

To my pmrents mod to wnice, whiney, mad keeke.

Cover and title page photo:
Camera graphics produced on an MC 1600 computerized optical printer. William Smyth/Slide Graphics of New England.

Acquisitions Editor: Mary Le Quesne
Production Editor: Peggy 3. Flanagan
Designer: Robert Rose
Design Coordinator: Victor A. Curran
Production Coordinator: Mike O'Dea
Photo Researcher: Fay Torresyap
Text Permissions Editor: Margaret ich

Copyright © 1986 by D. C. Heath and Company.

[^0]

Accuracy the agreement of a particular value with the true value. (1.3)
Acid a substance that produces hydrogen ions in solution; a proton donor. (4.2)
Acid-base indicator a substance that marks the end point of an acid-base titration by changing color. (15.4)
Acid raln a result of air pollution by sulfur dioxide. (5.9)
Acid dissociation constant (K_{2}) the equilibrium constant for a reaction in which a proton is removed from an acid by $\mathrm{H}_{2} \mathrm{O}$ to form the conjugate base and $\mathrm{H}_{3} \mathrm{O}^{+}$, (14.1)
Acidic oxide a covalent oxide that dissolves in water to give an acidic solution. (14.10)
Actinide serses a group of fourteen elements following actinium in the periodic table, in which the $5 f$ orbitals are being filled. (7.11; 18.1)
Activated complex (transition state) the arrangement of atoms found at the top of the potential energy barrier as a reaction proceeds from reactants to products. (12.5)
Activation energy the threshold energy that must be overcome to produce a chemical reaction. (12.5)
Addition polymerization a type of polymerization in which the monomers simply add together to form the polymer, with no other products. (22.5)
Addition reactiom a reaction in which atoms add to a carboncarbon multiple bond. (22.2)
Adsorption the collection of one substance on the surface of another. (12.6)
Air pollution contamination of the atmosphere, mainly by the gaseous products of transportation and production of electricity. (5.9)
Alcohol an organic compound in which the hydroxyl group is a substituent on a hydrocarbon. (22.4)
Aldehyde an organic compound containing the carbonyl group bonded to at least one hydrogen atom. (22.4)
Alkali metal a Group 1A metal. $(2.7 ; 18.2)$
Alkaline earth metal a Group 2A metal. (2.7, 18.4)
Alkame a saturated hydrocarbon with the general formula $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$. (22.1)
Alkeme an unsaturated hydrocarbon containing a carbon-carbon double bond. The general formula is $\mathrm{C}_{n} \mathrm{H}_{2 n}$. (22.2)
Alkybe an unsaturated hydrocarbon containing a triple cat-bon-carbon bond. The general formula is $\mathrm{C}_{\mu} \mathrm{H}_{2 n-2}$. (22.2)
Alloy a substance that contains a mixture of elements and has metallic properties. (10.4)

Alloy steel a form of steel containing carbon plus other metals such as chromium, cobalt, manganese, and molybdenum. (24.4)
Alpha (α) particle a belium nucleus. (21.1)
Alpha particle production a cormon mode of decay for radioactive nuclides in which the mass number changes. (21.1)
Amine an organic base derived from ammonia in which one or more of the hydrogen atoms are replaced by organic groups. (14.6; 22.4)
α-Amino acid an organic acid in which an amino group and an R group are attached to the carbon atom next to the carboxyl group. (23.1)
Amorphous solid a solid with considerable disorder ix k structure. (10.3)
Ampere the unit of electrical current equal to swe crsmbsmab of charge per second. (17.7)
Axnphoteric substance a substance that can behave cobe at an acid or as a base. (14.2)
Aniong a negative ion. (2.6)
Anode the electrode in a galvanic cell at which oxidation accurs. (17.1)
Antibonding molecular orbital an orbital higher in energy than the atomic orbitals of which it is composed. (9.2)
Aromatic hydrocarbons one of a special class of cyclic unsaturated hydrocarbons, the simplest of which is benzene. (22.3)
Arrhenius concept a concept postulating that acids produce hydrogen ions in aqueous solution, while bases produce hydroxide ions. (14.1)
Arrhenius equations the equation representing the rate constant as $k=A e^{-E_{d} / K T}$ where A represents the product of the collision frequency and the steric factor, and $e^{-E_{\psi} / R T}$ is the fraction of collisions with sufficient energy to produce a reaction. (12.5)
Aqueous solution a solution in which water is the dissolving medium or solvent. (4.0)
Atactic chain a polymer chain in which the substituent groups such as CH_{3} are randomly distributed along the chain. (24.2)
Atmosphere the mixture of gases that surrounds the earth's surface. (5.9)
Atomic namber the number of protons in the nucleus of an atom. $(2.5 ; 21)$
particle is formed baving the same mass as an electron but opposite charge. The net effect is to change a proton to a neutron. (21.1)
Patential energy energy due to position or composition. (6.1)
Precigutabion reackion a maction in which an insoluble substance forms and soparates from the solution. (4.5)
frecissions the degree of agrecment among several measurements of the sme quantity; the reprobucibility of a measurement. (1.3)
Primary structure (of a proteriss) the order (sequence) of amino acids in the protein chain. (23.1)
Principal quantum number the quantum number relating to the size and energy of an orbital; it can have any positive integer value. (7.6)
Frobabibity distribution the square of the wave furction indicating the probability of froding an electron at a particular point in space. (7.5)
Frodiset a substance resubing from a chemical reaction. It is shown to the right of the arow in a chemical equation. (3.6)
Proteiss a natural kigh-molecular-weight polymer formed by condensation reactions between amino acids. (23.)
Frobse a positively charged particle in an atomic mocleus. $(2.5,21)$
Fure suxstamase a substance with constant composition. (1.8)
Pyrometallixusy recovery of a metal from its ore by tratment at high temperatures. (24.4)

Qualtative matysis the separation and identication of individual ions from a mixture. (4.6)
Quankitative axbaysis a process in which the amounts of the components of a muxture are determined. (4.7)
Quankaztion the fact that energy can occur only in discrete units called quanta. (7.2)

Rad a unit of radiation dosage corresponding to $10^{-2} 5$ of energy deposited per kilogram of tissue (from radiation absorbed dose). (21.7)
Radiowesive decay (raxionetivity) the spontaneous decormposition of a nucleus to form a different nucleus. (21.1)
 ancient wood or cloth based on the rate of radioactive decay of the nuctide ${ }^{14} \mathrm{C},(21.4)$
F wiotracer a radioactive nuclide, introduced into an organism for diagnostic purposes, whose pathway can be traced by montoring its radioactivity. (21.4)
kandome error an error that has an equal probability of being high or low. (1.3)
Kamule's faw the vapor messure of a solution is directly proportional to the mole fraction of solvent present. (11.4)
Kake comastane the proportionality constant in the relationship between reaction rate and reactant concentrations. (12.2)

Kate of decay the change iar the number of radioactive 3 maclides in a sample ger unit time. (21.2)
Kate-determining stey the slowest step in a reaction mechanism, the one determining the overall rate (12.4)
Gate lays an expression that shows how the rate of reaction depends on the concentration of reactants. (12.2)
keachaxb a staring substance in a chemical reaction. It appears to the left of the arow in a chemical equation. (3.6)
Reaction mechaxbism the sorics of clenentary steps involved in a chemical reaction. (12.4)
Keachors quobent a quoten obtained by applying the law of mass action to initial concentrations rather than to equilibrimen concentrations. (13.5)
keaction rate the change in concentration of a reactank or product per unit time. (12.1)
meartor core the part of a nuclear reactor where the fission reaction takes place. (21.6)
Keducing ageat (esectron wombr) a reactant that donates electrons to another substance to reduce the oxidation state of one of its atoms. (4.9; 17.1)
Keductiox a decrease in oxidation state (a gain of electrons). $(4.9,17.1)$
Kexa a unit of radiation dosage that accounts for both the energy of the dose and its effectiveness in causing biological damage (from roentgen equivalent for man). The number of rems $=($ number of rads $) \times$ RBE, where R RBE regresents the relative effectiveness of the radiation in causing biological damage. (21.7)
Resmabuce a condition occurring when more than one valid Lewis structure can be writen for a particular molecule. The actual electronic structure is not represented by any one of the Lewis stuctures but by the average of all of them. (8.12)
Reverse asmasis the process occuring when the extemal pressure on a solution causes a net flow of solvent through 2 semipermeable membrane from the solution to the solvert. (11.6)
Reversibic process a cyclic process carried out by a hypothetical pathway, which leaves the universe exactiy the same as it was before the process. No real process is reversible. (36.9)
Ribonucied acid (RNA) a nucleotide polymer that tranmits the genetic infomation stored in DNA to the ribosomes for protein synthesis. (23.3)
Korastixg a process of converting sufide minerals to oxides by heating in air at temperatures below their melting points. (24.4)
Ropt mean square velocity the square toot of the average of the squares of the individual velocities of gas particles. (5.6)

Salt an ionic compourd. (14.8)
Wald bridge a U-tube containing an electrolyte that comects the two compartments of a galvanic cell, allowing ion flow without extensive mixing of the different solutions. (17.1)

EXHIBIT 13

Chemistry

 The Central Science

 The Central Science}

Ninth Edition

Theodore L. Brown

University of minois at Urbama-Champaign

H. Eugene LeMay, Jr.

Unversity of Nevada, Reno

Bruce E. Bursten

The Onio State University

Julia R. Burdge

Forida Anamtic Univerchey

To our students, whose enthusiasm and curiosity have often inspired us, and whose questions and suggestions have sometimes taught us.

Senior Editor: Nicole Folchetti
Meäan Editor: Paul Draper
Art Director: Heather 5 cott
Assistant Art Director: John Christiana
Executive Managing Editor: Kathleen Schiaparelli
Assistant Managing Editor, Science Media: Nicole Bush
Assistant Managing Editor, Science Supplements; Dinah Thong
Development Editor, Text: John Murdzek
Development Editor, Media: Anne Madura
Project Manager: Kristen Kaiser
Media Production Editor: Richard Barnes
Supplements Production Editor: Natasha Wolfe
Art Editor: Thomas Benfatti
Editorial Assistants: Nancy Bauer/Eliana Ortiz
Photo Editor: Debbie Hewitson.
Senior Marketing Manager: Steve Sartori
Creative Director: Carole Anson
Director, Creative Services: Paul Belfanti
Manufacturing Manager: Trudy Pisciotti
Assistant Manufacturing Manager: Michael Yell
Editor in Chief, Physical Science: John Challice
Editor in Chief, Development: Ray Mullaney
Vice President ESM Production and Manufacturing: David W. Riccardi
Interior Design: Judith A. Matz-Coniglio
Photo Researcher: Truitt \& Marshall
Art Studio: Artworks: Senior Manager: Patty Bums/Production Manager: Ronda Whitson
Manager, Production Technologies: Matthew Haas/Project Coordinator: Connie Long
Mlustrators: Royce Copenheaver, Jay McElroy, Daniel Knopsnyder, Mark Landis, Jonathan Derk
Quality Assurance: Stacy Smith, Pamela Taylor, Tirnothy Nguyen
Contributing Art Studio: Precision Graphics
Cover Art: Ken Eward, Biografx
Cover Designer: Joseph Sengotta
Production Services/Composition: Preparé, Inc.

[^1]All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America
$\begin{array}{lllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2\end{array}$
ISBN ロ-13-0コAdBB-3

Pearson Education Ltd.
Pearson Education Australia Pty. Led.
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Led.
Pearson Education Canada, Inc.
Pearson Educacion de Mexico, S.A. de C.V.
Pearson Education-Japan
Pearson Education Malaysia, Pte. Ltd.
becquerel The SI unit of radioactivity. It corresponds to one nuclear disintegration per second. (Section 21.4)
Beer's law The light absorbed by a substance (A) equals the product of its molar absorptivity constant (a), the path length through which the light passes (b), and the molar concentration of the substance $(c): A=a b c$. (Section 14.2)
beta particles Energetic electrons emitted from the nucleus, symbol ${ }_{-1} \mathrm{e}$. (Section 21.1)
bidentate ligand A ligand in which two coordinating atoms are bound to a metal. (Section 24.2)
bimolecular reaction An elementary reaction that involves two molecules. (Section 14.6)
biochemistry The study of the chemistry of living systems. (Chapter 25: Introduction)
biocompatible Any substance or material that is compatible with living systems. (Section 12.3) biodegradable Organic material that bacteria are able to oxidize. (Section 18.6)
biomaterial Any material that has a biomedical application. (Section 12.3)
biopolymer A polymeric molecule of high molecular weight found in living systems. The see evoror classes of biopolymer are proteins, $0.63 \times$ xates, and nucleic acids. (Section 25.8)
$\$ \times 0$ - - s stered cubic cell A cubic unit cell in wows $8 \times$ lattice points occur at the comers and at Ace enter. (Section 11.7)
bomb calorimeter A device for measuring the heat evolved in the combustion of a substance under constant-volume conditions. (Section 5.5)
bond angles. The angles made by the lines joining the nuclei of the atoms in a molecule. (Section 9.1)
bond dipole The dipole moment due to the two atoms of a covalent bond. (Section 9.3)
bond enthalpy The enthalpy change, ΔH, required to break a particular bond when the substance is in the gas phase. (Section 8.8)
bonding atomic radius The radius of an atom as defined by the distances separating it from other atoms to which it is chemically bonded. (Section 7.3)
bonding molecular orbital A molecular orbital in which the electron density is concentrated in the internuclear region. The energy of a bonding molecular orbital is lower than the energy of the separate atomic orbitals from which it forms. (Section 9.7)
bonding pair In a Lewis structure a pair of electrons that is shared by two atoms. (Section 9.2)
bond length The distance between the centers of two bonded atoms. (Section 8.8)
bond order The number of bonding electron pairs shared between two atoms, less the number of antibonding electron pairs: bond order $=$ (number of bonding electrons - number of antibonding electrons). (Section 9.7)
bond polarity A measure of how equally the electrons are shared between the two atoms in a chemical bond. (Section 8.4)
boranes Covalent hydrides of boron. (Section 22.11)
Born-Haber cycle A thermodynamic cycle based on Hess's law that relates the lattice energy of an ionic substance to its enthalpy of formation and to other measurable quantities. (Section 8.2)
Boyle's law A law stating that at constant temperature, the product of the volume and pressure of a given amount of gas is a constant. (Section 10.3)
Brensted-Lowry acid A substance (molecule or ion) that acts as a proton donor. (Section 16.2)
Bronsted-Lowry base A substance (molecule or ion) that acts as a proton acceptor. (Section 16.2)
buffer capacity The amount of acid or base a buffer can neutralize before the pH begins to change appreciably. (Section 17.2)
buffered solution (buffer) A solution that undergoes a limited change in pH upon addition of a small amount of acid or base. (Section 17.2)
calcination The heating of an ore to bring about its decomposition and the elimination of a volatile product. For example, a carbonate ore might be calcined to drive off CO_{2}. (Section 23.2)
caloric Λ unit of energy, it is the amount of energy needed to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$, from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$. A related unit is the joule: $1 \mathrm{cal}=4.184 \mathrm{~J}$. (Section 5.1)
calorimeter An apparatus that measures the evolution of heat. (Section 5.5)
calorimetry The experimental measurement of heat produced in chemical and physical processes. (Section 5.5)
capillary action The process by which a liquid rises in a tube because of a combination of adhesion to the walls of the tube and cohesion between liquid particles. (Section 11.3)
carbide A binary compound of carbon with a metal or metalloid. (Section 22.9)
carbohydrates A class of substances formed from polyhydroxy aldehydes or ketones. (Section 25.10)
carbon black A microcrystalline form of carbon. (Section 22.9)
carbonyl group The $\mathrm{C}=\mathrm{O}$ double bond, a characteristic feature of several organic functional groups, such as ketones and aldehydes. (Section 25.6)
carboxylic acid A compound that contains the -COOH functional group. (Sections 16.10 and 25.6)
catalyst A substance that changes the speed of a chemical reaction without itself undergoing a permanent chemical change in the process. (Section 14.7)
cathode An electrode at which reduction occurs. (Section 20.3)
cathode rays Streams of electrons that are produced when a high voltage is applied to electrodes in an evacuated tube. (Section 2.2)
cathodic protection A means of protecting a metal against corrosion by making it the cathode in a voltaic cell. This can be achieved by attaching a more easily oxidized metal, which serves as an anode, to the metal to be protected. (Section 20.8)
cation A positively charged ion. (Section 2.7) cell potential A measure of the driving force. or "electrical pressure," for an electrochemica: reaction; it is measured in volts: $1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$ Also called electromotive force. (Section 20.4)
cellulose A polysaccharide of glucose; it is the major structural element in plant matter. (Section 25.10)
Celsius scale A temperature scale on whick water freezes at 0° and boils at 100° at sea level. (Section 1.4)
ceramic A solid inorganic material, either crys. talline (oxides, carbides, silicates) or amorphous (glasscs). Most ceramics melt at high tempera tures. (Section 12.4)
chain reaction A series of reactions in which one reaction initiates the next. (Section 21.7)
changes of state Transformations of matter from one state to a different one, for example. from a gas to a liquid. (Section 1.3)
charcoal A form of carbon produced when wood is heated strongly in a deficiency sid ais, (Section 22.9)
Charles's law A law stating that at constan: pressure, the volume of a given quantity of gas is proportional to absolute temperature. (Section 10.3)
chelate effect The generally larger formation constants for polydentate ligands as compared with the corresponding monodentate ligands. (Section 24.2)
chelating agent A polydentate ligand that is capable of occupying two or more sites in the coordination sphere. (Section 24.2)
chemical bond A strong attractive force that exists between atoms in a molecule. (Section 8.1)
chemical changes Processes in which one ox more substances are converted into other substances; also called chemical reactions. (Section 1.3)
chemical equation A representation of 3 chemical reaction using the chemical formulas of the reactants and products; a balanced chemical equation contains equal numbers of atom: of each element on both sides of the equation. (Section 3.1)
chemical equilibrium A state of dynamic bal. ance in which the rate of formation of the products of a reaction from the reactants equals the rate of formation of the reactants from the products; at equilibrium the concentrations of the reactants and products remain constant. (Sectios: 4.1; Chapter 15: Introduction.)
chemical formula A notation that uses chemical symbols with numerical subscripts to convey the relative proportions of atoms of the different elements in a substance. (Section 2.6)

Case 3:14-cv-05499-PGS-LHG Document 42-4
product A substance produced a chemical reaction; it appears to the right of the arrow in a chemical equation. (Section 3.1)
protein A biopolymer formed from amino acids. (Section 25.9)
protium The most common isotope of hydrogen. (Section 22.2)
proton A positively charged subatomic particle found in the nucleus of an atom. (Section 2.3) pure substance Matter that has a fixed composition and distinct properties. (Section 1.2)
pyrometallurgy A process in which heat converts a mineral in an ore from one chemical form to another and eventually to the free metal. (Section 23.2)
qualitative analysis The determination of the presence or absence of a particular substance in a mixture. (Section 17.7)
quantitative analysis The determination of the amount of a given substance that is present in a sample. (Section 17.7)
quantum The smallest increment of radiant energy that may be absorbed or emitted; the magnitude of radiant energy is $h v$. (Section 6.2)
racemic mixture A mixture of equal amounts of the dextrorotatory and levorotatory forms of a chiral molecule. A racemic mixture will not rotate polarized light. (Section 24.4)
rad A measure of the energy absorbed from radiation by tissue or other biological material; $1 \mathrm{rad}=$ transfer of $1 \times 10^{-2} \mathrm{~J}$ of energy per kilogram of material. (Section 21.9)
radioactive series A series of nuclear reactions that begins with an unstable nucleus and terminates with a stable one. Also called nuclear disknkexuzkisna series. (Section 21.2)
क< 6 orivity The spontaneous disintegration कs sh wstable atomic nucleus with accompanymgeression of radiation. (Section 2.2; Chapter

s*ossotope An isotope that is radioactive; tex it is undergoing nuclear changes with emission of radiation. (Section 21.1)
radionuclide A radioactive nuclide. (Section 21.1)
radiotracer A radioisotope that can be used to trace the path of an element. (Section 21.5)
Raoult's law A law stating that the partial pressure of a solvent over a solution, P_{A}, is given by the vapor pressure of the pure solvent, P_{A}°, times the mole fraction of a solvent in the solution, $\mathrm{X}_{\mathrm{A}}: P_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} P_{\mathrm{A}}^{\circ}$. (Section 13.5)
rate constant A constant of proportionality between the reaction rate and the concentrations of reactants that appear in the rate law. (Section 14.3)
rate-determining step The slowest elementary step in a reaction mechanism. (Section 14.6)
rate law An equation that relates the reaction rate to the concentrations of reactants (and sometimes of products also). (Section 14.3)
reactant A starting substance in a chemical reaction; it appears to the left of the arrow in a chemical equation. (Section 3.1)
reaction mechanism A detailed picture, or model, of how the reaction occurs; that is, the order in which bonds are broken and formed, and the changes in relative positions of the atoms as the reaction proceeds. (Section 14.6)
reaction order The power to which the concentration of a reactant is raised in a rate law. (Section 14.3)
reaction quotient (Q) The value that is obtained when concentrations of reactants and products are inserted into the equilibrium expression. If the concentrations are equilibrium concentrations, $Q=K$; otherwise, $Q \neq K$. (Section 15.5)
reaction rate The decrease in concentration of a reactant or the increase in concentration of a product with time. (Section 14.2)
redox (oxidation-reduction) reaction A reaction in which certain atoms undergo changes in oxidation states. The substance increasing in oxidation state is oxidized; the substance decreasing in oxidation state is reduced. (Chapter 20; Introduction)
reducing agent, or reductant The substance that is oxidized and thereby causes the reduction of some other substance in an oxidationreduction reaction. (Section 20.1)
reduction A process in which a substance gains one or more electrons. (Section 4.4)
refining The process of converting an impure form of a metal into a more usable substance of well-defined composition. For example, crude pig iron from the blast furnace is refined in a converter to produce steels of desired compositions. (Section 23.2)
rem A measure of the biological damage caused by radiation; rems $=$ rads \times RBE. (Section 21.9)
renewable energy Energy such as solar energy, wind energy, and hydroelectric energy that is from essentially inexhaustible sources. (Section 5.8)
representative (main-group) element Element in which the s and p orbitals are partially occupied. (Section 6.9)
resonance structures (resonance forms) Individual Lewis structures in cases where two or more Lewis structures are equally good descriptions of a single molecule. The resonance structures in such an instance are "averaged" to give a correct description of the real molecule. (Section 8.6)
reverse osmosis The process by which water molecules move under high pressure through a semipermeable membrane from the more concentrated to the less concentrated solution. (Section 18.5)
reversible process A process that can go back and forth between states along exactly the same path; a system at equilibrium is reversible because it can be reversed by an infinitesimal modification of a variable such as temperature. (Section 19.1)
ribonucleic acid (RNA) A polynucleotide in which ribose is the sugar component. (Section 25.11)
roasting Thermal treatment of an ore to bring about chemical reactions involving the furnace atmosphere. For example, a sulfide ore might be roasted in air to form a metal oxide and SO_{2}. (Section 23.2)
root-mean-square (rms) speed (μ) The square root of the average of the squared speeds of the gas molecules in a gas sample. (Section 10.7)
rotational motion Movement of a molecule as though it is spinning like a top. (Section 19.3)
salinity A measure of the salt content of seawater, brine, or brackish water. It is equal to the mass in grams of dissolved salts present in 1 kg of seawater. (Section 18.5)
salt An ionic compound formed by replacing one or more H^{+}of an acid by other cations. (Section 4.3)
saponification Hydrolysis of an ester in the presence of a base. (Section 25.6)
saturated solution A solution in which undissolved solute and dissolved solute are in equilibrium. (Section 13.2)
scientific law A concise verbal statement or a mathematical equation that summarizes a broad variety of observations and experiences. (Section 1.3)
scientific method The general process of advancing scientific knowledge by making experimental observations and by formulating laws, hypotheses, and theories. (Section 1.3)
scintillation counter An instrument that is used to detect and measure radiation by the fluorescence it produces in a fluorescing medium. (Section 21.5)
secondary structure The manner in which a protein is coiled or stretched. (Section 25.9)
second law of thermodynamics A statement of our experience that there is a direction to the way events occur in nature. When a process occurs spontaneously in one direction, it is nonspontaneous in the reverse direction. It is possible to state the second law in many different forms, but they all relate back to the same idea about spontaneity. One of the most common statements found in chemical contexts is that in any spontaneous process the entropy of the universe increases. (Section 19.2)
second-order reaction A reaction in which the overall reaction order (the sum of the concen-tration-term exponents) in the rate law is 2 . (Section 14.4)
sigma (σ) bond A covalent bond in which electron density is concentrated along the internuclear axis. (Section 9.6)
sigma (σ) molecular orbital A molecular orbital that centers the electron density about an inaginary line passing through two nuclei. (Section 9.7)
significant figures The digits that indicate the precision with which a measurement is made; all digits of a measured quantity are significant, including the last digit, which is uncertain. (Section 1.5)
silicates Compounds containing silicon and oxygen, structurally based on SiO_{4} tetrahedra. (Section 22.10)

WEBSTER'S

New Collegiate Dictionary

a Meriam-Torestore
©. © MRRIAM COMPANY
Springeld, rassachasetts, U.S.A.

Cupyrigh (C) 198 by G. \& C. Weminm Co.
Phikpines Copyrght 19 El by C. \& C. Menimm Co.

Library of Congress Cataloging in Publication Data
Main entry under tutle:
Wabster's new collegiate dictionary.
Editions for 1898-1948 have tille: Webster's collegiate dictionary,
fuchudes index.

1. English languagembictionaries.

PE1628. W4M4 $1981 \quad 423 \quad 80-25144$
15BN 0.87779-408-1
1SBN $0.87779-409-\mathrm{x}$ (imdexed)
ISBN 0-87779-410. 3 (deluxe)

Webster's New Collegiate Dictionary principal copyright 1973
COLEEGATE trademark Reg. U.S. Xat. Of

All rights reserved. No part of this wark covered by the copyrights fereon may be roproduced or copied in any form or by any means-mpraphic, electronie, or mechanical, inctuding photocopying, recording, taping, or infor. mation storage and retrieval sysiems-without written yermassion of the publisher.

Made in the United States of America

 prouaiest
 3 Shy Of gring ug or st desseznat

 8kosswise went 0003
 K

 asziculiture

 $2 \cdot k z^{2}$ y

 ferase from blood plasma wr wilk activg in alloline mediyum
\＆

gion 2lye biocd whs timsures

 crontaining a
witc ©aygers

 wsen ens．for protextive coatings

 （3）
3 54

 comenn or

 enatly 〈n！

 scitited by sho hall note

 of Ehte Xhasjims
 posed wholly wis Asucrisan elsmernh 2 ，nepicsenta－
 lexted fas by a goll of jomratabists）az ome of que kest

 Q

 ing gronk daty bctic
\｛isexemint in manic

 gyos see vegninite
\＄$\left.\}_{6}\right\}$

 wsiblice notices

3 $\}$ out and entice dry（an ou srip）
 ave assertions apecif：a statemand by a party to at legal actiont of

 \％iso

 ablix bdy

box Emmby widely growir 35 B Bround cover

 \＄0 the grwervaneat ander wisich he resides Z ：devotion ot joyants
 treasioss

 having the wharacternstics of aflegory $2:$ having hidulem spinituas

 की
 reporesentathoiss or issterpretation

気多genvizues in

 other + －agorent ing in ficciotial figares and actions of gruths or generalzentions akouth

 ${ }_{2}{ }^{\text {thumic }}$

 ：in a brisu bevely manner－．．．uted ass as diseckion in musje

多 8 ssamx

Wexurax tim

 S Q

Z
 simmexs iss a
\}
 of 又

人2
 Fis x \％ sex

（3x F

इF 3．EWN

 द्रcxumb
 erill pxersex щzess
Ygzr
 Sk

 दcos

8

qy

प्रy

 withmwer couscom
（5xy民
（
 S （9）
 W0 cise wh

\＄2x \＄x
\＆

 maxyziox
suck

\}

र不 $5 \boldsymbol{y}$

政

乡
列乡
紋义，
Y

 fxexky

${ }^{8}$

g x \％

 ？
了

了 ${ }^{2}$

＂दy 3
 x

\＄3TM
 prexesse y
 whititreas kur se

 the
सyty
 smetiverys
spaxysuys

88 x

$\left.\$ 76 x_{0}\right\}$

8883

与sen in ky x

 \＆

З多
 क Shy Y ITx

 KNACNXS \＆

 Wrak

 WYSRWBY
 Qबx

 8． 5 Sk
 K2

F8x Y\＆

$35\}$ 4 K20

5x

 cxy

 दस wxwxysx
 $\sin 33 x+5 \cdot 5$ ？

必 880

 whe 为
为

 US2 65 s
Sk K\} 24$\}$

Yoxux

 \}

 \＆E E

\％

S8x

\} 8800 N 20xemit x绿会 KTE

？

¢ూ
 ［ixusx x

W8，

 Sy \}

WSEWOS

 N
y

 स

畩

§r

SxCNW

（2x sus

$\left.788 \% \sigma^{2}\right\}$

 bry

及
 \} σx
$\}$

 \}ccx

 W以 प5夕

 ，奴为

个

x乡sex x

$\left.{ }^{3}\right\}$
\} 8

 स2天

 そykikx \＆

\＄

W以

 रxตse

 2x 8$\}$
 1．x^{2} \}n)
Warsxursk
 Gรcx
 Wmick
Why

אू\％ 0 Q

 W2
 K

 $5 x<x d y$
ॠxאీ S．Waxk
 \＄$\}$

 3 S
5x卫
 दx Exa

我动
 ค NT SOxycy
\％ ¢ 㱜区 स
 \＄8\％
 \＆
 \＆8E YSy wr ${ }^{4}$

 ～

 \％\＆x_{1}

 2边

 Q
为；解中．

と，\｛x रु \％

人

 GT
 $3 . \alpha_{2} \alpha_{n}$

 zg $x\{x \rightarrow\}$

x 0
स

Conceptual Chemistry

Understanding Our World of Atoms and Molecules

John Suchocki
Leeward Community College

An imprint of Addison Wesley
San Francisco * Boston - New York - Capetown * Hong Kong - London * Madrid Mexico City • Montreal Munich * Paris * Singapore - Sydney • Tokyo * Toronto

Executive Editor: Ben Roberts Acquisitions Editor: Maureen Kennedy Develomental Editor: Hilair Chism Markering Marrager: Christy Lawrence Market Development Manager: Cbalon Bridges Supplements Edivor: Tony Asaro Copyeditor: Irene Nunes Production Coodination: Joan Marsh Production Maragement and Composition: Dovetail Publishing Services
Text and Cover Design: Etniko-Rose Koike, Blake Kim
Artists: Emiko-Rose Koike, 3. B. Woolsey and Associates
Photo Research: Stuart Kenter, Tony Asaro
Manufacturing: Vivian McDougal
Prepress House: H8S Graphics
Printer and Binder: Von Hoffmann Press

Suchocki, John.
Conceptual chemistry : anderstanding our world of atoms and molecules ;
John A. Suchocki.
p. cm.

Includes index.
ISBN 0-8053-3173-5

1. Chemistry. I. Title.

Q033 . 588382001
540-dc21
00-064469

Copyright © 2001 by John A. Suchocki
Published by Addison Wesley. All rights reserved. No part of this publication may be reproduced, stoted in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States.
physical dependence A dependence characterized by the need to concinue taking a drug to avoid withdrawal symptoms.
physical model A representation of a system that helps us predict how the system behaves.
physical property Any physical atribute of a substance, such as color, densiry, or hardness.
point source A specific, well-defined location where pollutants enter a body of water.
polar bond A chemical bond having a dipole.
We\% A Bng organic molecule made of many repeating whes.
कowe $6 \times$ engy Stared encrgy.
फ. The rate at which energy is expended.
precigitate A solute that has come out of solution.
principal quantum mumber n Ari integer that specifies the quantized energy level of an atomic orbital.
probabillity cloud The pattern of electron positions plotted over time to show the likelihood of an electron being at a given position at a given time.
producer An organism at the bottom of a trophic structure.
product A new matcrial fomed in a chemical reaction, appearing after the arrow in a chemical equation.
protein A polymer of amino acids, also known as a polypeptide.
proton A positively charged subatomic particle of the atomic nucleus.
psychoactive Said of a drug that affects the mind or behavior. psychological dependence A deep-rooted craving for a drug.
pure The state of a material that consists of a single element or compound.
quantum hypothesis The idea that light energy is contained in discrete packets called quanca.
quantum A small, discrete packer of light energy.
rad A unit for measuring radiation dosage, equal to 0.0 joule of radiant energy absorbed per kilogram of tissue.
radioactivity The tendency of some elements, such as uranium, to emit radiation as a result of changes in the atomic nucleus.
reactarst A starting material in a chemical reaction, appearing before the arrow in a chemical equation.
reaction rate A measure of how quickly the concentration of products in a chemical reaction increases or the concentration of reactants decreases.
recombinant DNA A bybrid DNA composed of DNA smands from differear organisms.
reduction The process whereby a reactant gains one or mote electrons.
rem A unit for measuring radiation dosage, obtained by multiplying the number of rads by a factor that allows for the different health effects of different types of radiation.
replication The process by which DNA strands are duplicated.
reverse osmosis A technique for purifying water by forcing it through a semipermeable membrane.
ribonxackec acis A nucleic acid containing a fully oxygenated ribose sugar.
saccharide Another term for carbohydrate. The prefixes mono-, di-, and poly-are used before this term to indicate the length of the carbobydrate.
salixixation The process whereby irnigated land becomes more salty.
salt An ionic compound formed from the reaction berweer ass acid and a base.
saturated kydrocarbone A hydrocarbon containing no multiple covalent bonds, with each carbon atom bonded to four other atoms.
saturated solutions A solution containing the maximum amount of solute that will dissolve.
sciantific hypotheris A testable assumption often used to explain an observed phenomenon.
scientific law Any scientific hypothesis that has been tested over and over again and has not been contradicted. Also known as a scientific principle.
semipermeable membratac A membrane that allows water molecules to pass through its submicroscopic porcs but not solute molecules.
sensory neurow A peripheral neuron that transmits electrical signals from the senses to the cemural nervous system.
soil horizon A layer of soil.
solid Matter that has a definite volume and a definite shape.
solubility The ability of a solute to dissolve in a given solvent.
soluble Capable of dissolving to an appreciable extent in a giver solvent.
soluse Any component in a solution that is not the solvent.
solution A homogeneous mixture in which all components are in the same phase.
solveat The component its a solution present in the largest amount.
specific heat capacity The quanxity of heat required to change the remperature of 1 gram of a substance by : Celsius degree.

Asymmetric, Stereocontrolled Total Synthesis of Paraherquamide A

Robert M. Williams,* Jianhua Cao, Hidekazu Tsujishima, and Rhona J. Cox
Contribution from the Department of Chemistry, Colorado State University, Fort Collins. Colorado 80523

Received June 16, 2003; E-mail: rmw@chem.colostate.edu

Abstract

The first total synthesis of paraherquamide A, a potent anthelmintic agent isolated from various Penicillium sp. with promising activity against drug-resistant intestinal parasites, is reported. Key steps in this asymmetric, stereocontrolled total synthesis include a new enantioselective synthesis of α-alkylated-β-hydroxyproline derivatives to access the substituted proline nucleus and a highly diastereoselective intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization to generate the core bicyclo[2.2.2]diazaoctane ring system.

Introduction

The paraherquamides ${ }^{1-4}$ are an unusual family of fungal natural products which contain a bicyclo[2.2.2]diazaoctane core structure, a spiro-oxindole, and a substituted proline moiety. The parent member, paraherquamide A (1), was first isolated from cultures of Penicillium paraherquei by Yamazaki and coworkers in $1981 .{ }^{1}$ Since then, paraherquamides $B-G,{ }^{2}$ VM55595, VM55596, and VM55597, ${ }^{3}$ SB203105 and SB200437, ${ }^{4}$ and sclerotamide ${ }^{5}$ have been isolated from various Penicillium and Aspergillus species. Marcfortines A-C are structurally similar, containing a pipecolic acid unit in place of proline. ${ }^{6}$ Also closely related are VM55599, ${ }^{3}$ aspergamides A and $\mathrm{B},{ }^{7}$ avrainvillamide (CJ-17,665), ${ }^{8}$ and the most recently isolated members of this family, stephacidins A and B . ${ }^{9}$ These last six compounds contain a 2,3-disubstituted indole in place of the spiro-oxindole. Brevianamides A and $\mathrm{B},{ }^{10}$ which contain a spiro-indoxyl rather

[^2]than a spiro-oxindole, and the asperparalines, which contain a spiro-succinimide, ${ }^{11}$ are also structurally comparable (Figure 1).

The paraherquamides have attracted considerable attention due to their molecular complexity, intriguing biogenesis, ${ }^{12,13}$ and biological activity. Some members, most notably paraherquamide A, display potent anthelmintic activity and antinematodal properties. ${ }^{14}$ Due to the appearance of drug resistance developed by helminths, broad spectrum anthelmintic agents such as the macrolide endectocides, benzimidazoles, tetrahydropyrimidines, and imidazothiazoles are beginning to lose efficacy and there has arisen an urgent need to discover new families of antiparasitic agents. The paraherquamides represent an entirely new structural class of anthelmintic compounds, and as such, they hold great potential as drugs for the treatment of intestinal parasites in animals. ${ }^{15}$ The mode of action of the paraherquamides is, as yet, incompletely characterized, but recent work suggests that they are selective competitive cholinergic antagonists. ${ }^{16}$
(11) (a) Hayashi, H.; Nishimoto, Y.; Nozaki, H. Tetrahedron Lett. 1997, 38 , 5655-5658. (b) Hayashi, H.; Nishimoto, Y.; Akiyama, K.; Nozaki, H. Biosci. Biotechnol. Biochem. 2000, 64, 111-115.
(12) (a) Porter, A. E. A.; Sammes, P. G. J. Chem. Soc., Chem. Commun. 1970, 1103. (b) Baldas, J.; Birch, A. J.; Russell, R. A. J. Chem. Soc., Perkin Trans. 1 1974, 50-52. (c) Birch, A. J. J. Agric. Food Chem. 1971, 19 , 1088-1092. (d) Kuo, M. S.; Wiley, V. H.; Cialdella, J. I.; Yurek, D. A.; Whaley, H. A.; Marshall, V. P. J. Antibiot. 1996, 49, 1006-1013.
(13) (a) Stocking, E. M.; Sanz-Cervera, J. F.; Williams, R. M.; Unkefer, C. J. I. Am. Chem. Soc. 1996, 118, 7008-7009. (b) Williams, R. M.; SanzCervera, J. F.; Sancenón, F.; Marco, J. A.; Halligan, K. M. Bioorg. Med. Chem. 1998, 6, 1233-1241. (c) Stocking, E. M.; Williams, R. M.; SanzCervera, J. F. J. Am. Chem. Soc. 2000, 122, 9089-9098. (d) Stocking, E. M.; Martinez, R. A.; Silks, L. A.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 2001, 123, 3391-3392. (e) Stocking, E. M.; Sanz-Cervera, J. F.; Unkefer, C. J.; Williams, R. M. Tetrahedron 2001, 57, 5303-5320. J. F.; Unkefer, C. J.; Williams, R. M. Tetrahedron 2001, 57, 5303-5320.
(f) Stocking, E. M.; Sanz-Cervera, J. F.; Willianns, R. M. Angew. Chem., Int. Ed. 2001, 40, 1296-1298.
(14) (a) Ostlind, D. A.; Mickle, W. G.; Ewanciw, D. V.; Andriuli, F. J.; Campbell, W. C.; Hernandez, S.; Mochales, S.; Munguira, E. Res. Vet. Sci. 1990, 48, 260-261. (b) Shoop, W. L.; Egerton, J. R.; Eary, C. H.; Suhayda, D. J. Parasitol. 1990, 76, 349-351. (c) Shoop, W. L.; Eary, C. H.; Michael, H. W.; Haines, H. W.; Seward, R. L. Vet. Parasitol. 1991, 40, 339-341. (d) Shoop, W. L.; Michael, B. F.; Haines, H. W.; Eary, C. H. Vet. Parasitol. 1992, 43, 259-263. (e) Shoop, W. L.; Haines, H. W.; Eary, C. H.; Michael, B. F. Am. J. Vet. Res. 1992, 53, 2032-2034. (f) Schaeffer, J. M.; Blizzard, T. A.; Ondeyka, J.; Goegelman, R.; Sinclair, P. J.; Mrozik, H. Biochem. Pharmacol. 1992, 43, 679-684. For a review, see: (g) Geary, T. G.; Sangster, N. C.; Thompson, D. P. Vet. Parasitol. 1999, 84, 275295.

1, paraherquamide $A, R_{1}=O H, R_{2}=M e$ 2, paraherquamide $B, R_{1}=H, R_{2}=H$

5, paraherquamide $F, R_{1}=H, R_{2}=\mathrm{Me}, R_{3}=\mathrm{Me}$
6, paraherquamide $G, R_{1}=O H, R_{2}=M e, R_{3}=M e$
7, VM55595, $\mathrm{R}_{1}-\mathrm{H}, \mathrm{R}_{2}-\mathrm{Me}, \mathrm{R}_{3}-\mathrm{H}$

10, VM55599

12, brevianamide B

3, marcfortine $A, R=M e$
4, marcfortine $B, R=H$

9, stephacidin $A, X=N$

11, sclerotiamide

13, asperparaline A

Figure 1. Structures of some paraherquamides and related compounds.
The small quantities of paraherquamide A that can be isolated from cultures for biological study have slowed the development of these agents. Recently, Lee and Clothier reported the interesting semisynthetic conversion of marcfortine A (3), a metabolite more readily available by fermentation, into paraherquamide A via paraherquamide B(2). ${ }^{17}$ Following synthetic studies on brevianamide $\mathrm{B}(\mathbf{1 2}),{ }^{18}$ our laboratory reported the first total synthesis of a member of the paraherquamide family, ent-paraherquamide B, in 1993, in which a diastereoselective intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization reaction was used to construct the core bicyclo[2.2.2]diazaoctane ring system. ${ }^{19}$ We have further exploited this reaction strategy, and we described the first total synthesis of paraherquamide A in 2000. ${ }^{20}$ Herein, we detail a full account of this work.
(15) (a) Blizzard, T. A.; Marino, G.; Mrozik, H.; Fisher, M. H.; Hoogsteen, K.; Springer, J. P. J. Org. Chem. 1989, 54, 2657-2663. (b) Blizzard, T. A.; Mrozik, H.; Fisher, M. H.; Schaeffer, J. M. J. Org. Chem. 1990, 55, 2256 2259. (c) Blizzard, T. A.; Margiatto, G.; Mrozik, H.; Schaeffer, J. M.; Fisher, M. H. Tetrahedron Lett. 1991, 32, 2437-2440. (d) Blizzard, T. A.; Margiatto, G.; Mrozik, H.; Schaeffer, J. M.; Fisher, M. H. Tetrahedron Lett. 1991, 32, 2441-2444. (e) Lee, B. H.; Clothier, M. F.; Johnson, S. S. Bioorg. Med. Chem. Lett. 2001, 11, $553-554$. (f) Lee, B. H.; Clothier, M. F.; Dutton, F. E.; Nelson, S. J.; Johnson, S. S.; Thompson, D. P.; Geary, T. G.; Whaley, H. D.; Haber, C. L.; Marshall, V. P.; Kornis, G. I.; McNally, P. L.; Ciadella, J. I.; Martin, D. G.; Bowman, J. W.; Baker, C A.; Coscarelli, E. M.; Alexander-Bowman, S. J.; Davis, J. P.; Zinser, E. W.; Wiley, V.; Lipton, M. F.; Mauragis, M. A. Curr. Top. Med. Chem. 2002, 2, 779-793. (g) Lee, B. H.; Clothier, M. F. U.S. Patent 5,750,695, 1998.
(16) (a) Robertson, A. P.; Clark, C. L.; Burns, T. A.; Thompson, D. P.; Geary, T. G.; Irailovic, S. M.; Martin, R. J. I. Pharmacol. Exp. Ther. 2002, 3012 , 853-860. (b) Zinser, E. W.; Wolfe, M. L.; Alexander-Bowman, S. J.; Thomas, E. M.; Davis, J. P.; Groppi, V. E.; Lee, B. H.; Thompson, D. P.; Geary, T. G. J. Vet. Pharmacol. Ther. 2002, 25, 241-250.
(17) (a) Lee, B. H.; Clothier, M. F. J. Org. Chem. 1997, 62, 1795-1798. (b) Lee, B. H.; Clothier, M. F.; Pickering, D. A. J. Org. Chem. 1997, 62, $7836-$ 7840.
(18) Williams, R. M.; Glinka, T.; Kwast, E.; Coffman, H.; Stille, J. K. J. Am. Chem. Soc. 1990, 112, 808-821.
(19) Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1996, 118, 557-579
(20) Williams, R. M.; Cao, J.; Tsujishima. H. Angew. Chem., Int. Ed. 2000, 39, 25402544.

Scheme 1. Retrosynthetic Plan for Paraherquamide A

1, paraherquamide A
14, 14-oxoparaherquamide B

Synthesis of an α-Alkylated- β-Hydroxyproline

Despite the apparent similarity in the structures of paraherquamides A and B , synthesis of the former turned out to be a significantly more challenging endeavor owing to the presence of the unusual β-hydroxy- β-methyl proline residue. In the semisynthesis of paraherquamide A from marcfortine A (3), the final step was addition of methylmagnesium bromide to 14 oxoparaherquamide $B(\mathbf{1 4}) .{ }^{17}$ We planned to use this same methodology to complete our total synthesis and to construct 14 using a similar strategy to that used for paraherquamide B, that is, coupling of suitably functionalized indole (19) and diketopiperazine (18) units and then an intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization followed by palladium-mediated closure of the seventh ring, and finally oxidation and rearrangement of the 2,3-disubstituted indole to the spiro-oxindole of 14-oxoparaherquamide B^{19} (Scheme 1).

New methodology was now required to prepare a suitably functionalized α-alkylated- β-hydroxyproline residue. A variety of methods were investigated for the asymmetric construction of this class of compound, leading to the development of a potentially general synthetic method which uses dianion alkylation of the readily available N - t-BOC- β-hydroxyproline ethyl ester derivative $\mathbf{1 2}$ with net retention of stereochemistry. ${ }^{21}$ This methodology has now successfully been applied to a concise asymmetric and stereocontrolled total synthesis of paraherquamide A.

Epoxide 20, which is commercially available or made by epoxidation of isoprene with $m \mathrm{CPBA}$, was treated with n - $\mathrm{Bu}_{4} \mathrm{NI}$ and TBSCl to provide iodide 21 as a mixture of geometrical isomers ($E: Z \approx 6: 1$) in 58% overall yield. Diester 22 was prepared in two steps from ethyl glycinate and ethyl acrylate, and then a Dieckmann cyclization was conducted, using a slight modification of the procedure described by Rapoport, ${ }^{22}$

[^3]

26
Figure 2. Assignment of relative stereochemistry of 25.
Scheme 2. Synthesis of α-Alkylated- β-Hydroxyproline 25

to yield racemic β-ketoester 23 (Scheme 2). Baker's yeast reduction afforded the optically active β-hydroxyester $\mathbf{2 4}$ with an enantiomeric ratio of ca. $95: 5$ as described by Knight et al. ${ }^{23}$ Alkylation of the dianion of $\mathbf{2 4}$ with substituted allyl iodide $\mathbf{2 1}$ proceeded with retention of stereochemistry and excellent diastereoselectivity under the conditions previously developed. ${ }^{21}$ The desired α-alkylated product $\mathbf{2 5}$ was obtained in 58-70\% isolated yield with little or no O -monoalkylation or $\mathrm{O}-, \mathrm{C}$ dialkylation taking place. It was interesting to note during large scale synthesis of $\mathbf{2 5}$ that the amount of HMPA required in the alkylation reaction ranged from 1.4 to 13.6 equiv depending on the batch of $\mathbf{2 4}$ that was used, despite the batches being apparently identical by ${ }^{1} \mathrm{H}$ NMR, IR, TLC, and optical rotation. The reasons for this phenomenon are presently unclear. ${ }^{24}$

The assignment of the relative stereochemistry of $\mathbf{2 5}$ was obtained by comparison of the ${ }^{1} \mathrm{H}$ NMR and optical rotation data of $\mathbf{2 5}$ to those of $\mathbf{2 6}$, which was obtained by alkylation of 24 with 1,4 -dibromobutane. The relative stereochemistry of $\mathbf{2 6}$ was assigned unambiguously through single-crystal X-ray analysis (Figure 2). ${ }^{21}$ The absolute stereochemistry of $\mathbf{2 5}$ was confirmed by Barton deoxygenation and conversion to diketopiperazine (+)-29 as illustrated in Scheme 3. This same diketopiperazine could be obtained, as the enantiomer, from $\mathbf{3 0}$. This compound has previously been converted to (+)-paraherquamide B , a substance whose absolute stereochemistry has been confirmed. ${ }^{19}$

Synthesis of a Functionalized Diketopiperazine

It was necessary to convert the substituted proline (25) into a suitably functionalized diketopiperazine for a similar SomeiKametani coupling reaction to that used in our total synthesis of paraherquamide B. Initial studies on this system were carried out with the secondary alcohol protected as a benzyl ether.

[^4]Scheme 3. Assignment of Absolute Chemistry of 25

Scheme 4. Preparation of the Diketopiperazine 34

However, because of problems with selectivity and purification later in the synthesis, the less bulky and more polar methoxymethyl (MOM) protecting group was used in the final synthetic route. After MOM protection of the alcohol, the $N-t$ - BOC group was smoothly removed with ZnBr_{2} in dichloromethane ${ }^{25}$ and the exposed secondary amine (31) was acetylated with bromoacetyl bromide under Schotten-Baumann conditions (Scheme 4). Treatment of the bromoacetamide with methanolic ammonia afforded the corresponding glycinamide ($\mathbf{3 2}$) which was directly subjected to cyclization in the presence of sodium hydride in toluene/HMPA to afford the bicyclic compound 33 in 75% overall yield from 25. An interesting observation about the ease of closure of hydroxylated diketopiperazines was made during this study. When there is no hydroxyl substituent (e.g., in 28) or the protected hydroxyl group is trans to the ester, the diketopiperazine typically forms spontaneously from the aminoester in methanol at room temperature. On the other hand, a cis-isomer such as $\mathbf{3 1}$ can be isolated as the aminoester from the amination reaction, and formation of the diketopiperazine requires much more forcing conditions. On amination of a

[^5]Scheme 5. Preparation of the Gramine Derivative 51

mixture of diastereomeric bromoacetamides $\mathbf{3 5}$, the aminoester 36 and the diketopiperazine 37 are produced. This is presumably because the cis-diketopiperazine is significantly more sterically hindered. After diketopiperazine formation, a onepot double carbomethoxylation reaction was performed by the sequential addition of n-BuLi in THF followed by addition of methylchloroformate, which carbomethoxylates the amide nitrogen. Subsequent addition of more methylchloroformate followed by LHMDS afforded 34 in 93% yield as an $\sim 6: 1$ mixture of E and Z isomers, with the newly created stereogenic center as a single stereoisomer (relative configuration was not assigned)

Improved Synthesis of the Gramine Derivative

With this functionalized diketopiperazine in hand, we turned our attention to improvement of the synthesis of the dioxepincontaining indole fragment that we originally described in $1990 .{ }^{26}$ The original route provides compound $\mathbf{5 1}$ in 14 steps with no chromatography required until the ninth step. However, further optimization was necessary to achieve a more rapid and efficient large-scale synthesis. The route we have developed is illustrated in Scheme 5 . Vanillin (38) was acetylated with acetic anhydride and then treated with fuming nitric acid to afford 39, the desired regioisomer, and 40, the undesired isomer, in an $\sim 10: 1$ ratio. Initially, these regioisomers were separated by hydrolysis of the acetate group and isolation of the desired phenol isomer by crystallization. ${ }^{27}$ Analysis of the product mixture by TLC revealed that $\mathbf{3 9}$ had a lower R_{f} and $\mathbf{4 0}$ had exactly the same R_{f} as that of the starting material, and it was possible to isolate 39 by flash chromatography. However, neither purification method proved optimal for a large-scale protocol. The new
(26) Williams, R. M.; Cushing, T. D. Tetrahedron Lett. 1990, 31, 6325-6328.
(27) Raiford, L. C.; Stocsscr, W. C. J. Am. Chem. Soc. 1928, 50, 25562563.
approach circumvents these problems. Instead, we directly used the mixture of nitrobenzaldehydes 39 and $\mathbf{4 0}$. After a threestep transformation, ${ }^{28} 39$ provided the desired acid 41 , and 40 provided the undesired acid 42 . Reduction of the nitro group was originally carried out in 95% yield by hydrogenation over palladium on carbon at 40 psi and $80^{\circ} \mathrm{C}$. However, this protocol could prove awkward on a large scale, so an alternative approach was developed using iron and $\mathrm{NH}_{4} \mathrm{Cl}^{29}$ which, while the yield (74%) is more moderate, proved easier to scale-up. On reduction to the corresponding amines, the amine intermediate from 41 cyclized to oxindole 43 , but 42 was simply reduced to amino acid 44, which cannot undergo an intramolecular cyclization reaction due to geometric restriction. On extraction of the reaction mixture, the amino acid (44) was removed with aqueous acid leaving the oxindole (43) in the organic phase. Demethylation then proceeded smoothly as already described to give 45.30

Prenylation of $\mathbf{4 5}$ is partially selective for the 7 -hydroxy position due to the greater acidity of this hydroxyl group. However, under the prenylation conditions originally developed for paraherquamide B, small amounts of the 6-prenyloxy and 6,7-diprenyloxy isomers were also formed, and the three compounds are difficult to separate by flash chromatography. In this modification of our original route, replacement of the base with $\mathrm{C}_{2} \mathrm{CO}_{3}$ improves the selectivity and yield of 46 .
(28) (a) MacDonald, S. F. J. Chem. Soc. 1948, 376-378. (b) Beer, R. J. S.; Clarke, K.; Davenport, H. F.; Robertson, A. J. Chem. Soc. 1951, $2029-$ 2032.
(29) Wissner, A.; Berger, D. M.; Boschelli, D. H.; Floyd, M. B., Jr.; Greenberger, L. M.; Gruber, B. C.; Johnson, B. D.; Mamuya, N.; Nilakantan, R.; Reich, M. F.; Shen, R.; Tsou, H.-R.; Upeslacis, E.; Wang, Y. F.; Wu, B.; Ye, F.; Zhang, N. J. Med. Chem. 2000, 43, 3244-3256.
(30) Since this route was developed, McWhorter and Savall have published a route to 45 which is shorter and higher yielding, but the applicability of their synthesis on a large scale has not yet been demonstrated. Savall, B. M.; McWhortcr, W. W. J. Org. Chem. 1996, 61, 86968697.

Scheme 6. Coupling of the Indole and Diketopiperazine

$\operatorname{syn} 59 \mathrm{E}$ syn $59 Z$
anti 60E 76\%
$\operatorname{syn} 612$
$\operatorname{syn} 612$
syn $63 \mathrm{E} 79 \%$
syn 63275%

Extraction into base during the workup procedure also removes the diprenylated byproduct which allowed for easier purification.

A major problem in our first generation synthesis of the gramine derivative was during reduction of the oxindole to the indole, when over-reduction to the indoline occurred in variable quantities giving a ratio of $4: 1$ to $2: 1$ of indole/indoline. Attempts were made, without success, to effect a more selective reduction of the oxindole. However, the problem was solved in an indirect fashion as it proved possible to oxidize the indoline byproduct to the indole with DDQ^{31} in greater than 90% yield.

Formation of TBS ethers on hindered alcohols is known to be very sensitive to the concentration of the reaction mixture. The silylation reaction was optimized by concentrating the reaction mixture to give an improved yield of 95% from 82%. Finally indole $\mathbf{5 0}$ was converted to the gramine derivative $\mathbf{5 1}$ under standard conditions. The advantages of this new approach are significant in terms of increased yield, lower cost, and faster synthesis on a large scale.

Coupling of the Indole and Diketopiperazine

Somei-Kametani coupling ${ }^{32}$ of diketopiperazine 34 with the gramine derivative $\mathbf{5 1}$ in the presence of tri- n-butylphosphine gave a separable mixture of two diastereomers $\mathbf{5 2}$ and $\mathbf{5 3}$ in a

[^6]3:1 ratio, each as a mixture of four diastereomers (Scheme 6). ${ }^{33}$ Decarbomethoxylation was effected by treatment of $\mathbf{5 2}$ and 53 individually with LiCl in hot, aqueous HMPA to provide, in both cases, a mixture of $\mathbf{5 4}$ (anti-isomer) and $\mathbf{5 5}$ (syn-isomer), which could now be separated into the E and Z isomers, each of which as a mixture of two diastereomers (epimeric at the dioxepin secondary alcohol). However, as separation of the geometric isomers proved to be difficult, the compounds were usually carried through the synthetic sequence as a mixture and separated only for analytical purposes. Protection of the secondary amide as the corresponding methyl lactim ether was accomplished by treating 54 and 55 with trimethyloxonium tetrafluoruborate and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in dichloromethane. Mudel studies had shown that $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was a more efficient base than $\mathrm{Na}_{2} \mathrm{CO}_{3}$ for this reaction, as it leads to a lower incidence of TBS cleavage and N-methylation. Next, the indole nitrogen was protected as the corresponding $N-t$-BOC derivative by treatment with di-tert-butyl dicarbonate in the presence of DMAP, and then the silyl ethers were removed with tetrabutylammonium fluoride (TBAF) to provide $\mathbf{5 8}$ (anti) and $\mathbf{5 9}(s y n)$. From this point onward, the E and Z isomers were utilized separately. Unfortunately, the Corey procedure, ${ }^{34}$ which had been successful

[^7]in the synthesis of paraherquamide B for conversion of an allylic alcohol to the corresponding chloride, proved unreliable when applied to the paraherquamide A system. Under the conditions used previously, cleavage of the lactim ether and chlorination at the 2 -position of the indole were observed. Extensive investigation into suitable conditions was carried out, and it was eventually found that selective conversion of the primary alcohols 58 and 59 to the corresponding mesylates was possible in the presence of the hindered base collidine. Displacement of mesylate by a chloride ion under these reaction conditions was very slow so $\mathrm{Bu}_{3} \mathrm{BnNCl}$ (as an external chloride source) and a polar solvent were added to accelerate the reaction, allowing formation of the allylic chlorides ($\mathbf{6 0}$ and $\mathbf{6 1}$) in up to 90% yield. This is a simple, practical, and reproducible method for preparing allylic chlorides in molecules bearing labile functional groups. Finally, careful reprotection of the secondary alcohols with tert-butyldimethylsilyl triflate in the presence of 2,6-lutidine afforded the key allylic chlorides $\mathbf{6 2}$ and $\mathbf{6 3}$.

$\mathbf{S}_{\mathrm{N}} \mathbf{2}^{\prime}$ Cyclization and Closure of the Seventh Ring

The stage was now set for the critical intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization, that sets the relative stereochemistry at $\mathrm{C}-20$ during formation of the bicyclo[2.2.2]diazaoctane ring nucleus. Based on precedent from the paraherquamide B synthesis, ${ }^{19} 63 \mathbf{E}$ was treated with NaH in refluxing benzene. However, the reaction was very slow and gave the desired cyclization product 64 in only 25% yield, accompanied by products from competing pathways. The acidic proton in $\mathbf{6 3 E}$ is more sterically hindered than in the corresponding substrate for the paraherquamide B synthesis, due to the presence of the MOM ether. Since NaH likely exists as heterogeneous clusters in benzene, it was expected that use of a more coordinating solvent may break up the clusters and render deprotonation more facile. Conveniently, use of NaH in refluxing THF afforded the desired $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization product 64 in 87% yield from 63 E exclusively as the desired $s y n$-isomer. ${ }^{35}$ This remarkably diastereoselective intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization reaction proceeds, in a nonpolar solvent like THF, via a tight, intramolecular ion-pair driven cyclization ("closed" transition state) ${ }^{36}$ as shown in Scheme 7. Compound 62E also underwent the same transformation to give 64 in 82% yield. In both cases, the product was sometimes accompanied by a small amount of Boc-deprotected cyclized product which could be reprotected under standard conditions. In addition, it was interesting to note that the Z-isomer, 63 Z , provides the same cyclization product, again with exclusive syn selectivity, in 50% yield.

Closure of the seventh ring was attempted using PdCl_{2} and AgBF_{4} in acetonitrile followed by NaBH_{4} to reduce the incipient heptacyclic σ-palladium adduct, ${ }^{37}$ reaction conditions which had
(35) The syn/anti relationship in this case refers to the relative stereochemistry between the C -20 stereogenic center (see paraherquamide numbering) and the proline residue.

syn-

(36) (a) Denmark, S. E.; Henke, B. R. J. Am. Chem. Soc. 1989, 111, $8032-$ 8034. (b) Denmark, S. E.; Henke, B. R. J. Am. Chem. Soc. 1991, 113, 21772194.

Scheme 7. Formation of the Heptacycle

been successful in the paraherquamide B synthesis. ${ }^{19}$ However, the only products isolated under the same conditions with 64 were those appearing to arise from removal of the $N-t-\mathrm{BOC}$, MOM and lactim ether protecting groups, presumably by HBF_{4} generated in situ. To buffer the reaction mixture, propylene oxide was added as an acid scavenger and the reaction now proceeded to give the desired 2,3-disubstituted indole (65) in 85% yield.

Completion of the Synthesis

Conditions could not be found which would allow direct and high-yielding conversion of the lactim ether (65) to the amide. However, use of 0.1 M aqueous HCl in THF gave the corresponding ring-opened amine methyl ester (66) which was recyclized to the bicyclo[2.2.2]diazaoctane (67) by treatment of 66 with catalytic 2-hydroxypyridine in hot toluene. Chemoselective reduction of the tertiary amide in the presence of the secondary amide to give $\mathbf{6 8}$ could be effected by treatment of the diamide 67 with the $\mathrm{AlH}_{3}-\mathrm{Me}_{2} \mathrm{NEt}$ complex followed by quenching with sodium cyanoborohydride, methanol, and acetic acid, as used in the synthesis of paraherquamide B. However, use of excess diisobutylaluminum hydride (DIBAL-H) in dichloromethane was a simpler experimental procedure and gave improved yields of $68 .{ }^{38} \mathrm{~N}$-Methylation of the secondary amide proceeded smoothly and was followed by cleavage of the MOM ether with bromocatecholborane. ${ }^{39}$ Oxidation of the secondary alcohol with Dess-Martin periodinane ${ }^{40}$ and concomitant removal of the $N-i$-BOC group and TBS ether with TFA gave ketone 70 (Scheme 8).

The final critical oxidative spirocyclization of the 2,3disubstituted indole was effected by a two-step procedure.

[^8]
Scheme 8. Manipulation of the Heptacycle

Scheme 9. Spirocyclization and Completion of the Synthesis

14, 14-oxoparaherquamide B
Treatment of 70 with tert-butyl hypochlorite in pyridine provided a labile 3-chloroindolenine, from which it was found necessary to rigorously remove, by azeotroping with benzene, all of the pyridine prior to the next step. Pinacol-type rearrangement with TsOH in aqueous THF then generated the desired spiro-oxindole (73). From our investigations during the paraherquamide B synthesis, it was found that use of a sterically demanding amine such as pyridine gives the best stereoselectivity during the chlorination reaction. It is assumed that addition of chlorine to 70 proceeds from the least hindered face of the indole giving the α-chloroindolenine 71. Hydration of the imine functionality, interestingly, must also occur from the same α-face, that is, syn-to the relatively large chlorine atom, to furnish the syn-chlorohydrin $\mathbf{7 2}$ which subsequently rearranges stereospecifically to the desired spiro-oxindole 73 (Scheme 9).

Dehydration of the seven-membered ring in 73 with methyl triphenoxyphosphonium iodide (MTPI) in DMPU afforded 14oxoparaherquamide $B(\mathbf{1 4})$ in moderate yield. ${ }^{17}$ This intermediate has been previously obtained semisynthetically from marcfortine A by a group from Pharmacia-Upjohn, and comparison of the authentic and synthetic materials confirmed the identity of this substance. Addition of methylmagnesium bromide to the ketone group of $\mathbf{1 4}$ has been previously described to give paraherquamide A along with the corresponding $\mathrm{C}-14$ epimer in around 50% yield. ${ }^{17 \text { a }}$ Employment of this protocol using

MeMgBr with our synthetic ketone gave (-)-paraherquamide A (1) as the exclusive product (the $\mathrm{C}-14$ epimer was not detected) in 42% yield. This product was identical to a natural sample of paraherquamide A by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, exact mass, and mobility on TLC (R_{f}). A synthetic sample was recrystallized from ether and had mp $250{ }^{\circ} \mathrm{C}(\mathrm{dec}),[\alpha]_{\mathrm{D}}{ }^{25}=$ $-22(c=0.2, \mathrm{MeOH})$. Natural paraherquamide A recrystallized from ether under the same conditions yielded a sample with $\mathrm{mp} 250{ }^{\circ} \mathrm{C}(\mathrm{dec})$ and $[\alpha]_{\mathrm{D}}{ }^{25}=-21(c=0.2, \mathrm{MeOH})$. All intermediates up to the final product have an enantiomeric ratio of approximately $97.5: 2.5$; the final synthetic paraherquamide A upon recrystallization from ether is approximately optically pure.

We have reported here the first total synthesis of paraherquamide A, the most biologically potent member of this family of compounds. This asymmetric synthesis proceeds in 46 steps from commercially available materials, with the longest linear sequence being 34 steps.

The approach developed in this study makes it feasible to examine the design and synthesis of other members of the paraherquamide family and should also permit access to structurally unique paraherquamides that may have significant biological properties. The application of this methodology to the asymmetric, stereocontrolled total synthesis of other members of the paraherquamide family, and evaluation of their properties is currently under study in these laboratories.

Acknowledgment. This work was supported by the NIH (Grant CA 70375). The Japanese Society for the Promotion of Science (JSPS) is acknowledged for providing fellowship support to H.T. Mass spectra were obtained on instruments supported by the NIH Shared Instrumentation Grant GM49631. We also wish to thank Dr. Timothy Blizzard of Merck \& Co. for providing an authentic sample of natural paraherquamide A. We also wish to acknowledge Dr. Byung H. Lee of the Pharmacia-Upjohn Co. (now Pfizer) for providing NMR spectra and an authentic specimen of 14 -oxoparaherquamide B. We also wish to thank Dr. Alfredo Vazquez for assistance with purification and characterization of synthetic paraherquamide A .

Supporting Information Available: Complete experimental procedures and spectroscopic and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JA036713+

12178 J. AM. CHEM. SOC. ■ VOL. 125, NO. 40, 2003

Stereocontrolled Total Synthesis of (+)-Paraherquamide B ${ }^{\perp}$

Timothy D. Cushing, ${ }^{\ddagger}$ Juan F. Sanz-Cervera, ${ }^{\dagger}$ and Robert M. Williams*
Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Received August 7, 1995^{8}

Abstract

The convergent stereocontrolled, asymmetric total synthesis of (+)-paraherquamide B is described. Key features of this synthesis include (1) an improved procedure to effect reduction of unprotected oxindoles to indoles; (2) a complex application of the Somei/Kametani coupling reaction; (3) a high-yielding and entirely stereocontrolled intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization reaction that constructs the core bicyclo[2.2.2] ring system; (4) a mild $\mathrm{Pd}(\mathrm{II})$-mediated cyclization reaction that constructs a complex tetrahydrocarbazole; and (5) the chemoselective reduction of a highly hindered tertiary lactam in the presence of an unhindered secondary lactam, utilizing precoordination of the more reactive secondary lactam to triethylaluminum.

Introduction

The paraherquamides are complex, heptacyclic, toxic mold metabolites with potent anthelmintic activity isolated from various Penicillium sp. The parent and most potent derivative, paraherquamide A (1), was first isolated from Penicillium parherquei in 1980 by Yamazaki. ${ }^{1}$ The simplest member, paraherquamide $\mathrm{B}(2)$, plus five other structurally related paraherquamides $\mathrm{C}-\mathrm{G}(3-9)$ were isolated from Penicillium charlesii (fellutanum) (ATCC 20841) in 1990 at Merck \& Co. ${ }^{2,3}$ and concomitantly at SmithKline Beecham. ${ }^{4}$ More recently three additional related compounds were discovered by the same group at SmithKline. ${ }^{5}$ Interest in the paraherquamides has come from the finding that this class of alkaloids displays potent anthelmintic and antinematodal properties. ${ }^{6,7}$

There are essentially three classes of broad-spectrum anthelmintics currently in use: the benzimidazoles, the levamisoles/ morantels, and the avermectins/milbemycins. Unfortunately, the first two groups have lost much of their utility due to the recent appearance of drug resistance built up by the helminths. ${ }^{7 a, 8}$ More

[^9]recently drug resistance to the avermectins has been observed in various parasites. ${ }^{9}$ The paraherquamides represent an entirely new structural class of antiparasitic agents, which promise to play a significant role in the near future. The relatively low culture yields of paraherquamide obtained for biological study have slowed the development and potential commercialization of these agents (Figure 1).

As part of our ongoing efforts to elucidate the biosynthesis of the core bicyclo[2.2.2] ring system of the related alkaloids the brevianamides, ${ }^{10}$ we have applied methodology originally developed for the stereocontrolled total synthesis of (-)brevianamide B^{11} to complete the first stereocontrolled total synthesis of (+)-paraherquamide $\mathrm{B}\left(\mathbf{1 2)} ;^{12}\right.$ the results of this study are described in full herein.

