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Avaccinefor severe acute respiratory syndrome coronavirus2 (SARS-CoV-2)is

needed to control the coronavirusdisease 2019 (COVID-19) global pandemic.

Structural studies have led to the developmentofmutationsthatstabilize
Betacoronavirus spike proteinsin the prefusionstate, improving their expression and

increasing immunogenicity’. This principle has been applied to design mRNA-1273, an
mRNAvaccine that encodesa SARS-CoV-2 spike protein thatis stabilized in the

prefusion conformation. Here we show that mRNA-1273 inducespotentneutralizing
antibody responsesto both wild-type (D614) and D614G mutant? SARS-CoV-2 as well
as CD8* T cell responses, and protects against SARS-CoV-2 infection in the lungs and

nosesofmice without evidence of immunopathology. mRNA-1273is currently ina

phaseIll trial to evaluateitsefficacy.

Since its emergence in December2019, SARS-CoV-2 has accounted for
more than 30 million cases ofcoronavirus disease 2019 (COVID-19)
worldwide in 9 months?. SARS-CoV-2is the third novel Betacoronavirus

in the past 20 yearsto cause substantial human disease; however, unlike
its predecessors SARS-CoVand Middle East respiratory syndrome
coronavirus (MERS-CoV), SARS-CoV-2 is transmitted efficiently from
person to person.In the absenceofa vaccine, public health measures
such as quarantine of newly diagnosed cases, contacttracing, use of
face masks and physical distancing have been putinto place toreduce
transmission‘. It is estimated that until 60-70% ofthe population have
immunity, COVID-19 is unlikely to be sufficiently well-controlled for
normal humanactivities to resume.Ifimmunity remains solely depend-
ent oninfection, even at acasefatality rate of1%, more than4O million
people could succumbto COVID-19 globally*. Therefore, rapid develop-
mentofvaccines against SARS-CoV-2will be critical for changing the
global dynamicsofthis virus.

The spike (S) protein, a class I fusion glycoprotein analogous to
influenza haemagglutinin, respiratory syncytial virus (RSV) fusion
glycoprotein (F) and human immunodeficiency virus gp160 (Env),

is the major surface protein on the coronavirusvirion and thepri-
marytarget for neutralizing antibodies. S proteins undergo marked
structural rearrangementto fuse virus and host cell membranes,
enabling delivery of the viral genomeinto targetcells. We previously
showedthat prefusion-stabilized protein immunogensthat preserve
neutralization-sensitive epitopesare an effective vaccine strategy
for enveloped viruses such as RSV°”. Subsequently,we identified 2
proline substitutions (2P) at the apex of the central helix and heptad
repeat1 that effectively stabilized MERS-CoV, SARS-CoV and human
coronavirus HKU1S proteinsinthe prefusion conformation“ Similar
to other prefusion-stabilized fusion proteins, MERS-CoV S(2P) protein
was more immunogenic at lower dosesthan wild-type S protein’. The
2P mutationhas similareffects on the stability ofS proteins from other
betacoronaviruses, suggesting a generalizable approachfordesigning
stabilized-prefusion BetacoronavirusS protein antigensfor vaccina-
tion. Such generalizability is fundamental to the prototype pathogen
approachfor pandemic preparedness®*.

Coronaviruses have long been predicted to havea high probabilityof
causing zoonotic disease and pandemics’.As part ofour pandemic
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Fig.1| MERS-CoVS-2P mRNAprotectsmice from lethalchallenge.
a-d, 288/330" mice were immunized at weeks 0 and3with0.01 (green), 0.1
(blue) or 1 pg (red) MERS-CoV S(2P) mRNA.Control mice wereadministered
phosphate-bufferedsaline (PBS) (grey).a, Two weekspost-boost, sera were
collected fromthree mice per group and assessed for neutralizing antibodies
against MERS m35c4 pseudovirus. b-d, Four weeks post-boost, 12 mice per
groupwerechallenged witha lethal dose ofmouse-adapted MERS-CoV
(m35c4). b, Followingchallenge, mice were monitoredforweight loss. c,d, Two
dayspost-challenge,at peakviral load, lungviral titres (c) and haemorrhage
(scored as: 0,no haemorrhage,4, severe haemorrhageinall lobes) (d) were
assessed from five mice per group.Inc,d, alldoselevels were compared by
Kruskal-Wallis analysisofvariance (ANOVA) with Dunn’s multiple comparisons
test. Inb, for weightloss, all comparisonsare with PBS control mice at the same
time point by two-sided Mann-WhitneyU-test. **P< 0.01,****P< 0.0001. Data
are GMT+geometrics.d.(a,c) ormean+s.d.(b, d). Inc, thedottedline
representsassaylimit ofdetection.

preparednessefforts, we have studied MERS-CoVas a prototype
Betacoronavirus pathogento optimize vaccine design, dissect the
humoral immuneresponseto vaccination, and identify mechanisms

  

andcorrelates of protection. Achieving an effective and rapid vac-
cine response to a newly emerging virus requires both the precision
afforded by structure-based antigen design and a manufacturing
platform to shorten time to productavailability. Producingcell lines
and clinical-grade subunit protein typically takes more than one year,
whereas manufacturing nucleic acid vaccines can be achieved ina mat-
ter of weeks””"®, In addition to advantagesin manufacturing speed,
mRNAvaccinesare potently immunogenic andelicit both humoral
and cellular immunity’. We therefore evaluated mRNA formulated
inlipid nanoparticles (mRNA-LNP)asa deliveryvehicle for MERS-CoV
S(2P), and found that transmembrane-anchored MERS-CoVS(2P) mRNA

elicited more potent pseudovirus-neutralizing antibody responses
than secreted MERS-CoVS(2P) (Extended DataFig. 1a). Additionally,
consistentwith protein immunogens, MERS-CoV S(2P) mRNA was
more immunogenic than wild-type MERS-CoVS mRNA(Extended Data
Fig. 1b). Immunization with MERS-CoV S(2P) mRNA-LNPelicited potent
pseudovirus-neutralizing activity with a dose as lowas0.1 pg and pro-
tected transgenic mice expressing human DPP4(288/330*")” against
lethal MERS-CoV challenge ina dose-dependentmanner,establishing
that mRNA encoding S(2P)proteinis protective. Notably, a subprotec-
tive 0.01,1g dose of MERS-CoV S(2P) mRNAdid not cause exaggerated
disease following MERS-CoVinfection, but instead resultedin par-
tial protection against weight loss followed byfull recovery without
evidenceofenhancedillness (Fig. 1).

