EXHIBIT 4 PART

DOCKET

A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Case 1:14-cv-02396-PGG-MHD Document 148-14 Filed 05/30/19 Page 2 of 2

260 UNSUPERVISED LEARNING AND CLUSTERING

(b) Show that the transfer of a sample \hat{x} from \mathscr{X}_i to \mathscr{X}_j causes J_T to change to

$$J_T^* = J_T - \left[\frac{n_j}{n_j + 1} \, (\hat{\mathbf{x}} - \mathbf{m}_j)^t S_T^{-1} (\hat{\mathbf{x}} - \mathbf{m}_j) - \frac{n_i}{n_i - 1} \, (\hat{\mathbf{x}} - \mathbf{m}_i)^t S_T^{-1} (\hat{\mathbf{x}} - \mathbf{m}_i) \right].$$

(c) Suggest an iterative procedure for minimizing J_T .

17. Use the facts that $S_T = S_W + S_B$, $J_e = \text{tr } S_W$, and $\text{tr } S_B = \sum n_i \|\mathbf{m}_i - \mathbf{m}\|^2$ to derive the equations given in Section 6.9 for the change in J_e resulting from transferring a sample $\hat{\mathbf{x}}$ from cluster \mathcal{X}_i to cluster \mathcal{X}_i .

18. Let cluster \mathscr{X}_i contain n_i samples, and let d_{ij} be some measure of the distance between two clusters \mathscr{X}_i and \mathscr{X}_j . In general, one might expect that if \mathscr{X}_i and \mathscr{X}_j are merged to form a new cluster \mathscr{X}_k , then the distance from \mathscr{X}_k to some other cluster \mathscr{X}_h is not simply related to d_{hi} and d_{hj} . However, consider the equation

$$d_{hk} = \alpha d_{hi} + \alpha_j d_{hj} + \beta d_{ij} + \gamma |d_{hi} - d_{hj}|.$$

Show that the following choices for the coefficients α_i , α_j , β , and γ lead to the distance functions indicated. (For other cases, see Lance and Williams, 1967.)

(a) $d_{\min}:\alpha_i = \alpha_j = 0.5, \beta = 0, \gamma = -0.5.$

(b)
$$d_{\max}: \alpha_i = \alpha_j = 0.5, \beta = 0, \gamma = 0.5.$$

(c)
$$d_{\text{avg}}:\alpha_i = \frac{n_i}{n_i + n_j}, \alpha_j = \frac{n_j}{n_i + n_j}, \beta = \gamma = 0.$$

(d)
$$d_{\text{mean}}^2: \alpha_i = \frac{n_i}{n_i + n_j}, \alpha_j = \frac{n_j}{n_i + n_j}, \beta = -\alpha_i \alpha_j, \gamma = 0.$$

19. Consider a hierarchical clustering procedure in which clusters are merged so as to produce the smallest increase in the sum-of-squared error at each step. If the *i*th cluster contains n_i samples with sample mean \mathbf{m}_i , show that the smallest increase results from merging the pair of clusters for which

$$\frac{n_i n_j}{n_i + n_j} \|\mathbf{m}_i - \mathbf{m}_j\|^2$$

is minimum.

DOCK

20. Consider the representation of the points $\mathbf{x}_1 = (1 \ 0)^t$, $\mathbf{x}_2 = (0 \ 0)^t$ and $\mathbf{x}_3 = (0 \ 1)^t$ by a one-dimensional configuration. To obtain a unique solution, assume that the image points satisfy $0 = y_1 < y_2 < y_3$.

- (a) Show that the criterion function J_{ee} is minimized by the configuration with $y_2 = (1 + \sqrt{2})/3$ and $y_3 = 2y_2$.
- (b) Show that the criterion function J_{ff} is minimized by the configuration with $y_2 = (2 + \sqrt{2})/4$ and $y_3 = 2y_2$.

Find authenticated court documents without watermarks at docketalarm.com.