The paraherquamides are structurally very similar to brevianamides A and $B(\mathbf{1 7} \text { and } \mathbf{1 6})^{13}$ and marcfortines $A-C(13-$ $\mathbf{1 5})^{14}$ with respect to the common core bicyclo[2.2.2] ring system that is derived from the cycloaddition of an isoprene unit across the amino acid α-carbons. This close structural similarity might imply a related biogenesis, and the structural features of these substances shall be described briefly from this standpoint. The paraherquamides and brevianamides A and B (17 and 16) appear to be derived from the condensation of tryptophan and proline, while the marcfortines are formed from the condensation of tryptophan and pipecolic acid. The origin of the methyl group in the pyrrolidine ring of paraherquamides A and $\mathrm{C}-\mathrm{E}$ and VM55595-7 could in principle come from the methylation of proline, but it seems more likely that this amino acid residue is derived from isoleucine. The very low fermentation yield of paraherquamide B may be a manifestation of poor incorporation of cyclo-L-trp-L-pro into the subsequent biosynthetic machinery

[^10]0002-7863/96/1518-0557\$12.00/0

1, (-)-paraherquamide $A_{1} \quad R_{1}=O H_{1}, R_{2}=M \theta_{1}, R_{3}=H_{2} X=N$
2, (-)-paraherquamide $B, R_{1}=H, R_{2}=H, R_{3}=H_{2} X=N$
3, (-)-paraherquamide $\mathrm{C}_{1} \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2}, \mathrm{~B}_{3}=\mathrm{H}_{2}, \mathrm{X}=\mathrm{N}$
4, (-)-paraherquarnide $\mathrm{D}, \mathrm{R}_{1}=\mathrm{O}, \mathrm{R}_{2}=\mathrm{CH}_{2}, \mathrm{R}_{3}=\mathrm{H}_{2}, \mathrm{X}=\mathrm{N}$
5, (-)-paraherquamide $E_{1}, R_{1}=H, R_{2}=M e, R_{3}=H_{2}, X=N$
6, VM55596, $R_{1}=H, R_{2}=M e, R_{3}=H_{2} X=N^{*}-0$
7, VM55597, $R_{1}=H, R_{2}=M e, R_{3}=O, X=N$

8. (-) paraherquamide F. $R_{1}=H_{1} R_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{Me}$ 9. (-)-paraherquamide $G, R_{1}=O H, R_{2}=M e, R_{3}=M e$ 10, VM55595, $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{H}$

12, (+)-paraherquamide B

13, $(-)$-marctortine $A, R=M e$
14, (-)-marciontine $B, R=H$

11, VM55599

17, (+)-brevianamide A

18, strobilurin G

Figure 1.
or may be the result of inefficient demethylation of the isoleucine-derived amino acid precursor.
The oxidation state of the amino acid-derived dioxopiperazine moiety remains unchanged in the case of the brevianamides, but for the paraherquamides and the marcfortines the tertiary amide residue is enzymatically reduced to a monooxopiperazine, a process that is known. ${ }^{15}$ The tryptophan-derived indolyl side chain of the paraherquamides and marcfortines is oxidized to spiro-oxindoles while the indolyl side chain of the brevianamides oxidize to spiro-indoxyls. The paraherquamides, marcfortines, and brevianamides all incorporate one isoprenc unit that forms the bridging bicyclo[2.2.2] ring structure. The paraherquamides and marcfortines differ from the brevianamides in that a second isoprene unit coupled with an oxidized form of tryptophan gives the dioxepin (or pyran) moiety. This is one of the most interesting and unique features of these compounds. The gemdimethyl dioxepin ring found in paraherquamides $\mathrm{A}-\mathrm{E}(\mathbf{1 - 5})$ and marcfortines A and $B(\mathbf{1 3}$ and $\mathbf{1 4})$ is a unique ring system among natural products. A similar structural feature was discovered in the antifungal natural product strobilurin $G(\mathbf{1 8}),{ }^{16}$ but this dioxepin moiety lacks the double bond found in the other metabolites (Figure 1).

As outlined in Scheme 1, a convergent synthesis of the enantiomer of paraherquamide $B(\mathbf{1 2})^{17}$ was envisioned to contain four key carbon-carbon bond-forming reactions. The

[^11]first task would involve the construction of a suitably α-alkylated proline derivative. ${ }^{11}$ The second important coupling would be the Somei/Kametani-type alkylation ${ }^{18}$ of a suitably protected gramine derivative (20) and the requisite piperazinedione (19). The third and perhaps most crucial $\mathrm{C}-\mathrm{C}$ bondforming reaction, providing the core bicyclo[2.2.2] ring system, was a stereofacially controlled intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization reaction that sets the stereochemistry at $\mathrm{C}-20$ (paraherquamide numbering) and concomitantly installs the isopropenyl group that will be utilized in the fourth $\mathrm{C}-\mathrm{C}$ bond-forming reaction. This isopropenyl group, in turn, would be conscripted for an olefin-cation cyclization to provide the heptacyclic tetrahydrocarbazole. Standard procedures to effect this transformation involve strong protic acids, ${ }^{11,19}$ and there was reason for concern about the reactivity of the more highly oxygenated indole (22) as a practical synthetic precursor to 23 . The penultimate step, a regio- and stereofacially controlled oxidative spirocyclization reaction, must be accomplished to construct the desired spirooxindole. Λ number of these transformations were explored during the course of the investigations on the synthesis of (- brevianamide $\mathrm{B},{ }^{11}$ including a simple oxindole model study, ${ }^{11 \mathrm{c}}$ which set a firm foundation for addressing some of the

[^12]
Scheme 1

Scheme 2

stereochemical and regiochemical issues that would be faced in attacking the paraherquamide ring system.

Results and Discussion

Construction of the Dioxepinooxindole Ring System. The prenylated catechol ring system of the paraherquamides is an unusual oxidative cyclization product that previously has not been observed to occur in metabolites of mixed biogenetic origin. Although the parent $2 H-1,5$-benzodioxepin has been synthesized previously, ${ }^{20}$ to the best of our knowledge there has been no reported synthesis of the corresponding isoprenyl dioxepin ring system of paraherquamide. The synthesis of this ring system was explored in a simple model study employing prenylated catechol 24 (Scheme 2). ${ }^{21}$ It was speculated that the requisite 7 -endo-tet cyclization reaction would be facilitated by a stabilized tertiary carbocation provided by the prenyl substituent.
The first attempt at effecting this cyclization reaction
(20) Guillaumet, G.; Coudert, G.; Loubinnoux, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 64.

2H-1,5-benzodioxepin
(21) Williams, R. M.; Cushing, T. D. Tetrahedron Lett. 1990, 31, 6325.
employed a phenylselenoetherification. ${ }^{22}$ Following a procedure of Clive, ${ }^{23} 24$ cyclized to 25 with either PhSeCl or N phenylselenophthalimide (N-PSP), ${ }^{24}$ although in very low yield. The main byproducts came from the electrophilic addition across the double bond, electrophilic aromatic substitution of the phenyl ring by the phenyl selenide, and phenolic attack at the methylene producing the six-membered-ring product. The selenide 25 was treated with $\mathrm{H}_{2} \mathrm{O}_{2}$ and the resulting selenoxide thermally eliminated providing the unique dioxepin 26 in 49% yield.

Due to the low yield of the phenylselenoetherification, an alternative procedure involving epoxidation followed by a Lewis acid-mediated ring closure was investigated. ${ }^{25}$ The prenylated catechol 24 was epoxidized with buffered m-CPBA to provide epoxide 27, which was treated with stannic chloride to give the dioxepin 28. A major side product in this reaction was a ketone,

[^13]Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) 4.0 equiv of $\mathrm{NaOH}, 1.0$ equiv of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 81-93 \%$; (b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{AcOH}, 92 \%$; (c) 2.5 equiv of $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 99 \%$; (d) 1.2 equiv of prenyl bromide, 1.1 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $0^{\circ} \mathrm{C}$ to room temperature, 52%; (e) m - $\mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) 1.2 equiv of $\mathrm{SnCl}_{4}, \mathrm{THF}, 64 \%$; (g) 1.6 equiv of $\mathrm{NaBH}_{4}, 3.5$ equiv of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, THF, $44-50 \%$; (h) t - $\mathrm{BuMe}_{2} \mathrm{SiCl}$, im, DMF, $40{ }^{\circ} \mathrm{C}, 83 \%$; (i) $\mathrm{CH}_{2} \mathrm{O}$, $\mathrm{HNMe}_{2}, \mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}, 99 \%$.
resulting from a 1,2 hydride shift. ${ }^{26}$ A number of methods were explored to effect the dehydration of the secondary alcohol of dioxepin 28; the best result was realized with methyltriphenoxyphosphonium iodide (MTPI) in HMPA to provide $26 .{ }^{27}$

With a proven method accessible for the construction of the dioxepin ring system, attention was focused on constructing the requisite gramine derivative. Oxygenated indoles are notoriously unstable and undergo facile autoxidation, ${ }^{28}$ photooxidation, ${ }^{29}$ dimerization, and polymerization. ${ }^{30}$ In light of this problematic reactivity, our plan called for formation of the dioxepin ring system prior to indole (gramine) formation. The approach employed involved the formation of a suitably substituted oxindole (essentially a protected indole), followed by the construction of the dioxepin and final elaboration into the gramine derivative.
The known pyruvic acid 29 (Scheme 3) ${ }^{31}$ (prepared in five steps from vanillin) was oxidatively decarboxylated ${ }^{32}$ to afford the phenylacetic acid $\mathbf{3 0}$, which was reductively cyclized to give the required oxindole 31^{33} in nearly quantitative yield.
At this point, a method was needed to differentiate between the two phenolic substituents for the prenylation reaction. A number of attempted selective protecting group strategies were

[^14]

See: (a) Walker, G. N. J. Am. Chem. Soc. 1955, 77, 3844. (b) Burton, H.; Duffield, J. A.; Prail, P. F. G. J. Chem. Soc. 1950, 1062. (c) Beer, R. J. S.; Mcgrath, L.; Robertson, A.; Woodier, A. B. J. Chem. Soc. 1949, 2061. (d) Beer, R. J S.; Clarke, K.; Khorana, H. G.; Robertson, A. J. Chem. Soc. 1948, 2223. (e) Chan, A. C.; Hilliard, P. R., Jr. Tetrahedron Lett. 1989, 30, 6483. (f) d'Ischia, M.; Prota, G. Tetrahedron 1987, 43, 431. (g) Deibel, R. M. B.; Chedekel, M. R. J. Am. Chem. Soc. 1984, 106, 5884. (h) Heacock, R. A. Chem. Rev. 1959, 59, 181.
(31) (a) Beer, R. J. S.; Clarke, K.; Davenport, H. F.; Robertson, A. J. Chem. Soc. 1951, 2029. (b) Bennington, F.; Morin, R. D.; Clark, L. C., Jr. J. Org. Chem. 1959, 24, 917.
(32) Kosuge, T.; Ishida, H.; Inabe, A.; Nukaya, H. Chem. Pharm. Bull. 1985, 33, 1414.
explored, but nothing satisfactory was found; it was thus decided to forgo any protecting group for the 6 -hydroxy position. Oxindole 31 was cleanly demethylated upon treatment with (clear) boron tribromide. The resulting oxindole 32 was subjected to the prenylation conditions, and the desired alkylated product 33 was obtained in 52% yield. ${ }^{34,35}$ Both of the methods discussed above for the formation of the seven-membered ring were examined. The phenylselenoetherification procedure failed on this substrate, and only products resulting from electrophilic aromatic substitution were formed.

The alternative epoxidation/Lewis acid-mediated cyclization again proved to be successful on this substrate. The epoxidation reaction (m-CPBA) had to be buffered with NaHCO_{3}, to prevent the formation of the six-membered-ring tertiary alcohol. In most cases, the reaction was worked up and taken on to the next step without purification (the labile epoxide tended to cyclize to the six-membered tertiary alcohol upon contact with silica gel). The incipient epoxide product was directly treated with SnCl_{4} in THF to provide the desired seven-membered-ring alcohol 34 (64% overall yield from 33).

N -Alkylated oxindoles have been reported to be reduced to indoles by the use of DIBAL or $\mathrm{LiAlH}_{4}{ }^{36}$ however, in the case of unsubstituted oxindoles, this reduction either fails or requires
(33) This material has interesting chemical and physical characteristics The solvent must be removed immediately after the hydrogenolysis to prevent the white product from turning to a black sludge. This oxindole 31 would also change from a white color to a metallic gray simply by drying on the vacuum pump. These decomposition properties are no doubt due to the autoxidation of the indole tautomer form.
(34) The undesired regioisomer was obtained in less than 1% yield, and the bis-alkylated material was produced in only 8.3% yield. This selectivity is presumably a manifestation of the domination of inductive effects of the amide functionality directing the alkylation to the 7-position
(35) The structure of compound 33 was confirmed by simply tosylating 33 and comparing the product (37) to the same substance prepared from 31. The two independently synthesized products were identical in every way.

(36) (a) Kishi, Y.; Nakatsuka, S.; Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95, 6494. (b) Robinson, B. Chem. Rev. 1969, 69, 785.

Scheme 4^{a}

${ }^{a}$ Reagents and conditions: (a) 36, 0.5 equiv of $\mathrm{PBu}_{3}, \mathrm{MeCN}, 51 \%$; (b) $\mathrm{DMAP}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{BOC}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; (c) 5 equiv of $\mathrm{LiCl}, 1.5$ equiv of $\mathrm{H}_{2} \mathrm{O}$, HMPA, $100{ }^{\circ} \mathrm{C}$, 66%; (d) 3.0 equiv of n - $\mathrm{Bu}_{4} \mathrm{NF}$, THF, 79%; (e) 1.9 equiv of $\mathrm{LiCl}, 4.0$ equiv of collidine, 4.0 equiv of $\mathrm{MsCl}, \mathrm{DMF}, 86 \%$; (f) t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 76 \%$; (g) 10 equiv of NaH , benzene, 11%.

Figure 2.
more vigorous conditions. In 1972 it was reported ${ }^{37}$ that substituted and unsubstituted oxindoles could be reduced to the corresponding indole in high yields with borane in THF at 0 ${ }^{\circ} \mathrm{C}$. Oxindole 34 was subjected to these conditions ($1.0 \mathrm{M} \mathrm{BH}_{3} /$ THF, Aldrich), but with no reaction. However, when oxindole 34 was treated with 1.6 equiv of NaBH_{4} and 3.5 equiv of $\mathrm{BF}_{3}{ }^{\circ-}$ OEt_{2} in THF for 1 day ($0^{\circ} \mathrm{C}$ to room temperature), the desired indole 35 was obtained in $43-50 \%$ yield. The indole 35 was treated with a warm solution of TBDMSCl and imidazole in DMF, to provide the required O-silylated indole, which was easily converted to the gramine 36 through the well-known Mannich procedure (Scheme 3).

Construction of the Bicyclo[2.2.2] Ring System. To probe the stability of the dioxepin-indole in subsequent transformations, a model study involving the previously synthesized racemic piperazinedione 38^{38} was investigated (Scheme 4). Indole 36 was condensed with the piperazinedione $\mathbf{3 8}$ following the Somei/Kametani conditions ${ }^{18}$ to give the desired syn product 39 (a racemic mixture of two diastereomers) in 51% yield. The relative stereochemistry of this substance was evident by an examination of the ${ }^{1} \mathrm{H}$ NMR spectrum. There is a large upfield shift of the proline ring protons of $39(\delta \mathrm{Ha}, \mathrm{Hb}, \mathrm{Hc} ; 0.03-$ $0.19(\mathrm{~m}), 0.43-0.52(\mathrm{~m}), 0.62-0.72(\mathrm{~m}) \mathrm{ppm})$. It is wellknown that N -alkylated piperazinediones prefer to adopt a boatlike conformation due to the planar geometry of the amides and A-1,3 steric interactions of N -alkyl residues. This forces the

[^15]substituents on the amino acid α-carbons to adopt either pseudoaxial or pseudoequatorial dispositions. In conformer B (Figure 2) the carbomethoxy group is sterically congested by the bulky isopentenyl group, favoring the alternate boat conformer (A), which positions the indole ring under the piperazinedione, positioning the two pyrrolidine protons Ha and Hb directly over the shielding cone of the aromatic indole ring system; the corresponding anti-isomer cannot adopt this type of conformation. Furthermore, a consideration of the mechanism of the Somei/Kametani reaction ${ }^{18}$ supports the expectation that the syn-isomer (39) should be the major product. The gramine derivative (36) reacts with tributylphosphine to form a bulky (tributylphosphino)indole intermediate that can only approach from the less congested face of the piperazinedione enolate, away from the isopentenyl moiety.

A similar phenomenon was observed when 39 was subjected to the decarbomethoxylation procedure ($\mathrm{LiCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HMPA}$) directly. The two main products isolated were the $s y n$-isomer 40 and the anti-isomer 41, in a ratio of 3.3:1.0 (Figure 3). These stereochemical assignments were made by comparing the ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{4 0}$ and $\mathbf{4 1}$. There was a pronounced upfield shift of three pyrrolidine ring protons in compound 41, a shift that is not observed for diastereomer 40 .

Piperazinedione 39 was first converted to the BOC-protected indole 42, which was subsequently subjected to a decarbomethoxylation reaction supplying the syn-diastereomer $\mathbf{4 3}$ as

[^16]

Figure 3.
Scheme 5^{α}

${ }^{a}$ Reagents and conditions: (a) 3.8 equiv of $\mathrm{CAN}(0.33 \mathrm{M}), 2: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{~h}, 79 \%$; (b) (i) 2 equiv of NaBH 4 , EtOH ; (ii) t - BuPh 2 SiCl , im, DMF, 75%; (c) (i) 1.0 equiv of n-BuLi, 1.1 equiv of $\mathrm{MeOCOCl},-78{ }^{\circ} \mathrm{C}$; (ii) 2.2 equiv of $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}, 1.1$ equiv of $\mathrm{MeOCOCl}, \mathrm{THF},-100{ }^{\circ} \mathrm{C}$, 93%; (d) 36, 0.5 equiv of $\mathrm{PBu}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 73%; (e) LiCl, HMPA, $100^{\circ} \mathrm{C}$ (syn/anti 3:1), 89%; (f) $\mathrm{Me}_{3} \mathrm{OBF}_{4}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(s y n, 81 \%$; anti, $62-71 \%$); (g) (i) $\mathrm{BOC}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (ii) n - $\mathrm{Bu}_{4} \mathrm{NF}$, THF (syn, 90%; anti, 85%); (h) NCS, $\mathrm{Me}_{2} \mathrm{~S}$ (syn, $74-81 \%$; anti, 86%).
the major product. Compound 43 (the minor, anti-diastereomer was not utilized) was desilylated to provide the diol 44 , which was converted to the allylic chloride 45. Careful treatment of 45 with t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}^{2}$, to prevent transesterification of the BOC groups, ${ }^{39}$ gave the desired product $\mathbf{4 6}$ in 76% yield. Allylic chloride 46 was subjected to 10 equiv of NaH in refluxing benzene, but the reaction proved extremely sluggish. After 5 days, the desired product 47 was obtained in a poor 11% yield (19% based on recovered 46 ; accompanied by extensive decomposition). The $s y n$-isomer 47 was the only stereoisomer formed in this reaction; the corresponding anti-isomer was not detected. While this reaction demonstrated the potential viability of the stereoselective intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, work on the racemic model system was halted, due to the low yield in this

[^17]key transformation coupled with perceived difficulties associated with removing the N - p-methoxybenzyl group.

Total Synthesis of (+)-Paraherquamide B. Starting from the known piperazinedione 48 (prepared in eight steps from (S)proline), ${ }^{11}$ the enal 49 was obtained in 79% yield by treatment of 48 with a 0.33 M solution of ceric ammonium nitrate (Scheme 5). ${ }^{40}$ The resulting product (49) was reduced with NaBH_{4} and protected with $t-\mathrm{BuPh}_{2} \mathrm{SiCl}$ in a two-step process to give the silyl ether $\mathbf{5 0}$ in $\mathbf{7 5 \%}$ yield. Compound $\mathbf{5 0}$ was then subjected to a two-step, one-pot acylation providing the required substrate 51 in 93% yield. The crude material was a mixture of epimers in a ratio of approximately $4: 1$ (syn:anti). Interestingly this mixture had a tendency to epimerize during column chroma-

[^18]

Figure 4.
Scheme 6

tography, resulting in an inerease in the proportion of the synisomer. The two products were combined and condensed with the gramine $\mathbf{3 6}$ providing the indole 52 in 73% yield as a mixture of two diastereomers (epimeric at the secondary alcohol stereogenic center). Interestingly, the imidic carbamate group was also cleaved in the course of this reaction. Compound $\mathbf{5 2}$ was subjected to the decarbomethoxylation procedure, affording a 3:1 mixture of $\mathbf{5 3}$ (syn) and $\mathbf{5 4}$ (anti) in 89% combined yield.
The lactam 53 could be converted to the N-BOC-protected allylic chloride 55 in four steps and in good overall yield (Scheme 6), but numerous attempts to effect the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction on this substrate failed. These reactions were capricious and were accompanied by the occasional appearance of the spirolactones $\mathbf{5 6}$ and $\mathbf{5 7}$, formed in low yield $<5 \%$ (Figure 4). It seems likely that the failure of $\mathbf{5 5}$ to cyclize in the desired fashion can be attributed to nonbonding interactions between the tert-butoxycarbonyl group and the pendant dioxepin indole. ${ }^{41,42}$
These observations dictated that a suitable amide protecting group would have to be selected that was less electron withdrawing and less sterically demanding than both the tertbutoxycarbonyl and the p-methoxybenzyl groups. The loss of the lactam methoxycarbonyl group in the alkylation of $\mathbf{5 1}$ with the gramine 36 was presumably due to $\mathrm{N} \rightarrow \mathrm{N}$ acyl transfer to dimethylamine, a byproduct of the Somei/Kametani reaction. This appears to be a general reaction that was used to selectively deprotect the N-tert-butoxycarbonyl group of $\mathbf{5 8}$ without deblocking the N -tert-BOC-protected indole. Thus, refluxing a

[^19]solution of $\mathbf{5 8}$ and $\mathrm{Mc}_{2} \mathrm{NH}$ in $\mathrm{CH}_{3} \mathrm{CN}$ furnished compound $\mathbf{5 9}$ in 92% yield ${ }^{43}$ (Scheme 7).

The strategy planned for the reduction of the tertiary amide called for the protection of the secondary lactam as a lactim ether, ${ }^{44}$ and this group seemed suitable for use earlier in the synthesis and appeared compatible with the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization. Thus, syn-isomer 53 was treated with 20 equiv (optimum) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and 5 equiv of $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ in dichloromethane for 4 h , to yield 81% of compound $\mathbf{6 0}$. Even though the next two reactions could be carried out in a stepwise fashion, it proved most convenient to convert 60 directly to the protected diol 62 in a one-pot, two-step sequence. Diol 62 was then subjected to the chlorination procedure successfully used in the conversion of diol $\mathbf{4 4}$ to the allylic chloride 45. Unfortunately, under these conditions, the reaction failed and the lactim ether was cleanly deblocked back to the lactam. This problem was finally solved by following the procedure of Corey, ${ }^{45}$ which called for the addition of compound 62 to a mixture of N-chlorosuccinimide and dimethyl sulfide, which yielded the chloride 64 in 81% yield.

Allylic chloride $\mathbf{6 4}$ was reprotected with $t-\mathrm{BuPh}_{2} \mathrm{SiOTf}$ to provide 66 in $77-82 \%$ yield. The stage was now set to effect the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction. Compound 66 was refluxed in benzene with 20 equiv of sodium hydride, resulting in a very clean and highyielding cyclization reaction furnishing the desired product 68 in 93% yield (Scheme 8).

[^20]
Scheme 7

Scheme 8

A. ENDO

This last series of reactions was also carried out in parallel on the anti-isomer 54. Following the same sequence (five steps) we obtained the fully protected chloride 67 in good yield. The chloride 67 was then refluxed in benzene with the required amount of sodium hydride to yield the same product ($\mathbf{6 8}, 85 \%$
yield) as that obtained from 66. The yields of $\mathbf{6 8}$ from both routes were very high, and the undesired anti-diastereomer was not detected. The high degree of facial selectivity observed in the cyclizations to 68 and 47 is quite interesting and warrants some comments. It is generally accepted that $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions

Figure 5.
favor a syn orientation ${ }^{46}$ (i.e., the incoming nucleophile attacks the π-electrons from the same face as the departing leaving group, polarizing the π-system in the proper orientation for a "backside" displacement on the $\mathrm{C}-\mathrm{Cl}$ bond). Alternatively, a frontier molecular orbital analysis has indicated ${ }^{46 a}$ that the stabilization imparted by a $\mathrm{HOMO}_{\mathrm{Nuc}}-\mathrm{LUMO}_{\text {allylic }}$ interaction is greater for the syn overlap. While the greatest level of diastereoselectivity was observed with a nonpolar aprotic solvent (benzene), a fairly significant change in the relative amounts of the syn- and anti-diastereomers can be realized by simply changing the solvent to a more polar solvent such as DMF. ${ }^{11}$ In the present system, additional stabilization for the endo transition state may be due to the formation of a tight contact ion pair between the chlorine atom and sodium atom of the enolate species (see \mathbf{A}, Scheme 8) in the transition state for the formation of the $\mathrm{C}-\mathrm{C}$ bond. ${ }^{47}$ The poor ligating solvent benzene is not capable of effectively solvating the enolate cation nor the developing chloride anion in the transition state. It is reasonable that this type of association favors the rotamer that positions the allylic chloride moiety over the enolate, resulting in the desired syn stereochemistry.

With the bicyclo[2.2.2] ring system constructed in a reliable and high-yielding sequence, attention was turned to the final $\mathrm{C}-\mathrm{C}$ bond-forming reaction on the indole. Due to the strongly acidic conditions that were used previously for a related cyclization reaction in the brevianamide synthesis, it was assumed that the silyl ether, the tert-butoxycarbonyl protecting group, and the lactim ether would be removed during this cyclization reaction. Subjecting compound 68 to the standard conditions (dilute, aqueous HCl in dioxane at $10^{\circ} \mathrm{C}$) ${ }^{11,19,48}$ resulted in extensive decomposition, and none of the desired cyclized product was ever detected. The reaction conditions were extensively varied using different acids and temperatures, but the only recognizable products were those stemming from the loss of protecting groups. The problem might be attributed to the enhanced basicity of the indole at the 2-position (indole numbering) caused by the electron-donating oxygen atoms in the aromatic ring. If protonation at the 2 -position is kinetically competitive with olefin protonation, cyclization would be precluded.

A search of the literature revealed a 1982 Trost and Fortunak paper ${ }^{49}$ wherein PdCl_{2} and AgBF 4 were utilized to effect the

[^21]Heck-type cyclialkylations of various isoquinuclidine model compounds. Compound 68 was exposed to these conditions, affording the heptacycle 69 in $63-82 \%$ yields. During the course of the reaction, the lactim ether moiety was cleaved, restoring the free, secondary amide. ${ }^{50}$ The main byproduct of this reaction was the uncyclized free lactam 68a (Figure 5), which curiously did not cyclize to 69 when subjected to the same conditions. It was also observed that the lactim ether protected heptacycle 71 could not be deblocked to the free lactam 69 with PdCl_{2} and AgBF_{4} alone, implying that the cleavage of the lactim ether is due to the tetrafluoroboric acid produced in the cyclization, and that the cyclization occurs prior to lactim ether cleavage.

Trost and Fortunak speculated ${ }^{49}$ that the cyclization mechanism was either a Heck-type arylation or the electrophilic aromatic substitution of a palladium-complexed olefin, and there was evidence to support both mechanistic possibilities. It is possible that the palladium chloride and the silver tetrafluoroborate react to form a powerful Lewis acid, since an incubation period involving these two reagents is needed prior to the introduction of the substrate. It was reported ${ }^{49}$ that there is no reaction with other mixed-metal systems involving palladium chloride (e.g., boron trifluoride, aluminum chloride, stannous chloride, stannic chloride, titanium trichloride). The enhanced basicity (nucleophilicity) at the 2-position of indole 68 renders this substance perfectly disposed to undergo a Heck-type arylation reaction.

There are several reports of methods that will selectively reduce a tertiary amide in the presence of a secondary amide. ${ }^{51}$ The secondary lactam of 69 was protected as the lactim ether 71 and treated with diborane; however, the spectral characteristics of the major products isolated were consistent with reduction of both the tertiary amide and the lactim ether. In 1991 Martin et al. ${ }^{52}$ successfully used alane to reduce a tertiary amide in the presence of an oxindole (secondary amide) relying on the known rate difference for reduction between these two groups. ${ }^{53}$ However, initial experiments with this reagent gave poor results, with the secondary amide undergoing reduction along with the tertiary amide. Compound 69 (and 71) is sufficiently twisted such that the gem-dimethyl groups effectively block the β-face of the tertiary amide (Figure 6),

[^22]

69

$69 a$
rangement before the amide reduction step was investigated. Thus, piperazinedione 69 was readily deblocked with TFA to provide the amide 76 in 95% yield (Scheme 10). This substance was treated with $t-\mathrm{BuOCl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in the same manner as before, producing two products $77 / 78$ ($\approx 1: 4$ ratio). Using a milder $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}$ system (stirring at room temperature), an oxindole compound 79 was formed in 29% yield. Although this result was encouraging, this substance appeared to possess the incorrect relative stereochemistry at the spiro-ring juncture. This assignment was supported by comparing the ${ }^{1} \mathrm{H}$ NMR spectra of 79 and an authentic sample of (- -paraherquamide B (1). The gem-dimethyl signals of 79 were shifted upfield, indicating that one methyl group is in the shielding cone of the oxindole carbonyl.

After a careful reexamination of the decomposition products obtained from the attempted pinacol-type rearrangement of 73, it was determined that there were mainly two decomposition pathways, and that they were in direct competition with the desired process. These two pathways involve the intermediacy of an oxonium-stabilized tertiary carbocation (at C-3 of the indole) that decomposes to quinone-type products. Additionally, products were isolated whose spectral characteristics were consistent with an elimination process followed by nucleophilic reaction with the solvent at the tryptophan benzylic carbon.

In the classical pinacol rearrangement there is a distinct carbonium ion intermediate, but recent studies have shown that this may in fact be more of a concerted process ${ }^{57}$ and, furthermore, that the nature of the solvent can have an impact on which of the two processes, concerted or stepwise, will predominate. There have been conflicting reports in the literature on whether this type of rearrangement is, at all times, stereospecific. ${ }^{58,59}$ A detailed study ${ }^{59 \mathrm{c}}$ involving the isolation and separation of the two diastereomeric chloroindolenines derived from yohimbine demonstrated that this reaction can be entirely stereospecific. Alternatively, by increasing the solvating power of the reaction medium, each of these chloroindolenines formed two rearranged products, indicating that the reaction went (at least in part) by way of a carbocationic intermediate. This is consistent with the observed production of $\mathbf{7 9}$ from 77 and 78. A less polar solvent system should minimize the side reactions involving carbocation intermediates and, at the same time, should increase the stereospecific nature of the pinacoltype rearrangement. Thus, treatment of $\mathbf{7 3}$ with $t-\mathrm{BuOCl}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the two chloroindolenines 74 and 75 ($\approx 2.25: 1$ ratio, respectively). The solvent was removed, and the crude reaction mixture was refluxed with a solution of 95% THF, $4 \% \mathrm{H}_{2} \mathrm{O}$, and 1% TFA, giving a 62% yield of oxindole products (43% of the desired $\mathbf{8 0}$ and 19% the epi product $\mathbf{8 1}$). ${ }^{60}$ The C-3-epi-isomer (81) was easily distinguishable from the desired isomer ($\mathbf{8 0}$) by the upfield shift of the gem-dimethyl signals in the ${ }^{1} \mathrm{H}$ NMR spectrum. The relative amounts of products ($\mathbf{8 0}$ and 81) indicate that the cyclization was stereospecific under these conditions. It was thus deduced that an increase in the ratio of the desired oxindole 80 to the undesired

[^23]Scheme 9^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{PdCl}_{2}, \mathrm{AgBF}_{4}, \mathrm{MeCN}$; (b) $\mathrm{NaBH}_{4}\left(63-82 \%\right.$ from 68); (c) 1.1 equiv of $\mathrm{Et}_{3} \mathrm{Al}, 5.0$ equiv of $\mathrm{AlH}-\mathrm{DMEA}, \mathrm{THF}$, toluene; (d) 2.0 equiv of $\mathrm{NaCNBH}_{3}, \mathrm{AcOH}, \mathrm{MeOH}$ (65% from 69); (e) 2.5 equiv of $\mathrm{NaH}, 2.0$ equiv of MeI, DMF (98%); (f) 80 equiv of TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(96 \%\right.$); (g) t - BuOCl , pyridine, $-15^{\circ} \mathrm{C}$; (h) $90 \% \mathrm{THF}, 10 \% \mathrm{H}_{2} \mathrm{O}, \mathrm{pTsOH}$ (76%); (i) MTPI, DMPU (79%).

Scheme 10

Scheme 11

isomer $\mathbf{8 1}$ could be achieved simply by finding a method that would increase the ratio of chloroindolenines (74:75). The α-face of $\mathbf{7 3}$ is considerably more hindered than the β-face, a
supposition that was supported by the difficulties encountered in the reduction of 71 and 69. Increasing the steric bulk of the chlorinating agent should favor attack on the β-face of $\mathbf{7 3}$, thus

Figure 7.
providing a greater relative amount of chloroindolenine 74. When 73 was treated with $t-\mathrm{BuOCl}$ in pyridine instead of triethylamine, the desired chloroindolenine $\mathbf{7 4}$ was produced in a much more stereoselective fashion. It can be speculated that tert-butyl hypochlorite forms a bulky complex with pyridine, delivering the chlorine more selectively to the least hindered α-face of 73 (only a small amount, $\approx 5 \%$, of the undesired isomer 75 was formed under these conditions (Scheme 11)).

Employing a minor modification of the solvent system, the crude mixture of $\mathbf{7 4 / 7 5}$ was refluxed with a solution of 90% tetrahydrofuran, $10 \% \mathrm{H}_{2} \mathrm{O}$ containing 15 equiv of p-toluenesulfonic acid to give the desired oxindole $\mathbf{8 0}$ in 76% yield (from 73), with only 4% of the undesired $\mathbf{8 1}$ being formed.

The stereospecific conversion of the chloroindolenines into the corresponding oxindoles requires that the water molecule attack the imine from the same face as the chlorine atom. Anti attack on the imine is not as likely because of certain stereoelectronic effects. ${ }^{59 \mathrm{c}}$ The addition of water to the β-face of 74 situates the six-membered ring adjacent to the indole ring in a stable chair conformation that would also place the $\mathrm{C}-\mathrm{Cl}$ bond and the migrating $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CC}$ group in an unfavorable syn alignment. Conversely, the addition of water to the α-face of compound 75 would result in an unfavorable boat conformation that would also place the $\mathrm{C}-\mathrm{Cl}$ bond and the migrating $\left(\mathrm{CH}_{3}\right)_{2-}$ CC group in an unfavorable syn alignment. Thus, the major isomer 74 must either (1) suffer kinetically controlled attack by water on the same face of $\mathbf{7 4}$ as the chlorine atom, which aligns the migrating group and the $\mathrm{C}-\mathrm{Cl}$ bond in a stereoelectronically favorable anti orientation, or (2) undergo reversible attack by water from either face, with only the correct carbinolamine, which aligns the migrating group and the $\mathrm{C}-\mathrm{Cl}$ bond in a stereoelectronically favorable anti orientation, rearranging irreversibly to the oxindole.

The final dehydration reaction (MTPI, DMPU, 18 h) on the alcohol $\mathbf{8 0}$ produced $(+)$-paraherquamide $\mathrm{B}(\mathbf{1 2)}$ in 79% yield (Scheme 9). This substance proved to be identical to the natural product by comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, mobility on TLC, IR spectra, mass spectra, and UV spectra. Comparison of the CD spectra of the natural (-)-paraherquamide $B(\mathbf{2})$ and the synthetic (+)-paraherquamide $\mathrm{B}(\mathbf{1 2)}$ (Figure 7) confirmed the expected enantiomeric relationship between these two products.

Conclusion

The first stereocontrolled, asymmetric total synthesis of $(+)$ paraherquamide B has been completed. The synthesis is
convergent, starting from (S)-proline and vanillin with an overall yield of 1.4% from (S)-proline.

Key features of this synthesis include (1) a new method to effect reduction of unprotected oxindoles to indoles; (2) a complex application of the Somei/Kametani reaction that concomitantly effected a desired decarbomethoxylation; (3) a high-yielding and entirely stereocontrolled intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ cyclization reaction; (4) a mild $\mathrm{Pd}(\mathrm{II})$-mediated cyclization reaction that concomitantly deblocked a lactim ether protecting group; and (5) the chemoselective reduction of a highly hindered tertiary lactam in the presence of an unhindered secondary lactam, utilizing precoordination of the more reactive secondary lactam to triethylaluminum.

Experimental Section

General information. Melting points were determined in openended capillary tubes and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on either a Bruker WP-270SY 270 MHz or a Bruker AC300P 300 MHz NMR spectrometer. Chemical shifts are reported in ppm relative to CHCl_{3} at $\delta 7.24$ or TMS at $\delta 0.0$. IR spectra were recorded on a Perkin-Elmer 1600 FT IR spectrometer. Mass spectra were obtained on a V. G. Micromass Ltd. Model 16F spectrometer. The CD spectrum was obtained on a Jasco J 710 spectropolarimeter. High-resolution mass spectra were obtained from the Midwest Center for Mass Spectrometry Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE. Elemental analyses were obtained from M-H-W Laboratories, Phoenix, AZ. Optical rotations were recorded on a Perkin-Elmer 24 polarimeter at a wavelength of 589 nm using a 1.0 dm cell of 1.0 mL total volume.

Column chromatography and flash column chromatography were performed with silica gel grade $60(230-400$ mesh $)$. Radial chromatography was performed with a Harrison Rescarch Chromatotron Model 7924 using E. Merck silica gel 60 PF-254 containing gypsum; 1, 2, 4, and 8 mm plates were used as needed. Preparatory thin layer chromatography (PTLC) was carried out with Merck Kieselgel $60 \mathrm{~F}_{254}$ precoated glass plates (either 0.25 or 0.50 mm); visualization was carried out with ultraviolet light and/or heating with a solution of $5-7 \%$ phosphomolybdic acid; staining with I_{2}; vanillin; or Dragendorf.

All solvents were commercial grade and were distilled and dried as follows: tetrahydrofuran (THF) from sodium benzophenone ketyl; diethyl ether from sodium benzophenone ketyl; carbon tetrachloride from calcium hydride; dioxane from sodium; benzene from sodium benzophenone ketyl; dichloromethane from calcium hydride; acetonitrile from $\mathrm{P}_{2} \mathrm{O}_{5}$. DMF was dried and stored over $3 \AA$ molecular sieves, as were benzene and toluene. HMPA was dried and stored over $4 \AA$ molecular sieves. Dimethyl sulfide, 2,6-lutidine, triethylamine, and pyridine were all distilled prior to use. Phenylselenium chloride was purified by sublimation. N-Chlorosuccinimide (NCS) was recrystallized from benzene. LiCl was dried and stored in the oven. All other reagents were commercial grade and used without further treatment. Abbreviations are used throughout: N, N-dimethylformamide (DMF); acetic acid (AcOH); di-tert-butyl dicarbonate $\left((\mathrm{BOC})_{2} \mathrm{O}\right)$; methyltriphenoxyphosphonium iodide (MTPI); ethyl acetate (EtOAc); m-chloroperbenzoic acid (m-CPBA); (N, N-dimethylamino)pyridine (DMAP); hexamethylphosphoramide (HMPA); ceric ammonium nitrate (CAN); methanesulfonyl chloride (MsCl); N-chlorosuccinimide (NCS); trifluoroacetic acid (TFA); dimethylethylamine (DMEA); imidazole (im); 1,3-dimethyl-3,4,5,6-tetrahydro-2($1 H$)-pyrimidinone (DMPU).

2-[(3-Methyl-2-butenyl)oxy]phenol (24). To a stirred, cold $\left(0^{\circ} \mathrm{C}\right)$, dark solution of catechol $(2.07 \mathrm{~g}, 18.8 \mathrm{mmol}, 5.0$ equiv) in DMF (65 mL) in a reaction vessel that had been flushed with Ar was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.520 \mathrm{~g}, 3.76 \mathrm{mmol}$, 1.0 equiv). After 5 min , prenyl bromide ($0.441 \mathrm{~mL}, 3.76 \mathrm{mmol}, 1.0$ equiv) was added dropwise. The reaction mixture was kept at $0{ }^{\circ} \mathrm{C}$ for $\sim 6 \mathrm{~h}$ and stirred at room temperature for an additional 18 h . The mixture was then poured into a separatory funnel, diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, and extracted five times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over MgSO_{4}, and evaporated to dryness. The residue was purified by radial chromatography (eluted with 1% ethyl acetate/hexanes) to give $479 \mathrm{mg}(71 \%)$ of $\mathbf{2 4}$ as a colorless oil. An analytical sample was obtained by PTLC on silica gel (eluted with hexanes).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.74(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s})$, $4.57(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 5.49(1 \mathrm{H}, \mathrm{m}), 5.70\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.82-$ $6.92(4 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): $3533,2932,1612,1502,1467,1385$, $1259,1221,1106,997,743 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m / e (relative intensity) $178(11), 161(11), 110(78), 69(67), 32(100)$. Microanalysis calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$: $\mathrm{C}, 74.13 ; \mathrm{H}, 7.92$ Found: $\mathrm{C}, 73.88 ; \mathrm{H}, 8.00$.
(\pm)-3,4-Dihydro-2,2-dimethyl-3-(phenylseleno)-2H-benzodioxepin (25). A solution of phenylselenium chloride ($117.8 \mathrm{mg}, 0.615$ mmol, 1.05 equiv) in EtOAc ($4.1 \mathrm{~mL}, 0.15 \mathrm{M}$) was slowly added (~ 1 $\mathrm{mmol} / \mathrm{h}$) to a stirred solution of $24(104.4 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{EtOAc}(3.90 \mathrm{~mL}, 0.15 \mathrm{M})$ at $-75^{\circ} \mathrm{C}$ under Ar. This mixture was allowed to warm to room temperature and was stirred for a total of 17 h. The solution was poured into a separatory funnel and washed twice with $\mathrm{H}_{2} \mathrm{O}$ and once with brine. The organic layer was dried over MgSO_{4} and evaporated to dryness. The residue was purified by PTLC (eluted with $1: 3$ hexanes/benzene) to afford $62.1 \mathrm{mg}(32 \%)$ of $\mathbf{2 5}$. An analytical sample was obtained by PTLC (eluted with hexanes, and then distilled under reduced pressure).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.28(3 \mathrm{H}, \mathrm{s}), 1.76(3 \mathrm{H}, \mathrm{s})$, $3.62(1 \mathrm{H}, \mathrm{dd}, J=3.4,10.3 \mathrm{~Hz}), 4.17(1 \mathrm{H}, \mathrm{dd}, J=10.3,12.6 \mathrm{~Hz})$, $4.40(1 \mathrm{H}, \mathrm{dd}, J=3.5,12.6 \mathrm{~Hz}), 6.94-6.98(4 \mathrm{H}, \mathrm{m}), 7.30-7.34(3 \mathrm{H}$, $\mathrm{m}), 7.59-7.62(2 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): $2986,1491,1256,1088$, $1000 \mathrm{~cm}^{-1}$. HRMS (EI): m/e $334.0473\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Se}\right.$ requires 334.0472).

2,2-Dimethyl-2H-1,5-benzodioxepin (26). To a stirred solution of $25\left(61.7 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.0\right.$ equiv) in THF (3 mL) was added $\mathrm{H}_{2} \mathrm{O}_{2}$ $\left(0.21 \mathrm{~mL}, 0.5 \mathrm{mmol}, 10\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 0.5 h and then brought to reflux temperature for 0.5 h . The mixture was poured into a separatory funnel, diluted with water, and extracted with ether. The ethereal solution was washed with brine, dried over MgSO_{4}, and evaporated to dryness. The residue was purified by PTLC (eluted with $1: 3$ hexanes/EtOAc) to afford $16.0 \mathrm{mg}(49 \%)$ of 26 as a pale yellow oil (see data below).

Compound 26 was also obtained from 28 as follows: To a solution of $\mathbf{2 8}\left(76.2 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0\right.$ equiv) in HMPA (2 mL) under N_{2} at room temperature was added MTPI ($291.5 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.6$ equiv) all at once. After being stirred for 1 day, the mixture was poured into a separatory funnel containing 1 M NaOH and was extracted with ether. The organic layer was washed with brine and dried over MgSO_{4}. Evaporation gave a crude yield of 163.5 mg . The crude product was purified by radial chromatography (eluted with 1:10 EtOAc/hexanes, then 1:5 EtOAc/hexanes) to afford $46 \mathrm{mg}(66 \%)$ of 26.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.42(6 \mathrm{H}, \mathrm{s}), 4.81(1 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.95-7.06(4 \mathrm{H}, \mathrm{m})$. IR (neat): $2978,1654,1587,1495,1311,1242,750 \mathrm{~cm}^{-1}$. HRMS (EI): m/e $176.0835\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}\right.$ requires 176.0837$)$.
(\pm)-2-[(3,3-Dimethyloxiranyl)methoxy]phenol (27). To a solution of $24\left(1.31 \mathrm{~g}, 7.35 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40.0 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaHCO}_{3}(803 \mathrm{mg}, 9.56 \mathrm{mmol}, 1.3$ equiv) followed by m-CPBA ($1.27 \mathrm{~g}, 7.35 \mathrm{mmol}, 1.0$ equiv). After 1.5 h additional NaHCO_{3} ($812 \mathrm{mg}, 9.66 \mathrm{mmol}, 1.21$ equiv) and m-CPBA ($1.26 \mathrm{~g}, 7.35$ $\mathrm{mmol}, 0.99$ equiv) were added. This mixture was kept stirring at $0^{\circ} \mathrm{C}$ for 2 h , when more $\mathrm{NaHCO}_{3}(778 \mathrm{mg}, 9.27 \mathrm{mmol}, 1.3$ equiv) and m-CPBA ($1.12 \mathrm{~g}, 6.49 \mathrm{mmol}, 0.88 \mathrm{mmol}$) were added. After 2 h , the cold mixture was filtered to remove the solids. The filtrate was washed three times with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and three times with brine, dried over MgSO_{4}, and evaporated to dryness to afford $1.41 \mathrm{~g}(99 \%)$ of 27 . An analytical sample was recrystallized from toluene to give a glassy solid, mp 36-37 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.37(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s})$, $3.18(1 \mathrm{H}, \mathrm{dd}, J-4.2,6.3 \mathrm{~Hz}), 4.07(1 \mathrm{H}, \mathrm{dd}, J-6.4,11.0 \mathrm{~Hz}), 4.28$ $(1 \mathrm{H}, \mathrm{dd}, J=4.2,11.0 \mathrm{~Hz}), 5.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.81-6.97(4 \mathrm{H}$, $\mathrm{m})$. $\mathrm{IR}\left(\mathrm{NaCl}\right.$, neat): $3413,2966,1590,1502,1267,744 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 68.02; H, 7.26. Found: C, 67.91; H, 7.39.
(\pm)-3,4-Dihydro-2,2-dimethyl-2H-1,5-benzodioxepin-3-ol (28). A flame-dried flask, flushed with Ar, was charged with dry THF (85.4 mL). Tin tetrachloride ($0.85 \mathrm{~mL}, 7.3 \mathrm{mmol}, 1.0$ equiv) was then added dropwise in 5 min . After 10 min a solution of $27(1.41 \mathrm{~g}, 7.26 \mathrm{mmol}$, 1.0 equiv) in dry TIIF (13.8 mL) was added slowly (dropwise) to the mixture. The reaction mixture was stirred at room temperature for 20 min, poured into saturated NaHCO_{3}, washed with brine, dried over
MgSO_{4}, and evaporated to dryness. The crude product was purified by radial chromatography (eluted with $1: 7 \mathrm{EtOAc} /$ hexanes) to afford $842 \mathrm{mg}(60 \%$ or 59% for two steps) of 28 as an oil. An analytical sample was obtained by PTLC (eluted with 5:1 EtOAc/hexanes, and then distilled under reduced pressure).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.20(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s})$, $2.96\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.58(1 \mathrm{H}$, ddd, $J=1.1,4.0,11.3$ $\mathrm{Hz}), 4.08(1 \mathrm{H}, \mathrm{dd}, J=1.1,12.6 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=4.0,12.6 \mathrm{~Hz})$, $6.98-7.02(4 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): $3448,2978,1596,1490,1261$ cm^{-1}. Mass spectrum (EI): m / e (relative intensity) 194 (41), 176 (19), 136 (57), 121 (100), 59 (63). HRMS (EI) m'e $194.0943\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}\right.$ requires 194.0943).

4-Hydroxy-3-methoxy-2-nitrophenylacetic Acid (30). To a flask containing $29\left(101 \mathrm{~g}, 397 \mathrm{mmol}, 1.0\right.$ equiv) at $0^{\circ} \mathrm{C}$ was added a solution of $\mathrm{NaOH}\left(63.5 \mathrm{~g}, 1.59 \mathrm{~mol}, 4.0\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~L})$. After 10 min , hydrogen peroxide ($49.5 \mathrm{~mL}, 437 \mathrm{mmol}, 1.1$ equiv, 30% solution in water) was added dropwise. The deep purple solution slowly turned brown during the addition. The mixture was allowed to reach room temperature and stirred for 24 h . The reaction mixture was then acidified with concentrated HCl until $\mathrm{pH} \approx 3$, during which CO_{2} was released and a fine yellow crystalline product precipitated. The mixture was filtered, washed with cold $\mathrm{H}_{2} \mathrm{O}$, and dried to yield 72.6 g (81%) of 30. An analytical sample was recrystallized from $\mathrm{H}_{2} \mathrm{O}$ to give bright yellow needles, $\mathrm{mp} 161-162^{\circ} \mathrm{C}$ (when the reaction was carried out with 11.9 g of the phenylacetic acid, the yield was 93%).
${ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}): δ TMS 2.83 (2 H, br s, $\mathrm{D}_{2} \mathrm{O}$ exch), $3.62(2 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 7.10(2 \mathrm{H}, \mathrm{s})$. IR (KBr): 3488, 2958, 2641, 1668, 1533, 1399, 1344, 1296, 1225, 1051, $825 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m / e (relative intensity) $228\left(\mathrm{M}^{+}, 0.7\right), 227(5.8), 166(10.0), 106$ (13.6), 44 (100). Microanal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{6}: \mathrm{C}, 47.58$; H, 3.99; N, 6.16. Found: C, 47.56 ; H, 4.06 ; N, 6.25 .

1,3-Dihydro-6-hydroxy-7-methoxy- $2 H$-indol-2-one (31). A mixture of $30(23.0 \mathrm{~g}, 101 \mathrm{mmol}, 1.0$ equiv) in glacial acetic acid (100 $\mathrm{mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 1.5 \mathrm{~g})$ was hydrogenated at 40 psi of H_{2} in an oil bath $\left(80^{\circ} \mathrm{C}\right)$ for 5 h . The mixture was immediately filtered through a Celite plug and washed with a small amount of warm AcOH. The flask was kept under suction (cold) until a large quantity of white product had precipitated. This was filtered to collect the product, when an additional quantity of product precipitated under suction. This was collected, and the two crops of white flakes were combined and dried under reduced pressure to yield $17.2 \mathrm{~g}(95 \%)$ of $\mathbf{3 1}$. An analytical sample was recrystallized from $\mathrm{II}_{2} \mathrm{O}$ to give white crystals, mp 210 $211^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta \operatorname{TMS} 3.50(2 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, $3.87(3 \mathrm{H}, \mathrm{s}), 5.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.60(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.86$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.94\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR (KBr): 3287, 3014, $2953,1686,1633,1504,1466,1315,1163,637 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$: $\mathrm{C}, 60.33 ; \mathrm{H}, 5.06 ; \mathrm{N}, 7.82$. Found: $\mathrm{C}, 60.51 ; \mathrm{H}, 5.05$; N, 7.60.

1,3-Dihydro-7-methoxy-6-[(tolylsulfonyl)oxy]-2H-indol-2-one. To a stirred mixture of $\mathbf{3 1}(321.6 \mathrm{mg}, 1.795 \mathrm{mmol}, 1.0$ equiv) in acetone $(7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar were added $\mathrm{K}_{2} \mathrm{CO}_{3}(740.5 \mathrm{mg}, 5.358 \mathrm{mmol}$, 2.98 equiv) and p-toluenesulfonyl chloride ($376.4 \mathrm{mg}, 1.974 \mathrm{mmol}$, 1.1 equiv). The mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was washed three times with 1 M NaOH and once with brine, dried over MgSO_{4}, and concentrated to dryness. The product, $572.3 \mathrm{mg}(96 \%)$, was obtained as a rust-colored, amorphous solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz$)\left(\mathrm{CDCl}_{3}\right): \delta 2.47(3 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 3.81$ $(3 \mathrm{H}, \mathrm{s}), 6.70(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.34(2 \mathrm{H}$, $\mathrm{d}, J=8.1 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR (KBr): 3172 (br), 1709, 1616, 1496, 1458, 1371, 1338, 1175, 1093, 1050, 1000, 848, 815, 728, 662, 548, cm^{-1}. Mass spectrum (EI): m/e (relative intensity) 333 (5.0), 269 (1.4), 178 (40), 91 (77), 28 (100).

1,3-Dihydro-7-hydroxy-6-[(tolylsulfonyl)oxy]-2H-indol-2-one. Boron tribromide ($1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.0$ equiv, $1 \mathrm{M} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added to a stirred mixture of 1,3-dihydro-7-methoxy-6-[(tolylsulfonyl)oxy]$2 I I$-indol-2-one obtained above ($181.5 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.3 \mathrm{~mL})$ under Ar , at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 8 h and stored at $-20^{\circ} \mathrm{C}$ for 12 h . The mixture was poured into ice
water, stirred for 0.5 h , and extracted with EtOAc . The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to dryness to give $164.7 \mathrm{mg}(95 \%)$ of a red solid.
${ }^{1} \mathrm{H}$ NMR (270 MHz) (acetone- d_{6}): δ TMS $2.45(3 \mathrm{H}, \mathrm{s}), 3.43(2 \mathrm{H}$, $\mathrm{d}, J=0.8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $7.46(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch), $9.28\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (NaCl , neat): 3259 (br), 2921, 1698, $1365,1175,1142,728 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m/e (relative intensity) 319 (3.4), 278 (6.0), 246 (6.7), 163 (49), 139 (73), 91 (100).

1,3-Dihydro-7-[(3-methyl-2-butenyl)oxy]-6-[(tolylsulfonyl)oxy]2 H -indol-2-one (37). To a stirred solution of 1,3-dihydro-7-hydroxy-6-[(tolylsulfonyl)oxy]-2 H -indol-2-one obtained above ($159.4 \mathrm{mg}, 0.49$ mmol, 1.0 equiv) in DMF (1.5 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (103.5 $\mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) followed by prenyl bromide ($0.09 \mathrm{~mL}, 0.75$ $\mathrm{mmol}, 1.5$ equiv). After 4 h the mixture was poured into water, extracted with EtOAc, washed with brine, dried over MgSO_{4}, and concentrated to dryness. The product was purified by radial chromatography (eluted with $3: 2$ hexanes/EtOAc) to afford $71.9 \mathrm{mg}(37 \%)$ of 37 as a red solid.
${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.58(3 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{s})$, $2.45(3 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 4.47(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.32(2 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR (NaCl , neat): 3194 (br), 1714, 1627, 1464, 1376, 1196, 1175, 837, $728 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m / e (relative intensity) 387 (16), 319 (16), 164 (37), 91 (91), 67 (100).

1,3-Dihydro-6,7-dihydroxy-2H-indol-2-one (32). Boron tribromide ($800 \mathrm{~mL}, 800 \mathrm{mmol}, 2.5$ equiv, $1 \mathrm{M} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to a stirred mixture of 31 ($57.3 \mathrm{~g}, 320 \mathrm{mmol}, 1.0$ equiv)) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (640 mL) under N_{2} at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 8 h and was then poured into a large $(4 \mathrm{~L})$ beaker containing 1.5 L of ice/water, stirred for 10 min , and filtered to remove undissolved product. The remaining liquid was extracted with EtOAc, washed with brine, and dried over MgSO_{4}. The organic layer was evaporated to yield the pure product 32 , which was combined with the filter cake, total yield $52.3 \mathrm{~g}(99 \%)$. An analytical sample was recrystallized from $\mathrm{H}_{2} \mathrm{O}$ (three times) to give a faint pink crystalline solid, mp $245^{\circ} \mathrm{C}$ dec.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{DMSO}-d_{6}\right): \delta$ TMS $3.32(2 \mathrm{H}, \mathrm{s}), 6.36(1 \mathrm{H}$, $\mathrm{d}, J=7.9 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 8.80\left(2 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $)$, $10.0\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (KBr): 3366-3123 (br), 1672, 1649 , 1618, 1359, 1265, 1178, $786 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{NO}_{3}$: C, 58.18; N, 4.27; N, 8.48. Found: C, $58.34 ; \mathrm{H}, 4.44 ; \mathrm{N}, 8.25$.

1,3-Dihydro-6-hydroxy-7-[(3-methyl-2-butenyl)oxy]-2H-indol-2one (33). To a stirred solution of 6,7-dihydroxyoxindole (32) (19.0 g, $115 \mathrm{mmol}, 1.0$ equiv) in DMF (230 mL) at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($15.9 \mathrm{~g}, 115 \mathrm{mmol}, 1.0$ equiv). After 8 min prenyl bromide ($14.8 \mathrm{~mL}, 127 \mathrm{mmol}, 1.1$ equiv) was added dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 6.5 h , poured into a separatory funnel, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with ether. The ethereal solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The product was purified by column chromatography (eluted with 3:1 hexanes/EtOAc, then $1: 1$ hexanes/EtOAc) to yield $14.5 \mathrm{~g}(54 \%)$ of 33. An analytical sample was recrystallized from toluene to give a red-white solid, $\mathrm{mp} 111^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.65(3 \mathrm{H}, \mathrm{s}), 1.80(3 \mathrm{H}, \mathrm{s})$, $3.50(2 \mathrm{H}, \mathrm{s}), 4.47(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 5.50-5.55(1 \mathrm{H}, \mathrm{m}), 5.57(1 \mathrm{H}$, $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch $), 6.59(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.77$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). IR (KBr): 3367, 3192, 2971, 1694, 1664, 1635, 1461, 1356, 1286, 1199, $1047 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15^{-}}$ NO_{3} : C, $65.14 ; \mathrm{H}, 6.83 ; \mathrm{N}, 6.33$. Found: C, $65.16 ; \mathrm{H}, 6.52 ; \mathrm{N}, 6.07$.
(\pm)-1,3-Dihydro-7-[(3,3-dimethyloxiranyl)methoxy]-6-hydroxy$2 H$-indol-2-one. To a stirred solution of $\mathbf{3 3}(14.5 \mathrm{~g}, 62.1 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(620 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(5.7 \mathrm{~g}, 68.3 \mathrm{mmol}$, 1.1 equiv) and m - $\operatorname{CPBA}(10.7 \mathrm{~g}, 62.1 \mathrm{mmol}, 1.0$ equiv $)$. The mixture was stirred for 1 h , and an additional amount of each reagent was added, NaHCO_{3} ($5.7 \mathrm{~g}, 68.3 \mathrm{mmol}, 1.1$ equiv) and m-CPBA ($10.7 \mathrm{~g}, 62.1$ mmol, 1.0 equiv). The mixture was stirred for an additional 1 h , and a third portion each of $\mathrm{NaHCO}_{3}(5.7 \mathrm{~g}, 68.3 \mathrm{mmol}, 1.1$ equiv) and m-CPBA ($10.7 \mathrm{~g}, 62.1 \mathrm{mmol}, 1.0$ equiv) was added. The resulting mixture was stirred for 3 h , while the temperature was maintained at $0^{\circ} \mathrm{C}$. The reaction mixture was filtered into a flask containing 10%
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $10 \% \mathrm{NaHCO}_{3}$. The organic layer was isolated, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated NaHCO_{3} and finally with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure, and dried in vacuo to yield 17 g of the product, which was used directly for the next step. An analytical sample was recrystallized from toluene to give a white solid, mp $122-123{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.38(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s})$, $3.25(1 \mathrm{H}, \mathrm{dd}, J=2.9,8.5 \mathrm{~Hz}), 3.47-3.49(2 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=$ $8.5,12.0 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{dd}, J=2.9,12.0 \mathrm{~Hz}), 6.25\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $6.58(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (KBr): 3495, 3146, 2982, 1717, 1694, 1635, 1501, 1466 , 1321, 1187, 1047, $861 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}: \mathrm{C}$, $62.64 ; \mathrm{H}, 6.06$; N, 5.62. Found: C, 62.70; H, 6.15; N, 5.66.
(\pm)-3,4,8,10-Tetrahydro-3-hydroxy-4,4-dim ethyl-2H,9H-[1,4]di-oxepino[2,3-g|indol-9-one (34). $\mathrm{SnCl}_{4}(9.6 \mathrm{~mL}, 81.8 \mathrm{mmol}, 1.2$ equiv) was slowly added dropwise to a flame-dried flask, which had been flushed with Ar and charged with dry THF (960 mL). After 10 min a solution of (\pm)-1,3-dihydro-7-[(3,3-dimethyloxiranyl)methoxy]-6-hy-droxy- $2 H$-indol-2-one obtained above ($17 \mathrm{~g}, 62 \mathrm{mmol}, 1.0$ equiv) in THF (73 mL) was added dropwise to the reaction vessel and stirred for 2 h . Approximately one-half of the solvent was removed under reduced pressure and the remaining solution poured into a separatory funnel containing saturated NaHCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ ($\sim 50: 50$), which was then exhaustively extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give a dark crude product. The product was purified by column chromatography (eluted with $1: 2$ hexanes/EtOAc) to yield 10 g (64% for two steps) of $\mathbf{3 4}$. An analytical sample was recrystallized from toluene to give a yellow crystalline solid, mp $194{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.24(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s})$, $2.94\left(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.51(2 \mathrm{H}, \mathrm{s}), 3.63(1 \mathrm{H}$, ddd, $J=$ $1.0,4.0,11.2 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dd}, J=1.0,12.4 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{dd}, J=$ $4.0,12.5 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.64$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). IR (KBr): 3460, 3320, 3169, 2982, 1711, 1682, $1461,1327,1216,1047 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$: C, 62.64; H, 6.08; N, 5.61. Found: C, 62.28, H, 6.21; N, 5.56.
(\pm)-3-Hydroxy-4,4-dimethyl-3,4,dihydro-2H,10H-[1,4]dioxepino-[2,3-g]indole (35). To a stirred solution of $34(11.2 \mathrm{~g}, 44.8 \mathrm{mmol}, 1.0$ equiv) in THF (225 mL) under Ar at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (19.3 $\mathrm{mL}, 157 \mathrm{mmol}, 3.5$ equiv). After $10 \mathrm{~min}, \mathrm{NaBH}_{4}(2.71 \mathrm{~g}, 71.8 \mathrm{mmol}$, 1.6 equiv) was added at once, and the mixture was stirred for 8 h at 0 ${ }^{\circ} \mathrm{C}$ and then at room temperature for 40 h . The reaction was completed by the slow addition of water (1 L) and was stirred for $0.5 \mathrm{~h} . \mathrm{HCl}$ (concentrated) was added until $\mathrm{pH}=1$, and the mixture was stirred for an additional 0.5 h . The mixture was treated with 1 M NaOH until $\mathrm{pH}=14$ and stirred for 0.5 h . The mixture was poured into a separatory funnel and extracted with EtOAc/ether. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to leave 10 g of a crude solid. The product was purified by column chromatography (eluted with $2: 1$ hexanes/EtOAc) to yield $4.5 \mathrm{~g}(43 \%)$ of 35 . An analytical sample was recrystallized from benzene to afford a white crystalline solid, mp 202-205 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.22(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s})$, $3.03\left(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.63(1 \mathrm{H}$, ddd, $J=4.0,0.9,11.3$ $\mathrm{Hz}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=0.9,12.3 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=4.0,12.3 \mathrm{~Hz})$, $6.49(1 \mathrm{H}, \mathrm{dd}, J=2.2,3.1 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.16-7.19$ ($2 \mathrm{H}, \mathrm{m}$), 8.29 ($1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). IR (KBr): 3340, 2984, 1580, 1504 , $1444,1338,1224,1133,1057,814,753 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{13} \mathrm{II}_{15} \mathrm{NO}_{3}$: C, 66.94; II, 6.48; N, 6.00. Found: C, 67.16; II, 6.63; N, 5.79 .
(\pm)-3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-4,4-dimethyl-3,4-di-hydro-2H,10H-[1,4]dioxepino[2,3-g]indole. To a stirred solution of 35 ($11.6 \mathrm{~g}, 49.7 \mathrm{mmol}, 1.0$ equiv) in DMF (124 mL) at room temperature under N_{2} was added tert-butyldimethylsilyl chloride (15.0 $\mathrm{g}, 99.4 \mathrm{mmol}, 2.0$ equiv) immediately followed by imidazole (23.7 g , $348 \mathrm{mmol}, 7.0$ equiv). The solution was slowly heated to $40^{\circ} \mathrm{C}$, stirred overnight, poured into a separatory funnel, and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude solid purified by column chromatography (eluted with $5: 1$ hexanes/EtOAc) to yield $14.2 \mathrm{~g}(82 \%)$ of
the product. An analytical sample was recrystallized from cyclohexane to give a white solid, $\mathrm{mp} 118-119^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{~Hz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $0.14(6 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s})$, $1.12(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.5 \mathrm{~Hz}), 3.98(1 \mathrm{H}$, dd, $J=3.2,9.2 \mathrm{~Hz}), 4,22(1 \mathrm{H}, \mathrm{dd}, J=3.2,11.5 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{dd}, J$ $=2.2,3.1 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.14(2 \mathrm{H}$, ddd, $J=2.4,3.4$, $3.5 \mathrm{~Hz}), 8.21\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (neat): $3412,2936,1500,1438$, 1234, 1093, $833 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$: C, 65.66; H, 8.41; N, 4.03. Found: C, 65.59; H, 8.20; N, 3.90 .
(\pm)-3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-4,4-dimethyl-8-[(N,Ndimethylamino)methyl $]$-3,4-dihydro- $2 H, 10 H-[1,4]$ dioxepino $[2,3-g]-$ indole (36). To a flask charged with acetic acid (136 mL) under Ar were added formaldehyde ($3.4 \mathrm{~mL}, 45 \mathrm{mmol}$, 1.1 equiv, $37 \% / \mathrm{H}_{2} \mathrm{O}$) and dimethylamine $(20.5 \mathrm{~mL}, 163 \mathrm{mmol}, 4.0$ equiv, 40% solution in $\mathrm{H}_{2} \mathrm{O}$) followed by (\pm)-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-4,4-dimethyl-3,4,dihydro- $2 \mathrm{H}, 10 \mathrm{H}-[1,4]$ dioxepino $[2,3-g]$ indole obtained above ($14.2 \mathrm{~g}, 40.9 \mathrm{mmol}, 1.0$ equiv) over a 10 min period. The reaction mixture was stirred for 1 day when $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ was added until $\mathrm{pH} \approx$ 8 ; then 2 M NaOH was added. The mixture was extracted with ether/ EtOAc, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, leaving 17.3 g (quantitative) of the pure product 36. An analytical sample was recrystallized from toluene to give a white flaky solid, $\mathrm{mp} 152^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{~Hz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $0.15(6 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s})$, $1.13(3 H, s), 1.48(3 H, s), 2.28(6 H, s), 3.58(2 \mathrm{H}, \mathrm{s}), 3.58(2 \mathrm{H}, \mathrm{s}), 3.88$ $(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.4 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{dd}, J=3.2,9.1 \mathrm{~Hz}), 4.21(1 \mathrm{H}$, dd, $J=3.2,11.5 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.44\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (NaCl , neat): $2932,1502,1458,1360,1251,1218,1093$, $837,777 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: $\mathrm{C}, 65.31 ; \mathrm{H}$, 8.97; N, 6.92. Found: C, 65.09; H, 8.77; N, 6.73 .
(\pm)-6(R)-(2E)-Methyl 3-[[3-[[(1,1-Dimethylethyl)dimethylsilyl]-oxy]-3,4-dihydro-4,4-dim ethyl-2H,10H-[1,4]dioxepino[2,3-g]indol-8-yl]methyl]-8a-[4-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)methyl]octahydro-1,4dioxopyrrolo $[1,2-a$]pyrazine-3-carboxylate (39). To a stirred solution of $\mathbf{3 8}\left(23.0 \mathrm{mg}, 0.043 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$ and PBu_{3} ($5.4 \mu \mathrm{~L}, 0.022 \mathrm{mmol}, 0.5$ equiv) was added a solution of $\mathbf{3 6}(19.3 \mathrm{mg}$, 0.048 mmol , 1.1 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{~mL})$. The mixture was refluxed for 5.5 h and stirred at room temperature overnight. The reaction mixture was then diluted with ether, washed with water, dilute HCl , and brine, and dried over MgSO_{4}. The solvent was removed and the crude oily solid purified by PTLC on silica gel (eluted with 1:4 EtOAc/ hexanes) to yield 19.8 mg (51%) of $\mathbf{3 9}$. An analytical sample was recrystallized from cyclohexane to give a white crystalline solid, mp $168-168.5^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (a racemic mixture of two diastereomers): δ TMS $0.00(6 \mathrm{H}, \mathrm{s}), 0.01(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.14(6 \mathrm{H}, \mathrm{s})$, $0.034-0.19(2 \mathrm{H}, \mathrm{m}), 0.43-0.52(2 \mathrm{H}, \mathrm{m}), 0.62-0.72(2 \mathrm{H}, \mathrm{m}), 0.84$ $(9 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 1.1(3 \mathrm{H}$, s), $1.45(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.537(3 \mathrm{H}, \mathrm{s}), 1.544(3 \mathrm{H}, \mathrm{s}), 1.33-1.67$ $(2 \mathrm{H}, \mathrm{m}), 2.14-2.25(2 \mathrm{H}, \mathrm{m}), 2.52-2.60(2 \mathrm{H}, \mathrm{m}), 2.87-3.03(2 \mathrm{H}, \mathrm{m})$, $3.27(6 \mathrm{H}, \mathrm{s}), 3.36-3.52(2 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz})$, $3.66(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz}), 3.75(6 \mathrm{H}, \mathrm{s}), 3.77-3.96(12 \mathrm{H}, \mathrm{m})$, $4.14-4.20(2 \mathrm{H}, \mathrm{m}), 5.25-5.31(2 \mathrm{H}, \mathrm{m}) ; 5.48(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6$ $\mathrm{Hz}), 6.70-6.89(8 \mathrm{H}, \mathrm{m}), 7.15-7.22(6 \mathrm{H}, \mathrm{m}), 8.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $8.32\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (NaCl , neat): $3303,2954,2856,1752$, $1660,1512,1447,1251,1098,1049,837,777 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}$: C, $64.76 ; \mathrm{H}, 8.04 ; \mathrm{N}, 4.72$. Found: C, $64.95 ; \mathrm{H}$, 8.09; N, 4.53.
$[(\pm)-[3 \alpha, 8 a \beta(E)]]-8-[[2-[(4-M e t h o x y p h e n y l) m e t h y l]-8 a-[4-[[(1,1-$ dimethylethyl)dimethylsilyl|oxy|-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2H,10 H$[1,4]$ dioxepino $[2,3-\mathrm{g}]$ indole (40). [(\pm)-[3/,8a $\alpha(E)]]-8-[[2-[(4-M e t h-$ oxyphenyl)methyl]-8a-[4-[[(1,1-dimethylethyl) dimethylsilyl]oxy]-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl]-methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4]dioxepino[2,3-g]indole (41). A dry flask containing 39 ($24.4 \mathrm{mg}, 0.027 \mathrm{mmol}, 1.0$ equiv) and lithium chloride $\left(11.6 \mathrm{mg}, 0.27 \mathrm{mmol}, 10\right.$ equiv) under N_{2} was charged with IIMPA $(0.21 \mathrm{~mL})$ and water $\left(1.5 \times 10^{-3} \mathrm{~mL}, 0.082 \mathrm{mmol}, 3.0\right.$ equiv $)$. This mixture was heated to $100-105^{\circ} \mathrm{C}$ for 2 h . The resulting solution
was diluted with 1:1 EtOAc/hexanes and washed with water $(5 \times)$ and brine. The organic layer was dried over MgSO_{4} and concentrated to dryness. The product was purified by PTLC on silica gel (eluted with $1: 3 \mathrm{EtOAc} / \mathrm{hexanes}$) to yield 8.9 mg (39%) of 40 (oil) and 2.7 mg (12%) of $\mathbf{4 1}$ (oil). Total yield: 51%.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (a racemic mixture of two diastereomers) (40): $\delta 0.036(12 \mathrm{H}, \mathrm{s}), 0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}, \mathrm{s})$, $0.87(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 0.882(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s})$, $1.458(9 \mathrm{H}, \mathrm{s}), 1.463(3 \mathrm{H}, \mathrm{s}), 1.72-2.04(10 \mathrm{H}, \mathrm{m}), 2.12-2.23(2 \mathrm{H}, \mathrm{m})$, $3.24-3.51(8 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.79-3.82(6 \mathrm{H}, \mathrm{m})$, $3.83(2 \mathrm{H}, \mathrm{s}), 3.86(2 \mathrm{H}, \mathrm{s}), 4.15-4.20(4 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $14.2 \mathrm{~Hz}), 5.20(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.2 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}$, m), $6.67-6.71(4 \mathrm{H}, \mathrm{m}), 6.76(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.81-6.90(6 \mathrm{H}, \mathrm{m})$, $7.16(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR $(s y n)(\mathrm{NaCl}$, neat): $2920,1655,1508,1449,1250,1220,1091,838 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (a racemic mixture of two diastereomers) (41): $\delta-0.18(12 \mathrm{H}, \mathrm{s}), 0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.26-0.41$ $(2 \mathrm{H}, \mathrm{m}), 0.47-0.58(2 \mathrm{H}, \mathrm{m}), 0.62-0.72(2 \mathrm{H}, \mathrm{m}), 0.84(18 \mathrm{H}, \mathrm{s}), 0.87$ $(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.44(6 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}$, s), $1.48(3 \mathrm{H}, \mathrm{s}), 1.63-1.67(2 \mathrm{H}, \mathrm{m}), 2.10-2.17(2 \mathrm{H}, \mathrm{m}), 2.44-2.52$ $(2 \mathrm{H}, \mathrm{m}), 2.89-3.05(2 \mathrm{H}, \mathrm{m}), 3.20-3.28(2 \mathrm{H}, \mathrm{m}), 3.40-3.52(4 \mathrm{H}, \mathrm{m})$, $3.71-3.97(16 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.14-4.21(2 \mathrm{H}, \mathrm{m}), 5.05(2 \mathrm{H}, \mathrm{br}$ s), $5.56(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.2 \mathrm{~Hz}), 5.57(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz})$, $6.71(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.83-6.88(6 \mathrm{H}$, $\mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.22-7.23$ $(4 \mathrm{H}, \mathrm{m}), 8.34$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). IR (anti) (neat): 2932, 1649, 1508, $1455,1250,1220,1103,838 \mathrm{~cm}^{-1}$. HRMS (EI) (anti): 831.46765 $\left(\mathrm{C}_{46} \mathrm{H}_{69} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}_{2}\right.$ requires 831.4674).
$[(\pm)-[3 \alpha, 8 a \alpha(E)] \mid-1,1-D i m e t h y l e t h y l ~ 8-[[3-(M e t h o x y c a r b o n y l)-2-$ [(4-methoxyphenyl)methyl]-8a-[4-[[(1,1-dimethylethyl)dimethylsilyl]-oxy]-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo[1,2-a|pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4]dioxepino $[2,3-g]$ indole-10-carboxylate (42). To a stirred solution of $\mathbf{3 9}\left(260.0 \mathrm{mg}, 0.292 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar were added DMAP ($35.7 \mathrm{mg}, 0.292$ mmol, 1.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.041 \mathrm{~mL}, 0.29 \mathrm{mmol}, 1.0$ equiv). After $5 \mathrm{~min}(\mathrm{BOC})_{2} \mathrm{O}(191.2 \mathrm{mg}, 0.876 \mathrm{mmol}, 3.0$ equiv $)$ was added in one portion. The resulting solution was stirred for 20 h , poured into water, and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude solid was purified by radial chromatography (eluted with $1: 5 \mathrm{EtOAc}$ hexanes) to yield 260.4 mg (90%) of $\mathbf{4 2}$ as a white crystalline solid, mp 74-75 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta-0.01(6 \mathrm{H}, \mathrm{s}), 0.00(6 \mathrm{H}, \mathrm{s}), 0.113$ $(6 \mathrm{H}, \mathrm{s}), 0.12(6 \mathrm{H}, \mathrm{s}), 0.58-0.68(2 \mathrm{H}, \mathrm{m}), 0.80-0.92(38 \mathrm{H}, \mathrm{m}), 1.06$ $(6 \mathrm{H}, \mathrm{s}), 1.45-1.63(2 \mathrm{H}, \mathrm{m}), 1.47(6 \mathrm{H}, \mathrm{s}), 1.53(6 \mathrm{H}, \mathrm{s}), 1.60(18 \mathrm{H}, \mathrm{s})$, $1.59-1.81(2 \mathrm{H}, \mathrm{m}), 2.22-2.34(2 \mathrm{H}, \mathrm{m}), 2.60(2 \mathrm{H}, \mathrm{dd}, J=8.1,15.0$ $\mathrm{Hz}), 2.91-3.08(2 \mathrm{H}, \mathrm{m}), 3.26(6 \mathrm{H}, \mathrm{s}), 3.26-3.42(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 3.59(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 3.71-3.80$ $(4 \mathrm{H}, \mathrm{m}), 3.74(6 \mathrm{H}, \mathrm{s}), 3.83(2 \mathrm{H}, \mathrm{s}), 3.84(2 \mathrm{H}, \mathrm{s}), 3.90-3.97(4 \mathrm{H}, \mathrm{m})$, $4.13-4.17(2 \mathrm{H}, \mathrm{m}), 3.32(2 \mathrm{H}, \mathrm{m}), 5.34(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz})$, $5.42(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.8 \mathrm{~Hz}), 6.75-6.79(4 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 6.89(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{s}), 7.12-7.20(6 \mathrm{H}, \mathrm{m})$ IR (NaCl , neat): $2943,1752,1660,1507,1496,1464,1463,1404$, 1365, 1251, 1153, 1109, 1082, 837, $772 \mathrm{~cm}^{-1}$. HRMS (EI): 989.5249 $\left(\mathrm{C}_{53} \mathrm{H}_{79} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Si}_{2}\right.$ requires 989.5253$)$.
$[(\pm)-[3 \beta, 8 a \beta(E)]]-1,1-D i m e t h y l e t h y l ~ 8-[[8 a-[4-[[(1,1-D i m e t h y l e t h-$ yl)dimethylsilyl]oxy]-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)-methyl]octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl$2 \mathrm{H}, 10 \mathrm{H}$ - [1,4]dioxepino $[2,3$ - $g \mid$ indole-10-carboxylate (syn-43). |(土)$[3 \alpha, 8 a \beta(E)]]-1,1$-Dimethylethyl 8-[[8a-[4-[[(1,1-Dimethylethyl)di-methylsilyl]oxy]-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)methyl]-octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl $]$ oxy $]$-3,4-dihydro-4,4-dimethyl- $2 \mathrm{H}, 10 \mathrm{H}-[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (anti-43). A flask containing 42 ($126.6 \mathrm{mg}, 0.128 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{LiCl}(27.1 \mathrm{mg}, 0.64 \mathrm{mmol}$, 5.0 equiv) under N_{2} was charged with HMPA (0.78 mL) and $\mathrm{H}_{2} \mathrm{O}(3.4$ $\times 10^{-3} \mathrm{~mL}, 1.9 \times 10^{-4} \mathrm{mmol}, 1.5$ equiv). The solution was heated $\left(100-105^{\circ} \mathrm{C}\right)$ for 1.25 h and then poured into water and extracted with ether. The organic layer was washed with water and brine, dried over MgSO_{4}, and concentrated, leaving a crude oily solid. The product
was purified by radial chromatography (eluted with $1: 5 \mathrm{EtOAc} /$ hexanes) to yield $79.2 \mathrm{mg}(66 \%)$ of $s y n-43$ (an analytical sample was obtained by PTLC, eluted with $1: 5 \mathrm{EtOAc} /$ hexanes, to give an oil) and 3.1 mg (2.6\%) of the anti-isomer (oil).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)($ syn-43 $): \delta 0.026(6 \mathrm{H}$, s), $0.32(6 \mathrm{H}$, s), $0.127(6 \mathrm{H}, \mathrm{s}), 0.14(6 \mathrm{H}, \mathrm{s}), 0.867(9 \mathrm{H}, \mathrm{s}), 0.873(9 \mathrm{H}, \mathrm{s}), 0.878(9 \mathrm{H}$, s), $0.883(9 \mathrm{H}, \mathrm{s}), 1.10(6 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s})$, $1.57(3 \mathrm{H}, \mathrm{s}), 1.610(9 \mathrm{H}, \mathrm{s}), 1.613(9 \mathrm{H}, \mathrm{s}), 1.83-1.96(6 \mathrm{H}, \mathrm{s}), 2.22-$ $2.35(4 \mathrm{H}, \mathrm{m}), 2.46(2 \mathrm{H}, \mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}), 3.11-3.21(2 \mathrm{H}, \mathrm{m})$, $3.31-3.85(2 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 3.48(1 \mathrm{H}, 1 / 2$ $\mathrm{ABq}, J=14.6 \mathrm{~Hz}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.76-3.98(8 \mathrm{H}, \mathrm{m})$, $3.99(2 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{s}), 4.15-4.21(4 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.5 \mathrm{~Hz}), 5.20(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.6 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{m}), 5.48(1 \mathrm{H}$, $\mathrm{m}), 6.62-6.70(6 \mathrm{H}, \mathrm{m}), 6.79(2 \mathrm{H}, \mathrm{m}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}$, s). IR (NaCl , neat) (syn): $2932,1755,1661,1455,1367,1250,1156$, 1114,1091, $838 \mathrm{~cm}^{-1}$. HRMS (EI) (syn): $931.51955\left(\mathrm{C}_{51} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}\right.$ requires 931.5198). Microanal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{77} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}_{2}$: C, 65.70; H, 8.32; N, 4.51. Found: C, 65.37; H, 8.37; N, 4.54.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)($ anti $): \delta-0.02(6 \mathrm{H}, \mathrm{s}),-0.01(6 \mathrm{H}$, s), $0.03-0.22(2 \mathrm{H}, \mathrm{m}), 0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.146-0.62(4 \mathrm{H}$, $\mathrm{m}), 0.84(9 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 0.87(18 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}$, s), $1.43(3 \mathrm{H}, \mathrm{s}), 1.47(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.55(9 \mathrm{H}, \mathrm{s})$, $1.60(9 \mathrm{H}, \mathrm{s}), 1.80-1.91(2 \mathrm{H}, \mathrm{m}), 2.19-2.22(2 \mathrm{H}, \mathrm{m}), 2.50-2.61(2 \mathrm{H}$, $\mathrm{m}), 3.09-3.23(2 \mathrm{H}, \mathrm{m}), 3.29-3.52(4 \mathrm{H}, \mathrm{m}), 3.63-3.96(18 \mathrm{H}, \mathrm{m})$, $4.13-4.20(4 \mathrm{H}, \mathrm{m}), 5.04-5.10(1 \mathrm{H}, \mathrm{m}), 5.28-5.32(1 \mathrm{H}, \mathrm{m}), 5.48(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=14.3 \mathrm{~Hz}), 5.52\left(1 \mathrm{H},{ }^{1 / 2} \mathrm{ABq}, J=14.3 \mathrm{~Hz}\right), 6.71-6.90$ ($6 \mathrm{H}, \mathrm{m}$), $7.04-7.22(8 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat) (anti: 3295 (br), 1753, $1657,1510,1447,1249,1152,1090,1034,836,773 \mathrm{~cm}^{-1}$.