SARS-CoV-2 wasfirst identified as the cause of an outbreakof res-

piratory disease in Wuhan,Chinain earlyJanuary 2020. Within 24 h of
the release of genomic sequences ofSARS-CoV-2isolates on 10Janu-
ary 2020, the 2P mutationswere substitutedinto S protein residues
986 and 987 to produce prefusion-stabilized SARS-CoV-2 S(2P) pro-
tein for structural analysis” and serological assay development”**>
in silico, without additional experimentalvalidation. Within 5 days
ofthe release of the sequence, current good manufacturing practice
(cGMP) production of mRNA-LNPencoding the SARS-CoV-2 S(2P) as
a transmembrane-anchored protein with the native furin cleavage
site (mRNA-1273)wasinitiatedin parallel with preclinical evaluation.
This led to a first-in-human phaseIclinicaltrial starting on 16 March
2020, 66 days after the viral sequence wasreleased, and a phase lltrial
74 days later on 29 May 2020 (Extended DataFig. 2). Expression and
antigenicity of the S(2P) antigen delivered by mRNAwasconfirmed
in vitro before vaccinationofthe first human participant (Extended
Data Fig. 3), and immunogenicity of mMRNA-1273 was documentedin
several mousestrains. The results ofthose studies are detailed here.

a Binding antibodies b Binding antibodies c Fig. 2| mRNA-1273elicits robust bindingand
BALB/c CS7BL/6 pseudovirus-neutralizingantibody responsesin

multiple mousestrains. a-f, BALB/c) (a,d), CS7BL/6)
5_ 5. 2 ad (b, e) or B6C3F1/J (c, f) mice (nr =10 per group) were
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within each doselevel by two-sided Wilcoxon
signed-ranktest, and doseswere compared post-boost
by Kruskal-Wallis ANOVA with Dunn’s multiple
comparisonstest.In d-f, Vaccine groups were
compared by two-sided Mann-Whitney U-test.
*P< 0.05, **P< 0.01,***P< 0.001, ****P< 0.0001. Data

are presented as GMT+ geometric s.d. Dotted lines
represent assay limits ofdetection.
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Fig. 3| Immunizationswith mRNA-1273and S(2P) protein, delivered with
TLR4agonist,elicit S-specific T,1-biased Tcell responses. B6C3F1/J mice
(n=10 pergroup) were immunizedat weeks0 and 3 with0O.01, 0.1or1pg of
mRNA-1273 orSARS-CoV-2S(2P)protein with SAS adjuvant. a—c, Sera were
collected two weekspost-boostand assessed by ELISA for SARS-CoV-2
S-specific lgG1, and1gG2a and IgG2c. End-pointtitres (a, b) and end-pointtitre
ratios oflgG2a plus lgG2c tolgG1(c) werecalculated. Ratios were not
calculated for mice for which end-pointtitresdidnot reach the lowerlimit of
detection (dotted line; N/A). d-g, Seven weekspost-boost, splenocytes were
isolated from five mice per groupand restimulated with vehicle or poolsof

Immunogenicity was assessed in six-week-old female BALB/c],
C57BL/6] and B6C3F1/J mice by two intramuscular immunizations
with 0.01, 0.1 or 1 pg MRNA-1273, separated by a 3-weekinterval.
mRNA-1273 induced dose-dependentspecific S-binding antibod-
ies after prime and boostin all mousestrains (Fig. 2a—c). Potent
pseudovirus-neutralizing activity waselicited by 1 pg MRNA-1273,
reaching reciprocal half-maximal inhibitory concentration (IC,,)
geometric meantitres (GMTs) of819 (BALB/cJ), 89 (CS7BL/6]) and
1,115 (B6C3F1/J) (Fig. 2d-f). Additionally, mice immunized with 1 pg
mRNA-1273 had robust neutralizing antibodies against pseudovi-
rusesthat express S protein with the D614G substitution; SARS-CoV-2
expressing the D614G variantofthe S protein has recently become
dominant around the world? (ExtendedData Fig.4). To further gauge
immunogenicity across a wide dose range, BALB/c mice were immu-
nized with 0.0025-20 pg mMRNA-1273, revealing a strong positive cor-
relation between dose-dependent mRNA-1273-elicited binding and
pseudovirus-neutralizing antibody responses (ExtendedDataFig.5).
BALB/c] mice that received a single dose ofmRNA-1273 were evaluated
to ascertain theutility ofa single-dose vaccine. S-binding antibod-
ies were induced in mice immunizedwith one 1 pg or 10 pg dose of
mRNA-1273. The 10 pg dose elicited pseudovirus-neutralizing antibody

overlapping peptides from SARS-CoV-2S protein in the presence ofaprotein
transport inhibitor cocktail. After 6h,intracellular cytokine staining was
performed toquantify CD4* and CD8* Tcell responses. Cytokineexpressionin
the presenceofvehicle only wasconsidered as background and subtracted
from the responses measured from the S1 and S2 peptide pools for each
individual mouse.d, e, PercentageofCD4"Tcellsexpressing IFN-y, TNF,IL-2,
IL-4 and IL-5 inresponseto the S1 (d) and S2(e) peptide pools. f, g, Percentageof
CD8*T cells expressing IFN-y, TNF and IL-2inresponsetotheS1(f) and S2(g)
peptide pools.

activity thatincreased between week 2and week4,reaching 315 recip-
rocal IC.¢g GMT (Extended Data Fig.6a, b). These datademonstrate that
mRNAexpressing SARS-CoV-2 S(2P) is a potent immunogenandthat
pseudovirus-neutralizing activity can be elicited with a single dose.

Vaccine-associated enhancedrespiratory disease (VAERD)has been
associated with T helper2cell (T,,2)-biased immune responsesin chil-
dren immunized with whole-inactivated-virus vaccines against RSV
and measles virus”. A similar phenomenonhasalso been reported in
some animal models with whole-inactivated vaccines and other types
ofexperimental SARS-CoVvaccines”**°. We therefore evaluated the
balanceofT,,1 and T,,2 cells in immunized mice. Wefirst compared
levels of S-specific immunoglobulins, IgG2a and IgG2c, and IgG1—
whichare surrogatesofT,,1 and T,,2 responses, respectively—elicited
by mRNA-1273 with thoseelicited by immunization with SARS-CoV-2
S(2P) protein using the TLR4 agonist Sigma Adjuvant System (SAS).
Both immunogenselicited S-binding antibodies in the lgG2a and
IgG1 subclasses, indicating a balanced T,,1-T,,2 response(Fig. 3a—c,
Extended DataFig. 7). The S-specific IgG-subclassprofile following a
single dose of mRNA-1273 (ExtendedData Fig. 6c) was similar to that
observed following two doses. By contrast, T,,2-biased responses,
with lower IgG2a/IgG1 ratios, were observed in mice immunized with

