(10) Patent No.: US 8,114,833 B2
(45) Date of Patent: Feb. 14, 2012

PROPYLENE GLYCOL-CONTANIVG PEPTIDE HORMULATIONS WHICH ARE OPTMAL FOR PRODUC IION AND FOR USE IN INIECTION DEVICES

Inventors:
Tina Bjeldskov Pedersen, Smerrim (DK), Claude Bonde Lyaghy (DK); Dorthe Kot Engelund Hotte (DK)
(73) Assignee. Novo Nordisk I/S Bagsaerd (DK)
(*) Notice Subject to any disclamer he tern of this paten is extended or adusted moder 35 U. S.C. 1546 by 663 days.

This patent is subject to a terminal disclaimer.

Appl No. 11435977
Filed May 17,2006
Prior Publication Data
US 20070010424A1 Jan 11,2007
(6) Conthuation of application No, PCTDKK $2004 / 00022$, hied on Nov. 18.2004.
(60) Provisional application No 60524,653 fled on Nov. 24.2003

Torelgn Application Priority Data
Nov 20.2003
(DK)
200301719
(51) Mut.Cl.

461H3826 (200601)
(52) U.S.CI.
(58) Field of Classification Search \qquad None See application file for complete search history.

Neferences Cited
US PATENT DOCIMENTS

4,468,346 A	81084	Pauterat
$5,206,219 \mathrm{~A}$	41993	Desat
5272.35 A	121993	Takrun
3,55331	101995	Pearce
5,632216 -	71097	Semellerat.
5706483 I	11998	Gallowy
6.133229	102000	Gibson en
6114201 B1	22001	Dnukerctal.
$6268343 \mathrm{B1}$	72001	Cnuesenet al
6.274381	82001	Furuys
6.28427 BL	9.3001	kmeral
6340,37 B2	42002	Hermeling
$6384,016 \mathrm{BH}$	52002	Katrholm
6.444 .788 B1	92002	Staby
$6,56,39018$	72003	Druckereal.
$6.844 .31 \mathrm{B2}$	12005	Aronten.

7022.64	13	42006	Derelopis ef al	
7049.284	12	32006	Drukerctal.	
7,056,886	12	62006	Isancs	
7,235,605	B2	Toov:	Derelippitel al	
20010011606	A	82001	Hemelnge en	
20010027180	A1	102001	Isates	
20020151467	A	102002	Lemg	
20030060412	E1	32003	Prouty elal	
20030069182	A	42003	Runella	
2003011973	A1	62003	Pline etal	
20030188101	A1	8 c 00 s	Drucker	
20030207802	A1	112005	Detelippis	
200302024	41	11200s	Gassner ef al	
2003020255	A	112003	Amudea ct al	
20040156835	4	82004	Imolocal	
20040248782	A 1	122004	Butonetal.	
20060084005.	Al^{3}	42006	Engelundet	31412
20660287221	Al*	122006	Kmulsenal.	5143

FORIION PATENT DOCUMENTS

Ct	230604	41999
CA	237743	122004
EP	093169	111900
E1	0438767	121090
13	69968%	x1905
11	708179	41906
EP	74300	121996
IP.	0026159	61999
EP	132946	102001
PP	1424097	32002
E4	134513	9200
13	1396492	32004
14	722492	32005
P	10101606	41098
IF	2000510813	\$2000
TP	2001-25371	122001
IP	2002-504908	23002
[2002-508332	31002
IP	2002-24314	12002
J	2002-32437	102002
T	2003.19105	62003
IP:	2003519195	62003

(Contimued)

OTHER PUBLICATIONS

Singh,setal-Aaps mamscicoh-2003-60 4 Pan 2-p 334 342.
(Contmued)
Prowary Examiner Chistha Bradley
(74) Anorney Agent or Fwm - Michael 1 Brignati

ABSTRTCT
The present invention relates to phamaceutical formulations comprising a peptide and propylene glycol to methods of preparing such fomulations and to wses of such formulations In the treatment of discases and conditions for which use of the peptide contained in such formulations is adicated. The present invention further relates to methods for recluctug the clogging of injection device by a peptide formulation and for reducing deposits on production equipment during prodiction of a peptide formulation.

31 Claims, 7 Drawing Sheets

US 8,114,833 B2

Bon-mat Office Acton mathed Dec 9,2009 in Us. Apt To. 12184. 31 hied Aug 1,2008 by Morensen ce al.

Sigma, Cutom Peptute Symhesis, 2004, pe. 12, hty wwow SIGMAGIMOS SCOMPIPIDI DISIGNASI
Batey eta The Nhetics af Frgme-Catyxed Renehons Bochemcal Enginecring I madamentals. 2 nt Lid. pp $125-148$ (1086)
 glycerollum) Printed Aue 04,2009
Earopean Phamucopocia, 2007 , wol 1 p 730 , Comen of furopSinasburg:
SL Bondos \& A Bicknel, Detecton ate Prevention of Prein Aggregtion Pefore During and Afer Fumfeation Analytieat Diochemistry 2003,223 . 24 , vol 316 . Acadenic 7 ress
Shinotesnto Batent Abstact of Japan, of SP 0101600 .
Skougard a al, Usine Lvolutionar Intomation and Ancestal Sequences to Unterstan the Sequence I unction Retntonelip in CIP-1 Agomsts 1 Mol Bio. 2006, wol 363 , p. 977.988
Troka et al Selective Flocculaton Ands Precipitation for the Tmporement of Viro-Like Prutcle Recovery From Sess Honogethle Botecmol Prog vol 164), pp, 661-7 (2000).
Non- Imd Offec Action IULS Appl No 1018592 , Fied Jume 2 . 200. Inventors Lunk et at Sen Mar 10.2006

Nontinalofice tetion in U. S. Apl Xo 1018592 , Fled lun 27 . 2002. Inventors Flink etal Sen Oet 92007

Wontinal offe Achon in US Appl Yo 1178600 F Flet Apr 11,2007. Trventors Fun ed Sent 424,2009
 2008 , Invenors Funk al Sen My $22,2002$.
 2003, Imentors. Markussen el al Seat Mar. 4,2005
Bon-tral ofice Action nt S appl to 11220,260 , Thed Seps. 2005 , Invertors Mardassen ct al Sen Sep $14,2006$.
 2005 Inventor Makasen a al Sent ce $1 / 2008$
NonTMat ofice hctomin US , Mpl No 11220266 . Fied Sep 6. 000 , Truentons Markusen at al Gen Oc. 1.2007.
MonTmalolice tcion ints Appl No 1129063 , Ihed Mor 30 ,

Nontinalofice Action ints, Apel Ro 11200634 filet Now 34 2005, Imentors Jum-Mortensen et al Sen Xov $9,2007$.
Nont inalofice Action inUS. Apel Wo 11200635 , FledNov 30 . 2005, Inventors fum-Mortensen el al Sen leb 22007
Nontind Ofice Achon n US. Appl No 11200.635 Hied Now. 30, 2005 Imentors Jum-Mortensen er al Sent Ieb 2.2007 .
 2006 Ineetors Sehein et al Sent 6u, 20, 2007
Nont Find OMce Action m US Appl Ae 11365274 Fied Mer: 2006, Inventors Schlein e al Sen Yeb 3.2007
 2006 Inventors Scheince al Sent lan 28, 2000
Final Office Action in US, fpl No 10185,923 , Flied Min 2 , 2002 , Irwentors I muk et al Sent Der. 12,2006
Tinat oftce Sction in VS Apl. No, 101 85.923 , Tled Jun 27 , 2002 Inventors Lunk el al Sen 3 m .42005 .
Fna Onfe Achon in US Apl Wo 16185,923 tied lin 27 , 2002, Thentors Hank et al, Som Jun 30.2008 .
Final olice Action in 4 S. Appl, No 112906 , Miled, Inventors: Mulmortensen el al Sent \$ep $\$ 2007$
Finat ofice Action in L Ls appl No. 11290.6 s, Flad Nov, 30 . 2005 Inventors lun- Worensen er al Sent Sep, 52007 .
Fnalomechcion in . Appl No 11 36, 274 , HedMar 1,2006 . Inventors Schleiner al, Sent Apr 4, 2008
Tinaloffer Acton in T, s ppl No. 11365,24 , Med Mar 12006 , Inventors Schein et at Sem Ary 12,2000
Finalofice kelon mu S. Appl. No, 1176609 , Fled apr 112007 , Inventors Fullec al Sen Nov. 24, 2009.
Final onfec Acton in 1. S Appl No 12343 /22, Ined Dec. 24 . 2008 loventors Tuit at al Sent Gel $18,2009$.
Britun, Hary G, Butters Butering sent, mel lonic Equilbrin. Eneyelopedia Phamaceulical Technologyp385,2007.
Renmaton S Wammeettical Sciences. Mack Publiming Company, Wh F fition 1900 , Chaper 20 p. 1406.
Plumer's Princyles \& Practice of Intavernous Therapy, 2006 Ldhankpy 124120
Frope th Pharmacopoen, St Edinon, 1007 pp 1748
Thiter States Thamacopoela, 24 m Tition $1999_{\text {, }}$. 1977 -1978.
Fumer Lxpenmenal Dan Tm, $22,2009$.
Frokgaer of al. Pramacemical Fommatoon Devclopment of Peputerand Potens 2000 pp 145 - 148 mu 150-151.
Matinetal. Thysal Pharmeyr Gysical Chemica Dincpies inthe Mammaceutcalsciences 106, pp 222-25
Remington's Phamncentical Scieroes, Wack Pubishing Companys 181 Idition 1900 Clupte 84,15 1545-1550.
Knuesen er al. I Med Chem. vol 43; pp 1604-1662. 2000
Stenesh $\$$ Biochemistry 1998 pp. 67.69 .
Yane et at. T. Parenteral Science ant Technology wo 42, p. $34826,108 \%$.
Sigma Producton Information on Cly Gly Bufier Mar 2010.
Matin etal. Phystal Mamney $10 \mathrm{c}, \mathrm{p} 232$
Declantion of Johny C Gomales Vovenber 2010 pp, $1-7$
El L Lly and Compary Produce Imfomation on Humalog Irralin. Ligw lipecten 2000 P $1-12$.
 Dated Feb. 11. 2010

Gevates Sobuy C, Dechnimen at Incluting Cumicilum Buty

 Sourn or Mchicini chemitry pon, wol 43, pp 16642
entimen H, Tmen mamic. 2000 , $273,274,281$

Mak Publwhue Co. Remingwo Phammeentev Sciences. Ibh

 1he Whmacewival science. 198 , 3rt Yation $p 23$.

Wartu a en. Mysical Phimasy Pbycal chemed Prineytes in The Diemmacentent sconces 1 es. 3 I Lition p 2 23
 Scush I Brochew

 1164.6
 we 12.m 126
 2006 vot 810) p1 1248.
 wol 1 nd ration p 20
Whed by cxaminer

Case 1:17-cv-00227-JFB-SRF Document 39-1 Filed 01/29/18 Page 5 of 118 PageID \#: 398
U.S. Patent

Feb. 14,2012 Sheet 1 of 7
US $8,114,833$ B2

FICURE

Mannitol

Argi-

Glyce-

Case 1:17-cv-00227-JFB-SRF Document 39-1 Filed 01/29/18 Page 7 of 118 PageID \#: 400
U.S. Patent

Case 1:17-cv-00227-JFB-SRF Document 39-1 Filed 01/29/18 Page 8 of 118 PageID \#: 401
U.S. Patent

FIGURE 4

Glycine

Lactose

Mannitol

Case 1:17-cv-00227-JFB-SRF Document 39-1 Filed 01/29/18 Page 9 of 118 PageID \#: 402
U.S. Patent

US $8,114,833 \mathrm{~B} 2$

FIOURES

FIGURE 6

FIGURE 7

PROPYLENE GLYCOL-CONIMINING

 PEPTIDE RORMULATIONS WIICH ARE OPTMLI TOR PRODUCTIOS AND FOR USE IN INIECTION DEVICESCROSS REFERENOE TORELATED APPLICATIONS

Abstract

This Application is a contimation ol International Applcation seral no. DCTUK 2004100072 hed Nov. 182004 and clams priority fromUS. application Ser No. 60524,653 fled Nov 24,200 and fromD lmish Applicaticn serva no PA 200301719 Ilea Nov $20,2003$.

FIELD OF THE INVENTION

The present mention nelates 10 phamacentical formuna Thons comprising a peptide and propylene y ycol to nethods of prepanng such fommlations, mil louses of such formula Tons in the treamen of Inseases and conthons for whichuse of the pepide comtamed in such formulations is Irdicated. The present invention further relates te netheds for reducing We cloggingof inection devices by apeptide brmulatonand Tor redueing deposis on produchon equipnent during pooDucton of a peptide formulation.

BACKOROUND OF THE NVENTION

The incluson of sotoncty agens in peptidecontaining pharmaceutical formulations is widely known and one of the more common isotonic ggents nised in such formulations is manntol. However the present inventor have observed that mannitol catises problens duting the production of peptide. Tormulations as if erystallizes resulting in deposits in the production equipment ad in the final product. Such deposits increase the need to clean the fllting equipment during productionol the formulation and this results in reduced produeHion capability In addition, such deposits may also result in reduced yeld of the final product stice vialsicartidges containing the peptite formulaion may need to be discarded if particles are present Finally, the present inventors have observed that in peptide formilations to be adminitered by miection, the presele of mambol resulls in clogging of imection devices.

Accordingly, it is desirable to identify an alternative isotonic tgent to mannitol for inclusion in peptidectontating formulations and in particalar for inclusion in peptide formulations which are administered by inection.

SUMMARY OF THE INVENTION

The present inventors lave discovered frat pepide fomulations containing propylene glycol at certin concentrations exhibit reduced deposits in production equipment and in the final product and also extibit reduced clogging of mection devices. The present compositions may be formulated with any peplide and are also physically and chemicaly stable thus rendering them shell-stable and suthble for imasive (eg. imection, stbentaneons injection, intranuscular, intravenous or mfusion) as well as nom invasive (eg nasal, onal, putmonary, transdermal or transmucosal eg buccal) metns of administration.
The present invention therefore relates to a phamacentical formulation comprising a peptide and propylene glycol, where the propylene glycot is present in a concentration of $1-100$ mgiml and the pllof the formulation is from 7-10. Ina
prefered embodiment, the pharmacentical formulations of the invention further contain a buffer and a preservative.

The present iwenticnalso relates to methods for producing the phamaceutical formulations of the invention.

In one embodiment, the method for preparing a pentide formulation comprises:
a) preparing a first solution by dissolving preservative, propylene glycol and buffer in water.
b) preparing a second solntion by dissolving the peptide in water
c) mixing the firs and second solutions, and
d) adjusting the pH of the mixure in e) to the desired pH .

In another embodiment, the method for preparing a peptide formulation comprises:
a) preparing a fist solution by dissolving preservative and buffer in water:
b) adding propylene glycol to the first solution:
c) mixing the first solution with a second solution containine peptide dissolved in water, and
d) adusting the pH of the mixture me) to the dested pH.

In yet another embodiment, the method for preparing a peptide formulation comprises:
a) preparing a solution by dissolving preservative, buffer and proplene glyeol in water:
b) adding the peptide to the soltation of step a), and
e) adiusting the pll of the solution of step b) to the desired pH.
The presen invention futher relates to methods of reatment using the pharmaceutical formulations of the invention Where the compositions areadministered inanamounteffective to combat the disease, condtion, or disorder for which administration of the peptide contaned in he ormulation is indicated.
In addition the presen invention also relates to a method for reducme deposits on production equipment during produetion of a peptide formulation, where the method comprises replaciag the solonicity agen prevonsly utized in said formation with propylene gyed at ic concentration of between $1-100 \mathrm{mg} / \mathrm{ml}$.
In one embodiment, the reduction un deposits on the production equipment during production by the propylene gly-col-containing formulation relative to that observed for the fermulation containing the previously utilized isotonicty agent is measured by a simulated filling experiment.

The present invention also relates to a methed for reducing deposts in the final product during production of a peptide formulation, where the nethod comprises replacing the isotonicity agent previously utilied in satid formulaton with propylene glycol at a concentration of betveen 1-100 mgini.

In one cmbodiment, the reduction in deposits in the final product is measured by a reduction in the number of vials and or cartridges of the propylene glycol-containing formehtion that must be discarded due to deposits relative to number of vials andor cartridges of the formulation contaming the previously atilzed isolonicity agent that must be dis carded due to deposits.

The present invention futtier relates to a method for reducTng the clogging of injection devices by a peptide formulation, where the method comprises replacing the isotomity agent previously atilized in said formulation with propylene glycol at a concentration ol between $1.100 \mathrm{mg} / \mathrm{ml}$.

In oue enbodiment, the reduction in clogging of the injec tion device by the propylene glycol-containing formulation relative to that observed for the formulation containing the previously utilized isotonicily agent is measured ina simblated in use striby

3

BRIEF DESCRIPTION OF THE FIGURES

11G 1 shows a photograph ef dried droptets on microscope shides of from lefl w right, placebo (no peptide) formulations containing no lsoforic agent (e only water preservative and buffer) mamito, sorbiol xylitol, suerose or glycerol as the isotonic agent with the far right slide containng manntol with peptite Arg ${ }^{34}$, Lys ${ }^{25}\left(\mathrm{~N}^{*}-\left(y-G l u\left(\mathrm{~N}^{2}\right.\right.\right.$-hexadecanoy 1$)$) G1-1(7-37)
FIG. 2 shows light nicroscopy pictures of from lell to nght, some of the dried droplets of placebo formulations contaning manitol, agmin, inositol or glycerol as the isotonic agent.