1,1-Dimethylethyl 8-[[8a-[4-Hydroxy-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)methyl]octahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl|methyl|-3-hydroxy-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4|dioxepino $[2,3-g]$ indole-10-carboxylate (44). To a stirred solution of $43\left(36.3 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0\right.$ equiv) under N_{2} in THF (1.0 mL) was added $n-\mathrm{Bu}_{4} \mathrm{NF}(0.12 \mathrm{~mL}, 0.12 \mathrm{mmol}, 3.0 \mathrm{eq}, 1.0 \mathrm{M} / \mathrm{THF})$. The solution was heated $\left(\sim 40^{\circ} \mathrm{C}\right)$ for 3 h . At this time the solution was diluted with water and extracted with ethyl acetate. The organic layer was washed with brine and dried over MgSO_{4}. The residue was purified by PTLC on silica gel (eluted with EtOAc) to yield $24.9 \mathrm{mg}(79 \%)$ of 44.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 1.19(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.52$ $(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{s}), 1.59(9 \mathrm{H}, \mathrm{s}), 1.60(9 \mathrm{H}$, s), $1.72-2.21(12 \mathrm{H}, \mathrm{m}), 2.71\left(2 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $), 3.18-3.49(4 \mathrm{H}$, m), $3.51(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 3.56\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.61$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.72(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.75-3.94(6 \mathrm{H}, \mathrm{s}), 4.18-$ $4.30(4 \mathrm{H}, \mathrm{s}), 4.26-4.27(4 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{m}), 5.25(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=14.5 \mathrm{~Hz}), 5.25(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.4 \mathrm{~Hz}), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 6.77(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.927(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.932(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.03(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}$, s). IR (NaCl , neat): $3422,2976,1753,1649,1513,1496,1457,1371$, $1333,1251,1153,1033,733 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m'e (relative intensity) $703\left(\mathrm{M}^{+}, 8\right), 604$ (37), 603 (100). HRMS (EI): 703.3461 $\left(\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{O}_{9}\right.$ requires 703.3472).

1,1-Dimethylethyl 8-[[8a-[4-Chloro-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)methyl]octahydro-1,4-dioxopyrrolo $[1,2-a]$ pyrazin-3-yl]methyl]-3-hydroxy-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4|dioxepino $[2,3-g]$ indole-10-carboxylate (45). To $44(24.9 \mathrm{mg}, 0.035$ mmol, 1.0 equiv) in DMF (0.35 mL) at $0^{\circ} \mathrm{C}$ under Ar were added dry $\mathrm{LiCl}(2.9 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.9$ equiv) and collidine ($7 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$, 1.5 equiv). After stirring for 10 min , methanesulfonyl chloride ($4 \mu \mathrm{~L}$, $0.05 \mathrm{mmol}, 1.5$ equiv) was added dropwise. The ice bath was removed and the mixture stirred at room temperature for 24 h . At this time additional collidine (2.5 equiv) and methanesulfonyl chloride (2.5 equiv) were added, and the mixture was stirred for 2 h . It was then diluted with water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated to dryness. The product was purified by PTLC on silica gel (eluted with $2: 1$ EtOAc/ hexanes) to yield $21.9 \mathrm{mg}(86 \%)$ of 45 as an oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.22(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s})$, $1.57(3 \mathrm{H}, \mathrm{s}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.62(9 \mathrm{H}, \mathrm{s}), 1.63(9 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.73$ $(3 \mathrm{H}, \mathrm{s}), 1.83-1.93(8 \mathrm{H}, \mathrm{m}), 2.05-2.37(4 \mathrm{H}, \mathrm{m}), 3.06(2 \mathrm{H}, \mathrm{dd}, J=$ $3.8,11.4 \mathrm{~Hz}), 3.35-3.42\left(6 \mathrm{H}, \mathrm{m}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.46-3.69(4 \mathrm{H}, \mathrm{m})$, $3.75(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.86-3.94(2 \mathrm{H}, \mathrm{m}), 3.96(2 \mathrm{H}, \mathrm{s}), 4.02(2 \mathrm{H}$, s), $4.21-4.29(6 \mathrm{H}, \mathrm{m}), 5.20-5.29(3 \mathrm{H}, \mathrm{m}), 5.53(1 \mathrm{H}, \mathrm{m}), 6.69-6.81$ $(6 \mathrm{H}, \mathrm{m}), 6.94-6.99(4 \mathrm{H}, \mathrm{m}), 7.18-7.21(4 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): $3433,2976,1752,1654,1513,1496,1453,1371,1251,1153 \mathrm{~cm}^{-1}$.

1,1-Dim ethylethyl 8-[[8a-[4-Hydroxy-3-methyl-2-butenyl]-2-[(4-methoxyphenyl)methyl]octahydro-1,4-dioxopyrrolo $[1,2-a$]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl- $\mathbf{H} \mathbf{H}, 10 \mathrm{H}$-[1,4]dioxepino $[2,3-g]$ indole-10-carboxylate (40). To a solution of $\mathbf{4 5}(28.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3$ mL) at $0{ }^{\circ} \mathrm{C}$ under Ar was added tert-butyldimethylsilyl triflate (9.0 $\mu \mathrm{L}, 0.04$ mmol, 1.2 equiv) followed immediately by 2,6 -lutidime (6.0 $\mu \mathrm{L}, 0.047 \mathrm{mmol}, 1.4$ equiv). The mixture was stirred for 2 h , then diluted with EtOAc , washed with water and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The product was purified by radial chromatography (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes) to yield $24.9 \mathrm{mg}(76 \%)$ of 46 as an oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.87$ $(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.48(6 \mathrm{H}, \mathrm{s}), 1.61(9 \mathrm{H}$, s), $1.63(9 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}, \mathrm{s}), 1.82-2.03(8 \mathrm{H}, \mathrm{m}), 2.16-$ $2.24(4 \mathrm{H}, \mathrm{m}), 3.19(2 \mathrm{H}, \mathrm{dd}, J-7.2,8.5 \mathrm{~Hz}), 3.25-3.39(4 \mathrm{H}, \mathrm{m}), 3.49$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 3.65(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=14.5 \mathrm{~Hz}), 3.72$ $(3 \mathrm{H}, \mathrm{s}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.79-3.99(8 \mathrm{H}, \mathrm{m}), 4.15-4.22(4 \mathrm{H}, \mathrm{m}), 5.19-$ $5.28(4 \mathrm{H}, \mathrm{m}), 5.49(2 \mathrm{H}, \mathrm{m}), 6.67-6.81(6 \mathrm{H}, \mathrm{m}), 6.92(4 \mathrm{H}, \mathrm{dd}, J=$ $1.9,8.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.20$ $(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): 2932, 1752, 1654, 1512, 1491, $1447,1365,1251,1153,1088,837 \mathrm{~cm}^{-1}$.
$\left[(\pm)-\left[3 \alpha, 8 a \alpha, 10\left(R^{*}\right)\right]\right]-1,1-D i m e t h y l e t h y l ~ 8-[[T e t r a h y d r o-2-[(4-$ methoxyphenyl)methyl]-10-(1-methylethenyl)-1,4-dioxo-6 $\mathrm{H}-3,8 \mathrm{a}$ -ethanopyrrolo[1,2-a]pyrazin-3(4II)-yl]methyl]-3-[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2H,10H$[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (47). To 46 (24.0 mg , $0.028 \mathrm{mmol}, 1.0$ equiv) in a flask equipped with a magnetic stir bar were added $\mathrm{NaH}(12.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 10.8$ equiv) and benzene (3.5 mL). The flask was fitted with a condenser and gently refluxed for 59 h (additional benzene (1.5 mL) was added during this time). The solution was stirred at room temperature for 8 days, after which NaI ($10.8 \mathrm{mg}, 0.072 \mathrm{mmol}, 2.5$ equiv) was added. The mixture was then stirred at reflux temperature for an additional 2 days. The resulting mixture was diluted with EtOAc, washed with water and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The product was purified by PTLC on silica gel (eluted with $1: 1$ hexanes/EtOAc) to afford 2.5 mg (11% or 19% based on recovered 46) of 47 as an amorphous yellow solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 0.12(6 \mathrm{H}, \mathrm{s}), 0.14(6 \mathrm{H}, \mathrm{s}), 0.882$ $(9 \mathrm{H}, \mathrm{s}), 0.885(9 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 1.49$ $(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.59(18 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}, \mathrm{dd}, J=$ $5.7,13.3 \mathrm{~Hz}), 1.90(2 \mathrm{H}, \mathrm{dd}, J=13.2 \mathrm{~Hz}), 2.03-2.08(4 \mathrm{H}, \mathrm{m}), 2.22$ $(2 \mathrm{H}, \mathrm{dd}, J=10.4,13.4 \mathrm{~Hz}), 2.85-2.98(4 \mathrm{H}, \mathrm{m}), 3.08(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=17.1 \mathrm{~Hz}), 3.29(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=17.6 \mathrm{~Hz}), 3.56-3.62(4 \mathrm{H}, \mathrm{m})$, $3.72(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.74-3.83(2 \mathrm{H}, \mathrm{dd}, J=9.4,12.5 \mathrm{~Hz}), 3.91-$ $3.96(2 \mathrm{H}, \mathrm{m}), 4.18(2 \mathrm{H}, \mathrm{dd}, J=3.6,12.2 \mathrm{~Hz}), 4.28(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $15.9 \mathrm{~Hz}), 4.37(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.9 \mathrm{~Hz}), 4.54-4.74(6 \mathrm{H}, \mathrm{m}), 6.62-$ $6.75(8 \mathrm{H}, \mathrm{m}), 6.89-6.94(2 \mathrm{H}, \mathrm{m}), 6.99-7.04(2 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{s})$, $7.28(1 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): 2932, 1687, 1365, 1251, 1158, 1088 cm^{-1}. HRMS (EI): $799.4252\left(\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}\right.$ requires 799.4228).
(R)-(E)-8a-[3-Methyl-4-oxo-2-buten-yl]hexahydropyrrolo[1,2-a]-pyrazine-1,4-dione (49). To a stirred solution of 48 ($17.25 \mathrm{~g}, 48.45$ mmol, 1.0 equiv) in a $2: 1$ solution of $\mathrm{CH}_{3} \mathrm{CN}(343 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(171$ mL) was added, in one portion, $\mathrm{CAN}(93 \mathrm{~g}, 170 \mathrm{mmol}, 3.8$ equiv). After stirring for 2 h , the orange solution was poured into a large separatory funnel and exhaustively extracted with CHCl_{3}. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The product was purified by column chromatography (eluted with 95:4:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{AcOH}$) to yield $9.0 \mathrm{~g}(79 \%)$ of 49 as a yellow oil. An analytical sample was obtained by PTLC (silica gel, cluted with $1: 1$ hexancs/EtOAc).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $1.76(3 \mathrm{H}, \mathrm{s}), 1.99-2.10(2 \mathrm{H}$, br s), $2.17-2.26(2 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=7.3,14.5 \mathrm{~Hz}), 2.90(1 \mathrm{H}$,
dd, $J=8.0,14.8 \mathrm{~Hz}), 3.54-3.63(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{dt}, J=12.3,8.4$ $\mathrm{Hz}), 3.95\left(1 \mathrm{H}, \mathrm{d}^{1 / 2} \mathrm{ABq}, J=3.4,17.6 \mathrm{~Hz}\right), 4.10(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $17.6 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.96\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 9.45$ $(1 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): $3246,1684,1448,1326,1107 \mathrm{~cm}^{-1} .[\alpha]^{25} \mathrm{D}$ $\left.=-1.51 / 1.92 \times 10^{-2}\right)^{\circ}=-78.4^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c=0.164\right)$. Microanal. Calcd: C, 61.00; H, 6.83; N, 11.86. Found: C, $60.88 ; \mathrm{H}, 6.66 ; \mathrm{N}$, 11.71. HRMS (EI): $236.1155\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right.$ requires 236.11609$)$.
(R)-(E)-8a-[4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]hexahydro-2H-pyrrolo $[1,2-a]$ pyrazine-1,4-dione (50). To a stirred solution of $49(9.0 \mathrm{~g}, 37 \mathrm{mmol}, 1.0$ equiv) in absolute ethanol $(742 \mathrm{~mL})$ at room temperature was added $\mathrm{NaBH}_{4}(2.85 \mathrm{~g}, 75.5 \mathrm{mmol}$, 2.0 equiv). After 2 h the excess hydride was quenched with water $(500 \mathrm{~mL})$ and the pH adjusted to $3-4$ by the slow addition of 1 M HCl. Fifteen minutes later, the water and ethanol were removed under reduced pressure and the crude residue was dried in vacuo overnight. The resulting mass (10.87 g) was triturated ($1: 4 \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) and filtered to remove the salts. The remaining solution was concentrated to yield 9.1 g of the crude allylic alcohol, which was immediately utilized for the next step without additional purification. The crude allylic alcohol ($9.1 \mathrm{~g}, 38 \mathrm{mmol}, 1.0$ equiv) was dissolved in DMF (191 mL) under Ar , and to this mixture was added imidazole ($11.9 \mathrm{~g}, 175.3$ $\mathrm{mmol}, 4.6$ equiv) followed by tert-butyldiphenylsilyl chloride (12.9 mL , $49.5 \mathrm{mmol}, 1.3$ equiv). After 2 days the reaction mixture was diluted with water (1 L) and extracted with a $1: 1$ solution of hexanes and EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. The crude solid was recrystallized (ethyl acetate, two crops) to give 10.5 g of the product. The remaining mother liquor was chromatographed (eluted with EtOAc) to give 3.0 g of the pure product. Total yield of 50: 13.5 g (75% from the enone, two steps). An analytical sample was recrystallized from acetone to provide a white crystalline solid, $\mathrm{mp} 132^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 1.03(9 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.92-$ $2.19(4 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{dd}, J=8.6,14.1 \mathrm{~Hz}), 2.58(1 \mathrm{H}, \mathrm{dd}, J=7.5$, $14.1 \mathrm{~Hz}), 3.44-3.53(1 \mathrm{H}, \mathrm{m}), 3.73\left(1 \mathrm{H}, \mathrm{d}^{1 / 2} \mathrm{ABq}, J=4.1,16.9 \mathrm{~Hz}\right)$, $3.78-3.85(1 \mathrm{H}, \mathrm{m}), 4.01(2 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.9 \mathrm{~Hz})$, $5.56-5.62(1 \mathrm{H}, \mathrm{m}), 6.38\left(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 7.32-7.43$ $(6 \mathrm{H}, \mathrm{m}), 7.62(4 \mathrm{H}, \mathrm{dd}, J=1.8,7.6 \mathrm{~Hz})$. IR (NaCl , neat): 3232 (br), $2930,2857,1664,1446,1435,1113,822,733,702 \mathrm{~cm}^{-1} .[\alpha]^{25}{ }_{\mathrm{D}}=$ $-63.3^{\circ}\left(\mathrm{CDCl}_{3}, c=0.0822\right)$. Microanal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C,70.55; H, 7.61; N, 5.88. Found C, 70.60; H, 7.56; N, 5.91
[(R)-[3 $\alpha \beta, 8 \mathrm{a} \beta(E)]]-$ Methyl 8a-[4-[[(1,1-Dimethylethyl)diphenyl-silyl|oxyl-3-methyl-2-butenyl|octahydro-2-(methoxycarbonyl)-1,4-dioxopyrrolo[1,2-a]pyrazine-3-carboxylate (51). To a stirred solution of $50\left(8.12 \mathrm{~g}, 17.0 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(208 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added a solution of n-BuLi $(10.65 \mathrm{~mL}, 17.03 \mathrm{mmol}, 1.0$ equiv, 1.6 $\mathrm{M} /$ hexanes) dropwise. After 25 min methyl chloroformate (1.45 mL , $18.7 \mathrm{mmol}, 1.1$ equiv) was added dropwise to the reaction mixture and stirred for 25 min . The solution was then transferred via cannula to a cold $\left(-100^{\circ} \mathrm{C}\right)$ flask charged with $\mathrm{LiN}\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right]_{2}(37.47 \mathrm{~mL}$, $37.47 \mathrm{mmol}, 2.2$ equiv, $1.0 \mathrm{M} / \mathrm{THF}$) and methyl chloroformate (1.45 $\mathrm{mL}, 18.7 \mathrm{mmol}, 1.1$ equiv). The resulting solution was stirred for 45 min, diluted with EtOAc , and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluted with $2: 1$ hexanes/EtOAc) to yield 9.4 g (93\%) of $\mathbf{5 1}$ (as a mixture of two diastereomers, anti/syn). An analytical sample (oil) was obtained by PTLC (eluted with $2: 1$ hexanes/EtOAc).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 1.04(9 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.86-$ $2.03(2 \mathrm{H}, \mathrm{m}), 2.12-2.31(2 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 3.43-$ $3.52(2 \mathrm{H}, \mathrm{m}), 3.74-3.82(1 \mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.03(2 \mathrm{H}$, br s), $5.48-5.53(2 \mathrm{H}, \mathrm{m}), 7.34-7.41(6 \mathrm{H}, \mathrm{m}), 7.57-7.66(4 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): $2960,1790,1740,1681,1430,1366,1272,1223,1109$, $735,705 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 68.06 ; \mathrm{H}$, 7.14; N, 4.96. Found: C, 67.87; H, 7.27; N, 4.77.
[3 $\beta, 8 \mathrm{a} \beta(E)]$-Methyl 3-[[3-[[(1,1-Dimethylethyl)dimethylsily] $]$ oxy]-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4]dioxepino[2,3-g]indol-8-yl] methyl]-8a-[4-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo[1,2-a]pyrazine-3-carboxylate (52). To a flask containing $51(5.89 \mathrm{~g}, 14.56 \mathrm{mmol}, 1.0$ equiv) and $\mathbf{3 6}(8.64$ $\mathrm{g}, 14.56 \mathrm{mmol}, 1.1$ equiv) were added $\mathrm{CII}_{3} \mathrm{CN}(291 \mathrm{~mL})$ and tributylphosphine ($1.82 \mathrm{~mL}, 7.28 \mathrm{mmol}, 0.5$ equiv). The resulting mixture was gently refluxed for 3.5 h and then stirred at room
temperature overnight. The solvent was removed in vacuo, and the residue was purified by column chromatography (eluted with 1:2 $\mathrm{EtOAc} /$ hexanes) to yield $9.56 \mathrm{~g}(73 \%)$ of 52 . An analytical sample was purified by PTLC on silica gel (eluted with 1:2 EtOAc/hexanes) to give a white crystalline solid, mp $106-108^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.10(6 \mathrm{H}, \mathrm{s}), 0.115(3 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s})$, $1.02(18 \mathrm{H}, \mathrm{s}), 1.096(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.45(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s})$ $1.54(6 \mathrm{H}, \mathrm{s}), 1.60-1.88(6 \mathrm{H}, \mathrm{m}), 2.02-2.11(2 \mathrm{H}, \mathrm{m}): 2.92(2 \mathrm{H}, \mathrm{dd}, J$ $=7.1,14.4 \mathrm{~Hz}), 2.44(2 \mathrm{H}, \mathrm{dd}, J=8.1,14.5 \mathrm{~Hz}), 3.32-3.44(4 \mathrm{H}, \mathrm{m})$, $3.60(3 \mathrm{H}, \mathrm{s}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.72-3.93(8 \mathrm{H}, \mathrm{m}), 3.98(4 \mathrm{H}, \mathrm{br}$ s $), 4.18$ $(2 \mathrm{H}, \mathrm{dd}, J=2.9,8.4 \mathrm{~Hz}), 5.43(2 \mathrm{H}, \mathrm{m}), 6.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.41$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.74(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $6.89(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 7.33-7.41(12 \mathrm{H}, \mathrm{m}), 7.61-7.63(8 \mathrm{H}, \mathrm{m}), 8.43(1 \mathrm{H}, \mathrm{d}, J-$ $2.9 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}$ exch $), 8.64\left(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch.). ${ }^{13} \mathrm{C}$ NMR $(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta 4.8,4.2,9.5$, $17.9,19.2,19.3,19.5,20.3,25.7,26.8,28.0,28.3,29.7,33.7,35.6$, $46.1,46.2,53.3,66.9,68.0,71.6,76.3,80.7,80.8,108.2,112.9,117.1$, $117.9,118.0,123.5,123.6,125.5,127.6,129.1,129.2,129.6,133.6$, $135.5,138.8,141.6,141.8,161.4,169.7,170.5,170.6$. IR (NaCl , neat): 3281 (br), 2954, 2932, 2856, 1747, 1670, 1665, 1649, 1431, 1251, 1224, 1109, 1088, 733, $706 \mathrm{~cm}^{-1}$. HRMS (EI): 893.4457 $\left(\mathrm{C}_{50} \mathrm{H}_{67} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}\right.$ requires 893.4467). Microanal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{67}$ $\mathrm{N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, $67.16 ; \mathrm{H}, 7.55 ; \mathrm{N}, 4.70$. Found: C, $66.93 ; \mathrm{H}, 7.36 ; \mathrm{N}$, 4.51
[3/,8a $\beta(E)]-8$-[[8a-[4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo [1,2-a]pyrazin-3-yl] methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2II,10H-[1,4]dioxepino $[2,3-g]$ indole (53). $[3 \alpha, 8 a \beta(E)] 8-[[8 a-$ [4-[[(1,1-Dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]oc-tahydro-1,4-dioxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1dimethylethyl)dimethylsilyl $]$ oxyl-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4]dioxepino[2,3-g]indole (54). A flask containing 52 (9.56 g, 10.7 mmol, 1.0 equiv) and $\mathrm{LiCl}(2.26 \mathrm{~g}, 53.45 \mathrm{mmol}, 5.0$ equiv) under Ar was charged with HMPA (82 mL) and water $(0.29 \mathrm{~mL}, 16.0 \mathrm{mmol}$, 1.5 equiv). This mixture was gently heated ($100-105^{\circ} \mathrm{C}$) for 9 h and then diluted with $1: 1$ hexanes/EtOAc. The resulting solution was washed with water. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness. The residue was purified by column chromatography (eluted with $1: 2 \mathrm{EtOAc} /$ hexanes) to yield 5.90 $\mathrm{g}(66 \%)$ of 53 (two diastereomers; an analytical sample was recrystallized from $\mathrm{CCl}_{4}, \mathrm{mp}(s y n) 167-168{ }^{\circ} \mathrm{C}$) and $2.10 \mathrm{~g}(23 \%)$ of 54 (two diastereomers); an analytical sample was obtained by PTLC on silica gel (eluted with 1:2 EtOAc/hexanes, mp (anti) 95-99 ${ }^{\circ} \mathrm{C}$, white crystalline solid). Total combined yield: $8.00 \mathrm{~g}(89 \%)$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)(53$, mixture of two diastereomers): δ TMS $0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.90(18 \mathrm{H}, \mathrm{s}), 1.0(18 \mathrm{H}, \mathrm{s}), 1.126$ $(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.48(6 \mathrm{H}, \mathrm{s}), 1.64(6 \mathrm{H}, \mathrm{s}), 1.94-2.06(6 \mathrm{H}, \mathrm{m})$, $2.20-2.24(2 \mathrm{H}, \mathrm{m}), 2.36-2.46(2 \mathrm{H}, \mathrm{m}), 2.60-2.72(2 \mathrm{H}, \mathrm{m}), 2.98(2 \mathrm{H}$, dd, $J=11.6,14.1 \mathrm{~Hz}$), $3.44-3.57(4 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{dd}, J=6.7,9.2$ $\mathrm{Hz}), 3.97(2 \mathrm{H}, \mathrm{dd}, J=3.1,9.1 \mathrm{~Hz}), 4.02-4.06(2 \mathrm{H}, \mathrm{m}), 4.10(4 \mathrm{H}, \mathrm{s})$, $4.17-4.25(4 \mathrm{H}, \mathrm{m}), 5.58(2 \mathrm{H}, \mathrm{m}), 5.68\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.75$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 6.88(1 \mathrm{H}, J=2.2 \mathrm{~Hz})$, $7.14(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.26-7.44(12 \mathrm{H}, \mathrm{m}), 7.60-7.64(8 \mathrm{H}, \mathrm{m})$, $8.04\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 8.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$

The analytical samples of the syn-diastereomers were separable by PTLC
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)(\mathbf{5 3 a}$, less polar): δ TMS $0.12(3 \mathrm{H}$, s), $0.13(3 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.03(9 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s})$, $1.63(3 \mathrm{H}, \mathrm{s}), 1.92-2.04(3 \mathrm{H}, \mathrm{m}), 2.18-2.23(1 \mathrm{H}, \mathrm{m}), 2.39(1 \mathrm{H}, \mathrm{dd}, J$ $=7.2,14.2 \mathrm{~Hz}), 2.64(1 \mathrm{H}, \mathrm{dd}, J=8.7,14.2 \mathrm{~Hz}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=$ $11.4,14.2 \mathrm{~Hz}), 3.42-3.46(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{dd}, J=2.7,14.2 \mathrm{~Hz})$, $3.85(1 \mathrm{H}, \mathrm{dd}, J=9.2,11.3 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{dd}, J=3.0,9 \mathrm{~Hz}), 3.99-$ $4.06(1 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{s}), 4.11-4.15(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=3.0$, $11.3 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 5.76\left(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 7.11(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.26-7.42(6 \mathrm{H}, \mathrm{m}), 7.57-7.63(4 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exch)
${ }^{1}$ II NMR (300 MIIz) $\left(\mathrm{CDCl}_{3}\right)(\mathbf{5 3 b}$, more polar): δ TMS 0.12 (3II, s), $0.14(3 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.03(9 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s})$, $1.62(3 \mathrm{H}, \mathrm{s}), 1.91-2.04(3 \mathrm{H}, \mathrm{m}), 2.18-2.22(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{dd}, J$
$=7.3,14.2 \mathrm{~Hz}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=8.6,14.3 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{dd}, J=$ $11.3,14.2 \mathrm{~Hz}), 3.41-3.44(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{dd}, J=3.1,14.2 \mathrm{~Hz})$, $3.86(1 \mathrm{H}, \mathrm{dd}, J=9.3,11.3 \mathrm{~Hz}), 3.95(1 \mathrm{H}, \mathrm{dd}, J=3.0,9.1 \mathrm{~Hz}), 3.99-$ $4.03(1 \mathrm{H}, \mathrm{m}), 4.08(2 \mathrm{H}, \mathrm{s}), 4.14-4.16(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=2.9$, $11.6 \mathrm{~Hz}), 5.56(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 5.72\left(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $6.73(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}), 7.26-7.42(6 \mathrm{H}, \mathrm{m}), 7.57-7.62(4 \mathrm{H}, \mathrm{m}), 8.07\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (NaCl , neat) (syn): 3274 (br), 2929, 2858, 1666, 1651, 1453, 1428, $1250,1224,1112,1052,858,838,777 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}$ (syn): C, $68.94 ; \mathrm{H}, 7.84 ; \mathrm{N}, 5.02$. Found: C, 69.06 ; H, 7.76; N, 5.03 .
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)(\mathbf{5 4}$, mixture of two diastereomers): δ TMS $0.14(6 \mathrm{H}, \mathrm{s}), 0.16(6 \mathrm{H}, \mathrm{s}), 0.90(18 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s}), 1.045$ $(9 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s}), 1.47(6 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{m}), 1.54$ $(3 \mathrm{H}, \mathrm{m}), 1.97-2.17(8 \mathrm{H}, \mathrm{m}), 2.47-2.62(4 \mathrm{H}, \mathrm{m}), 2.78-2.88(2 \mathrm{H}, \mathrm{m})$, $3.54-3.65(4 \mathrm{H}, \mathrm{m}), 3.82-3.99(6 \mathrm{H}, \mathrm{m}), 4.02(4 \mathrm{H}, \mathrm{s}), 4.21(2 \mathrm{H}, \mathrm{dd}, J$ $=3.1,11.0 \mathrm{~Hz}), 4.35-4.39(2 \mathrm{H}, \mathrm{m}), 5.52-5.54(2 \mathrm{H}, \mathrm{m}), 5.69(2 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch $), 6.60(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.89$ $(2 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}), 6.98(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.36-7.42(10 \mathrm{H}, \mathrm{m})$, $7.62-7.69(8 \mathrm{H}, \mathrm{m}), 8.08\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR (NaCl , neat) (anti): 3289 (br), 2929, 2855, 1666, 1444, 1428, 1254, 1222, 1111, 857, 836, $704 \mathrm{~cm}^{-1}$. Mass spectrum (EI) (anti): m / e (relative intensity) $833\left(\mathrm{M}^{+}\right.$, $0.1), 512(6.4), 361(26), 360(100), 199(47)$. Microanal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}$ (anti): C, $68.94 ; \mathrm{H}, 7.84 ; \mathrm{N}, 5.02$. Found: C, 68.76; H, 7.60; N, 4.82 .
[3P,8a $\beta(E)]$-1,1-Dimethylethyl 8-[|2-[(1,1-Dimethylethoxy)carbo-nyl]-8a-[4-[[(1,1-dimethylethyl)diphenylsily][oxy]-3-methyl-2-bute-nyl]octahydro-1,4-dioxopyrrolo[1,2-a|pyrazin-3-yl]methyl|-3-[|(1,1dimethylethyl)dimethylsilyl ${ }^{\circ}$ oxy]-3,4-dihydro-4,4-dimethyl-2H,10H$[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (58). To a stirred solution of $53\left(310 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0\right.$ equiv) at $0^{\circ} \mathrm{C}$ under Ar in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.4$ mL) were added $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.74 \mathrm{mmol}, 2.0$ equiv) and DMAP $\left(90.7 \mathrm{mg}, 0.74 \mathrm{mmol}, 2.0\right.$ equiv). After $5 \mathrm{~min},(\mathrm{BOC})_{2} \mathrm{O}(486.2 \mathrm{mg}$, $2.2 \mathrm{mmol}, 6.0$ equiv) was added in one portion. The resulting solution was stirred for 8.5 h , poured into water, and extracted with EtOAc. The organic layer was washed with $10 \% \mathrm{CuSO}_{4}$ and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with 1:2 EtOAc/hexanes) to yield $375 \mathrm{mg}(97 \%)$ of $\mathbf{5 8}$ as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.879(9 \mathrm{H}, \mathrm{s}), 0.880(9 \mathrm{H}, \mathrm{s}), 1.01(18 \mathrm{H}, \mathrm{s})$, $1.05(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.14(9 \mathrm{H}, \mathrm{s}), 1.18(9 \mathrm{H}, \mathrm{s}), 1.55(6 \mathrm{H}, \mathrm{s}), 1.47$ $(6 \mathrm{H}, \mathrm{s}), 1.57(18 \mathrm{H}, \mathrm{s}), 1.88-2.16(6 \mathrm{H}, \mathrm{m}), 2.17-2.26(2 \mathrm{H}, \mathrm{m}), 2.28-$ $2.36(2 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{dd}, J=8.1,14.5 \mathrm{~Hz}), 3.22(2 \mathrm{H}, \mathrm{m}), 3.32-$ $3.45(4 \mathrm{H}, \mathrm{m}), 3.71-3.81(2 \mathrm{H}, \mathrm{m}), 3.84-3.96(4 \mathrm{H}, \mathrm{m}), 4.00(4 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.13-4.18(2 \mathrm{H}, \mathrm{m}), 5.02-5.07(2 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 5.53$ $(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{s}), 7.30-7.40$ $(12 \mathrm{H}, \mathrm{m}), 7.57-7.61(8 \mathrm{H}, \mathrm{m})$. IR (NaCl, neat): 2932, 1752, 1730 , 1660, 1371, 1251, 1153, 1109, 1088, $706 \mathrm{~cm}^{-1}$. HRMS (EI): $1035.5481\left(\mathrm{C}_{58} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Si}_{2}\right.$ requires 1035.5461$)$.
[3F,8a $\beta(E)]-1,1$-Dimethylethyl 8 -[[2-[(1,1-Dimethylethoxy)carbo-nyl]-8a-[4-hydroxy-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo-[1,2-a]pyrazin-3-yl]methyll-3,4-dihydro-4,4-dimethyl-3-hydroxy$2 H, 10 H-[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate. To a stirred solution of $\mathbf{5 3}$ ($511 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.0$ equiv) at $0^{\circ} \mathrm{C}$ under Ar in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.2 \mathrm{~mL})$ were added DMAP ($149.4 \mathrm{mg}, 1.2 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.17 \mathrm{~mL}, 1.2 \mathrm{mmol}, 2.0\right.$ equiv). After $5 \mathrm{~min},(\mathrm{BOC})_{2} \mathrm{O}(801.0$ $\mathrm{mg}, 3.67 \mathrm{mmol}, 6.0$ equiv) was added in one portion. The resulting solution was stirred for 2.7 h , and reaction was found to be complete by TLC analysis; during this period, the reaction temperature slowly reached $15^{\circ} \mathrm{C}$. The reaction flask was then charged with THF (12 mL) and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ removed by evaporation (until the volume of the flask was approximately 12 mL). The solution was stirred at room temperature and n-Bu4 NF ($1.96 \mathrm{~mL}, 1.96 \mathrm{mmol}, 3.2 \mathrm{eq}, 1.0 \mathrm{M} / \mathrm{THF}$) added quickly. After 22 h , additional $n-\mathrm{Bu}_{4} \mathrm{NF}(1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$, 1.6 equiv, $1.0 \mathrm{M} / \mathrm{THF}$) was added to the reaction flask and stirred for 24 h . The reaction was complete by TLC and was poured into water and extracted with EtOAc. The organic layer was washed with 10% CuSO_{4} and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted
with EtOAc) to yield 369 mg (89%) of the diol (obtained as a pale yellow, amorphous solid).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.21(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.29((9 \mathrm{H}, \mathrm{s}), 1.35(9 \mathrm{H}, \mathrm{s}), 1.47(6 \mathrm{H}, \mathrm{s})$, $1.52(6 \mathrm{H}, \mathrm{s}), 1.56(18 \mathrm{H}, \mathrm{s}), 1.63-2.21(14 \mathrm{H}, \mathrm{m}), 3.21-3.38(8 \mathrm{H}, \mathrm{m})$, $3.54\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.58\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.81-3.87(6 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{H} \mathrm{D}_{2} \mathrm{O}$ exch $), 4.22(4 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz})$, $4.96-5.01(2 \mathrm{H}, \mathrm{m}), 5.07(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{s}) . \mathrm{IR}(\mathrm{NaCl}$, neat): 3436,2978 , 1755, 1649, 1367, 1249, 1149, $732 \mathrm{~cm}^{-1}$.
[3/,8a $\beta(E)$]-1,1-Dimethylethyl 8-[[2-[(1,1-Dimethylethoxy)carbo-nyl]-8a-[4-chloro-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo-[1,2-a]pyrazin-3-yl]methyl]-3,4-dihydro-4,4-dimethyl-3-hydroxy$\mathbf{2 H}, \mathbf{1 0 H}$ - $[\mathbf{1 , 4}]$ dioxepino $[2,3$ - g indole-10-carboxylate. To a stirred solution of the diol obtained above ($50.0 \mathrm{mg}, 0.0725 \mathrm{mmol}, 1.0$ equiv) in DMF $(0.73 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar were added collidine $(0.014 \mathrm{~mL}$, $0.11 \mathrm{mmol}, 1.5$ equiv) and $\operatorname{LiCl}(5.27 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.7$ equiv). After $15 \mathrm{~min}, \mathrm{MsCl}(8.4 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1.5$ equiv) was added and the reaction mixture allowed to reach room temperature in the course of 16 h . At this time an additional amount (1.0 equiv) of each reagent was added in the same manner as above. After 8.5 h there was little change by TLC, so a large excess of $\mathrm{MsCl}(0.06 \mathrm{~mL}, 0.775 \mathrm{mmol}$, 10.7 equiv) was added at $0{ }^{\circ} \mathrm{C}$ and stirred for $\sim 12 \mathrm{~h}$ until only the desired product was apparent by TLC. The solution was diluted with 1:1 hexanes/EtOAc, washed with water and brine, dried over MgSO_{4}, and concentrated, under reduced pressure. The residue was purified by radial chromatography, 1:1 EtOAc/hexanes, to yield $45.5 \mathrm{mg}(91 \%)$ of the product allylic chloride (obtained as a foamy glass).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.18(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.24(9 \mathrm{H}, \mathrm{s}), 1.30(9 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.54$ $(3 \mathrm{H}, \mathrm{s}), 1.58(18 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{s}), 1.66(3 \mathrm{H}, \mathrm{s}), 1.74-2.18(10 \mathrm{H}, \mathrm{m})$, $2.27(2 \mathrm{H}, \mathrm{dd}, J=8.1,15.0 \mathrm{~Hz}), 3.02\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.19(2 \mathrm{H}$, $\mathrm{dd}, J=7.2,14.8 \mathrm{~Hz}), 3.27-3.44(4 \mathrm{H}, \mathrm{m}), 3.56(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.81-3.89$ $(2 \mathrm{H}, \mathrm{m}), 3.91(2 \mathrm{H}, \mathrm{s}), 3.94(2 \mathrm{H}, \mathrm{s}), 4.18-4.30(4 \mathrm{H}, \mathrm{m}), 4.99-5.06$ $(2 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 5.38-5.43(1 \mathrm{H}, \mathrm{m}), 6.93(2 \mathrm{H}, \mathrm{d}, J$ $=8.3 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.20(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.21$ $(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{s})$. IR (NaCl, neat): 3384, 2920, 1750, 1736, 1657, 1367, $1250,1149 \mathrm{~cm}^{-1}$.
[3 $\beta, 8 \mathrm{sa} \beta(E)]-1,1$-Dimethylethyl 8-[[2-[(1,1-Dimethylethoxy)carbo-nyl]-8a-[4-chloro-3-methyl-2-butenyl|octahydro-1,4-dioxopyrrolo-[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]-oxyl-3,4-dihydro-4,4-dimethyl-2H,10H-[1,4]dioxepino $[2,3-g]$ indole-10-carboxylate (55). To a stirred solution of the allylic chloride obtained above ($96.2 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under Ar were added 2,6 -lutidine ($0.016 \mathrm{~mL}, 0.14 \mathrm{mmol}, 0.38$ equiv) and tert-butyldimethylsilyl triflate ($0.03 \mathrm{~mL}, 0.14 \mathrm{mmol}, 0.38$ equiv). After 1 h an additional amount (0.5 equiv) of the two reagents was added. The mixture was stirred for 1 h , and another portion (0.5 equiv) of each reagent was added. The solution was stirred for 75 min and was then poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with 1:2 EtOAc/hexanes) to yield $106.5 \mathrm{mg}(99 \%)$ of $\mathbf{5 5}$ as a white crystalline solid, mp $70-73^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.10(3 \mathrm{H}, \mathrm{s}), 0.11(6 \mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}), 0.877(18 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{s})$, $1.06(3 \mathrm{H}, \mathrm{s}), 1.22(9 \mathrm{H}, \mathrm{s}), 1.29(9 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.58$ $(18 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{s}), 1.65(3 \mathrm{H}, \mathrm{s}), 1.76-2.13(10 \mathrm{H}, \mathrm{m}), 2.22(2 \mathrm{H}$, $\mathrm{dd}, J=8.4,14.8 \mathrm{~Hz}$), $3.19(2 \mathrm{H}, \mathrm{dd}, J=7.1,14.7 \mathrm{~Hz}$), $3.26-3.42$ $(4 \mathrm{H}, \mathrm{m}), 3.68-3.78(2 \mathrm{H}, \mathrm{m}), 3.81-3.87(4 \mathrm{H}, \mathrm{m}), 3.90(2 \mathrm{H}, \mathrm{s}), 3.94$ $(2 \mathrm{H}, \mathrm{s}), 4.10-4.17(2 \mathrm{H}, \mathrm{m}), 5.00-5.05(2 \mathrm{H}, \mathrm{m}), 5.22(1 \mathrm{H}, \mathrm{t}, J=7.6$ $\mathrm{Hz}), 5.41(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta-5.0$, $-4.1,-4.0,14.3,17.8,18.3,19.7,19.8,25.6$ 27.3, 27.4, 27.9, 28.5, $29.6,30.1,34.5,34.7,36.1,45.2,45.32,51.3,51.4,60.5,68.1,68.2$, $70.9,70.9,75.7,80.2,83.1,84.2,84.2,113.6,113.8,114.1,114.2,120.0$, $120.1,122.6,122.7,126.9,127.1,127.8,127.9,129.0,135.6,135.8$, $140.43,146.3,146.4,148.3,148.4,150.3,150.5,164.4,164.5,168.6$, 168.7. IR (NaCl , neat): $2936,1754,1729,1663,1496,1456,1370$,

1248, $1152,1086,838 \mathrm{~cm}^{-1}$. HRMS (EI): $815.3973\left(\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{~N}_{3} \mathrm{O}_{9}-\right.$ SiCl requires 815.3944).
[3 $\beta, 8 \mathrm{a} \beta(E)]$-1,1-Dimethylethyl 8-[[8a-[4-[[(1,1-Dimethylethyl)-diphenylsilyl]oxy]-3-methyl-2-butenyl]octahydro-1,4-dioxopyrrolo-[1,2-a] pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]-oxy]-3,4-dihydro-4,4-dim ethyl-2 $\mathrm{H}, 10 \mathrm{H}$ - $[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (59). To a flask fitted with a reflux condenser was added 58 ($799 \mathrm{mg}, 0.771 \mathrm{mmol}, 1.0$ equiv) followed by $\mathrm{CH}_{3} \mathrm{CN}(15.4$ $\mathrm{mL})$ and dimethylamine ($0.53 \mathrm{~mL}, 3.85 \mathrm{mmol}, 5.0$ equiv, 40% solution in water). The resulting solution was refluxed for 2 h and 20 min . The solvent was removed under reduced pressure and the residue purified by radial chromatography (eluted with 1:2 EtOAc/hexanes) to yield $657 \mathrm{mg}(92 \%)$ of $\mathbf{5 9}$. An analytical sample was obtained by PTLC, on silica gel (eluted with 1:2 EtOAc/hexanes) (foamy oil).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.14(6 \mathrm{H}, \mathrm{s}), 0.23(6 \mathrm{H}, \mathrm{s}), 0.88(18 \mathrm{H}, \mathrm{s}), 1.01(18 \mathrm{H}, \mathrm{s}), 1.10(6 \mathrm{H}, \mathrm{s})$, $1.48(6 \mathrm{H}, \mathrm{d}), 1.59(18 \mathrm{H}, \mathrm{s}), 1.62(6 \mathrm{H}, \mathrm{s}), 1.98-2.05(6 \mathrm{H}, \mathrm{m}), 2.07-$ $2.19(2 \mathrm{H}, \mathrm{m}), 2.37-2.47(2 \mathrm{H}, \mathrm{m}), 2.64-2.75(2 \mathrm{H}, \mathrm{m}), 2.94(2 \mathrm{H}, \mathrm{dd}$, $J=11.6,14.1 \mathrm{~Hz}), 3.41-3.47(4 \mathrm{H}, \mathrm{m}), 3.82(2 \mathrm{H}, \mathrm{dd}, J=9.6,12.2$ $\mathrm{Hz}), 3.93-4.03(4 \mathrm{H}, \mathrm{m}), 4.07(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.10-4.15(2 \mathrm{H}, \mathrm{m}), 4.20$ $(2 \mathrm{H}, \mathrm{dd}, J=2.7,12.4 \mathrm{~Hz}), 5.56-5.61(2 \mathrm{H}, \mathrm{m}), 5.78(1 \mathrm{H}, \mathrm{d}, J=3.0$ $\mathrm{Hz}, \mathrm{D}_{2} \mathrm{O}$ exch $), 5.81\left(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.877(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 6.884(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.20-$ $7.40(14 \mathrm{H}, \mathrm{m}), 7.56-7.61(8 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta-5.0,-4.1,13.7,14.0,17.8,18.6$, $18.8,19.1,19.6,22.5,25.7,26.7,28.0,28.4,28.4,31.4,31.6,31.7$, $34.9,35.8,44.81,57.5,67.5,68.2,71.0,75.8,76.6,77.0,77.4,80.3$, $83.3,83.1,113.3,114.6,116.6,120.1,126.3,126.3,127.5127 .6,128.1$, $128.2,128.4,128.4,128.6,133.1,133.2,135.4,139.2,140.5,140.6$, $146.4,146.5,148.4,164.4,169.6,169.7$. IR (NaCl, neat): 3246, 2960 $2861,1750,1676,1662,1430,1366,1252,1159,1109,1090 \mathrm{~cm}^{-1}$. HRMS (EI): $935.48955\left(\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}\right.$ requires 935.4936). Microanal. Calcd for $\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}_{2}$: C, 67.57; H, 7.96; N, 4.54. Found: C, 67.62; H, 7.94; N, 4.32 .
[3 $\beta, 8 \mathrm{a} \beta(E)]$-1,1-Dimethylethyl 8 -[[3,4,6,7,8,8a-Hexahydro-8a-[4-[[(1,1-dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]-1-meth-oxy-4-oxopyrrolo [1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2 $H, 10 H-$ $[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (60). To a stirred solution of $53(3.87 \mathrm{~g}, 4.63 \mathrm{mmol}, 1.0$ equiv $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(46 \mathrm{~mL})$ under Ar at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(9.8 \mathrm{~g}, 92.6 \mathrm{mmol}, 20.0$ equiv). After 10 min, $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ($3.42 \mathrm{~g}, 23.15 \mathrm{mmol}, 5.0$ equiv) was added in one portion. The mixture was stirred for 4.0 h at room temperature, poured into water, and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography (eluted with $1: 2$ hexanes/EtOAc; then $1: 1$ hexanes/EtOAc) to yield $3.20 \mathrm{~g}(81 \%)$ of $\mathbf{6 0}$. An analytical sample was obtained by PTLC on silica gel (eluted with EtOAc) (isolated as a white solid, mp $74-76^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.120(12 \mathrm{H}, \mathrm{s}), 0.875(18 \mathrm{H}, \mathrm{s}), 1.02(18 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}$, s), $1.45(12 \mathrm{H}, \mathrm{s}), 1.65-2.08(14 \mathrm{H}, \mathrm{m}), 3.07-3.15(2 \mathrm{H}, \mathrm{m}), 3.26(2 \mathrm{H}$, dd, $J=6.2,12.6 \mathrm{~Hz}), 3.32-3.40(2 \mathrm{H}, \mathrm{m}), 3.61(6 \mathrm{H}, \mathrm{s}), 3.70-3.86$ $(2 \mathrm{H}, \mathrm{m}), 3.91-3.95(4 \mathrm{H}, \mathrm{m}), 3.99(2 \mathrm{H}, \mathrm{s}), 4.15(2 \mathrm{H}, \mathrm{dd}, J=3.6,11.7$ $\mathrm{Hz}), 4.36-4.40(2 \mathrm{H}, \mathrm{m}), 5.37-5.44(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 6.69(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 7.01(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.26-7.41$ $(12 \mathrm{H}, \mathrm{m}), 7.58-7.62(8 \mathrm{H}, \mathrm{m}), 8.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR $(\mathrm{NaCl}$, neat): $3292,2932,1687,1643,1447,1251,1218,1109,837 \mathrm{~cm}^{-1}$ Mass spectrum (EI): m / e (relative intensity) $849\left(\mathrm{M}^{+}, 8.9\right), 361$ (26), 360 (95), 167 (100). Microanal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{67} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, 69.02 ; H, 7.94; N, 4.94. Found: C, 69.02; H, 7.88; N, 4.79.
$[3 \alpha, 8 \mathrm{a} \beta(E)]-1,1$-Dimethylethyl 8 -[$[3,4,6,7,8,8 a-H e x a h y d r o-8 a-[4-$ [[(1,1-dimethylethyl)diphenylsilyl]oxy]-3-methyl-2-butenyl]-1-meth-oxy-4-oxopyrrolo [1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)-dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2 $H, 10 H-$ $[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (61). To a stirred solution of $54\left(8.47 \mathrm{~g}, 10.13 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(101 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(21.26 \mathrm{~g}, 202.6 \mathrm{mmol}, 20.0$ equiv $)$. After $15 \mathrm{~min} \mathrm{Me}_{3} \mathrm{OBF}_{4}(7.49 \mathrm{~g}, 50.64 \mathrm{mmol}, 5.0$ equiv) was added in one portion. The mixture was stirred for 5 min , the ice bath was removed, and the reaction mixture was stirred for 4.5 h . The mixture was then
poured into water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography (eluted with 1:2 EtOAc/hexanes) to yield $5.30 \mathrm{~g}(62 \%)$ of 61. [The yield of 61 was 365 mg (71%) from 508 mg of 54.] An analytical sample was obtained by PTLC on silica gel (eluted with 1:2 EtOAc/hexanes and obtained as a white crystalline solid, mp 54-58 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.13(3 \mathrm{H}, \mathrm{s}), 0.14(9 \mathrm{H}, \mathrm{s}), 0.89(18 \mathrm{H}, \mathrm{s}), 1.03(9 \mathrm{H}, \mathrm{s}), 1.04(9 \mathrm{H}, \mathrm{s})$, $1.087(3 \mathrm{H}, \mathrm{s}), 1.093(3 \mathrm{H}, \mathrm{s}), 1.28-1.43(4 \mathrm{H}, \mathrm{m}), 1.48(6 \mathrm{H}, \mathrm{s}), 1.50$ $(6 \mathrm{H}, \mathrm{s}), 1.79-1.89(4 \mathrm{H}, \mathrm{m}), 2.24-2.38(4 \mathrm{H}, \mathrm{m}), 3.22-3.42(6 \mathrm{H}, \mathrm{m})$, $3.60(3 \mathrm{H}, \mathrm{s}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.68-3.76(2 \mathrm{H}, \mathrm{m}), 3.79-3.87(2 \mathrm{H}, \mathrm{m})$, $3.94(2 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}), 3.97(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.15-4.20(2 \mathrm{H}, \mathrm{m}), 4.26-$ $4.32(2 \mathrm{H}, \mathrm{m}), 5.41(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.701(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $6.703(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{d}, J=$ $2.6 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.32-7.44(12 \mathrm{H}, \mathrm{m}), 7.60-7.64$ $(8 \mathrm{H}, \mathrm{m}), 7.97\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $) . \mathrm{IR}(\mathrm{NaCl}$, neat): 3304, 2930, $1695,1645,1447,1249,1221,836 \mathrm{~cm}^{-1}$. HRMS (EI): 849.4550 $\left(\mathrm{C}_{49} \mathrm{H}_{67} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}\right.$ requires 849.4568). Microanal. Calcd for $\mathrm{C}_{49} \mathrm{H}_{67}{ }^{-}$ $\mathrm{N}_{3} \mathrm{O}_{6} \mathrm{Si}_{2}: \mathrm{C}, 69.22 ; \mathrm{H}, 7.94 ; \mathrm{N}, 4.94$. Found: C, $59.06 ; \mathrm{H}, 8.04 ; \mathrm{N}$, 4.89.
$[3 \beta, 8 a \beta(E)]-1,1$-Dimethylethyl 8-[[3,4,6,7,8,8a-Hexahydro-8a-(4-hydroxy-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo[1,2-a]pyrazin-3-yl|methyl]-3,4-dihydro-3-hydroxy-4,4-dimethyl-2H,10H-[1,4]dioxepino $[2,3-g]$ indole- 10 -carboxylate (62). To stirred solution of 60 ($5.45 \mathrm{~g}, 6.41 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ under Ar at $0^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.89 \mathrm{~mL}, 6.41 \mathrm{mmol}, 1.0$ equiv) and DMAP (783.1 $\mathrm{mg}, 6.41 \mathrm{mmol}, 1.0$ equiv). After $10 \mathrm{~min}(\mathrm{BOC})_{2} \mathrm{O}(4.20 \mathrm{~g}, 19.2 \mathrm{mmol}$, 3.0 equiv) was added in one portion. The reaction mixture was stirred for 6 h and diluted with THF (45 mL). The remaining $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed by evaporation under reduced pressure (until the volume in the flask was 45 mL). The flask was charged with n - $\mathrm{Bu}_{4} \mathrm{NF}$ (19.2 $\mathrm{mL}, 19.2 \mathrm{mmol}, 3.0$ equiv, $1.0 \mathrm{M} / \mathrm{THF}$), and the mixture was stirred at room temperature for approximately 12 h . The solution was diluted with water and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The residue was purified by column chromatography (eluted with 1:2 EtOAc/hexanes; then 2:1 EtOAc/hexanes) to yield 3.45 $\mathrm{g}(90 \%)$ of $\mathbf{6 2}$. [The yield of $\mathbf{6 2}$ was $243 \mathrm{mg}(97 \%)$ from 355 mg of 60.] An analytical sample was obtained by PTLC on silica gel (eluted with $2: 1 \mathrm{EtOAc} / \mathrm{hexanes}$) to afford a white solid, $\mathrm{mp} 72-85^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.18(6 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.57(21 \mathrm{H}, \mathrm{s})$, $1.61-2.07(10 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{dd}, J=8.6,14.5 \mathrm{~Hz}), 2.85(2 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $), 2.92-3.01(2 \mathrm{H}, \mathrm{m}), 3.18-3.35(6 \mathrm{H}, \mathrm{m}), 3.56(2 \mathrm{H}$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $), 3.62(3 \mathrm{H}, \mathrm{s}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.88(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.91-4.00(2 \mathrm{H}$, $\mathrm{m}), 4.25(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.30-4.39(2 \mathrm{H}, \mathrm{m}), 4.98-5.01(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}$, $\mathrm{d}, J=8.3 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $7.17(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{s}), 7.35(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75.5$ $\mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta 13.4,19.5,19.7,23.5$, $23.6,25.1,25.3,27.9,30.3,30.5,34.4,34.8,35.1,35.3,43.4,43.6$, $52.6,52.7,62.0,62.4,65.3,65.4,67.7,67.8,70.6,75.4,82.6,82.6$, $114.5,114.7,116.8,116.9,118.2,118.3119 .0,119.1,126.3,128.0$, 128.1, $129.9130 .0,138.6,138.7,140.7,146.2,148.5,161.32,161.5$, 168.5, 168.7 IR (NaCl , neat): 3390 (br), 2976, 1752, 1692, 1632, 1491, $1453,1371,1251,1158,733 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{43^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{8}$: C, 64.30; H, 7.25; N, 7.03. Found: C, 64.12; H, 7.41; N, 6.88. HRMS (EI): m/e $597.3065\left(\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{3}\right.$ requires 597.3050).
[3 $\alpha, 8 \mathrm{a} \beta(E)]$-1,1-Dimethylethyl 8-[[3,4,6,7,8,8a-Hexahydro-8a-(4-hydroxy-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo $1,2-a \mid$ pyrazin-3-yl|methyl]-3,4-dihydro-3-hydroxy-4,4-dimethyl-2H,10H-[1,4]dioxepino $[2,3-g]$ indole-10-carboxylate (63). To a stirred solution of $61\left(5.30 \mathrm{~g}, 5.65 \mathrm{mmol}, 1.0\right.$ equiv) under Ar in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.79 \mathrm{~mL}, 5.65 \mathrm{mmol}, 1.0$ equiv) and DMAP (689.7 $\mathrm{mg}, 5.65 \mathrm{mmol}, 1.0$ equiv). After $5 \mathrm{~min}(\mathrm{BOC})_{2} \mathrm{O}(3.70 \mathrm{~g}, 16.94 \mathrm{mmol}$, 3.0 equiv) was added in one portion. The reaction mixture was stirred for 4.5 h and diluted with THF $(40 \mathrm{~mL})$. The remaining $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed under reduced pressure (until the reaction volume was 40 mL). The flask was charged with $n-\mathrm{Bu}_{4} \mathrm{NF}(17.0 \mathrm{~mL}, 17.0 \mathrm{mmol}, 3.0$ equiv, $1.0 \mathrm{M} / \mathrm{THF}$), and the mixture was stirred at room temperature for ~ 12 h. The solution was diluted with water and extracted with EtOAc.