Nature | Vol586 | 22 October 2020 | 569
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Fig. 4|mRNA-1273 protects mice from upper- and lower-airway SARS-CoV-2
infection. a,b, BALB/c) mice (n=10 pergroup) immunized at weeks 0 and3
with 0.01 pg (green), 0.1 pg (blue) or1 pg(red) mRNA-1273 or PBS were
challenged with SARS-CoV-2 MAfive weekspost-boost. c, Other groups were
immunizedwith single dosesof0.1,1g (blue), 1g(red) or 10 pg (purple)
mRNA-1273 and challenged 7 weeksafter immunization. Two daysafter
challenge, at peakviral load, mouse lungs(a, c) and nasal turbinates (b) were
collected from five mice pergroupto measureviral titres. a—c, Dataare
presented as GMT + geometrics.d. and dotted lines represent assay limits of
detection. Group comparisonswere madeby Kruskal-Wallis ANOVA with
Dunn’s multiple comparisonstest. **P< 0.01,***P< 0.001. d, At days 2and4
after challenge, lung sections from 5 mice pergroup werestained with
haematoxylin and eosin, and representative photomicrographs(original
magnification x4 (scale bars, 600 pm) and 10 (scale bars, 300 um)as
indicated) from each groupwith detectablevirusin lung are shown. Day 2lungs
from PBS control mice demonstrated moderate-to-severe, predominantly
neutrophilic inflammation present within and surrounding small bronchioles
(arrowheads); alveolar capillaries were markedly expandedbyinfiltrating
inflammatorycells. In the 0.01 pg two-dosegroup,inflammation was minimal
to absent. Inthe 0.1,1g two-dosegroup,occasional areasofinflammation
intimately associated with small airways (bronchioles) and adjacent
vasculature (arrowheads) wereseen, primarily composed ofneutrophils. In the
single-dose 0.1 1ggroup, there were mild patchy expansionsofalveolar septae
by mononuclearand polymorphonuclear cells. At day4, lungs from PBScontrol
mice exhibited moderate-to-marked expansionofalveolar septae(interstitial
pattern) with decreased prominenceofadjacentalveolarspaces.Inthe 0.01pg
two-dosegroup,inflammation was minimalto absent. Lungsin the 0.1p1g
two-dose group showedmild, predominantly lymphocytic inflammation,
associated with bronchioles and adjacentvasculature (arrowheads).In the
single-dose 0.1 1ggroup there wasmild, predominantly lymphocytic
inflammation around bronchovascular bundles (arrowheads).

SARS-CoV-2 S(2P) protein formulated in alum (Extended Data Fig.8a,b).
Following restimulation with peptide pools (one poolofoverlapping
peptidesfor each S subunit, S1 and S2) covering the entire S protein,
splenocytes from mice immunized with mRNA-1273 secreted more
IFN-y (a prototypic T,,1 cytokine) thanIL-4,IL-5 or IL-13 (classical T,,2
cytokines), whereas restimulation with SARS-CoV-2S(2P) protein with
alum adjuvant induceda T,,2-biased response (Extended DataFig.8c, d).
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Wealso directly measured cytokine patterns in vaccine-induced mem-
oryTcells by intracellular cytokine staining seven weeksafter the boost
injection; MRNA-1273-elicited CD4'T cells re-stimulated with S1 or
S2 peptide pools exhibited a T,,1-dominant response,particularly at
higher immunogendoses(Fig. 3d,e). Furthermore, 1 pg mMRNA-1273
induced arobust CD8'Tcell responseto the S1 peptide pool(Fig. 3f, g).
Together, the IgG subclass and T cell cytokine data demonstrate that
immunization with MRNA-1273elicits balanced T,,1 and T,2 responses,
in contrast to the T,,2-biased response seen whenusingSprotein with
alum adjuvant, suggesting that mRNAvaccination avoids T,,2-biased
immuneresponses, which have been linked to VAERD.

Protective immunity was assessed in young adult BALB/c] mice
challenged with mouse-adapted (MA) SARS-CoV-2. SARS-CoV-2 MA
contains the substitutions Q498Y/P499Tin the receptor-binding
domain*. The substitutions enable the virus to bind to the mouse

angiotensin-converting enzyme 2 (ACE2) receptor and infect and
replicate in the upper and lowerrespiratory tract”. BALB/c] mice that
received two 1 pg dosesofmRNA-1273 were completely protected from
viral replication inlungs after challenge 5 or 13 weeks after boostinjec-
tion (Fig.4a, Extended DataFig. 9a). mRNA-1273-induced immunity also
resulted in undetectableviral replication in nasal turbinatesin 6 out of
7 mice (Fig. 4b, Extended DataFig. 9b). The efficacy ofmRNA-1273was
dose-dependent; two 0.1 pg doses of mRNA-1273 reduced lungviral
load by about 100-fold, whereas two 0.01 pg doses reduced lungviral
load by about 3-fold (Fig. 4a). Of note, mice challenged 7 weeks after
asingle dose of1or 10 pg MRNA-1273 were alsocompletely protected
againstlungviral replication (Fig. 4c). Challenging animals immunized
with subprotective dosesprovides an orthogonal assessmentofsafety
signals such asincreased clinicalillness or pathology. Similar observa-
tions with MERS-CoVS(2P) mRNA,mice immunized with subprotective
0.1 or 0.01 1g doses of MRNA-1273 showed noevidence ofenhanced
lung pathologyorexcessive mucusproduction(Fig.4d). Insummary,
mRNA-1273is immunogenic,efficacious and does not produce evidence
ofVAERD whengivenat subprotective doses in mice.

Here we have shownthat 1 pg of MRNA-1273is sufficient to induce
robust pseudovirus-neutralizing activity and CD8T cell responses,

balanced T,,1-T,,2 antibody isotype responses,and protection from
viral replication for more than three monthsfollowing a prime-
boost regimen similar to the one being tested in humans.Thelevel of
pseudovirus-neutralizing activity induced by 14g MRNA-1273in miceis
similar in magnitudeto that induced by 100 pg mRNA-1273 inhumans*,
whichis the dose selected for mRNA-1273 to advanceinto phaseIII
clinical trials. The inclusion oflower subprotective doses demonstrates
the dose-dependenceofantibody,T,,1 CD4Tcell responses andprotec-
tion, suggesting that immunecorrelates ofprotection can be further
elucidated. Animal studies supporting candidate SARS-CoV-2vaccines
throughclinicaltrials aim to demonstrateelicitation ofpotent protec-
tive immune responsesas well as to show that subprotective responses
do not cause VAERD*. Subprotective dosesofmRNA-1273did not prime
mice for enhancedimmunopathology following challenge. Moreover,
the induction ofprotective immunity following a single dose suggests
single-dose administration ofthis vaccine could be considered in the
outbreaksetting. These data, combined with immunogenicity data
from non-humanprimates and human participants of early phase I
clinical trials, have been used to inform thedose and regimen ofmRNA-
1273 in advanced clinicalefficacytrials.