HIG. 3 shows ligh microscopy pictures of claged needles dosed with placebo fommlations contaning myomnosiol, mattose or glycerol as the isolonic agent.
HIG. 4 shows light microscopy pichure of deposits on needles dosed with placebo formulations containng gly cine. lactose or manitol as the isotonic agent.

FIO. 5 shows filling equipment after 24 hours simulated flling with $\mathrm{Ar}^{34} \mathrm{Lys}^{26}\left(\mathrm{~N}^{2}-\left(\mathrm{w}\right.\right.$-Glu(N^{6}-hexadecanoy $)$)-GLP-1(7-37) medium containing myo inositol.

P16. 6 shows deposits on flling equipment after 24 houss simulated filing with a mannitol-containing placebo formulation.

EIG. 7 shows deposits onmeedles dosed with mamitol (top panel and propylene glycol (bottom panel-containing
 formulations

DESCRIPTION OE THE INVENTION

The present invention whates to a pharmaceutical fomnlation comprising a peptide or a mixture of peptides and propylene glyed where the final concentration of propylene glycol in the formalation is $1-100 \mathrm{mg} / \mathrm{ml}$ and the pH of the formulation is in the range of from 7.10 .

The plamaceotical formulations of the invention are found to be optimal for production because they exhibit reduced deposits in production equipment relative to fomulations containtig other isotonicty agents as measured by the simulated filing studies described in the Examples In addtion the plamacentical formulations of the mvention are found to be optimal for use in infection devices because they exhibit reduced clogeing of the infection devices relative to formulations containg other isolonicity agents as measured by the simulated in use studies described in the Examples.

The fommlations of the present invention may be formulated will any peptide where examples of such peptides include bu are not limied to, glucagon, human growth hormone (hGH) insulin, aprotinin, FactorVI, tissue plasminogen activator (TPA) FactorVII, ME-Factor YIla, heparinise, ACTH, Heparin Binding Protein corticotropinreleasing factor angio-tensin. calcitomin, glucagon-like peptide 1, gheagon-like peplide-2, insulin-like growth face tor-1, msulin-like growth factor2. Abroblast growth factors: pastre inhibiory peptide, growth homone eleasing lactor. pituitary adenylate eycluse activating peptide secretin, enterogastrin, somatostatin, somatomedin, parathyrod hormone, hrombopoietin, erytropoietin. hypothalamic releasing factors, prolactin, thyreid stimkting homones, endorphins enkeplalins vasopressin oxyocin, giods, DPP IV, intenlenkins: immunoglobulins, complement inhibitors. serine protease mbibitors cyokines, cytokine receptors, PDGF tumer necrosts factors, tunor necnsis factors recep tors growth lactors and analogues as well as dervalives
thereal where cachof these peptides constitues anatemative embodiment of the present imvention.

In the present application, the designation "m analogue" is used to designate a peptide wherein one or more amino acid residues of the parent peptide have been substituted by another amino acid residue andor wherein one or more amino acid residues of the paren peptide have been deleted andor wherein one or more amino acid residues have been added to the parent peptide. Such addition can take place either at the N-terminal end or at the Cterminal end of the paren peptide or both Typically "an analogue" is a peptide wherein 6 or less amino acids have been substifued andor added andor deleted from the parent peptide, more preferably a peptide wherein 3 or less amino acids have been substifuted andor added andor deleted from the parent pepide, and most preferably, a peptide wherein one muno acid has been smbstuted andfor added andor deleted from the parent peptide.

In the presen application, "a derwative" is used to desigHete a peptide or anolgue thereof wheh is chemeally modified by introducing an organc substifuent eg ester alky or Ipophile functionalites, on one or more amino acid residues of the peptide or analogue thereof.
In one embodimen, the peptide to be included in the formulaion of the invention is a GLP-1 agonist where "GLP-1 agonist" is understood to refer to any peptide which lilly or partally activates the human GLP-I receptor In a preferred embodimen, be OLP- 1 agonist is any peptide that binds to a GLP-1 receptor preferably withan affinity constan $\left(\mathrm{K}_{D}\right)$ or a potency (EC S) of below 1 MM eg below 100 nM as mexsured by methods known in the ant (see eg. Wo 9808871) ad exhibits insulinotropic activit, where insulnotropic activity may be measured in wivo or in vitro assays known to those of ordinary skill in the an. For example, the GLP-1 agonist may be administered to an animal and the unsulin concentration measured over time.

Methods for ideatifyng GLP-1 agoniss are described in WO 9319175 (Nowo Nordisk AS) and examples of suitable GLP-1 analognes and derivatives which can be used according to the present invertion moludes those referred to in WO 9943705 (Nowo Nortisk A/S, WO 0943706 (Novo Nordisk AS), WO 99743707 (Novo Nordisk AS) WO 9808871 Ganalogues with lipoptific substituent and in WO $02 / 46227$ lanalogues lused to serum abmin or to Te portion of an Ig) (Novo Nordisk AS), WO 99/43708 (Nowo Nordisk AS), WO 9943341 (Novo Nordisk AS), WO 87.06941 (The Ceneral Hospital Corporation) WO $90 / 1296$ (The General Hospital Corporation), Wo $91 / 1457$ (Buckley ef al), Wo 98/43658(EliLily \& Co.) EP 0708170 - A2 (EliLilly \& Co).
 Co)

In one embodiment the GI P-I agonist is selected from the group consisting of GLP-1(736) amide GLP-1(737) a GLP-1(7-36-amide analogue aGLP-1(7-37) analogue, or a dervative of any of these.

In one cmbodiment, the GLPe agonist is a derivative of GLP-10.36) anide, GLP-1(7-37), a GLP-1(36)-ande amologue or a GLP-1(7-37) andogue, which comprises a lipoplilic substituent.
In this embodimen of the nerention, he I PI derivative preferably has three lipophitie substituents, more preferably two lipophilic substituents, and most preferably one lipophile substituen attached to the prent peptide (ie Gl P-10. $36)$-mide GLP-1(7.37) a GLP-1 $7-36$-mide analogue or a GLP-17.37) anologue), where each lipophilic substituent (s) preferably has 4.40 carbon atoms, more preferably $8-30$
carbonatons, even more preferbly 8.25 carbonatoms, even more preferably $12-25$ carbon atons, and most preferably 1418 carbon toms.
In one embodiment, the lipophilic substituent comprises a partially or completely bydrogenated cyclopentanophenatlrene skeleton

Th another embodiment, the lipophlife substitent is a straight-chain or branched alky/ group.
In yet another enbodinent, the lipophilic substituent is an acyl group of a straightchain or branched laty acid Preferably, the lipoplific substituent is an scyl group beove the Tomula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CO}$, wheren n is an integer from 4 to 38, preferably an integer from 12 to 38 , and most preferably is $\mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{CO}_{2}-\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{1} \mathrm{CO}\right.$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{8} \mathrm{CO}, \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$ and $\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)$ ${ }_{22} \mathrm{CO}$ Ina more preferred enbodiment the lipopinic subsfituent is tetradecanoyl. In a most preferret enbodimen, the lipophilic substituent is hexadecanoyl.

In a forther embodiment of the presen invention the lipophile substiment has a group which is negatively charged sulh as a carboxylic acid group. For example the lipoptitic substument may be an acyl groye of a straght-chan or branched alkane o, o-dicarboxylic acd of the formulaHOOC $(\mathrm{CH})_{n} \mathrm{CO}$-, wheren mis an integer from 4 to 38 , preferably an imeger from 12 to 38 , and nost preferably is HOOC $\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}, \mathrm{HOOClH}_{1} \mathrm{CO}, \mathrm{HOOC(CH}\right)_{4} \mathrm{CO}$. $\mathrm{HOOC}_{\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}}$ or $\left.\mathrm{HOOClH}_{2}\right)_{2} \mathrm{CO}$.
In the GLP-1 derivatives of the invention, the lipophitic substituent(s) contain a fanctonal group which can be attached to one of the following functional groups of an amine acd of the paren GLP-1 peptide:
(a) the ammo group attached to the alphaicarbon of the N-terminal amino acid,
(b) He carboxy group atached to the alpha-cabon of the C-terminal amino acid,
(c) the ensilon-amino groun of any Lys restue,
(d) the carboxy group of the R group of any Asp sud olu residue,
(e) the hydroxy growe of the R group of any Tyr Ser and The residue.
(1) the amine group of the R group of any Trp Asn, Ghn Arg and His residue or
(g) the thiol group of the R group of any Cys residue.

In one embodiment, a lipophilic substituent is attached to: Whe carboxy group of the R group of any Asp and Clu residue.
In another embodiment, Zlipophific substitwent is attached to the carboxy group attached to the alphaxcarbon of the Cterminal amino acid.
Ina most preferred embodment a Inoplilic sabstitwents atached to the epsilon-anino group of any Lys residue.
In a pererred emboliment of the invention, the lipoptilie substituen is attached to the parent GLP - 1 peptide by means of a spacer. A spacer must contain at least two finctional groups, one to attach to a finctional grup of the lipophilic substituent and the other to a functional group of the parent GLP-I peptide.
In one embodiment, the spacer is an amino acid residue except Cys or Met or a dipeptide such as Gly-1ys. For purposes of the present invention, the phrase "adipeptide suchas Gly-Lys" means any combination of iwo anime acid except Cys or Met, preferably a dipeptide wherein the C-terminal sumino acid residue is Lys. His or Tm preterably Lys, and the Nterminal amino acid residue is Ala, Arg Asp Asn, Gly Gh, Gh, He, Leu, VI, Phe Pro, Ser Tyr. Thr Lys, His and Trp. Preferably, an amino group of the parent pepfide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer and anamino group of the amino.
 he watooxy grove herectmay Lorm an maneboma whes sh amino group of the amino acid residue, and the ammo group thereof may forman amide bond with a carboxyl group of the Hpophilic substituent. When Lys is used us the spacer, a firther spacer may in some instances be inserted between the E-amino group of Lys and the lipophilic sabstituent. In one embodment, such a lurther spacer is succinc acid which forms an amide bond with the e-amno group of Lys and with an anno group present in the lipophilic substiment In another embodimen such a further spacer is Clu or Asp which forms an amide bond with the f-amino group of Lys and another anide bond with a caboxyl group present in the Hpophilic substruent, that is the lipophilic substituen is a N^{N}-acylated lysine residue.

In another embodiment, the spaceris an unbranchedalkane ao-dicatosylic actd group hring from 1 to 7 methylene groups, which spacer forms a bndge between an amino group of the parent peptide and an amino group of the lipophilic substituent. Preferably, the spacer is succinic acid.

Inafturther embodiment, the lipophilic subattuent with the attached spacer is a group of the formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{4}\right)_{2} \mathrm{NH}$ ${\mathrm{CO}\left(\mathrm{H}_{2}\right) \mathrm{CO}}^{\mathrm{CO}}$ wherein p is an integer from 8 to 33 preferably from 12 to 28 and q is an integer from 1106 , preferably 2.

Ina forther enbodiment, he lipophilicsubstituent with the attached spacer is a group of the formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CO}$ NHCH(COOH $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}$, whercin r is in integer from 4 to 24 preferably from 10 to 24 .
Ina further embodiment the lipoptilic substituen with the thached spacer is a group of the formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CO}$ $\left.\mathrm{NHCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right) \mathrm{CO}$, whereins is m mateger from 4 to 24 , preterably from 10 to 24.
lo i further embodiment, the lipophilic substituent is a 6 group of the formula $\mathrm{COOH}\left(\mathrm{CH}_{2}\right) \mathrm{CO}$ - wherein t is an integer from 6 to 24.

In a firther enbodment the Ipophilic substituent with the atached spacer is a group of the formula NICH(COOH) $\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH} \mathrm{CO}_{\mathrm{CH}}^{2}\right)_{4} \mathrm{CH}_{3}$, wherein 4 is an integer from 8 to 18.

Ina firther enbodment, the lpophilic substitent with the attached spacer is a group of the formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CO}$ -$\mathrm{NH}-\left(\mathrm{CH}_{2}\right) \quad \mathrm{CO}$ wheren vis an miteger lrom 4 to 24 and 21 an integer from 1 to 6.

Ina further embodinen, the lipophilic substituen with the athached spacer is a group of the formula - NHCH(COOH) $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NH} \mathrm{COCH}_{(\mathrm{CH}}^{2}$, $\left.\mathrm{COOH} \mathrm{NH} \mathrm{CO}_{2} \mathrm{CH}_{3}\right)^{2} \mathrm{CH}_{3}$ wherein w is an integer from 10 to 16.
In a futherembodiment the lipophilic substuent with the attached spacer is a group of the fomula-NHCH(COOH) $\left.\left(\mathrm{CH}_{4} \mathrm{NH}-\mathrm{CO}_{4} \mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{COOH}) \mathrm{NHCOICH}\right)_{2} \mathrm{CH}_{3}$ wherein x is zero or an mitoger from 11022 preferably 10 to 16.

In yet another embodment the GLP-1 ngonist is Arg", Lys ${ }^{26}\left(\mathrm{~N}^{\prime}-\left(y-G l u\left(\mathrm{~N}^{c}\right.\right.\right.$-hexate-canoy 1$)$) GLP-1(7-37).

In yet another embodiment the GIP. 1 agonist is selected from the group consisting of Gly ${ }^{8}$ GLP-1 $17-36$)amike, Gly GLP-17-37). VäGLP-1(-36)amide V18 GLP-1(737). Ya* Asp ${ }^{22}$ GLP-1(7-36)-amide, Val Asp ${ }^{2}$ GlP-1(737), Val Glu ${ }^{22}$ GLP-1(7.36) amide Fallulu ${ }^{22}$ GLP $1(7.37)$ Vallys ${ }^{2}$ GLP-1 $7-36$-ande Vallys ${ }^{2}$ GLP. $1(7-37)$,

7
 malogues thereof ana dervatives of ony of these.

In yet another embodiment the GLP-1 agonist is selected from the group consisting of Are ${ }^{36}$ GLP-1(7-37): Ar^{34} -
 37) Ax^{2634} GLP-1(-37) Axg ${ }^{264} 1 \mathrm{y}^{49-G 1 P-1(7-37)}$
 Val Arg ${ }^{22}$ GLP-10-37) Met Arg^{22} GLP-1(7-37) G15 His^{2}-GLP-1(7-37),

Val 111^{2}-GLP-1(7-37): Mev ${ }^{3}$ His 2 GLP (7.37) His ${ }^{3}$ GLP-(7.37) Gly GLP. (7-37) Val $-\mathrm{GLP}-1(737)$ Me ${ }^{8}$ GLPI(7-37) Gy Asp^{22} -GLP-17-37) V18 Asp ${ }^{2}$ G1P-17-37x Mer Asp ${ }^{22}$-GLP-1 (7.37): $\mathrm{Cly}^{8} \mathrm{Gu}^{22}$ GLP-1(737) Vd Glu ${ }^{23}$ GLP-1(7-37) Met Glu ${ }^{22}$ GLP-1(737) G1y ys ${ }^{23}$-GP-1(7.37). Vally ${ }^{22}$ GLP-1(737) Mertys ${ }^{2}$ GLP-1 7.37) Gy Arg -GLP-1(7-37) Valys ${ }^{2} \mathrm{His}^{3}$ GLP-17-37),

 GLP-(7-37) Val Arg His GLP-17-37),
 37) ValHs ${ }^{2} \mathrm{His}^{3}$-GLP-1(7-37), MetHis His ${ }^{3}$-GLP-1
 Mer पis - GLP-1(7.37), Gly Asp ${ }^{3}$ (1is -GLP-1(7.37) Val Asp ${ }^{2} \mathrm{His}^{7}-\mathrm{GLP}-10-37$) Mer Asp His^{3} GLP-17. 37): Ar^{36} GLP-1(-36)-amde: Ary^{34} GLP-17-36)-anide:
 comide, $\left.\mathrm{Arg}^{263}-\mathrm{GL}-10-36\right)$ tmider $\mathrm{Arg}^{26{ }^{3}} \mathrm{Lys}^{6}-\mathrm{GLP} 1$ (7.36-amide, Arg 26 Lys 36 GLP $1\left(7.36\right.$-amide, Are $^{34} \mathrm{Lys}^{36}$. GLP-17-36-amide G1y-GLP-17-36)amde Val -G1P-1
 (736-amide: Gly Glu ${ }^{2} \mathrm{TH}^{3}$ CIP-10-36)amide: Vall Asp^{2}-GLP-1(-36)-amide: Met Asp^{2}-GLP-1(Z36)amide: $\mathrm{Gly}^{8} \mathrm{Gla}^{2}-\mathrm{GLP}-1(-36)$-amide Val Glu^{22}-GLP-17-36-amide: Met Glu ${ }^{2}$-GIP-17-36-amide; Gly ${ }^{2} y^{22}$. GLP-10-36-amide: \quad Valº $^{3} \mathrm{Ly}^{27}$-GLP-1(7-36-amides
 36 -amides $\mathrm{Gy}^{2} \mathrm{Arg}^{2} \mathrm{GLP}-10-36$-amider $\mathrm{Val}^{2} \mathrm{Arg}^{22}$. GLP-1736)amide. Met Ag ${ }^{22}$-GLP 10-36) anide.
 amide, Met His^{2} (GLP-17-36-amide His ${ }^{2}$-GLP-17-36amide $\mathrm{Va}^{8} \mathrm{Arg}^{2} \mathrm{His}^{3}$ GLP-10-36-anide Met Arg^{32} GLP-17-36-amide, Gly His ${ }^{3}$-GLP-10-36-amider Valllis ${ }^{37}$-GP-1(7-36)-amide Met His ${ }^{3}$-G1P-1(2-36)amide: Gly Asp ${ }^{22}$ His -G1P1(236-amide

 GLP-1(7-36)-amide, Valys ${ }^{2}{ }^{2} H^{3} 3^{3}-G L P 1(7-36$-amide Mer Lys ${ }^{23} \mathrm{His}{ }^{3}$-GLP-1(7-36)-anide, Gy $\mathrm{Arg}^{2} \mathrm{HH}^{37}$. GLP-17-36 amide: Vallis ${ }^{2} H \mathrm{H}^{2}$ GLP-17-36 amide; Met $\mathrm{His}^{2}{ }^{2} \mathrm{Hs}^{3}$-GLP-1 736 -anmde. and dervatives thereof.

