gives the smallest angle between Vp(X 1) and (Xk - X1) among all local 

samples in f(Xi). That is, Xk is the closest sample to the steepest ascent line 

from Xi. Thus, the predecessor of X1 can be determined by measuring the 

angle between the local mean and (X.; - X1). 

In addition, when nodes approach the root of the tree and ski of (11.70) 

becomes either zero or negative, we need rules to identify the root as follows. 

(I) skJ < 0 : X1 is a root. 
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(2) skJ = 0: Consider the set 7t(X1) = (Xk IXk E f(Xj),skJ = Ol. Elim­

inate from 7t(X1) any Xb from which there exists a directed path to X1. If the 

resulting 1t(X1) is empty, X1 is a root. Otherwise, the predecessor of X1 is X 1 

which satisfies 

llxr - xj II = min llxk - xj II . 
X,En(X

1
) 

(11.73) 

The similar result may be obtained without computing local means. The 

density values of ( 11.69) can be estimated by using any nonparametric tech­

nique such as the Parzen or kNN approach as discussed in Chapter 6. For 

example, if the Parzen approach with a uniform kernel function is used, 
A A A 

p(X 1) = t(X 1)/Nv, where t(X 1) is the number of samples in f(Xj), N is the total 

number of samples, and v is the volume of f(XJ), Since "!, and v are indepen­

dent of). _we may ignor: them and replace p(X 1) by t(Xj). _For the kNN 

approach, p(X 1) = (k-l)!Nv(X 1), where k is a preset numbe~ and v(X 1) must be 

m:asured. Since k and N are inde~endent of j in this case, p(X 1) is replaced by 

lll'(X1) in (11.69). Thus, using p(-) in the place of p (·) in ( 11.69), (11.70) 

determines the predecessor of each sample. 

The graph theoretic approach has a number of advantages. It is a non­

iterative process, and does not require an initial class assignment. Also, the 

number of clusters needs not be preassigned. After the predecessor of each 

sample is found, a computer keeps track of the connections of samples to iden­

tify the number of isolated trees automatically. 

In the graph theoretic approach, a crucial parameter is the size of the 

local region f(X). A density function is not a smooth function with a few 

peaks, but a noisy function with many local peaks and valleys. With a small 

f(X), the algorithm tends to pick up many clusters separated by the local val­

leys due to noise. On the other hand, if f(X) is too large, all peaks and valleys 

are smoothed out and the algorithm produces only one cluster. In order to find 

a proper size for f(X), it is suggested to run the algorithm for various sizes of 

r(X), and observe the resulting number of clusters. Normally, as the size of 

f(X) is changed from a small value to a large one, the number of clusters starts 

from a large value. drops down and stays at a certain level for a while. and 

then starts to drop again. The plateau at the middle is a reasonable and stable 

operating range, from which we can determine the size of f(X) and the number 

of clusters. 
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Iterative valley-seeking: A nonparametric version of the nearest mean 

reclassification algorithm can be developed by defining a nonparametric 

within-class scatter matrix as 

L N, 

i ,.. = I,P; ~ - I,<xY>-m<xy>))<xY>-m<x;i))l . 
i=I I j=I 

(11.74) 

where rr!i(Xy>) is the sample mean of kNN's to xy> from CO; as 

rni<xY>) = l ixwN . 
k r:=I 

( 11.75) 

We will call rrli(X1/l) the local CO;-mean of xy>. This is the kNN version of the 

local mean. On the other hand, the local ro;-mean for the Parzen approach is 

the sample mean of CO;-samples in the local region r(Xj) with a fixed radius. 

Comparing (11.74) with (10.99) and (IO.JOO), we note that the weighting 

coefficients of (10.99) and (IO.JOO) are not included in (11.74). Since w, 
requires knowledge of the true class assignment of the samples, their use is 

deemed inappropriate for clustering. 

The criterion for class separability is set as J = tr(S;;,11),..) just as 

J = tr(S;,' S,..) is used for the parametric counterpart. When k approaches N;, 

the local CO;-mean becomes the global CO;-mean M;, and consequently (11.74) 

becomes the parametric within-class scatter matrix S,. .. Thus, the nearest mean 

reclassification algorithm is a special case of the optimization of J = tr(S;;,1 .b,..). 