The COVID-19 pandemic of2020is the widely predicted ‘pathogen X
event’?“*, Here we providea paradigmfor rapid vaccine development.
Combining structure-guidedstabilization ofthe MERS-CoVSprotein
with a fast, scalable and safe mRNA-LNPvaccine platform has led toa
generalizable vaccine solution for Betacoronavirus and acommercial
mRNAvaccine delivery platform; these developments enabled a rapid
response to the COVID-19 outbreak. This response demonstrates how
new technology-driven concepts suchas synthetic vaccinology can
facilitate a vaccine development programmeinitiated on the basis of
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pathogen sequencesalone". This study also providesa proofofconcept
forthe prototype-pathogen approachtopandemic preparedness and
responsethatis predicated on identifying generalizable solutionsfor
medical counter measures within virus families or genera”, Although
the response to the COVID-19 pandemic has been unprecedented in
its speed and breadth,we envision further improvementsin rapid
responsesto suchthreats. There are 24 othervirus families that are
knownto infect humans, and sustained investigation ofthose potential
threatswill improve our readiness for future pandemics“.
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Methods

Data reporting

Nostatistical methods were used to predetermine samplesize. The
experiments were not randomized.The investigators were not blinded
to allocation during experiments and outcome assessment.

Pre-clinical mRNA-1273 mRNAand LNPproduction process
Asequence-optimized mRNA encoding SARS-CoV-2 S(2P) protein was
synthesized in vitro using an optimized T7 RNA polymerase-mediated
transcription reaction with complete replacementof uridine by
Ni-methyl-pseudouridine™, The reaction included a DNA template
containing the immunogenopen reading frameflanked by 5’ untrans-
lated region (UTR) and 3’ UTR sequencesand wasterminated by an
encodedpolyAtail. After transcription, the Cap 1 structure was added
tothe 5’ end using vaccinia capping enzyme(New EnglandBiolabs) and
Vaccinia 2’ O-methyltransferase (New England Biolabs). The mRNA
waspurified by oligo-dTaffinity purification, buffer exchanged by
tangential flow filtration into sodium acetate, pH 5.0,sterile filtered,
and kept frozen at -20 °C until furtheruse.

The mRNAwasencapsulatedin a lipid nanoparticle through amodi-
fied ethanol-drop nanoprecipitation process as described previously”.
In brief, ionizable, structural, helper and polyethylene glycollipids
were mixed with mRNAin acetate buffer, pH 5.0, at a ratio of 2.5:1
(lipids:mRNA). The mixture was neutralized with Tris-Cl pH 7.5, sucrose
was added as acryoprotectant, and thefinal solution wassterile filtered.
Vials were filled with formulated LNP andstored frozen at -70 °C until

furtheruse. The drug product underwentanalytical characterization,
which included the determinationofparticle size and polydispersity,
encapsulation, mRNApurity, double stranded RNAcontent, osmolality,
pH, endotoxin and bioburden, and the material was deemed accept-
able forin vivo study.

MERS-CoV and SARS-CoVprotein expression and purification
Vectors encoding MERS-CoVS-2P'and SARS-CoV S-2P”weregenerated
as previously described with the following small amendments.Proteins
were expressed bytransfection ofplasmids into Expi293cells using
Expifectaminetransfection reagent (ThermoFisher) in suspension
at 37 °C for 4-5 days. Transfected cell culture supernatants werecol-
lected, buffer exchangedinto 1x PBS,and protein waspurified using
Strep-Tactinresin (IBA). For proteins used for mouseinoculations, tags
were cleaved with additionofHRV3C protease (ThermoFisher) (1%wt/wt)
overnightat 4 °C. Size-exclusion chromatographyusing Superose 6
Increase column(GE Healthcare)yieldedfinal purified protein.

Design and production ofrecombinantminifibritin foldon
protein

Amammalian codon-optimized plasmid encoding foldon inserted
minifibritin (ADIVLNDLPFVOGPPAEGQSRISWIKNGEEILGADTQYGSE
GSMNRPTVSVLRNVEVLDKNIGILKTSLETANSDIKTIQEAGYIPEAPRDGQA

YVRKDGEWVLLSTFLSPALVPRGSHHHHHHSAWSHPOFEK)with a

C-terminal thrombin cleavagesite, 6xHis tag, and Strep-TaglI was syn-
thesized and subcloned into amammalian expression vector derived
from pLEXm.The constructwas expressedbytransient transfection of
Expi293 (ThermoFisher)cells in suspension at 37 °C for 5 days. The pro-
tein wasfirst purified with a Ni?’-nitrilotriacetic acid resin (GE Health-
care) using an elution buffer consistingof50 mM Tris-HCl, pH 7.5, 400
mM NaCland300 mM imidazole pH 8.0,followed by purification with
StrepTactin resin (IBA) according to the manufacturer’s instructions.

Celllines

HEK293T/17 (ATCC CRL-11268), Vero E6 (ATCC), Huh7.5 cells (provided
by D.R. Taylor, US Food and Drug Administration) and ACE2-expressing
293Tcells (provided by M. Farzan, Scripps ResearchInstitute) were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM)supplemented

with 10% FBS, 2mMglutamine and 1% penicillin-streptomycin at 37 °C
and 5% CO,. Vero E6cells used in plaque assays to determine lung and
nasal turbinate viraltitreswere cultured in DMEM supplemented with
10% Fetal Clone Il and 1% antibiotic-antimycotic at 37 °C and 5% CO2.
Vero E6 cells used in plaque-reduction neutralization test (PRNT)
assays were cultured in DMEM supplemented with 10% Fetal CloneII
and amphotericin B (0.25 pg mI“) at 37 °C and 5% CO,. Lentivirus encod-
ing hACE2-P2A-TMPRSS2 was madetogenerate A549-hACE2-TMPRSS2
cells, which were maintained in DMEM supplemented with 10% FBS
and 1 pg mI“ puromycin. Expi293 cells were maintained in the manu-
facturer’s suggested medium. BHK-21/WI-2 cells were obtained from
Kerafast and cultured in DMEM with 5% FBSat 37 °C and 6-8% CO.,Cell
lines were not authenticated.All cells lines were tested for mycoplasma
and remained negative.