In yet another embodiment the GFP-I agonist is selected. from the group consisting of Val $\mathrm{Tr}^{29} \mathrm{Glu}^{2}$-GIP-1(7-37), Val $\mathrm{Gl}^{2} \mathrm{Val}^{2}$ (CP -1(7-37). Val Tyr Glu^{2}-GLP-1(73),
 37. Valtyr ${ }^{4} \mathrm{Gu}^{2}$ - $\mathrm{CLP}-\left(7-37\right.$) Val $\mathrm{Gl}^{2} \mathrm{His}^{2}-\mathrm{GLP}^{2}-1$ (7-37). Gal Glu ${ }^{2} 11 e^{3}$-GLP-10-37).

 $\mathrm{GLP} 1(7-37)$ Val Trp $\mathrm{Gu}^{2} \mathrm{Val}^{2}$ GLP 17.37) analogues thereof and derivatives of any of these.

In yet another embodiment the GIP-1 agonist is exendin-4 or exendin-3, anexendip4 or exendin-3 malogueoraderiva. tive of any of these.

Examples of exendins as well as anatognes derwatives. and fragments thereof to be included withinthe present invention are those disclosed in Wo 9746584, U.S. Pai. No. 5.424 . 286 and WO 0104156 US Pat No, 5,424,286 describes a method for stimalating insulin release with an exendin polypeptide The exendin polypeptides disclosed include HGEGTFISDL SKQMEEEAVRLTIEWL KNGGX wherein $\quad x-p \quad$ or $\quad X$ and HXIX2GTHTSDLSKOMEREAVRLFIEWLKNGGPSSGAPPPS: wherein $\mathrm{X} 1 \times 2-\mathrm{SD}$ (exendin-3) or GE (exendin-4), wo $97 / 46584$ describes truncated versions of excudin peptide(s). The disclosed peptides increase secretion and brosynthesis of insulin, but reduce those of glucagon wo 0104156 deseribes exendin-4 analogues and derivatives as well as the preparation of these molecules. Exendin-4 analogues stabilized by fision to serum abumm or Fe porion of an le are disclosed in WO 0246227.
In one embodimen, the exendin-4 malogue is HGEGTFTSDL SKQMEEE AVRLHIEWLKNGGPSS:

GAPPSKKKKKK-amide.

Where the peptide to be meluded in the formulation of the Ifvention is a CLP-1 agonist the GLP-1 agonist is present in a concentration from about $01 \mathrm{mg} / \mathrm{ml}$ to about $100 \mathrm{mg} / \mathrm{ml}$. more preferably in a concentration from about 0.1 mg mit to abou 50 mg m , and most preferably in a concentration of from about 0.1 ngem 10 about $10 \mathrm{mg} / \mathrm{ml}$.

In mother embediment, the peptide to be included in the formulation of the mvention is insulin, where "insulin" is understood to mean human insulin, Twhere "hmmen nstifi" means insulin having the amino acid sequence shown in DSHW Nicol and I F Smith Nature (1960) 4736483-485, which is hereby moorporated by reference, human msulin analogs thmm insulin derivaives or mixures thereof where examples of insulin analogs and derivatives are those disclosed in EP 0702290 (Novo Nordisk AS), BP 0214826 and EP 0705275 (Nove Nordisk AS), US, Pat No. $5,504,188$ (E11 Lilly). EP 0368187 (Aventis) US Pri Nos 5750,497 and 6011,007 , EP 375437 and EP 383472 and where such fasulins may include, but are not limited to, NPH rasulim. Lys p29 (Ne tetradecanoy) des (B30) human insulin Lys ${ }^{829}$ - (N (-glutamyl-Nolithocholy) des(B30) tuman instim. $\mathrm{N}^{\text {bos }}$. octanoyt insulin, 3070 mixtures of prompt insultin zine (SIMILENTES) with exended Insulin sine (ULTRALENTEB , sold commercially as LENTER, insulin glargine (LANTUSB) or extended insulin Tinc (UL-

 LOCM(8) or a $30 / 70$ muxture of insulin aspat and insulin aspart protamire (NOVOMIXB).

In one embodiment, the insulin is a derivative of human insulin or a human insulin malogue where the dervative contains at least one lysime residue and a lipophitic substruent is atached to the epsilon mino grop of the lysine res. due.

In one embodimen, the lysine residue to which the lipophile substuren is atachedis present at position B28 of the insulin peptide.

In an alternative embodiment the ly sine residue to which the ipopthics substituent is attached is presentat position B29 of the insulin peptide.

Inyet another embodimen, lipophilicsubstiuent is anacyl group corresponding to a carboxylic acid having at leas 6 carbon atoras.

In another prefered enbodiment, the lipophic substuent is an acyl group, branched or mbranched, which corresponds to a carboxylic acid having a chain of carbon atems8 to 24 atoms long

In another prefered embodiment, the hpophlic substituent is an acyl group corresponding to a faty acid having at least 6 carbon atoms.
In mother prelered embodiment, the lipophitic substituent is an acy group corresponding to a linear saturated carboxylic acid having from 61024 cabon atoms
In another prefered ernbotiment the lipophlic sabstituent is an agyl group corresponding of a linear, sturated eatboxylic acd having from 8 to 12 carbon atoms.
In another preferred embodiment, the lipoplific substituw ent is an acyl group correspanding to a linear, saturated carboxylic acid having from 10 to 16 carbon atoms.

In another prefened embodiment the lipophific substituent is an oligooxyethylene group comprising up to 10 . pref. erably up 105 , oxyelhylene ants.
In another prefered embodimen, the lipophific substituent ts an oligo oxypropylene grone comprising up 10.10 . preferably up to 5 . oxy propylene umits.
In one preferred embodiment, the Invention relates to a human insulin dervative in which the B30aminoacid eesidue is deleted or is any aminoacid residue which can be coded for by the genetic cole except 1 ys. Arg and Cys, the A21 and the B3 amino acid residues are, independently any ammo acid residues which can be coded for by the genetic code except Lys, Ary and Cys, Phe ${ }^{\text {fl }}$ may be deleted, the \square amino group of Lys ${ }^{2 x}$ has a lipophific substitwent which comprises al least 6 carbon atoms, md $2.4 \mathrm{Zn}^{24}$ Tons may be bonnd to each insuln hexaner with the proviso that when B30 is Thr or Ala and A 21 and B 3 are boll Asn, and Phe ${ }^{21}$ is not deleted, then $247 n^{2+}$ ions are bount to ech hexamer of the insulin derivative
In another prefered enbodimen the invention relates to a human insulin dervative m which the B30 amino acid residue is deleted or is any amino acid residue which can be coded for by the genefic code except 1 ys. Arg and Cys; the 421 and the B3 amino acid residues are, independently, any amino acid residues which can be coded for by the genetic code exeept Lys. Are and Cys, with the proviso that if the B30 anino acd residue is Ala or Thr then at least one of the residues A21 and B3 is different from isus, Phe ${ }^{B!}$ may be deleted, and the D-amme group of 7 y ${ }^{\text {seg }}$ bas a lipophilic substituen whed comprises at least 6 carbon atoms.

In another preferred embodimen, the invention relates to a human insulin derivative in which the B30amino acid residue isdeleted or in any amino acid residue which can be coded for by the genetic code except 1 ys. Arg and Cys, he 121 and the $B 3$ ammo acid residues are independently, any amino acid residues whel can be coded for by the genetic code except Lys, Arg and Cys, Phe ${ }^{B 1}$ may be deleted, the पamino group oflys ${ }^{32}$ has a lipophilic substituen which comprises at least 6 carbon atoms and $2-47 n^{2+}$ ions are bound to cach invulin hexamer.

Where the peptide to be neluded in the formulation of the invention is an insulin, the insulin is present in a concentration from about $0.5 \mathrm{mg} / \mathrm{ml}$ to abou $20 \mathrm{mg} / \mathrm{ml}$, more preferably in a concentration from about 1 ngim to about 15 mg/ml.

In another embodiment, the peptide to be included in the Tormalations of the invention is hoH or Mef-hGH.

Where the peptide to be meluded in the formulation of the invention if hGH or Met holl, the hall or MethGH is preseat in a concentration from abom 0.5 mg mil to about 50 $\mathrm{mg} / \mathrm{ml}$, more preferbly in a concentration from about 1 me/mil to about $10 \mathrm{mg} / \mathrm{ml}$.

In yet another embodiment the peptide to be moluded in the formulation of the invention is GLP-2 or an analogue or derivative thered.

Where the peptide to be inctuded in the formulation of the invention is GLP-2 or an analogue or dervative thereof the GLP-2 or ata analogue or dervative thereof is present in a concentration from aboul $1 \mathrm{mg} / \mathrm{ml}$ to about $100 \mathrm{mg} / \mathrm{ml}$, more preferably in a concentration from about 1 mg iml to about 10 mgm.

In vet a further embodiment, the peptide to be included in the formulations of the imention is Fater VII or Factor VIa or an analogue or dervative thereof.
Where the peptide to be included in the formalation of the invention is Factor VII or Factor Vlla or an analogue or derwative thereof, the Factor VII or Factor VIIa or an analogue or derivative thereof is present in a concentration from about 0.1 mg ml to about $10 \mathrm{mg} / \mathrm{m}$, more preferably in a concentration from about $0.5 \mathrm{mg} / \mathrm{ml}$ tw about 5 mghl.

In one embodimen, the final concentration of propylene glycol in the fommations of the invention is from about 1 to about $50 \mathrm{mg} / \mathrm{ml}$.
In another embodiment, the final concentration of propyleneglycol in the fommations of the invention is from about 5 to about $25 \mathrm{mg} / \mathrm{ml}$.
In yet another embodiment the final concentration of pro. pylene glycol in the formutaions of the invention is from about 8 lo about $16 \mathrm{mg} / \mathrm{ml}$.

In yet a further cmbodimen, the final concentration of propylene glycol in the formulations of the invention is from about 13 to about 15 mg ml .

In still another embodiment, the final concentration of propylene glycol in the formulations of the invention is from abou 13.5 to abont $14.5 \mathrm{mg} / \mathrm{m}$.

In mother embodment of the irvention, the formulation has apH in the range from abou 70 to about 95 where the term "about" as used in cornection with pH metus tor -01 pll wits from the stated number.
In a firther embodment of the invention, the formulation has a pll in the range from about 7.0 to about 8.0 .
In yet a further embodiment of the invention the formulation has a pH in the range from about 72 to about 8.0 .
In a further embodiment of the invention, the formulation has o pll in the range from about 70 to about 83 .

In yet a further enbodiment of the invention the formulation has a pll in the range from abom 73 to abom 3
In a preferred enbodinent of the invention, the formulations contain, in addition to a peptide and propylene glycd, a buffer andor a preservative.

Where a buffer is to be included in the lormulations of the favention, the buffer is selected from the group consisting of sodum acetate, sodium carbonate, citrate, gly glglycine, hisHidne, glycine, lysme, aghinin, sodium dihylrogen phosphate, disodium hydrogen phosphate, sodium phos phate, and tris (hydroxymethy)-ammomethan, or mixtures thered, Eich one of these specific buffers constitutes an atternative embodiment of the invention. In a preferred embodiment of the invention the buffer is glycyglycine, sodium difydrogen phosphate, disodium hydrogen phosphate, sodium phosphate or mixtures thereof.

Where a phamaceutically acceptable preservative is to be included in the formulations of the imention, the preservative is selected from the group consisting of phenol, m-cresol, metlyl p-lydroxybenoate, propyl phydroxyberwate, 2 -phenoxyethanol, butyl p-lydroxybervate, 2 -phenylethanol, benzl alcohol, chlorobutanol, and thomerosal, or mix. Hres therof Each one of these specific preservativer constitutes an altemative embodiment of the lavention. In a prefered embedinem of the invention the preservative is phenol or mocresol.

In a further embodimedt of the mention the presenative ss present in a concentration from about $0.1 \mathrm{mg} / \mathrm{ml}$ to about 50 mg/m, more preferably in a concentration from abou 01 meml to about $25 \mathrm{mg} / \mathrm{m}$, and most preferably in a concentration from about 01 memil to about 10 mg m!

The use of a preservative in pharmaceutcal compositions is well known to the skilled person. For convenience reference is made to Remington. The Scence ond Prectice of Phamatey. $19^{\text {th }}$ edifion 1905
In a firther embodiment of the lavention the formuiation may further comprise a chelating agent where the chelating agent may be selected from salts of ethlenediaminetetracetic acd (EDTA), citric acid and aspartic acid, and mixtures thereof Each one of these specific chelating agents constitutes an alternative enbodinent of the mevention.

In a further embodment of the fivention the chelating agent is present ma concontation from $0.1 \mathrm{mg} / \mathrm{mi}$ to $5 \mathrm{mg} / \mathrm{ml}$. In a firther enbodiment of the invention the clelating agent is present in a concentration from 0.1 mg/al to 2 mginl \ln a further embotiment of the meention the chelating agent is present in a concentration from $2 \mathrm{mg} / \mathrm{mi}$ to $5 \mathrm{mg} / \mathrm{ml}$.

The use of a chelating agent in phannaceutical composttions is wellforown to the skilled person. For conventence relerence is made to Renington The Science mul Practice of Phomacy 19^{*} edition. 1095.

In a further embodiment of the invention the formutation mey further comprise a stabilizer selected from the group of high molecular weigh polymers or low molecular compounds where such stabilizers include, but are not limited to. polyethylene glycol (es. PBG 3350) pelywinylatednot (PV), polywinylpyrolidone, carboxymethylcellulose, dil icent salls (eg Bodium choride) I-gycine 1 -histidne. imidarole, arginine, lysine, isoleacine, spartic acid, tryptophan, threonine and mixtures thereof. Each one of these specfic stabilivers constitutes an altemative embodinent of the invention In a preferred embodimen of the invention the stabilizer is selected from the group consising ofl-histidine. imidazole and arginme:
In a finther embodimeat of the invention the high molecubr weigh polymer is present in a concentation hom 0 I mgimi to 50 mg mi , In a farther embodinent of the invention the high molecular weight polymer is presen in a concentration from $0.1 \mathrm{mg} / \mathrm{m}$ to $5 \mathrm{mg} / \mathrm{ml}$. In a further embodiment of the invention the high molecular weight polymer is present in a concentration from $5 \mathrm{mg} / \mathrm{ml}$ to $10 \mathrm{mg} / \mathrm{mi}$. In a futher embodiment of the invention the high molecalar weight polymer is present in a concentration from $0 \mathrm{mg} / \mathrm{ml}$ to 20 mg ml . In a further embodiment of the inventon the high molectlar weigh polymer is presen in a concentration from $20 \mathrm{mg} / \mathrm{ml}$ to $30 \mathrm{ng} / \mathrm{ml}$. Ti a futher embodiment of the invention the Ingh molechlar weight polymer is present in a concentration from $30 \mathrm{mg} / \mathrm{ml}$ to $50 \mathrm{mg} / \mathrm{ml}$.
In a further enbodiment of the invention the low molecular Weight compound is presen in a concentration from 0.1 mgint to $50 \mathrm{mg} / \mathrm{ml}$ In a further embodiment of he invention the low molecular weight compound is present in a concen* tration from $0.1 \mathrm{mg} / \mathrm{ml}$ to $5 \mathrm{mg} / \mathrm{ml}$. In a further emboliment of the bivention the low molecular weigh compound is presen in a concentration fron $5 \mathrm{mg} / \mathrm{ml}$ to 10 mg ml . In a furtier embodinent of the meventon the low molecular weigh compond is present in a concentration from 10 memil to $20 \mathrm{ng} / \mathrm{mi}$, ln a firther cmbodinent of the invention the low molectlar weighr compound \& present in a concentration from $20 \mathrm{mg} / \mathrm{m} /$ to $30 \mathrm{mg} / \mathrm{ml}$ In a fiuther embodinent of the invention the low molecular weigh componid is present in a concentration from $30 \mathrm{mg} / \mathrm{ml} 1050 \mathrm{mg} \mathrm{ml}$.

The use of a stabilizer in pharmiceutical compositions is well-known to the skilled person. For convenience reference is made to Remington: The Sclence and Practice of Phar macy 19^{3} elition, 1995 .

