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THE PROBLEM OF VALIDITY 241 

unnatural assumption if we are exploring an essentially unknown set of data. 
Thus, a constantly recurring problem in cluster analysis is that of deciding 
just how many clusters are present. 

When clustering is done by extrernizing a criterion function, a common 
approach is to repeat the clustering procedure for c = I , c = 2, c = 3, etc., 
and to see how the criterion function changes with c. For example, it is clear 
that the sum-of-squared-error criterion J. must decrease monotonically with 
c, since the squared error can be reduced each time c is increased merely by 
transferring a single sample to the new cluster. If the n samples are really 
grouped into c compact, well separated clusters, one would expect to see J. 
decrease rapidly until c = c, decreasing much more slowly thereafter until it 
reaches zero at c = n. Similar arguments have been advanced for hierarchical 
clustering procedures, the usual assumption being that large disparities in 
the levels at which clusters merge indicate the presence of natural groupings. 

A more formal approach to this problem is to devise some measure of 
goodness of fit that expresses how well a given c-cluster description matches 
the data. The chi-square and Kolmogorov-Smirnov statistics are the tradi 
tional measures of goodness of fit, but the curse of dimensionality usually 
demands the use of simpler measures, such as a criterion function J(c). Since 
we expect a description in terms of c + I clusters to give a better fit than a 
description in terms of c clusters, we would like to know what constitutes a 
statistically significant improvement in J(c). 

A formal way to proceed is to advance the null hypothesis that there are 
exactly c clusters present, and to compute the sampling distribution for 
J(c + I) under this hypothesis. This distribution tells us what kind of appar
ent improvement to expect when a c-cluster description is actually correct. 
The decision procedure would be to accept the null hypothesis if the observed 
value of J(c + 1) falls within limits corresponding to an acceptable probability 
of false rejection. 

Unfortunately, it is usually very difficult to do anything more than crudely 
estimate the sampling distribution of J(c + 1). The resulting solutions are not 
above suspicion, and the statistical problem of testing cluster validity is still 
essentially unsolved. However, under the assumption that a suspicious test 
is better than none, we include the following approximate analysis for the 
simple sum-of-squared-error criterion. 

Suppose that we have a set fl" of n samples and we want to decide whether 
or not there is any justification for assuming that they form more than one 
cluster. Let us advance the null hypothesis that all n samples come from a 
normal population with mean µ. and covariance matrix a2/. If this hypothesis 
were true, any clusters found would have to have been formed by chance, 
and any observed decrease in the sum of squared erro r obtained by clustering 
would have no significance. 
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242 UNSUPERVISED LEARNING AND CLUSTERING 

The sum of squared error J,(J) is a random variable, since it depends on 
the particu lar set of samples: 

J,(l) = I llx - mll2, 
XE.!° 

where m is the mean of the n samples. Under the null hypothesis, the dis
tribution for J.(I) is approximately normal with mean nda2 and variance 
2nda4• 

Suppose now that we partition the set of samples into two subsets !1£1 and 
ffi so as to minimize J,(2), where 

mi being the mean of the samples in fl£;. Under the null hypothesis, this 
partitioning is spurious, but it nevertheless results in a value for J.(2) that is 
smaller than J.(I). If we knew the sampling distribution for J.(2), we could 
determine how small J,(2) would have to be before we were forced to abandon 
a one-cluster null hypothesis. Lacking an analytical solution for the optimal 
partitioning, we cannot derive an exact solution for the sampling distribution. 
However, we can obtain a rough estimate by considering the suboptimal 
partition provided by a hyperplane through the sample mean. For large n, 
it can be shown that the sum of squared error for this partition is approx
imately normal with mean n(d - 2/7T)<J2 and variance 2n(d - 8/7T2)a 4 • 

This result agrees with our statement that J,(2) is smaller than Je(l), since 
the mean of J.(2) for the suboptimal partition - n(d - 2/7T)<J2-is Jess than 
the mean for J.(I) - nda2• To be considered significant, the reduction in the 
sum of squared error must certainly be greater than this. We can obtain an 
approximate critical value for u.(2) by assuming that the suboptimal partition 
is nearly optimal, by using the normal approximation for the sampling 
distribution, and by estimating a2 by 

62 =_!_ I llx - mll2 =1._J/l). 
nd xE.!° nd 

The final result can be stated as follows: Reject the null hypothesis at the 
p-percent significance level if 

J,(2) < 1 - 2 - IXJ2(1 - 8f,rr2d)' (44) 
J .(1) 7Td nd 

where IX is determined by 

p = 100J
00 1 

e- 112
"

1 
du. 