In vitro mRNAexpression

HEK293Tcells were transiently transfected with mRNA encoding
SARS-CoV-2 wild-type S or S(2P) protein using a TranIT mRNAtrans-
fection kit (Mirus). After 24 h, the cells were collected and resuspended
in fluorescence-activated cell sorting (FACS) buffer (1x PBS, 3% FBS,
0.05% sodium azide). To detect surface-protein expression,the cells
were stained with 10 pg ml" ACE2-Flag (Sigma) or 10 pg ml’ CR3022
in FACS bufferfor 30 min onice. Thereafter, cells were washed twice in

FACSbufferand incubated with FITC—anti-Flag (Sigma) or Alexa Fluor
647-goat anti-human IgG (Southern Biotech) in FACS buffer for 30 min
onice. Live/Dead aquafixablestain (Invitrogen) were used to assess
viability. Data acquisition was performed ona BD LSRII Fortessa instru-
ment (BD Biosciences) and analysed by FlowJo softwarev.10 (TreeStar).

Mouse models

Animal experiments were carried out in compliance withall perti-
nent US National Institutes ofHealth regulations and approval from
the Animal Care and Use Committee (ACUC)ofthe Vaccine Research

Center, ModernaInc., or University ofNorth Carolina at ChapelHill.
For immunogenicity studies, 6-to 8-week-old female BALB/c (Charles
River), BALB/c], CS7BL/6) or B6C3F1/) mice (Jackson Laboratory) were
used. mRNA formulations werediluted in 50 yl 1x PBS, and mice were
inoculated intramuscularly in the samehindleg for both prime and
boost. Control mice received PBS because previous studies have
demonstrated the mRNAformulations being tested do not create
substantiallevels of nonspecific immunity beyond a few days?**°.
For all SARS-CoV-2 S(2P) protein vaccinations, mice were inoculated
intramuscularly with SASas previously described’. For S(2P) + alum
immunizations, SARS-CoV-2 S(2P) protein + 250 pg alum hydrogel was
delivered intramuscularly. For challenge studies to evaluate MERS-CoV
vaccines, 16- to 20-week-old male and female 288/330"mice” were
immunized. Four weeks post-boost, pre-challenge sera were collected
from a subsetofmice, and the remaining mice were challenged with
5x 10° PFU of a mouse-adapted MERS-CoV EMCderivative, m35c4*”.
Onday3post-challenge, Iungs were collected and haemorrhage and
viral titrewere assessed accordingto previously published methods”.
For challenge studies to evaluate SARS-CoV-2 vaccines, BALB/c] mice
were challenged with 10° PFU SARS-CoV-2 MA.This virus contains two
mutations (Q498T/P499Y)in the receptorbinding domain that enable
binding ofSARS-CoV-2S protein to the mouseACE2 receptorandinfec-
tionandreplication in the upper and lowerrespiratorytract”. On day
2 post-challenge, lungs and nasal turbinates were collectedforviral
titre assessmentaccording to previously published methods”. Sample
size for animal experiments was determined on the basisofcriteria set
by institutional ACUC. Experiments were not randomizedorblinded.

Histology
Lungswerecollected from miceat the indicated study end points and
placedin10% neutral-buffered formalin until adequatelyfixed. Thereafter,
tissues were trimmedto a thickness of3-5 mm,processed andparaffin
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embedded.Therespectiveparaffin tissue blocks were sectioned at 5 um
andstainedwith haematoxylin andeosin.All sectionswere examined bya
board-certified veterinarypathologist usingan Olympus BX51lightmicro-
scope, and photomicrographsweretaken using.an Olympus DP73 camera.

ELISA

NuncMaxisorp ELISA plates (ThermoFisher) were coated with 100 ng
perwell ofprotein in 1x PBSat4 °C for 16 h. Where applicable, to elimi-
nate fold-on-specific binding from MERS-CoV S(2P) or SARS-CoV-2 S(2P)
protein-immune mouseserum,50 pg mIoffold-on protein was added
for Lh at room temperature. After standard washesand blocks,plates
were incubatedwithserial dilutions ofheat-inactivated sera for 1h at

room temperature. Following washes, anti-mouseIgG, IgG1 or IgG2a
and/or IgG2c-horseradish peroxidase conjugates (ThermoFisher)
were used as secondaryantibodies, and 3,5,3’5’-tetramethylbenzidine
(TMB) (KPL) wasusedasthe substrate to detect antibody responses.
End-point titres were calculated as the dilution that emitted an optical
density exceeding 4x background (secondary antibodyalone).

Lentivirus-based pseudovirus-neutralization assay
The pseudovirus-neutralization assay measurestheinhibition ofpseu-
dovirus attachmentandentry including fusion-inhibiting activity.Itis
asingle-roundvirus, does notreplicate, and does not express theS pro-
tein in transducedcells. Therefore, pseudovirusinfection will not cause
cell-to-cell fusion or plaque formation that can be measured ina classi-
cal neutralization assay usinglivevirus. This pseudovirus neutralization
assay has been shownto correlate withlive virus plaque-reduction
neutralization®, and becauseitdoesnot require BL3 containment, was
chosenasthe preferred assay for measuring neutralizing activity in
these studies. We introduced divergent aminoacids, as predicted from
translated sequences, into the CMV/R-MERS-CoV EMCS (GenBank:
AFS88936) gene“ togenerate a MERS-CoV m35c4 S gene”.To produce
SARS-CoV-2 pseudoviruses, a codon-optimized CMV/R-SARS-CoV-2
S (Wuhan-1, GenBank: MN908947.3) plasmid was constructed. Pseu-
doviruses were produced by co-transfection ofplasmids encoding a
luciferase reporter, lentivirus backbone, and S genes into HEK293T/17
cells (ATCC CRL-11268), as previously described“. For SARS-CoV-2 pseu-
dovirus, humantransmembraneproteaseserine 2 (TMPRSS2) plasmid
wasalso co-transfected. Pseudoneutralization assay methods have
beenpreviously described’. In brief, heat-inactivated serum was
mixed with pseudoviruses, incubated, and then added to Huh7.5cells
or ACE-2-expressing 293Tcells for MERS-CoV and SARS-CoV-2 respec-
tively. Seventy-two hourslater, cells were lysed and luciferase activity
(in relative light units (RLU)) was measured.Per cent neutralization
wasnormalized considering uninfected cells as 100% neutralization
and cells infected with only pseudovirus as 0% neutralization. IC,
titres were determinedusing a log (agonist) vs normalized-response
(variable slope) nonlinear function in Prism v8 (GraphPad).

Recombinant VSVAG-based pseudovirus neutralization assay
Codon-optimized wild-type (D614) or D614G spike gene (Wuhan-Hu-1
strain, NCBI reference sequence: NC_045512.2) was cloned into pCAGGS
vector. To generate VSVAG-based SARS-CoV-2 pseudovirus, BHK-21/WI-2
cells were transfected with the spike expression plasmid and infected
VSVAG-firefly-luciferase as previously described**,A549-hACE2-TMPRSS2
cells were infected by pseudovirusfor 1h at 37 °C. The inoculum virus or
virus-antibody mixwas removedafter infection. Eighteen hourslater, an
equal volumeofOne-Gloreagent (Promega) wasaddedtoculturemedium
for readout using a BMG PHERastar-FSplate reader. The neutralization
procedure anddata analysis are the same as mentioned aboveforthe
lentivirus-based pseudovirus neutralization assay.