Inafirtherembodinent of the invention the fommation of the invention may firther comprise a surfactan where a surfactant may be selected from a detergent, ethoxylated castor oil. polyglycolyzed glvcerides acetylated monoglycerides. sorbitan fatty acid esters, poloxamers, such as 188 and 407 , polyoxyethylene sorbiten latly acid ester, polyoxyethylene derwaties such as alkylated and alkoxylated derivetives (tweens, eg. Tween-20, or Tween-80), monoglycerides or ethoxylated dervatives thereol diglycerides or polyoxyethylene derivatives thereof, glycerol, cholic acid or dervatives thereof lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, Kephalins, phosphatidy serine), glyceroglycolipids (galactopyransodde), sphingophospholipids (phingonyelin) and splingoglycolipids (ceramides, gangliosides) DSS (docusate sodim, docusate calcim. docusate potassim SDS (sodium dodecyl sulfate or sodum tauyl sulfate) dipalmitoy plosphatidic acid, sodim caprylate, bile acids and salts thereof and glycme or caurine conjugates, ursodeoxycholic acid sodium cholate sodium deoxy. cholate. sodiun taurocholate, sodtum glycocholate, $\mathrm{N}-\mathrm{Hexadecyl} \mathrm{N} \mathrm{N}$-dimethyl-3-anmonio- 1 propane-
sullonete, mionic (alky-sryl-sulphonates) monovalent sutfactants palmioyl lysophosphatidy-L-serine. lysophosphoIrids (e.g lacyl-sn-glycero-3 phosphate esters of ethanolamine, choline, serine or threonine), ally, alkovy (alky ester) alkoxy (alkyl ether) dervatives of lysophos. phatdyland phosphatidylcholines, eg lanoyl and myristoyl derwatives of lysophosphanidylcholine dipalmitoylphosphatidyleholine and modifictions of the polar bead group. that is cholines, efhanolammes phosphatidic acid, serines, threonines, glyeerol, inositol, and the postively charged DODAC, DOIMA, DCP BISHOP lysoplosphatidylserne and lysophosphatidyltreonine, zwitteronic surfactants (e.g. N-alkylN N-dinetlylammonio-1-propanesulfonates. 3 -cholamido-1-propyldinethylammono-1-propanesulfonate dodecylphosphocholine myristoyl lysophosphatidyleholine ben eg lysolecithin), cationic surfactants (quarfernary ammonium bases) (eg. cetyl-timethylamnonum bromide, cetylpyrinium chloride, non-tonic surfactants, polyethyleneoxide/polypropyleneoxide block copolymers Pluronics/Tetronics, Triton X- 100 DodecylB-D-glucopyranoside) or polymeric surfactants (ween-40, Tween-80, Briz35) Fusidic seld derivatives- (eg sodium lauro-dihydrofusidate etc.), long-chain Laty acids and salts thereof C6- 12 (eg ofeic acid and caprylic weid), acy larmitines and derivat tives N^{+}-acy lated derivatives of lysime, arginine or histidne, or side chain acy lated dervatives of y sine or arginine, N^{a}. acylated derivatives of dipeptides comprisiny any combinar fion of lysine arginine or histidine and a neural or acidic amino acid, N^{N} - tcylated derivativeof a tripeptide comprising any combination of a neutal amino acid and wo charged aminoacds. or the surfactan may be selected from the group of midazoline derivatives or mixiures thereol. Each one of these specific surfactants constintes an aternative embodiment of the invention.

The use of a surfactant in phamaceutical compositions is well-trown to the skilled person. For convenience reference is made to Remington: The Selence ond Practice of Pharmucy $19^{t h}$ edifion 1095.
The fomulations of the invention may be prepared by conventional tectuiques, eg as described in Remington's Phamacemital Sciences 1985 or in Remington The Sce ence and Practice of Pharmacy $19^{\prime \prime}$ edition, 1995 , where
such conventional techiques of the phamaceutical industry involve dissolving and mixing the ingredients as appropriate: to give the desired end product.
As mentioned above, in a prefered embodiment, the formulations of the invention-contain, in adition to a peptide und propylene glycol, a buffer midor a preservative.

Thone embodment the method for preparing such a pep tide formulation comprises:
a) preparing a first solufion by dissolving preservative. propylene glycol and buffer in water.
b) prepaing a second solution by disolving the peptide in water:
c) mixing the first and second soltitions, and
d) adjusting the pll of the mixture in e) to the desired pll.

In another embodiment, the method for preparing such a peptide formulation comprises:
a) preparing a first solution by dissolving preservative and buffer in water
b) adding propylene elycol the first solution:
c) mixing the frest solution with a second solution containing peptide dissolved in water and
d) adusting thepH of the mixture inc to the desired pl.

In yet another embodimen, the method for preparing a peptide formalation comprises
a) preparing a solution by dissolving preservative, buffer and propylene glycol in water
b) adding the pepitde to the selution of step a) and
c) adjusting the pH of the solution of step b) to the desied pH.
As the formulations of the mention are optimal for production and for use in miection devices since hey exhibit reduced deposits of production equipnen and reduced elogging of infection devices the above nethods of production can be used to produce peptide formulations suitable for ase in production andlor for use in injection devices.

The formulatons of the invention are sutable for administration to a mammal, preferably a human. The route of administruion of the formulations of the imvention nay be any route which effectively transponts the peptide contaned in the formulation to the appropiate or desired site of action. such as onal, masal, bnecal pulmonal, trandermal or parenteral.
Due to the ability of propelene glycol to redtuce clogeng of injection devices whencompared to other fetonic agents and to mannitol in particular in a prefered embodiment, the formulations of the inventionane to be adimistered parenterally to a patient in need thereof. Parenteral admuistration may be perforned by subcutaneous, intramuscular or intravenous injecton by means of synine optionally e pen-like syringe. Alternatively parenteral admuistration can be performed by means of on inftision pump.
A further option is a composition whel may be a powder or a liquid for the administration of the formulation in the Gormof a nasal or pulinonal spray. As astill futherpption the formulationcanalso be administered transdernally. e.g. from a patch, opionally a iontophoretic patch or transmucosally eg bucally. The aboye-mentioned possible ways to administer the formulation of the invention are not ta beconsidered bs limitig the scope of the invention.

Ofcourse, it is understood thet depending on the peptide or pepides included in the formulations of the invention, the formulations may be used in methods of freatment of diseases or conditions far which use of the peptide is indicated One skilled in the an would miderstand that when used in such methods of teatment the formulations would have to be administered in amotht effective to treat be conditon or disease for which the peptide was beng administered where
an "effective amomit" oran "mount., effective" is under stood to mean a dosage which is sufficien in order for the treatment of the petient with the disease or condition to be trealed to be effective compared to treatnent without the administered dosage. It is to be understood that "an effective amount is the effective dose to be determined by a qualified practitioner, who may titrate dosage to acheve the desired response Factors for consideration of dose will include potency, bioavallability, desired phamacokinetic/ pharmacodynamic profiles, the condition or disease to be treated (e.g. diabetes, oberity, weight loss, gastric utcers), patient-related factors (eg weight health, age, ete) presence of co-administered medications (e.g msulin), time of adrinistration, or other Gactors known to a medical practitioner.

The present invention also relates to a method for reducing deposits on production equipmen daning production of a peptide formulation where the method comprises replacing the isotonicity agen previously uitized in stid formulation with propylene glycal at a concentation of between $1-100$ mg/til.

In one embodiment, the reduction in deposits on the proanction equipnen during production by the propylene gly. col-containing formulation relative to that observed for the formulation containing the previously uilized isotonicity ngent is measured by a simulated miliag experiment as described in the Examples.
In anotherembodimem, the isotonicity agent to boreplaced by propylene glycol is selected from the groop consisting of sorbiol, sucrose glycme maninol, lactose monolydrate, arginin, myo-finositol ad dimethylullon.

In a firther embodiment, the isotonicify agent previously utized in said formulation is replaced with propylene glyco! in a concentration of from about 1 to about $50 \mathrm{mg} / \mathrm{ml}$.
In another embodimen, the isotonicity agent proviousty utifzed in said formulation is replaced with propylene glycol In a concentrinon of from about 5 to about $25 \mathrm{mg} / \mathrm{ml}$.

In yet another embodimen, the sotoniciy agen previpesly utilized in sad fomalation is replaced with propylene glycol in a concentration of from about 8 to about $16 \mathrm{mg} / \mathrm{ml}$.

In another embodiment of the fivention, the propylene glycol-containing lormulation has a pH in the range from abou 70 to abou 95
In a firther embodiment of the invention the propylene glycol-containing formulation has a pll in the range from about 7.0 to about 8.0

Inyet a firther embodiment of the invention, the propylene glycol-contaning formulaton has a pHI in the range from 72 to about 8.0 .
In a further embodiment of the itvention the propylene glyoolcontainge formutation has a p I in the range from about 70 to about 83
In a furlher embodiment of the favention the propylene glycol containing formulation has a pll in the mage from 73 to about 8.3 .
The present invention also relates to a method for reducing deposts in the inal product during production of a peptide Tommation where the method comprises replacing the iso. tonicity agen previously utized in said famblation with propylene glycolat a concentration of between $1-100 \mathrm{mg} / \mathrm{ml}$.
In one cmbodiment, the reduction in deposits in the final produet is measured by a reduction in the number of vials andor cartidges of the propylene glycol containing formulution that must be discarded due to deposits relative to number of vials andor cartridges of the formulation containing the previously atlized isotonicity sigent that must be discarded due to deposits.

15

Imanotheremboditent the isotonicity agent to be replaced by mopylene glycol is selected from the group consiting of sorbitol, suerose, glycine, mamito, lactose monolydrate. arginin myo-taositol and dimethylsulfon.
In a further embodiment the isotonicity agent prevously utilized in said formuation is replaced with propylene glyed in a concentration of from about 1 to about $50 \mathrm{mg} / \mathrm{ml}$.

In mother embodimon, the isotoniciv agent previously utitized in sad lomulation is replaced with propylene glyed in a concentration of from about 5 to about $25 \mathrm{mg} / \mathrm{ml}$.

In yet mother embodiment the isofoncily gent previously utilized in sad formulation is replaced with propylene gycol in a concentration of from about 8 to about $16 \mathrm{mg} / \mathrm{ml}$.
In another embodiment of the invention, the propylene glycol-containing formulation has a pH in the range from wboul 70 to about 95.
In a further embodiment of the invention the propylene glycol-containing formulation has a pH in the range from aboul 70 to abou 80.
In yet a further embodiment of the invention, the propylene gycol-containing formulation has a pl in the range from 7.2 to about 8.0 .
In a further enbodiment of the invention, the propylene glycolecontaning fomulation has a pll in the range from blou 70 to bou 83.
In a firther embodiment of the invention, the propylene glycol-contuing formulation has apH in the range from 73 to about 83.

The present invention futher celates to method for reducIng the clogging of injection devices by a peptide formulaw tion. Where the method comprises replacing the isotoricity agent previously utilized in sudd formilation with propylene glycol a a concentration ol between $1-100 \mathrm{mg}$ m.
In one enbodiment the reduction in cloging of the iniection device by the propylene glycol containing fommation relative to that observed for the formulation containing the previously allited isotonicty agen is measured in a simulated in use study as described in the Examples.

Inanotherembodimen, the isotonicity gent to bereplaced by propylene glycol is selected fron the grap consisting of inositol, malose glycine lactose and manuitol.
In a firther enbodiment, the isotoncity agen prevousty utilized in said formulation is replacel with propylene glycol In a concentration of from about 1 to about $50 \mathrm{mg} / \mathrm{ml}$.

In another embodiment the isotonicity agent previously utilized in sald formalaton is replaced with propylene glycol In a concentration of from about 5 to abour $25 \mathrm{mg} / \mathrm{ml}$.
In yet another embodiment, the sotomeity geat previously uilized in satil formulation is replaced with propylene gycol in a concentration of from bhout 8 to about 16 my/a.
In nooher embodiment of the invention, the propylene glycolcontaining formulation has a pll in the range from about 70 to abou 95
In a further embodiment of the invention, the propylene glycol-containing formulation has a pH in the range from about 7.0 to about 80.

In yet further embodiment of the invention the propylene glyco-contaning formulation has apH in the range from 72 to about 8.0 .

All scientific publications and patents cifed herein are specifically meorporated by reference. The following examples Illustrate varous aspects of the invention but ire in no way intended to limit the seope thereof.

PXAMPLES

Example 1

As taboratory expermens have shown that wilh regards to clogeng of needles and deposits on needles. formulations:
withoul peptide (placebo') give the same conclusions as formulations with peptide at $0.3 .5 .0 \mathrm{mg} / \mathrm{ml}$, the screening studies in Example 1 have been lone using placebo except where indicated otherwise.
Preparation of Formalations with Differen Isotenie Igents Preservative ($55 \mathrm{mg} / \mathrm{ml}$ phend) and buffer 124 mg m) disodium hydrogen phosphate, dilydrate) were dissolved in Water and the setonic agent was added while stintie $p H$ was adjusted to pH 79 using Sodium Hydroxide andlor Hyatrochloric acd finally the formulation was fitered through a $0.22 \mu \mathrm{~m}$ fiter The is otonic agents tested in each formulaton and their concentrations gre shown in Table 1.

TABLEI

Cammortion pethe teted fommations:	
Tormalation He:	Towerty mextmer
4	Charose mandydxtey (380 memil)
2	Latose morobytate (osbimemb)
3	Matree 66 m metry
4	Gyame 15 mumi
3	
8	
7	Myotnostel 632 mentry
8	Preplene ofeal 137 mpmil
7	Dimethlation (Ungml) $^{\text {a }}$
16	Mantiol SS 2 nueml
11	sortitl YQ 5 metall
12	Xwich 305 nvem
13	Sreselformen
14	Gyexal tonmtily

Osmolarty
The osmolarity of the differen placebo formulations was detemined and the results are shown in Table 2.

An 1 sotomic solution has an osmolatty of around 0.286 osmoll. As can be seen from Table 2 three of the formulafions (PEG 400 sucrase and xylito) are more than 20% from being isotonic $0.229-0343$ osmoll, however for these kind of experment the ormolarity is not expected to influence the results, though the tonicity of the formulations should be adusted in future experments.

TABLEL
to dry No deposifs were observed for sorbitot，xylitel． suerose and glycerol．The droplet on the far right（Form 1）
 canoy1D）－CLP 1 （7．37）．
In FIC． 2 the candifates causing the most deposits on the microscope slide are shown．For comparison glycerol，which does not cause deposits，is shown（manito，arginine，mosi－ （ti）．
Clogging Test
In this tes 10 NOVOPENSE 15 m mounted with NOVOFINE $30 \mathrm{E} G$（ $G 30$ necdle）were tested for cach lor－ mulation， 5 of them placed in upright and 5 in horizontal position The Pensystens were storedat roon temperature in between testing．Each day the needle was examined for deposits and an air shot was performed prior to imection into anssue．Degrec of resistance and clogging I Iany，was noted． Inections were made on a dally basis with the same needle． sud this was done for 9 working days for all he formulations．
The results from the clogging testare shown in Table3．
three categones．Those isotonic sagent that do not cause deposits on the filing equipment：Xylitol glycerol，glucose monohydrate naltase PEG 400 and propytene glycol． 2 ． Those isotonic agen that cause lew deposits and have supe－ riorfiling properties compared to manuitol Sorbitol，sucrose and glycine 3 Those isotonie sgent that are comparable or worse than mannitol Mannitol，lactose monohydrate arg－ nin，myo－nositol and dimetlylsulfon．

Conclasion

In the simblat filing experment xylitol，glycerol glo－ cose matose PEG 400 propylene glycol，sobito，sucrose and glycine were found to be suitable replacements cand－ dates for mannifol，However as glucose is a reducing saccla－ ride，and therefore to able to mitute mawanted degradation in the formulation，this tonity modifier is niled out Futher－ more maltose is ruled out hue to clogging of needles．This leads to the following candidates glyecrol，xylitol，sorbitol， sucrose，glycine，propylene glyol and PEG 400 ，which are found to have suitable propetties as replacenents candidates

MABLES

Botony あyd Trestas bbremanow	Some pestance							
		Sersmane	When avishnce	changd	Dyopat toyd Hertle	lred बro4 needte 0	Gef Me ＂\％p ， 3 sectle	Wencmin on meale
100	19	0	9	9	0	2	0	48
cuecter 190	13	9	θ	8	1	3	3	＊
Sucresg 01	23	4	0	9	0	4	21	0
Bropyane yherme	20	\％	ω	4	d	θ	U	4
$\begin{aligned} & \text { Yadte } \\ & \text { (a) } \end{aligned}$	5	1	\％	6	12\％ newtel	3	0	4
grymin 99	36	2	0	d	$\begin{aligned} & 3, \mathrm{~m} \\ & \text { necole } \end{aligned}$	1	\％	0
Wyltar（0\％）	14.	9	a	\％	3	9	9	0
Bundlyle wifor fore	4	\％	0	7	4	\％	9	4
stritos （1）	12	¢	\％	6	9	1	9	1
Mor Tinsitol （90）	26	1	2	6	6	9	0	4
Chacose 04	32	11	5	3	16］m Hexde	1	6	$\begin{gathered} \text { tait } \\ \text { neede? } \end{gathered}$
whime P1	4	\％	3	6	142数 bectes	\％	\％	$\begin{aligned} & 34 \geq \\ & \text { nedle } \end{aligned}$
nutwate （e）	35	悬	7	4	16 ： 6 nectle	4	s	$\begin{aligned} & 1 \text { Ifat } \\ & \text { nevde } \end{aligned}$
Imante （40）	44	19	8	4	3	9	9	312 g aeclle

In Table 3 and m GIG． 3 it was obserwed hat inositol and maltose cloged the needle For comparison glycerol which toes nom elog the needle is shown in IIG． 3 In IIG． 4 and in Table 3 ，it was observed that formutations containing gly cine． hactose and mantol gave rise to a lot of deposits on the needle For glyche，the deposits were a drople deposited down the needle，whereas for lactose and mamitol the depos－ itsoceurred at the top of the needle．

Simulated Filling

11．of each formulation was subjected to a simulated filing experment which lasted for 24 hours．Ather 24 hours the filling equipment was inspected for the presence of deposits．
Based on the resuls from the simulated minigstudes（data not shown），the placebo formulations can be divided mito
for mannitol in peptide formulations with regards fo drop fest， clogging of needles and simulated filling

However on the basis of the following considerations， propylene glycol was chosen as the isotonic agent over the other candidates to be further iwestigated in head to head comparison studies with manntol：
a propylene glycol was observed to have no influence on the physical ma chemical stability of Arg ${ }^{34}$ ． $\mathrm{ys}^{23} \mathrm{DN}^{*}$ ． （y－Glu（N hexadecanoyI））－GLP－1（－37）containing firmulations：
b－proplene glycal was observed to have na infuence on antimicrobial preservative testing and
0．use of propylene glycol would no require that further toxicity studies be tested

Ixample 2

Comparison of Manitol and Propylene Glycol-Containing Placebo Fomulatons in Sinulated Eilling Studies and Simulater Use Studies

Preparation of Formulations
Preservative and buter were dissolved in water and the isolonic agent was added white stiring pH wis udjusted to the amed pH using Sodimm Hydroxide andor Hydrochbric acid Finally the formulation was filtered throngh a 0.22 mm fiter. The compositions of the fomulations were as follows:

Disodium hydregen nosphate, dibydrate $1.42 \mathrm{mg} / \mathrm{ml}$
Phenol $5.5 \mathrm{mg} / \mathrm{ml}$
Propylene glycol or mamutol, 13.7 or $359 \mathrm{mg} / \mathrm{ml}$
Water for Inection up wo 10 m .
pH: 7.90
Simulated Filling Stridy
A simulated filling study lasting 24 hours was performed as described in Example 1 and ater 24 hours, the Filling equipment was inspected for he presence of deposts. No deposits were observed on the filing equipneut for the propylene glycol formulation. By comparison, ater 24 hours, a lot of deposits were obsefved on the filting equipmen for the matnitol formulation (see FIG. 6):
Simulated in Use Study
For the simulated in use study, a clogging test was conducted as described in Example 1 The sameneedle was used during the study period of ten working days and each day, the needle was inspected for the presence of deposits. HIG. 7 shows photographs of needles dosed with the propylene glycol (top panel) or mannitol (bottom panel) containing formulations. Deposits on the needle were observed in 48% of the cases when mamiol was used as mi isotonic agent whereas. no deposits were observed when propylene glyol was used os the istotonic sgent.

