

Exhibit J

Case 1:19-cv-11278-RGS Document 33-10 Filed 01/23/20 Page 1 of 12

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

https://www.javaworld.com/article/2076712/to-jar-or-not-to-jar-.html 1/8

NEWS

To jar or not to jar?
Get the lowdown on using Java Archive (jar) �les -- including pros and cons

By Todd A. Webb
JavaWorld |

JUL 1, 1998 12:00 AM PST

With browsers that support Java 1.1.x gaining in market share, more developers will be

exploring the use of Java Archive (jar) �les. Before you open a jar of worms, you should know

some of the gotchas involved in using these �les. These gotchas can affect most aspects of your

project -- from how you write your code, to the service your end-users get.

Jar �les are an excellent tool to help overcome some of the hurdles that Java faces, such as

packaging software and making a program trusted. They also have drawbacks -- including

potentially longer download times, the need to put in extra work to retrieve resources, and a

lack of universal support. You need to know the pros and cons and what you want to accomplish

with your Java program before you decide whether or not to use jar �les.

The history of jar

The Java language makes it easy for the developer to pull together a great many resources and

objects for building software. A Java developer can end up with a heavily populated directory

structure that often must be made available over the Internet. Anyone familiar with the HTTP

protocol knows that a separate HTTP request must be made for every �le. This small overhead

becomes a big performance issue as the number of �les that must be downloaded increases.



 Sign In | Register

🔎Case 1:19-cv-11278-RGS Document 33-10 Filed 01/23/20 Page 2 of 12

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.javaworld.com/news
https://www.javaworld.com/
https://www.javaworld.com/about/learn-about-insider.html
javascript://
javascript://
https://www.docketalarm.com/

https://www.javaworld.com/article/2076712/to-jar-or-not-to-jar-.html 2/8

From the beginning, a mechanism was needed to simplify deployment of these classes and

improve performance. Sun settled �rst on the zip �le format as de�ned by PKWARE, and the

core Java classes are still distributed in zip format. Additionally there was a need for small,

modular software components (now known as JavaBeans) that could be packaged into a single

�le and imported into an integrated development environment (IDE) -- such as Symantec's

Visual Café, IBM's Visual Age, or JBuilder by Inprise (the company formerly known as Borland).

These IDEs needed a little more than just a bundle of resources in a zip �le, however. They also

needed to know more about the classes -- for example, which classes were beans, and which

provided support. It was decided that a manifest �le would be used for this information, and

that the name of the zip �le should re�ect the availability of the manifest �le. A zip �le

containing the �le /meta-inf/manifest.mf was used and dubbed the Java Archive �le or jar -- the

standard distribution format for JavaBeans.

Jar �les also offered a solution to other vexing problems. Java was built on the philosophy that

it's better to build an overly secure application and relax security as needed than it is to build a

low-security system and try to patch it on demand. The sandbox model used by browsers is very

restrictive, and doesn't allow developers to do some things that could be very useful, even very

low risk things, such as reading and writing to a single �le on the client machine. A mechanism

was needed to allow certain code to perform these operations, so the idea of trusted applets

was adopted. Since it would be extremely cumbersome to try to mark every class �le as trusted,

the logical choice was to wrap them all into one �le and mark that one �le as trusted. That �le

has the sig extension -- the digitally signed version of jar.

When and how to use jar

To decide whether or not jar is for you, consider the following:

Your target market

Security

Performance

Case 1:19-cv-11278-RGS Document 33-10 Filed 01/23/20 Page 3 of 12

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

https://www.javaworld.com/article/2076712/to-jar-or-not-to-jar-.html 3/8

Separate packaging

Target market

The �rst step in deciding whether to use the jar format is to know your target market. Jar

already enjoys universal support from IDEs that deal with JavaBeans. However, jar �les are not

universally supported by Web browsers. Jar �les were introduced with the 1.1 version of Java. A

developer should assume that any version of a browser that doesn't run a 1.1 Java virtual

machine (JVM) will not understand jar �les. A signi�cant number of Internet users still use these

older browsers. Many software products also have integrated browsers based on older software

-- such as versions of America Online (AOL) and PointCast that use Microsoft's Internet Explorer

3.0. The browsers that currently support jar -- and its digitally signed counterpart, the sig �le --

include the latest versions of Netscape's Navigator 4.0x and Sun's HotJava browser 1.1. Even

Microsoft appears to fully support jar in its latest incarnation of Internet Explorer 4.0x, even

though it has created a proprietary cab �le format that serves the same purpose. If you know

you need to have backward compatibility with older browsers, you will have to forego using jar

�les. Sorry.

Security

The next consideration is security. If you're deploying an applet, your code will be restricted to

the sandbox model. If you absolutely must have access to the client's �le system, you'll have to

run your applet as trusted. This requires you to apply a digital signature to a jar �le. Your choice

has been made.

Performance

The next important consideration is performance. Packaging your software in a jar �le can either

speed up performance or slow it down. Take, for example, Sun's popular Swing classes, a subset

of the Java Foundation Classes (JFC), which are packaged in swingall.jar. Version 1.01 contains

1,305 �les compressed to 3,657 kilobytes. Suppose you have an applet that uses swingall.jar --

even if you use only one class from swingall.jar, the entire jar �le will be downloaded to the

user before that one class will be extracted and loaded. In other cases, with small numbers of

Case 1:19-cv-11278-RGS Document 33-10 Filed 01/23/20 Page 4 of 12

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

https://www.javaworld.com/article/2076712/to-jar-or-not-to-jar-.html 4/8

classes, it may take more time to get the �le, uncompress it, and extract the contents than to

simply fetch each �le individually. As a general rule, if you have a large number of �les and you

can keep them in tight packages (just the �les you need at runtime) you are better off using jar

�les for better performance.

Separate packaging

Next, you need to decide if all of your classes should be packaged together. You'll probably

want to make some of your code available to the world, release some of it only to a certain

group, and restrict the rest of it to the administrator's use. So package your classes separately.

You may �nd that some packages need to be in jar �les and others don't.

Consider all of these things when you're deciding on jar usage. Syzygy Technologies Inc., for

example, is using jar �les to develop a breakthrough computerized time and attendance system.

In this new product, a server provides access to an employee database using Java database

connectivity (JDBC). The client software allows employees to securely log into the system across

the Internet and submit their hours using a Web browser. The client interface requires a large

number of �les, but Syzygy wanted to keep the start-up time to a minimum. In addition, the

company wanted the option of running the client as a trusted applet in a future version without

having to change the architecture. Syzygy also used some visual JavaBeans in this product. So,

what did Syzygy decide to do?

It decided to make the client classes accessible through a Web server, but not through the

server classes. It would have to package pieces of the software separately, and make a decision

on how to package each piece.

To run as a trusted applet in the future, the client classes would have to be digitally signed. This

meant they would eventually have to be packaged in a signed jar �le, a transition that would be

greatly eased if the classes were packaged that way from the beginning. Add to that the fact

that the software relied on some key technologies in Java 1.1x, meaning backward compatibility

had already been given up, and the decision to package the client classes in a compressed jar

�le was clear.

Case 1:19-cv-11278-RGS Document 33-10 Filed 01/23/20 Page 5 of 12

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