The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness. The residue was purified by column chromatography (eluted with EtOAc) to yield $3.16 \mathrm{~g}(85 \%)$ of 63 as a white, amorphous solid, $\operatorname{mp} 72-80^{\circ} \mathrm{C}$ [The yield of 63 was 179 mg (98%) with 260 mg of 61]
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.16(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.55(6 \mathrm{H}, \mathrm{s}), 1.57$ $(18 \mathrm{H}, \mathrm{s}), 1.60-2.14\left(10 \mathrm{H}, \mathrm{m}, 2 \mathrm{H} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 2.22-2.37(4 \mathrm{H}, \mathrm{m}), 3.06-$ $3.18\left(3 \mathrm{H}, \mathrm{m}, 1 \mathrm{H} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.26-3.36\left(5 \mathrm{H}, \mathrm{m}, 1 \mathrm{H} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.55$ $(3 \mathrm{H}, \mathrm{s}), 3.56(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.63-3.72(2 \mathrm{H}, \mathrm{m}), 3.89(4 \mathrm{H}$, m), $4.18-4.23(2 \mathrm{H}, \mathrm{m}), 4.25(4 \mathrm{H}, \mathrm{br}$ s $), 5.21-5.27(2 \mathrm{H}, \mathrm{m}), 6.857$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.861(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.24(2 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): 3401 (br), 2976, 1747, 1692, 1632, 1496, 1436, 1371, 1251, 1158, $733 \mathrm{~cm}^{-1}$. HRMS (EI): 597.3050 $\left(\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{8}\right.$ requires 597.3050).
[3/,8a $\beta(E)]-1,1$-Dimethylethyl 8-[[3,4,6,7,8,8a-Hexahydro-8a-(4-chloro-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3,4-dihydro-3-hydroxy-4,4-dimethyl-2H,10H-[1,4]dioxepino[2,3 -g]indole-10-carboxylate (64). Dimethyl sulfide (0.67 mL , $9.13 \mathrm{mmol}, 8.0$ equiv) was added dropwise to a stirred solution of NCS $\left(1.22 \mathrm{~g}, 9.13 \mathrm{mmol}, 8.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(51 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under Ar. The resulting mixture was stirred for 10 min and then cooled to -23 ${ }^{\circ}$ C. After $10 \mathrm{~min}, 62(682.4 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.0$ equiv) was added to the flask in one portion and stirring continued for 6 h . At this time the reaction flask was placed in a freezer $\left(-35^{\circ} \mathrm{C}\right)$ for 16 h , followed by an additional 10 h of stirring at $-23^{\circ} \mathrm{C}$. The mixture was then diluted with EtOAc, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with $1: 2$ hexanes/EtOAc) to yield $565.8 \mathrm{mg}(81 \%)$ of 64 as a white amorphous solid. [The yield of 64 was 2.12 g (37% or 74% based on recovered 62) with 5.60 g of 62.] An analytical sample was obtained by PTLC on silica gel (eluted with 2:1 EtOAc/hexanes).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.17(6 \mathrm{H}, \mathrm{s}), 1.52(6 \mathrm{H}, \mathrm{s}), 1.57(18 \mathrm{H}, \mathrm{s}), 1.65(6 \mathrm{H}, \mathrm{s}), 1.73-2.20(10 \mathrm{H}$, m), $2.84(2 \mathrm{H}, \mathrm{dd}, J=9.0,14.4 \mathrm{~Hz}), 3.06\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $), 3.10$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.26-3.36(4 \mathrm{H}, \mathrm{m}), 3.55-3.58(4 \mathrm{H}, \mathrm{m}), 3.62$ $(3 \mathrm{H}, \mathrm{s}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.91(4 \mathrm{H}, \mathrm{s}), 3.95-4.05(2 \mathrm{H}, \mathrm{m}), 4.24-4.25(4 \mathrm{H}$, $\mathrm{m}), 4.30-4.36(2 \mathrm{H}, \mathrm{m}), 5.28(2 \mathrm{H}, \mathrm{m}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.14$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.376(1 \mathrm{H}, \mathrm{s}), 7.384$ $(1 \mathrm{H}, \mathrm{s}) . \operatorname{IR}(\mathrm{NaCl}$, neat $): 3403,2979,1750,1716,1642,1348,1154$ cm^{-1}. HRMS (EI): $615.2709\left(\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Cl}\right.$ requires 615.2711$)$. Microanal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Cl}$: C, $62.38 ; \mathrm{H}, 6.87 ; \mathrm{N}, 6.82$. Found: C, 62.53; H, 6.86; N, 6.67.
[3 $\alpha, 8 a \beta(E)]-1,1$-Dimethylethyl 8-[[3,4,6,7,8,8a-Hexahydro-8a-(4-chloro-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3,4-dihydro-3-hydroxy-4,4-dimethyl-2H,10H-[1,4]dioxepino $[2,3-g]$-indole-10-carboxylate (65). To a stirred solution of $\mathrm{NCS}\left(5.67 \mathrm{~g}, 42.4 \mathrm{mmol}, 8.0\right.$ equiv) at $0{ }^{\circ} \mathrm{C}$ under Ar in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (206 mL) was added dimethyl sulfide ($3.12 \mathrm{~mL}, 42.4 \mathrm{mmol}, 8.0$ equiv) dropwise. After 0.5 h the mixture was cooled $\left(-23^{\circ} \mathrm{C}\right)$ and stirred for an additional 0.5 h . At this time the lactim ether-diol 63 (3.17 g , $5.30 \mathrm{mmol}, 1.0$ equiv) was added [approximately 3 g was added as a solid; the remaining amount was added as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) via cannula]. The white mixture was stirred for 12 h , diluted with EtOAc , washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluted with $2: 1$ hexanes/EtOAc; then $1: 1$ hexanes/EtOAc) to afford $2.80 \mathrm{~g}(86 \%)$ of $\mathbf{6 5}$ as a glass.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.17(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}), 1.57(18 \mathrm{H}, \mathrm{s})$, $1.65(6 \mathrm{H}, \mathrm{s}), 1.71-1.92(8 \mathrm{H}, \mathrm{m}), 2.24-2.39(4 \mathrm{H}, \mathrm{m}), 3.03-3.19(4 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{H} \mathrm{D}_{2} \mathrm{O}$ exch $), 3.28-3.37(4 \mathrm{H}, \mathrm{m}), 3.56(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.59-$ $3.75(4 \mathrm{H}, \mathrm{m}), 3.89(4 \mathrm{H}, \mathrm{s}), 4.21-4.29(6 \mathrm{H}, \mathrm{m}), 5.35(2 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{s}), 7.27(1 \mathrm{H}, \mathrm{s}) . \operatorname{IR}(\mathrm{NaCl}$, neat): 3412 (br), 2976, 1752, 1698, 1638, 1365, 1251, $1158 \mathrm{~cm}^{-1}$. HRMS (EI): $615.2714\left(\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Cl}\right.$ requires 615.2711).
[3 $\beta, 8 \mathrm{a} \beta(E)]$-1,1-Dimethylethyl 8 -[[3,4,6,7,8,8a-Hexahydro-8a-(4-chloro-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl-2 $\mathrm{H}, 10 \mathrm{H}$-[1,4]dioxepino[2,3-g]indole-10-carboxylate (66).

To a stirred solution of $\mathbf{6 4}\left(3.55 \mathrm{~g}, 5.76 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (23 mL) at $0^{\circ} \mathrm{C}$ under Ar was added 2,6-lutidine $(0.74 \mathrm{~mL}, 6.34 \mathrm{mmol}$, 1.1 equiv) followed by tert-butyldimethylsilyl triflate ($1.08 \mathrm{~mL}, 6.34$ mmol, 1.1 equiv). After 3 h an additional amount (1.1 equiv) of each reagent was added to the reaction flask; after stirring for 2 h , an additional amount (1.1 equiv) of each reagent was added. The mixture was stirred for 1 h , diluted with EtOAc , washed four times with water and once with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (eluted with $1: 1$ hexanes/EtOAc) to yield $3.23 \mathrm{~g}(77 \%)$ of 66 as an amorphous, white solid. An analytical sample was obtained by PTLC on silica gel (eluted with $1: 1$ hexanes/EtOAc).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.88(18 \mathrm{H}, \mathrm{s}), 1.06(6 \mathrm{H}, \mathrm{s}), 1.47(6 \mathrm{H}, \mathrm{s})$, $1.59(18 \mathrm{H}, \mathrm{s}), 1.65(6 \mathrm{H}, \mathrm{s}), 1.78-1.98(8 \mathrm{H}, \mathrm{s}), 2.02-2.12(2 \mathrm{H}, \mathrm{m})$, $2.86(2 \mathrm{H}, \mathrm{dd}, J=9.0,14.6 \mathrm{~Hz}), 3.31-3.34(2 \mathrm{H}, \mathrm{m}), 3.33(2 \mathrm{H}, \mathrm{dd}, J$ $=4.0,13.6 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.71-3.79(2 \mathrm{H}, \mathrm{m}), 3.73$ $(1 \mathrm{H}, \mathrm{dd}, J=4.2,9.8 \mathrm{~Hz}), 3.77(1 \mathrm{H}, \mathrm{dd}, J=4.4,9.7 \mathrm{~Hz}), 3.92(4 \mathrm{H}, \mathrm{s})$, $3.94-4.01(4 \mathrm{H}, \mathrm{m}), 4.15(2 \mathrm{H}, \mathrm{dd}, J=3.8,12.4 \mathrm{~Hz}), 4.32-4.37(2 \mathrm{H}$, m), $5.28-5.30(2 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): 2930, $1750,1691,1652,1494,1424,1366,1248,1159,1088 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m/e (relative intensity) $729\left(\mathrm{M}^{+}, 4.2\right), 731(\mathrm{M}+2$, 2.1), 629 (9.4), 361 (24.1), 360 (100), 167 (94.8), 57.2 (63). Microanal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SiCl}: \mathrm{C}, 62.49 ; \mathrm{H}, 7.73 ; \mathrm{N}, 5.75$. Found: C , 62.57; H, 7.71; N, 5.55.
[3 $\alpha, 8 \mathrm{a} \beta(E)]$-1,1-Dimethylethyl 8-[[3,4,6,7,8,8a-Hexahydro-8a-(4-chloro-3-methyl-2-butenyl)-1-methoxy-4-oxopyrrolo[1,2-a]pyrazin-3-yl]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl- $2 H, 10 H-[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (67). To a stirred solution of $65(2.73 \mathrm{~g}, 4.43 \mathrm{mmol}, 1.0$ equiv $)$ under Ar at $0^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ was added 2,6-lutidine ($0.57 \mathrm{~mL}, 4.87 \mathrm{mmol}$, 1.1 equiv) followed by tert-butyldimethylsilyl triflate ($0.87 \mathrm{~mL}, 4.87$ mmol, 1.1 equiv). After $1 \mathrm{~h}, 1.1$ equiv of each reagent was added and stirred for 3 h . The solution was diluted with EtOAc, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluted with $1: 2 \mathrm{EtOAc} / \mathrm{hexanes}$) to yield $2.76 \mathrm{~g}(85 \%)$ of 67 as a white amorphous solid. An analytical sample was obtained by PTLC on silica gel (eluted with 1:2 EtOAc/hexanes).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.87(18 \mathrm{H}, \mathrm{s}), 1.05(3 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s})$, $1.47(6 \mathrm{H}, \mathrm{s}), 1.50-1.53(2 \mathrm{H}, \mathrm{m}), 1.58(18 \mathrm{H}, \mathrm{s}), 1.65(6 \mathrm{H}, \mathrm{s}), 1.72-$ $1.91(6 \mathrm{H}, \mathrm{m}), 2.21-2.37(4 \mathrm{H}, \mathrm{m}), 3.06-3.19(2 \mathrm{H}, \mathrm{m}), 3.28-3.36(4 \mathrm{H}$, m), $3.56(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.63-3.87(4 \mathrm{H}, \mathrm{m}): 3.89(4 \mathrm{H}, \mathrm{s}), 3.93$ $(2 \mathrm{H}, \mathrm{dd}, J=3.9,9.8 \mathrm{~Hz}), 4.13-4.18(2 \mathrm{H}, \mathrm{m}), 4.22-4.35(2 \mathrm{H}, \mathrm{m})$, $5.30-5.40(2 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.19-7.26(4 \mathrm{H}, \mathrm{m})$. IR (NaCl , neat): 2949, 1751, 1693, 1652, 1493, 1424, 1369, 1250, 1156, $1086 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{38^{-}}$ $\mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SiCl}: \mathrm{C}, 62.49 ; \mathrm{H}, 7.73$; N, 5.75. Found: C, 62.29; H, 7.61; $\mathrm{N}, 5.76$. HRMS (EI): $729.3555\left(\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{SiCl}\right.$ requires 729.3576).

1,1-Dimethylethyl 8-[[7,8-Dihydro-1-methoxy-10-(1-methylethe-nyl)-4-oxo-6H-3,8a-ethanopyrrolo[1,2-a]pyrazin-3(4H)-yl]]methyl]-3-[[(1,1-dimethylethyl)dimethylsilyl]oxy]-3,4-dihydro-4,4-dimethyl$2 H, 10 H-[1,4]$ dioxepino $[2,3-g]$ indole-10-carboxylate (68). To a stirred solution of $66(1.43 \mathrm{~g}, 1.96 \mathrm{mmol}, 1.0$ equiv) in benzene (300 mL) was added $\mathrm{NaH}(939 \mathrm{mg}, 39.16 \mathrm{mmol}, 20.0$ equiv, freshly washed in pentane). This mixture was gently stirred at reflux temperature for 8.25 h , diluted with EtOAc , and washed with water and dilute HCl . The organic layer was isolated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with $1: 3 \mathrm{EtOAc} /$ hexanes) to yield 1.26 g of $68(93 \%)$. [The yield of 68 was $2.52 \mathrm{~g}(86 \%)$ from 3.10 g of 66.]

To a stirred solution of $67(1.60 \mathrm{~g}, 2.19 \mathrm{mmol}, 1.0$ equiv) in benzene (313 mL) was added $\mathrm{NaH}(1.05 \mathrm{~g}, 43.8 \mathrm{mmol}, 20.0$ equiv, freshly washed in pentane). This mixture was gently stirred at reflux temperature for 5.5 h and stirred at room temperature overnight. At this time, a small sample was removed, washed with water, and extracted with EtOAc. A crude proton NMR (in CDCl_{3}) indicated that the reaction was complete. The remaining mixture was diluted with EtOAc and washed with water. The organic layer was washed with
brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The two samples were combined and purified by radial chromatography (eluted with $1: 3 \mathrm{EtOAc} /$ hexanes) to yield 1.29 g of $\mathbf{6 8}(85 \%)$. An analytical sample was obtained by PTLC on silica gel (eluted with $1: 3$ EtOAc/hexanes); the product was obtained as a white solid, mp 105$108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.12(6 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s}), 0.872(9 \mathrm{H}, \mathrm{s}), 0.875(9 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s})$, $1.07(3 \mathrm{H}, \mathrm{s}), 1.46(6 \mathrm{H}, \mathrm{s}), 1.58(18 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}, \mathrm{s}), 1.64(3 \mathrm{H}, \mathrm{s})$, $1.72-2.03(8 \mathrm{H}, \mathrm{m}), 2.25-2.42(2 \mathrm{H}, \mathrm{m}), 2.47(2 \mathrm{H}, \mathrm{dd}, J=5.1,9.7$ $\mathrm{Hz}), 2.54(2 \mathrm{H}, \mathrm{dd}, J=5.8,9.7 \mathrm{~Hz}), 3.05(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz})$, $3.07(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.0 \mathrm{~Hz}), 3.31-3.53(6 \mathrm{H}, \mathrm{m}), 3.57(3 \mathrm{H}, \mathrm{s})$, $3.64(3 \mathrm{H}, \mathrm{s}), 3.73-3.89(2 \mathrm{H}, \mathrm{m}), 3.94(2 \mathrm{H}, \mathrm{dd}, J=3.7,9.7 \mathrm{~Hz}), 4.17$ $(2 \mathrm{H}, \mathrm{dd}, J=3.1,11.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{s}), 4.75(1 \mathrm{H}, \mathrm{s}), 4.78(1 \mathrm{H}, \mathrm{s})$, $4.85(1 \mathrm{H}, \mathrm{s}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.38$ ($1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$), $7.44(1 \mathrm{H}, \mathrm{s}), 7.52(1 \mathrm{H}, \mathrm{s})$. IR (NaCl , neat): 2935, $1752,1684,1637,1496,1418,1365,1350,1250,1220,1156,1083$ cm^{-1}. HRMS (EI): m/e $693.3834\left(\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}\right.$ requires 693.3809). Microanal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}$: C, 65.77 ; $\mathrm{H}, 7.99$; N, 6.05 . Found: C, 65.85; H, 7.99; N, 5.91.

1,1-Dimethylethyl 3-[[(1,1-Dimethylethyl)dimethylsily]]oxy]-3,4,8,$12,13,14,14 a, 15$-octahydro-4,4,15,15-tetramethyl-9,17-dioxo$11 \mathrm{H}, 16 \mathrm{H}-8 \mathrm{a}, 13$ a-(iminomethano)-2H,9H-[1,4]dioxepino[2,3-a]indolizino $[6,7-h]$ carbazole-16-carboxylate (69). To a flask charged with $\mathrm{PdCl}_{2}\left(827.9 \mathrm{mg}, 4.67 \mathrm{mmol}, 3.0\right.$ equiv) and $\mathrm{AgBF}_{4}(605.3 \mathrm{mg}$, $3.11 \mathrm{mmol}, 2.0$ equiv) was added dry $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$. The mixture was stirred for 6.5 h , when a solution of $68(1.08 \mathrm{~g}, 1.56 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was syringed into the flask. The reaction mixture was stirred for 48 h , and $\mathrm{EtOH}(55 \mathrm{~mL})$ was added, followed by small portions of $\mathrm{NaBH}_{4}\left(590 \mathrm{mg}, 15.6 \mathrm{mmol}, 10.0\right.$ equiv) at $0^{\circ} \mathrm{C}$. The addition was complete in 0.5 h , and the mixture was stirred for an additional 0.5 h . The black mixture was filtered to remove palladium and the solvent evaporated under reduced pressure. The residue was dissolved in EtOAc, washed with dilute aqueous $\mathrm{HCl}(0.01 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with 25 : $\left.25: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ to afford $676.3 \mathrm{mg}(63 \%)$ of 69 as a white amorphous solid. An analytical sample was obtained by PTLC on silica gel (eluted with 25:25:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.081(6 \mathrm{H}, \mathrm{s}), 0.11(6 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s})$, $1.17(3 H, s), 1.26(3 H, s), 1.27(3 H, s), 1.34(3 H, s), 1.35(3 H, s), 1.44$ $(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.56(9 \mathrm{H}, \mathrm{s}), 1.58(9 \mathrm{H}, \mathrm{s}), 1.81-1.90(2 \mathrm{H}, \mathrm{m})$, $1.96-2.06(6 \mathrm{H}, \mathrm{m}), 2.20(2 \mathrm{H}, \mathrm{dd}, J=10.3,13.5 \mathrm{~Hz}), 2.52-2.60(4 \mathrm{H}$, m), $2.78(2 \mathrm{H}, \mathrm{dt}, J=6.5,12.9 \mathrm{~Hz}), 3.36-3.49(2 \mathrm{H}, \mathrm{m}), 3.51-3.57$ $(2 \mathrm{H}, \mathrm{m}), 3.63-3.84(4 \mathrm{H}, \mathrm{m}), 3.88-3.92(2 \mathrm{H}, \mathrm{m}), 4.04-4.16(2 \mathrm{H}, \mathrm{m})$, $6.24\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.26\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta-5.2,-5.1,-5.0,-4.5,-4.3,17.6$. 18.7, 19.3, $19.7,19.9,24.3 .25 .5,25.6,26.9,26.2,27.2,27.8,27.9,28.3,28.5$, $29.1,31.1,36.2,43.8,50.5,50.6,53.3,54.8,55.7,59.4,60.2,60.2$, $66.3,67.6,71.1,72.7,75.9,78.0,80.5,84.1,84.3,108.3,112.4,112.5$, $113.6,117.9,118.5,124.6,124.9,128.7,128.9,129.4,137.7,138.3$, $139.4,139.6,143.0,143.2,152.9,153.0,168.3,174.1$. IR (neat): 3214, $2928,2856,1745,1556,1496,1443,1368,1252,1233,1154,1141$, 1091, 1052, 994, 859, 838, 777, 733. Microanal. Calcd for $\mathrm{C}_{3} 7 \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{7}$ $\mathrm{Si}: \mathrm{C}, 65.36 ; \mathrm{H}, 7.86 ; \mathrm{N}, 6.18$. Found: C, $65.18, \mathrm{H}, 7.77$; N, 6.18. MS (EI): m / e (relative intensity) $679\left(\mathrm{M}^{+}, 0.3\right), 580(20.4), 579$ (51), 73 (100). HRMS (EI): $m / e 679.3661\left(\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}\right.$ requires 679.3653).

1,1-Dimethylethyl 3-[[(1,1-Dimethylethyl)dimethylsily]]oxy]-3,4,8,-12,13,14,14a,15-octahydro-4,4,15,15-tetramethyl-17-methoxy-9-oxo$11 H, 16 H-8 a, 13$ a-(iminomethano)- $2 H, 9 H$-[1,4]dioxepino[2,3-a]indolizino $[6,7-h]$ carbazole-16-carboxylate (71). To a stirred solution of $69\left(26.1 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ under Ar at $0^{\circ} \mathrm{C}$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(81.0 \mathrm{mg}, 0.76 \mathrm{mmol}, 20.0$ equiv $)$. After 10 $\min \mathrm{Me}_{3} \mathrm{OBF}_{4}(28.3 \mathrm{mg}, 0.191 \mathrm{mmol}, 5.0$ equiv) was added in one portion. The mixture was stirred for 4 h at room temperature, poured into water, and extracted with EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The residue was purified by PTLC on silica gel
(eluted with $1: 2$ hexanes/EtOAc) to afford $19.6 \mathrm{mg}(74 \%)$ of 71 as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ TMS $0.10-0.15(12 \mathrm{H}, \mathrm{m}), 0.89(9 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.09(6 \mathrm{H}, \mathrm{s})$, $1.26(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.48$ $(3 \mathrm{H}, \mathrm{s}), 1.58(9 \mathrm{H}, \mathrm{s}), 1.60(9 \mathrm{H}, \mathrm{s}), 1.76-2.51(10 \mathrm{H}, \mathrm{m}), 2.23-2.31$ $(2 \mathrm{H}, \mathrm{m}), 2.60-2.70(2 \mathrm{H}, \mathrm{m}), 3.027(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.4 \mathrm{~Hz}), 3.032$ $(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.4 \mathrm{~Hz}), 3.31-3.41(2 \mathrm{H}, \mathrm{m}), 3.46-3.54(2 \mathrm{H}, \mathrm{m})$, $3.68(2 \mathrm{H}, \mathrm{dd}, J=9.1,12.1 \mathrm{~Hz}), 3.77(6 \mathrm{H}, \mathrm{s}), 3.87-3.94(2 \mathrm{H}, \mathrm{m})$, $3.90(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=16.3 \mathrm{~Hz}), 4.08(2 \mathrm{H}, \mathrm{dd}, J=3.5,11.9 \mathrm{~Hz}), 6.79$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.063(1 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz}), 7.061(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. IR (NaCl , neat): 2952, 2886, 1745, $1683,1640,1496,1412,1355,1252,1232,1156,1140,1111,1090$, 1052, 992, 838, $770 \mathrm{~cm}^{-1}$. HRMS (EI): m/e $693.3810\left(\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}\right.$ requires 693.3810).

3-(Hydroxy)-3,4,8,12,13,14,14a,15-octahydro-4,4,15,15-tetramethyl-9,17-dioxo-11H,16H-8a,13a-(iminomethano)-2H,9H-[1,4]dioxepino-[2,3-a]indolizino[6,7-h] carbazole (76). To a stirred solution of 69 (150 $\mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.4 \mathrm{~mL})$ under N_{2} at $0^{\circ} \mathrm{C}$ was added TFA ($1.4 \mathrm{~mL}, 17.8 \mathrm{mmol}, 80$ equiv) dropwise. The reaction mixture was allowed to reach room temperature overnight. The solution was concentrated and the residue taken up in EtOAc. The resulting solution was washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to dryness under reduced pressure. The residue was purified by radial chromatography (eluted with EtOAc) to yield $102 \mathrm{mg}(95 \%)$ of 76. An analytical sample was obtained by PTLC on silica gel (eluted with 1:1 EtOAc/hexanes) as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.06(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.29$ $(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 1.79-2.04(8 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}, \mathrm{td}, J$ $=5.1,11.9 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.5 \mathrm{~Hz}), 2.51$ $(1 \mathrm{H}, \mathrm{dd}, J=4.8,10.2 \mathrm{~Hz}), 2.59\left(1 \mathrm{H}, 1 / 2 \mathrm{ABq}_{1}, J=15.5 \mathrm{~Hz}\right), 2.78(2 \mathrm{H}$, $\mathrm{dt}, J=6.5,12.9 \mathrm{~Hz}), 3.21\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.33-3.41(3 \mathrm{H}, \mathrm{m})$, $3.41-3.56(3 \mathrm{H}, \mathrm{m}), 3.60\left(1 \mathrm{H}\right.$, br s, $\mathrm{D}_{2} \mathrm{O}$ exch $), 3.70(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $15.4 \mathrm{~Hz}), 3.78(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 4.12(2 \mathrm{H}, \mathrm{dd}, J=8.4,12.0$ $\mathrm{Hz}), 4.25(2 \mathrm{H}, \mathrm{td}, J=4.0,12.2 \mathrm{~Hz}), 6.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.72$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=7.9$ $\mathrm{Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 8.10(1 \mathrm{H}, \mathrm{s}$, $\mathrm{D}_{2} \mathrm{O}$ exch). IR (NaCl , neat): $3308,1684,1679,1402,1367,1232$, 1044, $733 \mathrm{~cm}^{-1}$. HRMS (EI): m/e $465.2248\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}\right.$ requires 465.2264).

14-Deoxy-29-demethyl-24,25-dihydro-25-hydroxy-12-oxo-17-norparaherquamide (79). To a stirred mixture of $76(16.5 \mathrm{mg}, 0.035$ mmol, 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} was added $\mathrm{Et}_{3} \mathrm{~N}(4.6 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 1.1$ equiv) followed by $t-\mathrm{BuOCl}(5.4 \mu \mathrm{~L}$, $0.04 \mathrm{mmol}, 1.1$ equiv). After 0.5 h , the resulting clear, yellow solution was concentrated to dryness (the flask being kept cold). The residue was immediately subjected to a solution of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}(40: 20$: 1) and stirred under N_{2} at room temperature for 0.5 h . The solution was diluted with saturated NaHCO_{3}, and the organic layer was washed three times with saturated NaHCO_{3}, washed with brine, dried over Na_{2} SO_{4}, and concentrated to dryness under reduced pressure. The residue was purified by PTLC on silica gel (eluted with $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$) to yield 5.0 mg (29%) of 79 as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.46(3 \mathrm{H}, \mathrm{s}), 0.48(3 \mathrm{H}, \mathrm{s}), 0.93(6 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.45$ $(3 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{s}), 1.65-2.09(14 \mathrm{H}, \mathrm{m}), 2.71-2.79(2 \mathrm{H}, \mathrm{m}), 2.87$ $(2 \mathrm{H}, \mathrm{td}, J=3.2,9.3 \mathrm{~Hz}), 3.40-4.99(2 \mathrm{H}, \mathrm{m}), 3.56-3.66(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{H}$ $\mathrm{D}_{2} \mathrm{O}$ exch $), 4.08-4.26(4 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{d}$, $J=8.1 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.96$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 7.09\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 8.03\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $8.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). IR (NaCl , neat): $3411,3237,1698,1632$, 1496, 1404, 1333, 1213, $728 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m'e (relative intensity) $481\left(\mathrm{M}^{+}, 23.9\right), 412(15.2), 249(12.7), 220(100), 149$ (60.6). HRMS (EI): $m / e 481.2194\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6}\right.$ requires 481.2213$)$.

1,1-Dimethylethyl 3-[[(1,1-Dimethylethyl)dimethylsilyl]oxy]-3,4,8,-12,13,14,14a,15-octahydro-4,4,15,15-tetramethyl-17-oxo- $11 \mathrm{H}, 16 \mathrm{H}$ -8a,13a-(iminomethano)-2H,9H-[1,4]dioxepino[2,3-a]indolizino[6,7-h]carbazole-16-carboxylate (70). To a stirred solution of $\mathbf{6 9}$ (164 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1.0$ equiv) in THF (4.9 mL) at $-78{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{Et}_{3} \mathrm{Al}(0.14 \mathrm{~mL}, 0.26 \mathrm{mmol}, 1.1$ equiv, 1.9 M in toluene)
dropwise. After 10 min the solution was warmed to $0^{\circ} \mathrm{C}$ and $\mathrm{AlH}_{3}{ }^{\circ}$ DMEA ($6.0 \mathrm{~mL}, 1.20 \mathrm{mmol}, 5.0$ equiv, 0.2 M in toluene) was added dropwise. The ice bath was removed and the solution stirred for 1 h and 20 min at room temperature. At this time $\mathrm{MeOH}(4.7 \mathrm{~mL})$ and $\mathrm{AcOH}(0.31 \mathrm{~mL})$ were syringed into the flask, followed by NaCNBH_{3} ($179 \mathrm{mg}, 2.85 \mathrm{mmol}, 11.9$ equiv). This mixture was stirred for 10 min , and the solvent was removed under reduced pressure and replaced with ethyl acetate. The resulting solution was washed with NaHCO_{3} (saturated) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with $1: 1$ hexanes/EtOAc) to yield 102 mg (65%) of 70 as a white amorphous solid. An analytical sample was obtained by PTLC on silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.085(6 \mathrm{H}, \mathrm{s}), 0.11(6 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s})$, $1.15(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.45$ $(6 \mathrm{H}, \mathrm{s}), 1.59(9 \mathrm{H}, \mathrm{s}), 1.61(9 \mathrm{H}, \mathrm{s}), 1.88-1.92(6 \mathrm{H}, \mathrm{s}), 1.97-2.10(2 \mathrm{H}$, m), $2.17-2.26(2 \mathrm{H}, \mathrm{m}), 2.54-2.63(2 \mathrm{H}, \mathrm{m}), 2.70(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $15.5 \mathrm{~Hz}), 2.829(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 2.835(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=$ $15.6 \mathrm{~Hz}), 3.06-3.09(2 \mathrm{H}, \mathrm{m}), 3.45-3.49(4 \mathrm{H}, \mathrm{m}), 3.67-3.85(4 \mathrm{H}, \mathrm{m})$, $3.90(2 \mathrm{H}, \mathrm{dd}, J=3.4,8.7 \mathrm{~Hz}), 4.09-4.18(4 \mathrm{H}, \mathrm{m}), 6.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch), $6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.89(2 \mathrm{H}$, $\mathrm{d}, J=8.3 \mathrm{~Hz}$). IR (NaCl , neat): $3227,2928,1746,1683,1597,1371$, $1254,1233,1154,1138,1090,836 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m/e (relative intensity) $665\left(\mathrm{M}^{+}, 0.3\right), 565(30.6), 521$ (40.1), 164 (100). Microanal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}$: C, $66.73 ; \mathrm{H}, 8.32 ; \mathrm{N}, 6.31$. Found: C, 66.50; H, 8.18; N, 6.33. HRMS (EI): m/e 665.38365 $\left(\mathrm{C}_{37} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}\right.$ requires 665.3860$)$.

1,1-Dimethylethyl 3-[[(1,1-Dimethylethyl)dimethylsily]]oxy]-3,4,8,$12,13,14,14$ a, 15-octahydro-4,4,15,15,18-pentamethyl-17-oxo-11H,16 H -8a,13a-(iminomethano)- $2 \mathrm{H}, 9 \mathrm{H}-[1,4]$ dioxepino[2,3-a]indolizino-[6,7-h] carbazole-16-carboxylate (72). To a stirred solution of 70 ($147.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.0$ equiv) in DMF (2.2 mL) under Ar at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(13.3 \mathrm{mg}, 0.55 \mathrm{mmol}, 2.5$ equiv). After 5 min , MeI ($27.6 \mu \mathrm{~L}, 0.44 \mathrm{mmol}, 2.0$ equiv) was syringed in dropwise. The mixture was stirred for 4 h , when a small amount of water and mercaptoethanol $(21.6 \mu \mathrm{~L})$ were added. After a few minutes, the mixture was diluted with water and extracted with $1: 1$ hexanes/EtOAc. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with $1: 2$ hexanes/EtOAc) to yield $146.9 \mathrm{mg}(98 \%)$ of 72 as a white amorphous solid. An analytical sample was obtained by PTLC on silica gel (eluted with $1: 1 \mathrm{EtOAc} /$ hexanes).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $0.089(6 \mathrm{H}, \mathrm{s}), 0.11(6 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{s})$, $1.15(3 \mathrm{H}, \mathrm{s}), 1.25(6 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.37(3 \mathrm{H}, \mathrm{s}), 1.46(6 \mathrm{H}, \mathrm{s}), 1.59$ ($9 \mathrm{H}, \mathrm{s}$), $1.61(9 \mathrm{H}, \mathrm{s}), 1.86-2.06(10 \mathrm{H}, \mathrm{m}), 2.09-2.20(6 \mathrm{H}, \mathrm{m}), 2.61-$ $2.70(2 \mathrm{H}, \mathrm{m}), 2.747(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 2.754(1 \mathrm{H}, 1 / 2 \mathrm{ABq}$, $J=15.4 \mathrm{~Hz}), 2.30-3.05(2 \mathrm{H}, \mathrm{m}), 3.05(6 \mathrm{H}, \mathrm{s}), 3.14(2 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=15.4 \mathrm{~Hz}), 3.39(2 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 3.74-3.85(2 \mathrm{H}, \mathrm{m}), 3.89-$ $3.93(2 \mathrm{H}, \mathrm{m}), 4.07-4.18(2 \mathrm{H}, \mathrm{m}), 6.797(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.804$ $(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. IR $(\mathrm{NaCl}$, neat): 2921, $1747,1665,1496,1371,1251,1235,1158,1142,1108,1093,837$, $755 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m'e (relative intensity) $679\left(\mathrm{M}^{+}, 2.1\right)$, 579 (4.2), 520 (4.2), 178 (100). Microanal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}$: C, 67.12; H, 8.45; N, 6.18. Found: C, 67.33; H, 8.27; N, 6.44. HRMS (EI): m/e $679.4008\left(\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}\right.$ requires 679.4017).

3-Hydroxy-3,4,8,12,13,14,14a,15-octahydro-4,4,15,15,18-penta-methyl-17-oxo- $11 H, 16 \mathrm{H}$-8a, 13a-(iminomethano)- $2 H, 9 H$-[1,4]dioxepino $[2,3-a$]indolizino[6,7-h]carbazole (73). To a stirred solution of 72 ($294.7 \mathrm{mg}, 0.43 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under Ar was added TFA ($2.77 \mathrm{~mL}, 34.7 \mathrm{mmol}, 80.0$ equiv) dropwise. The solution was stirred for 15 h , the temperature being maintained at 15 ${ }^{\circ} \mathrm{C}$. At this time the solution was concentrated under reduced pressure, diluted with EtOAc , washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by radial chromatography (eluted with EtOAc) to yield $194.8 \mathrm{mg}(96 \%)$ of 73 as a white amorphous solid. An analytical sample was obtained by PTLC on silica gel (eluted with 1:1 EtOAc/ hexanes).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): δ $1.21(3 H, s), 1.23(3 H, s), 1.29(3 H, s), 1.32(3 H, s), 1.42(3 H, s), 1.45$
$(3 \mathrm{H}, \mathrm{s}), 1.54(6 \mathrm{H}, \mathrm{s}), 1.88-2.00(10 \mathrm{H}, \mathrm{m}), 2.07-2.22(6 \mathrm{H}, \mathrm{m}), 2.63-$ $2.72(2 \mathrm{H}, \mathrm{m}), 2.79(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 2.80(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J$ $=15.1 \mathrm{~Hz}), 3.01-3.07\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{H} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 3.07(6 \mathrm{H}, \mathrm{s}), 3.17(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=15.1 \mathrm{~Hz}), 3.19(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=15.4 \mathrm{~Hz}), 3.37-3.43$ $(2 \mathrm{H}, \mathrm{m}), 3.62(2 \mathrm{H}, \mathrm{br} s), 4.20(2 \mathrm{H}, \mathrm{dd}, J=4.4,12.3 \mathrm{~Hz}), 4.29(1 \mathrm{H}$, $\mathrm{dd}, J=4.0,12.3 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=4.0,12.3 \mathrm{~Hz}), 6.750(1 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), 6.753(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.01(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.01$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch). ${ }^{13} \mathrm{C} \operatorname{NMR}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta 14.0,20.8,22.6,23.9,24.4,24.5,24.7,25.1,27.7$, $27.9,30.2,30.3,31.3,34.4,45.9,54.3,57.4,60.0,60.2,64.0,71.0$, $75.5,76.6,77.0,77.4,79.5,104.6,112.2,116.17,116.22,125.0,129.2$, 137.2, 140.4, 141.6, 171.0, 174.3. IR (NaCl , neat): $3324,2954,1654$, 1507, 1474, 1365, 1235, 1071, 1049, 908, $733 \mathrm{~cm}^{-1}$. Microanal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 69.65 ; \mathrm{H}, 7.58 ; \mathrm{N}, 9.02$. Found: C, $69.54 ; \mathrm{H}$, 7.66; N, 8.89. Mass spectrum (LI): m / e (relative intensity) $465\left(\mathrm{M}^{+}\right.$, 9.7), 406 (14.5), 287 (11.8), 178 (100). HRMS (EI): m/e 465.2625 $\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ Si requires 465.2628$)$.

14-Deoxy-24,25-dihydro-25-hydroxy-17-norparaherquamide (80). To a stirred solution of $73(99 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0$ equiv) in pyridine $(4 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ under Ar was added $t-\mathrm{BuOCl}(37 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$, 1.5 equiv). After 2 h the solvent was removed under reduced pressure to give 106 mg (quantitative) of the crude chloroindolenines (74/75 as a mixture of epimers). The majority of the crude chloroindolenines, $74 / 75$ ($71 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv), was dissolved in THF (10 mL) and water (1 mL), and p-toluenesulfonic acid monohydrate (135 mg , $0.41 \mathrm{mmol}, 15$ equiv) was added. The resulting yellow solution was stirred at reflux temperature for 20 min and diluted with EtOAc and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic layer was isolated, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to dryness under reduced pressure. The residue was purified by PTLC on silica gel (eluted with $20: 1 \mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2} / \mathrm{MeOH}$) to yield (from the chloroindolenines) $52 \mathrm{mg}(76 \%)$ of $\mathbf{8 0}$ and $2.7 \mathrm{mg}(4 \%)$ of $\mathbf{8 1}$.
${ }^{1} \mathrm{H}$ NMR $(\mathbf{3 0 0} \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)(\mathbf{8 0}$ mixture of two diastereomers): δ TMS $0.80(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}$, s), $1.26(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s})$: $1.52(3 \mathrm{H}, \mathrm{s}), 1.40-1.60(8 \mathrm{H}, \mathrm{m}), 1.77-$ $1.93(8 \mathrm{H}, \mathrm{m}), 2.05-2.21(2 \mathrm{H}, \mathrm{m}), 2.55-2.71(4 \mathrm{H}, \mathrm{m}), 3.02-3.10(4 \mathrm{H}$, m), $3.06(6 \mathrm{H}, \mathrm{s}), 3.63\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{H} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 4.05-4.24(4 \mathrm{H}, \mathrm{m})$, $6.60(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 7.45(1 \mathrm{H}$, $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). IR (NaCl , neat): 3333, 2974, 2933, 1703, 1651, 1646 , $1631,1456,1395,1323,1200,1046,903,728 \mathrm{~cm}^{-1}$. Mass spectrum (EI): m / e (relative intensity) $481\left(\mathrm{M}^{+}, 0.7\right), 422$ (20.7), 421 (15), 135 (48), 133 (100). HRMS (CI): m/e $481\left(\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}\right.$ requires 481.2578), $[\mathrm{M}+\mathrm{H}] 482.2645\left(\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right.$ requires 482.2655$)$.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)(\mathbf{8 1}$ mixture of two diastereomers): δ TMS $0.53(3 \mathrm{H}, \mathrm{s}), 0.56(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}$, s), $1.25(3 \mathrm{H}, \mathrm{s}), 1.50(3 \mathrm{H}, \mathrm{s}), 1.52(3 \mathrm{H}, \mathrm{s}), 1.41-1.73(8 \mathrm{H}, \mathrm{m}), 1.83-$ $1.90(8 \mathrm{H}, \mathrm{m}), 2.09-2.13(2 \mathrm{H}, \mathrm{m}), 2.28-2.41(6 \mathrm{H}, \mathrm{m}), 2.51-2.58(2 \mathrm{H}$, $\mathrm{m}), 3.00(3 \mathrm{H}, \mathrm{s}), 3.01(3 \mathrm{H}, \mathrm{s}), 3.63\left(2 \mathrm{H}\right.$, br s), $3.78\left(1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $3.81\left(1 \mathrm{H}, \mathrm{s} \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 4.05-4.24(4 \mathrm{H}, \mathrm{m}), 6.60(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $6.62(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$. IR (NaCl , neat): 3271, 2924, 2854, 1714, 1644, 1496, 1464, 1393, 1375, 1211, 1142, $1066 \mathrm{~cm}^{-1}$.
(+)-Paraherquamide \mathbf{B} (12). To a stirred solution of $\mathbf{8 0}(22.5 \mathrm{mg}$, $0.047 \mathrm{mmol}, 1.0$ equiv) in DMPU ($500 \mu \mathrm{~L}$) under Ar at room temperature was added MTPI ($90 \mathrm{mg}, 0.20 \mathrm{mmol}, 4.0$ equiv). After $16 \mathrm{~h} \mathrm{KOH}(10 \mathrm{~mL}, 1 \mathrm{M})$ was added, and the mixture was stirred for an additional 10 min . The pH was adjusted to $2($ addition of HCl$)$ and the mixture extracted with EtOAc. The mixture was diluted with 1:1 hexanes/EtOAc and washed with water and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by PTLC on silica gel (eluted with $20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH})$ to afford $17.1 \mathrm{mg}(79 \%)$ of (+)-paraherquamide $\mathrm{B}(\mathbf{1 2)}$ as a white, amorphous solid. This material proved to be identical to an authentic sample of natural (-)-paraherquamide B by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, TLC mobility, IR, mass spectrum, and UV (see text for CD spectrum, Figure 7).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta$ TMS $0.82(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{s})$, $1.40(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.64(1 \mathrm{H}, \mathrm{dd}, J=9.7,12.4 \mathrm{~Hz}), 1.73-1.92$ ($4 \mathrm{II}, \mathrm{m}$), $1.82\left(1 \mathrm{II},{ }^{1 / 2} \mathrm{ABq}, J=15.5 \mathrm{IIz}\right), 2.16(1 \mathrm{II}, \mathrm{dd}, J=8.6,17.8$ $\mathrm{Hz}), 2.54-2.59(1 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, 1 / 2 \mathrm{ABq}, J=11.1 \mathrm{~Hz}), 2.66(1 \mathrm{H}$, $1 / 2 \mathrm{ABq}, J=15.5 \mathrm{~Hz}), 3.03-3.10(2 \mathrm{H}, \mathrm{m}), 3.05(3 \mathrm{H}, \mathrm{s}), 3.60(1 \mathrm{H}, 1 / 2$
$\mathrm{ABq}, J=11.1 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\mathrm{Hz}), 6.64(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.5(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{D}_{2} \mathrm{O}$ exch). ${ }^{13} \mathrm{C} \operatorname{NMR}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right): \delta 20.7$ (q), 23.8 (q), 26.2 (q), 28.2 (q), 28.8 (t), 29.8 (t), 29.9 (q), 37.2 ($t), 46.1$ (s$), 52.8$ (d), $53.8(\mathrm{t}), 59.5(\mathrm{t}), 63.0(\mathrm{~s}), 65.2(\mathrm{~s}), 67.4(\mathrm{~s}), 79.7(\mathrm{~s}), 115.0(\mathrm{~d})$, 117.2 (d), 120.3 (d), 125.3 (s), 132.5 (s), 135.3 (s), 139.0 (d), 146.0 (s), 172.9 (s), 183.1 (s). IR (NaCl , neat): 3190, 2974, 2933, 1703, $1697,1651,1631,1503,1456,1328,1195,1046728 \mathrm{~cm}^{-1}$. UV: $\lambda_{\max }$ $226 \mathrm{~nm}(\epsilon=30200) .[\alpha]^{25}{ }_{\mathrm{D}}=\left(+0.4 / 7.75 \times 10^{-3}\right)^{\circ}=+51.6^{\circ}\left(\mathrm{CHCl}_{3}\right.$, $c=0.008$). Mass spectrum (EI): m / e (relative intensity) $463\left(\mathrm{M}^{+}\right.$, 0.5), 404 (15.6), 135 (41.5), 133 (100). HRMS (EI): m/e 463.2456 $\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 463.2471$)$.

Spiro Product 56. ${ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) (mixture of two diastereomers): δ TMS $0.21(12 \mathrm{H}, \mathrm{s}), 0.93(18 \mathrm{H}, \mathrm{s}), 1.13(6 \mathrm{H}, \mathrm{s})$, 1.41 (18II, s), 1.48 ($6 \mathrm{II}, \mathrm{s}$), 1.62 ($18 \mathrm{II}, \mathrm{s}$), 1.82 ($6 \mathrm{II}, \mathrm{s}$), $1.88 \quad 2.15$ $(6 \mathrm{H}, \mathrm{m}), 2.54(2 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}), 2.81-2.83(4 \mathrm{H}, \mathrm{m}), 3.02-3.06$ $(4 \mathrm{H}, \mathrm{m}), 3.36-3.42(2 \mathrm{H}, \mathrm{m}), 3.62-3.64(2 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{dd}, J=$ $9.3,12.2 \mathrm{~Hz}), 3.99(2 \mathrm{H}, \mathrm{dd}, J=3.5,9.3 \mathrm{~Hz}), 4.21(2 \mathrm{H}, \mathrm{dd}, J=3.5$, $12.2 \mathrm{~Hz}), 4.61-4.83(4 \mathrm{H}, \mathrm{m}), 4.96(2 \mathrm{H}$, br s), $5.07(2 \mathrm{H}, \mathrm{br}$ s), 5.94 $\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.25(2 \mathrm{H}, \mathrm{d}$, $J=8.3 \mathrm{~Hz}), 7.41(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75.5 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta-4.9(\mathrm{q}),-4.0(\mathrm{q}), 16.5(\mathrm{q}), 17.9(\mathrm{~s}), 18.4(\mathrm{q})$, 24.1 (t), 25.7 (q), 28.0 (q), 28.3 (q), 28.6 (q), 29.4 (t), 29.7 (d), 35.6 (t), 36.6 (t), 47.9 (t), 51.7 (d), 66.6 (s), $70.9(\mathrm{t}), 75.9(\mathrm{~d}), 76.6(\mathrm{~s}), 79.8$ (d), 80.4 (s$), 83.1$ (s$), 113.7$ (d), 113.9 (t), 114.6 (s$), 120.3$ (d), 126.4 (d), 127.9 (s), 129.3 (s), 140.4 (s), 141.8 (s), 146.6 (s), 148.5 (s), 155.0 (s), 169.7 (s), $176.6(\mathrm{~s}) . \mathrm{IR}(\mathrm{NaCl}$, neat): 2932, 1780, 1752, 1714, $1649,1496,1425,1365,1251,1229,1158,1088 \mathrm{~cm}^{-1}$.

Spiro Product 57. ${ }^{1} \mathrm{H}$ NMR (300 MHz) (acetone- d_{6}) (mixture of two diastereomers): δ TMS $0.21(12 \mathrm{H}, \mathrm{s}), 0.94(18 \mathrm{H}, \mathrm{s}), 1.14(6 \mathrm{H}, \mathrm{s})$, $1.41(18 \mathrm{H}, \mathrm{s}), 1.47(6 \mathrm{H}, \mathrm{s}), 1.62(18 \mathrm{H}, \mathrm{s}), 1.80(6 \mathrm{H}, \mathrm{s}), 1.96-2.07$ $(6 \mathrm{H}, \mathrm{m}), 2.58(2 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}), 2.84(4 \mathrm{H}$, br s $), 2.98-3.13(4 \mathrm{H}$, $\mathrm{m}), 3.48-3.50(2 \mathrm{H}, \mathrm{m}), 3.51-3.52(2 \mathrm{H}, \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{dd}, J=9.3$, $12.1 \mathrm{~Hz}), 4.00(2 \mathrm{H}, \mathrm{dd}, J=3.4,9.1 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{dd}, J=3.4,12.2$ $\mathrm{Hz}), 4.72(2 \mathrm{H}, \mathrm{dd}, J=6.6,15.0 \mathrm{~Hz}), 4.84(2 \mathrm{H}, \mathrm{dd}, J=6.3,10.7 \mathrm{~Hz})$, $4.96(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.95\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{D}_{2} \mathrm{O}\right.$ exch $)$, $6.91(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.38(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz) $\left(\mathrm{CDCl}_{3}\right)$ (mixture of two diastereomers): $\delta-4.9$ $(\mathrm{q}),-4.0(\mathrm{q}), 16.5(\mathrm{q}), 17.9(\mathrm{~s}), 18.8(\mathrm{q}), 24.1(\mathrm{t}), 25.7(\mathrm{q}), 28.0(\mathrm{q})$,
28.3 (q), $29.0(\mathrm{t}), 29.7(\mathrm{~d}), 35.6(\mathrm{t}), 36.7(\mathrm{t}), 48.0(\mathrm{t}), 52.4(\mathrm{~d}), 66.7(\mathrm{~s})$, 71.0 (t), 75.8 (d), 76.6 (s), 79.8 (d), 80.4 (s), 83.1 (s), 113.6 (d), 113.8 (t), 114.7 (s), 120.0 (d), 126.1 (d), 127.8 (s), 129.3 (s), 140.4 (s), 141.7 (s), 146.4 (s), 148.6 (s), 155.0 (s), 169.8 (s), 175.7 (s). IR (neat): 2926, $1783,1754,1715,1652,1494,1457,1367,1250,1160,1087 \mathrm{~cm}^{-1}$.

Acknowledgment. This work was supported in part by the National Institutes of Health (Grant CA 43969) and the National Science Foundation (CHE 9320010). Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and The Colorado State University Agricultural Experiment Station (USDA SAES Western Project W -122) for partial support of this work. Mass spectra were obtained on instruments supporled by the National Institutes of Health Shared Instrumentation Grant GM49631. We would like to thank Dr. Chris Rithner of Colorado State University for technical assistance with several 2D NMR experiments. Narashima Sreerama and Prof. Robert W. Woody (Department of Biochemistry and Molecular Biology, Colorado State University) are gratefully acknowledged for help in obtaining CD spectra. We would also like to acknowledge Dr. Dusan Stanojevic and Prof. Gregory L. Verdine (Department of Chemistry, Harvard University) for their assistance in obtaining CD spectra of paraherquamide B. We are grateful to Dr. John Ondeyka of Merck \& Co. for furnishing NMR spectra of natural paraherquamide B. J.F.S.-C. thanks the Conselleria de Educacio i Ciencia de la Generalitat Valenciana (Spain) for a fellowship. We also wish to acknowledge Renee Gallegos (Colorado State University), Felix Sancenon (University of Valencia), and M. Eugenia Martinez (University of Valencia) for valuable assistance in isolating natural (-)paraherquamide B from P. fellutanum. Mr. Dan Bond is gratefully acknowledged for providing synthetic chemical technical assistance.

JA952666C

EXHIBIT 18

Synthetic Studies on Et-743. Assembly of the Pentacyclic Core and a Formal Total Synthesis

Dan Fishlock ${ }^{\dagger}$ and Robert M. Williams ${ }^{*}{ }^{\dagger,}, \dot{ }$
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, and University of Colorado Cancer Center, Aurora, Colorado 80045

rmw@lamar.colostate.edu
Received May 30, 2008

1, ecteinascidin 743
A formal total synthesis of the potent anticancer agent Et-743 is described. The tetrahydroisoquinoline core is stereoselectively constructed using a novel radical cyclization of a glyoxalimine. Further elaboration of this core rapidly accessed the pentacyclic core of Et-743, but a mixture of regiosisomers was obtained in the key Pictet-Spengler ring closure. A known advanced intermediate in the synthesis of Et-743 was intercepted, constituting a formal synthesis of the molecule.

Introduction

Members of the tetrahydroisoquinoline family of alkaloids display a wide range of biological properties such as antitumor and antimicrobial activities. ${ }^{1}$ Of particular significance within this family is Ecteinascidin 743 (Et-743, 1, Figure 1,) which has been demonstrated to possess extremely potent cytotoxic activity with in vitro IC_{50} values in the $0.1-1 \mathrm{ng} / \mathrm{mL}$ range in several cell lines (as a measure of RNA, DNA, and protein synthesis inhibition). ${ }^{2}$ Et-743 is currently in phase II/III clinical trials for the treatment of ovarian, endometrial, and breast cancers and several sarcoma lines. ${ }^{3}$ The scarcity of the natural product from marine sources renders Et-743 an important target for synthesis. Corey and co-workers reported the first total synthesis of Et-743 in 36 steps with an overall yield of $0.72 \%{ }^{4 a}$

[^24]

1, ecteinascidin 743
FIgURE 1. Ecteinascidin 743 (1).
A second-generation synthesis improved the overall yield to 2.04%, but still required 36 steps. ${ }^{4 \mathrm{~b}}$ Fukuyama and co-workers achieved a total synthesis of Et-743 in 50 steps and 0.56% overall yield. ${ }^{5}$ More recently, Zhu and co-workers reported a 31 step synthesis in 1.7% overall yield. ${ }^{6}$ Most recently, Danishefsky and co-workers reported a formal total synthesis ${ }^{7}$ via a pentacyclic compound that intercepted a late-stage intermediate of Fukuyama's route. ${ }^{5}$ Despite the advancements in the state-of-the-art in total synthetic approaches to Et-743, the clinical supply of this complex drug is semisynthetically derived from natural cyanosafracin B, obtained by fermentation as reported by PharmaMar. ${ }^{8}$

Our laboratory has been developing methodology for the assembly of tetrahydroisoquinoline natural products and has

SCheme 1. Synthetic Plan

reported syntheses of D,L-quinocarcinamide, ${ }^{9}(-)$-tetrazomine, ${ }^{10}$ $(-)$-renieramycin G, ${ }^{11}(-)$-jorumycin, ${ }^{11}$ and cribrostatin 4 (renieramycin H). ${ }^{12}$ As a part of this program, we have targeted Et-743 by a convergent route that envisioned coupling of a suitably functionalized tyrosine derivative ${ }^{13}$ with the complete tetrahydroisoquinoline core (Scheme 1.) We have successfully deployed this strategy, with the present objective of construction of pentacycle \mathbf{A}, in the synthesis of $(-)$-renieramycin G and $(-)$-jorumycin. ${ }^{11,12}$
We have previously reported a concise and highly diastereoselective synthesis of the tetrahydroisoquinoline core of Et-743

[^25](E). ${ }^{14}$ This was achieved via an intramolecular 6-endo radical closure on a glyoxalimine, and the desired 1,3-cis-diastereomer was obtained exclusively. The synthesis of a tetrahydroisoquinoline such as \mathbf{E} can be problematic because of the acid sensitivity of the benzylic hydroxyl, particularly because it is ortho to the phenolic hydroxyl of the aromatic ring and thus has a high propensity for ortho-quinonemethide formation. Herein, we report a formal total synthesis of Et-743 as part of our ongoing efforts to devise a practical and scalable synthesis of this potent antitumor antibiotic that would be amenable to the construction of analogues with anticipated potent cytotoxic activity.

Results and Discussion

The synthesis began with Borchardt's catechol 3^{15} that was regioselectively brominated to generate 4 (92% yield) (Scheme 2.) Conversion of catechol 4 to the methylenedioxy aldehyde 5 was accomplished using bromochloromethane in a sealed vessel (69% yield). Baeyer-Villiger oxidation using m-CPBA provided bromophenol 6 as an off-white solid following hydrolysis of the resulting formate intermediate (73% yield). Stereoselective aldol condensation of the titanium phenolate of 6 with (R) Garner's aldehyde (7) ${ }^{16}$ using a modification of Casiraghi's method ${ }^{17}$ provided the anti-product 8 followed by allyl protection of the phenolic oxygen delivering 9 (65% yield, two steps). Subsequent hydrolysis of the oxazolidine and formation of the trans-acetonide (84% yield, two steps) provided 10 as an oil that cleanly underwent N Boc deprotection using Ohfune's protocol ${ }^{18}$ (76% yield) to afford free amine 11 as a stable crystalline solid. From 11, the glyoxalimine intermediate 13 (see Scheme 3) was readily obtained by condensation with ethyl glyoxalate. Following isolation by filtration through Celite and concentration, the radical ring closure commenced with slow addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN via syringe pump to a refluxing dilute solution of the glyoxalimine (13). Concentration and KF/ silica chromatography ${ }^{19}$ of the crude reaction mixture provided solid 12 as a single diastereomer (58% yield, two steps). The relative stereochemistry of $\mathbf{1 2}$ was secured ${ }^{1} \mathrm{H}$ NMR data and corroborated by X-ray crystallography. Examination of the crude ${ }^{1} H$ NMR revealed the formation of a single diastereomer in the radical closure and exclusive 6 -endo regioselectivity. In addition to 12 and tin impurities visible in the ${ }^{1} \mathrm{H}$ NMR spectrum, an aromatic proton arising from hydride quenching of the aryl radical revealed a $\sim 6.6: 1$ ratio of 12 to reduced substrate. Slower addition rates (over 18 or 36 h) did not improve the isolated yield of 12.
(12) (a) Vincent, G.; Williams, R. M. Angew. Chem., Int. Ed. 2007, 46, 15171520. (b) Vincent, G.; Chen, Y.; Lane, J. W.; Williams, R. M. Heterocycles 2007, 72, 385-398.
(13) Jin, W.; Williams, R. M. Tetrahedron Lett. 2003, 44, 4635-4639.
(14) Fishlock, D.; Williams, R. M. Org. Lett. 2006, 8, 3299-3301.
(15) Prep a red from 2,3-dimethoxytoluene according to: Shinhababu, A. K.; Ghosh, A. K.; Borchardt, R. T. J. Med. Chem. 1985, 28, 1273-1279.
(16) (R)-Garner's aldehyde was synthesized from D-serine according to: Garner, P.; Park, J. M. Org. Synth. 1992, 70, 18-28.
(17) Casiraghi, G.; Cornia, M.; Rassu, G. J. Org. Chem. 1988, 53, 49194922. In our case, sonication was not required as described in the original paper. (18) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870-876.
(19) Effective removal of tin impurities from $\mathrm{Bu}_{3} \mathrm{SnH}$-mediated reactions: Harrowven, D. C.; Guy, I. L. Chem. Commum. 2004, 1968-1969.
(20) (a) De Paolis, M.; Chiaroni, A.; Zhu, J. Chem. Commun. 2003, 2896 2897. (b) Chen, X.; Chen, J.; De Paolis, M.; Zhu, J. J. Org. Chem. 2005, 70, 4397-4408.
(21) (a) Herberich, B.; Kinugawa, M.; Vazquez, A.; Williams, R. M. Tetrahedron Lett. 2001, 42, 543-546. (b) Jin, W; Metobo, S.; Williams, R. M. Org. Lett. 2003, 5, 2095-2098.

SCHEME 2. Tetrahydroisoquinoline Core of Et-743

SCHEME 3. Pentacycle Construction

The diastereoselectivity of this reaction stands apart from numerous Pictet-Spengler cyclizations on related substrates that provide tetrahydroisoquinolines exclusively as the 1,3 -transdiastereomers. ${ }^{11,20,21}$ We qualitatively rationalize the cis-diastereoselectivity of this radical process using the Beckwith-Houk chairlike transition state model for intramolecular radical ring closures (Figure 2). ${ }^{22}$ The lowest-energy chair conformation (A)
(22) (a) Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925 3941. (b) Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 959-974.
adopted by the trans-acetonide of the substrate (13) results in both the glyoxalimine and aryl substituent being in an equatorial disposition. In this conformation, 1,3-diaxial steric effects and allylic strain interactions are minimized in the ring-forming transition state. To further examine the stereocontrol imparted by the acetonide ring, the cis-acetonide substrate 14 was prepared (using Casiraghi's method from the magnesium phenolate of $\mathbf{6}) .{ }^{17}$ Substrate 14 resulted in a $1: 1$ mixture of $1,3-$
(23) Chen, X.; Zhu, J. Angew. Chem., Int. Ed 2007, 46, 3962-3965.

FIGURE 2. Transition state models to rationalize the observed 1,3 relative stereochemistry in the tetrahydroisoquinoline radical ring closure.
trans- and 1,3-cis-tetrahydroisoquinolines ($\mathbf{1 5}$ and 16, both are known componds), ${ }^{20}$ which suggests the energy difference between transition state conformations \mathbf{B} and \mathbf{C} (axial aryl group versus axial glyoxalimine) is negligible.

As shown in Scheme 3, reduction of the tetrahydroisoquinoline ester (12) ${ }^{14}$ with LAH, followed by immediate protection as the benzyl ether (17), proceeded cleanly in 77% yield over two steps. The substituted tyrosine amino acid component (18) has been previously reported by us, utilizing the oxazinone template technology developed in our laboratory that was benzylated with the advanced aromatic side chain. ${ }^{13}$ Thus, acylation of the tetrahydroisoquinoline (17) was achieved via the N -Fmoc-protected amino acid chloride (18) to give amide 19a without epimerization. The use of the N-Boc free acid with a variety of coupling agents (DCC, HOBt, HATU) all resulted in very sluggish reactions with poor isolated yields, as did the attempted use of the N-Boc acid fluoride.

Treatment of 19 a with diethylamine provided the free amine, which was not isolated in favor of immediate evaporation of excess base and solvent and subsequent Boc protection of the crude material. Isolation following chromatography provided compound 19 b in 90% yield. Removal of the acetonide from 19b was accomplished using the extremely mild, albeit slow, method of stirring with Dowex 50W-X8 cationic resin in methanol. Complete deprotection took $8-12 \mathrm{~h}$, but the yield was quantitative following simple filtration and concentration. Instead of providing the usual diol product, this substrate incorporated methanol at the benzylic position thus providing the methyl ether as a $\sim 1: 1$ mixture of diastereomers. Not unexpectedly, the benzylic stereogenic center loses stereochemical integrity since the methanol is incorporated via the incipient ortho-quinonemethide species arising from the acidic deprotection conditions.

Alternatively, we found that the use of water/dichloromethane with cationic resin on 19b could provide the corresponding free
diol, but oxidation of the primary alcohol (in the presence of the free benzylic alcohol) could not, in our hands, be cleanly accomplished. The methyl ether was thus a fortuitous selective protection of the benzylic alcohol, ultimately simplifying the subsequent manipulations.

Facile deprotection of the O-TBS-protected phenol using TBAF was followed by oxidation of the primary alcohol using Swern conditions in high yield. This oxidation product (20) existed as an equilibrium mixture of the aldehyde and the corresponding hemiaminal species (illustrated) as observed by ${ }^{1} \mathrm{H}$ NMR, which was otherwise additionally complicated by amide and carbamate rotamers. The attempted oxidation using either Dess-Martin periodinane or TPAP/NMO both failed, leading to extensive decomposition. Following filtration of crude 20 through a plug of silica gel, this substance was immediately subjected to the Pictet-Spengler conditions.

The objective at this stage was to achieve the Pictet-Spengler reaction via N-Boc deprotection, iminium ion formation, and electrophilic aromatic substitution to provide the desired pentacyclic core of Et-743. This meant that the aromatic substitution must occur ortho to the free phenol, and the benzylic methyl ether must survive these conditions. Unfortunately, it had already been demonstrated above that the electron-rich aromatic ring of the tetrahydroisoquinoline component was highly sensitive to protic conditions, leading to ortho-quinonemethide formation.

Indeed, when substrate 20 was treated with trifluoroacetic acid in methylene chloride, it cleanly underwent the expected pentacycle formation furnishing $21+22$ as a ~ 0.72 :1 ortho: para mixture of regioisomers in 72% combined yield. As anticipated, the benzylic methoxy group was eliminated presumably via the incipient ortho-quinonemethide species that forms under these conditions. In a fruitless effort to circumvent the vexing olefin formation, pentacycle formation with TFA in dry methanol resulted in extensive decomposition of the substrate.

Scheme 4. Pictet-Spengler Regioselectivity

2) $\mathrm{Boc}_{2} \mathrm{O}$
3) Dowex $50 \mathrm{~W}-\mathrm{X} 8 / \mathrm{MeOH}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$:TFA 1:1
anisole (10 eq)
$0^{\circ} \mathrm{C}$ to rt

As part of these synthetic investigations, the intermediate 23 was prepared (in parallel with the O-benzyl-protected synthesis) bearing an O-allyl-protected hydroxymethyl at C 1 of the THIQ core. This substrate was used to examine the regioselectivity of the pentacycle-forming ring closure and was utilized to acquire detailed ${ }^{1} \mathrm{H}$ NMR data, while the O-benzyl material 21 was carried forward in the synthesis. One interesting observation was the behavior of compound 25 containing the O-Boc carbonate-protected phenolic oxygen. Treatment of $\mathbf{2 5}$ under the same reaction conditions provided the pentacycles $\mathbf{2 6}+\mathbf{2 7}$ in a 2:3 ratio of ortho:para regioisomers. The O-Boc carbonate would presumably be deprotected quickly under these conditions to reveal the free phenol-containing reactive species, thus resulting in a comparable regioselectivity as observed with substrate 20 (beginning with a free phenol on the aryl nucleophile moiety). Notably, however, when substrate 25 was treated with $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$, the O-Boc carbonate was selectively removed (28) with apparent olefin formation prior to the. Pictet-Spengler reaction and pentacycle formation. Treatment of 28 with TFA in dichloromethane produced the pentacycles $\mathbf{2 6}+\mathbf{2 7}$ in a 1:3 ratio of ortho:para regioisomers, supporting the hypothesis that some regioselectivity in the closure might arise from an intramolecular H bond with a heteroatom at the benzylic position. ${ }^{11 \mathrm{c}}$

In their synthesis of renieramycin H , the Zhu group has interestingly reported control of Pictet-Spengler regioselectivity in a related system by variation of acid concentration (Scheme 4). ${ }^{23}$ It was found in that case that lowering the concentration of methanesulfonic acid to 0.01% in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ could invert the ortho:para selectivity from 3.4:1 to $2: 3$. Furthermore, the use of acctonitrilc as the solvent instcad of dichloromethanc favored the undesired isomer, giving ortho:para selectivity of 1:10. Our
attempt to reproduce the Zhu conditions on substrate $\mathbf{2 4}$ using 0.01% methanesulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ did not affect the regioselectivity of this reaction. The substrate was consumed to provide some material that appeared to still contain the N-Boc protecting group, but the ${ }^{1} \mathrm{H}$ NMR of the crude product was prohibitively complex. Subsequent treatment of this reaction crude with a TFA/anisole/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture provided the pentacycles $26+27$ with $\sim 1: 1$ regioselectivity. The same ratio is obtained if the TFA/anisole conditions are used directly on substrate 24.

In order to redeem the synthetic utility of the olefinic products (21 or 26), our attention was captured by the recent formal synthesis of Et-743 reported by the Danishefsky group ${ }^{7}$ in which the olefin (29, Scheme 5) underwent facile oxidation using DMDO and immediate hydride reduction delivering the benzylic alcohol 30. With the availability of this methodology in the literature, our efforts were briefly redirected to convert our synthetic pentacycle 21 into compound 29 which would constitute a formal total synthesis of Et-743 by relay through the Danishefsky ${ }^{7}$ and then Fukuyama ${ }^{5}$ syntheses, respectively.

In the event, the desired pentacycle 21 (Scheme 3) was N-protected as the trichloroethyl carbamate (Troc), and the phenolic residue was protected as the corresponding O-benzyl ether in 85% yield for the two steps (Scheme 5). Removal of the O-allyl group under standard conditions followed by reprotection as the corresponding MOM ether provided compound 29 (56% yield for the two steps). Compound 29 perfectly matched Danishefsky's substrate by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and optical rotation, confirming the structure of compound 29.

Since Danishefsky has previously converted ${ }^{7}$ compound 29 into a late-stage intermediate in Fukuyama's total synthesis ${ }^{5}$ (namely, compound 30, Scheme 5), this two-stage relay of our

SCHEME 5. Formal Synthesis of Et-743 via 21 to 29 and Danishefsky to Fukuyama Relay

synthetic 21 thus constitutes a formal total synthesis of Et-743 and provides firm structural corroboration of our synthetic material and methods.

While the present formal synthesis reveals that our glyoxalimine radical cyclization technology ${ }^{14}$ holds considerable potential for the efficient total synthesis of Et-743 and congeners, we are currently endeavoring to improve the regioselectivity of the key pentacycle formation ($\mathbf{2 0}$ to $\mathbf{2 1}$) as well as refining the overall synthetic efficiency of our approach. These objectives are currently under study in our laboratory and will be reported in due course.

Experimental Section

For general methods and considerations, see Supporting Information.

Compound 19. The Fmoc-amino acid ($410 \mathrm{mg}, 0.727 \mathrm{mmol}$, 1.2 equiv) was dissolved in dry toluene and concentrated ($\times 2$), and then dried under high vacuum. This oil was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ to which was added oxalyl chloride (1 mL) at room temperature, followed by dry DMF ($20 \mu \mathrm{~L}$). After stirring for 20 min , the solution was concentrated and reconcentrated from dry toluene $(\times 2)$ and then dried under high vacuum. This acid chloride 18 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. THIQ(OBn) 17 ($275 \mathrm{mg}, 0.61 \mathrm{mmol}, 1$ equiv) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) and 2,6 -lutidine ($77 \mu \mathrm{~L} 0.67 \mathrm{mmol}, 1.1$ equiv). This solution was transferred into the acid chloride solution slowly dropwise, and the resulling mixture was warmed to it and stirred 7 h (TLC showed consumption of the $\mathrm{THIQ}(\mathrm{OBn})$ starting material). The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and then extracted to EtOAc ($\times 3$). The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated to provide a crude orange oil. Purification by flash chromatography (hexanes:EtOAc 5:1, silica gel) gave the peptide 19a as a pale yellow oil ($426 \mathrm{mg}, 70 \%$); R_{f} $=0.34$ (3:1 hexanes:EtOAc, UV, CAM); $[\alpha]^{25} \mathrm{D}-22.8$ (c 1.14, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film) $3289,2929,2858,1717,1634 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to amide and carbamate rotamers. See the rt $\left(\mathrm{CDCl}_{3}\right)$ and $373 \mathrm{~K}\left(\mathrm{DMSO}-d_{6}\right)^{1} \mathrm{H}$ spectra and $\mathrm{rt}\left(\mathrm{CDCl}_{3}\right)^{13} \mathrm{C}$ spectra in the Supporting Information; HRMS(ESI/APCI +) m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+}$ 1019.4485, found 1019.4499.

Compound 19b. Fmoc (OBn) peptide 19a ($146 \mathrm{mg}, 0.146 \mathrm{mmol}$) was dissolved in a $20 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{Et}_{2} \mathrm{NH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $(2.5 \mathrm{~mL}$) and diethylamine (0.6 mL]. After stirring for 6 h , the solution was concentrated and then reconcentrated from toluene and dried under high vacuum. The crude material was dissolved in $\mathrm{EtOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 0.5 \mathrm{~mL})$ to which was added $\mathrm{Boc}_{2} \mathrm{O}(370 \mathrm{mg}, 10$
equiv). After stirring for 12 h , the reaction was concentrated and immediately purified by flash chromatography ($9: 1$ to $5: 1$ hexanes: EtOAc, silica gel) to provide 19b as a clear colorless oil (115 mg , 90% over 2 steps): $R_{f}=0.43$ ($3: 1$ hexanes:EtOAc, UV, CAM); $[\alpha]^{25}{ }_{\mathrm{D}}-26.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film) 3319, 2930, 2858, 1711, $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are extremely complex due to amide and carbamate rotamers; see the ${ }^{1} \mathrm{H}$ spectra $\left(\mathrm{CDCl}_{3}, \mathrm{rt}\right)$ and (DMSO- $d_{6}, 373 \mathrm{~K}$) and ${ }^{13} \mathrm{C}$ spectrum (CDCl_{3}, rt) in the Supporting Information; HRMS(ESI/APCI +) m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+} 897.4328$, found 897.4310.