Example 3

Comparisonof Propylene Glycol to Manutol inAre, Lys ${ }^{26}$
 Formulations
Beparation of Formulations
Preservative, isotonicagent (namitofor propylene glycol) and buffer were dissolved in water and p / l was adusted to the desired $\mathrm{pH}, \mathrm{Ar}^{34}$. $\mathrm{Ly} \mathrm{s}^{2}\left(\mathrm{~N}^{2} \cdot\left(\mathrm{G}\right.\right.$ - $\mathrm{hlu} \mathrm{N}^{2}$ hexdecanoyl) $)$ -GLP-17-37) was dissolved in water while stiming slowly: The two solutions were then mixed and pH adjusted to the desired pllusing sodimn mydroxide and or hydrochone acid. Finally, the formulation was fitered lirougha 0.22 mm fller. The compositions of the formulations were as follows.
$\mathrm{Arg}^{34}, 1 \mathrm{ys}^{26}\left(\mathrm{~N}^{2}-(y\right.$-Glu(N hexadecanoyI) $)-G L P-10^{2}$
$37)(625 \mathrm{mg} \mathrm{mi})$
Disodum hydrogen phosphate dihydrate ($42 \mathrm{mg} / \mathrm{m}$)
Phenol (5.5 mg ml).
manniol or propylene glycol $(359 \mathrm{or} 14.0 \mathrm{mg} / \mathrm{ml})$.
Water for lnection (op 1010 ml).
pH18. 15
Simuated in Use Study
For the simulated in ase study alogging fest was conGucted as deseribed in Example 1 except that a G31 needle was used. The same 931 needle was used during the study period of ten working days and each day, the needle was inspected for the presence of deposits. FIG. 7 shows photographs of needles with no deposits when dosed with the propylene glycol (bottom panel) or showing deposits when dosed with the namitel (top pane) containing formilations

For the manntel containing formulation, clogeing of the needle was observed in 1 out of 10 cases on day 4.2 out of 10 cases co day 5 , 3 out of 10 cases en day 8 and 4 put of 10 cases. on day 9. By comparison no clogging of needles was observed for the propylene glycol containing fomutation.

It is believed that simila resalis to those abtaned with the above-described propylene glycolcontaining fommlation would also be oblaned it the pH was adjusted $107.40,770$ or 7.90. In addition, addrional fomnlations which could be tested inchude those having the following compositions:
Buffering agents glycylglycme (132 mg mi) L LHitidine $(155 \mathrm{mg}(\mathrm{ml})$. Hepes $(238 \mathrm{mg} / \mathrm{ml})$, or bicine ($(.63 \mathrm{mg} / \mathrm{ml})$
Preservatives phenol (5.0 or 5.5 mg ma) bewylatcohol (18 mgmi) or a nixture of m-resol and phenot 252.0 me(m)

Propylene glycol 140 or 14.3 mg ml
Water for injection op to 10 ml
pH $740,7.70,790$ or 815
Example 4
Influence of Peptide Concentration on Clogging of Needles
 37) formulations were prepared at deserbed in Example 3 using peptide concentrations ranging from $0.5 \mathrm{mg} / \mathrm{ml}$ of
 The composifions of the fommations were as follows:

Liraglude: $0.03,3$ and 5 mg ml
Disodium hydrogen phosphate, dibydrate: $071 \mathrm{mg} / \mathrm{m}$
Sodum dilydrogenphosphate dihydrate: $0.62 \mathrm{ng} / \mathrm{ml}$
Marnitol $369 \mathrm{mg} / \mathrm{ml}$
Phenol $5.0 \mathrm{mg} / \mathrm{ml}$
Water for injection: up to 10 ml
pH740
A simulated in tese study was conducted as in Example 3 excep that G G30 needle was used and the resulis (data not shown) indicated that the clogging effect of the mannitelcontaining fommlations relative to the absence of clogging with the propylene glycol formulations was observed independent of the peptide concentration.

Examples

Clogging on Needles in Lys 829 (Ne-tetradecanoyl) des(B30) Human Insuln and NovoMix 30 Formulations Containing Manntel
Preparation Of Formalations
The Lys $\beta 29$ (Ne-tetradecanoy) des(B30) huwan insulincontaining formulation was prepared as follows:
a) Prepared a firs solution by dissolving buffer sodium chloride, preservatives (phenol and m-cresol) and mannitol in water
b) Prepared a second solution of Lys 329 (Ne-tetrade. canoy) des(B30) Imman insulin and znc acetate dissolved in water
c) added the peptidecontaing solution of step b) to the solution of step as: and
d) adjusted the pit of the soluton to the desired pH

The coniposition of Lys P 29 (Ne-tetradecanoyl) des(B30) homan insulinecontining formulatiom prepared in the above manner was as follows:

Lys 129 (Ne tetradecanoy) des B30) hman insulin (2400 amol). Phenol (1.80 ng ml) m-cresol ($2.06 \mathrm{mg} / \mathrm{ml}$), Manitol ($300 \mathrm{mg} / \mathrm{ml}$), disodiumphosphate, dibydrate $(0.890$ $\mathrm{mg}(\mathrm{ml})$. Sodium chloride $(117 \mathrm{mg} \mathrm{ml})$ Zne acetate $(654$ ug(mi), water for miection (up to 10 ml) , pH 7.4

The NOVOMIXX 30 containing formulation was prepared as tollows
a) Prepared a solution by dissolving buffer, sodum chlonde. phenol mamitol and sodium hydroxide in water
b) Prepared a solution of sodimn chlonde phenol and manthifol in water
c) Prepared a solttion of protamne sulplate in water
d) Prepared a solution of insulin hydrochloric add and finc in water
e) Solutions b), e) and d) were mixed

1) Solution e) was added to the solution of step a)
g) Adjusted the pH of the solution to the destred pH and crystalized at room femperature
h) Prepared a solution by dissolving m-cresol, phenol and mannifol in water
2) Solution hy is addedo the crystalline fraction of stepg) and
3) Adjusted the pH to the destred pH

The composition of the NOVOMIX 3 30-contanng for multion prepared in the above manner was as follows
Insulin aspert (100 mits m), protamine suphate (approx. $033 \mathrm{mg} / \mathrm{mi})$, phenol ($1.50 \mathrm{mg} / \mathrm{ml}$), m-cresol ($1.72 \mathrm{mg} / \mathrm{ml})$.

22
Extmple 6
Tesing of ys $\beta 29$ (Ne-tetradecanoy) des(B30) human insuIn and NOVOMXX 30 formilatons contaning propylene glycol

The preparation and composition of the lys 1229 (Ne-tetpadecanoyl) des(B30) human insuln and NOVOMIXe 30 formulations will be as descrbed in Example 5 except that manmiol will be replaced with a concentration of moplene glycol that assures foricity. A simulated in use test will then be conducted as described in Examples.

Based on the fact that the cloggng effect of Lys 329 (Ne fetradecanoyl) des (B30) heman insulinand NOVOMIX 30 mannito-containg formulations was similar io that chserved with Ay^{24}, Lys ${ }^{26}$ (N-GGu(N-hexalecanoyD)) G1P-17-37) mamitot-contaming formulations. it is believed that the effect of propylene glycol on the clogging effec of Lys $\beta 29$ (Ne-tetradecanoy) des(B30) human insulin gad NovoMix 30 -containing formulations will be similar to that observed with Ars^{34}, Ey ${ }^{3}$ (N- (r-GluN ${ }^{4}$-hexade-canoyD)-CLP-1(237 contaning formulations.

SEWHEE LISTHEG


```
<2O SWCTDMO $
<11% LKwGmts.4t
<2% SYPE PWT
```



```
cy%e %quTures
```



```
<20s werturt
```



```
*2% LOCATYOL, 14, * 44t
```



```
    20% 55 - %ow
Ber my Rla Pre pxeber wre Hy 4ye bye tyw ty%
    35 40
```

mamitol $300 \mathrm{mg} / \mathrm{m})$, disodiamphosphate dihydrate (2.25 mgml), sodium chlonde ($0.58 \mathrm{mg} / \mathrm{ml}$), zinc $(19.6 \mathrm{ug} \mathrm{m})$), water for injection (up to 10 ml) , pH 73 .

pesuls

A simulated in tise study was conducted as described in Example 3 using G31 needles where 20 needles were inves: tigated for 10 days The results were as follows. Clogging of needles was observed for Lys 129 (Ne-teradecanoyl) des (830) human insulm on day 2 (5\%), day 3 (70\%) and on day $4(100 \%)$ Clogging of needles for NovoMix 30 was observed on day $3(5 \%)$, day $4(10 \%)$ day $5(35 \%)$, day $6(40 \%)$, day 8 (50%), dey $9(55 \%)$ tud day $10(80 \%)$. Thus, the effect of mamitol on the clogging of needles is independent of the type of peptide included in the formulations since a comparable clogeing effect was observed with $\mathrm{Arg}^{4} \cdot \mathrm{Ly}^{26}\left(\mathrm{~N}^{4}-\mathrm{y}-\mathrm{Gl}\right.$ (Nethexadecmoy1)-GLP-1(-37). Lys 329 (Netetradecanoy1) des(B30) buman msulin and NovoMix 30.

25 mgm .
4 The formulationaccording to claim 1 , wherein the conentration of propylene glycol is fromaboul 8 mginl wabout 16 mg ml .
5. The formulation according to clam 1 wheren the phl of Es sald formulation is abou 70 to about 9 s.
6. The formalatom according te clam 1 , wheren the pH of said formulation ts about 70 to about 83
7. The formulaton according to clam , wheren bhe phef said fommulion is about 73 to about 83.
8. The tormulation accorling to claim 1. further comprisfing a preserative.
9. Tie formulaton actording to dam 8 wherein said preservative s present in a concentration from 0.1 ng mil to 20 mgim.
10. The fomminion tecording to clam 1 wherein sald GLP I gonst is seleted from the group consisting of GLP(0.36)amide: G13-17.37. a GLP-1(9.36) anide max legue a CLP-1(7.37) analegue of a derivalive of any of these.
11. The fommution according to ctam 10 . wherein sad
 or a GLP-1(736)-umide analogue or a GLP-1(-37) analogue where sald dervative has a lysine residue and a lipoplille substinen atached with or vithout a spaces to the epsilon amino group ol sud lysiae.
12. The formultion accoring to cham 11, wheren sad fipophilic substuren has frow 8 to 40 cabbow atons.
13. The formulation according to clam 12, wheren sad spacer is an amuro sced.
14. The formulaton uccording to clam 13 , wheren sat
 cawy ())-aLP-1(2.37)
15. The formulation accorling to clam 1. Wherein sad GLP-1 agoust is selected fron the group consisting of ay". Gl P-17-36-umide G1y-G11 17 -37, Va²-GLP-17-36) amide, Vul Gl P-10-37). Val Asp ${ }^{2}$-GLP-17-36 amide Val A sp ${ }^{2}$-CLP -17.37 , Val'clu ${ }^{2}$-GLP-17-36) -mide.
 Vallys ${ }^{2}$-G14-17.37) Val Ang cilp-1(7-36)anide. Wal Ay ${ }^{2}$-GLPL(7.37) Vallis ${ }^{2}$ GLP10-36-anude.
 314s TCLP $1(7-30$, Ary GLD-17-37) and Gly, Ary 3Glut Lys ${ }^{2} \mathrm{GLP} 1(7-3)$ ant dervetives of any of hese.
16. A method of preparing a GLP- 1 agonist fomulation suituble for use 1 n an miection device, sald nethod comprising preparing a formulation containug a GLP-1 agonist propylene glyod, a disodiun phosphate dibydate butfer and a preservative, wherein suid propylene ylycol is present in a concentraton from about I me mi 10 about $100 \mathrm{mg} / \mathrm{ml}$, and wheren said fommlation hes a pH from abou 70 to ebout 100 and wherens sad $G 1 P-1$ gonists sad propylene alyol and sad buffer and preservative are mixed together to produce said fommation is follows
a) prepaniue af lirs solution by dissolving preservative. proplene dyeol and buffer in water.
b) preparing a second solution by dissolving the GIP-1 agenisf ti water
c) mixing the first and second soltuons and
adurting lhepH of the mixlure mc toapl of from about 0 to about 100.
17. The nethed according to clam 16 . wherein the concentration ol propyleneglycol is romabout 1 ngin toabout 50 mgem
18. The method according to clam 16 , wheren the cencentration of propylene glycol 1 fron about 5 mg mil to abou: 25 mginl.
19. The method accordng to cham 16 , wherein the concontrion of propylene glycolis fronabout 8 mg/mi wabout 16 mem.
31. The method according to clam 29 , wheren fle ssotonicily agen to be replecd by propylene glycol is selected Hem the grote consisting of inotiol mallose, glyene laelose and mannitol.

22 The nethod tecorting to clain 16 , wheren the ph of said formulation ts about 72 to about 80 .
23.4 mehod for refuenty deposits on prodichion equip-
 method conprising eplacing the sotonicity agentpreytously uthed in sad formulaton with propylene glycol at a concentrationof between $1-100$ mgm, mind wheren said GLPL gonis fomulation comprise a disodin phosphate dihydrate bitice

24 The methodaccorting to claim 23 , wheren the reduefiom in deposity on the production equipment duing production by the propylene glycol containg fommation relative to that observed for he fomblaton contiting the previously utized isotoncity agent is measurd by a smulated ming experment.
25. The method accarding fo claim 23 , wherein the sotonicity ugent to be replaced by propylene glycol is selected from the grotp consisting of corbith, sucrose glyche mannutol lactose monohydrate, aryinim myomosito and dim* ctiylsulfon.
26. 4 mehod tor reducing deposts in the final produet dirme production of GLP-1 agonist formulation sail metlod comptitive tepthing he sotonicty agen previously uthred in said formulation with proplene glyel at a concentation of botween 4.100 mg m, and wherein said CIP. agonis lomulation comprises a disodium phosthate dihyarace buther:
27. The method uccorling to claim 26, wherein the rediction in deporis in the final product is measured by a reduction in the mumber of vals ander cirtalge of the propylene glycolecontinny tormulation that must be discarded dive to deposit relative to muiber of vils andor cartidges of the formulaton contaning the prevously ulfized isotonicity agen that mus be discitded due to deposits.
28. The method according to clam 26 , wheren he isotonicity agent to be rapheed by propylene glyool is selected from the group cousisting of sobitol, glycerol, sucrose, glycme manmbl lectose nonolydrale, arginin myo-mositol and dimetylyoulon
29. A method for reducing thecloggingef injection deves by a GUP-1 agonst fomilhtion said method comprising eplicing the botoniciy agen previously utilred in sad formulation with propylene glycol at a concentration of betwen $1-100$ mg/m, rud wherin sid GLP-I sgonst for mulation comprises adisodim phosphate dibydate bufler
30. The methodaccording to clam 29 , wheren the redefion in clogging of the infuction device by the propylene Ifycolcontantay formulation welative to that observed for the formulation contuining the previossly utilized isotonicity agent is measured in a smalited in use study:
20. The methad aceording to cantu 16 wheren the pll of said formulation is thau 70 to abopt 95

21 The method accoving fociam 16 whercin the pill of sad formulation te aboun 7.0 to atwot 8.0 .

(12) United States Patent Hansen et al.

(10) Patent No.