On the other hand, when k < < N;, we can develop the nonparametric 

reclassification algorithm by repeating the derivation of ( I 1.13) with rr!i(Xj) 

this time instead of M; then, resulting in 

llxi - m,(Xi)II = min llxi - rtl,(Xj)II • xi E ro, . 
; 

(11.76) 

Note that (11.76) is applied only after the data is whitened with respect to Sm. 
This procedure may be called the nearest local-mean reclassification algo­
rithm. In this algorithm, the local ro;-means must be updated each time the 
class assignment is changed. 

Another possible definition of the nonparametric within-class scatter 
matrix is 

L N 
- I ' (i) (i) (i) T .b,.. - ~P;-~(Xj - xkNN)(Xj - xkNN) , 

i=I N; j=I 

(11.77) 

where XYJIN is the kth NN of xy> from CO;. This time, we use the kth NN itself 
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instead of the sample mean of the kNN's. Then, by a derivation similar to 

before, xyl is reclassified to co, by 

(11.78) 

after whitening the data with respect to Sm. 

Under the current class assignment, the density function of co, at X1 can 

be estimated by using the kNN approach as 

(11.79) 

where c is a constant relating the radius to the volume. Selecting the smallest 

llx1-Xi').w II means selecting the largest P ;/J 1(X).~ ~erefore, the reclassification 

algorithm of (11.78) suggests that we evaluate Pp/X) by (11.79) at each X1, 
and classify X1 to the class which has the largest Pp :(XJ>. 

When the Parzen approach with a uniform kernel function is used, 

P,p,(X;) is estimated by 

j, p (X ) _ !!_.:_ k,:(X1) _ k1(X) 
' ,: i - N N,,v - Nv ' (11.80) 

where r is a fixed volume of the local region around X
1

, and k;(X
1

) is the 

number of co,,-samples in the local region. Then, ( 11.78) is converted to 

(11.8 I) 

The formulas of (11.78) and (11.81) have a computational advantage 

over the formula of (11.76). When (11.76) is used, we need to recompute the 

local means at each iteration. This is not required for (11.78) and (11.81). 

When ( 11.81) is used, we set the local region around each sample with a 

fixed volume v. and tabulate samples in the local regions with their current 

class assignments, as shown in Fig. 11-14. Then, finding the class with the 

highest population, each sample is reclassified to that class. For example, in 

Fig. 11-14, X I is reclassified to eoi because the local region of X I contains one 

co1 -sample and two eoi-samples. After all samples are reclassified, the class 

labels of samples in the table are revised, and the same operation is repeated. 

In this iteration, only class labels are processed and no mean vector computa­

tion is involved. The same is true for ( 11.78). In the operation of ( 11.78), 
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Fig. 11-14 Iterative class assignment. 

after tabulating neighbors of each sample, the sample is classified to ro, when 

the kth NN from ro, appears first in the sequence of INN, 2NN, . . . . For 

example, in Fig. 11-14 with k = 2, X I has a sequence of neighbors as 

COz,COz,ro1, ••• , and the second NN from COz appears first in the sequence. 

Accordingly, X I is reclassified to ro2 • Again, no mean computation is involved 

in each iteration. 

Because of the above computational advantage, let us use ( 11.81) as the 

updating scheme of class assignment, and study the properties of the valley­

seeking algorithm. The algorithm can be stated as follows [ 14-15]. 

(I) Whiten the data with respect to Sm. 

(2) Assign the number of clusters, L. Choose an initial classification, 

Q(O). 

(3) Set a local spherical region around each sample, f(Xj), with a fixed 

radius, and list samples in f(Xj) with the current class assignment, as in Fig. 

11-14. 

(4) Reclassify Xj according to the majority of classes among all neigh­

boring samples in f(X j ). 

(5) If any change in class assignment occurs, revise the class labels of 

all neighbors in the table and go to Step (4). Otherwise stop. 

In order to understand how this procedure works, let us study the one­

dimensional example of Fig. 11-15. Suppose that, at the eth iteration, samples 

are divided into 7 clusters as shown. A sample X I is not reclassified from COz 
because all neighboring samples of X I in f(X 1) belong to COz currently. On 

the other hand, X 2 on the boundary between co5 and ro6 is most likely 

reclassified to ro6 , because the number of neighbors from ro6 tends to be larger 

than the number of co5-neighbors. This is due to the fact that the density func­

tion on the co6 -side is higher than the one on the ro5 -side. Reclassifying X 2 
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