Compounds 21 and 22. Boc (OBn) peptide 19b ($115 \mathrm{mg}, 0.132$ mmol) was dissolved in dry MeOH (5 mL), and Dowex $50 \mathrm{~W}-\mathrm{X} 8$ cationic resin (100 mg) was added (the resin was first rinsed with dry methanol and dried under a stream of argon). After 65 h , the reaction was complete by TLC and a single streak was observed (during the course of the reaction, two streaks initially arise due to a mixture of diol and methyl ether/alcohol products). The reaction was filtered through a plug of Celite, eluting with dry MeOH , and the filtrate was combined to provide the methyl ether as clear, colorless oil ($100 \mathrm{mg}, 90 \%$ yield): $R_{f}=0$ to 0.35 streak ($3: 1$ hexanes: EtOAc, UV, CAM); HRMS(FAB+) m / z calcd for $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+} 849.4358$, found 849.4354. The methyl ether (100 mg) was dissolved in THF (3 mL), and TBAF (1 M in THF, $125 \mu \mathrm{~L}, 1.06$ equiv) was added in one portion. After 20 min , the reaction was concentrated by rotary evaporation and passed through a silica plug (eluting with $3: 1$ to $1: 1$ hexanes:EtOAc) to provide the free phenol as a clear, colorless oil ($82 \mathrm{mg}, 95 \%$ yield): $R_{f}=0$ to 0.43 streak ($3: 1$ hexanes:EtOAc, UV, CAM); HRMS$(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{40} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{11}(\mathrm{M}+\mathrm{H})^{+} 735.3493$, found 735.3490. Oxalyl chloride ($15 \mu \mathrm{~L}, 1.5$ equiv) was added carefully to a solution of DMSO ($25 \mu \mathrm{~L}, 3.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) previously cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of the above alcohol (82 $\mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 40 min . The reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ ($125 \mu \mathrm{~L}, 8$ equiv) and then allowed to warm to rt . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine, and then the combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude material was passed through a silica gel plug (eluting with hexanes:EtOAc 1:1) to provide a yellow oil/foam (82 mg , quant.) of hemiaminal $\mathbf{2 0}$ which was used without further purification: $R_{f}=0.5$ (hexanes:EtOAc 1:1, UV, CAM). Hemiaminal 20 ($232 \mathrm{mg}, 0.32 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ to which were added TFA $(3 \mathrm{~mL})$ and anisole (0.350 mL) at r . The reaction was stirred for 14 h and then concentrated to remove TFA, then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aq NaHCO_{3}. The organic fraction was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Crude 'II NMR shows $0.72: 1$ ortho (21) to para (22) regioisomers. Purification by PTLC ($2 \% \mathrm{MeOH}$ in

EtOAc) provided the ortho (63 mg) and para products (69 mg) for a combined yield of 72%. Data for 21: $R_{f}=0.61$ ($\mathrm{EtOAc}: \mathrm{MeOH}$ 95:5, UV, CAM); $[\alpha]^{25}$ D 18.0 (c $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film) 3295 , 2932, 1672, 1632, 1455, $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.19$ (s, 1 H), 6.12 (dddd, $J=16.0,11.0,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (dd, J $=7.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.78(\mathrm{v} \mathrm{br} \mathrm{s}$, 1 H), 5.45 (app dd, $J=17.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 (app dd, $J=10.3$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.9(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{app} \mathrm{d}$ of AB quartet, $J=12.3,5.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (AB quartet, $J=12.1 \mathrm{~Hz}$, 2 H), $3.63(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.2(\mathrm{~m}, 5 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,147.6,145.6(\times 2), 143.4$, $139.7,138.7,134.5,133.9,129.4,128.8,128.0(\times 2), 127.1,126.8$ $(\times 2), 122.5,119.3,117.7,117.5,113.0,108.7,101.5,100.2,75.3$, $72.6,70.0,60.8,54.4,50.0,46.9,33.4,15.9,9.4$. HRMS(ESI/ $\mathrm{APCI}+) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 583.2439$, found 583.2441. Data for 22: $R_{f}=0.5$ (EtOAc:MeOH 95:5, UV, CAM); $[\alpha]^{25} \mathrm{D}+47.8\left(c 1.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film) $3298,2931,1671$, $1631,1430,1409 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.11$ (dddd, $J=$ $16.1,10.6,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 6.03$ (dd, $J=6.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.45(\mathrm{app} \mathrm{dd}, J=17.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\operatorname{app~dd}, J=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})$, 4.36 (app d of A of AB quartet, $J=12.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (app d of B of AB quartet, $J=12.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 1 H), 3.91 (AB quartet, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.56(\mathrm{~s}, 3 \mathrm{H}), 2.95-3.24$ $(\mathrm{m}, 5 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,148.0,147.6,145.9,144.3,139.7,138.4,134.6,133.7$, $129.6,128.7,128.1(\times 2), 127.2,126.9(\times 2), 124.9,117.8,117.1$, $113.8,113.0,108.8,101.5,100.5,75.4,72.8,70.1,61.0,54.3,52.6$, 46.8, 35.4, 12.0, 9.4; HRMS (ESI/APCI+) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+} 583.2439$, found 583.2429 .

Preparation of Compound 29. The desired ortho-regioisomer $21(55 \mathrm{mg}, 0.095 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and pyridine ($11 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.5$ equiv) at $0^{\circ} \mathrm{C}$. $\operatorname{TrocCl}(13.5 \mu \mathrm{~L}$, $0.1 \mathrm{mmol}, 1.0$ equiv) was added and the reaction maintained at 0 ${ }^{\circ} \mathrm{C}$ for 2 h , and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and then concentrated. The crude oil was passed through a plug of silica gel eluting with EtOAc, and then concentrated and dried under vacuum. The resulting oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mu \mathrm{~L})$, and MeOH ($200 \mu \mathrm{~L}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($52 \mathrm{mg}, 0.38 \mathrm{mmol}, 4$ equiv) were added followed by benzyl bromide ($22 \mu \mathrm{~L}, 0.19 \mathrm{mmol}, 2$ equiv) and a catalytic amount of tetrabutylammonium iodide. The resulting mixture was stirred at rt for 13.5 h then filtered through a pad of Celite, rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flash chromatography ($5: 1$ hexanes: EtOAc) provided the N-Troc $/ O$-benzyl product as a pale yellow oil ($68 \mathrm{mg}, 85 \%$ over 2 steps): $R_{f}=0.46$ (hexanes:EtOAc 3:1, UV, CAM); $[\alpha]^{25} \mathrm{D}+58.1$ (c 1.7, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (thin film) 2927, $1724,1681,1434,1371 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of carbamate rotamers) $\delta 7.30-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.25(\mathrm{~m}, 4 \mathrm{H})$, $6.92-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.12(J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.90(\mathrm{~m}$, $3 \mathrm{H}), 4.98-5.29(\mathrm{~m}, 5 \mathrm{H}), 4.85(\mathrm{~d}, J=12.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}$, $J=11.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.11(\mathrm{~m}, 3 \mathrm{H}), 2.85(\mathrm{app} \mathrm{d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.04-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of carbamate rotamers) $\delta 166.1 / 166.0,151.5 / 151.4,149.9,148.9,148.4,148.3 / 148.2,146.2$, $139.6,138.5,137.6 / 137.5,133.8 / 133.7,132.6 / 132.5,131.3 / 131.2$, $128.9(\times 2), 128.3,128.1(\times 2), 128.0,127.2,126.8,126.6 / 126.5$, 125.4/125.0, 117.6, 117.3, 116.9, 113.3/113.3, 108.6/108.4, 103.3, $102.9,101.6,95.3 / 95.2,75.4 / 75.3,75.2 / 75.0,74.6 / 74.4,72.6,69.9 /$
69.8, 60.5, 54.4/53.7, 50.9/50.1, 47.3/47.2, 32.8/32.4, 16.0, 9.5; HRMS(ESI/APCI +) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Cl}_{3}(\mathrm{M}+\mathrm{H})^{+}$ 847.1950, found 847.1949.

The allyl-protected pentacycle obtained above ($20 \mathrm{mg}, 0.024$ mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mu \mathrm{~L})$, and pyrrolidine ($6 \mu \mathrm{~L}$. 3 eq) was added, followed by $\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{4}(2 \mathrm{mg}, 0.002 \mathrm{mmol})$ under Ar. After 16 h , the reaction was still not complete, so additional portions of pyrrolidine and palladium catalyst were added. After stirring an additional 4 h (20 h total), the dark green reaction was applied directly to flash chromatography (silica gel, hexanes:EtOAc 3:1). The pure fractions were combined to provide the phenol as yellow oil ($11 \mathrm{mg} 56 \%$), used without characterization: $R_{f}=0.26$ (hexanes:EtOAc 3:1, UV, CAM). Phenol ($11 \mathrm{mg}, 0.014 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($200 \mu \mathrm{~L}$) to which were added $i \mathrm{Pr}_{2} \mathrm{NEt}$ (12 $\mu \mathrm{L}, 0.07 \mathrm{mmol}, 5$ equiv) and $\mathrm{MOMBr}(3.3 \mu \mathrm{~L}, 0.042 \mathrm{mmol}, 3$ equiv). The mixture was stirred for 30 min at rt and then quenched with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$. The combined organic fractions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Flash chromatography (hexanes:EtOAc 3:1) provided the protected pentacycle 29 (11.5 mg , quant.): $R_{f}=0.41$ (hexanes:EtOAc 3:1, UV, $\mathrm{CAM}) ;[\alpha]^{25}{ }_{\mathrm{D}}+45.4\left(c 0.8, \mathrm{CHCl}_{3}\right)\left[\right.$ lit. $\left.+50\left(c 1.0, \mathrm{CHCl}_{3}\right)\right] ; \mathrm{IR}$ (thin film) 2932, 1723, 1681, 1654, 1432, $1371 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra perfectly match the data provided by the Danishefsky group for this intermediate in their formal synthesis (copies of their spectra included in the Supporting Information): ${ }^{7}{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of carbamate rotamers) $\delta 7.56-7.31(\mathrm{~m}, 5 \mathrm{H})$, $7.13-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.96(\operatorname{app}$ br d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-6.15(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{app} \mathrm{d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.97-5.19(\mathrm{~m}, 4 \mathrm{H}), 4.86(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.79 (A of AB quart, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (B of AB quart, $J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.43(\operatorname{app~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.01 (d of A of AB quart, $J=11.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (B of AB quart, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\operatorname{app} \mathrm{~d}, J=10.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.38$ (rotomeric s, 3H), 3.03-3.29 (m, 5H), $2.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of carbamate rotamers) $\delta 166.0 / 165.9,151.61$ 151.4, 149.9, 148.7/148.2, 147.3, 146.2/146.1, 139.8, 138.4/138.4, 137.8/137.7, 132.6/132.5, 131.1/131.1, 128.8, 128.2, 127.9, 127.2, $126.8,126.6 / 126.5,125.2 / 125.0,117.0 / 116.8,113.7 / 113.6,108.5 /$ 108.4, 103.3/102.7, 101.6, 100.4/100.4, 95.3/95.2, 75.4/75.3, 74.4/ $74.0,72.6 / 72.6,69.9 / 69.9,60.4,57.6 / 57.5,54.4 / 53.7,50.8 / 50.1$, 47.4/47.3, 32.7/32.3, 16.0, 9.9; HRMS(ESI/APPI +) m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Cl}_{3}(\mathrm{M}+\mathrm{H})^{+} 851.1900$, found 851.1897.
Acknowledgment. This paper is fondly dedicated to the memory of the late Professor A.I. Meyers. We gratefully acknowledge financial support from the National Institutes of Health (Grant CA85419). We are grateful to Prof. Samuel J. Danishefsky of the Memorial Sloan-Kettering Cancer Research Institute for kindly providing characterization data for compound 29.

Note Added after ASAP Publication. Reference 6 contained an incorrect publication date and the description of the conditions used by Zhu et al. (below Scheme 4) was erroneous in the version published ASAP August 8, 2008; the corrected version was published ASAP September 17, 2008.

Supporting Information Available: Complete experimental procedures and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

JO801159K

Further Studies of the Daphniphyllum Alkaloid Polycyclization Cascade

Grier A. Wallace and Clayton H. Heathcock*
Center for New Directions in Organic Synthesis, ${ }^{\dagger}$ Department of Chemistry, University of California, Berkeley, California 94720

heathcock@cchem.berkeley.edu
Received July 28, 2000

Abstract

The scope of the 2 -azadiene intramolecular Diels-Alder cyclization, previously employed for synthesis of the Daphniphyllum alkaloids, has been further investigated. Through a series of 1,5diol cyclization precursors the substitution pattern of both the dienophile and the 2 -azadiene were examined. From these studies it was shown that the cascade reaction is tolerant toward a variety of alkyl-substituted dienophiles. However, it was also demonstrated that this reaction is very sensitive to the substitution pattern of the 2 -azadiene. Alterations made to the structure of the 2 -azadiene cause either competing side reactions or complete failure of the reaction cascade.

The Daphniphyllum alkaloids are a group of polycyclic natural products first isolated from the deciduous tree Yuzuriha (Daphniphyllum macropodum) in 1909. ${ }^{1}$ Since then, over 30 Daphniphyllum alkaloids have been isolated and structurally characterized. ${ }^{2}$ Methyl homodaphniphyllate (1) and methyl homosecodaphniphyllate (2) are representative members of this group of natural products and illustrate two of the pentacyclic core structures that are found.

1

2

During the 1980s, we developed the biomimetic approach to these alkaloids that is illustrated in Scheme $1 .{ }^{3,4}$ This one-pot procedure begins with the oxidation of a 1,5 -diol (3) to a dialdehyde (4). Treatment of the crude oxidation mixture with ammonia, followed by acetic acid and ammonium acetate, leads to the formation of an azadiene (6), which undergoes an intramolecular DielsAlder cyclization to form imine 7. Heating the acetic acid solution of imine $\mathbf{7}$ facilitates an intramolecular aza-Prins cyclization to provide pentacyclic amine $\mathbf{8}$. This remarkable process, which forms three carbon-carbon bonds and two nitrogen-carbon bonds and establishes six

[^26]Scheme 1

stereocenters, has been used as the key step in the synthesis of five of the Daphniphyllum alkaloids. ${ }^{3,5.6}$

In this paper, we report further studies that explore the scope and generality of the intramolecular 2-azadiene Diels-Alder cyclization. ${ }^{7}$ By studying the cyclizations of diols $\mathbf{9 - 1 6}$ we hoped to examine the effect of both the

[^27]Scheme 2

substitution pattern of the 2 -azadiene as well as the pendent dienophile. In addition, the dienophile tether was extended by one carbon, such that six-membered rings would be formed during the Diels-Alder cyclizations.

9: $R^{1}=R^{2}=R^{3}=M e$
10: $R^{1}=R^{3}=M e, R^{2}=H$
11: $R^{1}=H, R^{2}=R^{3}=M e$
12: $R^{1}=R^{2}=H, R^{3}=M e$
13: $R^{1}=R^{2}=M e, R^{3}=H$

14: $R^{1}=R^{2}=M e$
15: $R^{1}=M e, R^{2}=H$
16: $R^{1}=R^{2}=H$

Results and Discussion

Synthesis of Diols 9-16. The synthesis of diols 9-13 began with the three-component coupling of amides $\mathbf{1 7}$ and $\mathbf{1 8}^{8}$ with enoate $\mathbf{1 9}^{9}$ and iodides 20-23 (Scheme 2). ${ }^{6}$ The lithium enolate of amide $\mathbf{1 7}$ or $\mathbf{1 8}$ was treated with enoate 19, and the corresponding Michael addition adduct was trapped with iodides $20-23 .{ }^{10}$ The desired products could be isolated in good to moderate yields in all cases except for ester-amide 28 . The stereochemical assignment of the ester-amides $\mathbf{2 4 - 2 7}$ is based on literature precedent of similar Michael reactions of amide enolates. ${ }^{9,11}$

The failure to obtain ester-amide $\mathbf{2 8}$ by this method was not unexpected, in light of earlier work in these laboratories. ${ }^{9}$ Although none of the desired ester-amide 28 was isolated from the reaction of the lithium enolate of 18 with enoate 19 followed by trapping with iodide 20 , products resulting from 1,2-addition were observed. However, the lithium enolate of thioamide 29, ${ }^{12}$ a softer nucleophile, ${ }^{4,13}$ reacts smoothly with enoate $\mathbf{1 9}$. Treat-

[^28]Scheme 3

Scheme 4

31: $X=O, R^{1}=R^{2}=R^{3}=\mathrm{Me}(87 \%)$
32: $X=O, R^{1}=R^{3}=M e, R^{2}=H(91 \%)$ 33: $X=O, R^{1}=H, R^{2}=R^{3}=M e(83 \%)$
34: $X=O, R^{1}=R^{2}=H, R^{3}=\operatorname{Me}(90 \%)$
35: $X=S, R^{1}=R^{2}=M e, R^{3}=H(80 \%)$

36: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}(93 \%)$
9: $R^{1}=R^{2}=R^{3}=M e(89 \%)$
37: $R^{1}=R^{3}=M e, R^{2}=H(98 \%)$
10: $R^{1}=R^{3}=M e, R^{2}=H(98 \%)$
38: $R^{1}=H, R^{2}=R^{3}=\mathrm{Me}(98 \%)$
11: $R^{1}=H, R^{2}=R^{3}=M e(89 \%)$
12: $R^{1}=R^{2}=H, R^{3}=M e(89 \%)$
39: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}(96 \%)$
13: $R^{1}=R^{2}=M e, R^{3}=H(96 \%)$
ment of the resulting adduct with iodide $\mathbf{2 0}$ provided the desired adduct 30 in 92% yield (Scheme 3).

The conversion of amides 24-27 and $\mathbf{3 0}$ to their corresponding diols is shown in Scheme 4. Lithium triethylborohydride chemoselectively reduced the ester moiety of these substrates to provide alcohols 31-35 in good yields. Acid-catalyzed lactonization followed by lithium aluminum hydride reduction efficiently provided the desired diols $9-13$.

Attempts to prepare diols $\mathbf{1 4 - 1 6}$ through the three-component-coupling method described above lead to intractable mixtures of products. Rather than pursue this method, we developed the alternate approaches to these diols shown in Schemes 5 and 6. The synthesis of diols 14 and 15 began with the alkylation of the lithium enolate of tert-butylpropionate (41) with iodide 20 to provide ester 42 in high yield. Subsequent allylation of the lithium enolate of ester $\mathbf{4 2}$ with either 2-methylallyl bromide or allyl bromide provided esters 45 and 46, respectively. Selective hydroboration of the terminal olefins in esters 45 and 46, followed by oxidation lead to

[^29]Scheme 5

the primary alcohols $\mathbf{4 7}$ and 48 . Reduction of the ester function in 47 and $\mathbf{4 8}$ gave access to the desired diols 14 and 15.

The synthesis of diol $\mathbf{1 6}$ was carried out in two steps as shown in Scheme 6. Alkylation of the lithium enolate of δ-valerolactone with iodide $\mathbf{2 0}$ provided lactone $\mathbf{5 0}$ in low and variable yields ($25-50 \%$). We believe that ringopening of the lactone 50 and oligomerization to polyester 51 was responsible for the low and variable yields of $\mathbf{5 0}$. Support for this hypothesis came from the observation that reduction of the crude reaction mixture with LAH provided the desired diol 16 in a reproducible 69% yield.

Exploration of the Azadiene Diels-Alder Cylization. With diols $\mathbf{9 - 1 6}$ in hand, we were prepared to commence with our studies of the scope and generality of the Daphniphyllum alkaloid azadiene Diels-Alder cyclization. From the onset of this project, we planned to use the biomimetic reaction protocol developed during the Daphniphyllum alkaloid synthesis, rather than attempting to optimize the reaction conditions for each substrate. This protocol involves Moffatt-Swern ${ }^{14}$ oxidation of the 1,5 -diol to the dialdehyde, treatment of the crude methylene chloride solution with ammonia followed by solvent exchange from methylene chloride to a buffered acetic acid solution. Following an aqueous workup,

[^30]
Scheme 7

9: $R^{1}=R^{2}=M e$
52: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$
53: $R^{1}=M e, R^{2}=H$
54: $R^{1}=H, R^{2}=\mathrm{Me}$
55. $R^{1}=R^{P}=H$

11: $R^{1}=H, R^{2}=M e$

56: $R^{1}=R^{2}=M e$
60: $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}(75 \%)$
57: $R^{1}=\mathrm{Me}, R^{2}=H$
61: $R^{1}=\mathrm{Me}, R^{2}=\mathrm{H}(75 \%)$
58: $R^{1}=H, R^{2}=M e$
62: $R^{1}=H, R^{2}=M e(69 \%)$
59: $R^{1}=R^{2}=H$
63: $R^{1}=R^{2}=H(81 \%)$

Scheme 8

62

64
the imine products were isolated by column chromatography on silica gel. The cyclization sequences of diols $\mathbf{9 - 1 2}$ are shown in Scheme 7.

Oxidation of diols $\mathbf{9 - 1 2}$ led smoothly to the 1,5 dialdehydes 52-55. These delicate molecules can be observed in the crude form by ${ }^{1} \mathrm{H}$ NMR, following an aqueous workup of the Moffatt-Swern oxidation. However, as noted above, the reaction mixtures were more routinely treated directly with ammonia, followed by solvent exchange to acetic acid. Following an aqueous workup, imines $60-63$ were isolated in yields ranging from 69 to 81% by column chromatography on silica gel that had been pretreated with triethylamine. The structures of imines $60-63$ were determined through ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{13} \mathrm{C}$ DEPT, IR, and elemental analysis. In addition to the spectral and analytical evidence that supported the assigned structures of tetracyclic imines $\mathbf{6 0 - 6 3}$, the structure of $\mathbf{6 2}$ was further confirmed by conversion into derivative 64, the structure of which was rigorously determined by X-ray crystallography (Scheme 8). ${ }^{15}$

In the course of performing the cyclizations of diols $\mathbf{9 - 1 2}$, we noted a definite trend in the reaction rates of these substrates (imines $\mathbf{6 0}$ and $\mathbf{6 1}$ can be formed at room temperature, whereas imines 62 and 63 require heating at $80^{\circ} \mathrm{C}$). Qualitatively, the rates of these azadiene

[^31]Scheme 9

cyclizations follow the order $\mathbf{5 6}>\mathbf{5 7}>\mathbf{5 8}>\mathbf{5 9}$. This observation supports a rate-limiting inverse-electrondemand Diels-Alder reaction mechanism in which the more electron-rich dienophiles provide faster reaction rates. However, it was also noted that azadiene 57 cyclizes at a faster rate than azadiene 58, even though both substrates have disubstituted dienophiles. We believe the steric congestion associated with cyclizing the Z-olefin of azadiene $\mathbf{5 8}$ is the cause of this marked decrease in reaction rate. In addition, it was noted that the olefin geometry of diols $\mathbf{1 0}$ and $\mathbf{1 1}$ is conserved during the reaction providing imines 61 and 62 respectively, further supporting a concerted mechanism for the DielsAlder step of the cascade. These experiments also demonstrate that the cascade cyclization works well when the tether length is such that a six-membered ring is formed (the examples previously demonstrated in our Daphniphyllum alkaloid syntheses all give rise to fivemembered rings). These cyclizations also show that the cascade succeeds with substrates having various alkyl substitution patterns on the dienophile, ranging from mono- to trisubstituted. At this point we turned our attention to the structure of the aza-diene intermediate.

The cyclization sequence of diol $\mathbf{1 3}$ is shown in Scheme 9. Treatment of diol $\mathbf{1 3}$ under the standard cyclization conditions provided imine 67 in a rather disappointing 23% yield. This was intriguing because the only difference between diol 13 and previous diols is the methyl stereocenter alpha to one of the aldehydes. At this point attempts were then made to determine at which stage the reaction cascade was faltering. Oxidation of diol 13 under Moffatt-Swern conditions followed by an aqueous work up provided the crude 1,5-dialdehyde 65, verifying the efficiency of this step of the cascade. Repeating the cyclization protocol and stopping after treatment of dialdehyde 65 with ammonia provided a complex mixture of products that has been assigned as the various bisaminal and bishemiaminal structural isomers related to compound 66. Treatment of this mixture with acetic acid and ammonium acetate again provided imine 67 in low yield, along with intractable polymeric material. To check the stability of imine 67 to the reaction conditions it was taken up in D-4 acetic acid and heated for 50 h at $80^{\circ} \mathrm{C}$, at which time there was no sign of decomposition as judged by ${ }^{1} \mathrm{H}$ NMR. From these data we believe inefficient azadiene formation is responsible for the low yield in the cyclization of diol $\mathbf{1 3}$.

Scheme 11

We next turned our attention to the cyclization of diols 14-16, in which the five-membered ring of diols $9-13$ is absent. Treatment of diol $\mathbf{1 4}$ under the standard cyclization conditions provided the desired tricyclic imine 69 in 51% yield along with bicyclic imine-hydroperoxide 70 in $10-20 \%$ yield (Scheme 10). The structure of imine hydroperoxide $\mathbf{7 0}$ was tentatively assigned on the basis of ${ }^{1} \mathrm{H}$ NMR, IR, and mass spectroscopy. This compound was very sensitive; partially decomposing when exposed to silica gel chromatography as well as on storage at 0 ${ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. We believe that iminehydroperoxide 70 arises from autoxidation of the corresponding imine on exposure to air during the workup of the reaction. ${ }^{16}$ This cyclization was particularly interesting because we had not previously been able to isolate and identify any side products from the reaction cascade.

Because of the sensitive nature of imine-hydroperoxide 70 we decided to modify the cyclization protocol in order to produce a more stable product. Attempts to treat 70 with reducing agents such as trimethyl phosphite or triphenylphosphine in order to reduce the peroxide moiety were unsuccessful, resulting in either no reaction or decomposition of the starting material. Based on these results, we decided to investigate the alternative approach shown in Scheme 11. The idea was that it may be possible to intercept the precursor to $\mathbf{7 0}$ by acylation of the imine nitrogen, ${ }^{17}$ thus producing an enamide that would be less prone to autoxidation. In the event, treatment of the crude cyclization reaction mixture with

[^32]an excess of acetic anhydride provided a mixture of amides 72 (40\%) and 73 (13\%). As expected, enamide 73 was not prone to autoxidation and was fully characterized. The relative stereochemistry of $\mathbf{7 3}$ was established by 1D and 2D (NOESY) ${ }^{1} \mathrm{H}$ NMR spectroscopy. In addition, amide $\mathbf{7 2}$ is a crystalline solid and its structure was unambiguously determined by X-ray crystallography. ${ }^{18}$

With the structures of $\mathbf{7 2}$ and $\mathbf{7 3}$ firmly established we considered the factors governing their competing formation. Initial experiments were performed to determine whether imines 69 and 71 can be interconverted. Because imine 69 was isolable it was easily resubjected to the reaction conditions and shown to be stable. As noted above, imine $\mathbf{7 1}$ was not easily isolable. To circumvent this difficulty the cyclization reaction was carried out for various times and the ratio of amides $\mathbf{7 2}$ and $\mathbf{7 3}$ was measured. Extending the reaction time had little effect on either the yield or ratio of amides $\mathbf{7 2}$ and 73. From these data we conclude that imines 69 and 71 are both kinetic products of this reaction. Interestingly, removal of the five-membered ring of diol 9 generates a system in which the aza-Diels-Alder cyclization is only slightly more favorable than the aza-Prins cyclization. Through our efforts it has been possible to observe the 1,5 -dialdehyde 68 , but we have been unable to observe the corresponding azadiene intermediate in this reaction. Therefore, it is presently unclear at which point in the cyclization cascade the paths leading to imines 69 and 71 diverge.

We also attempted the cascade cyclization with diols 15 and 16 (Scheme 12). Both of these substrates failed to produce any tractable products. This was not unexpected based on the results gained from diol 13. Again, aldehydes 74 and 75 could be observed in their crude form, confirming the efficiency of the oxidation step in the cascade reaction. As previously discussed, we believe

[^33]
that inefficient aza-diene formation is responsible for the failure of these reactions.

Conclusion

From the above studies we have been able to expand the scope of the Daphniphyllum alkaloids cyclization, while defining some of the limitations of this cascade reaction. The cyclization is very permissive to various alkyl substitution patterns of the dienophile, but a marked decrease in rate is noted when relatively electron deficient dienophiles are employed. In addition, it has been demonstrated that the structure of the 2 -azadiene is crucial. The cyclopentyl ring, quaternary carbon and tertiary carbon centers in the diol starting material all play a role in providing a selective and high-yielding cyclization.

Acknowledgment. This work was supported by a research grant from the United States Public Health Service Institute of General Medical Studies (GM46057). We are also grateful to Elf Atochem for a predoctoral fellowship supporting G.A.W.

Supporting Information Available: Experimental procedures and characterization for all new compounds reported in this manuscript. This material is available free of charge via the Internet at http://pubs.acs.org.

JO001145R

Further Studies of the Daphniphyllum Alkaloid Polycyclization Cascade
Grier A. Wallace and Clayton H. Heathcock
Department of Chemistry, University of California; Berkeley, CA 94720

Supporting Information; Experimental Procedures

General. Unless otherwise noted, all reactions were carried out in a flame dried round bottom flask equipped with a magnetic stirring bar, under an atmosphere of N_{2}. Unless otherwise noted all reagents where purchased from commercial suppliers and used without purification. Ether and tetrahydrofuran (THF) were distilled under N_{2} from Na / benzophenone immediately prior to use. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, diisopropylamine ($i-\mathrm{Pr}_{2} \mathrm{NH}$) and Hünig's base ($i-\mathrm{Pr}_{2} \mathrm{EtN}$) were distilled under N_{2} from CaH_{2} immediately prior to use. Dimethyl sulfoxide (DMSO) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) were distilled under N_{2} from CaH_{2} and stored over $3-\AA$ molecular sieves. Silica gel chromatography was carried out using INC silitech 32-62 D 60- \AA silica gel according to the procedure described by Still. 1 Thin layer chromatography (TLC) was performed with Merck Silica Gel 60 plates. When necessary, the density of compounds that were oils were determined by weighing, three separate times, from 50 to $100 \mu \mathrm{~L}$ of the oil in a $100-\mu \mathrm{L}$ syringe, averaging the results. In this manner the density of the following frequently used compounds were determined (g / mL): enoate 19, 1.03 and iodide, 20, 1.43. The concentration of commercially available n-butyllithium in hexanes was checked periodically by titration with diphenylacetic acid. ${ }^{2}$ Unless otherwise noted, extracts were dried over MgSO_{4} and solvents were removed with a rotary evaporator at aspirator pressure. Unless otherwise noted, IR spectra were recorded as films on NaCl plates and NMR spectra were measured in CDCl_{3}. Unless otherwise noted ${ }^{1} \mathrm{H}$ NMR were recorded on a 500 MHz spectrometer and ${ }^{13} \mathrm{C}$ NMR were recorded on a 100 MHz spectrometer. J values are in Hertz. In some cases distortionless enhancement by polarization transfer (DEPT) ${ }^{3}$ was used to assign the ${ }^{13} \mathrm{C}$ NMR resonances as $\mathrm{CH}_{3}, \mathrm{CH}_{2}$, CH or C. Elemental analysis was performed by the Microanalytical Laboratory operated by the UCB College of Chemistry.

5-Methyl-4-hexenal. Following the procedure of Saucey, ${ }^{4} 5$-Methyl-4-hexenal was provided in 52% yield after distillation $\left(71-76^{\circ} \mathrm{C}, 50\right.$
 torr), IR: 2952, 2857, 1715, 1630, 1436, 1355, 1297, 1266, 1090, $741 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data obtained for this compound was consistent with that reported in the literature. 5

5-Methyl-4-hexen-1-ol. A stirring suspension of LiAlH_{4} (7.32 g, 193 mmol) in 190 mL of $\mathrm{Et}_{2} \mathrm{O}$ was cooled to $0^{\circ} \mathrm{C}$. To this suspension was
 added a solution of the 5-Methyl-4-hexenal ($21.66 \mathrm{~g}, 193 \mathrm{mmol}$) in 325 mL of $\mathrm{Et}_{2} \mathrm{O}$ dropwise via teflon cannula. The flask containing the aldehyde solution and teflon cannula were rinsed through with 30 mL of $\mathrm{Et}_{2} \mathrm{O}$. The gray reaction mixture was allowed to slowly warm to room temperature (3 h). Stirring continued at rt for an additional 10 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and 7.32 mL of water, 7.32 mL $15 \% \mathrm{NaOH}$ and 22 mL of water were added sequentially. 6 Following these additions the reaction mixture was allowed to warm to rt at which time a white precipitate formed. The reaction mixture was dried, filtered and the solvent was removed. Distillation of the crude product provided $22.78 \mathrm{~g}(99 \%)$ of the desired alcohol. 7 IR:
$3337,2965,2929,2867,1449,1376,1059 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data obtained for this compound was consistent with that reported in the literature. 8

5-Iodo-2-methyl-2-hexene (20). A dry 250 mL round bottom flask was charged with 5-methyl-4-hexen-1-ol ($3.0 \mathrm{~g}, 26.3 \mathrm{mmol}$) and 55 mL of
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this stirring solution was added triphenylphosphine (7.13 $\mathrm{g}, 27.2 \mathrm{mmol}$) and imidazole ($2.15 \mathrm{~g}, 31.5 \mathrm{mmol}$). After complete dissolution the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and iodine ($9.0 \mathrm{~g}, 35.5 \mathrm{mmol}$) was added in small portions (approx 2 g). A dark brown color developed along with a precipitate during the iodine addition. Stirring of the solution continued for a total of 4 h at $0^{\circ} \mathrm{C}$. To the dark brown solution was added 25 mL of saturated sodium thiosulfate. After the reaction mixture turned clear it was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined extracts were dried and concentrated to afford a slightly yellow oil. The crude product was purified by flash chromatography on silica gel eluting with pet ether/ether $(4: 1)$ to provide 5.21 g (88%) of the pure iodide 20 . The iodide was stored under an atmosphere of nitrogen and over copper wire and $3 \AA$ molecular sieves. Immediately prior to use the iodide was passed through basic alumina. The IR and 1 H NMR spectral data obtained for this compound was consistent with that reported in the literature. 9 ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 6.8,17.9,25.7,28.7,33.6,122.3,133.1$.

4-Hydroxymethyl-9-methyl-8-decene-1-ol (16). To a stirring solution of diisopropyl amine ($1.20 \mathrm{~mL}, 8.56 \mathrm{mmol}$) in 15 mL of THF at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of n-butyllithium ($3.60 \mathrm{~mL}, 8.46 \mathrm{mmol}$). The resulting mixture was warmed to 0
 ${ }^{\circ} \mathrm{C}$ for 10 min and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of δ-valerolactone $49(826 \mu \mathrm{~L}, 8.90 \mathrm{mmol})$ in 15 mL of THF was added via teflon cannula over 90 min and stirred for an additional 15 min . The iodide $20(140 \mu \mathrm{~L}, 0.89 \mathrm{mmol})$ was added slowly followed by 15 mL of DMPU. The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and $-45^{\circ} \mathrm{C}$ for 3 h . The reaction flask was removed from the cold bath and 10 mL of saturated ammonium chloride and 10 mL water were added. After warming to room temperature the mixture was extracted with ether $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with water $(3 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried and the solvent was removed to afford 700 mg of a yellow oil. Without further purification the yellow oil was dissolved in 2 mL ether and added via teflon cannula to a solution of LiAlH_{4}, $(133 \mathrm{mg}$, 3.5 mmol) in 7 mL of ether at $0^{\circ} \mathrm{C}$. An exothermic reaction occurred as evidenced by rapid bubbling of the solvent. The addition flask and cannula were rinsed with ether (2 $x 2 \mathrm{~mL}$). After 1 h the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$. After $2 \mathrm{~h} 133 \mu \mathrm{~L}$ of water, $133 \mu \mathrm{~L}$ of a 15% aqueous solution of NaOH and $330 \mu \mathrm{~L}$ of water were added sequentially. 6 After 5 min a scupula of MgSO_{4} was added to the fine white suspension and the mixture was filtered through a fine glass frit and concentrated. Silica gel chromatography eluting with EtOAc/hexanes (9:1) afforded $123 \mathrm{mg}(69 \%$) of the desired diol 16. IR: $3550-3400,1673 \mathrm{~cm}-1$. 1 H NMR (500 MHz): $\delta 1.23-1.36(\mathrm{~m}, 6)$, 1.39-1.49 ($\mathrm{m}, 2$), 1.52-1.58 ($\mathrm{m}, 1$), 1.56 (d, 3, $J=0.7$), $1.65(\mathrm{~d}, 3, J=1.0), 1.93(\mathrm{~m}, 2), 2.17$ (bs, 1), 2.22 (bs, 1), 3.46-3.49 (m, 1), 3.54-3.56 (m, 1), 3.61 (m, 2), 5.07 (m, 1). 13C NMR (100 $\mathrm{MHz}): \delta 17.7\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}\right), 40.1(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 65.3\left(\mathrm{CH}_{2}\right), 124.5(\mathrm{CH}), 131.5(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}$: C, $71.95 ; \mathrm{H}, 12.08$. Found: $\mathrm{C}, 71.59 ; \mathrm{H}, 12.20$.
t-Butyl 2,7-dimethyl-6-octenoate (42). To a solution of diisopropylamine ($900 \mu \mathrm{~L}, 6.42 \mathrm{mmol}$) in 13.5 mL THF at $-78^{\circ} \mathrm{C}$ was added $2.73 \mathrm{~mL}(6.41 \mathrm{mmol})$ of a 2.34 M solution of n-butyllithium in hexanes dropwise. The resulting mixture was
 warmed to $0{ }^{\circ} \mathrm{C}$ for 10 min and then cooled to $-78^{\circ} \mathrm{C}$. A solution of t-butyl propionate ($1.02 \mu \mathrm{~L}, 6.75 \mathrm{mmol}$) in 6.75 mL THF was added slowly (15 min) via teflon cannula. The resulting mixture was stirred for 45 min following the addition. The iodide $20(702 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ was added via syringe followed by 5 mL of DMPU. After 1 h of stirring at $-78^{\circ} \mathrm{C}$ the reaction mixture was warmed to $-45^{\circ} \mathrm{C}$. After $1.5 \mathrm{~h}, 15$ mL of satd ammonium chloride and 5 mL of water were added and the reaction mixture was allowed to warm to room temperature. The mixture was extracted with ether ($4 \times 20 \mathrm{~mL}$). The combined extracts were washed with water $(2 \times 30 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, dried and concentrated. Silica gel chromatography of the crude product with EtOAc/hexanes ($1: 19$) provided $953 \mathrm{mg}(94 \%)$ of the pure ester 42. IR: 2974, 2932, $2876,1730,1456,1366,1256,1217,1148,1068,848.1{ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 1.07$ (d, 3, $J=7.0), 1.28-1.35(\mathrm{~m}, 4), 1.42(\mathrm{~s}, 9), 1.57(\mathrm{~s}, 3), 1.67(\mathrm{~d}, 3, J=1.1), 1.94(\mathrm{~m}, 2), 2.26-2.30(\mathrm{~m}, 1)$, $5.06-5.09(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta 17.2\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{2}\right)$, $27.9\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 40.4(\mathrm{CH}), 79.7(\mathrm{C}), 124.4(\mathrm{CH}), 131.5(\mathrm{C}), 176.3(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 74.29 ; \mathrm{H}, 11.58$. Found: C, $73.91 ; \mathrm{H}, 11.58$.
t-Butyl 2,7-dimethyl-2-(2-allyl)-6-octenoate (46). To a solution of diisopropylamine ($594 \mu \mathrm{~L}, 4.24 \mathrm{mmol}$) in 9.0 mL THF at $0^{\circ} \mathrm{C}$ was added dropwise $1.75 \mathrm{~mL}(4.12 \mathrm{mmol})$ of a 2.35 M solution of n-butyllithium in hexanes. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30
 min then was cooled to $-78^{\circ} \mathrm{C}$ and a solution of the ester 42 (622 $\mathrm{mg}, 2.75 \mathrm{mmol}$) in 2.75 mL THF was added slowly via teflon cannula. The flask and cannula were rinsed with 2 mL of THF. Stirring was continued for 2 h , at which time allyl bromide ($476 \mu \mathrm{~L}, 5.5 \mathrm{mmol}$) was added dropwise. The slightly yellow solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , warmed to $25^{\circ} \mathrm{C}$ and poured onto 20 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and 10 mL of water. This mixture was extracted with ether $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (30 mL), dried and the solvents were removed to afford 879 mg of a yellow oil. Silica gel chromatography ether/hexanes (1:99) provided $658 \mathrm{mg}(90 \%)$ of the desired ester 46. IR: 3074, 2974, $2932,2364,1725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}): \delta 1.05(\mathrm{~s}, 3), 1.18-1.24(\mathrm{~m}, 1), 1.27-1.43(\mathrm{~m}, 2)$, $1.42(\mathrm{~s}, 9), 1.48-1.59(\mathrm{~m}, 1), 1.58(\mathrm{~s}, 3), 1.67(\mathrm{~s}, 3), 1.94(\mathrm{~m}, 2), 2.11$ (dd, $1, J=7.71,13.67), 2.33$ (dd, 1, J=7.06, 13.63), $5.01(\mathrm{~s}, 1), 5.03-5.04(\mathrm{~m}, 1), 5.07-5.10(\mathrm{~m}, 1), 5.67-5.76(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.7,21.2,24.9,25.7,28.1,28.4,38.8,43.6,46.1,79.8,117.5,124.4$, 131.4, 134.4, 176.2. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2}: \mathrm{C}, 76.64 ; \mathrm{H}, 11.35$. Found: $\mathrm{C}, 76.46, \mathrm{H}$; 11.33.
t-Butyl 2,7-dimethyl-2-(2-methyl-2-propenyl)-6-octenoate (45). The foregoing procedure was followed with $334 \mu \mathrm{~L}$ (2.38 mmol) of disopropyl amine, $959 \mu \mathrm{~L}(2.32 \mathrm{mmol})$ of a 2.42 M solution of n-butyllithium in hexanes, 263 mg (1.16 mmol) of ester 42 and
 $352 \mu \mathrm{~L}$ (3.49 mmol) of 1-bromo-2-methyl-2-propene. The crude product was purified by flash chromatography on silica gel eluting with a gradient of benzene/pet. ether (from $3: 1$ to 1:1) to provide $279 \mathrm{mg}(86 \%)$ of the desired ester 45 as a clear slightly yellow oil. IR: $3074,2974,2932,2364,1723 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}): \delta$ $1.03(\mathrm{~s}, 3), 1.13-1.21(\mathrm{~m}, 1), 1.26-1.38(\mathrm{~m}, 2), 1.42(\mathrm{~s}, 9), 1.45-1.67(\mathrm{~m}, 10), 1.91(\mathrm{q}, 2, J=7.1)$,
2.04 (d, 1, $J=13.8$), 2.46 (d, 1, $J=13.7$), $4.64(\mathrm{~s}, 1), 4.76-4.77(\mathrm{~m}, 1), 5.06-5.09(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.7,20.8,23.9,24.8,25.7,28.0,28.4,40.5,45.9,47.5,79.9,114.0,124.4$, 131.6, 142.8, 176.6. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$: C, 77.09; H, 11.50. Found: C, 76.98, H; 11.64.
\boldsymbol{t}-Butyl 2,7-dimethyl-2-(3-hydroxypropyl)-6- octenoate (48). To a solution of 9 -borabicyclo[3.3.1]nonane ($9-\mathrm{BBN}$) $(43 \mathrm{mg}, 0.35$ mmol) in $450 \mu \mathrm{~L}$ of THF at $25^{\circ} \mathrm{C}$ was added a solution of 46 (60 $\mathrm{mg}, 0.23 \mathrm{mmol}$) in $500 \mu \mathrm{~L}$ of THF, via syringe. The flask
 containing the solution of the ester and the syringe were rinsed through with $2 \times 500 \mu \mathrm{~L}$ THF. After stirring for 1.75 h , water (2.3 mL), sodium perborate ($120 \mathrm{mg}, 0.78 \mathrm{mmol}$) and $130 \mu \mathrm{~L}(0.26 \mathrm{mmol})$ of a 2 N aqueous solution of NaOH was added. After 2 h the suspension was diluted with 5 mL of water and 10 mL ether. The layers were separated and the aqueous layer was extracted with ether (3 x $10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL), dried and concentrated to afford 126 mg of an oil. Silica gel chromatography eluting with EtOAc/hexanes ($1: 4$) provided 53.6 mg (82%) of the desired alcohol 48. IR: 3350, 2973, $2931,2863,1723 \mathrm{~cm}^{-1} .1$ H NMR (500 MHz): $\delta 1.05(\mathrm{~s}, 3), 1.17-1.21(\mathrm{~m}, 2), 1.25-1.46(\mathrm{~m}, 4)$, $1.41(\mathrm{~s}, 9), 1.51-1.56(\mathrm{~m}, 2), 1.56(\mathrm{~s}, 3), 1.63(\mathrm{dd}, 1, J=3.5,11.7), 1.65(\mathrm{~d}, 3, J=1.0), 1.91(\mathrm{~m}$, 2), 3.56-3.59 (m, 2), 5.05-5.08 (m, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.6,21.1,24.7,25.6,27.8$, $27.9,28.3,35.2,39.2,45.8,63.0,79.8,124.3,131.5,176.7$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{3}$: C, 71.79; H, 11.34. Found: C, 71.98, H, 11.52.
t-Butyl 2,7-dimethyl-2-(2-methyl-3-hydroxypropyl)-6-octenoate (47). The foregoing procedure was followed with 161 mg (1.32 mmol) of $9-\mathrm{BBN}$, and $295 \mathrm{mg}(1.05 \mathrm{mmol})$ of ester 45 . The crude product was purified by flash chromatography on silica gel
 eluting with EtOAc/hexanes (3:1) to provide 300 mg of the desired ester 47 contaminated by a small amount of an unidentified $9-$ BBN by product. IR: $3437,2974,2932,2873,1722 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.89(\mathrm{~d}, 1.2, J=6.8), 0.93(\mathrm{~d}$, $1.8 J=6.8), 1.00-1.09(\mathrm{~m}, 1), 1.05(\mathrm{~s}, 1.2), 1.09(\mathrm{~s}, 1.8), 1.10-1.80(\mathrm{~m}, 6), 1.42(\mathrm{~s}, 9), 1.56(\mathrm{~s}$, 3), 1.65 ($\mathrm{s}, 3$), 1.82-1.91 ($\mathrm{m}, 2.4$), 2.18 (bs, 0.6), 3.34-3.41 (m, 2), 5.02-5.11 (m, 1). ${ }^{13 \mathrm{C}}$ NMR (100 MHz): $\delta 17.7,17.9,19.3,21.3,21.5,24.6,25.7,28.0,28.4,32.4,32.6,40.0,41.4,41.6$, $42.2,45.6,46.0,67.4,68.8,80.1,80.5,124.3,124.4,131.7,176.6$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3}$: C, $72.44 ; H, 11.48$. Found: C, $72.17, H, 11.66$.

4,9-Dimethyl-4-(hydroxymethyl)-8-decen-1-ol (15). To a solution of the ester 48 ($691 \mathrm{mg}, 2.43 \mathrm{mmol}$) in 5.0 mL ether at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(182 \mathrm{mg}, 4.8 \mathrm{mmol})$ slowly. The flask was flushed with N_{2} and stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min then allowed to
 warm to $25^{\circ} \mathrm{C}$ while stirring continued for 12 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $182 \mu \mathrm{~L}$ of water, $182 \mu \mathrm{~L}$ of a 15% aqueous solution of NaOH and $540 \mu \mathrm{~L}$ of water were added sequentially. After $5 \mathrm{~min} . \mathrm{MgSO}_{4}(0.3 \mathrm{~g})$ and celite (1 g) were added to the fine white suspension and the mixture was filtered through a fine glass frit and concentrated to provide 565 mg of a clear oil. Silica gel chromatography, eluting with 500 mL of EtOAc/hexanes (8:1) followed by 500 mL of EtOAc/hexanes ($9: 1$) provided 484 mg (93%) of the desired diol 15. IR: 3337, 2927,
$2873,1671,1451,1376,1037 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.82(\mathrm{~s}, 3), 1.18-1.32(\mathrm{~m}, 6)$, 1.47-1.53 (m, 4), $1.58(\mathrm{~s}, 3), 1.67(\mathrm{~d}, 3, J=1.0), 1.92(\mathrm{~m}, 2), 3.33-3.36(\mathrm{~m}, 2), 3.61(\mathrm{~m}, 2)$, 5.07-5.10 (m, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.7,21.8,23.7,25.7,26.5,28.8,32.1,36.2,37.1$, 63.6, 69.3, 124.6, 131.5.

4-Hydroxymethyl-2,4,9-Trimethyl-8-decen-1-ol (14). The foregoing procedure was followed with $300 \mathrm{mg}(1.0 \mathrm{mmol})$ of ester 47 and 56.1 mg (1.5 mmol) of LAH. The crude product was purified by flash chromatography on silica gel, cluting with a
 gradient of EtOAc/hexanes (from 3:1 to 1:1) to provide 198 mg (87%) of the desired diol 15 as a colorless oil. IR: $3324,2928,2872,1454 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.75(\mathrm{~s}, 1.8), 0.86(\mathrm{~s}, 1.2), 0.89(\mathrm{~d}, 3, J=6.2), 0.90-1.39(\mathrm{~m}, 5), 1.48-1.54(\mathrm{~m}, 1)$, $1.57(\mathrm{~s}, 3), 1.58-1.76(\mathrm{~m}, 1), 1.66(\mathrm{~s}, 3), 1.83-1.92(\mathrm{~m}, 2), 3.15-3.24(\mathrm{~m}, 2), 3.39-3.80(\mathrm{~m}, 2)$, 3.52 (bs, 2), 5.10-5.18 (m, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.5,17.6,19.6,19.9,20.4,23.4,23.5$, $23.8,25.6,28.7,28.8,30.1,30.2,35.5,37.7,37.9,38.8,39.3,40.3,67.6,68.8,69.0,124.5,124.7$, 131.0, 131.3 .

Methyl 1-(5-methyl-4-hexenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]- cyclopentanecarboxylate (24). To a solution of the diisopropylamine ($230 \mu \mathrm{~L}, 1.64 \mathrm{mmol}$) in 1.6 mL THF at $0^{\circ} \mathrm{C}$ was added $641 \mu \mathrm{~L}(1.59 \mathrm{mmol})$ of a 2.48 M solution of n-butyllithium in hexanes dropwise. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min cooled to $-78^{\circ} \mathrm{C}$ and a solution of the N-propionylpyrrolidine (17) ($200 \mu \mathrm{~L}, 1.59 \mathrm{mmol}$) in 0.8 mL THF was added slowly via teflon cannula. This solution was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h at which time a solution of enoate $19(200 \mathrm{mg}, 1.59 \mathrm{mmol})$ in 1.6 mL THF was added
 slowly via teflon cannula. After 15 min the iodide $20(167 \mu \mathrm{~L}, 1.06$ mmol) was added. The yellow solution was allowed to warm slowly to $25^{\circ} \mathrm{C}$ over 15 h . To the reaction mixture was added 10 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and 5 mL of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The resulting mixture was extracted with ether ($3 \times 15 \mathrm{~mL}$). The organic extracts were combined and washed with brine (40 mL). The aqueous wash was back extracted with ether (50 mL). The combined organic extracts were dried and concentrated to afford 516 mg of a yellow oil. Repeated silica gel chromatography with EtOAc/hexanes ($1: 1$) provided 256 mg (69%) of the desired amide-ester 24 as a clear colorless oil. IR: 2951, 2872, 1721, 1641, 1430, $1161 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 1.00(\mathrm{~d}$, $3, J=6.91), 1.03-1.12(\mathrm{~m}, 1), 1.18-1.30(\mathrm{~m}, 2), 1.35-1.61(\mathrm{~m}, 4), 1.55(\mathrm{~s}, 3), 1.64(\mathrm{~s}, 3), 1.71-1.99$ $(\mathrm{m}, 8), 2.13-2.18(\mathrm{~m}, 1), 2.28-2.33(\mathrm{~m}, 1), 2.51-2.56(\mathrm{~m}, 1), 3.31-3.48(\mathrm{~m}, 3), 3.62-3.67(\mathrm{~m}, 1)$, 3.62 ($\mathrm{s}, 3$), 5.02-5.05 (m, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.7,17.7,21.6,24.6,25.7,26.2,26.6$, $28.3,28.6,34.6,37.8,38.2,45.8,46.1,51.3,51.7,57.0,124.6,131.3,174.8,177.0$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3}: \mathrm{C}, 72.17 ; \mathrm{H}, 10.09 ; \mathrm{N}, 4.01$. Found: C, $72.07 ; \mathrm{H}$, 10.16; N, 4.10.

Methyl 1-(4-pentenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]-cyclopentane-carboxylate (27): The foregoing procedure was followed with $1.11 \mathrm{ml}(7.91 \mathrm{mmol})$ of diisopropylamine, 3.28 ml of a 2.33 M solution of n-butyllithium in hexanes, $1.15 \mathrm{~g}(8.93 \mathrm{mmol})$ of N-propionylpyrrolidine (17), $942 \mu \mathrm{~L}(7.65 \mathrm{mmol})$ of enoate 19 , and 1.0 g (5.1 mmol) of iodide 23 . The crude product was purified by flash

chromatography on silica gel ($25 \% \mathrm{EtOAc} / \mathrm{Hex}$) to provide $1.17 \mathrm{~g}(71 \%)$ of the desired ester 27 as a clear colorless oil. IR: 2965, 2872, 1721, 1640, $1430 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 1.00(\mathrm{~d}, 3, J=7.0), 1.13-1.25(\mathrm{~m}, 2), 1.32-1.61(\mathrm{~m}, 5), 1.73-2.00(\mathrm{~m}, 8), 2.14-2.19(\mathrm{~m}$, 1), 2.30-2.36 (m, 1), 2.50-2.56 (m, 1), 3.33 (ddd, 1, $J=6.2,6.2,9.9), 3.38-3.47(\mathrm{~m}, 2), 3.63-3.67$ ($\mathrm{m}, 1$), $3.63(\mathrm{~s}, 3), 4.88-4.90(\mathrm{~m}, 1), 4.93-4.97(\mathrm{~m}, 1), 5.74$ (dddd, $1, J=6.6,6.6,10.2,17.0)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.7,21.6,24.4,25.5,36.1,28.3,34.2,34.5,37.4,38.2,45.7,46.0$, $51.3,51.7,56.9,114.3,138.8,174.8,177.0$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C}, 70.99 ; \mathrm{H}, 9.72$; N, 4.36. Found: C, $70.78 ; H, 10.09 ;$ N, 4.18 .

Methyl 1-(E-4-hexenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]-cyclo-pentanecarboxylate (25). The foregoing procedure was followed with $1.03 \mathrm{ml}(7.38 \mathrm{mmol})$ of diisopropylamine, 3.05 ml of a 2.34 M solution of n-butyllithium in hexanes, $899 \mu \mathrm{~L}(7.14 \mathrm{mmol})$ of N-propionylpyrrolidine (17), $879 \mu \mathrm{~L}(7.14 \mathrm{mmol})$ of enoate 19 , and 1.0 g (4.76 mmol) of iodide 21. The crude product was purified by flash chromatography on silica gel ($30-40 \% \mathrm{EtOAc} / \mathrm{Hex}$) to provide $1.09 \mathrm{~g}(68 \%)$ of the desired ester 25 as a clear colorless oil. IR: 2950,
 $1721,1641,1431 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): $\delta 0.99(\mathrm{~d}, 3, J=7.0)$, 1.08-1.12 (m, 1), 1.17-1.29 (m, 2), 1.36-1.43 (m, 1), 1.45-1.49 (m, 1), 1.52-1.59 (m, 1), 1.59 (d, $3, J=4.0$), 1.71-1.76 (m, 1), 1.79-1.98 (m, 8), 2.15 (ddd, $1, J=5.1,9.2,13.1), 2.30$ (ddd, $1, J=8.6$, $8.6,12.0), 2.53(\mathrm{dq}, 1, J=6.9,6.9), 3.31(\mathrm{ddd}, 1, J=6.7,9.9,13.6), 3.36-3.46(\mathrm{~m}, 2), 3.61(\mathrm{~s}, 3)$, 3.63-3.66 (m, 1), 5.30-5.39 (m, 2). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.7,17.9,21.6,24.4,26.1,26.3$, $28.3,33.1,34.5,37.5,38.2,45.7,46.0,51.3,51.7,56.9,124.7,131.3,174.8,177.0$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3}: \mathrm{C}, 71.60 ; \mathrm{H}, 9.91 ; \mathrm{N}, 4.17$. Found: $\mathrm{C}, 71.47 ; \mathrm{H}, 10.04 ; \mathrm{N}, 4.17$.

Methyl 1-(Z-4-hexenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]-cyclopentanecarboxylate (26). The foregoing procedure was followed with $1.03 \mathrm{ml}(7.38 \mathrm{mmol})$ of diisopropylamine, 3.05 ml of a 2.34 M solution of n-butyllithium in hexanes, $899 \mu \mathrm{~L}(7.14 \mathrm{mmol})$ of N-propionylpyrrolidine (17), $879 \mu \mathrm{~L}(7.14 \mathrm{mmol})$ of enoate 19 , and 1.0 $\mathrm{g}(4.76 \mathrm{mmol})$ of iodide 22 . The crude product was purified by flash chromatography on silica gel ($30-40 \% \mathrm{EtOAc} / \mathrm{Hex}$) to provide 681 mg (43%) of the desired ester 26 as a clear colorless oil. IR: 2951, 2871, $1721,1641,1431 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): $\delta 1.00(\mathrm{~d}, 3, J=6.9)$, 1.10-1.16 (m, 1), 1.21-1.32 (m, 2), 1.37-1.46 (m, 1), 1.48-1.62 (m, 2), 1.57 (d, 3, J=5.4), 1.741.78 (m, 1), 1.82-1.89 (m, 4), 1.91-2.00 (m, 4), 2.17 (dddd, $1, J=4.8,4.8,8.7,8.7), 2.33$ (ddd, $1, J=8.6,7.2,12.0), 2.52-2.58(\mathrm{~m}, 1), 3.32-3.37(\mathrm{~m}, 1), 3.39-3.48(\mathrm{~m}, 2), 3.63-3.68(\mathrm{~m}, 1), 3.64$ ($\mathrm{s}, 3$), 5.29-5.34 (m, 1), 5.37-5.42 (m, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 12.8,16.7,21.6,24.4,26.2$, $26.2,27.4,28.3,34.5,37.6,38.2,45.8,46.1,51.3,51.7,57.0,123.8,130.5,174.8,177.0$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3}: \mathrm{C}, 71.60 ; \mathrm{H}, 9.91 ; \mathrm{N}, 4.17$. Found: C, $71.49 ; \mathrm{H}, 10.09 ; \mathrm{N}, 4.25$.

1-(5-Methyl-hex-4-enyl)-2-(2-pyrrolidin-1-yl-2-thioxo-ethyl)cyclopentanecarboxylic acid methyl ester (30): The foregoing procedure was followed with $1.28 \mathrm{ml}(9.15 \mathrm{mmol})$ of diisopropylamine, 3.83 ml of a 2.33 M solution of n-butyllithium in hexanes, $1.15 \mathrm{~g}(8.93 \mathrm{mmol})$ of N -pyrrolidine-thioacetamide (29), 10 $1.10 \mathrm{ml}(8.93 \mathrm{mmol})$ of enoate 19 , and $702 \mu \mathrm{~L}(4.46 \mathrm{mmol})$ of iodide 20. The crude product was purified by flash chromatography on silica gel ($20-30 \% \mathrm{EtOAc} /$ hexanes) to provide 1.44 g (92\%) of the

desired thioamide 30 as a clear colorless oil. IR: 2964, $2872,1722,1471,1446 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): δ 1.13-1.22 ($\mathrm{m}, 1$), 1.25-1.40 (m, 3), 1.46-1.52 (m, 1), 1.55 ($\mathrm{s}, 3$), 1.56-1.62 $(\mathrm{m}, 1), 1.64(\mathrm{~s}, 3), 1.72-1.80(\mathrm{~m}, 1), 1.89-2.05(\mathrm{~m}, 8), 2.19$ (ddd, 1, J=5.2, 9.13, 14.2), 2.40-2.49 $(\mathrm{m}, 2), 2.79(\mathrm{~d}, 1, J=11.5), 3.55-3.67(\mathrm{~m}, 2), 3.62(\mathrm{~s}, 3), 3.77-3.87(\mathrm{~m}, 2), 5.05(\mathrm{dd}, 1, \mathrm{~J}=7.1$, 7.1). ${ }^{13}$ C NMR (100 MHz): $\delta 17.7,21.9,24.2,25.7,26.2,26.3,28.5,30.2,33.4,37.5,44.8$, $49.8,50.6,51.3,54.0,56.9,124.3,131.6,176.5,199.7$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}$, $68.33 ; H, 9.46 ; \mathrm{N}, 3.98$. Found: C, $68.60 ; \mathrm{H}, 9.68 ; \mathrm{N}, 4.04$.

1-Hydroxymethyl-1-(5-methyl-4-hexenyl)-2-[1-(1-pyrrolidinyl-

 carbonyl)-ethyl]-cyclopentane (31). To a solution of the ester-amide $24(137 \mathrm{mg}, 0.39 \mathrm{mmol})$ in 3.9 mL of THF at $0^{\circ} \mathrm{C}$ was added $2.34 \mathrm{~mL}(2.34 \mathrm{mmol})$ of a 1.0 M solution of lithium triethylborohydride in THF. The reaction mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 1 h and returned to $0^{\circ} \mathrm{C}$ at which time 10 mL of water and 5 mL of brine were added slowly. The mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the solvents and triethylborane were removed with heating $\left(30-40^{\circ} \mathrm{C}\right)$ using a N_{2} flushed rotary evaporator at aspirator pressure for 0.5 h to provide 130 mg of a clear oil. Silica gel chromatography with EtOAc/hexanes (1:1) provided $109 \mathrm{mg}(87 \%)$ of the desired alcohol 31 as a white solid, $\mathrm{mp} 68-69^{\circ} \mathrm{C}$. IR: $3387,2947,2872,1618,1439,1047 \mathrm{~cm}-1.1 \mathrm{H}$ NMR (500 MHz): $\delta 1.03$ (d, 3, J=6.9), 1.10-1.19 (m, 1), 1.20-1.52 (m, 9), 1.53 ($\mathrm{s}, 3$), 1.62 (s , 3), 1.77-1.92 (m, 6), $2.10(\mathrm{~m}, 1), 2.32$ (bs, 1), 2.55-2.61 (m, 1), 3.51-3.56 (m, 1), 3.26-3.41 (m, 5), $5.05-5.13$ ($\mathrm{m}, 1$). ${ }^{13 \mathrm{C}}$ NMR (100 MHz): $\delta 17.5,17.6$, 21.7, 24.2, 24.7, 25.6, 26.1, 28.9, $29.3,33.5,35.9,38.3,45.8,46.3,48.4,48.8,66.1,125.0,131.0,176.1$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{2}: \mathrm{C}, 74.72 ; \mathrm{H}, 10.97 ; \mathrm{N}, 4.36$. Found: C, $74.74 ; \mathrm{H}, 11.21 ; \mathrm{N}, 4.57$.

E-1-Hydroxymethyl-1-(4-hexenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]- cyclopentane (32). The foregoing procedure was followed with 454 mg (1.35 mmol) of amide 25 and 4.1 ml of a 1.0 M solution of lithium triethylborohydride in THF. The crude product was purified by flash chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{Hex}$) to provide $378 \mathrm{mg}(91 \%)$ of the desired alcohol 32 was a clear colorless solid, mp 121-131 ${ }^{\circ} \mathrm{C}$. IR: $3428,2946,2871,1616 \mathrm{~cm}^{-1}$. 1 H NMR (500 $\mathrm{MHz}): \delta 1.07$ ($\mathrm{d}, 3, \mathrm{~J}=6.9$), 1.14-1.20 ($\mathrm{m}, 1$), 1.26-1.41 (m, 4), 1.47-1.54
 ($\mathrm{m}, 4$), $1.61(\mathrm{~d}, 3,=4.4), 1.81-1.97(\mathrm{~m}, 7), 1.99-2.02(\mathrm{~m}, 1), 2.12-2.18$ ($\mathrm{m}, 1$), 2.59 (dddd, $1, J=7.0,7.0,7.0,10.0$), 3.29-3.41 ($\mathrm{m}, 3$), 3.44 (dd, $2, J=7.0,7.0$), 3.53-3.57 $(\mathrm{m}, 1), 5.39-5.41(\mathrm{~m}, 2) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.5,17.9,21.7,24.2,24.5,26.1,29.4,33.4$, 33.6, $35.8,38.4,45.8,46.3,48.4,48.8,66.1,124.5,131.7,176.1$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, 74.23; H, 10.82; N, 4.56. Found: C, 73.93; H, 10.80; N, 4.51.

Z-1-Hydroxymethyl-1-(4-hexenyl)-2-11-(1-pyrrolidinylcarbo

 nyl)-ethyl]- cyclopentane (33). The foregoing procedure was followed with 680 mg (2.0 mmol) of amide 26 and 6.1 ml of a 1.0 M solution of lithium triethylborohydride in THF. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes (1:1) to provide $512 \mathrm{mg}(83 \%$) of the desired alcohol 33 as a clear colorless oil. IR: $3401,2948,2872,1719,1618 \mathrm{~cm}^{-1}$. 1 H

NMR (500 MHz): $\delta 1.06$ (d, 3, J=6.9), 1.18-1.22 (m, 1), 1.24-1.41 (m, 5), 1.41-1.58 (m, 7), 1.79-2.02 (m, 6), 2.05-2.18 (m, 2), 2.57 (dq, 1, J=6.9, 9.9), 3.27-3.43 (m, 5), 3.54 (ddd, 1, $J=6.9,6.9,9.9), 5.35-5.42(\mathrm{~m}, 2)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{2}: \mathrm{C}, 74.23 ; \mathrm{H}, 10.82 ; \mathrm{N}, 4.56$. Found: C, 74.26; H, 11.07; N, 4.34.

1-Hydroxymethyl-1-(4-pentenyl)-2-[1-(1-pyrrolidinylcarbonyl)-ethyl]- cyclopentane (34). The foregoing procedure was followed with 1.17 g (3.64 mmol) of amide 27 and 10.9 ml of a 1.0 M solution of lithium triethylborohydride in THF. The crude product was purified by flash chromatography on silica gel, eluting with a gradient of $\mathrm{EtOAc} /$ hexanes (from 1:1 to 3:5) to provide $960 \mathrm{mg}(90 \%)$ of the desired alcohol 34 as a clear colorless solid, $\mathrm{mp} 56-58^{\circ} \mathrm{C}$. IR: 3331, 2951, 2864, $1609 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 1.05$ (d, $3, J=6.9$), 1.15
 (ddd, $1, J=4.7,12.8,12.8 \mathrm{~Hz}$), 1.27-1.53 (m, 8), 1.77-2.00 (m, 7), 2.13 ($\mathrm{q}, 1, J=9.31$), 2.55-2.61 $(\mathrm{m}, 1), 3.27-3.43(\mathrm{~m}, 6), 3.52-3.56(\mathrm{~m}, 1), 4.88(\mathrm{~d}, 1, J=10.2), 4.95(\mathrm{dd}, 1, J=1.5,17.1), 5.78$ (dddd, $1, J=6.7,6.7,10.2,16.9$). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.6,21.7,23.8,24.3,26.2,29.4$, $33.6,34.6,35.7,38.5,45.9,46.4,48.3,48.9,66.2,114.2,139.3,176.2$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2}: \mathrm{C}, 73.67 ; \mathrm{H}, 10.65 ; \mathrm{N}, 4.77$. Found: $\mathrm{C}, 73.73 ; \mathrm{H}, 10.46 ; \mathrm{N}, 4.80$.