US 9,265,893 B2
(45) Date of Patent:

Feb. 23, 2016

(54) INJECTION BUTTON

(75) Inventors:

Torben Stroem Hansen, Copenhagen V (DK); Jakob Oest Wielandt, Copenhagen N (DK); Lars Moerch Groth, Fredensborg (DK)

Assignee: Novo Nordisk A/S, Bagsvaerd (DK)
(*) Notice:
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1707 days.
(21) Appl. No.:

12/525,976
(22) PCT Filed:

Jan. 21, 2008
(86) PCT No.:

PCT/EP2008/050624
$\S 371$ (c)(1),
(2), (4) Date: Dec. 16, 2009
(87) PCT Pub. No.: WO2008/095762

PCT Pub. Date: Aug. 14, 2008
Prior Publication Data
US 2010/0145282 A1 Jun. 10, 2010
Related U.S. Application Data
(60) Provisional application No. 60/899,977, filed on Feb. 7, 2007.
(30)

Foreign Application Priority Data
「eb. 5, 2007 (LP) \qquad 07101729
(51) Int. Cl.
A61M 5/00
(2006.01)

A61M 5/315
(2006.01)
(52) U.S. Cl

CPC
A61M 5/31585 (2013.01); A61M 5/31511
(2013.01): A61M 5/3158 (2013.01)

Field of Classification Search
\qquad A61M 2005/2013; A61M 5/31541; A61M 5/20; A61M 5/31583; A61M 5/3158
USPC \qquad 604/181, 187, 218-231
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

2,444,570 A
8/1946 Lawrence et al. 9/1984 Sabloewski et al. (Continued)

FOREIGN PATENT DOCUMENTS

DE
EP

3609555 A1	$9 / 1987$
295075	$12 / 1988$

(Continued)
OTHER PUBLICATIONS
U.S. Appl. No. 10/960,900, filed Oct. 7, 2004, Steedfeldt-Jensen
(Continued)

Primary Examiner - Phillip Gray
(74) Attorney, Agent, or Firm - Wesley Nicolas

ABSTRACT

A push button connection for an injection device comprising a push button (10) and a driving part (20). The two parts of the push button connection are mounted to each other and is relatively rotatable to each other. In order to minimize the friction occurring between the push button and the driving part when relatively rotated forces are transmitted via a pivot bearing $(\mathbf{1 8}, \mathbf{2 2})$. In order also to minimize the effect of forces appearing dislocated from the center line a number of radial bearings $(13,23 ; 14,25)$ having a little friction diameter is provided.

6 Claims, 2 Drawing Sheets

References Cited
U.S. PATENT DOCUMENTS

4,498,904	A	2/1985	lurner et al.	
4,568,335	A	2/1986	Updike et al.	
4,585,439	A	4/1986	Michel	
4,592,745	A	6/1986	Rex et al.	
4,833,379	A	5/1989	Kaibel et al.	
4,865,591	A	9/1989	Sams	
4,883,472	A	11/1989	Michel	
4,919,596	A	4/1990	Slate et al.	
4,936,833	A	6/1990	Sams	
4,973,318	A	11/1990	Holm et al.	
4,994,033	A	2/1991	Shockey et al.	
5,017,190	A	5/1991	Simon et al.	
5,092,842	A	3/1992	Bechtold et al.	
5,112,317	A	5/1992	Michel	
5,207,752	A	5/1993	Sorenson et al.	
5,226,895	A	7/1993	Harris	
5,246,417	A	9/1993	Haak et al.	
5,257,987	A	11/1993	Athayde et al.	
5,271,527	A	12/1993	Haber et al.	
5,279,585	A	1/1994	Balkwill	
5,279,586	A	1/1994	Balkwill	
5,281,198	A	1/1994	Haber et al.	
5,284,480	A	2/1994	Porter et al.	
5,304,152	A	4/1994	Sams	
5,308,340	A	5/1994	Harris	
5,314,412	A	5/1994	Rex	
5,318,540	A	6/1994	Athayde et al.	
5,320,609	A	6/1994	Haber et al.	
5,331,954	A	7/1994	Rex et al.	
5,370,629	A	12/1994	Michel et al.	
5,380,297	A	1/1995	Wadman et al.	
5,383,166	A *	1/1995	Gallay	$\begin{array}{r} \text { G04B 37/103 } \\ 368 / 288 \end{array}$
5,383,865	A	1/1995	Michel	
5,440,976	A	8/1995	Giuliano et al.	
5,445,606	A	8/1995	Haak et al.	
5,447,150	A	9/1995	Bacon	
5,478,316	A	12/1995	Bitdinger et al.	
5,480,387	A	1/1996	Gabriel et al.	
5,492,534	A	2/1996	Athayde et al.	
5,505,704	A	4/1996	Pawelka et al.	
5,545,147	A	8/1996	Harris	
5,546,932	A	8/1996	Galli	
5,549,574	A	8/1996	Townsend	
5,549,575	A	8/1996	Giambattista et al.	
5,584,815	A	12/1996	Pawelka et al.	
5,591,136	A	1/1997	Gabriel	
5,599,314	A	2/1997	Neill	
5,611,783	A	3/1997	Mikkelsen	
5,626,566	A	5/1997	Petersen et al.	
5,645,052	A	7/1997	Kersey	
5,674,204	A	10/1997	Chanoch	
5,679,111	A	10/1997	Hjertman et al.	
5,681,285	A	10/1997	Ford et al.	
5,685,864	A	11/1997	Shanley et al.	
5,688,251	A	11/1997	Chanoch	
5,693,027	A	12/1997	Hansen et al.	
5,709,662	A	1/1998	Olive et al.	
5,716,990	A	2/1998	Bagshawe et al.	
5,725,508	A	3/1998	Chanoch	
5,743,889	A	4/1998	Sams	
5,755,692	A	5/1998	Manicom	
5,823,998	A	10/1998	Yamagata	
5,827,232	A	10/1998	Chanoch et al.	
5,843,036	A	12/1998	Olive et al.	
5,882,718	A	3/1999	Pommer et al.	
5,898,028	A	4/1999	Jensen et al.	
5,921,966	A	7/1999	Bendek et al.	
5,928,201	A	7/1999	Poulsen et al.	
5,938,642	A	8/1999	Burroughs et al.	
5,947,934	A	9/1999	Hansen et al.	
5,951,530	A	9/1999	Steengaard et al.	
5,954,689	A	9/1999	Poulsen	
5,961,496	A	10/1999	Nielsen et al.	
5,980,491	A	11/1999	Hans	

US 9,265,893 B2
Page 3

Feb. 23, 2016
Sheet 1 of 2
US 9,265,893 B2

Fig. 1

Fig. 2

1

INJECTION BUTTON

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a 35 U.S.C. $\S 371$ national stage application of International Patent Application PCT/EP2008/ 050624 (published as WO2008/095762), filed Jan. 21, 2008, which claimed priority of European Patent Application 07101729.7, filed Feb. 5, 2007; this application further claims priority under 35 U.S.C. $\$ 119$ of U.S. Provisional Application 60/899,977, filed Feb. 7, 2007.

THE TECHNICAL FIELD OF THE INVENTION

The invention relates to a push button connection for an injection device and especially to such connection where a push button is rotated relatively to a driving member to which it is connected.

DESCRIPTION OF RELATED ART

U.S. Pat. No. 6,235,004 discloses an injection device in which according to FIG. 15-16 a dose is set by rotating the scale drum out of the housing in a threaded connection. When injecting the set dose the user pushes on the push button which forces the scale drum and the bushing to rotate together back into the housing. During this rotation of the bushing to which the push button is attached, the push button and the bushing rotates relatively to each other. The friction occurring between these relatively rotatable parts contributes to the force a user needs to apply in order to push back the bushing and the scale drum in order to inject the set dose.
U.S. Pat. No. 7,427,275 discloses an injection device in which the push button is formed with a bore encompassing a stem on a sleeve member. The push button and the stem are welded together such that the push button and the sleeve member are axially and rotatably fixed to each other.

DESCRIPTION OF THE INVENTION

It is an object of the present invention to provide a dose button connection for an injection device which minimizes the forces a user must apply to inject a dose.

When a user pushes on the injection button, the force applied is directed to the forward movement of the driving part, however, since the push button and the driving part rotate relatively to each other a friction between these rotating parts will occur. The user therefore also has to apply a force large enough to overcome this friction. One way of minimizing the force a user must apply in order to perform an injection is therefore to minimize this friction. By forming a pivot bearing between the two parts, the surface area of interaction between the two objects can be minimized and the radius of the resulting friction force can be kept at a minimum.

In order to secure the fit between the push button and the driving part and on the same time direct forces applied on the periphery of the push button to the driving part at least one radial bearing between the push button and the protrusion is formed.

Preferably one radial bearing is formed in the upper area and one is formed in the lower area both having the least possible radius of friction. In this way forces applied at in the periphery area of the push button and causing tilting of the push button on the protrusion of the driving part is properly transferred.

If a user applies a force eccentric to the centre axis of the push button i.e. on a peripheral area of the button, the push button will tilt and a reaction torque will occur at the radial bearings. In order to minimize this force pair, which in this
5 load case is located at the distance from the radial bearing surface to the centre axis of the system, this distance, which again equals the radius of the protrusion, must be as little as possible and the distance between the bearings as long as possible. However, in order not to make the protrusion too narrow and fragile it is preferred to balance the radius of the bearings, such that the upper bearing has the smallest diameter and the lower bearing at the root of the column shaped protrusion has a diameter large enough to resist the bending force as a result of the offset applied push button forces.

In order to assemble the push button in an irreversible manner making it difficult to dissemble, it is preferred to secure the push button at the intended position by adding a track into which a rim on the harder part is forced during the manufacture of the injection device. The necessary compliance of the push button for the assembly snap-on can be secured by selection of a soft material and/or a vertical slit in the hollow section of the geometry.

Further the materials used for the push button and the protrusion on the driving part could be materials having low internal friction, or the materials could be surface treated in order to lower the internal friction.

The push button used in the connection has a central bore dedicated to engage the protrusion provided on the driving part. The bottom of the bore is preferable formed with a pivot. This pivot bears on a surface of the protrusion thus forming a pivot bearing.

DEFINITIONS

An "injection pen" is typically an injection apparatus having an oblong or elongated shape somewhat like a pen for writing. Although such pens usually have a tubular crosssection, they could easily have a different cross-section such as triangular, rectangular or square or any variation around 0 these geometries.

As used herein, the term "drug" is meant to encompass any drug-containing flowable medicine capable of being passed through a delivery means such as a hollow needle in a controlled manner, such as a liquid, solution, gel or fine suspension. Representative drugs includes pharmaceuticals such as peptides, proteins (e.g. insulin, insulin analogues and C-peptide), and hormones, biologically derived or active agents, hormonal and gene based agents, nutritional formulas and other substances in both solid (dispensed) or liquid form.

All references, including publications, patent applications, and patents, cited herein are incorporated by reference in their entirety and to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

All headings and sub-headings are used herein for convenience only and should not be constructed as limiting the invention in any way.

The use of any and all examples, or exemplary language (e.g. such as) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention. The citation and incorporation of patent documents herein is done for convenience only and does not reflect any view of the validity, patentability, and/or enforceability of such patent documents.

This invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be explained more fully below in connection with a preferred embodiment and with reference to the drawings in which:

FIG. 1 Show a cross section view of the connection between a push button and a driving part.

FIG. 2 Show a cross section view of the connection and the forces occurring.

The figures are schematic and simplified for clarity, and they just show details, which are essential to the understanding of the invention, while other details are left out. Throughout, the same reference numerals are used for identical or corresponding parts.

DETAILED DESCRIPTION OF EMBODIMENT

When in the following terms as "upper" and "lower", "right" and "left", "horizontal" and "vertical", "clockwise" and "counter clockwise" or similar relative expressions are used, these only refer to the appended figures and not to an actual situation of use. The shown figures are schematic representations for which reason the configuration of the different structures as well as there relative dimensions are intended to serve illustrative purposes only.

In that context it may be convenient to define that the term "distal end" in the appended figures is meant to refer to the end of the injection device carrying the injection needle whereas the term "proximal end" is meant to refer to the opposite end pointing away from the injection needle.

FIG. 1 discloses the connection between the push button 10 and the driving part 20.

When a user wants to inject a dose, which he or she has first selected, the user pushes the push button 10 which then moves the driving part 20 axially forward in the injection device. During this forward movement of the driving part 20 it also rotates usually because it is interfaced with a dose dial drum which is threadedly connected to a housing. Such injection device is described in details in EP 1.003.581. The combined axial and rotatable movement of the driving part 20 drives the set dose out from the injection device.

As the users finger pushes on the push surface 11 of the push button 10 it is unable to rotate due to the friction between the users finger and the push button 10 whereas the driving part $\mathbf{2 0}$ is forced to rotate due to its interface, therefore a relative rotation between the push button $\mathbf{1 0}$ and the driving part 20 takes place.

The push button 10 which could be manufactured from a suitable polymeric material being softer that the material from which the driving part 20 is manufactured comprises at the proximal end a push surface 11 which is contacted by the user's finger when a dose is to be injected and an opposite located cylindrical bore $\mathbf{1 2}$ with a circular cross section. The most proximal part 13 of the bore 12 has a smaller diameter than the remaining part 14 of the bore 12. At the distal end of the bore 12, a radial extending track 15 is provided.

The push surface 11 could be provided with a tactile cutout 16 informing visual impaired users on the content of the injection device and the most proximal bottom surface 17 of the bore 12 is formed with a raised pointer forming a pivot 18.

The driving part 20 is provided with a protrusion 21 having a circular cross section and a top surface 22. This protrusion 21 has at its proximal end a top part 23 with a decreased being softer than the material from which the driving part is manufactured.
diameter compared to the remaining part 26 of the protrusion 21. Further the protrusion 21 is provided with a radial extending rim 24 at its distal end. In the area around this rim 24, the protrusion 21 is provided with a belt 25 with a slightly raised diameter.

When the push button $\mathbf{1 0}$ is mounted on the protrusion 21 of the driving element $\mathbf{2 0}$ it is simply clicked on such that the extending rim 24 enters the track 15 . This forms a connection almost impossible to disconnect since the polymeric material of the push button 10 is softer than the material from which the protrusion 21 is produced. In this position the pivot $\mathbf{1 8}$ formed in the most proximal bottom surface 17 of the bore 12 bears on the top surface 22 of the protrusion 21 thus forming a pivot bearing 22,18 . Further the push button 10 is radially supported by the protrusion 21 at the top part 23 forming a radial top bearing 23, 13. The belt 25 on the protrusion 21 bears on an area of the remaining part 14 of the bore 12 thus forming a radial bottom bearing 14,25 .
In FIG. 2 the push button $\mathbf{1 0}$ connection is disclosed with the various forces occurring when a user applies an injection force in the peripheral area of the push button $\mathbf{1 0}$.

When the user applies an injection force A at the peripheral area of the push button 10 a vertical reaction force B will appear at the pivot point $\mathbf{2 2}, \mathbf{1 8}$, at the same time a radial force C will occur at the upper radial bearing $\mathbf{1 3 , 2 3}$. Since the upper radial bearing 13, 23 are located at the top part 23 having the smaller diameter, the resulting torque is relatively small. Further, a radial force D will occur at the lower radial bearing 14, $\mathbf{2 5}$, however due to the distance between the upper radial bearing 13, 23 and the lower radial bearing 14, 25, the force resulting on the lower radial bearing 14,25 is relatively small.

Some preferred embodiments have been shown in the foregoing, but it should be stressed that the invention is not limited to these, but may be embodied in other ways within the subject matter defined in the following claims.

The invention claimed is:

1. A push button connection for an injection device comprising:
a push button mountable on a driving part being rotatable relatively to the push button and which push button further comprises a bore with a bottom surface and which bore surrounds a protrusion on the driving part which protrusion has a top surface and wherein a pivot bearing is formed between the bottom surface and the top surface, wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button.
2. A push button connection according to claim 1, in which at least one radial bearing between the push button and the driving part is provided.
3. A push button connection according to claim 2, in which an upper radial bearing is provided at a top part of the protrusion and a lower radial bearing is provided at the bottom of the protrusion.
4. A push button connection according to claim 3 , in which the top part of the protrusion accommodating the upper radial bearing has a diameter smaller than the diameter of the remaining part of the protrusion.
5. A push button connection according to claim 1, in which
6. A push button connection according to claim 1 , in which the protrusion is provided with an extending rim mating with a track provided in the push button.

Klitgard et al.

US RE41,956 E
(45) Date of Reissued Patent: *Nov. 23, 2010
(54) DOSE SETTING LIMITER

Inventors: Peter Christian Klitgaard, Glostrup (DK); Steffen Hansen, Hillerod (DK);
Bo Radmer, Hillerod (DK); Claus Schmidt Moller, Fredensborg (DK)

Assignee: Novo Nordisk A/S, Bagsvaerd (DK)
(*) Notice:
This patent is subject to a terminal disclaimer.

Appl. No.: 11/122,211
Filed: May 4, 2005

Related U.S. Patent Documents

Reissue of:
(64) Patent No.: $\mathbf{6 , 5 8 2}, 404$

Issued: Jun. 24, 2003
Appl. No.: 09/655,922
Filed: Sep. 6, 2000
U.S. Applications:
(60) Provisional application No. 60/155,612, filed on Sep. 23, 1999.

Foreign Application Priority Data
Sep. 16, 1999 (DK) \qquad 199901309
(51) Int. Cl.

A61M 5/00	(2006.01)
A61M 5/178	(2006.01)
A61M 5/315	(2006.01)

(52)
U.S. Cl. 604/181; 604/186; 604/207; 604/208; 604/211; 604/224
Field of Classification Search \qquad 604/181, 604/186, 187, 207-208, 211, 224
See application file for complete search history.
References Cited
U.S. PATENT DOCUMENTS
$4,470,317 \mathrm{~A} \quad 9 / 1984 \quad$ Sabloewski et al.