PRNTassays

Heat-inactivated sera werediluted in gelatin saline (0.3% (wt/vol) gelatin
in PBS supplemented with CaCl, and MgCl, to generate a 1:5 dilution

ofthe original specimen,which served as a starting concentration for
furtherserial log, dilutions terminating in 1:81,920. Sera were com-
bined with an equal volume ofSARS-CoV-2 clinical isolate 2019-nCoV
USA-WAI-F6/2020ingelatin saline, resulting in an average concentra-
tion of730 PFU per ml (determined from plaque countsof24 individual
wells ofuntreatedvirus) in each serum dilution.Thus,final serum con-

centrations ranged from 1:10 to 1:163,840 oftheoriginal. Virus-serum
mixtures were incubated for 20 min at 37 °C, followed by adsorption
of0.1 mI to each of two confluent Vero E6 cell monolayers (in 10 cm?”
wells) for 30 min at 37 °C. Cell monolayers were overlaid with DMEM
containing 1% agar and incubatedfor 3 d at 37 °Cin humidified 5% CO,.
Plaques were enumeratedbydirectvisualization. The average number
ofplaques in virus + serum (duplicate) and virus-only (24 repeats) wells
wasusedtogenerate percent neutralization curves accordingthefol-
lowing formula: 1 - (ratio of mean numberofplaquesin the presence
and absence ofserum). The PRNTIC,, titre was defined as the recipro-
cal serum dilution at which the neutralization curve crossed the 50%
threshold.

Intracellular cytokine staining
Mononuclearsingle-cell suspensions from whole mousespleens were
generated using agentleMACStissuedissociator (Miltenyi Biotec) fol-
lowed by 70-ym filtration and density gradient centrifugation using
Fico/Lite-LM medium (Atlanta Biologicals). Cells from each mouse
were resuspendedin R10 media (RPMI 1640 supplementedwith penicil-
lin-streptomycin antibiotic, 10% heat-inactivated FBS, Glutamax and
HEPES) and incubatedfor 6 h at 37 °C with protein transport inhibitor
cocktail (eBioscience) underthree conditions: no peptide stimula-
tion, and stimulation with two S-protein peptide pools (JPT product
PM-WCPV-S-1). Peptide pools were usedat a final concentration of2
Lig ml per peptide. Cells from each group were pooledfor stimulation
with cell stimulation cocktail (eBioscience)as a positive control. Fol-
lowing stimulation, cells were washed with PBS beforestaining with
LIVE/DEADFixable Blue Dead Cell Stain (Invitrogen, L23105; 1:800)
for 20 min at room temperature. Cells were then washed in FC buffer
(PBS supplemented with 2% heat-inactivated FBS and 0.05% NaN.) and
resuspendedin Fc Block (BD, 553141, clone 2.4G2; 1:100) for 5 min at
room temperaturebefore stainingwith a surface stain cocktail contain-
ing the following antibodies: I-A/I-E PE (BD, 557000, clone M5/114.15.2;
1:2,500), CD8a BUV805 (BD, 612898, clone 53-6.7; 1:80), CD44 BUV395

(BD, 740215, clone IM7;1:800), CD62L BV605(Biolegend, 104418, clone
MEL-14; 1:5,000) and CD4 BV480(BD, 565634, clone RM4-5; 1:500)
in brilliant stain buffer (BD). After 15 min, cells were washed with FC

buffer then fixed and permeabilized using the BD Cytofix/Cytoperm
fixation/permeabilization solution kit accordingto the manufacturer’s
instructions. Cells were washed in perm/washsolution and stained with
Fc Block(5 min at room temperature), followed by intracellular stain-
ing (30 min at 4 °C) using a cocktail ofthe following antibodies: CD3e
BUV737(BD,741788, clone 17A2; 1:80), IFN-y BV650 (BD, 563854, clone
XMG1.2;1:500), TNF BV711 (BD, 563944, clone MP6-XT22;1:80), IL-2

BV421 (BD, 562969, cloneJES6-5H4;1:80), IL-4 Alexa Fluor 488 (Bioleg-
end, 504109, clone 11B11;1:80) and IL-5 APC (Biolegend, 504306, clone
TRFKS; 1:320)in 1x perm/washdilutedwithbrilliant stain buffer.Finally,
cells were washed in perm/washsolution and resuspended in 0.5%
PFA-FC stain buffer before running on a SymphonyA5flowcytometer
(BD). Analysis was performed using FlowJo software,v.10.6.2 according
to the gating strategy outlined in Extended Data Fig. 10. Background
cytokine expressioninthe no-peptide condition was subtracted from
that measuredin the SLand S2 peptide pools for each individual mouse.

T cell stimulation and cytokine analysis
Spleens from immunized mice werecollected two weekspost-boost.
Two-million splenocytes per well (96-well plate) were stimulated
in vitro with two peptidelibraries,JPT1 andJPT2, (1Smers with 11 amino
acid overlap) covering the entire SARS-CoV-2 S protein (JPT product
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PM-WCPV-S-1). Both peptide libraries were usedat a final concentration
of 1 pg mI". After 24 h ofculture at 37 °C, the plates were centrifuged
and supernatantwascollected and frozen at -80 °C for cytokine detec-
tion. Measurements and analyses ofsecreted cytokines froma murine
35-plex kit were performed using a multiplex bead-based technology
(Luminex)assaywith a Bio-Plex200 instrument(Bio-Rad) after twofold
dilution ofsupernatants.

Statistical analysis
Geometric meansor arithmetic means are represented bythe heights of
bars, or symbols, and error bars represent the correspondings.d. Dot-
ted lines indicate assay limits ofdetection. Two-sided Mann-Whitney
U-tests were used to compare two experimental groups and two-sided
Wilcoxon signed-ranktests to compare the same animalsatdifferent
time points. To compare morethan two experimental groups, Kruskal-
WallisANOVAwith Dunn’s multiple comparisonstestswere applied.In
Extended DataFig.5a,b, all doses were compared to the 20 1g dose by
two-sided Mann-WhitneyU-testin a stepwise fashion, such that lowest
dosesweretested first at a = 0.05 and higherdosesweretested only
if the lower doses weresignificant. In Extended DataFig. 5c, a Spear-
mancorrelation test was used to correlate binding antibodytitres to
pseudovirus-neutralizing antibodytitres. Statistical analyses were
performed usingRv.4.0.0 or Prism v.8 (GraphPad). *P<0.05,""P< 0.01,
“P< 0.001, *"*P< 0.0001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summarylinkedtothis paper.