2-[2-Hydroxymethyl-2-(5-methyl-hex-4-enyl)-cyclopentyl]-1-pyrrolidin-1-yl-ethanethione (35). The foregoing procedure was followed with $254.3 \mathrm{mg}(0.723 \mathrm{mmol})$ of thioamide 30 and 1.81 ml of a 1.0 M solution of lithium triethylborohydride in THF. The crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexanes (2:5) to provide $186.3 \mathrm{mg}(80 \%)$ of the desired alcohol 35 as a clear colorless oil. IR: $3407,2942,2871,1487,1448 \mathrm{~cm}$ -1 . 1 H NMR (500 MHz): $\delta 1.21$ (ddd, $1, J=4.2,12.8,16.9 \mathrm{~Hz}$), $1.28-1.51$
 (m, 8), $1.56(\mathrm{~s}, 3), 1.56-1.61(\mathrm{~m}, 1), 1.64(\mathrm{~s}, 3), 1.74(\mathrm{bs}, 1), 1.91-1.96(\mathrm{~m}, 4), 2.02$ (ddd, 2, $J=6.8,6.8,6.8), 2.22-2.28(\mathrm{~m}, 1), 2.70(\mathrm{dd}, 1, J=10.5,13.8), 2.87(\mathrm{dd}, 1, J=3.9,13.7), 3.44(\mathrm{q}, 2$, $J=11.1$), $3.64(\mathrm{t}, 2, J=6.9), 3.83(\mathrm{t}, 2, J=7.0), 5.07-5.10(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.7$, $22.1,24.2,24.9,25.7,26.3,28.8,31.1,33.6,36.0,44.4,47.3,48.2,50.8,53.9,66.0,124.6,131.5$, 200.9. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NOS}: \mathrm{C}, 70.53 ; \mathrm{H}, 10.28 ; \mathrm{N}, 4.33$. Found: $\mathrm{C}, 70.13 ; \mathrm{H}$, 10.23; N, 4.51.
[5-Methyl-4-hexenyl]-hexahydro-4-(methyl)cyclopenta[c]pyran-3 (1H)- one (36). To a solution of the amide alcohol 31 ($117 \mathrm{mg}, 0.363$ mmol) in 3.6 mL MeOH was added $726 \mu \mathrm{~L}$ of a 5.0 M aqueous solution of HCl . This solution was stirred at $25^{\circ} \mathrm{C}$, under an air atmosphere, for 4 h . The reaction mixture was diluted with 20 mL ether and 20 mL brine. The organic layer was separated and the aqueous layer was extracted with ether ($2 \times 20 \mathrm{~mL}$). The combined organic layers were
 washed with brine (20 mL), dried and concentrated to provide a colorless oil. Silica gel chromatography, eluting with EtOAc/hexanes (1:4) provided 84 mg (93%) of the desired lactone 36 , as a colorless oil. IR: $2933,2862,1746 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): $\delta 1.17(\mathrm{~d}, 3, J=6.52), 1.19-1.35(\mathrm{~m}, 4), 1.43-1.57(\mathrm{~m}, 4), 1.55(\mathrm{~s}, 3)$, 1.59-1.68 (m, 2), 1.64 ($\mathrm{s}, 3$), 1.90-2.01 (m, 3), 2.19-2.25 (m, 1), $3.85(\mathrm{~d}, 1, J=11.39), 4.07(\mathrm{~d}, 1$, $J=11.41), 5.03-5.06(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta 14.6\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right), 24.7\left(\mathrm{CH}_{2}\right)$, $25.3\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 35.1\left(\mathrm{CH}_{2}\right), 38.4\left(\mathrm{CH}, \mathrm{CH}_{2}\right), 45.7(\mathrm{C}), 50.0$
$(\mathrm{CH}), 71.5\left(\mathrm{CH}_{2}\right), 124.1(\mathrm{CH}), 131.7(\mathrm{C}), 176.0(\mathrm{C})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 76.75$; H, 10.47. Found: C, 76.68; H, 10.79 .
[E-4-hexenyl]-hexahydro-4-(methyl)cyclopenta[c]pyran-3(1H)-one (37). The foregoing procedure was followed with 378 mg (1.23 mmol) of alcohol 32 and 2.46 ml of a 5 M aqueous HCl solution. The crude product was purified by flash chromatography on silica gel, eluting with a gradient of EtOAc/hexanes (from 1:10 to 1:5) to provide 284 mg (98%) of the desired lactone 37 as a clear colorless oil. IR: 2935, 1745 cm^{-1}. 1 H NMR (500 MHz): $\delta 1.18(\mathrm{~d}, 3, J=6.5), 1.20-1.29(\mathrm{~m}, 3), 1.31-1.40$ (m, 1), 1.40-1.58 (m, 5), 1.59-1.68 (m, 4), 1.88-2.02 (m, 3), $2.23(\mathrm{dq}$,
 $1, J=6.6,10.4), 3.86$ (d, 1, $J=11.4), 4.08(\mathrm{~d}, 1, J=11.4), 5.33-5.43(\mathrm{~m}, 2) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 14.6,17.9,24.5,25.3,33.0,33.6,35.1,38.3,38.5,45.7,50.0,71.6,125.3$, 130.9, 175.5. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.24$. Found: $\mathrm{C}, 76.51 ; \mathrm{H}, 10.51$.
[Z-4-hexenyl]-hexahydro-4-(methyl)cyclopenta[c]pyran-3(1H)-one (38). The foregoing procedure was followed with 510 mg (1.66 mmol) of alcohol 33 and 3.3 ml of a 5 M aqueous HCl solution. The crude product was purified by flash chromatography on silica gel, eluting with a gradient of EtOAc/hexanes (from 1:10 to 1:5) to provide 385 mg (98%) of the desired lactone 38 as a clear colorless oil. IR: 2936, 1745, 1453, 1265 cm^{-1}. 1 H NMR (500 MHz): $\delta 1.19$ (d, $3, J=6.7$), 1.21-1.29 (m, 3), 1.33-1.40
 ($\mathrm{m}, 1$), 1.43-1.58 (m, 4), $1.56(\mathrm{~d}, 3, J=7.7), 1.61-1.69(\mathrm{~m}, 2), 1.94-2.01(\mathrm{~m}, 3)$, $2.23(\mathrm{dq}, 1, J=6.5,10.5), 3.86(\mathrm{~d}, 1, J=11.4), 4.08(\mathrm{~d}, 1, J=11.4), 5.29-5.34(\mathrm{~m}, 1), 5.39-5.45(\mathrm{~m}$, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 12.7,14.6,24.3,25.3,27.1,33.6,35.1,38.3,38.4,45.7,50.0,71.5$, 124.2, 130.0, 176.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.24$. Found: $\mathrm{C}, 76.45 ; \mathrm{H}$, 10.47 .
[4-pentenyl]-hexahydro-4-(methyl)cyclopenta[c]pyran-3(1H)-one (39). The foregoing procedure was followed with 960 mg (3.27 mmol) of alcohol 34 and 6.5 ml of a 5 M aqueous HCl solution. The crude product was purified by flash chromatography on silica gel eluting with EtOAc/hexanes (1:5) to provide 700 mg (96%) of the desired lactone 39 as a clear colorless oil. IR: 2935, $1745 \mathrm{~cm}^{-1}$. ${ }^{1}$ H NMR (500 MHz): $\delta 1.18$
 (d, 3, J=6.5), 1.24-1.35 (m, 3), 1.37-1.57 (m, 6), 1.60-1.70 (m, 2), 1.93-2.12 $(\mathrm{m}, 2), 2.20-2.29(\mathrm{~m}, 1), 3.85(\mathrm{~d}, 1, J=11.2), 4.11(\mathrm{~d}, 1, J=11.3), 4.90(\mathrm{~d}, 1, J=10.2), 5.01(\mathrm{dd}, 1$, $J=1.5,17.0$), 5.78 (dddd, $1, J=6.7,6.7,10.2,16.8$). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 14.2,23.3,24.9$, $33.1,33.7,34.6,37.8,37.9,45.2,49.6,71.0,114.3,137.9,175.5$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$: $\mathrm{C}, 75.63 ; \mathrm{H}, 9.97$. Found: C, 75.58 ; H, 10.32 .
[5-Methyl-4-hexenyl]-hexahydro-cyclopenta[c]pyran-3(1H)- one (40). To a stirring solution of alcohol $35(407 \mathrm{mg}, 1.26 \mathrm{mmol})$ in MeOH (12.6 ml) was added a 5 M aqueous solution of $\mathrm{NaOH}(2.5 \mathrm{ml}, 12.6 \mathrm{mmol})$. The resulting mixture was heated to $80^{\circ} \mathrm{C}$ for 2 h and cooled to rt. To the mixture was added a 5 M aqueous solution of $\mathrm{HCl}(3.8 \mathrm{ml}, 18.9$ mmol). The resulting mixture was stirred for 15 min , diluted with $\mathrm{H}_{2} \mathrm{O}$
 $(10 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined extracts were dried, filtered and concentrated. The crude material was purified by flash
chromatography on silica gel eluting with EtOAc/hexanes (1:5) to provide 255 mg (86%) of the desired lactone 40 as a clear colorless oil. IR: $2933,2861,1753 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): $\delta 1.23-1.29(\mathrm{~m}, 4), 1.35-1.41(\mathrm{~m}, 1), 1.46-1.62(\mathrm{~m}, 4), 1.56(\mathrm{~s}, 3), 1.64(\mathrm{~s}, 3)$, $1.87-1.93$ (m, 3), 2.01 (ddd, $1, J=6.7,6.7,6.7$), 2.26 (dd, $1, J=6.8,15.1$), 2.49 (dd, $1, J=6.6$, 15.1), 3.88 (d, $1, J=11.4$), 3.99 (d, $1, J=11.5$), $5.02-5.05(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.6$, $24.6,24.7,25.6,28.4,34.3,34.5,35.2,38.4,41.3,44.5,73.5,123.9,131.9,173.7$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{C}, 76.23 ; \mathrm{H}, 10.24$. Found: $\mathrm{C}, 76.57 ; \mathrm{H}, 10.36$.

1-Hydroxymethyl-1-(5-methyl-4-hexenyl)-2-(1-methyl-2-hydroxy-ethyl)-cyclopentane (9). To a solution of the lactone $36(65.1 \mathrm{mg}, 0.26$ $\mathrm{mmol})$ in 2.6 mL ether at $0{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{LiAlH}_{4}(10 \mathrm{mg}, 0.26$ mmol). The flask was flushed with N_{2} and stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , then allowed to warm to rt and stirred for another 12 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $10 \mu \mathrm{~L}$ of water, $10 \mu \mathrm{~L}$ of a 15% aqueous solution of NaOH and $30 \mu \mathrm{~L}$ of water were added
 sequentially. After 5 min . a scupula of MgSO_{4} and a scupula of celite was added to the fine white suspension and the mixture was filtered through a fine glass frit and concentrated to provide 63 mg of a clear oil. Silica gel chromatography, eluting with EtOAc/hexanes (1:1) provided $59 \mathrm{mg}(89 \%$) of the desired diol 9 as a colorless oil. IR: $3355,2930,2873,1450,1375,1036 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 0.87$ (d, $3, ~ J=6.8 \mathrm{~Hz}), 1.15-1.48(\mathrm{~m}, 8), 1.51-1.73(\mathrm{~m}, 3), 1.56(\mathrm{~s}, 3), 1.61(\mathrm{~s}, 3), 1.78-1.82(\mathrm{~m}, 1), 1.90-$ $1.92(\mathrm{~m}, 2), 2.56(\mathrm{bs}, 2), 3.34(\mathrm{dd}, 1, J=6.3,10.4), 3.41(\mathrm{~d}, 1, J=11.0), 3.51(\mathrm{~d}, 1, J=11.0), 3.54$ (dd, $1, J=4.5,10.4$), $5.07-5.10(\mathrm{~m}, 1)$. ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.1,17.7,22.2,24.9,25.6$, $28.6,28.9,34.8,35.6,36.7,48.4,48.6,65.9,68.4,124.7,131.4$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2}$: C, 75.54; H, 11.89. Found: C, 75.40; H, 12.10.

E-1-(4-Hexenyl)-1-hydroxymethyl- 2-(1-methyl-2-hydroxy-ethyl)cyclopentane (10). The foregoing procedure was followed with 284 $\mathrm{mg}(1.20 \mathrm{mmol})$ of lactone 37 and $67 \mathrm{mg}(1.77 \mathrm{mmol})$ of LiAlH_{4}. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes (2:5) to provide 282 mg (98%) of the pure diol 10 as a colorless oil. IR: 3351, 2934, 2873, $1452 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 0.85$ (d, $3, J=6.8$), 1.20 (ddd, $1, J=4.8,12.0,12.0$), 1.28-1.42
 (m, 6), 1.50-1.61 (m, 3), 1.60 (d, 3, J=6.5), 1.69-1.72 (m, 1), 1.78-1.82 (m, 1), 1.90-1.92 (m, 2), 2.93 (bs, 2), 3.30 (dd, 1, $J=6.4,10.5$), 3.39 (d, 1, $J=11.0$), 3.49 (d, 1, $J=11.0$), 3.53 (dd, $1, J=6.0,10.5$), $5.34-5.42(\mathrm{~m}, 2) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.1,17.8,22.2$, $24.7,28.5,33.4,34.8,35.6,36.6,48.4,48.6,65.8,68.3,124.7,131.4$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$: C, 74.95; H, 11.74. Found: $\mathrm{C}, 74.84 ; \mathrm{H}, 12.07$.

Z-1-(4-Hexenyl)-1-hydroxymethyl-2-(1-methyl-2-hydroxyethyl)cyclopentane (11). The foregoing procedure was followed with 345 mg (1.46 mmol) of lactone 38 and $82 \mathrm{mg}(2.92 \mathrm{mmol})$ of LiAlH_{4}. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes (2:5) to provide 311 mg (89%) of the pure diol 11 as a colorless oil. IR: $3359,2937,2872,1454 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.89$ ($\mathrm{d}, 3, J=6.8$), 1.23-1.28 (m, 2), 1.31-1.48 (m, 7), 1.58 ($\mathrm{d}, 3, J=6.1$), 1.54-1.66
 (m, 2), 1.68-1.75 (m, 1), 1.85 (dq, 1, $J=6.6,6.6$), 1.94 (bs, 2), 2.01 (ddd, 1 , $J=7.2,7.2,7.2$), $3.39(\mathrm{dd}, 1, J=6.3,10.4), 3.44(\mathrm{~d}, 1, J=11.0), 3.54(\mathrm{~d}, 1, J=11.0), 3.57$ (dd, 1, $J=5.9,10.4), 5.34-5.46(\mathrm{~m}, 2) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 12.7,16.1,22.2,24.5,27.6,28.5,34.7$, $35.7,36.6,48.3,48.6,65.6,68.2,123.7,130.6$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 74.95 ; \mathrm{H}$, 11.74. Found: C, $75.14 ; H, 11.58$.

1-(4-Pentenyl)-1-hydroxymethyl-2-(1-methyl-2-hydroxyethyl)cyclopentane (12). The foregoing procedure was followed with 700 mg (3.15 mmol) of lactone 39 and $219 \mathrm{mg}(5.77 \mathrm{mmol})$ of LiAlH_{4}. The crude product was purified by flash chromatography on silica gel, eluting with $\mathrm{EtOAc} /$ hexanes ($1: 1$) to provide $635 \mathrm{mg}(89 \%)$ of the pure diol 12 as a colorless oil. IR: 3348, 2941, 1640, $1458 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): δ
 0.87 (d, 3, $J=6.8$), 1.20-1.28 (m, 1), 1.34-1.72 (m, 10), 1.84 (dddd, $1, J=6.4$, $6.4,12.9,12.9$), 1.99-2.04 (m, 2), 2.57 (bs, 2), 3.36 (dd, 1, $J=6.3,10.5$), 3.42 ($\mathrm{d}, 1, J=11.0$), 3.53 (d, 1, $J=10.9$), 3.55 (dd, $1, J=6.0,10.5$), 4.90-4.93 (m, 1), 4.95-5.00 (m, 1), 5.78 (dddd, 1, $J=6.7,6.7,10.2,17.0$). ${ }^{13 C}$ NMR (100 MHz): $\delta 16.04,22.25,24.02,28.47,34.60,34.78,35.56$, 36.51, 48.34, 48.61, 65.97, 68.46, 114.40, 138.99. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{C}, 74.29 ; \mathrm{H}$, 11.58. Found: C, 74.16; H, 11.69.

1-Hydroxymethyl-1-(5-methyl-4-hexenyl)-2-(2-hydroxyethy 1)-cyclopentane (13). The foregoing procedure was followed with $153.5 \mathrm{mg}(0.64 \mathrm{mmol})$ of lactone 40 and $54 \mathrm{mg}(1.42 \mathrm{mmol})$ of LiAlH_{4}. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/Hex (1:1) to provide 147.8 mg (96%) of the pure diol 13 as a colorless oil. IR: $3349,2932,2869,1451 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR
 (500 MHz): $\delta 1.15-1.36(\mathrm{~m}, 4), 1.36-1.59(\mathrm{~m}, 7), 1.55(\mathrm{~s}, 3), 1.64(\mathrm{~s}, 3)$, $1.74-1.84(\mathrm{~m}, 2), 1.91(\mathrm{q}, 2, J=7.2), 2.29(\mathrm{bs}, 1), 2.50(\mathrm{bs}, 1), 3.37(\mathrm{~d}, 1, J=11.0), 3.43(\mathrm{~d}, 1$, $J=11.0), 3.48-3.53(\mathrm{~m}, 1), 3.62-3.67(\mathrm{~m}, 1), 5.06-5.09(\mathrm{~m}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.7$, $22.4,24.9,25.6,28.9,31.6,33.1,33.8,36.3,44.1,47.8,62.7,65.8,124.7,131.4$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}: \mathrm{C}, 74.95 ; \mathrm{H}, 11.74$. Found: $\mathrm{C}, 75.02 ; \mathrm{H}, 11.99$.

1,14,14-Trimethyl-12-azatricyclo[8.3.1.02,6.06,11]tetradec-12-ene (60). A stirring solution of oxalyl chloride ($94 \mu \mathrm{~L}, 1.05 \mathrm{mmol}$) in $2.1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$. To this solution was added a solution of dimethyl sulfoxide (DMSO) ($149 \mu \mathrm{~L}, 2.10 \mathrm{mmol}$) in $1.3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ via teflon cannula. After 5
 min a solution of the diol $9(88.7 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $0.7 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added via teflon cannula. The flask containing the diol and the telfon cannula were rinsed through with $0.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After 15 min a solution of diisopropylethylamine (Hünig's base) ($304 \mu \mathrm{~L}, 1.75 \mathrm{mmol}$) in 1.1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added via teflon cannula.

After 10 min the clear solution was warmed to $0^{\circ} \mathrm{C}$ and stirring continued for 1 h . The N_{2} atmosphere was replaced with NH_{3} for five min. The solution turned cloudy as a white precipitate formed during the first min. The NH_{3} atmosphere was replaced by N_{2} and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$, allowing the excess ammonia to escape. After 0.5 h the stirring bar was removed rinsing it with several mL of benzene and the solvent was removed with a rotary evaporator under aspirator pressure (0.5 h) and high vacuum (10 min). The white solid / oil was placed under a N_{2} atmosphere and to it was added a magnetic stirring bar, $\mathrm{NH}_{4} \mathrm{OAc}(269 \mathrm{mg}, 3.49 \mathrm{mmol}$) and 3.5 mL of HOAc. The white precipitate was dissolved by swirling the solution around the sides of the flask. After 15 h the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and poured onto water $(20 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with 2 N $\mathrm{NaOH}(20 \mathrm{~mL})$, dried with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated to provide 65 mg of a colorless oil. Flash chromatography on silica gel (which was rinsed with 200 mL of a 5% solution of triethylamine in EtOAc) eluting with EtOAc/hexanes/triethylamine ($50: 49: 1$) provided $61 \mathrm{mg}(75 \%)$ of the desired imine 60 as a colorless solid, $\mathrm{mp} 43.5-48{ }^{\circ} \mathrm{C}$. IR: 2950, 1623, $1463,1448 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (500 MHz): $\delta 0.76(\mathrm{~s}, 3), 0.97(\mathrm{~s}, 3), 1.04-1.08(\mathrm{~m}, 2), 1.08(\mathrm{~s}, 3)$, 1.13-1.16 (m, 1), 1.19-1.28 (m, 8), 1.73 (m, 3), 3.78 (d, 1, $J=3.7$), $8.01(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}): \delta 14.0\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{3}\right), 33.1$ $\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 37.7\left(\mathrm{CH}_{2}\right), 38.7(\mathrm{C}), 40.4(\mathrm{CH}), 45.6(\mathrm{CH}), 45.7(\mathrm{C}), 47.7(\mathrm{C}), 66.2$ $(\mathrm{CH}), 179.5(\mathrm{CH})$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}: \mathrm{C}, 83.06 ; \mathrm{H}, 10.89 ; \mathrm{N}, 6.05$. Found: C , 83.11; H, 11.20; N, 6.01.
(1S,14S)-1,14-Dimethyl-12-azatricyclo[8.3.1.02,6.06,11]tetradec-12-ene (61). The foregoing procedure was followed with $103 \mathrm{mg}(0.43 \mathrm{mmol})$ of diol 10 , $117 \mu \mathrm{~L}(1.31 \mathrm{mmol})$ of oxalyl chloride, $187 \mu \mathrm{~L}(2.63 \mathrm{mmol})$ of DMSO, $382 \mu \mathrm{~L}$ (2.19 mmol) of Hünig's base and $338 \mathrm{mg}(4.38 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. After
 addition of HOAc the reaction mixture was stirred at rt for 15 hrs . The crude product was purified by flash chromatography on silica gel (47:48:5 EtOAc/Hex $/ \mathrm{Et}_{3} \mathrm{~N}$) to provide 70.0 mg (75%) of the desired imine 61 as a yellow oil. IR: 2927, 1618, 1453 cm^{-1}. 1 H NMR (500 MHz): $\delta 0.71(\mathrm{~d}, 3, J=7.0), 0.93-1.02(\mathrm{~m}, 1), 1.10-1.29(\mathrm{~m}, 5), 1.14(\mathrm{~s}, 3)$, 1.32-1.45 (m, 6), 1.53-1.56 (m, 2), 1.77-1.83 (m, 1), 3.70 (d, 1, J=3.2), $7.93(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 17.4,17.5,19.3,24.1,27.1,33.0,36.4,38.0,40.2,40.7,43.4,47.3,52.2,65.4$, 177.2. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 82.89 ; \mathrm{H}, 10.67$; N, 6.44. Found: C, 82.56; H, 10.57; N, 6.42.
(1S,14R)-1,14-Dimethyl-12-azatricyclo[8.3.1.02,6.06,11]tetradec-12-ene (62). The foregoing procedure was followed with $120 \mathrm{mg}(0.50 \mathrm{mmol})$ of diol 11, $135 \mu \mathrm{~L}(1.51 \mathrm{mmol})$ of oxalyl chloride, $214 \mu \mathrm{~L}(3.02 \mathrm{mmol})$ of DMSO, $438 \mu \mathrm{~L}$ (2.51 mmol) of Hünig's base and 388 mg (5.03 mmol) of $\mathrm{NH}_{4} \mathrm{OAc}$. After
 addition of HOAc the reaction mixture was stirred at rt for 100 h . The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes/triethylamine (20:79.5:0.5) to provide 75.2 mg (69%) of the desired imine 62 as a slightly yellow solid, $\mathrm{mp} 44-49^{\circ} \mathrm{C}$. IR: $2927,1618,1453 \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 0.95$ (d, $3, J=7.5$), 1.00-1.10 (m, 1), 1.07 ($\mathrm{s}, 3$), 1.12-1.60 (m, 10), 1.68-1.83 (m, 4), 3.77 (d, 1, $J=3.7$), 8.04 (s, 1). 13C NMR (100 MHz): $\delta 8.29,17.8,20.3,23.7,25.4,31.6,32.6$, $35.8,36.8,37.7,41.8,43.3,47.3,65.3,179.4$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 82.89 ; \mathrm{H}, 10.67$; $\mathrm{N}, 6.44$. Found: $\mathrm{C}, 82.72 ; \mathrm{H}, 10.97 ; \mathrm{N}, 6.31$.

1-Methyl-12-azatricyclo[8.3.1.02,6.06,11]tetradec-12-ene (63). The foregoing procedure was followed with $120 \mathrm{mg}(0.53 \mathrm{mmol})$ of diol $12,142 \mu \mathrm{~L}(1.59$ $\mathrm{mmol})$ of oxalyl chloride, $226 \mu \mathrm{~L}(3.18 \mathrm{mmol})$ of DMSO, $462 \mu \mathrm{~L}(2.65 \mathrm{mmol})$ of Hünig's base and $409 \mathrm{mg}(5.31 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. After addition of
 HOAc the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 50 h . The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes/triethylamine (20:79.5:0.5) to provide $86.6 \mathrm{mg}(80.4 \%)$ of the desired imine 63 as a yellow oil. IR: $2925,1618,1449 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.89-0.98$ (m , 2), 1.08-1.25 (m, 4), $1.11(\mathrm{~s}, 3), 1.31-1.52(\mathrm{~m}, 8), 1.72-1.79(\mathrm{~m}, 2), 3.69(\mathrm{~d}, 1, J=3.3), 7.97(\mathrm{~s}$, 1). ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 16.5,20.3,23.4,28.2,30.9,32.7,35.2,36.2,37.9,39.2,47.2,51.5$, 65.1, 177.5. HRMS calc for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}$: 203.167400. Found: 203.166969.

14,14-Trimethyl-12-azatricyclo[8.3.1.02,6.06,11]tetradec-12-ene (67). The foregoing procedure was followed with $91 \mathrm{mg}(0.379 \mathrm{mmol})$ of diol 13, 101 $\mu \mathrm{L}(1.13 \mathrm{mmol})$ of oxalyl chloride, $161 \mu \mathrm{~L}(2.27 \mathrm{mmol})$ of DMSO, $330 \mu \mathrm{~L}(1.89$ $\mathrm{mmol})$ of Hünig's base and $292 \mathrm{mg}(3.79 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. After addition
 of HOAc the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 15 h . The crude product was purified by flash chromatography on silica gel, eluting with a gradient of EtOAc/hexanes/triethylamine (from 9:90:1 to $49: 50: 1$) to provide $19.3 \mathrm{mg}(23 \%)$ of the desired imine 67 as a yellow oil. IR: $2967,1622,1461 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.81$ $(\mathrm{s}, 3), 1.08(\mathrm{~s}, 3), 1.09-1.17(\mathrm{~m}, 2), 1.23-1.52(\mathrm{~m}, 8), 1.65-1.74(\mathrm{~m}, 2), 1.85-1.89(\mathrm{~m}, 1), 1.99$ (dd, $1, J=7.3,7.3$), 2.10 (dd, $1, J=2.2,4.3$), $3.81(\mathrm{~d}, 1, J=3.7), 8.39(\mathrm{~d}, 1, J=4.0)$. ${ }^{13 \mathrm{C}}$ NMR (100 MHz): $\delta 19.9,21.8,24.7,25.1,34.1,34.3,36.4,36.9,37.9,39.1,40.6,46.5,51.4,67.3$, 175.9.

1,3,11,11-Tetramethyl-9-azatricyclo[5.3.1.03,8] undec-9-ene (69). The foregoing procedure was followed with $102 \mathrm{mg}(0.45 \mathrm{mmol})$ of diol 14,120 $\mu \mathrm{L}(1.34 \mathrm{mmol})$ of oxalyl chloride, $190 \mu \mathrm{~L}(2.68 \mathrm{mmol})$ of DMSO, $389 \mu \mathrm{~L}(2.24$ $\mathrm{mmol})$ of Hünig's base and $345 \mathrm{mg}(4.47 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. After addition
 of HOAc the reaction mixture was stirred for 15 h at rt . The crude product was purified by flash chromatography on silica gel, eluting with $\mathrm{EtOAc} /$ hexanes / triethylamine ($20: 79: 1$) to provide 47.1 mg (51%) of the desired imine 69 as a yellow oil. IR: $2924,1622,1453 \mathrm{~cm}^{-1}$. 1 H NMR (500 MHz): $\delta 0.60(\mathrm{~d}, 1, J=13.6$), $0.76(\mathrm{~s}, 3), 0.79(\mathrm{~s}, 3), 0.96(\mathrm{~s}, 3), 1.05(\mathrm{~s}, 3), 1.17-1.51(\mathrm{~m}, 6), 1.53(\mathrm{~d}, 1, J=14.1), 1.73-1.78(\mathrm{~m}$, 1), 3.49 (d, 1, $J=3.8$), $8.00(\mathrm{~s}, 1) .{ }^{3} \mathrm{C}$ NMR (100 MHz): $\delta 17.1,17.5,19.4,25.5,29.6,31.1$, 35.3, 37.6, 37.8, 37.9, 39.8, 42.1, 68.7, 177.7. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 81.89 ; \mathrm{H}, 11.29$; N, 6.82. Found: C, 81.72; H, 11.36; N, 7.02.
(1S,10R)-9-Acetyl-10-hydroxy-1,3,11,11-tetramethyl-9azatricyclo[5.3.1.03,8]undecane (72) and (4aS,8R,8aS)-1-(8-Isopropenyl-3,4a-dimethyl-4a,5,6,7,8,8a-hexahydro-4H-quinolin-1-yl)-ethanone (73). The foregoing procedure was
 followed with 149 mg (0.65 mmol) of diol 14, $175 \mu \mathrm{~L}(1.96$ mmol) of oxalyl chloride, $279 \mu \mathrm{~L}$ (3.93 mmol) of DMSO, $570 \mu \mathrm{~L}(3.27 \mathrm{mmol})$ of Hünig's base and $504 \mathrm{mg}(6.54 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$. After addition of HOAc the reaction mixture was stirred at rt for 3 hrs at which time acetic anhydride ($3.1 \mathrm{ml}, 32.7 \mathrm{mmol}$) was added.

The resulting mixture was stirred for an additional 15 hrs . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added slowly. After 0.5 h the mixture was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{ml})$. The combined organic layers were washed with 2 N $\mathrm{NaOH}(60 \mathrm{ml})$, Brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated. The crude product was purified by flash chromatography on silica gel, eluting with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:100) to provide $20.6 \mathrm{mg}(13 \%)$ of the faster eluting enamide 73 as a yellow oil followed by 69.0 $\mathrm{mg}(40 \%)$ amide 72 as a colorless solid.
1-(8-Isopropenyl-3,4a-dimethyl-4a,5,6,7,8,8a-hexahydro-4H-quinolin-1-yl)-ethanone (73). IR: 2928, 1651, $1402 \mathrm{~cm}^{-1}$. 1 H NMR (400 MHz): $\delta 0.85(\mathrm{~s}, 3), 1.20-1.38(\mathrm{~m}, 2), 1.43-$ $1.64(\mathrm{~m}, 5), 1.66(\mathrm{~s}, 3), 1.69(\mathrm{~s}, 3), 2.00-2.10(\mathrm{~m}, 1), 2.05(\mathrm{~s}, 3), 2.29(\mathrm{~d}, 1, \mathrm{~J}=18.3), 4.17(\mathrm{~d}, 1$, $J=11.3$), 4.46 (d, 1, $J=2.7$), 4.57 (dd, $1, J=1.4,2.7$), 6.14 ($\mathrm{s}, 1$). ${ }^{13 \mathrm{C}}$ NMR (125 MHz): $\delta 18.8$, $20.8,21.3,21.6,28.2,30.3,32.8,35.1,37.8,44.7,57.0,111.5,116.0,118.2,147.4,168.1$. LRMS cald. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}, 247$. Found 247.

9-Acetyl-10-hydroxy-1,3,11,11-tetramethyl-9-azatricyclo[5.3.1.03,8]undecane (72). mp $97-100^{\circ} \mathrm{C}$ IR: $3414,2962,1634,1436 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz): $\delta 0.86(\mathrm{~s}, 3), 0.87(\mathrm{~s}, 3)$, $0.98(\mathrm{~s}, 3), 1.07(\mathrm{~s}, 3), 1.10-1.54(\mathrm{~m}, 7), 1.65(\mathrm{q}, 1, J=4.1), 1.81-1.84(\mathrm{~m}, 1), 2.05(\mathrm{~s}, 3), 2.97(\mathrm{~d}$, $1, J=4.1), 4.05(\mathrm{~d}, 1, J=3.0), 5.23(\mathrm{~d}, 1, J=1.9) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 16.5,19.0,19.3,24.5$, $26.9,28.5,29.2,32.9,33.6,35.5,39.0,39.3,43.9,61.9,79.1,171.3$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2}: \mathrm{C}, 72.41 ; \mathrm{H}, 10.25 ; \mathrm{N}, 5.28$. Found: C, $82.25 ; \mathrm{H}, 10.19 ; \mathrm{N}, 5.47$.
(1S,13R,14R)-1,14-Dimethyl-13-hydroxy-12-azatricyclo[8.3.1.02,6.06,11] tetradec-12-ene (64). Imine $62(15.2 \mathrm{mg}, 0.070 \mathrm{mmol})$ was treated with Ac${ }_{2} \mathrm{O}(1 \mathrm{ml})$ at rt for 15 h . The reaction mixture was poured onto $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$.- The organic layer was separated, washed with 2 N
 $\mathrm{NaOH}(20 \mathrm{ml})$, brine (20 ml), dried and concentrated. The crude product was purified by flash chromatography on silica gel, eluting with EtOAc/hexanes (2:5) to provide 9.3 mg (48%) on the desired amide 64 as a colorless crystiline solid, mp 126$127^{\circ} \mathrm{C}$ (hexanes). IR: $3449,2952,1636 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR (400 MHz): $\delta 0.87$ ($\mathrm{s}, 3$), 0.97 (d, 3, $J=7.7$), 1.21-1.23 (m, 2), 1.30-1.64 (m, 10), 1.81-1.87 (m, 2), $2.06(\mathrm{~s}, 3), 2.33$ (dddd, 1, $J=3.7$, $3.7,3.7,11.0), 2.51(\mathrm{dq}, 1, J=7.7,11.1), 3.19(\mathrm{~d}, 1, J=3.8), 5.13(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR (125 MHz): δ $8.9,17.8,20.0,21.8,23.5,26.8,26.9,29.0,36.0,37.0,37.2,38.5,41.7,45.3,59.5,79.2,172.3$. HRMS cald. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{2}\left(+\mathrm{Li}^{+}\right), 284.220184$. found: 284.219670 .
1.Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
2.Kofron, W. G.; Baclawski, L. M. J. Org. Chem. 1976, 41, 1879.
3.Derome, A. E. Modern NMR Techniques for Chemical Research; Pergamon: New York, 1987; p143.
4.Marbet, R.; Saucey, G. Helv. Chim. Acta. 1967, 50, 2095.
5.Dulcere, J-P.; Rodriguez, J. Synthesis 1993, 36, 2440.
6.Fieser, L. F.; Fieser, M. Reagents for Organic Synthesis, Vol. 1; Wiley: New York, 1967; p 584.
7.LeBel, N. A. J. Org. Chem. 1971, 36, 2440.
8.Corey, E. J.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Li, D.; Song, X. J. Am. Chem. Soc. 1997, 119, 1277.
9.Curran, D. P.; Yu, H.; Hongtao, L. Tetrahedron 1994, 50, 7343.
10.Lawesson, S.-O.; Thompson, I.; Clausen, K.; Scheibye, S. Organic Syntheses. Wiley: New York, 1990; Vol. 7, p372.

Daphniphyllum Alkaloids. 12. A Proposed Biosynthesis of the Pentacyclic Skeleton. proto-Daphniphylline ${ }^{1}$

Clayton H. Heathcock,* Serge Piettre, ${ }^{2 a}$ Roger B. Ruggeri, ${ }^{2 b}$ John A. Ragan, and John C. Kath
Department of Chemistry, University of California, Berkeley, California 94720

Received August 6, 1991

Abstract

A biosynthetic proposal for the pentacyclic skeleton of the Daphniphyllum alkaloids is put forth (Scheme I) and various ramifications are examined experimentally. proto-Daphniphylline (11), the putative product of this hypothetical biogenesis, has been prepared by a convergent synthesis that starts with amide $14, \alpha, \beta$-unsaturated ester 15, and homogeranyl iodide (Scheme II) and employs a highly efficient tetracyclization process previously used for the synthesis of (\pm)-methyl homosecodaphniphyllate (30) (Scheme III). The structure of protodaphniphylline was confirmed by converting it into 30 . The mechanism of the first stage of the tetracyclization process was investigated with the bis-homoneryl analogues $36 / 37$. Treatment of these aldehydes successively with ammonia and acetic acid provided tetracyclic imine 38, suggesting that the cyclization reaction is a concerted Diels-Alder reaction rather than a stepwise process. Dialdehydes $27 / 28$ were converted into 1,2 -dihydro-pro-to-daphniphylline (29) by a version of the tetracyclization process wherein methylamine (or glycine) is substituted for ammonia. proto-Daphniphylline has also been prepared in a one-pot, two-stage process from the acyclic dialdehydes 51 and 55 . Several versions of this pentacyclization process have been worked out. In the simplest, 51 or 55 is treated successively with ammonia and hot acetic acid to afford 11 in $15 \pm 2 \%$ yield. A slightly more elaborate protocol, a three-stage process that utilizes NaOH in benzene, ammonia in DMSO, and hot acetic acid, provided 11 in 49.4% overall yield. However, the most efficient pentacyclization process discovered employs successive reactions with methylamine (or glycine) and hot acetic acid. Under these conditions, 17,18 -di-hydro-proto-daphniphylline (29) is produced in $\mathbf{6 5 \%}$ yield. The latter process is one of the most efficient reaction cascades ever discovered; it resuits in the formation of five rings, four carbon-carbon bonds, two carbon-nitrogen bonds, and concludes with the selective saturation of one of the three double bonds in proto-daphniphylline!

In the preceding paper in this series, ${ }^{1}$ we described a simple protocol wherein the monocyclic dialdehyde 1 is converted into the pentacyclic unsaturated amine 2 by successive treatment with ammonia and acetic acid. Because of the exceptional ease with which the "tetracyclization reaction" occurs, it was speculated that the process may actually be biomimetic. ${ }^{3}$ A possible biosynthesis is put forth in Scheme I. The rough outlines of this proposal are as follows: Step 1 is an oxidative transformation of squalene into a dialdehyde, $4 .{ }^{4}$ In step 2 it is proposed that some primary amine, perhaps pyridoxamine ${ }^{5}$ or an amino acid, condenses with one of the carbonyl groups of 4 , giving imine 5 . Step 3 is the prototopic rearrangement of a 1 -aza diene to a 2 -aza diene, a process that is well-precedented for the imines formed from α, β unsaturated carbonyl compounds and benzylamine. ${ }^{6}$ Although potassium tert-butoxide was used for the pro-
(1) For part 11, see: (a) Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C. J. Org. Chem., preceding paper in this issue.
(2) (a) Present address: Marion Merrel Dow Research Institute; 16, rue d Ankara; B.P. 447 R/9; 67009 Strasbourg, France. (b) Present address: Department of Chemistry, Yale University, New Haven, CT 06511.
(3) Ruggeri, R. B.; Heathcock, C. H. Pure Appl. Chem. 1989, 61, 289.
(4) Terpenoids have been described in which two methyl groups are in the aldehyde oxidation state. Petrodial (i) is one example. Isoe, S.; Ge, Y.; Yamamoto, K.; Katsumura, S. Tetrahedron Lett. 1988, 29, 4591.

(5) Pyridoxamine is a well-known nitrogen donor in alkaloid biosynthesis: (a) Dalton, D. R. The Alkaloids, A Biogenetic Approach; Marcel Dekker: New York, 1976. (b) Akhtar, M.; Emery, V. C.; Robinson, J. A In The Chemistry of Enzyme Action; Page, M. I., Ed.; Elsevier: Amsterdam, 1984; p 303.
(6) Malhotra, S. K.; Moakley, D. F.; Johnson, F. J. Am. Chem. Soc. 1967, 89, 2794.
totopic rearrangement of benzylimines, one can imagine that an imine derived from pyridoxamine or an amino acid would rearrange under much milder conditions. Because the 2 -aza diene that would result from the foregoing prototopic rearrangement is an enimine, its double bond is not especially nucleophilic. However, if some nucleophilic species adds to the imine double bond, as in step 4, the product 7 is a nucleophilic enamine. The subsequent cyclization to give 8 has an exact in vitro precedent in the work of Schreiber, Meyers, and Wiberg. ${ }^{7}$ In steps 6-9 the resulting bicyclic dihydropyran derivative 8 is transformed into a dihydropyridine derivative (9) similar to the intermediate in the in vitro conversion of 1 into 2 . Other possible scenarios can be envisioned for the metamorphosis of 8 into 9. According to our biosynthetic supposition, 9 would then be converted into 10 by a catalyzed Diels-Alder process and the final ring would result from an ene-like cyclization, giving 11, the putative primordial Daphniphyllum alkaloid. Because of the likelihood that 11 is the first pentacyclic substance to occur in the biosynthesis of the Daphniphyllum alkaloids, we have named it protodaphniphylline. ${ }^{8,9}$

(7) Schreiber, S. L.; Meyers, H. V.; Wiberg, K. B. J. Am. Chem. Soc. 1986, 108, 8274.
(8) For a preliminary account of the synthesis of proto-daphniphylline, see: Piettre, S.; Heathcock, C. H. Science (Washington D.C.) 1990, 248, 1532.

With regard to the proposed biosynthetic scheme, an interesting problem arises with regard to the final ene-type cyclization of 10 to 11. In this step there are two nucleophilic sites that might interact with the immonium ion, leading to cations 12 or 13. Closure model "a" gives a six-membered ring and leads to proto-daphniphylline. There are no known Daphniphyllum alkaloids with the skeleton that would result from the alternative closure mode "b", which would produce a five-membered ring. The selection of closure mode "a" over the alternative "b" might be due to an intrinsic chemical preference of the system, or it might reflect a conformational bias that is imposed by an enzyme. We thought it would be worthwhile to apply the tetracyclization process to an appropriate substrate containing two geranyl units to address this interesting question.

Our first synthesis of proto-daphniphylline began with the synthesis of amide 14 by alkylation of the lithium enolate of N-acetylpyrrolidine with homogeranyl iodide (16$)^{10}$ at $-78^{\circ} \mathrm{C}$; compound 14 was obtained in 87% yield. Amide 14 was deprotonated with LDA and the resulting enolate treated successively with enoate 15 and halide 16 (Scheme II). There was obtained in a total yield of 94%

[^34]

U
(10) (a) Leopold, E. J. Org. Synth. 1985, 64, 164. (b) Kocienski, P.; Wadman, S. J. Org. Chem. 1989, 54, 1215.

a mixture of the four diastereomeric ester-amides 17-20 in an isomer ratio of $85: 10: 3: 2$. The major isomer 17 was isolated in 80% yield after chromatography on silica gel. The results of this convergent assembly of the entire proto-daphniphyline skeleton were quite analogous to those obtained in the previously reported synthesis of methyl homosecodaphniphyllate, except that the minor isomer corresponding to 20 was not observed in that reaction. ${ }^{1}$

As shown in Scheme III, amide-ester 17 was reduced with DIBAL in toluene at $-78^{\circ} \mathrm{C}$ to give hydroxy amide 21 in 86% yield, accompanied by 8% of amino alcohol 22. The amide function was hydrolyzed with KOH in aqueous ethanol. Acidification of the alkaline hydrolysis mixture provided lactones 23 and 24 as a $1: 1$ mixture in a total isolated yield of 93%. The lactones were separately reduced to diols 25 and 26 , which were subjected to Swern oxidation conditions to obtain dialdehydes 27 and 28. Because compounds 27 and 28 are quite fragile and decompose readily, they were always cyclized immediately after their preparation. The two dialdehydes were each subjected to the tetracyclization protocol ${ }^{1}$ to obtain pro-to-daphniphylline in 78% yield. Careful examination of the reaction product revealed no trace of a product that would have resulted from closure mode "b".

The structure of proto-daphniphylline was confirmed by converting it into (\pm)-methyl homosecodaphniphyllate (30). Careful hydrogenation of 11 with Wilkinson's catalyst ${ }^{11}$ provided 29. Ozonolysis of the sulfuric acid salt of this unsaturated amine, Jones oxidation of the resulting aldehyde, ${ }^{12}$ and Fischer esterification gave 30 in 78%

[^35]overall yield. Compound 30 was identified by comparison of its TLC mobility and NMR spectra with a sample prepared by the previously reported method. ${ }^{1}$
proto-Daphnigracine (31) was produced in 70% yield by passing gaseous ammonia through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of aldehydes 27 or 28 , removal of the solvent, and dissolution in acetic acid at room temperature. Treatment of 31 with acetic acid at $57^{\circ} \mathrm{C}$ for 4 h gave proto-daphniphylline (11) in 90% yield. Careful examination of the crude product in the formation of 31 permitted the isolation of 4% of the isomeric tetracyclic imine 32. The presence of this byproduct was later traced to a small amount of contami-

nating nerol in the geraniol used for the preparation of iodide 16 (vide infra).

Our failure to observe any of the five-membered ring closure product in cyclization of immonium ion $10-\mathrm{H}^{+}$ shows only that closure mode "a" has a lower activation energy than closure mode " b " by about $3.3 \mathrm{kcal} / \mathrm{mol}$ (assuming that we would have found as little as 3% of isomeric product). In order to examine the feasibility of fivemembered ring closure more closely, we prepared dialdehyde 33 along the same lines as were used for the preparation of $27 / 28 .{ }^{13}$ Successive treatment of 33 with ammonia and acetic acid at room temperature gave tetracyclic imine 34. However, under no conditions were we

(13) Details for this synthesis are given in the supplementary material.

Scheme IV

able to induce 34 to undergo a further cyclization. The material was recovered unchanged in 84% yield after being refluxed in acetic acid for 47 h .

The cyclizations of dialdehydes $1,27 / 28$, and 33 proceed through intermediate dihydropyridines. ${ }^{1}$ As shown in Scheme IV, the initial cyclization might be two-step, passing through an intermediate tricyclic enamino cation 35 , or concerted. Information on this point can be gained by investigating the stereochemistry of the reaction. To this end, the bis-neryl analogues 36 and 37 were prepared by the same method as has been previously described, starting with nerol instead of geraniol. ${ }^{13}$ Because the nerol used was only $97 \% Z$, the dialdehydes should be $94 \% Z, Z$, $3 \% Z, E$, and $3 \% E, Z$. Treatment of 36 or 37 successively with ammonia and acetic acid at room temperature gave tetracyclic imine 38 in 79% yield, accompanied by 3.5% of isomer 39. Isomer 39 presumably results from cyclization of the E, Z contaminant. Imine 38 was unchanged after being heated with ammonium acetate in acetic acid at $80^{\circ} \mathrm{C}$ for 15 h , but imine 39 was smoothly converted into the pentacyclic product 40 by this treatment. ${ }^{14}$ Thus, the cyclization process appears to be concerted and may be viewed as an inverse-electron-demand Diels-Alder reaction of the trisubstituted double bond with the protonated 2-aza diene.

Tetracyclization of dialdehydes 27 / 28 was readily achieved by the methylamine cyclization previously reported in connection with the total synthesis of methyl homosecodaphniphyllate. ${ }^{1}$ Thus, treatment of dialdehydes 27 and 28 successively with methylamine at room temperature and acetic acid at $80^{\circ} \mathrm{C}$ for 11 h provided di-hydro-proto-daphniphylline (29) in 66% yield. This remarkable reductive cyclization also occurred when glycine was substituted for methylamine as a nitrogen source, providing 29 in 53% yield. Because the reaction with glycine can proceed through intermediates having no net charge (Scheme V, compounds 41, 42, 43, and 44), we had anticipated that cyclization might occur under even milder conditions than with ammonia or methylamine. However, subjection of dialdehydes 27 and 28 to several sets of nonacidic conditions (10 equiv of glycine in $\mathrm{CHCl}_{3}, \mathrm{EtOH}$, or aqueous EtOH , as well as $0.67 \mathrm{~N} \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Na}$ in aqueous EtOH) led only to recovered starting material or decomposition.

[^36]

Because of the extraordinary efficiency of the tetracyclization process, we wondered if we could apply the procedure to an acyclic dialdehyde similar to 4 and thereby form all five of proto-daphniphylline's rings in one grand, biomimetic operation. To simplify the process somewhat,

Scheme V

43

44

Scheme VI

1. LDA

Scheme VII

52

29
we decided to synthesize a dialdehyde in which one double bond has already been reduced. That is, we elected to intersect with the biosynthesis suggested in Scheme I at step 5. To this end, we prepared the E and Z isomers of 10,11-dihydrosqualene-27,28-dialdehyde (51 and 55) as shown in Schemes VI and VII. Alkylation of the lithium enolate of tert-butyl acetate with homogeranyl iodide (16) afforded ester 45, which was alkylated with the dimethyl acetal of 4 -bromobutanal ${ }^{15}$ to obtain 46. Hydrolysis of the acetal gave aldehyde 47 , which was condensed with the lithium enolate of 45 to obtain β-hydroxy esters 48 as a mixture of diastereomers. Elimination was accomplished by treatment of the methanesulfonate of 48 with DBU in toluene at $80^{\circ} \mathrm{C}$. Diester 49 was obtained in excellent yield, accompanied by approximately 10% of the Z isomer. After chromatographic separation of the stereoisomeric diesters, 49 was converted into the E dialdehyde 51 as shown in Scheme VI. To obtain the Z isomer in quantity, tert-butyl (trimethylsilyl)acetate was alkylated with iodide 16 to obtain the α-trimethylsilyl ester 52. Treatment of the lithium enolate of 52 with aldehyde 47 afforded mainly the Z diester $53(Z: E$ ratio $=7: 3)$. The pure Z stereoisomer, obtained by silica gel chromatography of the mixture, was transformed into the Z dialdehyde 55 as shown in Scheme VII. Dialdehydes 51 and 55 are readily available by the routes shown; the overall yields are $35-45 \%$ from homogeranyl iodide. Both dialdehydes are somewhat labile and were partially destroyed by chromatography on silica gel. In addition, 55 is readily isomerized to 51 . Although we have carried out polycyclization experiments with both isomers, in most of our work we have used the E isomer 51, which is more conveniently available in a pure form.
The pentacyclization process was first investigated using the conditions that had served for the tetracyclization of $27 / 28$ to 11. Thus, treatment of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of either 51 or 55 with ammonia and triethylamine hydrochloride at room temperature for 16 h resulted in disappearance in starting material, as shown by TLC. At this point the solvent was evaporated under vacuum and the resulting residue taken up in acetic acid and heated at $80^{\circ} \mathrm{C}$ for 2 h. Workup gave proto-daphniphylline (11) in $15 \pm 2 \%$ yield. A large amount of less polar material was also isolated in the chromatographic purification of 11. This material was shown by NMR to be a complex mixture of compounds containing homogeranyl units; it is believed to consist of oligomers of the starting dialdehydes resulting from Michael or aldol reactions. Although the yield was low, this first pentacyclization was nevertheless very encouraging, as it represented the formation of six σ bonds and five rings in a single, simple process starting with acylic dialdehydes.

The difference in the yield of 11 obtained in the pentacyclization $51 / 55(15 \%)$ and the tetracyclization of $27 / 28$ (78%) obviously reflects poor selectivity in formation of the first carbon-carbon bond. In an attempt to improve the yield of this part of the cyclization, we investigated various conditions that might accomplish the

[^37]
intramolecular Michael cyclization of $\mathbf{5 1 / 5 5}$. Substituted oct-2-ene-1,8-dials are known to react with secondary amines to give enamines that undergo an overall [$4+2]$ cycloaddition reaction to give aminodihydropyrans: ${ }^{7}$

This precedent appears to offer an attractive way to form the first bond in the pentacyclization process, as dialdehyde 56 is but a simple analogue of 51 or 55 ; upon treatment with ammonia, aminodihydropyran 59 might enter the pentacyclization manifold leading to 11 . To this end, we investigated the reactions of 51 and 55 with N methylaniline and pyrrolidine. Under the conditions recommended by Schreiber and co-workers, aldehyde 55 was observed to isomerize to its E stereoisomer and enamines (E) - and (Z)-58 were obtained in low yield (Scheme VIII). However, no aminodihydropyran was obtained. The fact that the enamine is formed but does not cyclize is presumably the result of steric hindrance; in our system the nucleophilic carbon of the enamine is fully substituted. More forcing conditions (p-toluenesulfonic acid, refluxing benzene, Dean-Stark trap) afforded aminodihydropyran 59 in an unoptimized yield of 33%. Treatment of dialdehyde 51 with pyrrolidine under similar conditions provided aminodihydropyran 60 in 94% yield. Both 59 and 60 were formed as an approximate $2: 1$ mixture at the anomeric center. Unfortunately, neither 59 nor 60 turned out to be a viable intermediate for the synthesis of pro-to-daphniphylline. Neither compound gave the tetracyclization reaction when treated successively with ammonia and acetic acid and neither could be hydrolyzed to dialdehydes 27/28. ${ }^{16}$

[^38]

While attempting to optimize the foregoing aminodihydropyran synthesis, one run in ether at room temperature unexpectedly gave a $2: 1$ mixture of hydroxydihydropyrans 61. These compounds could be isolated by rapid chromatography on silica gel. Two-stage reduction with LiAlH_{4} provided a mixture of diols 25 and 26, identical with the compounds prepared from reduction of lactones 23 and 24. The cis stereochemistry of the 6-5 ring fusion was confirmed by conversion of the diol mixture into proto-daphniphylline (Scheme IX). Optimization of this propitious discovery eventually led to a two-phase protocol wherein a benzene solution of the dialdehyde is stirred for 10 min at room temperature with 50% aqueous KOH in the presence of a catalytic amount of tetra-n-butylammonium bisulfate. Under these conditions, compounds 61 were obtained in $50-57 \%$ yield.

Treatment of a DMSO solution of 61 with NH_{3} and $\mathrm{NH}_{4} \mathrm{OAc}$ at $80^{\circ} \mathrm{C}$ for 3 h and then with acetic acid at the same temperature for 3 h gave proto-daphniphylline in 86% yield. The three steps from 51 or 55 to proto-daphniphylline were most effectively carried out as a two-stage process, without purification of intermediates. Thus, the heterogeneous transformation to 61 was carried out as described in the previous paragraph. After removal of the benzene, a DMSO solution of the crude hydroxydihydropyrans was placed in a pressure bottle and saturated with ammonia. The solution was heated at $80^{\circ} \mathrm{C}$ for 3 h . After brief cooling, acetic acid was added and the solution was heated at $80^{\circ} \mathrm{C}$ for an additional 3 h . In this manner, proto-daphniphylline was obtained in 49.4% overall yield. The process can also be carried out in "one pot." Thus, a solution of 51 or 55 in DMSO was treated sequentially with (1) 1 molar equiv of powdered NaOH at $25^{\circ} \mathrm{C}$ for 3.5 h , (2) saturated NH_{3} at $80^{\circ} \mathrm{C}$ for 3 h , and (3) acetic acid at $80^{\circ} \mathrm{C}$ for 3 h ; proto-daphniphylline was produced in 44% yield on a scale of 132 mg . It is important that the foregoing process be carried out under strictly anhydrous conditions, as the presence of water seems to have a distinctly adverse effect on yield. For example, use of 1 molar equiv of tetra- n-butylammonium hydroxide $(10 \% \mathrm{w} / \mathrm{w}$ in water) for the first step gave 11 in only 17% yield, and powdered $85 \% \mathrm{KOH}$ gave an overall yield of only 35%.
Based on the reductive cyclization of dialdehydes 27 and 28 to dihydro-proto-daphniphylline (29) with methylamine, we next investigated the pentacyclization of dialdehyde

Scheme X

50
29

51 with methylamine. Because the low yield in the pentacyclization of 51 and 55 with ammonia was presumably due to poor selectivity in the formation of the first car-bon-carbon bond, we reasoned that the more nucleophilic N-methyl enamine derived from methylamine might improve upon the 15% yield observed with ammonia. Indeed, we were gratified to find that subjection of diol 50 to the sequence (i) Swern oxidation, (ii) treatment of the Swern reaction mixture with methylamine for 2-3 h , and (iii) concentration followed by treatment of the residue thus obtained with acetic acid at $80^{\circ} \mathrm{C}$ for 11 h provided dihydro-proto-daphniphylline (29) in 65% yield. Since the tetracyclization of 27 and 28 with methylamine proceeds in essentially the same yield (66%), it would seem that cyclization to form the first five-membered ring is highly efficient in this case.

Although the reductive pentacyclization of 51 was generally performed as described above, an early experiment involved isolation of two of the intermediates (Scheme X). If the residue obtained following Swern oxidation and methylamine treatment was triturated with ether and filtered, concentration of the filtrate provided a clear, pale yellow oil, spectral analysis of which (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) showed it to be bis(N-methylimine) 62. Treatment of this material with acetic acid at room temperature for 5 h followed by concentration from several portions of toluene provided an oily yellow solid, the ${ }^{1} \mathrm{H}$ NMR of which was consistent with the N-methylimmonium ion 63, presumably as its acetate salt. Finally, treatment of this material with acetic acid at $80^{\circ} \mathrm{C}$ provided dihydro-proto-daphniphylline (29).

As discussed earlier, we had hoped that amino acids would cause the reductive cyclization to occur under even milder conditions, as the cationic nitrogen would be balanced by a carboxylate anion within the same molecule, providing an overall neutral species (Scheme V). While we were unable to discover neutral or basic conditions which led to cyclization, we did find that glycine is a suitable nitrogen source under the same conditions used with methylamine (i.e. acetic acid, $80^{\circ} \mathrm{C}$). Thus, subjection of diol 50 to the sequence (i) Swern oxidation, (ii) concentration of the Swern reaction mixture, followed by treatment of the residue thus obtained with glycine (10
equivalents) in acetic acid at room temperature, and (iii) warming to $80^{\circ} \mathrm{C}$ for $6-8 \mathrm{~h}$ provided dihydro-protodaphniphylline (29) in 38% isolated yield. The lower yield relative to methylamine (65%) is presumably due to the more hindered nature of glycine, which probably renders several steps in the sequence less selective (especially the final intramolecular hydride transfer).
We also investigated several chiral amines to see what magnitude of asymmetric induction could be realized. Two α-amino acids were used in the sequence described above for glycine: (S)-(+)-alanine led to a 32% yield of di-hydro-proto-daphniphylline (29) with only minimal optical activity ($1-2 \%$ ee) and (S)-(+)-valine provided a 13% yield of 29 with moderate optical activity ($20-25 \%$ ee). (R)-(+)- α-Phenylethylamine was also investigated, and although the corresponding bis- N-phenylethylimine was formed cleanly, treatment of this material with acetic acid at $80^{\circ} \mathrm{C}$ led to no characterizable products. Apparently this amine is simply too sterically hindered to undergo the cyclization sequence.
Finally, an aspect of the temperature dependence of the reductive cyclization warrents mentioning. As described above (Scheme X), treatment of the bis(N-methylimine) with acetic acid at room temperature leads to the N methylimmonium ion 63; the subsequent ene reaction/ hydride migration occurs upon heating to $80^{\circ} \mathrm{C}$. It was found that running the sequence in the fashion just described or subjecting the bis(N-methylimine) 62 immediately to $80^{\circ} \mathrm{C}$ acetic acid had no measurable effect on the yield of dihydro-proto-daphniphylline (29) with methylamine. However, in the tetracyclization of aldehydes 27 and 28 with glycine, a significant temperature dependence was observed: direct treatment with $80^{\circ} \mathrm{C}$ acetic acid gave 29 in 32% yield, whereas treatment with room temperature acetic acid for $6-8 \mathrm{~h}$ followed by heating to $80^{\circ} \mathrm{C}$ for another 6-8 h gave 29 in 53% yield. This observation suggests that at least one of the intermediates derived from glycine is more prone to destructive side reactions in hot acetic acid than are the analogous intermediates derived from methylamine.

Experimental Section

General. Unless otherwise noted, starting materials were obtained from commercial suppliers and used without further purification. Benzene, diethyl ether, and THF were distilled from Na /benzophenone immediately prior to use. Triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ was distilled from CaH_{2} prior to use. Dimethyl sulfoxide (DMSO) and hexamethylphosphoric triamide (HMPA) were sequentially dried ${ }^{17}$ and stored over $4-\AA$ molecular sieves. All reactions involving oxygen- or moisture-sensitive compounds were performed under a dry N_{2} atmosphere. THF/hezane solutions of lithium diisopropylamide (LDA) were prepared at $0^{\circ} \mathrm{C}$ from diisopropylamine (1 mmol), THF (2 mL), and a 1.5 M solution of butyllithium in hexane ($1 \mathrm{mmol}, 0.667 \mathrm{~mL}$). Unless indicated organic extracts were dried with MgSO_{4}. Unless otherwise stated all chromatography was carried out with E. Merck silica gel 60 (230-400 mesh ASTM) using a described procedure ${ }^{18}$ and all products were isolated as colorless oils. Thin layer chromatography (TLC) was performed with Analtech silica gel (SiO_{2}) GF $(250 \mu \mathrm{~m})$ or Macherey-Nagel Plygram $\mathrm{Al}_{2} \mathrm{O}_{3}(200 \mu \mathrm{~m})$ TLC plates. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured using CDCl_{3} as solvent. J values are in hertz. Infrared spectra were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All mass spectra (MS) were measured using the electron-impact method; data are reported as m / z (relative intensity).

1-[(5E)-6,10-Dimethyl-1-oxo-5,9-undecadienyl)pyrrolidine (14). N-Acetylpyrrolidine ($113.5 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added dropwise to a solution of LDA (1 mmol) in THF (1.5 mL) at -78

[^39]${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 45 min . Homogeranyl iodide ($278.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 0.5 mL of THF was added dropwise and stirring was continued for 3 h at $-78^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature, stirred for 12 h , and poured into brine (15 mL). Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying of the combined organic layers, and evaporation of the solvents gave a crude material that was chromatographed using a 7:3 mixture of hex-anes-EtOAc as eluent to afford $231 \mathrm{mg}(88 \%)$ of 14 as a colorless liquid, bp 135-140 ${ }^{\circ} \mathrm{C}$ (0.05 Torr). IR: $1645 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}): \delta 1.59(\mathrm{~s}, 3), 1.60(\mathrm{~s}, 3), 1.67(\mathrm{~s}, 3), 1.67-2.07(\mathrm{~m}, 12), 2.25$ ($\mathrm{t}, 2, J=7.8$), $3.40(\mathrm{t}, 2, J=6.8$), 3.46 ($\mathrm{t}, 2, J=6.9$), 5.08 (br t, $1, J=1.4$), 5.09 (br t $, 1, J=1.4$). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.86$, 17.51, 24.27, 24.83, 25.51, 25.98, 26.54, 27.34, 33.95, 36.56, 45.38, 46.41, 123.71, 124.15, 131.12, 135.60, 171.54. HMRS: calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO} 263.2249$, found 263.2254 .

Tandem Michael Addition-Alkylation of Enoate 15. A solution of amide $14(263.3 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 0.5 mL of THF was added dropwise to a stirring solution of LDA (1.0 mmol) at -78 ${ }^{\circ} \mathrm{C}$. After 30 min a solution of ester $15(126.15 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 1 mL of THF was added and stirring was continued for another 15 min . Homogeranyl iodide ($278.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 1.0 mL of THF was then added slowly and the resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, at $0^{\circ} \mathrm{C}$ for 3 h , and at room temperature for 12 h . The solution was poured into water (15 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and dried. Evaporation of the solvents yielded the crude products as a yellowish oil. Chromatography and elution with a $4: 1$ mixture of hexane-EtOAc gave 14 mg (2.6%) of an isomer of 17 having a neryl group in place of one of the geranyl groups. IR: $1742,1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.2-2.26(\mathrm{~m}, 27), 1.56(\mathrm{~s}, 3), 1.60(\mathrm{~s}, 6), 1.66(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 6)$, 2.59-2.64 (m, 1), 3.36-3.74 (m, 4), 3.67 (s, 3), 5.03-5.08 (m, 4). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.83,17.59,17.63,21.58,23.39,24.32,24.72$, 25.46, 25.65, 25.68, 26.18, 26.51, 26.68, 27.80, 31.45, 31.95, 34.21, $38.00,39.65,42.97,45.70,46.26,51.31,52.08,56.75,124.11,124.21$, 124.30, 124.96, 131.26, 131.50, 135.06, 135.44, 173.94, 176.81. HRMS: calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{NO}_{3} 539.4338$, found 539.4356 .

Further elution gave $432 \mathrm{mg}(80 \%)$ of ester 17. IR: 1744,1629 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.2-2.24(\mathrm{~m}, 27), 1.55(\mathrm{~s}, 3), 1.56$ (s, 3), 1.59 (s, 6), 1.67 (s, 6), 2.61-2.66 (m, 1), 3.38-3.72 (m, 4), 3.67 (s, 3), $5.04-5.10(\mathrm{~m}, 4) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.78,15.96,17.58$, $21.56,24.28,24.66,25.59,26.15,26.60,26.62,27.72,31.10,34.17$, $37.99,39.60,42.88,45.66,46.22,51.25,52.10,56.65,124.06,124.10$, $124.25,131.17,131.25,135.00,135.27,173.95,176.73$. HRMS: calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{NO}_{3} 539.4338$, found 539.4329.

Finally there was isolated 75 mg (14%) of a $2: 1$ mixture of diastereomeric esters 19 and 20. IR: $1740,1632 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta$ (major isomer) $1.38-2.28(\mathrm{~m}, 45), 2.45-2.55(\mathrm{~m}, 1)$, 3.32-3.50 (m, 4), $3.65(\mathrm{~s}, 3), 5.05-5.12(\mathrm{~m}, 4) ; \delta$ (minor isomer) $1.15-2.28(\mathrm{~m}, 45), 2.58-2.64(\mathrm{~m}, 1), 3.32-3.55(\mathrm{~m}, 4), 3.65(\mathrm{~s}, 3)$, $5.05-5.17$ (m, 4). HRMS: calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{NO}_{3} 539.4338$, found 539.4343. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{NO}_{3}: \mathrm{C}, 77.86 ; \mathrm{H}, 10.64 ; \mathrm{N}, 2.59$. Found: C, 77.25 ; H, 10.55 ; N, 2.56 .

DIBAL Reduction of Amide 17. Diisobutylaluminum hydride (DIBAL) ($4.0 \mathrm{mmol}, 2.67 \mathrm{~mL}$ of a 1.5 M solution in toluene) was added dropwise to a stirring solution of amides 17 (1 mmol) in toluene (2 mL) at $-78^{\circ} \mathrm{C}$. Stirring was continued for 60 min and $2 \mathrm{M} \mathrm{NaOH}(7 \mathrm{~mL})$ was then slowly added. The mixture was warmed to room temperature and poured into brine (25 mL). Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, drying of the extract, and evaporation of the solvents furnished the crude material, which was chromatographed. Elution with a $4: 1$ mixture of hexaneEtOAc gave 428 mg (86%) of hydroxy amide 21. IR: 3619,1639 $\mathrm{cm}^{-1} .^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.20-2.14(\mathrm{~m}, 28), 1.56(\mathrm{~s}, 3), 1.61$ (s, 3), 1.60 (s, 6), 1.68 (s, 6), 2.63-2.69 (m, 1), 3.40-3.59 (m, 6), $5.06-5.14$ (m, 4). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.87,15.94,17.54,21.51$, $22.99,24.16,25.26,25.56,26.16,26.56,26.65,29.14,32.29,36.37$, $39.56,39.62,45.73,46.58,48.26,48.90,53.32,65.83,124.13,124.17$, 124.32, 125.08, 131.07, 131.19, 131.50, 135.29, 175.00. HRMS: calcd for $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{NO}_{2} 511.4515$, found 511.4517 .