(Continued)

FOREIGN PATENT DOCUMENTS
DE $3609555 \quad$ 9/1987
(Continued)
OTHER PUBLICATIONS
U.S. Appl. No. 10/442,855 File History on Feb. 8, 2008.
(Continued)
Primary Examiner-Kevin C Sirmons
Assistant Examiner-Andrew M Gilbert
(74) Attorney, Agent, or Firm - Marc A. Began

ABSTRACT
A limiting mechanism which prevents the setting of a dose, which exceeds the amount of liquid left in a cartridge of an injection device, is disclosed. The injection device is the type where a dose is set by rotating a dose setting member relative to a driver and away from a fixed stop in the injection device. The dose setting member interfaces the driver such that the dose setting member can be rotated in one direction without rotating the driver. The dose is injected by rotating back the dose setting member which during the backward rotation carries the driver with it. Rotating the driver causes the piston rod to move forward inside the cartridge and expel some of the liquid contained in the cartridge. The driver is provided with a track having a length which is related to the total amount of liquid in the cartridge and which track is engaged by a track follower coupled to the dose setting member to follow rotation of this dose setting member. Each time a dose is set and injected, the track follower moves further into the track. When the track follower reaches the end of the track the dose setting member can not be rotated further, and a dose larger than the remaining liquid in the cartridge cannot be set.

19 Claims, 2 Drawing Sheets

U.S. PATENT DOCUMENTS				6,010,485	A	1/2000	Buch-Rasmussen et al.
				6,033,376	A	3/2000	Rockley
4,498,904	A	2/1985	Turner et al.	6,033,377	A	3/2000	Rasmussen et al.
4,568,335	A	2/1986	Updike et al.	6,048,336	A	4/2000	Gabriel
4,585,439	A	4/1986	Michel	6,074,372	A	6/2000	Hansen
4,833,379	A	5/1989 $9 / 1989$	Kaibel et al.	6,086,567	A	7/2000	Kirchhofer et al.
$4,865,591$ $4,883,472$	A	9/1989 11/1989	Sams Michel	6,096,010	A	8/2000	Walters
4,919,596	A	$11 / 1990$	Slate et al.	6,110,149	A	8/2000	Klitgaard et al.
4,936,833	A	6/1990	Sams	6,129,080	A	10/2000	Pitcher et al.
4,973,318	A	11/1990	Holm et al.	6,146,361	A	11/2000	DiBiasi et al.
4,994,033	A	2/1991	Shockey et al.	6,193,698	B1	2/2001	Kirchhofer et al.
5,112,317	A	5/1992	Michel	6,221,046	B1	4/2001	Burroughs et al.
5,207,752	A	5/1993	Sorenson et al.	6,221,053	B1	4/2001	Walters et al.
5,226,895	A	7/1993	Harris 604/208	6,231,540	B1	5/2001	Smedegaard
5,246,417	A	9/1993	Haak et al.	6,235,004	B1	5/2001	Steenfeldt-Jensen et al.
5,257,987	A	11/1993	Athayde et al.	6,248,090	B1	6/2001	Jensen et al.
5,271,527	A	12/1993	Haber et al.	6,248,095	BI	6/2001	Giambatistia et al.
5,279,585	A	1/1994	Balkwill	6,258,062	B1	7/2001	Thielen et al.
5,279,586	A	1/1994	Balkwill	6,269,340	B1	7/2001	Ford et al.
5,281,198	A	1/1994	Haber et al.	6,277,097	B1	8/2001	Mikkelsen et al.
5,284,480	A	2/1994	Porter et al.	6,277,098	B1	8/2001	Klitmose et al.
5,304,152	A	4/1994	Sams	6,281,225	B1	8/2001	Hearst et al.
5,308,340	A	5/1994	Harris	6,283,941	B1	9/2001	Schoenfeld et al.
$5,314,412$ $5,318,540$	A	5/1994 6/1994	Rex Athayde et al.	6,287,283	B1	9/2001	Ljunggreen et al.
5,318,540 5,320,609	A	6/1994	Athayde et al. Haber et al.	6,302,869	B1	10/2001	Klitgaard
5,331,954	A	7/1994	Rex et al.	6,312,413	B1	11/2001	Jensen et al.
5,370,629	A	12/1994	Michel et al.	6,340,357	B1	1/2002	Poulsen et al.
5,383,865	A	1/1995	Michel	6,379,339	B1	4/2002	Klitgaard et al.
5,440,976	A	8/1995	Giuliano et al.	6,514,230	B1	2/2003	Munk et al.
5,445,606	A	8/1995	Haak et al.	6,547,763	B2	4/2003	Steenfeldt-Jensen et al.
5,447,150	A	9/1995	Bacon	6,547,764	B2	4/2003	Larsen et al.
5,478,316	A	12/1995	Bitdinger et al.	6,562,011	B1	5/2003	Buch-Rasmussen et al.
5,480,387	A	1/1996	Gabriel et al.	6,569,126	B1	5/2003	Poulsen et al.
5,492,534	A	2/1996	Athayde et al.	6,582,404	B1	6/2003	Klitgaard et al.
5,505,704	A	4/1996	Pawelka et al.	6,605,067	B1	8/2003	Larsen
5,546,932	A	8/1996	Galli	6,613,019	B2	9/2003	Munk
5,549,575	A	8/1996	Giambatista et al.	6,692,472	B2	2/2004	Hansen et al.
5,584,815	A	12/1996	Pawelka et al.	6,716,198	B2	4/2004	Larsen
5,591,136	A	1/1997	Gabriel	6,726,661	B2	4/2004	Munk et al.
5,599,314	A	2/1997	Neill	6,770,288	B2	8/2004	Duirs
5,611,783	A	3/1997	Mikkelsen	6,796,970	B1	9/2004	Klitmose et al.
5,626,566	A	5/1997	Petersen et al.	6,893,415	B2	5/2005	Madsen et al.
$5,645,052$ $5,674,204$	A	$7 / 1997$ $10 / 1997$	Kersey Chanoch	6,899,699	B2	5/2005	Enggaard
5,679,111	A	10/1997	Hertman et al.	6,945,961	B2	9/2005	Miller et al.
5,681,285	A	10/1997	Ford et al.	7,008,399	B2	3/2006	Larsen et al.
5,685,864	A	11/1997	Shanley et al.	7,090,662	B2	8/2006	Wimpenny et al.
5,688,251	A	11/1997	Chanoch	7,094,221	B2	8/2006	Veasey et al.
5,709,662	A	1/1998	Olive et al.	7,104,972	B2	9/2006	Moller et al.
5,716,990	A	2/1998	Bagshawe et al.	7,133,329	B2	11/2006	Skyggebjerg et al.
5,725,508	A	3/1998	Chanoch et al.	7,175,055	B2	2/2007	Hansen et al.
5,743,889	A	4/1998	Sams	7,241,278	B2	7/2007	Moller
5,755,692	A	5/1998	Manicom	2002/0007154	A1	1/2002	Hansen et al.
5,823,998	A	10/1998	Yamagata	2002/0077852	A1	6/2002	Ford et al.
5,827,232	A	10/1998	Chanoch 604/208	2002/0120235	A1	8/2002	Enggaard
5,843,036	A	12/1998	Olive et al.	2003/0039679	A1	2/2003	Duirs
5,882,718	A	3/1999	Pommer et al.	2003/0172924	A1	9/2003	Staniforth et al.
5,898,028	A	4/1999	Jensen et al.	2004/0186431	A1	9/2004	Graf et al.
5,921,966	A	7/1999	Bendek et al.	2004/0210199	A1	10/2004	Atterbury et al.
5,928,201	A	7/1999	Poulsen et al.	2004/0236282	A1	11/2004	Braithwaitc
5,938,642	A	8/1999	Burroughs et al.	2004/0249348	A1	12/2004	Wimpenny et al.
5,947,934	A	9/1999	Hansen et al.	2004/0260247	A1	12/2004	Veasey et al.
5,951,530	A	9/1999	Steengaard et al.	2004/0267207	A1	12/2004	Veasey et al.
5,954,689	A	9/1999	Poulsen	2005/0004529	A1	1/2005	Veasey et al.
5,961,496	A	10/1999	Nielsen et al.	2005/00 19400	A1	1/2005	Deveney et al.
5,980,491	A	11/1999	Hansen	2005/0033244	A1	2/2005	Veasey et al.
5,984,900	A	11/1999	Mikkelsen	2005/0055011	A1	3/2005	Enggaard
6,003,736	A	12/1999	Ljunggren	2005/0205083	A1	9/2005	Staniforth et al.
6,004,297	A	* 12/1999	Steenfeldt-	2005/0268915	A1	12/2005	Wassenaar et al.
			Jensen et al. 604/207	2007/0093761	A1	4/2007	Veasey

	FOREIGN PATENT DOCUMENTS	
EP	295075	$12 / 1988$
EP	327910	$8 / 1989$
EP	327910	$4 / 1992$
EP	0327910	$4 / 1992$
EP	0498737	$8 / 1992$
EP	$0552996 \mathrm{Al} *$	$1 / 1993$
EP	554996	$8 / 1993$
EP	594349	$4 / 1994$
EP	0594349	$4 / 1994$
EP	608343	$9 / 1994$
EP	0498737	$7 / 1995$
EP	498737	$7 / 1995$
EP	$0702970 \mathrm{Bl} *$	$9 / 1995$
EP	702970	$3 / 1996$
EP	0673482 B 1	$4 / 1998$
EP	879610	$11 / 1998$
EP	0879610 A 2	$11 / 1998$
EP	937476	$8 / 1999$
EP	0879610	$8 / 2003$
EP	0937476	$1 / 2005$
EP	1250167 B 1	$7 / 2005$
EP	1570876 A 2	$7 / 2005$
FR	2583291	$12 / 1986$
FR	2767479	$2 / 1999$
JP	$3-503129$	$7 / 1991$
JP	$05-337179 \mathrm{~A}$	$12 / 1993$
JP	$06-296691 \mathrm{~A}$	$10 / 1994$
RU	2111019	$5 / 1998$
WO	$89 / 07463$	$8 / 1989$
WO	WO $89 / 07463$	$8 / 1989$
WO	WO $90 / 09202$	$8 / 1990$
WO	WO $91 / 10460$	$7 / 1991$
WO	$91 / 14467$	$10 / 1991$
WO	WO $91 / 14467$	$10 / 1991$
WO	$93 / 07922$	$4 / 1993$
WO	WO $93 / 07922$	$4 / 1993$
WO	WO $96 / 26754$	$9 / 1996$
WO	$96 / 38190$	$12 / 1996$
WO	$97 / 36626$	$10 / 1997$
WO	WO $98 / 10813$	$3 / 1998$
WO	$98 / 10813$	$3 / 1998$
WO	$98 / 56436$	$12 / 1998$
WO	$98 / 56436$	$12 / 1998$
WO		

WO	WO $98 / 57688$	$12 / 1998$
WO	WO $99 / 16487$	$4 / 1999$
WO	WO $99 / 38554$	$8 / 1999$
WO	$99 / 38554$	$8 / 1999$
WO	$01 / 19434$	$3 / 2001$
	OTHER PUBLICATIONS	

U.S. Appl. No. 10/960,900 File History on Feb. 8, 2008.
U.S. Appl. No. 11/121,331 File History on Feb. 8, 2008.
U.S. Appl. No. 11/640,610 File History on Feb. 8, 2008.

Decision by German Federal Patent Court Pronounced on Oct. 20, 2009, Sanofi-Aventis Deutschland GmbH vs. Novo Nordisk A/S.
Exhibit 14 in Decision by German Federal Patent Court, Sanofi-Aventis vs. Novo Nordisk A/S.
Translation of Exhibit 14 in Decision by German Federal Patent Court, Sanofi-Aventis vs. Novo Nordisk A/S.
Perspective Aug. 1999, p. 1, Innovo Secures Market Leadership; http://www.novonordisk.com/old/press/perspective/ 1999august/1.html.
Innovo User Manual.
May 17, 2002 Office Action in 09768760.
Declaration of Banard Sams in Novo Nordisk A / S v. Sano$f i-A v w e n t i s$ U.S. LLC and Sanofi-Aventisdownloaded from Pacer on Feb. 29, 2008.
Complaint in Novo Nordisk A/Sv. Sanofi-Avwentis U.S. LLC and Sanofi-Aventis downloaded from Pacer on Feb. 29, 2008.

Answer in Novo Nordisk A/Sv. Sanofi-Avwentis U.S. LLC and Sanofi-Aventis downloaded from Pacer on Feb. 29, 2008.

File history of U.S. Appl. No. 10/610,926, which is owned by the same assignee as U.S. Appl. No. 11/122,211.
Opinion of US District Court for the District of NJ (Novo Nordisk A/S v. Sanofi Aventis U.S. LLC and Sanofi Aventis, Denying motion of a preliminary injunction. entered Feb. 20, 2008.
Hansen et al., Injection Device, a Preassembled Doses Setting and Injection Mechanism for an Injection Device, and a Method of Assembling an Injection Device, May 1, 2001.

* cited by examiner

U.S. Patent
Nov. 23, 2010
Sheet 1 of 2
US RE41,956 E

NNVICT00000194

1

DOSE SETTING LIMITER

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a reissue of U.S. Pat. No 6,582,404, which claims priority under 35 U.S.C. 119 of U.S. provisional application No. 60/155,612 filed on Sep. 23, 1999 and Danish application no. PA 199901309 filed on Sep. 16, 1999, the contents of which are fully incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to injection devices wherein the contents of a cartridge are injected as a number of individually set doses.

Such devices have a dose setting mechanism by which the doses are set for subsequent injecting when an injection button is operated. This can be obtained by moving a carrier along a piston rod a distance proportional to the wanted dose and subsequently moving the carrier back to its original position so that the carrier carries the piston rod with it instead of being moved along said piston rod.

SCOPE OF THE RELATED ART

From EP 327910 is known a syringe by which a dose is set by screwing a nut member up along a threaded piston rod away from a stop in a housing. The set dose is injected by pressing the end of the nut member that forms an injection button whereby the nut member is moved back to abutment with the stop again. During the latter movement of the nut member the piston rod is carried along by the nut that does not move relative to this piston rod during the injection.

When a dose is set it is convenient if a limiting device is provided which makes it impossible to set a dose that exceeds the amount of medicament which is left in the cartridge. In EP 327910 this is obtained by the fact that the thread of the piston rod has such a length that the cartridge is just emptied when the nut is screwed to the end of the thread and then pressed home to its abutment with the stop. By setting a dose the nut can only be screwed to the end of the thread and thereby the size of the last dose is limited to comprise the remaining amount in the cartridge.

The distance the injection button has to be moved corresponds to the distance the piston in the cartridge has to be moved to inject the set dose. Especially by larger cartridges with a large cross section diameter this distance can be very short. To obtain a larger movement of the injection button a sort of gearing may be used so that the distance the injection button has to be moved is proportional with the injected dose but is a number of times the movement of the piston in the cartridge.

EP 608343 describes an example of such a geared dose setting and injection mechanism. In this device the carrier does not cooperate directly with the threaded piston rod but with a driver element which can move the piston rod when a set dose is injected. In this device the driver element comprises a nut member which is fixed against axial displacement in the injection device. The thread of the nut member engages an outer thread of the piston rod which is secured against rotation in the injection device. By the setting of a
cartridge so that a set amount of the medicament in the cartridge is pressed out through an injection needle at the distal end of the cartridge. As the nut member is not moved relative to the piston rod during the setting of a dose, a limiting construction as described above cannot be provided limiting the dose so it does not exceed the amount of liquid left in the injection device.

OBJECT AND SUMMARY OF THE INVENTION

An object of the invention is to provide a limiting mecha5 nism which prevents setting of a dose that exceeds the amount of liquid left in a cartridge of an injection device of the geared type wherein a dose is set by rotating a dose setting member relative to a driver and away from a fixed stop in the injection device, and the dose is injected by rotating back the dose setting member which during this rotation carries the driver element with it to rotate this driver element which moves the piston rod forward.

Such a mechanism is according to the invention characterized in that the driver element is provided with a track having a length which is related to the total amount of medicament in the cartridge and which track is engaged by a track follower coupled to the dose setting member to follow rotation of said dose setting member. During the setting of a dose the track follower will be advanced in the track of the driver to a position depending on the set dose as during dose setting the dose setting member and the driver are rotated relative to each other. As during the injection the driver follows the rotation of the dose setting member, the pin of the dose setting member will keep its position in the track of the driver when the set dose is injected. The length of the track is so adapted that the pin reaches the end of the track and makes an increase of the set dose impossible when a dose is set which corresponds to the amount of liquid remaining in the cartridge.

According to the invention the driver may be disk shaped and have a spiral shaped track which is engaged by a cam on a member which is flexibly coupled to the dose setting member so that the pin can be moved radially when it follows the track of the driver.

In another embodiment of the invention the driver may be cylindrical and have a helical track which is engaged by a cam on the dose setting member which is a cylinder concentric with the driver.

The track may be provided as a thread in the driver and the track follower may be a nut shaped member coupled to the dose setting member and provided with a thread engaging the thread of the driver. When a dose is set the dose setting member is screwed with its thread along the thread of the driver. The limitation of the set dose is obtained by giving the threads an appropriate length.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following the invention will be explained in further details with references to the drawing, wherein

FIG. 1 shows an exploded view of a syringe with a dose limiter according to the invention;
FIG. 2 shows an enlarged view of the dose setting element and the driver element of the syringe in FIG. 1; and

FIG. 3 shows the dose setting member, the driver, and the track follower of another embodiment of an injection syringe.