Dataavailability
The authors declare that the data supportingthe findingsofthis
studyare available within this Article and its SupplementaryInfor-
mation. Source data are provided with this paper.
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Extended Data Fig. 1| Transmembrane-anchored MERS-CoV S-2P (S-2P_TM)
mRNAelicits morepotent pseudovirusneutralizingantibodyresponses
than secreted MERS-CoV S(2P) and SWT mRNA.a, b, C57BL/6J mice (n =10/
group) were immunizedatweeks 0 and 4 with (a) 0.4,2, or 10 pg ofMERS-CoV
S-2P_TM (red) or MERS S-2Psecreted (red hashed)or (b) 0.016 1g, 0.08 pig, or
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0.4 pg ofMERS-CoVS(2P) or MERS-CoVS WT_TM (black) mRNA.Sera were
collected 4 weeks post-boost and assessed for neutralizing antibodies against
MERS-CoV m35c4 pseudovirus. Immunogens were compared at each doselevel
by two-sided Mann-Whitney U-test. *P< 0.05, ****P<0.0001, Dataare
presented as GMT + geometrics.d.
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Extended Data Fig. 2| Timeline for mRNA-1273’sprogression to clinical
trial. The morningafternovel coronavirus (nCoV) sequenceswere released,
spike sequences were modified to include prefusionstabilizing mutations and
synthesizedfor protein production, assay development, and vaccine
development. Twenty-five days after viral sequences werereleased,
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clinically-relevant mRNA-1273 wasreceived to initiate animal experiments.
Immunogenicity in mice was confirmed15 days later. Moderna shipped clinical
drug product 41 days after GMP production began,leading to the phasel
clinicaltrial starting 66 days following the release ofnCoV sequences.
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Extended DataFig. 3| In vitro expression ofSARS-CoV-2spikemRNAon stained with ACE2 (a, c) or CR3022 (b, d), and evaluated by flow cytometry 24
the cell surface. a—d,293T cells were transfected in duplicate with mRNA post-transfection. Mock-transfected (PBS)cells served as a control(grey).
expressing SARS-CoV-2 wild-type spike (white bars, black lines) or S-2P (red), (a,b) Data are presented as mean.
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Extended Data Fig. 4| mRNA-1273elicits robustpseudovirus neutralizing
antibody responsesto SARS-CoV-2_D614G. BALB/c mice (n= 24) were
immunized atweeks 0 and 3 weeks with1pg (red) ofmRNA-1273, in three
individual studies (n= 8/study). Sera were collected 2 weeks post-boost and
assessedfor neutralizing antibodies against homotypic SARS-CoV-2_D614
pseudovirus(circles) or SARS-CoV-2_D614G (squares). Comparisons between
D614 and D614G were made by two-sided Wilcoxon signed rank test. *P< 0.05.
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Extended Data Fig. 5| Dose-dependent mRNA-1273-elicited antibody
responsesreveal strongpositive correlation between binding and
pseudovirusneutralizationtitres. a—c, BALB/c mice (n= 10/group) were
immunizedatweeks 0 and 3 weeks with various doses (0.0025-20 pg) of
mRNA-1273. Sera were collected 2 weeks post-boostand assessed for
SARS-CoV-2S-specific IgG by ELISA (a) and neutralizing antibodies against
homotypic SARS-CoV-2 pseudovirus(b).a, b, Alldoses were compared tothe
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20 pg dose by two-sided Mann-WhitneyU-test in a stepwise fashion, such that
lowest dosesweretested first at a = 0.05 and higherdosestested onlyifthe
lower doses weresignificant. Data are presented as GMT+geometrics.d., and
dotted lines represent assay limits ofdetection. c, Spearmancorrelationtest
wasused to correlate binding antibodytitres to pseudovirus neutralizing
antibodytitres (P< 0.0001). Each dot represents an individual mouse. Dotted
lines highlight log,,IC;, boundaries. **P< 0.01, ***P< 0.001.
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Extended Data Fig. 6| Asingle dose ofmRNA-1273elicits robustantibody
responses. a—c, BALB/c) mice (n=10/group) were immunized with 0.01
(green), 0.1 (blue), 1 ug (red), or 10 pg (purple) ofmMRNA-1273. Sera were
collected 2 (unfilled circles) and 4 (filled circles) weeks post-immunization and
assessed for SARS-CoV-2 S-specific total IgG by ELISA (a) and neutralizing
antibodies against homotypic SARS-CoV-2 pseudovirus(b). c, S-specific lgG2a
and IgG1 were also measuredby ELISA, and IgG2a to IgG1 subclassratios were
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calculated. In a, b, Time points were comparedwithin each doselevel by
two-sided Wilcoxon signed-rank test, and doses were compared 4 weeks
post-boost by Kruskal-Wallis ANOVA with Dunn’s multiple comparisonstest.
*P<0.05,**P<0.01,***P<0.001,****P<0.0001.c, Doses werecompared by
two-sided Mann-Whitney U-test, and no significance was found. Data are
presented as GMT + geometrics.d.(a, b) or mean+s.d. (c), and dotted lines
representassaylimits ofdetection.
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Extended Data Fig. 7| mRNA-1273 and SAS-adjuvanted S-2P protein elicit
both IgG2a andIgG1 subclass S-bindingantibodies. a—f, BALB/c] (a—c) or
C57BL/6J (d-f) mice (n = 10/group) were immunized at weeks0 and 3 with 0.01
(green), 0.1 (blue), or 1 pg (red) ofmRNA-1273 or SARS-CoV-2S-2P protein
adjuvanted with SAS.Sera were collected 2 weeks post-boost and assessed by
ELISA for SARS-CoV-2 S-specific 1gG1 and IgG2a or lgG2c for BALB/c) and