Further elution gave $40 \mathrm{mg}(8 \%)$ of amino alcohol 22, resulting from overreduction. IR $3400-2500 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.17-2.19(\mathrm{~m}, 30), 1.60(\mathrm{~s}, 9), 1.62(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 6), 2.38-2.44$ (m, 2), 2.60-2.66 (m, 2), 2.82 (dd, $1, J=6.9,12.7$), 3.29 (d, 1, J $=11.5), 3.65(\mathrm{~d}, 1, J=11.4), 5.07-5.11(\mathrm{~m}, 3), 5.17(\mathrm{t}, 1, J=6.8)$. ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.16,15.77,15.95,17.56,20.80,23.08$, $23.46,23.87,25.58,26.62,26.65,30.75,35.01,37.57,38.37,38.73$,
$39.60,39.61,49.28,52.28,53.77,60.59,64.61,65.73,124.20,124.34$ ， 124．41，131．00，131．15，134．41，134．95．Anal．Calcd for $\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{NO}$ ： C，82．03；H，11．95；N，2．81．Found：C，81．73；H，11．97；N， 2.81 ．

Preparation of Lactones 23 and 24．A mixture of hydroxy amide 21 and 3.2 mL of 5 M KOH in 12 mL of ethanol was heated at $80^{\circ} \mathrm{C}$ for 100 min ．After cooling to $0^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added followed by 2 M HCl until $\mathrm{pH}=1$ ．The mixture was stirred for 5 min at $25^{\circ} \mathrm{C}$ ，poured into brine（ 40 mL ），and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ ．Drying of the organic extracts，evaporation of the solvents，and medium－pressure chromatography（MPLC） on silica gel using a $7: 3$ mixture of hexanes－EtOAc as eluent afforded $207 \mathrm{mg}(47 \%)$ of lactone 23 and $203 \mathrm{mg}(46 \%)$ of lactone 24.
［4 $4,4 \mathrm{a} \alpha(E), 7 \mathrm{a} \beta(E)]-(\pm)-4,7 \mathrm{a}-\mathrm{Bis}(4,8-d i m e t h y 1-3,7-n o n a-$ dienyl）hexahydrocyclopenta［c］pyran－3（1H）－one（23）．IR： $1745 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：（ 400 MHz ）：$\delta 1.25-2.23$（m， $24), 1.59(\mathrm{~s}, 6), 1.60(\mathrm{~s}, 6), 1.68(\mathrm{~s}, 6), 3.90(\mathrm{~d}, 1, J=11.4), 4.13$ （d， $1, J=11.4$ ）， $5.06-5.14$（m，4）．${ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：$\delta 15.87$ ， $15.97,17.55,22.99,25.25,25.56,25.88,26.54,26.65,29.54,33.82$ ， $34.84,38.48,39.06,39.59,42.96,45.77,48.34,71.04$ ，123．63， 124.14 ， 124．18，124．48，131．17，135．27，136．05，175．10．Anal．Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}: \mathrm{C}, 81.76 ; \mathrm{H}, 10.98$ ．Found：C， $81.62 ; \mathrm{H}, 10.82$ ．
［4 $\alpha, 4 \mathrm{a} \alpha(E), 7 \mathrm{a} \alpha(E)]$－（土）－4，7a－Bis（4，8－dimethyl－3，7－nona－ dienyl）hexahydrocyclopenta［c］pyran－3（1H）－one（24）．IR： $1744 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 1.03-1.10(\mathrm{~m}, 1), 1.33-1.44$ （ $\mathrm{m}, 4$ ），1．60－2．15（m，18）， $1.60(\mathrm{~s}, 9), 1.61(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 6), 2.47-2.52$ （m，1），3．97－4．03（m，2），5．07－5．14（m，4）．${ }^{13} \mathrm{C}$ NMR（ 125 MHz ）： $\delta 15.84,15.94,17.51,22.75,24.17,25.07,25.53,26.47,26.57,27.58$ ， $30.58,35.38,38.89,39.01,39.48,39.55,40.93,44.77,45.69,73.73$ ， $123.34,123.60,124.08,131.14,131.20,135.52,135.96,175.54$ ．Anal． Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}: \mathrm{C}, 81.76 ; \mathrm{H}, 10.98$ ．Found：C， $81.72 ; \mathrm{H}, 10.96$ ．

Preparation of Diols 25 and 26．To a solution of 440.7 mg （ 1 mmol ）of lactone 23 or 24 in 12 mL of ether was added 114 $\mathrm{mg}(3 \mathrm{mmol})$ of LiAlH_{4} ．The solution was stirred for 3 h ，cooled to $0^{\circ} \mathrm{C}$ ，and quenched by the dropwise addition of water（ 0.153 $\mathrm{mL}), 15 \% \mathrm{w} / \mathrm{w}$ aqueous $\mathrm{NaOH}(0.153 \mathrm{~mL})$ ，and water（ 0.460 mL ）． The slurry was stirred at $0^{\circ} \mathrm{C}$ for 30 min and $\mathrm{MgSO}_{4}(1 \mathrm{~g})$ was added．Filtration and evaporation of the solvent furnished the pure diol．The analytical sample was further purified by rapid chromatography and elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$（95：5）．
$\left[1 \alpha\left(S^{*}\right), 1 \alpha(E), 2 \alpha(E)\right]-\beta, 2-B i s(4,8-d i m e t h y l-3,7-n o n a d i-$ enyl）－2－（hydroxymethyl）cyclopentanemethanol（25）（1，281 $\mathrm{mg}, 96 \%$ ）．IR： $3680-3080,3625,3050-2750 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 1.16-1.23$（m，1），1．24－1．34（m，1），1．44－1．79（m，10）， 1.60 （s，12）， 1.68 （s，6），1．96－2．11（m，12），3．49， 3.58 （d， 1 each，$J=11.0$ ）， 3.58 （dd， $1, J=6.0,10.7$ ）， 3.70 （dd， $1, J=4.0,10.7$ ）， $5.07-5.17$ （m，4）．${ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：$\delta 15.88,15.92,17.56,22.05,23.24$ ， $25.24,25.57,26.65,28.65,30.19,35.16,37.05,39.63,40.34,48.13$ ， $48.46,65.37,65.59,124.26,124.29,124.46,124.88,131.14,131.16$ ， 134．70，135．03．HRMS：calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2} 444.3967$ ，found 444.3984.
［1 $\left.\alpha\left(R^{*}\right), 1 \alpha(E), 2 \alpha(E)\right]-\beta, 2-B i s(4,8-d i m e t h y l-3,7-n o n a d i-$ enyl）－2－（hydroxymethyl）cyclopentanemethanol（26）（1，227 $\mathrm{mg}, 92 \%$ ）．IR： $3700-3080,3621,3055-2785 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 1.13-1.22(\mathrm{~m}, 1), 1.30-1.38(\mathrm{~m}, 1), 1.39-1.47(\mathrm{~m}, 1)$ ， $1.48-1.76$（m，10）， $1.60(\mathrm{~s}, 12), 1.68$（s，6），1．88－1．94（m，1），1．97－2．10 （m，12）， $3.46,3.58(\mathrm{~d}, 1, J=11.5), 3.59$（dd， $1, J=4.6,10.5$ ）， 3.70 （dd， $1, J=7.0,10.5$ ）， $5.07-5.16(\mathrm{~m}, 4) .{ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：δ $15.90,16.00,17.59,22.08,23.41,25.61,25.71,26.66,26.82,34.18$ ， $34.45,37.36,37.63,39.66,47.89,51.00,64.92,65.75,124.88,124.32$ ， 124．90，131．18，134．61，135．11．HRMS：calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2}$ 444.3967 ，found 444.3961 ．

General Procedure for Swern Oxidation of Diols．A so－ lution of 381 mg （ 3 mmol ）of oxalyl chloride in 6 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$ and 469 mg （ 6 mmol ）of DMSO in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise．After 5 min a solution of 444.7 mg （ 1 mmol ）of the diol in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added over a $3-\mathrm{min}$ period．After $15 \mathrm{~min}, 506 \mathrm{mg}$（ 5 mmol ）of triethylamine in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly and stirring continued at $-78{ }^{\circ} \mathrm{C}$ for 10 min ．The clear solution was warmed to $0^{\circ} \mathrm{C}$ ，stirred for 1 h ， and poured into 30 mL of water．Rapid extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ （ $3 \times 15 \mathrm{~mL}$ ），drying of the extract $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ ，and evaporation of the solvent gave the pure dialdehyde in yields varying from 95 to 99% ．
$\left[1 \alpha\left(S^{*}\right), 1 \alpha(E), 2 \alpha(E)\right]-\beta, 2-B i s(4,8-d i m e t h y l-3,7-n o n a d i-$ enyl）－2－formylcyclopentaneacetaldehyde（27）．IR：2725， 1725
$\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 1.25-2.25(\mathrm{~m}, 23), 1.56,1.60,1.68$ （s， 6 each），2．40－2．52（m，1），5．01－5．10（m，4）， 9.65 （d，1）， 9.65 （s， 1）．
$\left[1 \alpha\left(R^{*}\right), 1 \alpha(E), 2 \alpha(E)\right]-\beta, 2-B i s(4,8-d i m e t h y l-3,7-n o n a d i-$ enyl）－2－formylcyclopentaneacetaldehyde（28）．IR： 2738,1728 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 1.40-2.12$（m，23），1．57， 1.58 （s， 3 each）， $1.60,1.68$（s， 6 each），2．48－2．53（m，1）， 5.05 （ $\mathrm{t}, 1, J=6.5$ ）， $5.06-5.10(\mathrm{~m}, 3), 9.53(\mathrm{~d}, 1, J=3.5), 9.66(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：$\delta 16.01,16.09,17.66,23.41,23.95,25.67,25.71,26.60,29.44$, $31.78,36.57,39.61,39.64,50.30,51.36,59.01,122.76,123.48,124.16$ ， 124．18，131．42，135．99，136．65，203．99， 205.68.
［2E，2（E），7（E）］－2，7－Bis（4，8－dimethyl－3，7－nonadienyl）－2－ octenedial（51）．IR： $2725,1726,1685,1646 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ 400 $\mathrm{MHz}): \delta 1.48-1.76(\mathrm{~m}, 6), 1.57(\mathrm{~s}, 6), 1.58(\mathrm{~s}, 6), 1.60(\mathrm{~s}, 3), 1.68$ （s，3），1．93－2．08（m，12），2．24－2．39（m，5），5．04－5．12（m，4）， 5.41 （ $\mathrm{t}, 1, J=7.4$ ）， 9.37 （ $\mathrm{s}, 1$ ）， 9.59 （d， $1, J=2.7$ ）．${ }^{13} \mathrm{C}$ NMR（ 125 MHz ）： $\delta 15.91,15.97,17.61,24.17,25.26,25.62,26.15,26.50,25.60,25.86$ ， $28.34,39.60,39.64,51.16,123.03,123.18,124.10,124.18,131.27$ ， 131．34，135．99，136．40，143．61，154．01，194．92，204．56．Anal．Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}$ ：C，81．76； $\mathrm{H}, 10.98$ ．Found： $\mathrm{C}, 81.24 ; \mathrm{H}, 11.27$ ．
［2Z，2（E）］－，7（E）］－2，7－Bis（4，8－dimethyl－3，7－nonadienyl）－2－ octenedial（55）．IR： $2725,1725,1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）： $\delta 1.43-1.75$（m，6）， $1.57(\mathrm{~s}, 3), 1.58(\mathrm{~s}, 3), 1.60(\mathrm{~s}, 6), 1.68(\mathrm{~s}, 6)$ ， 1．94－2．29（m，15），2．55－2．61（m，2），5．05－5．10（m，4）， 6.41 （t，1，J $=8.1$ ）， $9.58(\mathrm{~d}, 1, J=2.7), 10.10(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：δ 15．86，15．92，17．56，24．12，25．20，25．58，26．10，26．45，26．55，26．81， $28.29,28.87,28.89,39.55,39.59,51.09,122.98,123.13,124.06,124.14$ ， $131.20,131.27,135.92,136.33,143.54,154.00,194.27,204.51$ ．Anal． Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}$ ：C， $81.76 ; \mathrm{H}, 10.98$ ．Found：C， $81.26 ; \mathrm{H}, 10.68$ ．

Tricyclization Process．Preparation of Imines 31 and 39. Ammonia gas was bubbled through a mixture of 220.4 mg （ 0.5 mmol）dialdehydes $27 / 28$ or $36 / 37$ and $137.5 \mathrm{mg}(1 \mathrm{mmol})$ of triethylammonium hydrochloride in 12 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 3 min ．The mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 1 h ．The solvent was then evaporated and 77 mg （ 1 mmol ） of $\mathrm{NH}_{4} \mathrm{OAc}$ and 10 mL of acetic acjd were added．The solution was stirred at $25^{\circ} \mathrm{C}$ for 30 min ，poured into 75 mL of water，and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$ ．The combined organic extracts were washed with 50 mL of 2 M NaOH ．After separation of the two layers，the basic aqueous phase was extracted with another 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．The combined extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ ．Filtration，evaporation of the solvent，and chromatography using hexane－EtOAc（8：2）as eluent afforded the colorless，oily imine．Application of this procedure to dialdehydes $27 / 28$ gave $148 \mathrm{mg}(70 \%)$ of imine 31 and $9 \mathrm{mg}(4 \%)$ of the isomeric imine 32.
［3 $\left.3,3 \mathrm{a} \beta, 6 \alpha(E), 6 \mathrm{a} \alpha, 9 \mathrm{a} \boldsymbol{R}^{*}, 10 S^{*}\right]$－（土）－2，3，3a，6，6a，7，8，9－Octa－ hydro－10－methyl－10－（4－methyl－3－pentenyl）－6－（4，8－dimethyl－ 3，7－nonadienyl）－3，6－methano－1 \boldsymbol{H}－dicyclopenta［ b, c ］pyridine （31）．IR： $1625 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 0.86(\mathrm{~s}, 3), 1.56(\mathrm{~s}$ ， 3 ）， 1.61 （s，3）， 1.63 （ $\mathrm{s}, 3$ ）， 1.64 （s，3）， 1.69 （s，3）， 0.88 －0．96（m，1）， 1．04－1．18（m，1），1．22－1．91（m，16），1．98－2．03（m，2），2．06－2．11（m， 2），2．17－2．26（m，2）， 4.11 （d， $1, J=4.6$ ）， $4.99(\mathrm{t}, 1, J=7.0), 5.10$ ， 5.15 （ $\mathrm{t}, 1$ each，$J=6.9$ ）， $8.10(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR（ 125 MHz ）：$\delta 16.02$ ， $16.87,17.57,22.03,23.11,24.68,25.53,25.57,26.57,31.16,32.61$ ， $36.96,38.49,39.01,39.55,43.02,43.76,48.31,53.81,54.15,69.10$ ， 124．14，124．65，124．83，130．97，131．19，134．87，178．39．Anal．Calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N}$ ： $\mathrm{C}, 85.44 ; \mathrm{H}, 11.23 ; \mathrm{N}, 3.32$ ．Found： $\mathrm{C}, 85.33 ; \mathrm{H}$ ， 11．02；N，3．22．
［3 $\left.\alpha, 3 \mathrm{a} \beta, 6 \alpha(E), 6 \mathrm{a} \alpha, 9 \mathrm{a} R^{*}, 10 \boldsymbol{R}^{*}\right]$－（土）－2，3，3a，6，6a，7，8，9－Octa－ hydro－10－methyl－10－（4－methyl－3－pentenyl）－6－（4，8－dimethyl－ 3，7－nonadienyl）－3，6－methano－1 \boldsymbol{H}－dicyclopenta［ b, c ］pyridine （32）．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 0.78$（s，3），0．79－2．12（m，24），1．55， $1.59,1.63(\mathrm{~s}, 3$ each $), 1.69(\mathrm{~s}, 6), 4.12(\mathrm{~d}, 1, J=4.9), 5.05-5.18(\mathrm{~m}$, 3）， 8.17 （ $\mathrm{s}, 1$ ）．HRMS：calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N} 421.3708$ ，found 421.3698 ．

Application of the procedure to dialdehydes $36 / 37$ gave 167 $\mathrm{mg}(79 \%)$ of imine 38 and $7 \mathrm{mg}(3 \%)$ of imine 39.
$\left[3 \alpha, 3 \mathrm{a} \beta, 6 \alpha(Z), 6 \mathrm{a} \alpha, 9 \mathrm{a} R^{*}, 10 R^{*}\right]$－（ \pm ）－2，3，3a，6，6a，7，8，9－Octa－ hydro－10－methyl－10－（4－methyl－3－pentenyl）－6－（4，8－dimethyl－ 3，7－nonadienyl）－3，6－methano－1H－dicyclopenta［ b, c ］pyridine （38）．IR： $1625 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）：$\delta 0.77$（s，3）， $1.00-1.07$ （m，1），1．20－1．41（m，4），1．45－1．83（m，11）， $1.60(\mathrm{~s}, 3), 1.61(\mathrm{~s}, 3)$ ， 1.71 （s，3）， 1.68 （s，6），1．98－2．10（m，6），2．17－2．30（m，2）， 4.12 （d， $1, J=4.9), 5.06-5.18(\mathrm{~m}, 3), 8.16(\mathrm{~s}, 1) .{ }^{13} \mathrm{C}$ NMR（ 125 MHz ）： $\delta 17.56,17.68,23.30,23.53,24.05,24.78,24.97,25.67,25.56,31.77$ ， $31.92,32.03,33.05,36.20,37.53,44.04,45.82,48.63,52.36,54.88$ ，
on silica gel using $9: 1$ hexane-EtOAc as eluent to give 213 mg (88%) of amine 29 , contaminated with a small amount of dihydrogenated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 0.78$ ($\mathrm{s}, 3$), 0.89 (d, $3, J=6.7$), 0.91 (d, $3, J=6.7$), 0.90-0.97 (m, 1), 1.13-1.18 (m, 1), 1.21-1.78 (m, 19), $1.59(\mathrm{~s}, 3), 1.61(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 3), 1.86-1.91$ (m, 2), 1.93-2.00 (m, 2), 2.03-2.10 (m, 2), 2.52 (d, 1, $J=4.5$), 3.02 (s, 1), 5.03-5.11 (m, 2). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 16.05,17.62,20.75$, $21.00,21.03,21.33,22.89,23.55,25.63,26.65,26.75,28.75,29.91$, $33.20,36.37,36.49,36.67,39.13,39.65,39.77,42.87,47.75,48.34$, $50.42,53.49,60.12,124.30,125.46,131.11,134.09$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{~N}$: C $85.04 ; \mathrm{H}, 11.66 ; \mathrm{N}, 3.31$. Found: C, $84.74 ; \mathrm{H}$, 11.79; N, 3.31.

Method B. To a $-78^{\circ} \mathrm{C}$ solution of DMSO ($66 \mu \mathrm{~L}, 0.93 \mathrm{mmol}$) in 0.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $206 \mu \mathrm{~L}$ of a 2.0 M solution of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.412 mmol). After 15 min , diols 25 and 26 ($45.8 \mathrm{mg}, 0.103 \mathrm{mmol}$) were added via cannula as a solution in 0.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by a $0.8-\mathrm{mL}$ rinse. The resulting cloudy solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then treated with triethylamine ($0.10 \mathrm{~mL}, 0.72 \mathrm{mmol}$). The dry ice bath was replaced with an ice water bath, and the solution was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over a period of 80 min . A stream of anhydrous methylamine was then passed over the solution for 3 min . The flask was sealed tightly and allowed to warm to ambient temperature over a period of 2 h . The clear solution was concentrated by passing a stream of dry nitrogen over it for a period of 10 min . The resulting white, oily solid was then placed on a vacuum pump for 4 h . The resulting solid was taken up in 5 mL of acetic acid and stirred at room temperature for 5 h and then placed in an $80^{\circ} \mathrm{C}$ oil bath for 11 h . After cooling to $0^{\circ} \mathrm{C}$, the mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 15 mL of 6 N NaOH and stirred vigorously for 15 min . The layers were separated, and the aqueous phase was extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were than washed with brine and dried over MgSO_{4}. Filtration and concentration provided 57.5 mg of a brown oil, which was purifed by flash chromatography (gradient elution with $10: 1$ to $5: 1$ hexanes/ethyl acetate) to provide the desired product as a clear, pale yellow oil ($28.7 \mathrm{mg}, 65.8 \%$).

Method C. To a $-78^{\circ} \mathrm{C}$ solution of DMSO ($45 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $140 \mu \mathrm{~L}$ of a 2.0 M solution of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.280 mmol). After 10 min , diols 25 and 26 ($31.1 \mathrm{mg}, 0.0699 \mathrm{mmol}$) were added via cannula as a solution in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by two $0.5-\mathrm{mL}$ rinses. The resulting cloudy solution was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and then treated with triethylamine ($0.070 \mathrm{~mL}, 0.50 \mathrm{mmol}$). The dry ice bath was replaced with an ice water bath, and the solution was allowed to warm to $0^{\circ} \mathrm{C}$ over a period of 60 min . The solvent was then removed under a stream of dry nitrogen to provide a white, oily solid, which was triturated with ether and filtered through a plug of cotton. Concentration of the resulting colorless solution provided 40.8 mg of a clear, pale yellow oil. The crude bisaldehyde was then treated with 1.5 mL of acetic acid and 51 mg of glycine (0.68 mmol) and stirred for 10 h at room temperature, followed by 16 h in an $80^{\circ} \mathrm{C}$ oil bath. After being cooled to room temperature, the solution was partitioned between 5 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 N NaOH and stirred vigorously for 2 h . The layers were separated, the aqueous phase was extracted with two portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Filtration and concentration provided 27.3 mg of a pale, orange-brown oil. Flash chromatography of this material (gradient elution with $10: 1$ to $5: 1$ hexanes/ethyl acetate) provided the desired product as a clear, pale yellow oil ($15.8 \mathrm{mg}, 53.4 \%$).

Method D. To a $-78^{\circ} \mathrm{C}$ solution of DMSO ($88 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $276 \mu \mathrm{~L}$ of a 2.0 M solution of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.552 \mathrm{mmol})$. After 20 min , diol $50(61.3 \mathrm{mg}$, 0.138 mmol) was added via cannula as a solution in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by a $1-\mathrm{mL}$ rinse. The resulting cloudy solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 20 min and then treated with triethylamine ($0.14 \mathrm{~mL}, 1.0 \mathrm{mmol}$). The dry ice bath was removed, and the solution was allowed to warm to ambient temperature over a period of 50 min . After cooling to $0^{\circ} \mathrm{C}$, a stream of anhydrous methylamine was passed over the solution for 3 min . The flask was then sealed tightly and allowed to warm to ambient temperature over a period of 5 h . The clear solution was concentrated by passing a stream of dry nitrogen over it for a period of 10 min . The resulting white, oily solid was triturated with ether, filtered, and concentrated (high vacuum for 4 h) to provide 84.0
mg of a clear, pale yellow oil. Although generally utilized immediately in the next reaction, spectral analysis of this material was consistent with the bis(N-methylimine) 62. IR (thin film): $2960,2920,2840,1665,1640,1450,1395,1345 .{ }^{1} \mathrm{H}$ NMR (400 MHz , selected signals listed): $\delta 7.72(\mathrm{~s}, 1), 7.43(\mathrm{~d}, 1), 5.77(\mathrm{t}, 1), 5.15-5.05$ ($\mathrm{m}, 4$), $3.35(\mathrm{~s}, 3), 3.26(\mathrm{~s}, 3) .{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 15.91,15.95$, $16.00,17.58,25.41,25.60,25.98,26.70,26.80,26.93,27.09,28.43$, $31.69,32.40,39.65,44.62,47.82,47.86,123.99,124.23,124.35,124.43$, $131.10,131.17,135.08,135.31,139.85,141.34,166.12,169.63$.

The crude bisimine was taken up in 1 mL of acetic acid and placed in an $80^{\circ} \mathrm{C}$ oil bath for 11 h . After being cooled to $0^{\circ} \mathrm{C}$, the mixture was partitioned between 5 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 N NaOH and stirred vigorously for 15 min . The layers were separated, and the aqueous phase was extracted with three portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were then washed with brine and dried over MgSO_{4}. Filtration and concentration provided 68.0 mg of a brown oil. Purification by flash chromatography (gradient elution with $10: 1$ to $5: 1$ hexanes/ethyl acetate) provided the desired product as a clear, pale yellow oil ($38.2 \mathrm{mg}, 65.4 \%$).

Method E. To a $-78^{\circ} \mathrm{C}$ solution of DMSO ($60 \mu \mathrm{~L}, 0.85 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $190 \mu \mathrm{~L}$ of a 2.0 M solution of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.380 mmol). After 20 min , diol $50(41.9 \mathrm{mg}$, 0.0942 mmol) was added via cannula as a solution in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by two $0.5-\mathrm{mL}$ rinses. The resulting cloudy solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and then treated with triethylamine ($0.10 \mathrm{~mL}, 0.72 \mathrm{mmol}$). The dry ice bath was removed, and the solution was allowed to warm to room temperature over a period of 60 min . The solvent was then removed under a stream of dry nitrogen to provide a white, oily solid, which was triturated with ether and filtered through a plug of cotton. Concentration of the resulting colorless solution provided 47.5 mg of a clear, pale yellow oil. The crude bisaldehyde was then treated with 1.5 mL of acetic acid and 70 mg of glycine (0.93 mmol) and stirred for 9 h at room temperature, followed by 9 h in an $80^{\circ} \mathrm{C}$ oil bath. After being cooled to room temperature, the solution was partitioned between 15 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 N NaOH and stirred vigorously for 90 min . The layers were separated, the aqueous phase was extracted with two portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Filtration and concentration provided 72 mg of a brown, cloudy oil. Flash chromatography of this material (gradient elution with $10: 1$ to $5: 1$ hexanes/ethyl acetate) provided the desired product as a clear, colorless oil ($15.0 \mathrm{mg}, 37.6 \%$).
Attempted Cyclization of Imines 31 and 38. A solution of 4.2 mg (0.01 mmol) of imine 31 or 38 and $7.7 \mathrm{mg}(0.1 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{OAc}$ in 0.2 mL of acetic acid was heated at $80^{\circ} \mathrm{C}$ for 15 h . Workup as usual gave a brown oil. Analysis by TLC $\left(\mathrm{SiO}_{2}\right.$, hexane-EtOAc (7:3)), GC, or ${ }^{1} \mathrm{H}$ NMR spectrometry indicated no change.
[7(Z)]-17,18-Didehydro-7-(4,8-dimethyl-3,7-nonadienyl)-12,16-cyclo-21,22,23-trinor-1,12-secodaphnane (40). A solution of 172 mg (0.41 mmol) of imine 39 and 314 mg (4.1 mmol) of $\mathrm{NH}_{4} \mathrm{OAc}$ in 8 mL of acetic acid was heated at $80^{\circ} \mathrm{C}$ for 2 h . The normal workup gave $155 \mathrm{mg}(90 \%)$ of amine 40. ${ }^{1} \mathrm{H}$ NMR (400 MHz : $\delta 0.80(\mathrm{~s}, 3), 0.81-0.90(\mathrm{~m}, 1), 1.16-2.10(\mathrm{~m}, 25), 1.55(\mathrm{~s}$, $3), 1.61(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 3), 1.77(\mathrm{~s}, 3), 2.53(\mathrm{~d}, 1, J=4.5), 3.02(\mathrm{~s}$, 1), 4.74 ($\mathrm{s}, 1$), 4.86 ($\mathrm{s}, 1$), 5.05-5.12 (m, 2). HRMS: calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{~N} 421.3708$, found 421.3707.
(\pm)-Methyl Homosecodaphniphyllate (30). Ozone was bubbled for 3 min through a solution of $150 \mathrm{mg}(0.354 \mathrm{mmol})$ of amine $29,69.4 \mathrm{mg}(0.71 \mathrm{mmol})$ of concd $\mathrm{H}_{2} \mathrm{SO}_{4}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 4 mL of MeOH , cooled to $-78^{\circ} \mathrm{C}$. The blue solution was discolored by bubbling N_{2} through it and warmed to $25^{\circ} \mathrm{C}$. The solvents were evaporated and the residue placed under high vacuum for 10 min . Acetone (8 mL) was added followed by 1.59 mL of a 2.67 M solution of CrO_{3} in concd $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 10 min at $25^{\circ} \mathrm{C}$. Filtration through a plug of Celite and washing with acetone (15 mL) afforded a clear solution. Evaporation of the solvent gave an oily residue that was dissolved in 25 mL of methanol and treated with 0.5 mL of concd $\mathrm{H}_{2} \mathrm{SO}_{4}$. The solution was stirred at $25^{\circ} \mathrm{C}$ for 40 h , poured into 50 mL of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic extracts were washed with saturated NaHCO_{3} and dried, and the solvents were evaporated The residue was purified by chromatography and eluted with a

8:2 mixture of hexane-EtOAc to furnish 99 mg (78%) of $\mathbf{3 0}$, identical by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and TLC with an authentic sample. ${ }^{1}$
tert-Butyl (5E)-6,10-Dimethylundeca-5,9-dienoate (45). A solution of 116.2 mg (1 mmol) of tert-butyl acetate in 0.8 mL of dry THF was added dropwise to a stirring solution of 1 mmol of LDA at $-78^{\circ} \mathrm{C}$. After 45 min , a mixture of 179.2 mg (1 mmol) of HMPA and 0.2 mL of THF (0.2 mL) was added followed immediately by a solution of $250 \mathrm{mg}(0.9 \mathrm{mmol})$ of homogeranyl iodide in 1 mL of THF. After 4 h at $-78^{\circ} \mathrm{C}$ the mixture was warmed to $25^{\circ} \mathrm{C}$, poured into 20 mL of brine, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Drying of the extracts, filtration, and evaporation of the solvents left a residue that was chromatographed. Elution with hexane-EtOAc (99:1) afforded 213 mg (83%) of ester 45 , bp $74-78^{\circ} \mathrm{C}$ (0.1 Torr). IR: $1725 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.42$ (s, 9), 1.56 (s, 3), 1.57 (s, 3), 1.56-1.62 ($\mathrm{m}, 2$), 1.65 ($\mathrm{s}, 3$), 1.94-2.07 (m, 6), 2.17 ($\mathrm{t}, 2, J=7.5$), 5.04-5.08 $(\mathrm{m}, 2) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.85,17.58,25.10,25.60,26.53$, $27.10,28.02,34.83,39.65,79.77,123.56,124.23,131.20,135.73$, 173.16. Anal. Calcd for $\mathrm{C}^{17} \mathrm{H}_{30} \mathrm{O}_{2}$; C, 76.64; $\mathrm{H}, 11.35$. Found: C, 76.25; H, 11.32 .

Further elution gave 28 mg (9%) of a byproduct resulting from Claisen condensation of $\mathbf{4 5}$ with tert-butyl acetate. IR: 1735,1714 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.47(\mathrm{~s}, 9), 1.59(\mathrm{~s}, 3), 1.60(\mathrm{~s}, 3)$, 1.68 (s, 3), 1.60-1.67 (m, 2), 1.96-2.15 (m, 6), 2.51 (t, 1, J = 7.4), 3.33 (s, 2), $5.06-5.10$ (m, 2). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.71,17.37$, $23.29,25.41,26.39,26.79,27.65,39.45,41.90,50.34,81.33,123.23$, 124.03, 130.91, 135.74, 166.19, 202.94. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{3}$: C, 73.98; H, 10.46. Found: C, 74.09; H, 10.59 .
(5E)-tert-Butyl 2-(4,4-Dimethoxybutyl)-6,10-dimethyl5,9 -undecadienoate (46). A solution of 266.4 mg (1 mmol) of ester 45 in 0.8 mL of THF was added dropwise to a stirring solution of LDA (1.2 mmol) at $-78^{\circ} \mathrm{C}$. After 45 min of stirring, a solution of 236.5 mg (1.2 mmol) of 1,1-dimethoxy- 4 -bromobutane in 1 mL of THF was added dropwise, followed by a mixture of 179.2 mg (1 mmol) of HMPA and 0.2 mL of THF. Stirring was continued for 3 h at $-78^{\circ} \mathrm{C}$ and the mixture was warmed to 25 ${ }^{\circ} \mathrm{C}$ overnight, poured into 20 mL of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the solvents evaporated. The residue was chromatographed and eluted with a $97: 3$ mixture of hexane-EtOAc and finally distilled under reduced pressure to afford $327 \mathrm{mg}(85 \%)$ of acetal 46 , bp 119-121 ${ }^{\circ} \mathrm{C}$ (0.01 Torr). IR: $1725 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.13-1.64$ (m, 8), 1.46 (s, 9), 1.59 ($\mathrm{s}, 3$), $1.60(\mathrm{~s}, 3), 1.68$ ($\mathrm{s}, 3$), 1.94-2.10 (m, 6), 2.19-2.27 (m, 1), $3.29(\mathrm{~s}, 3), 3.30(\mathrm{~s}, 3), 4.34(\mathrm{t}, 1, J=5.8)$, $5.06-5.10(\mathrm{~m}, 2) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.82,17.55,22.32,25.57$, $25.65,26.54,28.00,32.27,32.53,39.59,45.88,52.37,52.47,79.75$, $104.17,123.65,124.20,131.10,135.37,175.45$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4}$: C, 72.21; H, 11.07. Found: C, $72.40 ; \mathrm{H}, 11.22$.
(5E)-tert-Butyl 6,10-Dimethyl-2-(4-oxobutyl)-5,9undecadienoate (47). A mixture of $3.826 \mathrm{~g}(10 \mathrm{mmol})$ of acetal $46,380 \mathrm{mg}$ (2 mmol) of p-toluenesulfonic acid, and 3.5 mL of water (3.5 mL) in 24 mL of acetone was stirred for 16 h at $25^{\circ} \mathrm{C}$. The solution was poured into 50 mL of brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 25 \mathrm{~mL}$). Drying of the extract, filtration, and evaporation of the solvent gave a residue that was purified by chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and bulb-to-bulb distillation ($117-119^{\circ} \mathrm{C}$ at 0.02 Torr) to furnish 3.31 g (98%) of aldehyde 47 . IR: $2726,1724 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.37-1.47(\mathrm{~m}, 2), 1.46(\mathrm{~s}, 9), 1.58-1.66$ (m, 4), $1.59,1.60(\mathrm{~s}, 3), 1.68(\mathrm{~s}, 3), 1.93-2.02(\mathrm{~m}, 4), 2.05-2.10(\mathrm{~m}, 2)$, $2.23-2.27$ (m, 1), 2.42-2.46 (m, 2), 5.06-5.11 (m, 2), 9.75 (t, 1, J $=1.6) .{ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.86,17.56,19.81,25.59,26.55$, $28.02,31.79,32.52,39.60,43.60,45.72,80.06,123.49,124.18,131.19$, 135.57, 175,17, 202.01. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{3}: \mathrm{C}, 74.95 ; \mathrm{H}$, 10.78. Found: C, $74.60 ; \mathrm{H}, 10.53$.
[2(E),7(E)]-Di-tert-butyl 2,7-Bis(4,8-dimethyl-3,7-nona-dienyl)-3-hydroxyoctanedioate (48). To a solution of diisopropylamine ($0.46 \mathrm{~mL}, 3.3 \mathrm{mmol}$) in 3 mL of THF at $0^{\circ} \mathrm{C}$ was added 1.39 mL of a 2.33 M n -butyllithium solution. After 20 min , the solution was cooled to $-78^{\circ} \mathrm{C}$, and ester 45 ($785 \mathrm{mg}, 2.95 \mathrm{mmol}$) was added via cannula in 3 mL of THF, followed by a $2-\mathrm{mL}$ rinse. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 50 min and then treated with aldehyde 47 ($815 \mathrm{mg}, 2.42 \mathrm{mmol}$), which was added via cannula in 3 mL of THF, followed by a $2-\mathrm{mL}$ rinse. The solution was stirred for an additional 50 min and then quenched at -78 ${ }^{\circ} \mathrm{C}$ by the addition of approximately 5 mL of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
solution. After being warmed to room temperature, the solution was extracted with three portions of ether. The combined organic phases were washed with brine and dried over MgSO_{4}. Filtration and concentration provided 1.783 g of a clear, colorless oil. Pu rification by flash chromatography (gradient elution with 100 to 50 to 20 to 10:1 hexanes/ethyl acetate) provided recovered ester 45 ($204 \mathrm{mg}, 0.766 \mathrm{mmol}$), followed by the desired β-hydroxy ester 48 as a clear, colorless oil ($1.199 \mathrm{~g}, 1.989 \mathrm{mmol}, 82 \%$). Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{66} \mathrm{O}_{5}: \mathrm{C}, 75.70 ; \mathrm{H}, 11.03$. Found: C, 75.90; H, 10.78 .
[2E,2(E),7(E)]-Di-tert-butyl 2,7-Bis(4,8-dimethyl-3,7-no-nadienyl)-2-octenedioate (49). To a $0^{\circ} \mathrm{C}$ solution of β-hydroxy esters $48(1.643 \mathrm{~g}, 2.725 \mathrm{mmol})$ and triethylamine ($1.52 \mathrm{~mL}, 10.9$ mmol) in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.42 mL (5.5 mmol) of methanesulfonyl chloride. The ice bath was removed, and the solution was allowed to stir at room temperature for 3 h . After dilution with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the solution was washed with aqueous $\mathrm{NaHCO}_{3}(2 \times), 0.1 \mathrm{~N} \mathrm{HCl}$, and brine. The aqueous phases were extracted once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic phases were dried over MgSO_{4}. Filtration and concentration provided a granular, orange-brown oil, which was taken up in 8 mL of toluene, treated with 1,8 -diazabicyclo[5.4.0]undecene (DBU) (1.2 $\mathrm{mL}, 8.2 \mathrm{mmol}$), and heated in an $80^{\circ} \mathrm{C}$ oil bath for 12 h . After being cooled to room temperature, the solution was diluted with ether, washed with $0.1 \mathrm{~N} \mathrm{HCl}(2 \times)$, aqueous NaHCO_{3}, and brine, and dried over MgSO_{4}. Filtration and concentration provided 1.701 g of a clear pale yellow oil. Purification by flash chromatography (gradient elution with 40 to $30: 1$ hexanes/ethyl acetate) provided the $14 Z$ isomer $53(0.134 \mathrm{~g}, 0.23 \mathrm{mmol}, 8.4 \%)$ and the $14 E$ isomer $49(1.402 \mathrm{~g}, 2.397 \mathrm{mmol}, 88.0 \%$), both as clear, colorless oils. IR: $1725,1710 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.40-1.68$ (m , 4), 1.45 (s, 9), 1.49 ($\mathrm{s}, 9$), 1.58 ($\mathrm{s}, 3$), 1.59 ($\mathrm{s}, 3$), 1.60 ($\mathrm{s}, 6$), 1.68 (s, 6), 1.96-2.46 (m, 19), 5.07-5.10 (m, 3), 5.11-5.16 (m, 1), 6.62 (t, $1, J=7.5$). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.90,15.91,17.62,25.64$, $25.71,26.61,26.66,26.97,27.71,28.09,28.10,28.21,28.47,32.31$, $32.60,39.66,39.69,45.92,79.82,79.90,123.58,123.66,124.25,124.30$, $131.22,133.65,135.51,141.01,167.21,175.43$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{4}: \mathrm{C}, 78.03 ; \mathrm{H}, 11.03$. Found: C, 78.20; H, 11.06.
($6 E, 14 Z, 18 E$)-10,11-Dihydrosqualene-27,28-diol (50). A 1.0 M solution of DIBAL in toluene ($30 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise to a solution of $1.939 \mathrm{~g}(3.315 \mathrm{mmol})$ of diester 49 in 16 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 3 h , the reaction was quenched by slow addition of 2 mL of methanol. After warming to room temperature, 50 mL each of ether and saturated aqueous sodium potassium tartrate were added, and the resulting solution was stirred vigorously until two clear phases resulted. The layers were then separated, and the aqueous phase was extracted with three portions of ether. The combined organic phases were washed with brine and dried. Filtration and evaporation of the solvents gave a crude mixture of compounds that was resubjected to further reduction by being dissolved in 16 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cooled to -78 ${ }^{\circ} \mathrm{C}$, and treated with another $30-\mathrm{mL}$ portion of 1.0 M DIBAL in toluene (30 mmol) for 3 h at $-78^{\circ} \mathrm{C}$. Workup as before provided a clear, pale yellow oil, which was purified by flash chromatography (gradient elution with 3 to $2: 1$ hexanes/ethyl acetate) to provide diol 50 as a clear, colorless oil ($1.413 \mathrm{~g}, 96 \%$). IR: $3700-3250$, $3615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 1.24-1.58(\mathrm{~m}, 7$), $1.59(\mathrm{~s}, 12)$, 1.68 (s, 6), 1.95-2.14 (m, 16), 3.45 (dd, $1, J=5.9,10.5$), 4.06 (d), $1, J=11.8$), 4.13 (d, $1, J=11.8$), $5.06-5.13$ (m, 4), $5.29(\mathrm{t}, 1, J$ $=6.3$). ${ }^{18} \mathrm{C}$ NMR (125 MHz): $\delta 15.83,15.88,17.50,25.13,25.52$, $26.57,26.59,26.71,26.81,27.50,30.11,30.81,34.91,39.58,59.68$, $65.09,123.97,124.21,124.40,128.37,131.03,134.83,135.02,138.24$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2}: \mathrm{C}, 81.02 ; \mathrm{H}, 11.78$. Found: $\mathrm{C}, 80.86$; H, 11.90 .
tert-Butyl (5E)-2-(Trimethylsilyl)-6,10-dimethylundeca5,9 -dienoate (52). A solution of $188.4 \mathrm{mg}(1 \mathrm{mmol})$ of tert-butyl (trimethylsilyl)acetate ${ }^{20}$ in 0.5 mL of THF was added slowly into a stirring solution of 1.1 mmol of LDA in THF/hexane at -78 ${ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and 15 min at $-42^{\circ} \mathrm{C}$. The solution was cooled to $-78^{\circ} \mathrm{C}$, a solution of 278.3 mg (1 mmol) of iodide 16 in 1 mL of THF was added dropwise, and the solution was stirred for 3 h . The mixture was then warmed to room temperature and stirring continued for 16 h. The crude solution was poured into 25 mL of brine, extracted
(20) Rathke, M. W.; Sullivan, D. F. Synth. Commun. 1973, 3, 67.
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$), and dried. Filtration, evaporation of the solvent, and chromatography ($95: 5$ hexane-EtOAc) furnished $286 \mathrm{mg}(84 \%)$ of 52 . IR: $1705 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 0.006$ (s, 9), 1.29-1.67 (m, 2), 1.44 (s, 9), 1.60 (s , 6), 1.68 ($\mathrm{s}, 3$), 1.76-2.12 (m, 7), 5.04-5.12 (m, 2). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta-2.67,15.88$, $17.59,25.62,26.61,26.96,28.26,28.44,38.07,39.70,79.20,123.83$, 124.31, 131.10, $135.61,174.50$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{SiO}_{2}$: C, 70.94; H, 11.31. Found: C, 71.03; H, 11.25.
[2Z,2(E),7(E)]-Di-tert-butyl 2,7-Bis(4,8-dimethyl-3,7-no-nadienyl)-2-octenedioate (53). A solution of $2.71 \mathrm{~g}(8 \mathrm{mmol})$ of ester 52 in 8 mL of THF was added dropwise to a solution of 8 mmol of LDA in THF/hexane at $-78^{\circ} \mathrm{C}$. After $3.5 \mathrm{~h}, 2.69 \mathrm{~g}$ (8 mmol) of aldehyde 47 was added over a $5-\mathrm{min}$ period and stirring was continued for 15 min . The solution was warmed to $0^{\circ} \mathrm{C}$, stirred for an additional 10 min , and quenched with 100 mL of water. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying of the combined organic extracts, filtration, and evaporation of the solvents gave a crude oil. Chromatographic purification, eluting with 95:5 hexane-EtOAc, gave 2.42 g of $14 Z$ isomer 53 , followed by 1.39 g of 14 E isomer 49 (total yield, 73%). IR: $1720 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}): \delta 1.37-1.68(\mathrm{~m}, 6), 1.45(\mathrm{~s}, 9), 1.50(\mathrm{~s}, 9), 1.58(\mathrm{~s}, 3)$, $1.59(\mathrm{~s}, 3), 1.60(\mathrm{~s}, 6), 1.68$ (s, 6), 1.93-2.23 (m, 15), 2.35-2.39 (m, 2), $5.07-5.14(\mathrm{~m}, 4), 5.70(\mathrm{t}, 1, J=7.4)$. ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.86,15.92,17.59,25.61,25.71,26.58,26.66,27.21,27.58,28.05$, 28.17, 29.30, 32.19, 32.59, 34.96, 39.64, 45.94, 79.73, 80.16, 123.46, 127.71, 124.26, 131.12, 133.53, 135.38, 135.44, 139.30, 167.49, 175.51. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{O}_{4}$: C, 78.03; $\mathrm{H}, 11.03$. Found: C, 78.13; H, 11.21.
($6 E, 14 E, 18 E$)-10,11-Dihydrosqualene-27,28-diol (54). The procedure described for the preparation of diol 50 was followed with $935 \mathrm{mg}(1.6 \mathrm{mmol})$ of diester 53 to obtain $700 \mathrm{mg}(87 \%)$ of diol 54. IR: $3720-3240,3620 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): δ $1.28-1.75$ (m, 7), 1.60 (s, 12), 1.68 (s, 6), 1.95-2.16 (m, 16), 3.51-3.57 ($\mathrm{m}, 2$), $4.03(\mathrm{~s}, 2), 5.06-5.17(\mathrm{~m}, 4), 5.43(\mathrm{t}, 1, J=6.6) .{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$): $\delta 15.95,17.63,25.20,25.64,26.62,26.65,26.92,26.98$, $27.79,28.14,30.53,30.91,39.66,40.00,65.32,67.14,123.87,124.25$, $124.28,124.43,127.08,131.27,131.32,135.08,135.47,138.98$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{2}$: C, 81.02; $\mathrm{H}, 11.78$. Found: $\mathrm{C}, 80.76 ; \mathrm{H}, 11.76$.

1,5-Bis (4,8-dimethylnona-3,7-dienyl)-2-hydroxy-3-oxabi-cyclo[4.3.0]-4-nonenes (61). Tetra- n-butylammonium bisulfate ($8.5 \mathrm{mg}, 0.025 \mathrm{mmol}$) was added to a vigorously stirring mixture of dialdehyde $55(220 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{C}_{6} \mathrm{H}_{6}(7.75 \mathrm{~mL})$, and 50% w / w aqueous $\mathrm{KOH}(0.5 \mathrm{~mL})$ at room temperature. The reaction was monitored by TLC ($\mathrm{Al}_{2} \mathrm{O}_{3} ; 9: 1$ mixture of hexane-EtOAc). After about 10 min the mixture was quenched with water (25 mL) and extracted with ether ($3 \times 15 \mathrm{~mL}$). Drying over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporation of the solvents gave a residue containing about 57% of the desired products. Chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ and elution with $93: 7$ hexane-EtOAc afforded $48 \mathrm{mg}(22 \%)$ of hydroxydihydropyran 61 as a $2: 1$ mixture of epimers (extensive decomposition occured upon chromatography). IR: $3585,1727,1667 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz): δ (major isomer) $1.31-1.68(\mathrm{~m}, 6), 1.60(\mathrm{~s}$, 12), 1.68 (s, 6), 1.86-2.18 (m, 17), 4.75 (d, $1, J=6.6$), 5.06-5.15 ($\mathrm{m}, 4$), $6.06(\mathrm{~s}, 1) ; \delta$ (minor isomer) $4.98(\mathrm{~d}, 1, J=6.7), 6.02$ (s , 1). ${ }^{13} \mathrm{C}$ NMR (125 MHz): $\delta 15.95,15.96,16.08,17.65,22.35,23.03$, $23.33,23.42,25.65,26.53,26.63,26.70,30.81,30.93,30.98,31.11$, $31.76,32.27,32.38,38.16,39.66,43.47,43.51,46.45,47.68,96.55$, $96.81,117.09,117.64,123.89,123.92,124.29,124.33,124.49,124.75$, $131.27,131.29,133.88,134.94,134.97,135.05,135.21,135.31$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2}: \mathrm{C}, 81.76 ; \mathrm{H}, 10.98$. Found: C, $81.50 ; \mathrm{H}, 11.00$.
(E, E)-1,5-Bis(4,8-dimethylnona-3,7-dienyl)-2-(methyl-phenylamino)-3-oxabicyclo[4.3.0]-4-nonenes (59). A mixture of N-methylaniline ($32.4 \mathrm{mg}, 0.302 \mathrm{mmol}$), dialdehyde 51 (133 mg , 0.302 mmol), and 3 mg of p-toluenesulfonic acid in benzene (3 mL) was refluxed for 35 min in a flask equipped with a DeanStark apparatus containing molecular sieves. The solvent was evaporated and the oily residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$. Elution with a $9: 1$ mixture of hexane and ether delivered 53 mg (33%) of colorless products. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ (major isomer) $1.39-2.26(\mathrm{~m}), 2.70-2.71(\mathrm{~m}, 1), 2.96(\mathrm{~s}, 3), 5.00-5.18(\mathrm{~m}, 5), 6.21$ ($\mathrm{s}, 1$), $6.82(\mathrm{t}, 1, J=7.2$), $6.95(\mathrm{~d}, 2, J=8.0), 7.21-7.26(\mathrm{~m}, 2)$; δ (minor isomer) $2.30-2.33(\mathrm{~m}, 1), 3.01(\mathrm{~s}, 1), 6.27$ (s, 1). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ (major isomer) $151.73,138.94,135.59,135.42$, $131.63,131.55,129.29,124.73,124.70,124.68,124.50,119.56,116.63$, $116.02,90.02,49.98,45.70,40.16,40.03,37.08,35.43,34.62,31.26$, 30.32, 27.26, 27.05, 26.94, 25.80, 22.89, 22.85, 17.78, 16.27 15.72;
δ (minor isomer) 152.02, 138.76, 135.57, 135.24, 131.60, 131.58 , 125.13, 124.54, 119.28, 116.41, 115.53, 89.12, 47.94, 44.53, 40.09, $35.14,34.19,32.29,31.59,27.11,27.08,25.54,22.95,22.54,17.75$, 16.20, 15.96
(E, E)-1,5-Bis(4,8-dimethylnona-3,7-dienyl)-2-pyrrolidino-3-oxabicyclo[4.3.0]-4-nonenes (60). A $10-\mathrm{mL}$ round-bottom flask equipped with a Dean-Stark trap and reflux condenser was charged with bisaldehyde $51(31.2 \mathrm{mg}, 0.071 \mathrm{mmol})$, pyrrolidine hydrochloride ($20 \mathrm{mg}, 0.186 \mathrm{mmol}$), and 1 mL of benzene. The solution was treated with 3 drops of triethylamine and heated to reflux for 2 h . After being cooled to room temperature, the solution was diluted with ether and washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated, and the organic phase was washed with brine. The aqueous phases were then backextracted with two portions of ether, and the combined organic phases were dried over MgSO_{4}. Filtration and concentration provided 33.1 mg of a clear, yellow oil, which ${ }^{1} \mathrm{H}$ NMR showed to be the desired aminodihydropyrans ($0.067 \mathrm{mmol}, 94 \%$). An analytical sample was obtained by filtration through a plug of basic alumina in 10:1 hexanes/ethyl acetate. IR (thin film): 3045 , 2960, 2925, 2910, 2870, 2845, 1660, 1450, 1440, $1140 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (signals for the minor isomer are in parentheses): $\delta 6.17$ (6.24) ($\mathrm{s}, 1$), 5.15-5.09 (m, 4), 4.52 (4.23) (s, 1), $2.94-2.87$ (m, 4), 2.53 (br d, $J=5.7,1$), 2.15-1.90 (m, 14), 1.69 (s, 6), 1.61 ($\mathrm{s}, 12$), $1.80-1.20(\mathrm{~m}, 12)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ (major isomer) 138.89, 135.04, 134.90, 134.59, 131.28, 125.16, 124.91, 124.41, 124.37, 115.48, 90.84, 49.06, 47.98, 44.23, 39.75, 39.71, $37.61,34.34,30.61,30.16,26.81,26.76,26.72,26.68,25.69,24.70$, $22.56,22.47,17.67,16.10,15.84,15.66 ; \delta$ (minor isomer) 138.58, $135.02,124.39,124.27,124.25,92.2,49.71,46.60,43.82,39.69,34.65$, 31.40, 25.95, 24.66, 22.50. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{NO}$: C, 82.70; H, 11.23; N, 2.84. Found: C, 82.88; H, 11.55; N, 2.85.

Acknowledgment. This work was supported by a research grant from the National Science Foundation (CHE-84-18437). We are grateful to the following agencies and companies for support in the form of fellowships: Merck, Sharp \& Dohme for a postdoctoral fellowship to S.P., Pfizer for a predoctoral fellowship to R.R., the Am-
erican Cancer Society for a postdoctoral fellowship to J.R., and the United States Department of Education for a predoctoral fellowship to J.K.

Registry No. (\pm)-11, 138409-27-5; 14, 138409-29-7; 15, 25662-28-6; 16, 22339-13-5; (\pm)-17, 138512-25-1; (\pm)-18, 138512-26-2; (\pm)-19, 138512-27-3; (\pm)-20, 138512-28-4; (\pm)-21, 138409-30-0; (\pm)-22, 138513-32-3; (\pm)-23, 138409-31-1; (\pm)-24, 138512-29-5; (\pm)-25, 138409-32-2; (\pm)-26, 138512-30-8; (\pm)-27, 138409-33-3; (\pm)-28, 138512-31-9; (\pm)-29, 138409-34-4; (\pm)-30, 118099-25-5; (\pm)-31, 138409-35-5; (\pm)-32, 138512-32-0; (\pm)-34, 138409-36-6; (\pm)-36, 138512-33-1; (\pm)-37, 138512-34-2; (\pm)-38, 138512-35-3; (\pm)-39, 138512-36-4; (\pm)-40, 138409-37-7; 45, 131938-67-5; 45 (α acetyl derivative), 138409-53-7; (\pm)-46, 138409-38-8; (\pm)-47, 138409-39-9; 48, 131979-62-9; (\pm)-49, 138409-40-2; (\pm)-50, 138409-41-3; (\pm)-51, 138409-42-4; (\pm)-52, 138409-43-б; (\pm)-53, 138409-44-6; (\pm)-54, 138409-45-7; (\pm)-55, 138409-46-8; (\pm)-59 (isomer 1), 138409-47-9; (\pm)-59 (isomer 2), 138512-37-5; (\pm)-60 (isomer 1), 138409-48-0; (\pm)-60 (isomer 2), 138512-38-6; (\pm)-61 (isomer 1), 138409-49-1; (\pm)-61 (isomer 2), 138512-39-7; ($\mathbf{~}$)-62, 138409-50-4; S1, 138409-22-0; (\pm)-S3, 138409-23-1; (\pm)-S4, 138409-24-2; (\pm)-S5 (isomer 1), 138409-25-3; (\pm)-S5 (isomer 2), 138512-22-8; (\pm)-S6 (isomer 1), 138409-26-4; (\pm)-S6 (isomer 2), 138512-23-9; S10, 69405-40-9; S11, 138409-51-5; (\pm)-S12, 138409-28-6; (\pm)-S13, 138512-24-0; (\pm)-S14, 138512-40-0; (\pm)-S14 amino-alcohol, 138409-52-6; (\pm)-S15, 138513-33-4; (\pm)-S16, 138513-34-5; (\pm)-s17, 138512-41-1; (\pm)-S18, 138512-42-2; t-BuO$\mathrm{COCH}_{3}, 540-88-5 ; \quad \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OMe})_{2}, 24157-02-6 ; \quad t$ $\mathrm{BuOCO} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, ~ 41108-81-0 ;$ - N -acetylpyrrolidine, 4030-18-6.

Supplementary Material Available: Descriptions of the preparation of dialdehydes 33,36 , and 37 and a more detailed discussion of the hydrolytic chemistry of aminodihydropyran 60 , including 13 additional experimental procedures, mass spectral data for compounds $14,17,21,25,26,32$, and 40 , and ${ }^{1} \mathrm{H}$ NMR spectra of compounds $14,17,25,26,27,28,32,39,40,59$, and 62 (21 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and may be ordered from the ACS; see any current masthead page for ordering information.

Daphniphyllum Alkaloids. 13. Asymmetric Total Synthesis of (-)-Secodaphniphylline ${ }^{1}$

Clayton H. Heathcock* and Jeffrey A. Stafford ${ }^{2}$

Department of Chemistry, University of California, Berkeley, California 94720
Received August 6, 1991
$(-)$-Secodaphniphylline (1) has been prepared by total synthesis. The early stages of the synthesis were an asymmetric version of the previously published synthesis of methyl homosecodaphniphyllate (2). The necessary chirality was secured by an asymmetric Michael addition reaction of the lithium enolate of the C_{2}-symmetric amide 9 to α, β-unsaturated ester 10 to give ester amide 12 . The conversion of 12 into (-)-2 was modelled after the previously reported synthesis in the analogous racemic series, although there were quantitative differences in the reaction conditions required for some of the succeeding transformations of the relatively hindered 2,5dimethylpyrrolidine amides. The (-)-2 produced in this synthesis was of 84% ee, which represents the enantioselectivity of the initial Michael addition. Recrystallization of this material provided (-). 2 of 90% ee. The required 2,8 -dioxabicyclo[3.2.1]octanecarboxylic acid chloride 5 was assembled in an eight-step synthesis starting with acid 18. The necessary chirality was acquired by an asymmetric reduction of acetylenic ketone 19 with the LiAlH_{4}-Darvon alcohol complex. Alcohol 20, of 92% ee, was obtained and was isomerized to isomer 21 without loss of enantiomeric purity. Concomitant hydration of the triple bond, hydrolysis of the ketal, and cyclization of the resulting keto triol provided a $5: 1$ mixture of alcohols 23 and 24 . After conversion to a similar mixture of methyl esters 25 and 26, the isomers were separated and the major carboxylic acid 27 was converted into acid chloride 5. Ester (-)-2 and acid chloride 5 were joined by a mixed Claisen condensation and the resulting diastereomeric β-keto esters demethylated and decarboxylated by treatment with NaCN in hot DMSO to obtain $(-)$-secodaphniphylline (1). Although the two components in the Claisen reaction were enantiomerically enriched only to a modest extent (90% ee and 92% ee), the product alkaloid was $>99 \%$ ee.

Secodaphniphylline (1) is the parent member of one of the five major structural classes of Daphniphyllum alka-
loids, a family of secondary metabolites that now has 37 known members. ${ }^{3}$ First described in 1969, ${ }^{4}$ secodaphni-

Organic Chemistry

Volume 57, Number 14
July 3, 1992
© Copyright 1992 by the American Chemical Society

Communications

An Air-Stable Catalyst System for the Conversion of Esters to Alcohols

Scott C. Berk ${ }^{1}$ and Stephen L. Buchwald*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Received April 29, 1992

Summary: The combination of $5 \mathrm{~mol} \%$ of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ with 2.5-3.0 equiv of (EtO$)_{3} \mathrm{SiH}$ cleanly hydrosilylates esters to silyl ethers at $40-55^{\circ} \mathrm{C}$, which can be converted to the corresponding primary alcohols via aqueous alkaline hydrolysis in excellent overall yield. The reaction can be carried out in the air, without solvent, and displays a high level of functional group compatibility.
We recently reported the conversion of esters to alcohols ${ }^{2 \mathrm{a}}$ using a novel titanocene-based catalyst system in which a silane served as the stoichiometric reductant. ${ }^{3}$ The active catalyst system was generated by the addition of 2 equiv of $n-\mathrm{BuLi}$ to $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ under an inert atmosphere. We now report a second-generation catalyst system for ester hydrosilylation which is self-activating, needs no added solvent, and can be generated and utilized in the air. Moreover, this system displays an enhanced level of functional group compatibility.
A key step in the proposed catalytic cycle described in our initial report was the conversion of a titanium alkoxide into a titanium hydride by a silane via a σ-bond metathesis process. ${ }^{4}$ We reasoned that an active titanium hydride

[^40]
species might be generated directly from an appropriate titanium alkoxide and the silane used in the reduction, eliminating the need for the $n-\mathrm{BuLi}$ activation step (Scheme I). Indeed, we have found that the combination of a catalytic amount of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$, an extremely inexpensive, air-stable liquid, and $(\mathrm{EtO})_{3} \mathrm{SiH}$ generates an effective and mild system for the reduction of a variety of esters (Scheme II). Our results to date are shown in Table I. Except where noted, these reactions were carried out by simply mixing the ester with 2.5-3.0 equiv of $(\mathrm{EtO})_{3} \mathrm{SiH}$ in a test tube, adding $5 \mathrm{~mol} \%$ of $\mathrm{Ti}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{4}$, and then heating the reaction mixture to $40-55^{\circ} \mathrm{C}$ for 4-22 h. ${ }^{5 a}$ Product isolation can be accomplished simply
(5) (a) Typical Procedure. Triethoxysilane ($1.7 \mathrm{~mL}, 9 \mathrm{mmol}$) and methyl 10 -undecenoate ($594 \mathrm{mg}, 3 \mathrm{mmol}$) were added to a test tube. Titanium(IV) isopropoxide ($45 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was then added, and the test tube was fitted with a drying tube packed with DrieRite to exclude excess moisture. The vessel was then heated in an oil bath at $50^{\circ} \mathrm{C}$. After being stirred for 16 h , the reaction mixture was washed into a $100-\mathrm{mL}$ round-bottom flask with 10 mL of THF. Then, 20 mL of 1 N NaOH was added slowly with stirring. NOTE: Vigorous bubbling was observed. After 4 h , the mixture was added to 50 mL each of ether and water. After shaking, the layers were separated, and the aqueous layer was extracted with an additional 50 mL of ether. The combined organic extracts were then washed with two $50-\mathrm{mL}$ portions of 1 N HCl , dried over MgSO_{4}, filtered, and concentrated in vacuo to afford $443 \mathrm{mg}(87 \%$ yield) of 10 -undecen-1-ol as a clear oil. The product was $>95 \%$ pure as determined by GC and ${ }^{1} \mathrm{H}$ NMR analysis. CAUTION!! Suitable eye protection is required for handling triethoxysilane (vapors can cause blindness); cf. Silicon Compounds: Register and Review; Anderson, R., Larson, G. L., Smith, C., Eds.; Hüls America, Inc.; Piscataway, NJ, 1991; pp 5, 190. In the absence of substrate and under an inert atmosphere, $(\mathrm{EtO})_{3} \mathrm{SiH}$ is disproportionated by $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ to form SiH_{4}, a pyrophoric gas. For a discussion of another titanium-catalyzed disproportionation of (EtO) ${ }_{3} \mathrm{SiH}$, see: Xin, S.; Aikten, C.; Harrod, J. F.; Mu, Y.; Samuel, E. Can. J. Chem. 1990, 68, 471. (b) An extra equivalent of (EtO) $3_{3} \mathrm{SiH}$ is required.
entry
${ }^{a}$ All products were $>95 \%$ pure and were characterized by GLC, ${ }^{1} \mathrm{H}$ NMR, and IR spectroscopy. They are all known compounds. ${ }^{b} 50$ mmol scale. ${ }^{e}$ Purified by flash chromatography or recrystallization. ${ }^{d}$ Using 3.75 equiv of $\mathrm{HSi}(\mathrm{OEt})_{3}$. ${ }^{e} 37$ mmol scale, distilled yield. ${ }^{f} 1.3$ equiv of $\mathrm{HSi}(\mathrm{OEt})_{3}$ and 1.4 equiv of $\mathrm{H}_{3} \mathrm{SiPh}$ are required for complete conversion.

Scheme II

by adding the reaction mixture to a small amount of THF and 1 N NaOH and stirring (2-4.5 h). Conventional workup generally provides the alcohol in $>95 \%$ purity; the bulk of the silicon- and titanium-containing species go into the aqueous layer or remain at the boundary between the aqueous and organic layers and are easily separated from the product. In the case of epoxides, flash chromatography or recrystallization may be employed to remove traces (less
than 5%) of ring-opened products. ${ }^{6}$
The tolerance to other functional groups exhibited by this catalyst system is noteworthy. Halides, olefins, epoxides, alcohols, ${ }^{5 \mathrm{~b}}$ and an alkyne (about 5% triple-bond reduction is observed) all survive the reduction protocol. In particular, for entries 4,5, and 7, the yields are 10-25\% better than realized with our previous catalyst system. ${ }^{2 a}$

While the simple protocol described above works in many instances, the reduction of aromatic and cyclopropyl

[^41]esters stops short of completion. Since methyl cyclohexanecarboxylate (entry 11) and methyl 2-phenylbutyrate (entry 12) react smoothly under the given conditions, this effect cannot be adequately explained by steric factors. However, for these substrates, complete conversion is achieved by the addition of PhSiH_{3}, presumably due to its smaller size and more reactive Si-H bonds. ${ }^{7}$ Several other limitations of this method have been discovered to date. For instance, α, β-unsaturated esters react to give mixtures of 1,2 reduction and fully saturated products. In addition, α-bromo esters and ω-cyano esters have not been successfully converted to the desired products.

We are at present unsure as to the nature of the active catalyst in this system. One possibility is that this is a simple Lewis acid-catalyzed hydrosilylation. ${ }^{3 a}$ However, we have determined that the conversion of ethyl decanoate to decanol is unaffected, in terms of either rate of formation or yield of product, by the addition of 20 equiv (relative to catalyst) of Lewis bases such as pyridine, THF, or PMe_{3}. A radical mechanism is unlikely since no rearrangement products are found in the reduction of a vinylcyclopropyl ester (Table I, entry 15). ${ }^{8}$ An alternate scenario is that the active species in this system is an anionic pentavalent silicon hydride. ${ }^{9}$ These species are also known to be electron donors toward organic halides, forming reductive coupling products. However, under our described conditions, ethyl 6-bromohexanoate is converted cleanly to the alcohol with no traces of reductive dimeri-
(7) Ojima, I.; Kogure, T.; Nihonyanagi, M.; Nagai, Y. Bull. Chem. Soc. Jpn. 1972, 45, 3506 .
(8) Kochi, J.; Krusic, P. J.; Eaton, D. R. J. Am. Chem. Soc. 1969, 91, 1877.
(9) Corriu, J. P.; Guêrin, C.; Henner, B.; Wang, Q. Organometallics 1991, 10, 2297, 3200, and 3574 .
zation (Table I, entry 4). Also, in a control experiment where 1 equiv each of $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4},(\mathrm{EtO})_{3} \mathrm{SiH}$, and benzyl bromide were combined, and the mixture was heated at $45^{\circ} \mathrm{C}$, no bibenzyl was detected after 2 days. Finally, our working hypothesis involves the initial formation of a titanium hydride species, as we believe occurs in the $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / 2 n-\mathrm{BuLi}$ system. Yet we have found that carrying out the reduction procedure in the presence of 20 equiv of MeI has no effect on the rate or yield of the reaction. ${ }^{10}$ A detailed mechanistic study of this intriguing new process is clearly necessary.

In summary, we have developed a new, air-stable catalyst system for the conversion of esters into primary alcohols. The experimental simplicity and mild reaction conditions of this procedure should make it useful to synthetic chemists. We are currently investigating the mechanism of this novel catalyst system and its action on other carbonyl groups and related functionality.

Acknowledgment. We thank the National Science Foundation (CHE-900482) for support of this work. S.L.B. acknowledges additional support as a Fellow of the A.P. Sloan Foundation and as a Camille \& Henry Dreyfus Teacher-Scholar. We thank Dr. Alberto Gutiërrez and Dr. Kristina A. Kreutzer for helpful suggestions.

Supplementary Material Available: Detailed experimental procedures for the preparation of and spectroscopic characterization of the products given in Table I (5 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^42]
Why Are Isoxazoles Unreactive in Diels-Alder Reactions? An ab Initio Computational Study

Javier Gonzālez, ${ }^{\dagger}$ E. C. Taylor, ${ }^{\dagger}$ and K. N. Houk*, ${ }^{8}$

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Received April 7, 1992

Summary: Ab initio calculations show why isoxazole Diels-Alder reactions have high activation energies and are generally not observed.

One of the most intriguing unsolved problems in heterocyclic chemistry is the different ability of oxazole and isoxazole rings to participate in Diels-Alder reactions. Diels-Alder reactions of oxazoles, 1 , have been widely exploited because of their synthetic versatility. Reactions with alkenes lead to pyridines, including Vitamin B_{6}, pyridoxine analogs, and condensed pyridines such as ellipticine, ${ }^{1}$ while acetylenic dienophiles give furans. ${ }^{1,2}$ Oxazoles also react readily with a variety of heterodienophiles. ${ }^{3}$ Amazingly, however, there are no reports on Diels-Alder reactions of simple isozazoles, $2 .{ }^{4}$
We report here the results of a theoretical study of the Diels-Alder reactions of both oxazole and isoxazole, using ab initio molecular orbital theory. The geometries of the

[^43]

2
6
reactants, oxazole, 1 , and isoxazole, 2 , the transition structures for the parent reactions of 1 and 2 with ethylene,

[^44]EXHIBIT 22

A Practical Titanium-Catalyzed Synthesis of Bicyclic Cyclopentenones and Allylic Amines

Frederick A. Hicks, ${ }^{\dagger}$ Scott C. Berk, ${ }^{\ddagger}$ and Stephen L. Buchwald ${ }^{*}$
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received September 26, 1995

Abstract

A practical titanium-catalyzed synthesis of bicyclic cyclopentenones and allylic amines is described. The process converts enyne substrates to iminocyclopentenes using $10 \mathrm{~mol} \%$ of the air- and moisture-stable precatalyst $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ in the presence of n - BuLi and triethylsilyl cyanide. The resulting iminocyclopentenes can be hydrolyzed to cyclopentenones in good yields or reduced to allylic silylamines with Red-AI or DIBALH. Treatment of the crude silylamines with acetyl chloride allows isolation of allylic amides in excellent yields.

In recent years, group IV metallocene-mediated reductive cyclizations of enynes, ${ }^{1}$ diynes, ${ }^{2}$ and dienes ${ }^{3}$ have become an important methodology in organic synthesis (Scheme 1). The metallacycles formed (1) can be hydrolyzed, carbonylated, iminylated, ${ }^{4}$ halogenated, and converted into a wide range of main group heterocycles ${ }^{5}$ and highly substituted benzene derivatives. ${ }^{6}$ These transformations have as a limitation their requirement for a stoichiometric quantity of metal.
On the basis of the observation ${ }^{4}$ that the product of the reaction of tert-butyl isocyanide with titanacycle 2 is converted to iminocyclopentene $\mathbf{4}$ with loss of "titanocene" (Scheme 2), the catalytic cycle in Scheme 3 was proposed. Initial efforts with tert-butyl isocyanide failed due to catalyst deactivation in the presence of excess isocyanide. This problem was overcome ${ }^{7}$ by keeping the concentration of isocyanide low in solution with trialkylsilyl cyanides $\left(\mathrm{R}^{\prime}=\mathrm{Et}_{3} \mathrm{Si}, t-\mathrm{Bu}(\mathrm{Me})_{2} \mathrm{Si}\right),{ }^{8}$ which exist in equilibria with minor amounts of the isocyanides (99:1 for trimethylsilyl cyanide). Scheme 4 outlines the course of the catalytic procedure. ${ }^{9}$
Although this process, as the first early transition metal catalyzed cyclopentenone synthesis, represents an advance in methodology, there are a number of areas where improvements can be made. A major problem is

[^45]

Scheme 1

1
Scheme 2

Scheme 3

Scheme 4
that the precatalyst $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}{ }^{10}$ is extremely air- and moisture-sensitive and must be handled and stored in a
(10) Rausch, M. D.; Alt, H. G.; Kool, L. B.; Herberhold, M.; Thewalt, U.; Wolf, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 394.
Scheme 5

THF, $.78^{\circ} \mathrm{C}{ }^{\prime} \mathrm{rt}$
Scheme 6

glovebox under argon. In addition, it would be advantageous to develop a catalyst system that did not require PMc_{3} duc to concerns about its stench and toxicity. Λ method to generate the catalytically active species in situ from $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$, which is air- and moisture-stable and inexpensive, would greatly increase the practicality of this methodology. The yields of cyclopentenones 8 (43$80 \%),{ }^{7}$ while comparable to related syntheses, ${ }^{11}$ are disappointing considering that iminocyclopentene formation is quantitative (${ }^{1} \mathrm{H} N \mathrm{NMR}$). This led to the search for alternative transformations that could give products in higher yields and exploit the silylimine functionality.
Titanacyclopentenes 5 are intermediates in the catalytic cycle depicted in Scheme 2. We have previously shown ${ }^{4}$ that these metallacycles can be prepared from enynes by treatment with a mixture of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and 2 equiv of EtMgBr or n-BuLi (Scheme 5). We decided, therefore, to see if the combination $\mathrm{Cp}_{2} \mathrm{TiCl}_{2} / 2 n$ - BuLi could serve as a catalyst in lieu of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$

Our initial attempts, employing THF as solvent, were unsuccessful. Although metallacycle formation was nearly quantitative (${ }^{1} \mathrm{H}$ NMR), the catalyst was rapidly decomposed under the reaction conditions. Attempts to run the reaction in the noncoordinating solvent toluene were hampered by the extremely low solubility of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$. We found, however, that by using n-BuLi with finely ground $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ in toluene (Scheme 6), the titanacycle 5 ($\mathrm{X}=\mathrm{O}, \mathrm{R}=\mathrm{Ph}$) was produced in 92% yield (${ }^{1} \mathrm{H} N \mathrm{NR}$) and was catalytically active at $10 \mathrm{~mol} \%$, the same level as with $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$.
To compare the two catalysts, a number of cyclopentenones were synthesized using the new system (Table 1). The yields indicate the processes employing $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$ are equally effective. In addition, we found that a bicyclic enyne (Table 1, entry 5), using the new catalyst system, produces the tricyclic cyclopentenone in good yields. ${ }^{12}$
After developing the new in situ method of catalyst generation, we decided to explore other reactions of the silylimine intermediates. The chemistry of silylimines has developed rapidly in the past decade due in large part
(11) (a) Schore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 10371064. (b) Jeony, N.; Hwang, S. H.; Lee, Y.; Chung, Y. K. J. Am. Chem. Soc. 1994, 116, 3159. (c) Tamao, K.; Kobayashi, K.; Ito, Y. J. Am. Chem. Soc. 1988, 110, 1286. (d) Oppolzer, W. Pure Appl. Chem. 1990, 62, 1941. (e) Pearson, A. J.; Dubbert, R. A. Organometallics 1994, 13, 1656.
(12) See ref 11c for a related iminocyclopentene.

Table 1. Comparison of Cyclopentenone Formation from Precatalysts $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$ and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$
entry starting material
to the fact that the silyl group is easily removed from the products formed. Thus, silylimines serve as synthetic equivalents to unsubstituted imines. Hart initiated work in this area ${ }^{13}$ by studying reductions of silylimines with LiAlH_{4}, addition reactions with alkyllithium and Grignard reagents, and condensations with ester enolates to form β-lactams. ${ }^{14}$ The reactions of silylimines have since been expanded to include the synthesis of aziridines, ${ }^{15}$ 1,2 -amino alcohols, ${ }^{16}$ and α-amino phosphonic acids. ${ }^{17}$ Due to the importance of allylic amines ${ }^{18}$ both as syn thetic intermediates ${ }^{19}$ and as biologically active compounds themselves, ${ }^{20}$ we chose to explore hydride reduc tions of the silylimines produced by our methodology. ${ }^{21}$

After a range of reducing agents were surveyed, Red Al (sodium bis(2-methoxyethoxy)aluminum hydride) and DIBALII were found to give high yields of the corre sponding silylamines $\mathbf{8}$ (Scheme 7). In the one reported example of silylimine reduction we are aware of, the amine which was isolated had been desilylated. ${ }^{13}$ Since silyl groups can be utilized to protect amines, the development of reaction protocols which retain them is significant. ${ }^{22}$ Although the crude silylamines could be utilized for further transformations, their isolation proved

[^46]

Table 2. Conversion of Enynes to Bicyclic Allylic Amides

${ }^{2}$ Major diastereomer pictured. ${ }^{\mathrm{b}}$ Required $20 \mathrm{~mol} \%$ catalyst for complete conversion. ${ }^{c}$ Required $15 \mathrm{~mol} \%$ catalyst for complete conversion. ${ }^{\text {a }}$ See Ref 7 . ${ }^{\text {e Only }}$ diastereomer isolated
difficult. Attempts to desilylate and isolate the free amines led to deamination and to complex mixtures of cyclopentadiene and allylic alcohol derivatives. For this reason, the silylamines were converted to amides 9 for their isolation. ${ }^{23}$
For most substrates (Table 2, entries 1-6), Red-Al reduction was completely diastereoselective. Reduction with DIBALH (substrate from Table 2, entry 1), however, produced a mixture of two diastereomers (3:2), with the same predominant product as from Red $\mathrm{N1}$ reduction. ${ }^{24}$

[^47]The substrate with an allylic TIPS (triisopropylsilyl) ether (Table 2, entry 7) was reduced by Red-Al, but reaction occurred only slowly at elevated temperatures to give a mixture of three diastereomers. ${ }^{25}$ With substrates containing propargylic TIPS ethers (Table 2, entries 8 and 9), reaction with Red-Al gave only low yields of products. However, DIBALH cleanly reduces the silylimines from entries 8 and 9 to give products in high yields with varying levels of diastereocontrol.

