EXHIBIT 4
 PART

(b) Show that the transfer of a sample $\hat{\mathbf{x}}$ from \mathscr{X}_{i} to \mathscr{X}_{j} causes J_{T} to change to

$$
J_{T}^{*}=J_{T}-\left[\frac{n_{j}}{n_{j}+1}\left(\hat{\mathbf{x}}-\mathbf{m}_{j}\right)^{t} S_{T}^{-1}\left(\hat{\mathbf{x}}-\mathbf{m}_{j}\right)-\frac{n_{i}}{n_{i}-1}\left(\hat{\mathbf{x}}-\mathbf{m}_{i}\right)^{t} S_{\bar{T}}{ }^{1}\left(\hat{\mathbf{x}}-\mathbf{m}_{i}\right)\right] .
$$

(c) Suggest an iterative procedure for minimizing J_{T}.
17. Use the facts that $S_{T}=S_{W}+S_{B}, J_{e}=\operatorname{tr} S_{W}$, and $\operatorname{tr} S_{B}=\sum n_{i}\left\|\mathrm{~m}_{i}-\mathrm{m}\right\|^{2}$ to derive the equations given in Section 6.9 for the change in J_{e} resulting from transferring a sample $\hat{\mathbf{x}}$ from cluster \mathscr{X}_{i} to cluster \mathscr{X}_{j}.
18. Let cluster \mathscr{X}_{i} contain n_{i} samples, and let $d_{i j}$ be some measure of the distance between two clusters \mathscr{X}_{i} and \mathscr{X}_{j}. In general, one might expect that if \mathscr{X}_{i} and \mathscr{X}_{j} are merged to form a new cluster \mathscr{X}_{k}, then the distance from \mathscr{X}_{k} to some other cluster \mathscr{X}_{h} is not simply related to $d_{h i}$ and $d_{h j}$. However, consider the equation

$$
d_{h k}=\alpha d_{h i}+\alpha_{j} d_{h j}+\beta d_{i j}+\gamma\left|d_{h i}-d_{h j}\right|
$$

Show that the following choices for the coefficients $\alpha_{i}, \alpha_{j}, \beta$, and γ lead to the distance functions indicated. (For other cases, see Lance and Williams, 1967.)
(a) $d_{\text {min }}: \alpha_{i}=\alpha_{j}=0.5, \beta=0, \gamma=-0.5$.
(b) $d_{\max }: \alpha_{i}=\alpha_{j}=0.5, \beta=0, \gamma=0.5$.
(c) $d_{\mathrm{avg}}: \alpha_{i}=\frac{n_{i}}{n_{i}+n_{j}}, \alpha_{j}=\frac{n_{j}}{n_{i}+n_{j}}, \beta=\gamma=0$.
(d) $d_{\text {mean }}^{2}: \alpha_{i}=\frac{n_{i}}{n_{i}+n_{j}}, \alpha_{j}=\frac{n_{j}}{n_{i}+n_{j}}, \beta=-\alpha_{i} \alpha_{j}, \gamma=0$.
19. Consider a hierarchical clustering procedure in which clusters are merged so as to produce the smallest increase in the sum-of-squared error at each step. If the i th cluster contains n_{i} samples with sample mean m_{i}, show that the smallest increase results from merging the pair of clusters for which

$$
\frac{n_{i} n_{j}}{n_{i}+n_{j}}\left\|\mathbf{m}_{i}-\mathbf{m}_{j}\right\|^{2}
$$

is minimum.
20. Consider the representation of the points $x_{1}=(10)^{t}, x_{2}=(00)^{t}$ and $x_{3}=$ $(01)^{t}$ by a one-dimensional configuration. To obtain a unique solution, assume that the image points satisfy $0=y_{1}<y_{2}<y_{3}$.
(a) Show that the criterion function $J_{e e}$ is minimized by the configuration with $y_{2}=(1+\sqrt{2}) / 3$ and $y_{3}=2 y_{2}$.
(b) Show that the criterion function $J_{f f}$ is minimized by the configuration with $y_{2}=(2+\sqrt{2}) / 4$ and $y_{3}=2 y_{2}$.