C57BL/6J mice, respectively. End-pointtitres (a, b, d,e) and end-pointtitre
ratios of lIgG2a to IgG1 (c) and IgG2c to IgG1 (f) were calculated. For mice for
which end-pointtitres did not reach the lowerlimit ofdetection (dotted line),
ratios were not calculated (N/A). Data are presented as GMT + geometrics.d.
(a,b, d, e) or mean +s.d.(c,f).
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Extended Data Fig. 8 |mRNA-1273elicits T,,1-skewed responses compared
to S-2P protein adjuvanted with alum. BALB/c mice (n= 6/group) were
immunizedatweeks 0 and 2 weeks with 1 (red) or 10 pg (purple) ofmRNA-1273
or 10 pg ofSARS-CoV-2 S-2P protein adjuvanted with alum hydrogel (orange).
Control mice were administered PBS(grey) (n=3).a, b, Sera were collected
2weekspost-boost and assessed by ELISA for SARS-CoV-2 S-specificIgG1 and
IgG2a. End-pointtitres (a) and end-point titre ratios oflgG2a to IgG1 (b) were
calculated. c, d, Splenocytes were collected 4 weeks post-boost to evaluate
IFN-y,IL-4, IL-5, and IL-13 cytokine levels secreted by T cells re-stimulated with
S1(c) and S2 (d) peptide pools, measured by Luminex.In b, immunogens were
compared by two-sided Mann-WhitneyU-test. Inc, d, for cytokines,all
comparisons were compared to PBS control mice by Kruskal-Wallis ANOVA
with Dunn’s multiple comparisonstest. *P< 0.05, **P<0.01,***P<0.001,
****P< 0.0001. Data are presented as GMT + geometric s.d. (a) or mean +s.d.
(b-d). Dotted line represents assaylimit ofdetection.
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Extended Data Fig. 9 | mRNA-1273 protects micefrom upper- and
lower-airway SARS-CoV-2 infection, 13weeks post-boost. a,b, BALB/c) mice
were immunized at weeks 0 and 3 with 0.01 (green), 0.1(blue), or 11g (red) of
mRNA-1273. Age-matchednaive mice (grey) served as controls. Thirteen weeks
Post-boost, mice were challenged with mouse-adapted SARS-CoV-2. Two days

b Two Doses mRNA-1273NasalTurbinates Viral Load
Week13 Post-boost

PFU/Turbinate(log10) 
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post-challenge,at peakviral load, mouse lungs(a) and nasal turbinates (b) were
collected from 5 mice pergroup (3 micefor the 1 pg group) for analysis ofviral
titres. Alldose levels were compared by Kruskal-Wallis ANOVA with Dunn’s
multiple comparisonstest. *P< 0.05. Data are presented as GMT + geometric
s.d. Dotted line representsassaylimit ofdetection.
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Extended Data Fig. 10 | Flowcytometrypanel to quantify SARS-CoV-2
S-specific T cellsin mice.a, Related to Fig. 3d-g, a hierarchical gating strategy
wasused to unambiguously identify single, viable CD4* and CD8*T cells.
b-e, Gating summary ofSARS-CoV-2 S-specific (b, c) CD4* and (d, e) CD8* T cells
elicited by 0.01 and 1pg mRNA-1273 immunization. Antigen-specific T cell
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responsesfollowing peptide poolre-stimulation were defined as CD44"/
cytokine’. Concatenatedfiles shown weregenerated using the same numberof
randomly selected events from each animalacrossthe different stimulation
conditions using FlowJo software,v.10.6.2.
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1/800), CD62L BV605 (Biolegend, cat. 104418, clone MEL 14, 1/5000), and CD4 BV480(BD,cat. 565634, clone RM4 5, 1/500)

Validation Jan ter Meulen,J. et al. Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape
Mutants. PLOS Medicine 3, ¢237, doi:10.1371/journal.pmed.0030237 (2006).

Eukaryotic cell lines
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommendedfor reporting animal research

Laboratory animals 6 8 week old female BALB/c (Charles River), BALB/c], CS7BL/6J, or B6C3F1/) mice (Jackson Laboratory) | 16 20 week old male and
female 288/330+/+mice

Wild animals There were nowild animals used in this study

Field collected samples There were nofield collected samples.

Ethics oversight Animal experiments were carried out in compliancewith all pertinent US National Institutes of Health regulations and approvalfrom
the Animal Care and Use Committee of the Vaccine Research Center, Moderna Inc., or University of North Carolina at Chapel Hill.

Notethatfull information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation Mononuclear single cell suspensions from whole mouse spleens were generated using a gentleMACStissue dissociator
(Miltenyi Biotec) followed by 70 umfiltration and density gradient centrifugation using Fico/Lite LM medium (Atlanta
Biologicals). Cells from each mouse were resuspended in R10 media (RPMI 1640 supplemented with Pen Strep antibiotic,
10% HI FBS, Glutamax, and HEPES)and incubatedfor 6 hr at 37°C with protein transport inhibitor cocktail (eBioscience)
underthree conditions: no peptide stimulation, and stimulation with two spike peptide pools (JPT product PM WCPV S 1).
Peptide pools were used at a final concentration of 2 ug/mL each peptide. Cells from each group were pooledfor stimulation
with cell stimulation cocktail (eBioscience) as a positive control. Following stimulation, cells were washed with PBSprior to
staining with LIVE/DEAD Fixable Blue Dead Cell Stain (Invitrogen) for 20 min at RT. Cells were then washedin FC buffer (PBS
supplemented with 2% HI FBS and 0.05% NaN3) and resuspendedin BD FcBlock (clone 2.4G2) for 5 min at RTprior to
staining with a surface stain cocktail containing the following antibodies purchased from BD and Biolegend: | A/I E
(M5/114.15.2) PE, CD8a (53 6.7) BUV805, CD44 (IM7) BUV395, CD62L (MEL 14) BV605, and CD4 (RM4 5) BV480inbrilliant
stain buffer (BD). After 15 min, cells were washed with FC buffer then fixed and permeabilized using the BD Cytofix/Cytoperm
fixation/permeabilization solution kit according to manufacturer instructions. Cells were washed in perm/washsolution and
stained with Fc Block (5 min at RT), followed by intracellular staining (30 min at 4°C) using a cocktail of the following
antibodies purchased from BD, Biolegend, or eBioscience: CD3e (17A2) BUV737, IFN y (XMG1.2) BV650, TNF a (MP6 XT22)
BV711,IL 2 (JES6 5H4) BV421, IL 4 (11B11) Alexa Fluor 488, and IL 5 (TRFK5) APC in 1x perm/washdiluted withbrilliant stain
buffer. Finally, cells were washed in perm/washsolution and resuspendedin 0.5% PFA FCstain buffer prior to running on a
Symphony A5 flow cytometer (BD). Analysis was performed using FlowJo software, version 10.6.2 according to the gating
strategy outlined in Extended Data Figure 9. Background cytokine expression in the no peptide condition was subtracted
from that measuredin the S1 and S2 peptide pools for each individual mouse.

Instrument SymphonyA5 flow cytometer (BD)

Software FlowJo software, version 10.6.2

Cell population abundance Concatenatedfiles shown were generated using the same numberof randomly selected events from each animal across the
different stimulation conditions.

Gating strategy Extended Data Fig. 10 showsahierarchical gating strategy was used to unambiguously identify single, viable CD4+ and CD8+
T cells. Gating summary of SARS CoV 2S specific CD4 (b c) and CD8 (d e} T cells. Antigen specific T cell responses following
peptide pool re stimulation were defined as CD44hi/cytokine+. 

  Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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