Acetylation of the reduction products with TIPS protecting groups required the addition of 4 equiv of NEt_{3} to prevent decomposition. A substrate with an allylic benzyl ether (Table 1, entry 4) was cleanly reduced with Red-Al, but it decomposed upon attempted acetylation, even in the presence of NEt_{3}. Presumably, reaction of the benzyl group leads to decomposition, since the substrate with an allylic TIPS ether (Table 2, entry 8) was acetylated without problem. For all substrates, reduction and acetylation of the silylimines produces allylic amides in higher yields than hydrolysis to the corresponding cyclopentenones

In conclusion, we have developed a practical, $\mathrm{PMe}_{3}-$ free catalytic system for synthesizing bicyclic iminocyclopentenes from the air- and moisture-stable precatalyst $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$. The yields of cyclopentenones from hydrolysis are the same as previously reported for the air- and moisture-sensitive precatalyst $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$. In addition, we have developed a reduction to give allylic amides in yields which are consistently higher than hydrolysis to the cyclopentenones. Future work will include the development both of intermolecular and asymmetric versions of these and related cyclizations.

Experimental Section

All reactions involving organometallic reagents were conducted under an atmosphere of purified argon using standard Schlenk techniques. All organic reactions were performed under an atmosphere of argon or nitrogen. Nuclear magnetic resonance (NMR) spectra were accumulated at 300 MHz . Toluene and tetrahydrofuran were dried and deoxygenated by continuous refluxing over sodium/benzophenone ketyl followed by distillation. Methylene chloride was dried by continuous refluxing over CaH_{2} followed by distillation. Diethyl ether was used with no preparative drying. All enynes used for cyclization reactions, unless stated otherwise, were prepared as in Berk et al. ${ }^{7}$ trans-1-(allyloxy)-2-(phenylethynyl)cyclohexane (Table 1, entry 5, and Table 2, entry 6) was prepared by ring opening of cyclohexene oxide with (phenylethynyl)lithium and $\mathrm{BH}_{3} \cdot \mathrm{OEt}_{2}^{26}$ followed by protection of the alcohol with allyl bromide. ${ }^{27} \mathrm{Et}_{3} \mathrm{SiCN}$ was prepared by the procedure of $\mathrm{Becu} .^{28}$ All other reagents were either prepared according to published procedures or were available from commercial sources and used without further purification. For all products, the stereochemistry at the ring carbon α to the acetamido group was assigned on the basis of the characteristic ${ }^{1} \mathrm{H}$ NMR shifts. For the endo acetamido groups, the amide NH peak occurs at around 7 ppm in CDCl_{3}. For the exo acetamido groups, the amide NH peak occurs at around 5.1 ppm in CDCl_{3}. NOE data
(24) The origins of the diastereoselectivites are unclear at the present time as the reduction of imines has received little mechanistic investigation.
(25) The cyclization reaction itself results in two diastereomers at the TIPS ether carbon (Table 2, entries 7-9). For diastereoselectivities of entries 8 and 9 , see ref 7 b (also contains discussion on origins of selectivities). NMR experiments have shown the selectivity for entry 7 to be 2.2:1 in favor of the exo TIPS ether.
(26) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
(27) Bartlett, A. J.; Laird, T.; Ollis, W. D. J. Chem. Soc., Perkin Trans. 1 1975, 1315.
(28) Becu, C.; Anteunis, M. J. O. Bull. Soc. Chem. Belg. 1987, 96, 115.
for one set of diastereomers from DIBALH reduction of an iminocyclopentene (Table 2, entry 5) were utilized to establish the relative stereochemistry. All other stereocenters on products were assigned by X-ray or NOE studies. Yields refer to isolated yields of compounds estimated to be $>95 \%$ pure (unless otherwise noted) as determined by 'H NMR and either capillary GC (known compounds) or combustion analysis (new compounds). Elemental analyses were performed by $\mathrm{E}+\mathrm{R}$ Microanalytical Laboratory, Corona, NY.

General Procedure for the Conversion of Enynes to Iminocyclopentenes. A flame-dried Schlenk flask was at tached to a Schlenk line and allowed to cool. $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(0.1$ $\mathrm{mmol}, 26 \mathrm{mg}$) ground with a mortar and pestal and toluene $(2-3 \mathrm{~mL})$ were added to the flask, which was cooled to -78 ${ }^{\circ} \mathrm{C}$. n - BuLi ($80 \mu \mathrm{~L}$ of 2.5 M in hexanes) was added dropwise, with care to ensure that none of it touched the sides of the flask. After 1 h at $-78^{\circ} \mathrm{C}$, the enyne (1.0 mmol) was added. I'he reaction mixture was stirred for another 1 h at $-78^{\circ} \mathrm{C}$ and was allowed to warm to rt over 1 h . After $3-5 \mathrm{~h}$ at rt, $\mathrm{Et}_{3} \mathrm{SiCN}(1.15 \mathrm{mmol})$ was added. The flask was then heated overnight in an oil bath at $45-55^{\circ} \mathrm{C}$.

Conversion of Iminocyclopentenes to Allylic Silylamines. General Procedure A. The reaction was cooled to rt, and Red-Al (6 mmol equiv of "H", $840 \mu \mathrm{~L}$) was added. After 1 h at rt, the reaction was quenched into 50 mL each of $5 \% \mathrm{NaOH}$ and ether, and the aqueous layer was extracted with $2 \times 50 \mathrm{~mL}$ of ether. The combined organic extracts were washed with brine and dried over MgSO_{4}, and the crude product mixture was concentrated to 15 mL .

General Procedure B. The reaction was cooled to rt, and DIBALH (4 mL of 1 M in THF) was added. After the reaction was heated to $50^{\circ} \mathrm{C}$ overnight, it was quenched into 50 mL each of $5 \% \mathrm{NaOH}$ and ether. The aqueous layer was extracted with $2 \times 50 \mathrm{~mL}$ of ether, and the combined organic extracts were washed with brine and dried over MgSO_{4}. The crude product mixture was concentrated to 15 mL .

General Procedure for the Conversion of Silylamines to Amides. Acetyl chloride ($2 \mathrm{mmol}, 143 \mu \mathrm{~L}$) was added to the crude silylamine. After 1 h at rt , the reaction was quenched with 50 mL each of $5 \% \mathrm{NaOH}$ and ether. The aqueous layer was extracted with $2 \times 50 \mathrm{~mL}$ of ether, and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated to produce the crude product.

3-((Triisopropylsilyl)oxy)-1-undecen-6-yne (Table 2, Entry 8). Undec-1-en-6-yn-3-ol ${ }^{7}(30 \mathrm{mmol})$ was protected by the procedure of Corey. ${ }^{29}$ The product was purified by flash chromatography (hexane) to yield $2.8 \mathrm{~g}(30 \%)$ of a pale yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~m}$, $1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.32$ (quart, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 4$ $\mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~m}, 21 \mathrm{H})$, $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 141.1$, $114.4,80.4,79.7,73.0,37.4,31.2,21.9,18.4,18.1,14.3,13.6$, 12.4. IR (neat, cm^{-1}): 2943, 2866, 1464, 1382, 1093, 1067, 991, 922, 837, 681. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{OSi}: \mathrm{C}, 74.46 ; \mathrm{H}, 11.87$. Found: C, 74.64; H, 12.03.

Tricyclic Cyclopentenone (Table 1, Entry 5). The silylimine from trans-1-(allyloxy)-2-(phenylethynyl)cyclohexane ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$) was obtained using a modification of the general procedure with 0.15 mmol of $\mathrm{C}_{2} \mathrm{TiCl}_{2}, 0.30 \mathrm{mmol}$ of $n-\mathrm{BuLi}$, and 5 mL of toluene. 'The toluene was removed from the Schlenk flask in vacuo, and the crude silylimine was cannula transferred with 30 mL of THF to a 250 mL Schlenk flask under argon. Three mL of saturated aqueous CuSO_{4} was added dropwise followed by vigorous stirring of the mixture for 4 h at rt . The reaction mixture was extracted with 50 mL each of 0.5 N HCl and ether, and the aqueous layer was reextracted with $2 \times 50 \mathrm{~mL}$ ether. The combined organic layers were washed with 0.5 N NaOH and brine and dried over MgSO_{4} to afford the crude product. Purification by flash chromatography (ether:hexane $=4: 1$) afforded 180 mg (67%) of an off-white solid. Mp: 118-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.24(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=6.2,10.2$
(29) Corey, E. J.; Cho, H.; Rucker, C.; Hua, D. H. Tetrahedron Lett 1981, 22, 3455.
$\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.0(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J$ $=7.0,18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1$ $\mathrm{H}), 1.40(\mathrm{~m}, 3 \mathrm{H}), 1.06(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.6,174.2,138.7,133.1,129.9,127.7,127.6$, 81.9, 73.6, 48.7, 41.0, 36.2, 33.2, 28.1, 25.6, 24.2. IR (KBr, cm^{-1}): 2920, 2858, 1692, 1643, 1443, 1108, 1092, 1003, 707. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 80.56; $\mathrm{H}, 7.51$. Found: $\mathrm{C}, 80.66$; $\mathrm{H}, 7.72$. The relative stereochemistry for the product was determined by X-ray crystallographic analysis.

3-Acetamido-2-phenylbicyclo[3.3.0]oct-1-ene (Table 2, Entry 1). 1-Phenyl-6-hepten-1-yne ($170 \mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure. The reduction was accomplished with procedure A. The crude amide was purified by filtering and washing several times with cold pentane to yield 195 mg (83\%) of a white solid. Mp: 141$143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ H), $7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.15$ (dd, $J=9.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 1.94$ ($\mathrm{s}, 3 \mathrm{H}$) $, 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.9,136.4,132.8,128.9,127.9,126.8$, $125.0,50.6,41.2,38.2,35.4,31.5,25.4,24.1$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3282, 2945, 2858, 1664, 1517, 1492, 1356, 1267, 764, 693. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 79.63 ; \mathrm{H}, 7.94$. Found: $\mathrm{C}, 79.75$; $\mathrm{H}, 8.15$. If reduction was accomplished with procedure B , two diastereomers (3:2) were obtained. The two crude amides were separated and purified by flash chromatography (ethyl acetate: hexane $=1: 1$). The minor diastereomer was isolated as 70 $\mathrm{mg}(30 \%)$ of a white solid. Mp: $147-149^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H})$, $5.37(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.95$ $(\mathrm{m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 169.2,153.6,135.8,128.4,128.3,126.6,126.1,60.9$, $50.8,40.0,32.3,28.7,25.5,23.4$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3307,2956$, 2859, 1644, 1538, 1497, 1443, 1372, 1303, 1152, 768, 693. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 79.63 ; \mathrm{H}, 7.94$. Found: $\mathrm{C}, 79.50$; H, 8. 12 .

3-Acetamido-2-phenyl-7-oxabicyclo[3.3.0]oct-1-ene (Table 2, Entry 2). 3-(Allyloxy)-1-phenyl-1-propyne (170 mg, 1.0 mmol) was converted to the iminocyclopentene by the general procedure. 'Ihe reduction was accomplished with procedure A. The crude amide was purified by filtration and washing several times with cold pentane to yield 215 mg (89\%) of a white solid. Mp: $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 3 \mathrm{H}), 3.52(\mathrm{~m}$, $1 \mathrm{H}), 3.18(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,135.6,133.6,129.1,127.7,127.1,122.6$, $75.7,72.1,51.8,39.2,39.0,24.0$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3292, 2963, 2833, 1665, 1515, 1490, 1366, 1268, 1088, 1044, 766, 693. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}, 74.04 ; \mathrm{H}, 7.04$. Found: C , 73.99; H, 7.05.

3-Acetamido-2-methyl-7-phenyl-7-azabicyclo[3.3.0]oct-1-ene (Table 2, Entry 3). N (2-Butynyl)- N-allylaniline (247 $\mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure. The reduction was accomplished with procedure A. The product was purified by flash chromatography (ethyl acetate:hexane $=7: 3$) to afford $156 \mathrm{mg}(61 \%)$ of a light orange solid. Mp: $174-176{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.20(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1$ H), $3.28(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 168.3,148.4,130.9,129.1,122.4,116.5,112.9,55.7$, $51.2,50.8,39.2,37.9,23.8,11.8$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3321, 2940 , 1661, 1600, 1505, 1476, 1369, 1338, 1274, 1187, 746, 690. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 74.96 ; \mathrm{H}, 7.76$. Found: C , 74.79 ; H, 7.75.

3-Acetamido-5-methyl-2-phenyl-7-oxabicyclo[3.3.0]oct-1-ene (Table 2, Entry 4). 3-((2-Methyl-2-propenyl)oxy)-1-phenyl-1-propyne ($372 \mathrm{mg}, 2.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure with the modification of 0.20 mmol of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 0.40 \mathrm{mmol}$ of $n-\mathrm{BuLi}$, and 6 mL of toluene. The reduction was accomplished with procedure A. The product was purified by flash chromatography (ethyl acetate:hexane $=3: 2$) to give $370 \mathrm{mg}(75 \%)$ of a white solid. Mp: $127-129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 7.37(\mathrm{t}, J=$
$7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}) 3.82(\mathrm{dd}$, $J=7.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J$ $=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,135.1,132.1,128.5,127.2,126.6,121.9$, $80.5,72.0,58.2,46.6,45.6,24.8,23.5$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3233$, 2959, 2846, 1662, 1638, 1520, 1496, 1352, 1274, 1062, 922, 768, 695. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}: ~ \mathrm{C}, 74.68 ; \mathrm{H}, 7.44$. Found: $\mathrm{C}, 74.65, \mathrm{H}, 7.44$. To determine the relative stereochemistry at the ring carbon α to the acetamido group, the iminocyclopentene was also reduced by procedure B to yield a mixture of two diastereomers (3:2). The major diastereomer was the same one obtained exclusively with procedure A. A nuclear Overhauser enhancement study was undertaken to determine the relative configuration of each diastereomer. Irradiation of the C-5 methyl group at $\delta 1.4\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the major diastereomer gave no enhancement of the amide NH at $\delta 6.85$, while the same experiment produced a 2% enhancement in the minor diastereomer. 'I'he stereochemistry for the two diastereomers was therefore assigned as shown:

Red-Al product minor DIBALH product
major DIBALH product
Table 2, Entry 5. trans-1-(Allyloxy)-2-(phenylethynyl)cyclohexane ($240 \mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure with the modification of 0.15 mmol of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 0.30 \mathrm{mmol}$ of $n-\mathrm{BuLi}$, and 5 mL of toluene. The reduction was effected by procedure A with the modification that the reaction was heated for 2 h at $50^{\circ} \mathrm{C}$. The product was purified by flash chromatography (ether: hexane $=9: 1)$ to give $224 \mathrm{mg}(72 \%)$ of a pale orange solid. The product exists as approximately a $3: 2$ mixture of amide rotamers by NMR. Although the product is unstable at room temperature for extended periods, it can be stored in the freezer with little decomposition. Mp: $50-53^{\circ} \mathrm{C}$. It proved difficult to assign ${ }^{1} \mathrm{H}$ peaks to the individual rotamers, so a list of peaks without assignments or integrations is given. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.26$ (m), 7.12 (d), $6.64(\mathrm{~s})$, 6.18 (s), 5.92 (s), 4.00 (dd), 3.81 (m), $3.50(\mathrm{t}), 3.28(\mathrm{~m}), 3.13$ $(\mathrm{m}), 2.89(\mathrm{~m}), 2.77(\mathrm{~m}), 2.68(\mathrm{~m}), 1.94(\mathrm{~m}), 1.85(\mathrm{~s}), 1.81(\mathrm{~s})$, $1.71-0.87(\mathrm{~m}), 0.35(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 168.4$, $167.6,141.7,138.7,137.7,136.4,129.2,128.9,128.5,127.5$, $127.2,122.9,112.8,77.5,77.1,70.8,68.0,50.6,48.3,47.5,44.0$, $43.0,42.5,36.2,34.6,33.0,32.6,30.6,26.6,26.2,24.9,24.6$, 24.2, 24.0. Ir (neat, cm^{-1}): 3288, 2932, 2857, 1682, 1514, 1450, $1367,1260,1100,1012,867,751,700$. The relative stereochemistry of the tricyclic ring system was assigned based upon analogy to the related tricyclic ketone (Table 1, entry 5).

3-Acetamido-8-methyl-2-phenyl-7-oxabicyclo[3.3.0]oct-1-ene (Table 2, Entry 6). 3-(Allyloxy)-1-phenyl-1-butyne (186 $\mathrm{mg}, 1 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure. The reduction was accomplished with procedure A. The product was purified by flash chromatography (ethyl acetate:hexane $=4: 1$) to give $210 \mathrm{mg}(82 \%)$ of a 95:5 mixture of diastereomers as a white solid. Recrystallization from ether yields $185 \mathrm{mg}(73 \%)$ of a single diastereomer as a white solid. Mp: $118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCL}_{3}\right): \delta 7.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1$ $\mathrm{H}), 4.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (quin, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43$ $(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.9$, $135.4,132.8,129.2,127.8,127.3,122.4,80.3,74.2,58.6,39.9$, $38.9,24.2,21.0$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3296,2966,2849,1665,1516$, $1493,1355,1254,1056,758,696$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19}-$ $\mathrm{NO}_{2}: \mathrm{C}, 74.68 ; \mathrm{H}, 7.44$. Found: C, $74.51 ; \mathrm{H}, 7.51$.

3-Acetamido-2-butyl-6-((triisopropylsilyl) oxy)bicyclo-[3.3.0]oct-1-ene (Table 2, Entry 7). 3-((Triisopropylsilyl)-
oxy)-1-undecen-6-yne ($324 \mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure with the modification of 0.15 mmol of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 0.30 \mathrm{mmol}$ of $n-\mathrm{BuLi}$, and 5 mL of toluene. The reduction was accomplished by procedure A with the modification of heating the reaction overnight at 50 ${ }^{\circ} \mathrm{C}$. To prevent product decomposition, the acetylation was carried out by the general procedure with the addition of 4 equiv of NEt_{3}. The product was purified by flash chromatography (ether:hexane $=3: 2$) to afford $236 \mathrm{mg}(63 \%)$ of a mixture of three diastereomers ($1: 1: 3.5$) as a light yellow oil. A second chromatography allowed the first diastereomer to be isolated as a light yellow solid, but the other two diastereomers could not be separated. First diastereomer. Mp: $88-90{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.23(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}), 1.03(\mathrm{~m}, 21 \mathrm{H}), 0.85(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0,146.0,131.2$, $71.1,61.1,54.8,38.3,30.2,25.9,23.6,22.6,20.9,18.2,18.1$, 13.9, 12.4. IR (KBr, cm^{-1}): 3252, 3068, 2956, 2865, 1639, 1557, 1463, 1376, 1297, 1152, 1063, 1012, 882, 803, 682. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{Si}$: C, 70.17; H, 11.01. Found: C, 70.32 , $\mathrm{H}, 10.99$. To determine the relative stereochemistry of the OTIPS group for the major diastereomeric product from Table 2, entry 7, an NOE study was undertaken. Irradiation of the C-5 proton at $\delta 3.83\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ of the major diastereomer gave no enhancement of the $\mathrm{C}-6$ proton at $\delta 2.70$, while the same experiment produced an 8.5% enhancement in the first minor diastereomer. The stereochemistry for the two diastereomers was therefore assigned as shown:

0%

Minor Diastereomer

3-Acetamido-2-butyl-8-((triisopropylsilyl)oxy)bicyclo-[3.3.0]oct-1-ene (Table 2, Entry 8). 5-((Triisopropylsilyl)-oxy)-1-undecen-6-yne ($324 \mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure with the modification of 0.15 mmol of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 0.30 \mathrm{mmol}$ of $n-\mathrm{BuLi}$, and 5 mL of toluene. The reduction was accomplished with procedure B, and acetylation was carried out by the general procedure with the addition of 4 equiv of NEt_{3}. The product was purified by flash chromatography (ether:hexane $=3: 2$) to afford 300 $\mathrm{mg}(80 \%)$ of a $4: 1$ mixture of diastereomers as a light yellow oil. A pure sample of the major diastereomer was obtained by a second chromatography. Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.52$ (quart, $\left.J=9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.8(\mathrm{~s}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.97(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 4 \mathrm{H})$, $1.14(\mathrm{~m}, 21 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 189.0,148.8,133.9,68.2,60.0,44.4$, $41.9,38.8,30.5,29.8,28.4,23.4,23.1,18.1,13.8,12.5$. IR (neat, cm^{-1}): 3275, 2956, 2865, 1650, 1556, 1464, 1373, 1296, 1052, 883, 681. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 70.17 ; \mathrm{H}, 11.01$. Found: C, 70.29 ; H, 11.10. The stereochemistry of the TIPS ether was assigned on the basis of NOE studies on the corresponding cyclopentenone.?

3-Acetamido-2-butyl-9-((triisopropylsilyl)oxy)bicyclo-[3.4.0]non-1-ene (Table 2, Entry 9). 6-((Triisopropylsilyl)-oxy)-1-dodecen-7-yne ($336 \mathrm{mg}, 1.0 \mathrm{mmol}$) was converted to the iminocyclopentene by the general procedure with the modification of 0.15 mmol of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 0.30 \mathrm{mmol} n \mathrm{BuLi}$, and 5 mL of toluene. In addition, the reaction time at rt was increased to overnight. The reduction was affected by procedure B, while acetylation was carried out by the general procedure with the addition of 4 equiv of NEt_{3}. The product was purified by flash chromatography (ether:hexane $=7: 3$) to give $253 \mathrm{mg}(65 \%)$ of a mixture of four diastereomers $(16: 16: 2: 1)$ as a yellow oil. The
first diastereomer was isolated by a second chromatography as a light yellow solid. Hirst diastereomer. Mp: 74-76 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ $(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.8(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H})$, $1.9(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.20$ (m, 4 H$), 0.99(\mathrm{~m}, 21 \mathrm{H}), 0.83(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 189.2,144.6,132.3,64.8,55.8,40.4,37.9,36.3,35.7$, $30.0,24.9,23.5,22.4,19.9,18.1,13.8,12.3$. IR (neat, cm^{-1}): 3273, 2932, 2864, 1644, 1556, 1463, 1372, 1078, 1031, 883, 785, 680. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{NO}_{2} \mathrm{Si}: \mathrm{C}, 70.70 ; \mathrm{H}, 11.13$. Found: C, 70.98; H, 11.12. The stereochemistry of the TIPS
ether was assigned on the basis of NOE studies on the corresponding cyclopentenone. ${ }^{7}$

Acknowledgment. We thank the National Institute of Health for support of this research. S.L.B. acknowl edges additional support as an Alfred P. Sloan Fellow and a Camille \& Henry Dreyfus Teacher-Scholar. F.A.H. thanks the National Science Foundation for a predoctoral fellowship. We acknowledge Ms. Natasha Kablaoui for assisting with the NOE studies.

JO951763L

Hawley's
 CONDENSED CHEMICAL DICTIONARY

Fourtcenthedition

$$
\begin{aligned}
& \text { aro } \\
& \cos
\end{aligned}
$$

RICHARDJ: LEWS SE:

Hawley's Condensed Chemical Dictionary

 Fourteenth EditionRevised by Richard J. Lewis, Sr.

JOHN WILEY \& SONS, INC.

This book is printedon acid-free paper.
Copyright 2001 by John Wiley \& Sons, Inc., New York. All rights reserved.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, tecording, scaming or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923. (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 605 Third Avenue. New York, NY 10158-0012, (212) 850-6011, fax (212) 8506008, E-Mail: PERMREQ@WILEY.COM.

For ordering and customes service, call 1-800-CALL-WILEY.

Library of Congress Cataloging-in-Publication Data:

Condensed chemical dictionary.
Hawley's condensed chemical dictionary.-lith ed./ rev, by Richard J. Lewis, Sr. p. em. Includes index.
ISBN 0-471-38735-5 (cloth: acid-free paper)

1. Chemistry-Dictionaries. I. Title: Condensed chemical dictionary. If Hawley, Gessner Goodrich, 1905-1II. Lewis, Richard J.. Sr. IV. Tite.

> QDS C5 2002
> $540^{\prime \prime} .3-\mathrm{dc} 21$

2001045614
Primed in the United States of America.
10987654

AlKYL

alkyl. A paraffinic hydrocarbon group which may he derived from an alkane by dropping one hydrogen from the formula. Examples are methyl $\mathrm{CH}_{3}{ }^{+}$; ethyl $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{*}$, propyl $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{+}$, isopropyl $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}^{+}$. Such groups are often represented in formulas by the letter R and have the generic formula. $\mathrm{C}_{n} \mathrm{H}_{2 x+1}$.
See aryl.

alkylaryl polyethyleneglycol ether.

Use: in surface-active agents.
See isooctylphenoxypolyoxyethylene ethanol for a typical example of this class of compound.
alkylaryl sulfonate. An organic sulfonate of combined aliphatic and aromatic structure, e.g., alkylbenzene sulfonate.
alkylate. (1) A product of alkylation. (2) A term uscd in the petroleum industry to designate a branched-chain paraffin derived from an isoparaffin and an olefin, e.g., isobutane reacts with ethylene (with catalyst) to form 2,2-dimethylbutane (neohexane). The product is used as a high-octane blending component of aviation and civilian gasolines. (3) In the detergent industry, the term is applied to the reaction product of benzene or its homologs with a long-chain olefin to form an intermediate, e.g., dodecylbenzene, used in the manufacture of detergents. It also designates a product made from a longchain normal paraffin that is chlorinated to permit combination with benzene to yield a biodegradable alkylate. The adjectives hard and soft applied to detergents refer to their ease of decomposition by microorganisms.
See biodegradability; detergent.
alkylation. (1) The introduction of an alkyl radjcal into an organic molecule. This was one of the early chemical processes used in Germany to furnish intermediates for improved dyes, e.g., dimethylaniline. Other alkylation products are cumene, dodecylbenzene, ethylbenzene, and nonylphenol. (2) A process whereby ahigh-octane blending component for gasolines is derived from catalytic combination of an isoparaffin and an olefin.
See alkylate (2); neohexane.
alkylbenzene sulfonate. (ABS). A branchedchain sulfonate type of synthetic detergent, usually a dodecylbenzene or tridecylbenzene sulfonate. Such compounds are known as "hard" detergents because of their resistance to breakdown by microorganisms. They are being replaced by linear sulfonates. See allkyl sulfonate; 引inear molecule; detergent; sodium dodecylbenzene sulfonate.
alkyl diaryl phosphate ester. See
"Santicizer 141" [Solutia].
alkyldimethylbenzylammonium choride.
General name for a quaternary detergent. See benzalkomim chloride.
alkylene. A phosphated long-chain alcohol.
alkyl fluorophosphate. See diisopropyl fluorophosphate.
alkylolamine. See alkanolamine.
alkyl sulfonate. (linear alkylate snlfonate; LAS). A straight-chain alkylbenzene sulfonate, a detergent specially tailored for biodegradability. The linear alkylates may be normal or iso (branched at the end only), but are C_{30} or longer.
See sodium dodecylbenzene sulfonate.
alkyne. See acetylene hydrocarbon.
Allan-Robinson reaction. Preparation of flavones or isoflavones by condensing o-hydroxyaryl ketones with anhydrides of aromatic acids and their sodium salts.
allantoin. (glyoxyldiureide; 5-ureidohydantoin). $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{3}$. The end product of purine metabolism in mammals other that humans and other primates; it results from the oxidation of uric acid. Properties: White to colorless powder or crystals; odorless; tasteless. Mp 230 C (decomposes). 1 g is soluble in 190 cc water or 500 cc alcohol; readily soluble in alkalies. Optically active forms are known.
Derivation: Produced by oxidation of uric acid. Also present in tobacco seeds, sugar beets, wheat sprouts. Use: Biochemical research, medicine.
allele. One of two or more types of genes that may occur at a given position on a strand of DNA.
allelopathic chemical. Any of a wide range of natural herbicides of varying toxicity produced by many species of plants, as well as by soil microorganisms (bacteria, fungi). These compounds adversely affect other plants in the vicinity, either inhibiting germination and growth or killing them outright. They are extracted from the growing plant by leaching of its leaves, root exudates, and decomposition of dead tissue. Examples of plants found to be sources of these toxic compounds are sunflowers, oats, and soybeans. Among the products that have been identified are amygdalin, caffeine, gallic acid, and arbutin. Many types of chemical structure are represented. Research is directed toward breeding and cultivation of allelopathic plants to utilize their weed-killing ability.
allene. (propadiene; dimethylenemethane). $\mathrm{H}_{2} \mathrm{C}, \mathrm{C}_{\mathrm{CH}}^{2}$.
Properties: Colorless gas. Unstable. Fp-136.5C, bp 34.5 C . Can be readily liquefied.
ability of a catalyst to discriminate annong molecules on the basis of their shapes is of great value in the cracking of straight-chain hydrocarbons and has attractive possibilities in other types of catalytic reactions,
See zeolite; cage zeolite.
catalyst, stereospecific. An organometallic catalyst that permits control of the molecular geometry of polymeric molecules. Examples ate Ziegler and Natta catalysts derived from a transition metal halide and a metal alkyl or similar substances. There are many patented catalysts of this general type, most of them developed in connection with the production of polypropylene, polyethylene, or other polyolefins.
See polymer, stereospecific; Natta catalyst; Ziegler catalyst.
catalyst, thermonuclear. See carbon cycle (2).
cataphoresis. The migration of colloidal particles toward an electrode under the influence of an electric current.
catechol. See pyrocatechol.
catecholborane. (1,3,2-benzodioxaborole). A monofunctional hydroborating agent.
Properties: A liquid. Mw 119.92 , mp 12 C , bp 50 C (50 mm Hg), optical rotation 1.5070 degrees (20C). Use: Preparation of alkaneboronic acid and esters from olefins.
catenane. A compound with interlocking rings that are not chemically bonded but that cannot be separated without breaking at least one valence bond. The model would resemble the links of a chain.
catenyl. An ester that has been reacted with an alkylene oxide or its polymer.
"Cat-Floc" [Nalco]. (diallyldimethylammonium chloride). TM for a quaternary ammonium polymer.
Derivation: Monomer in water solution is mixed with a catalytic amount of butylhydropernxide and kept at $50-75 \mathrm{C}$ for 48 h . The solid formed is taken up in water, precipitated, and washed with acetone. Use: Flocculating agent, textile spiming aid, antistatic agent, wet-strength improvers in paper, rubber accelerators, curing epoxy resins, suffactants, bacteriostatic and fungistatic agents.
catharometer. Device for determining rate of
flow or change in composition of gases.
cathetometer. A device for exact measurement or observation of short vertical distances, which
consists of a horizontal-reading telescope or microscope movable along a vertical scale.
cathode. The negative electrode of an electrolytic cell, to which positively charged ions migrate when a current is passed as in electroplating baths. The cathode is the source of free electrons (cathode rays) in a vacuum tube. In a primary cell (batery), the cathode is the positive electrode.
See anode; electrode.
cathode sputtering. See sputtered coating.
cathodic protection. The reduction or prevention of corrosion of a metallic surface by making it cathodic, e.g. by the use of sacrificial anodes for impressed currents bringing a metal, by an external current, to a potential where it is thermodynamically
stable. stable.
catholyte. The solution surrounding the cathode in an electrolytic cell.
cation. An ion having a positive charge, Cations in a liquid subjected to electric potential collect at the negative pole, or cathode.
cation exchange. See ion exchange.
cationic reagent. One of several surface-active substances in which the active constituent is the positive ion. Used to flocculate and collect minerals that are not flocculated by oleic acid or soaps (in which the surface-active ingredient is the negative ion). Reagents used are chiefly quaternary ammonum compounds, e.g., cetyltrimethylammonium bromide.
catlinite. (pipestone). A fine-grained silicate mineral related to pyrophyllite, which is easily compressible, has high surface friction, and is used for gaskets in very high-pressure equipment.
caulking compound. See sealant.
caustic. (1) Unqualified, this term usually refers to caustic soda (NaOH). (2) As an adjective, it refers to any compound chemically similar to NaOH, e.g., caustic alcohol ($\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{ONa}$). (3) Any strongly alkaline material that has a corrosive or irritating effect on living tissue.
caustic baryta. See barium hydroxide.
caustic embrittlement. The corrosion resulting in cracking of steel stressed beyond its yield point, due to localized concentration of hydroxide ions breaking down the cohesion between the ferrite
grains. grains.
causticized ash. Combinations of soda ash and caustic sodain definite proportions and marketed for

ORgANIC CHEMISTRY

G. Marc Loudon

Purdue University

A Division of Addison-Wesley Publishing Company
Redwood City, California \S Menlo Park, California Reading, Massachusetts § New York § Don Mills, Ontario § Wokingham, U.K. Amsterdam § Bonn § Paris § Milan § Sydney § Singapore § Tokyo

Seoul § Taipei $\$$ Mexico City $\$$ San Juan

Sponsoring Editor: Anne Scanlan-Rohrer
Assistant Editor: Leslie With
Editorial Assistant: Karmen Butterer
Production Supervisor: Rani Cochran
Project Manager and Art Coordinator: Joan Keyes, Jonathan Peck Typographers
Book Design: Patrick Devine, Jonathan Peck Typographers
Design Manager: Michele Carter
Cover Design: Yyo Riezebos
Cover Illustration: Joseph Maas
Copy Editor: John A. Servideo
Figurative Art: Alexander Teshin Associates and Jonathan Peck Typographers
Composition and Film Coordinator: Vivian McDougal
Composition and Film: Jonathan Peck Typographers
Executive Marketing Manager: Anne Emerson
Marketing Communications Manager: Nathalie Mainland
Senior Manufacturing Coordinator: Merry Free Osborn
Printing: Von Hoffmann
Dacron ${ }^{(8)}$ is a registered trademark of E.I. Du Pont De Nemours and Company.
Mylar ${ }^{\text {® }}$ is a registered trademark of the E.I. Du Pont De Nemours and Company.
Polaroid ${ }^{\circledR}$ is a registered trademark of Polaroid Corporation.

Library of Congress Cataloging-in-Publication Data

Loudon, G. Marc.
Organic Chemistry/ G. Marc Loudon.-3rd ed.
p. cm.

Includes index.
ISBN 0-8053-6650-4

1. Chemistry, Organic. I. Title

OD251.2.L68 1995
547-dc20
© 1995, 1988 by The Benjamin/Cummings Publishing Company, Inc.
(C) 3984 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a database or retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

$$
2345678910-\mathrm{VH}-98979695
$$

The Benjamin/Cummings Pubishing Company, Inc.
390 Bridge Parkway
Redwood City, CA 94065

The E2 reactions of sulfonate esters, like the analogous reactions of ably babides, can be used to prepare alkenes:

This reaction is especially useful for cases in which the acidic conditions of alcohol dehydration lead to rearrangements or other side reactions, or for primary alcohols in which dehydration is not an option.

To summarize: An alcohol can be made to undergo substitution and elimination reactions typical of the corresponding alkyl halides by converting it into a sulfonate ester.

Problems

Design a preparation of each of the following compounds from an alcohol using sulfonate ester methodology.
*(a)

(b)

10.31 Give the product of each of the following sequences of reactions.
*(a)

(b)

18. Alkylating Agents

As you've learned, alkyl halides, alkyl tosylates, and other sulfonate esters are reactive in nucleophilic substitution reactions. In a nucleophilic substitution, an alkyl group is transferred from the leaving group to the nucleophile.

The nucleophile is said to be allkylated by the alkyl halide or the sulfonate ester in the same sense that a Bronsted base is protonated by a strong acid. For this reason, alkyl
halides, sulfonate esters, and related compounds are sometimes referred to as alkylating agents. To say that a compound is a good alkylating agent usually means that it reacts rapidly with nucleophiles in substitution reactions-that is, in $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} 1$ reactions.

C. Ester Derivatives of Strong Inorganic Acids

Esters of strong inorganic acids are well known compounds. The structure of such an ester is derived conceptually by replacing the acidic hydrogen(s) of a strong acid with alkyl or aryl group(s). For example, dimethyl sulfate is an ester in which the acidic hydrogens of sulfuric acid are replaced by methyl groups.

sulfuric ače

bumby sufate

Because dimethyl sulfate can be prepared from methanol, it can also be viewed as a methanol derivative.

Alkyl esters of strong inorganic acids are typically very potent alkylating agents, because they contain leaving groups that are very weak bases. For example, dimethyl sulfate is a very effective methylating agent, as shown in the following example.

(10.20)

Dimethyl sulfate and diethyl sulfate are available commercially. These reagents, like other reactive alkylating agents, are toxic because they react with nucleophilic functional groups on proteins and nucleic acids.

Certain monoalkyl esters of phosphoric acid are utilized in nature as alkylating agents (Scc. 17.6B). DNA and RNA themselves are polymerized dialkyl esters of phosphoric acid (Sec. 27.11B).

Along the same line, alkyl halides can be thought of as alkyl esters of the halogen acids. Methyl bromide, for example, is conceptually derived by replacing the acidic hydrogen of HBr with a methyl group. As you have learned, this "ester" is an effective alkylating agent.

[^0]: All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage or retrieval system, without permission in writing from the publisher.

 Published simultaneously in Canada.
 Printed in the United States of America.
 International Standard Book Number: 0-669-04529-2
 Library of Congress Catalog Card Number: 85-60981

[^1]:
 (c) 2003, 2000, 1997, 1994, 1993, 1988, 1985, 1981, 1977 by Pearson Education, Inc.

 Pearson Education, Inc.
 Upper Saddle River, NJ 07458

[^2]: (1) Yamazaki, M.; Okuyama E.; Kobayashi, M.; Inoue, H. Tetrahedron Lett 1981, 22, 135-136.
 (2) (a) Ondeyka, J. G.; Goegelman, R. T.; Schaeffer, J. M.; Kelemen, L.; Zitano, L. J. Antibiot. 1990, 43, 1375-1379. (b) Liesch, J. M.; Wichmann, C. F J. Antibiot. 1990, 43, 1380-1386. (c) Blanchflower, S. E.; Banks, R. M.; Everett, J. R.; Manger, B. R.; Reading, C. J. Antibiot. 1991, 44, 492-497.
 (3) Blanchflower, S. E.; Banks, R. M.; Everett, J. R.; Reading, C.J. Antibiot. 1993, 46, 1355-1363.
 (4) Banks, R. M.; Blanchflower, S. E.; Everett, J. R.; Manger, B. R.; Reading, C. I. Antibiot. 1997, 50, 840-846.
 (5) Whyte, A. C.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F. J. Nat. Prod. 1996, 59, 1093-1095.
 (6) (a) Polonsky, J.; Merrien, M.-A.; Prangé, T.; Pascard, C.; Moreau, S. J. Chem. Soc., Chem. Commun. 1980, 601-602. (b) Prangé, T.; Billion, M.A.; Vuilhorgne, M.; Pascard, C.; Polonsky, J.; Moreau, S. Tetrahedron Lett. 1981, 22, 1977-1980.
 (7) Fuchser, Jens. Beeinflussung der Sekundarstoffbildung bei Aspergillus ochraceus durch Variation der Kulturbedingungen sowie Isolierung, Strukturautklarung und Biosynthese der neuen Naturstotfe. Ph.D. Thesis, University of Göttingen, Germany, 1995. K. Bielefeld Verlag: Friedland, 1996 (Prof. A. Zeeck).
 (8) (a) Fenical, W.; Jensen, P. R.; Cheng, X. C. U.S. Patent 6,066,635, 2000. (b) Sugic, Y.; Hirai, H.; Inagaki, T.; Ishiguro, M.; Kim, Y.-J.; Kojima, Y.; Sakakibara, T.; Sakemi, S.; Sugiura, A.; Suzuki, Y.; Brennan, L.; Duignan J.; Huang, L. H.; Sutcliffe, J.; Kojima, N. J. Antibiot. 2001, 54, 911-916.
 (9) Qian-Cutrone, J.; Huang, S.; Shu, Y.-Z.; Vyas, D.; Fairchild, C.; Menendez, A.; Krampitz, K.; Dalterio, R.; Klohr, S. E.; Gao, Q. J. Am. Chem. Soc. 2002, 124, 14556-14557.
 (10) (a) Birch, A. J.; Wright, J. J. J. Chem. Soc., Chem. Commun. 1969, 644645. (b) Birch, A. J.; Wright, J. J. Tetrahedron 1970, 26, 2329-2344. (c) Birch, A. J.; Russcli, R. A. Tetrahedron 1972, 28, 29993008.

[^3]: (21) Williams, R. M.; Cao, J. Tetrahedron Lett. 1996, 37, 5441-5444.
 (22) (a) Blake, J.; Willson, C. D.; Rapoport, H. J. Am. Chem. Soc. 1964, 86, 5293-5299. For more regioselective methods, see: (b) Yamada, Y.; Ishii, T.; Kimura, M.; Hosaka, K. Tetrahedron Lett. 1981, 22, 1353-1354. (c) Sibi, M. P.; Christensen, J. W.; Kim, S.-G.; Eggen, M.; Stessman, C.; Oien, L. Tetrahedron Lett. 1995, 36, 62096212.

[^4]: (23) (a) Cooper, J.; Gallagher, P. T.; Knight, D. W. J. Chem. Soc., Perkin Trans. 1 1993, 1313-1317. For alternative baker's yeast reductions, see: (b) Sibi, M. P.: Christensen, J. W. Tetrahedron Lett. 1990, 31, 5689-5692. (c) Bhide, R.; Mortezaei, R.; Scilimati, A.; Sih, C. J. Tetrahedron Left. 1990, 31, 4827-4830.
 (24) Sccbach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 16241654.

[^5]: (25) Nigam, S. C.; Mann, A.; Taddei, M.; Wermuth, C.-G. Synth. Commun. 1989, 19, 31393142.

[^6]: (31) He, F.; Foxman, B. M.; Snider, B. B. J. Am. Chem. Soc. 1998, 120, $6417-$ 6418.
 (32) (a) Somei, M.; Karasawa, Y.; Kaneko, C. Heterocycles 1981, 16, 941 949. (b) Kametani, T.; Kanaya, N.; Thara, M. J. Chem. Soc., Perkin Trans. 1 1981, 959963.

[^7]: (33) The stereochemistry at the newly formed stereogenic centers in 52 and $\mathbf{5 3}$, and in all subsequent compounds, was assigned on the basis of ${ }^{1} H$ NMR data. In compounds where the indole substituent is on the same face of the diketopiperazine as the MOM ether, the signal for the methoxy group is at significantly higher field than in the situation where these two substituents are on opposite faces. This is due to the proximity of the methoxy group to the shielding effects of the aromatic system.
 (34) Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 13, 43394342.

[^8]: (37) Trost, B. M.; Fortunak, J. M. D. Organometallics 1982, 1, 7-13.
 (38) Fukuyama, T.; Liu, G. Pure Appl. Chem. 1997, 69, 501-505.
 (39) Boeckman, R. K., Jr.; Potenza, J. C. Tetrahedron Lett. 1985, 26, $1411-$ 1414.
 (40) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156. (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 72777287.

[^9]: ${ }^{\perp}$ Dedicated to Professor Ei-ichi Negishi on the occasion of his 60th birthday.
 ${ }^{\dagger}$ On leave from the Department of Organic Chemistry of the University of Valencia, Spain.
 \ddagger Present address: Tularik Inc., 270 East Grand Ave., South San Francisco, CA 94080.

 * Abstract published in Advance ACS Abstracts, December 1, 1995.
 (1) (a) Yamazaki, M.; Fujimoto, H.; Okuyama, E.; Ohta, Y. Proc. Jpn. Assoc. Mycotoxicol. 1980, 10, 27. (b) Yamazaki, M.; Okuyama, E.; Kobayashi, M.; Inoue, H. Tetrahedron Lett. 1981, 22, 135.
 (2) (a) Blizzard, T. A.; Marino, G.; Mrozik, H.; Fisher, M. H.; Hoogsteen, K.; Springer, J. P. J. Org. Chem. 1989, 54, 2657. (b) Blizzard, T. A.; Mrozik, H.; Fisher, M. H.; Schaeffer, J. M. J. Org. Chem. 1990, 55, 2256. (c) Blizzard, T. A.; Margiatto, G.; Mrozik, H.; Schaeffer, J. M.; Fisher, M. H. Tetrahedron Lett. 1991, 32, 2437. (d) Blizzard, T. A.; Margiatto, G.; Mrozik, H.; Schaeffer, J. M.; Fisher, M. H. Tetrahedron Lett. 1991, 32, 2441. (e) Blizzard, T. A.; Rosegay, A.; Mrozik, H.; Fisher, M. H. J. Labelled Compd. Radiopharm. 1990, 28, 461.
 (3) (a) Ondeyka, J. D.; Goegelman, R. T.; Schaeffer, J. M.; Kelemen, L. J. Antibiot. 1990, 43, 1375. (b) Liesch, J. M.; Wichman, C. F. J. Antibiot. 1990, 43, 1380.
 (4) Blanchflower, S. E.; Banks, R. M.; Everett, J. R.; Manger, B. R.; Reading, C. J. Antibiot. 1991, 44, 492.
 (5) Blanchflower, S. E.; Banks, R. M.; Everett, J. R.; Reading, C. J. Antibiot. 1993, 46, 1355.
 (6) Ostlind, D. A.; Mickle, W. G.; Ewanciw, D. V.; Andriuli, F. J.; Campbell, W. C.; Hernandez, S.; Mochaeles, S.; Munguira, E. Res. Vet. Sci. 1990, 48, 260.
 (7) (a) Shoop, W. L.; Egerton, J. R.; Eary, C. H.; Suhayda, D. J. Parasitol. 1990, 76 (2) 186. (b) Shoop, W. L.; Michael, B. F.; Haines, H. W.; Eary, C. H. Vet. Parasitol. 1992, 43, 259. (c) Schaeffer, J. M.; Blizzard, T. A.; Ondeyka, J.; Goegelman, R.; Sinclair, P. J.; Mrozik, H. Biochem. Pharmacol. 1992, 43, 679. (d) Shoop, W. L.; Haines, H. W.; Eary, C. H.; Michael, B. F. Am. J. Vet. Res. 1992, 53, 2032.

[^10]: (8) Coles, G. C. Pestic. Sci. 1977, 8, 536.
 (9) (a) Van Wyk, J. A.; Malan, F. S. Vet. Rec. 1988, 123, 226. (b) Echevarria, F. A. M.; Trindade, N. P. Vet. Rec. 1989, 124, 147.
 (10) (a) Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. J. Am. Chem. Soc. 1993, 115, 347. (b) Sanz-Cervera, J. F.; Glinka, T.; Williams, R. M. Tetrahedron 1993, 49, 8471.
 (11) (a) Williams, R. M.; Glinka, T.; Kwast, E. J. Am. Chem. Soc. 1988, 110, 5927. (b) Williams, R. M.; Glinka, T.; Kwast, E.; Coffman, H.; Stille, J. K. J. Am. Chem. Soc. 1990, 112, 808. (c) Williams, R. M.; Glinka, T.; Kwast, E. Tetrahedron Lett. 1989, 30, 5575.
 (12) A preliminary account of this work has appeared: Cushing, T. D.; Sanz-Cervera, J. F.; Williams, R. M. J. Am. Chem. Soc. 1993, 115, 9323.
 (13) (a) Birch, A. J.; Wright, J. J. J. Chem. Soc., Chem. Commun. 1969, 644. (b) Birch, A. J.; Wright, J. J.; Tetrahedron 1970, 26, 2339. (c) Birch, A. J.; Russell, R. A. Tetrahedron 1972, 28, 2999. (d) Baldas J.; Birch, A. J.; Russell, R. A. J. Chem. Soc., Perkin Trans. 1 1974, 50.
 (14) (a) Polonsky, J.; Merrien, M. A.; Prange, T; Pascard, C. J. Chem Soc., Chem Commun. 1980, 601. (b) Prange, T.; Billion, M.-A.; Vuilhorgne, M.; Pascard, C.; Polonsky, J. Tetrahedron Lett. 1981, 22, 1977.

[^11]: (15) Bond, R. F.; Boeyens, J. C. A.; Holzapfel, C. V.; Steyn, P. S. J. Chem. Soc., Perkin Trans. 1 1979, 1751.
 (16) Fredenhagen, A.; Hug, P.; Peter, H. H. J. Antibiot. 1990, 48, 661.
 (17) The enantiomer of the natural product was selected as the target due to the large relative cost difference between (S) - and (R)-proline.

[^12]: (18) (a) Somei, M.; Karasawa, Y.; Kaneko, C. Heterocycles 1981, 16, 941. (b) Kametani, T.; Kanaya, N.; Ihara, M. J. Am. Chem. Soc. 1980, 102, 3974.
 (19) (a) Stoermer, D.; Heathcock, C. H. J. Org. Chem. 1993, 58, 564. (b) Guller, R.; Dobler, M.; Borschberg, H.-J. Helv. Chim. Acta 1991, 74, 1636. (c) Darbre, T.; Nussbaumer, C.; Borschberg, H.-J. Helv. Chim. Acta 1984, 67, 1040. (d) Delpech, B.; Khuong-Huu, Q. J. Org. Chem. 1978, 43, 4898.

[^13]: (22) (a) Nicolaou, K. C. Tetrahedron 1981, 37, 4097. (b) Nicolaou, K. C.; Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.; Joullie, M. M. J. Am. Chem. Soc. 1980, I02, 3784. (c) Clive, D. L. J. Tetrahedron 1978, 34, 1049-1132.
 (23) (a) Clive, D. J. L.; Chiiattu, G.; Curtis, N. J.; Kiel, W. A.; Wong, C. K. J. Chem. Soc., Chem. Commun. 1977, 725. See also: (b) Liotta, D.; Zima, G. Tetrahedron Lett. 1978, 50, 4977. (c) Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.; Balducci, R. J. Org. Chem. 1990, 55, 429.
 (24) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704.
 (25) (a) Cookson, R. C.; Liverton, N. J. J. Chem. Soc., Perkin Trans. 1 1985, 1589. (b) Kocienski, P.; Love, C.; Whitby, R.; Roberts, D. A. Tetrahedron Lett. 1988, 29, 2867. See also: (c) Nicolaou, K. C.; Prasad, C. V. C.; Somers, P. K.; Hwang, C.-K. J. Am. Chem. Soc. 1989, 111, 5335.

[^14]: (26) For a related observation, see: Taylor, S. T.; Davisson, M. E.; Hissom, B. R., Jr.; Brown, S. J.; Pristach, H. A.; Schramm, S. B.; Harvey, S. M. J. Org. Chem. 1987, 52, 425.
 (27) Hutchins, R. O.; Hutchins, M. G.; Milewski, C. A. J. Org. Chem. 1972, 37, 4191.
 (28) Houlihan, W. J.; Remers, W. A.; Brown, R. K. Indoles, Part one, The Chemistry of Heterocycles; Johm Wiley \& Suns, Inc.: New York, 1972.
 (29) (a) Chan, A. C.; Hilliard, P. R., Jr. Tetrahedron Lett. 1989, $30,6483$. (b) d'Ischia, M.; Prota, G. Tetrahedron 1987, 43, 431.
 (30) This difficulty was observed in a short synthesis of the known 6 -acetoxy-7-methoxyindole (i). The unstable substance \mathbf{i} was treated with TMSI, producing the dimer $\mathbf{i i}$ as the sole product.

[^15]: (37) Sirowej, H.; Khan, S. A.; Plieninger, H. Synthesis 1972, 84.

[^16]: (38) Williams, R. M.; Glinka, T. Tetrahedron Lett. 1986, 27, 3581.

[^17]: (39) Sakaitani, M.; Ohfune, Y. J. Am. Chem. Soc. 1990, 112, 1150.

[^18]: (40) Yoshimura, J.; Yamaura, M.; Suzuki, T.; Hashimoto, H. Chem. Lett. 1983, 1001.

[^19]: (41) The formation of the two spiro compounds 56 and 57 is presumably due to the increased electrophilicity of the N -acylated amide. Apparently, trace moisture in the reaction mixture caused the production of hydroxide, which then hydrolyzed the reactive amide bond. The resulting carboxylic acid cyclized in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fashion, furnishing the spiro lactones.
 (42) (a) Giovannini, A.; Savoia, D.; Umani-Ronchi, A. J. Org. Chem. 1989, 54, 228. (b) Flynn, D. L.; Zelle, R. E.; Grieco, P. A. J. Org. Chem. 1983, 48, 2424.

[^20]: (43) This result is noteworthy, especially in light of a report that tert-butoxycarbonyl-protected amides are cleaved to the tert-butoxycarbonylprotected amines with DEAEA (2-(N, N-diethylamino)ethylamine) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature; see: Grehn, L.; Gummarsonn, K.; Ragnarsson, U. Acta Chem. Scand. B 1987, 41, 18. However, the substrates examined in that report were all open-chain amides. Interestingly it is known that BOCprotected lactams can be cleaved by base but it is the amide bond that is broken as was observed on substrate $\mathbf{5 5}$. Recently it has been reported that $\mathrm{Mg}(\mathrm{OMe})_{2}$ will also cleave lactam carbamates including BOC-protected lactams; see: Wei, Z.-Y.; Knaus, E. E.; Tetrahedron Lett. 1994, 35, 847.
 (44) Williams, R. M.; Brunner, E. J.; Sabol, M. R. Synthesis 1988, 963.
 (45) Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 13, 4339

[^21]: (46) (a) Magid, R. M.; Fruchey, O. S.; Johnson, W. L.; Allen, T. G. J. Org. Chem. 1979, 44, 359. (b) Magid, R. A. Tetrahedron 1980, 36, 1901.
 (47) The idea that the stereochemical outcome of an intramolecular enolate alkylation is determined by chelation in the transition state was recently demonstrated by Denmark and Henke, who observed a marked preference for a "closed" transition state (coordination of the cationic counterion to an enolate and the developing alcohol) resulting in a syn product. For example, the highest syn:anti ratio (89:11) was obtained in toluene and the lowest syn:anti ratio (2:98) was obtained with a crown ether. These observations parallel the facial selectivities described herein and in ref 11 on the intramolecular $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction; see: (a) Denmark, S . A.; Henke, B. R. J. Am. Chem. Soc. 1991, 113, 2177. (b) Denmark, S. A.; Henke, B. R. J. Am. Chem. Soc. 1989, 111, 8022.
 (48) (a) Hutchison, A. J.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 6786. (b) Guller, R.; Borschberg, H.-J. Tetrahedron Lett 1994, 35, 865.
 (49) Trost, B. M.; Fortunak, J. M. D. Organometallics 1982, 1, 7.

[^22]: (50) (a) Ashimori, A.; Overman, L. E. J. Org. Chem. 1992, 57, 4571. (b) Karabelas, K.; Westerlund, C.; Hallberg, A. J. Org. Chem. 1985, 50, 3896. (c) Cava, M. P.; Kevinson, M. I. Tetrahedron 1985, 41, 5061 and literature cited therein.
 (51) In a recently reported synthesis of gelsemine, a tertiary lactam was reduced in the presence of a secondary lactam with DIBAH. However, this reagent failed on substrates 69; see: Dutton, J. K.; Steel, R. W.; Tasker, A. S.; Popsavin, V.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 765.
 (52) Martin, S. F.; Benage, B.; Geraci, L. S.; Hunter, J. E.; Mortimore, M. J. Am. Chem. Soc. 1991, 113, 6161.
 (53) (a) Yoon, N. M.; Brown, H. C. J. Am. Chem. Soc. 1968, 90, 2927. (b) Marlett, E. M.; Park, W. S.; J. Org. Chem. 1990, 55, 2968. (c) Jorgenson, M. J. Tetrahedron Lett. 1962, 559. (d) Another very recent synthesis of gelsemine reported the reduction of the same gelsemine precursor (as in ref 51) with AlH_{3}. Newcombe, N. J.; Fang, Y.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767.

[^23]: (57) Osamura, Y.; Nakamura, K. J. Am. Chem. Soc. 1993, 115, 9112.
 (58) Parker, A. J. Chem. Rev. 1969, 69, 1.
 (59) (a) Owellen, R. J.; Hartke, C. J. Org. Chem. 1976, 41, 102. (b) Kuehne, M. E.; Roland, D. M.; Hafter, R. J. Org. Chem. 1978, 43, 3703. (c) Awang, D. V. C.; Vincent, A.; Kidack, D. Can. J. Chem. 1984, 62, 2667.
 (60)

[^24]: ${ }^{\dagger}$ Colorado State University
 ${ }^{*}$ University of Colorado Cancer Center.
 (1) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669-1730.
 (2) (a) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Keifer, P. A.; Wilson, G. R.; Perun, T. J.; Sakai, R.; Thompson, A. G.; Stroh, J. G.; Shield, L. S.; Seigler, D. S. J. Nat. Prod. 1990, 53, 771-792. (b) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512-4515. (c) Wright, A. E.; Forleo, D. A.; Gunawardana, G. P.; Gunasekera, S. P.; Koehn, F. E.; McConnell, O. J. J. Org. Chem. 1990, 55, 4508-4512. (d) Guan, Y.; Sakai, R.; Rinehart, K. L.; Wang, A. H.-J. J. Biomol. Struct. Dyn. 1993, 10, 793-818. (e) Aune, G. J.; Furuta, T.; Pommier, Y. Anti-Cancer Drugs 2002, 13, 545-555. (f) Rinehart, K. L. Med. Drug Rev. 2000, 1-27.

[^25]: (3) (a) Zelek, L.; Yovine, A.; Etienne, B.; Jimeno, J.; Taamma, A.; Martín, C.; Spielmann, M.; Cvitkovic, E.; Misset, J. L. Ecteinacidin-743 in Taxane/ Antracycline Pretreated Advanced/Metastatic Breast Cancer Patients: Preliminary Results with the 24 h Continuous Infusion Q3 Week Schedule; 36th Annual Meeting of the American Society of Clinical Oncology, New Orleans, May 2023, 2000; Abstract number 592. (b) Delaloge, S.; Yovine, A.; Taamma, A.; Cottu, P.; Riofrio, M.; Raymond, E.; Brain, E.; Marty, M.; Jimeno, J.; Cvitkovic, E.; Misset, J. L. Preliminary Evidence of Activity Of Ecteinacidin-743 (ET-743) in Heavily Pretreated Patients with Bone and Sof Tissue Sarcomas; 36th Annual Meeting of the American Society of Clinical Oncology, New Orleans, May 2023, 2000; Abstract number 2181. (c) Le Cesne, A.; Judson, I.; Blay, J. Y.; Radford, J.; an Oosterom, A.; Lorigan, P.; Rodenhuis, E.; Donato Di Paoula, E.; Van Glabbeke, M.; Jimeno, J.; Verweij, J. Phase II of ET-743 in Advance Soft Tissue Sarcoma in Adult:A STBSG-EORTC Trial; 36th Annual Meeting of the American Society of Clinical Oncology, New Orleans, May 20-23, 2000; Abstract number 2182. (d) Aune, G. J.; Furuta, T.; Pommier, Y. Anti-Cancer Drugs 2002, 13, 545-555.
 (4) (a) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202-9203. (b) Martinez, E. J.; Corey, E. J. Org. Lett. 2000, 2, 993-996.
 (5) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552-6554.
 (6) Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2006, 128, 87-89.
 (7) Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B. J. D.; Zhou, B.; Guo, J.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 1754-1759.
 (8) Cuevas, C.; Pérez, M.; Martín, M. J.; Chicharro, J. L.; Fernández-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de la Calle, F; García, J.; Polanco, C.; Rodriguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545-2548.
 (9) Flanagan, M. E.; Williams, R. M. J. Org. Chem. 1995, 60, 6791-6797.
 (10) (a) Scott, J. D.; Williams, R. M. Angew. Chem., Int. Ed. 2001, 40, 14631465. (b) Scott, J. D.; Williams, R. M. J. Am. Chem. Soc. 2002, 124, 29512956.
 (11) (a) Lane, J. W.; Chen, Y.; Williams, R. M. J. Am. Chem. Soc. 2005, 127, 12684-12690. (b) Lane, J. W.; Estevez, A.; Mortara, K.; Callan, O.; Spencer, J. R.; Williams, R. M. Bioorg. Med. Chem. Lett. 2006, 16, 3180-3183. (c) Vincent, G.; Lane, J. W.; Williams, R. M. Tetrahedron Lett. 2007, 48, 37193722. (d) Jin, W.; Metobo, S.; Williams, R. M. Org. Lett. 2003, 5, 2095-2098.

[^26]: ${ }^{\dagger}$ The Center for New Directions in Organic Synthesis is supported by Bristol-Myers Squibb as Sponsoring Member.
 (1) Yagim S. Kyoto Igaku Zasshi. 1909, 6, 208.
 (Z) For reviews on the DaphniphyIlum alkaloids see: (a) Yamamura, S.; Hirata, Y. In The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1975; Vol. 15, p 41. (b) Yamamura, S.; Hirata, Y. Int. Rev. Sci.: Org. Chem., Ser. Two 1976, 9, 161. (c) Yamamura, S In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1986; Vol. 29, p 265.
 (3) Heathcock, C. H.; Hansen, M. M.; Ruggeri, R. B.; Kath, J. C. J. Org. Chem. 1992, 57, 2544
 (4) We have also reported a classical approach to these alkaloids: Heathcock, C. H.; Davidsen, S. K.; Mills, S. G.; Sanner, M. A. J. Org. Chem. 1992, 57, 2531.

[^27]: (5) Heathcock, C. H.; Stafford, J. J. Org. Chem. 1992, 57, 2566.
 (6) Heathcock, C. H.; Rugerri, R. B.; McClure, K. F. J. Org. Chem 1992, 57, 2585.
 (7) For references on 2-aza dienes, see: (a) Eddaif, A.; Mison, P.; Laurent, A.; Pellissier, N.; Carrupt, P.-A.; Vogel, P. J. Org. Chem. 1987, 52, 5548. (b) Cheng, Y.-S.; Ho, E.; Mariano, P. S.; Ammon, H. L. J. Org. Chem. 1985, 50, 5678. (c) Boger, D. L.; Weinreb, S. M. In Hetero Diels-Alder Methodology in Organic Synthesis, Academic Press: San Diego, CA, 1987; pp 255-260. (d) Boger, D. L. Tetrahedron 1983, 39, 2869.

[^28]: (8) Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 132-157.
 (9) Ruggeri, R. B.; Hansen, M. M.; Heathcock, C. H. J. Am. Chem Soc. 1988, 110, 8734.
 (10) Millar, J. G.; Underhill, E. W. J. Org. Chem. 1986, 51, 4726.
 (11) Yamaguchi, M. Yuki Gosei Kagaka. 1986, 44, 405.

[^29]: (12) (a) Oare, D. A. Doctoral Thesis, University of California at Berkeley, 1988. (b) Thomsen, I.; Clausen, K.; Scheibye, S.; Lawesson, S. O. Org. Synth. 1984, 62, 158.
 (13) (a) Pearson, R. G. J. Chem. Educ. 1968, 45, 581, 643. (b) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. (c) Deschamps, B.; Anh, N. T.; Seyden-Penne, J. Tetrahedron Lett. 1973, 14, 527.

[^30]: (14) Mancusco, A. J.; Swern, D. Synthesis 1981, 165.

[^31]: (15) Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 147538. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: +441223336033 or e-mail: deposit@ccdc.cam.ac.uk).

[^32]: (16) Kleinman, E. F. Doctoral Thesis, University of California at Berkeley, 1980.
 (17) Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc., Perkin Trans. 1 1984, 6, 1173-1182.

[^33]: (18) Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 147539. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: +441223336033 or e-mail: deposit@ccdc.cam.ac.uk).

[^34]: (9) There is a subset of Daphniphyllum alkaloids in which the final ene-like cyclization has not occurred. One example of this group is daphnigracine (ii): Yamamura, S.; Lamberton, J. A.'; Irikawa, H.; Okumura, Y.; Hirata, Y. Chem. Lett. 1975, 923. Yamamura, S.; Lamberton, J. A.; Irikawa, H.; Okumura, Y.; Toda, M.; Hirata, Y. Bull. Chem. Soc. Jpn. 1977, 50, 1836. Thus, the proposed biogynthetic intermediate imine 10 is proto-daphnigracine.

[^35]: (11) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. J. Chem. Soc., Chem. Commun. 1965, 131.
 (12) Bowden K.; Heibron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39. (b) Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc. 1953, 2548.

[^36]: (14) Capillary GLC analysis of our synthetic proto-daphniphylline (11) revealed the presence of 2% of a compound having the same retention time as 40. Like imine 32, this isomer probably derives from a small amount ($2-4 \%$) of nerol in our starting geraniol.

[^37]: (15) (a) Vedejs, E.; Arnost, M. J.; Hagen, J. P. J. Org. Chèm. 1979, 44, 3234. (b) Petersen, J. S.; Tteberg-Kaulen, S.; Rapoport, H. J. Org. Chem. 1984, 49, 2948. (c) Kuehne, M. E.; Bohnert, J. C. J. Org. Chem. 1981, 46, 3443.

[^38]: (16) More details on the hydrolytic chemistry of these compounds are given in the supplementary material.

[^39]: (17) Burfield, D. R.; Smithers, R. H. J. Org. Chem. 1978, 43, 3966.
 (18) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923

[^40]: (1) National Science Foundation Predoctoral Fellow, 1989-92.
 (2) (a) Berk, S. C.; Kreutzer, K. A.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 5093. (b) Esters can be reduced using catalytic $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and stoichiometric $i-\mathrm{PrMgBr}$: Sato, F.; Jinbo, T.; Sato, M. Tetrahedron Lett. 1980, 21, 2175. (c) For other methods to convert esters to alcohols, see: LaRock, R. C. Comprehensive Organic Transformations: A Guide To Functional Group Preparations; VCH Publishers: New York, 1989 and references cited therein.
 (3) For other methods to effect the hydrosilylation of esters, see: (a) Calas, R. Pure Appl. Chem. 1966, 13,61 and references cited therein. (b) Corriu, R. J. P.; Perz, R.; Reyé, C. Tetrahedron 1983, 39, 996. (c) For a recent review of the hydrosilylation reaction, see: Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley \& Sons: New York, 1989.
 (4) (a) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757. Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 8043. (b) We note that Nicolaou has recently described the reduction of an oxime O-benzyl ether to a hydroxylamine O-benzyl ether using an excess of both $\mathrm{Ti}(\mathrm{O}$ -$i-\mathrm{Pr}_{4}$ and $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$: Nicolaou, K. C.; Screiner, E. P.; Stahl, W. Angew. Chem., Int. Ed. Engl. 1991, 30, 585.

[^41]: (6) The reaction with methyl 10,11 -epozyundecanoate gave 1% isolated yield of a product whose ${ }^{1} \mathrm{H}$ NMR spectrum is consistent with its formulation as $1,2,11$-undecanetriol.

[^42]: (10) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1978, 100, 2716.

[^43]: ${ }^{\dagger}$ University of California, Los Angeles. Permanent address: Departmento de Química Organometálica, Universidad de Oviedo, 33071-Oviedo, Spain.
 \# Princeton University.
 ${ }^{3}$ University of California, Los Angeles.

[^44]: (1) For a recent review, see: Maryanoff, B. E. In Ozazoles; Turchi, I. J., Ed.; The Chemistry of Heterocyclic Compounds series; Weissberger, A., Taylor, E. C., Eds.; Wiley-Interscience: New York, 1986; Vol. 45, p 963.
 (2)
 (2) (a) Jacobi, P. A.; Blum, C. A.; DeSimone, R. W.; Udodong, U. E. S. Tetrahedron Lett. 1989, 30, 7173 and references cited therein. (b) Whitney, S. C.; Rickborn, B. J. Org. Chem. 1988, 53, 5595.

[^45]: ${ }^{\dagger}$ National Science Foundation Predoctoral Fellow 1994-97.
 ${ }^{\ddagger}$ Current address: Merck \& Co., Inc., P.O. Box 2000, Rahway, NJ 07065.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, February 15, 1996
 (1) (a) For an extensive review, see: Negishi, E.-i. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 5, pp 1163-1184. (b) Urabe, H.; Hata, T.; Sato, F. 'Tetrahedron Lett. 1995, 36, 4261.
 (2) Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1984, 106, 6422
 (3) (a) Nugent, W. A.; Taber, D. F. J. Am. Chem. Soc. 1989, 111 6435. (b) Negishi, E.-i.; Swanson, D. R.; Lamaty, F.; Rousset, C. J. Tetrahedron Lett. 1989, 30, 5105
 (4) Buchwald, S. L.; Grossman, R. B. J. Org. Chem. 1992, 57, 5803
 (5) Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116,1880
 (6) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc., Chem. Commun. 1995, 361.
 (7) (a) Berk, S. C.: Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 4912. (b) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8593.
 (8) Rasmussen, J. K.; Heilmann, S. M.; Krepski, L. R. In Advances in Silicon Chemistry, Larson, G. L., Ed.; JAI Press: Greenwich, CT, 1991; pp 65-187.
 (9) For other examples of catalytic reactions involving group IV metallacycles, see: (a) Kabaloui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1995, 117, 6785. (b) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787. (c) Knight, K. S.; Waymouth, R. M. Tetrahedron Lett. 1992, 33, 7735. (d) Knight, K. S.; Waymouth, R. M. Organometallics 1994, 13, 4542.

[^46]: (13) Hart, D. J.; Kanai, K.-i.; Thomas, D. G.; Yang, T.-K. J. Org. Chem. 1983, 48, 289
 (14) Hart D. J.; Ha, D.-C. Chem. Rev. 1989, 89, 1447.
 (15) Cainelli, G.; Panunzio, M.; Giacomini, D. Ietrahedron Lett 1991, 32, 121
 (16) Cainelli, G.; Mezzina, E.; Panunzio, M. Tetrahedron Lett. 1990, 31, 3481.
 (17) Bongini, A.; Camerini, R.; Hofman, S.; Panunzio, M. Tetrahedron Lett. 1994, 35, 8045.
 (18) For a review on the synthesis of allylic amines, see: Chaabouni R.; Cheikh, R. D.; Laurent, A.; Mison, P.; Nafti, A. Synthesis 1983 685. For a related synthesis of allylic ammes with stoichiometric zirconium, see: Whitby, R. J.; Probert, G. D.; Coote, S. J. Tetrahedron Lett 1995, 36, 4113.
 (19) For recent examples see: (a) Burgess, K.; Ohlmeyer. M. J. J. Org. Chem. 1991, 56, 1027. (b) Jung, M.; Rhee, H. J. Org. Chem. 1994, 59, 4719. (c) Brunker, H.-G.; Adam, W. J. Am. Chem. Soc. 1995, 117, 3976.
 (20) (a) Stutz, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 320. (b) Delaris, G.; Dunogues, J.; Gadras, A. Tetrahedron 1988, 44, 4293 and references therein.
 (21) For a review on hydride reductions of $\mathrm{C}=\mathrm{N}$, see: Hutchins, K O.; Hutchins, M. K. In Comprehensive Organic Chemistry, Trost, B M., Fleming, L., Eds.; Pergamon: Oxford, 1991; Vol. 1, pp 25-78.
 (22) Overman, L. E.; Okazaki, M. E.; Mishra, P. Tetrahedron Lett. 1986, 27, 4391.

[^47]: (23) Ojima, I.; Kogure, T.; Nagai, Y. Tetrahedron Lett. 1973, 2475.