« J27T 
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MULTIDIMENSIONAL SCALING 243 

Thus , this provides us with a test for deciding whether or not the splitting of 
a cluster is justified. Clearly, the c-cluster problem can be trea ted by applying 
the same test to all clusters found. 

6.13 LOW-DIMENSIONAL REPRESENTATIONS 
AND MULTIDIMENSIONAL SCALING 

part of the problem of deciding whether or not a given clustering means 
anything stems from our inabili ty to visualize the structure of multidimen
sional data . This problem is further aggravated when similarity or dissimi
larity measures are used that lack the familiar properties of distance. One 
way to attack this problem is to try to represent the data points as points in 
some lower-dimensional space in such a way that the distances between poin ts 
in the lower-dimensional space correspond to the dissimilarities between 
points in the original space. If acceptably accurate representations can be 
found in two or perhaps three dimensions , this can be an extremely valuahle 
way to gain insight into the structure of the data. The general process of 
finding a configuration of points whose interpoint distances correspond to 
dissimilarities is often called multidimensional scaling. 

Let us begin with the simpler case where it is meaningful to talk about the 
distances between then samples x1, . .. , Xn. Let Yi be the lower-dimensional 
image of x1, O;; be the distance between xi and xJ, and d,1 be the distance 
between Yi and Y;• Then we are looking for a configuration of image points 
y1, . . . , y,. for which the n(n - 1)/2 distances d11 between image points are 
as close as possible to the corresponding original distances tiil . Since it will 
usually not be possible to find a configuration for which d,1 = oi, for all i 
and j , we need some criterion for deciding whether or not one configuration 
is better than another. The following sum -of-squared-error functions are all 
reasonable candidates: 

J •• = "'\2 .I ( d;; - Oi;)2 
,kU i; i<1 

i <J 

t<; 

(45) 

(46) 

(47) 

Since these criterion functions involve only the distances between points, 
they are invariant to rigid-body motions of the configurations. Moreover, 
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244 UNSUPERVISED LEARNING AND CLUSTERING 

they have all been normalized so that their minimum values are invariant to 
dilations of the sample points. l, . emphasizes the largest errors, regardless 
whether the distances o,; are large or small. 111 emphasizes the largest frac
tional errors, regardless whether the errors Id;; - O;;I are large or small. 1,1 
is a useful compromise, emphasizing the largest product of error and 
fractional error. 

Once a criterion function has been selected, an optimal configuration 
Yi, . .. , y,. is defined as one that minimizes that criterion function. An 
optimal configuration can be sought by a standard gradient-descent pro
cedure , starting with some initial configuration and changing the y/s in the 
direction of greatest rate of decrease in the criterion function. Since 

di;= IIYi - Y,11, 

the gradient of d; ; with respect to Yi is merely a unit vector in the direction of 
Y; - y1• Thus , the gradients of the criterion functions are easy to compute:* 

The starting configuration can be chosen randomly, or in any convenient 
way that spreads the image points about. If the image points lie in a d
dimensional space, then a simple and effective starting configuration can be 
found by selecting those d coordinates of the samples that have the largest 
variance. 

The following example illustrates the kind of results than can be obtained 
by these techniques.t The data consist of thirty points spaced at unit intervals 
along a three-dimensional helix: 

X1(k) = cos X3 

x 2(k) = sin x3 

x3(k) = k/✓2, k=O,l, ... ,29. 

* Second partial derivatives can also be computed easily, so that Newton's algorithm can 
be used. Note that ify , = y 1, the unit vector from y, toy; is undefined. Should that situa
tion arise, (y, - Y;)/d11 can be replaced by an arbitrary unit vector. 
t This example was taken from J. W. Sammon, Jr., "A nonlinear mapping for data structure 
analysis," IEEE Trans. Comp., C-18, 401-409 {May 1969). 
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