DETAILED DESCRIPTION OF THE INVENTION

The syringe in FIG. $\mathbf{1}$ comprises a housing $\mathbf{1}$ accommodating a cartridge 2 from which the content can be pressed out by a piston rod $\mathbf{3}$ which is by injection via gear wheels 4 and 5 advanced a distance corresponding to a dose set by dose setting. A dose setting member 6 is provided with a toothed wheel 7 surrounding a central bore through which a pinion 8 on a driver 9 projects as it is shown in FIG. 2. The dose setting element 6 is operated through an operation element 10 which has a finger grip 11, a carrier $\mathbf{1 2}$ which engages the dose setting member 6 , and a arrow 13 pointing on a scale $\mathbf{1 4}$ provided on a lid $\mathbf{1 5}$ which forms a part of the housing 1. FIG. 1 further shows a cap 25 which can be put on to protect a not shown needle which may be mounted on the syringe, and an injection button 16 which is sliding mounted in the housing 1 and which has a recess 17 which is on one of its side surfaces provided with a cogging 18.

In the assembled syringe the toothed wheel 7 on the dose setting member 6 engages the cogging 18 of the button element 16 whereas the pinion 8 on the driver 9 engages the part with the large diameter of the gear wheel 5 the part of which with the small diameter engages the other gear wheel 4 which further engages a cogging 19 on the piston rod 3.

The driver member 9 is provided with pawl 26 which with not shown teeth in the housing forms an unidirectional coupling allowing the driver 9 to rotate only in the direction by which the piston rod $\mathbf{3}$ is advanced into the cartridge 2 . A ratchet is provided by saw tooth shaped protrusions on the dose setting element 6 engaging a saw tooth cogging 27 at the perimeter of the driver 9 , this ratchet being so oriented that only rotation of the dose setting member $\mathbf{6}$ in the direction in which the driver $\mathbf{9}$ can move is transmitted from the dose setting member 6 to the driver 9 . By rotation of the dose setting member 6 in the opposite direction the teeth of the ratchet parts will ride over each other.

To set a dose the finger grip 11 of the operation element $\mathbf{1 0}$ is gripped and the element 10 is rotated clockwise until the arrow points at the wanted dose on the scale 14. As mentioned this rotation will make the ratchet parts of the dose setting element and the driver ride over each other. If the dose setting member $\mathbf{6}$ is rotated in the clockwise direction to reduce the set dose, the ratchet will cause transmission of the rotation from the dose setting member 6 to the driver 9 , but the when a torque in this direction is transmitted from the operating element through the carrier $\mathbf{1 2}$ to the dose setting member $\mathbf{6}$, this dose setting member is deformed so that the protrusion on the dose setting member 6 is drawn out of its engagement with the toothing 27 of the driver 9 and an anticlockwise rotation of the dose setting member $\mathbf{6}$ is allowed without the rotation being transmitted to the driver 9 .

Due to the engagement between the toothed wheel 7 on the dose setting member 6 and the cogging 18 of the injection button 16 this button will be lifted from the end of the housing 1 when a dose is set and will be lowered when a dose is reduced.

When the injection button 16 is pressed to inject a set dose the engagement between the toothed wheel 7 on the dose setting member 6 and the cogging 18 of the injection button 16 will cause the dose setting member 6 to rotate in an anticlockwise direction. As the torque is not transmitted to the dose setting member 6 by the operating element 10, the ratchet coupling between the dose setting member 6 and the driver 9 will be active and the driver 9 will be rotated with the dose setting member 6 in the anticlockwise direction and will drive the piston rod 3 into the cartridge.

As it is seen in FIG. 2 the disk shaped driver 9 has in its side facing the dose setting member 6 a spiral shaped track

20 which is engaged by a cam 21 provided at the end of an arm 22 which is by a flexible beam 23 fastened to the dose setting member 6 so that the arm 22 can swing to let the cam 21 move in the radial direction of the driver 9 . When the dose setting member 6 during the setting of a dose is rotated relative to the driver 9 the cam is moved along the track 20 whereas the cam during the injection due to the concomitant rotation of the dose setting member 6 and the driver 9 remains in its position in the track 20 obtained during the dose setting. This way the position of the cam in the track reflects the total amount of medicine administered. When the cam 21 abuts the end wall 24 of the track 20 the set dose cannot be increased and by adapting the length of the track to the total amount of medicine in the cartridge it is ensured that a dose larger than the amount of medicine remaining in the cartridge cannot be set.

FIG. 3 shows a dose setting member $\mathbf{3 0}$ surrounding a driver 31 of another embodiment of a dose setting limiter. The dose setting member $\mathbf{3 0}$ is cylindrical and is on its outer wall provided with a helical track 29 which is designed to co-operate with a helical inner ridge in a not shown housing so that the dose setting member 30 is screwed outward in said housing when rotated to set a dose and inward in said housing when rotated to reduce a too large set dose. During the dose setting rotation the dose setting member $\mathbf{3 0}$ is rotated freely relative to the driver 31 which it surrounds. Between the dose setting member $\mathbf{3 0}$ and the driver $\mathbf{3 1}$ a nut member 32 is coupled which can when it is rotated relative to the driver $\mathbf{3 1}$ be screwed up along this driver which is at its outer surface provided with a helical track 33. At its outer wall the nut member 32 is in the axial direction provided with a recess 34 which is engaged by a ridge 35 in the axial direction on the inner side of the dose setting element 30

During the setting of a dose the nut member 32 is due to the engagement between the ridge 35 and the recess 34 rotated with the dose setting member 30 relative to the driver 31 so that the position of the nut member 32 on this driver is dependent on the dose set. When the dose is injected by pressing a not shown injection button which is placed in an end part 36 of the dose setting member 30 this button presses a flange $\mathbf{3 7}$ at an end of the driver $\mathbf{3 1}$ into engagement with coupling teeth $\mathbf{3 8}$ at the bottom of the end part $\mathbf{3 6}$ of the dose setting member $\mathbf{3 0}$. On its lower not visible side the flange 37 is provided with coupling teeth corresponding to the coupling teeth 38 of the dose setting member 30 and when the dose setting member 30 is due to the engagement between the track 29 in the dose setting member 30 and the ridge in the housing forced to rotate relative to the housing when it is pressed into the housing the rotation will be transmitted to the driver 31 which due to the engaging coupling teeth is forced to rotated with the dose setting member and during this rotation the nut member $\mathbf{3 2}$ will maintain its position on the driver 31. This way the position of the nut member 32 on the driver 31 will always indicate the total sum of set and injected doses. When the length of the helical track 33 in the driver 31 is adapted to the amount of medicine in a cartridge the nut member $\mathbf{3 2}$ will reach the end of the track $\mathbf{3 3}$ and stop for setting a dose larger than the amount remaining in the cartridge.

What is claimed is:

1. A limiting mechanism that prevents setting of a dose that exceeds the injectable amount of liquid left in a cartridge of an injection device wherein a dose is set by rotating a dose setting member relative to a driver and away from a fixed stop in the injection device, and the dose is injected by [rotating] pressing an injection button which rotates back the dose setting member which during this rotation carries the
driver with it to rotate this driver which moves the piston rod forward, wherein the driver is provided with a track having a length which is related to the total injectable amount of medicament in the cartridge and which track is engaged by a track follower coupled to the dose setting member to follow rotation of this dose setting member and wherein the driver is disk shaped and the track has a spiral shape which is engaged by the track follower which is flexibly coupled to the dose setting member so that the track follower can be moved radially when it follows the track of the driver element.
2. A limiting mechanism that prevents setting of a dose that exceeds the amount of liquid left in a cartridge of an injection device wherein a dose is set by rotating a dose setting member relative to a driver and away from a fixed stop in the injection device, and the dose is injected by rotating back the dose setting member which during this rotation carries the driver with it to rotate this driver which moves the piston rod forward, wherein the driver is provided with a track having a length which is related to the total amount of medicament in the cartridge and which track is engaged by a track follower coupled to the dose setting member to follow rotation of this dose setting member and wherein the driver is cylindrical and the track has a helical shape which is engaged by the track follower which is coupled to the dose setting member so that the track follower can be moved rotationally when it follows the track of the driver element.
3. The limiting mechanism of claim 2, wherein the dose setting element is a cylinder concentric with the driver.
4. The limiting mechanism of claim 3, wherein the track comprises a thread in the driver and that the track follower comprises a nut shaped member coupled to the dose setting member and provided with a thread engaging the thread of the driver.
5. A dose setting limiter assembly that prevents the setting of a dose which exceeds the remaining injectable amount of medication in a multiple dose cartridge in an injection device which comprises: a cylindrical dose setting member having an outer wall provided with a helical groove which allows the cylindrical dose setting member to be screwed out of the injection device and away from an initial position when the cylindrical dose setting member is rotated during dose setting and screwed into the device and toward the initial position to reduce the size of a set dose, wherein during injection of the set dose the cylindrical dose setting member is pressed back into the device and as a result of the helical groove it rotates back toward the initial position; wherein the dose setting limiter assembly comprises:
(a) a helical track disposed on the outer surface of a hollow cylindrical driver that drives a separate piston rod forward; and
(b) a follower that engages the helical track;
wherein the follower moves along the helical track when the dose setting member is rotated during dose setting; but wherein the follower does not move along the track during injection of the set dose; wherein the injection of the set dose is carried out by pressing an injection button which:
(i) presses the cylindrical dose setting member back into the device, and
(ii) causes the cylindrical dose setting member to rotate back to the initial position, wherein the rotation back is cause by the helical groove on the dose setting member;
wherein the position of the follower along the track is indicative of the total sum of the set and injected doses; hollow cylindrical piston rod driver forms a thread and follower comprises a nut like element that threadly engages the thread.
6. The mechanism of claim 10, wherein the track on the hollow cylindrical piston rod driver forms a thread and the follower comprises a nut like element that threadly engages the thread.
7. An injection device dose limiter assembly for use with 5 both
(a) a rotatable cylindrical dose setting member, which threadly engages an injection device housing element
so that (i) when it is rotated to set the size of a dose it screws out of an injection device housing, (ii) when it is rotated back to reduce the size of a set dose it screws back into the housing, and (iii) when an injection button is pressed during injecting of medication the cylindrical dose setting member is pressed back into the housing and rotates back, and
(b) a hollow cylindrical piston rod driver that drives a separate piston rod during injection of the set dose;
wherein the injection device dose limiter prevents the setting of a dose that is larger than the injectable amount of medication remaining in a multi dose cartridge and
wherein the injection device dose limiter assembly comprises:
a helical track disposed on the outside of the hollow cylindrical piston rod driver; and
a follower that moves along the track during dose setting but remains stationary with respect to the helical track during dose injecting when an injection button is pressed which causes the cylindrical dose setting member to be screwed back into the housing; wherein the length of the track that the follower is capable of moving along corresponds to the injectable amount of medication in an injection device multiple dose cartridge; and
wherein during dose setting:
the follower moves a distance along the track that corresponds to the size of the dose being set; and

8

wherein the follower abuts a stop before the size of the set dose exceeds the injectable amount of medication remaining in the cartridge.
14. The assembly of claims 5 or 13, wherein the follower moves during delivery of the set dose during dose injecting.
17. The mechanism of claim 9, wherein the follower abuts the stop when the size of the set dose equals the injectable amount of medication remaining in the cartridge.
18. The mechanism of claim 9, wherein the helical track

20 has a length adapted to ensure that the follower stops advancing when the size of a set dose is equal to that remaining for injection.
19. The mechanism of claim 9, wherein the injection button moves a distance proportional to, but a number of times greater than, the distance a piston in the cartridge moves during delivery of the set dose during dose injecting.

PATENT
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In the PATENT APPLICATION of:
Hansen et al.
Application No.: 12/525,976
Our File: 7543.204-US
Date: July 25, 2013
Confirmation No.: 2853
Filed: December 16, 2009
For: INJECTION BUTTON
Group: 3767
Examiner: Gray, Phillip A

APPEAL BRIEF UNDER 37 C.F.R. § 41.37

Mail Stop Appeal Brief-Patents
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:
This Appeal is from the Examiner's decision to finally reject claims 1-6 and 8 as set forth in the Final Office Action sent from the U.S. Patent and Trademark Office on November 26, 2012.

A Notice of Appeal was filed March 26, 2013, in response to the Final Office Action of November 26, 2012. An Extension of Time extending the time for filing the Appeal Brief from May 26, 2013 to July 26, 2013 was submitted previously. No additional fees are believed necessary for filing the instant Appeal Brief. However, if for any reason additional fees are required for consideration of the instant paper

Applicant: Hansen et al. Application No.: $12 / 525,976$
or any accompanying document, this paper should be treated as the appropriate request or petition and authorization is hereby given to charge the fees to Deposit Account No. 14-1447.

Applicant: Hansen et al. Application No.: $12 / 525,976$

TABLE OF CONTENTS

I. REAL PARTY IN INTEREST 4
II. RELATED APPEALS AND INTERFERENCES 4
III. STATUS OF CLAIMS 4
IV. STATUS OF AMENDMENTS 4
V. SUMMARY OF CLAIMED SUBJECT MATTER 5
VI. GROUNDS OF REJECTION TO BE REVIEWED ON APPEAL 5
VII. ARGUMENTS 6
VIII. CONCLUSION 19
CLAIMS APPENDIX 20
EVIDENCE APPENDIX 21
RELATED PROCEEDINGS APPENDIX 22

Applicant: Hansen et al. Application No.: 12/525,976

I. REAL PARTY IN INTEREST

The real party in interest in this appeal is Novo Nordisk A/S, of Bagsvaerd, Denmark, the assignee of record. The assignment was recorded in the U.S. Patent and Trademark Office on December 16, 2009, at Reel 023664, Frame 0067.

II. RELATED APPEALS AND INTERFERENCES

Appellants, Appellants' representative or the Assignee are not aware of any other prior or pending appeals, interferences or judicial proceedings which may be related to, directly affect or be directly affected by or have a bearing on the Board's decision in the pending appeal.

III. STATUS OF CLAIMS

Claim 1 is currently pending. Claim 1 stands finally rejected. Thus, finally rejected claim 1 is at issue in the instant appeal and form the subject matter of the instant Appeal Brief. The claim at issue is attached in the "Claims Appendix." The appeal contains 1 independent claim, namely claim 1.

IV. STATUS OF AMENDMENTS

An Amendment under 37 C.F.R. §1.116 was filed on July 22, 2013 pursuant to 37 C.F.R. 41.33(a). The amendment addresses formal issues and does not alter the scope of the claims. Accordingly, the claims presented for appeal are those filed in the Amendment under 37 C.F.R. § 1.116 and 37 C.F.R. § 41.33(a) filed on July 22, 2013.

Applicant: Hansen et al. Application No.: 12/525,976

V. SUMMARY OF CLAIMED SUBJECT MATTER

Independent claim 1 is directed to a push button connection for an injection device including:
a push button mountable on a driving part being rotatable relatively to the push button (See e.g., page 4, lines 26-29, Figure 1 - reference numbers 10 and 20); the push button further comprises a bore with a bottom surface (See e.g., page 5, lines 4-7 and 12-13, Figure 1 - reference numbers 12 and 17);
the bore surrounds a protrusion on the driving part (See e.g., page 5, lines $15-16$, Figure 1 - reference numbers 12, 20 and 21);
the protrusion has a top surface and wherein a pivot bearing is formed between the bottom surface and the top surface (See e.g., page 5, lines 15-16 and 2426, Figure 1 - reference numbers 17, 18, 21 and 22);
wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button (See e.g., page 4, line 34 - page 5, line 2, page 5, line 34 -page 6 , line 2, Figures 1 and $2)$.

VI. GROUND(S) OF REJECTION TO BE REVIEWED ON APPEAL

The broad issues under consideration are:

1. Whether independent claim 1 is improperly rejected under 35 U.S.C. §102(b) as being unpatentable over US Patent No. 5,383,166 (Gallay).
2. Whether independent claim 1 is improperly rejected under 35 U.S.C. §112 first paragraph as failing to comply with the written description requirement.
3. Whether the drawings are properly objected to under 37 CFR 1.83(a).

Applicant: Hansen et al. Application No.: $12 / 525,976$

VII. ARGUMENTS

A. Summary of Rejection(s) of Record

1. Rejection of claim 1 under 35 U.S.C. § 102(b)

The rejection of claim 1 under 35 U.S.C. §102(b) set forth in the final office action of November 26, 2012 (the rejection) is based on US Patent No. 5,383, 166 (Gallay). In this regard, the rejection (at pp. 2-3 of the final office action) alleges that Gallay discloses a control device which is a push button connection (see figures 1-2) comprising a push button (13), mounted on a driving part (20) being rotatable to the push button (13) which further comprises a bore (internal space of element 11b or 15) with a bottom surface (near 14), which the bore surrounds a protrusion (21/25) on the driving part (20), which the protrusion (21/25) has a top surface (top of 25), and wherein a pivot bearing (25/26/11b) is formed between the bottom surface and the top surface (top of 25). Figures 1 and 2 of Gallay are reproduced below with the relevant reference numbers circled:

Applicant: Hansen et al. Application No.: 12/525,976

$\mathcal{F i g .} 2$

- 7 -

Applicant: Hansen et al. Application No.: 12/525,976

2. Rejection of claim 1 under 35 U.S.C. § 112, $1^{\text {st }}$ Paragraph

Claim 1 was rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The final office action states that the claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. In particular, the phrase "wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button" is allegedly not described in enough specificity to understand what structures and operational elements on the driving part causes the driving part to rotate relative to the push button, (when the user presses the button and directs force to the driving part).

3. Drawings Objection under 37 CFR 1.83(a)

The drawings were objected to under 37 CFR 1.83(a) as not showing every feature of the invention specified in the claims. In particular the final office action states that the phrase "wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button" as recited in claim 1 is not shown in the drawings.

B. Citation of Authority

Under 35 U.S.C. § 102, "[a] claim is anticipated only if each and every element as set forth in the claim is found, either expressly or inherently described, in a single prior art reference." Verdegaal Bros. v. Union Oil Co. of California, 814 F.2d 628, 631,2 USPQ2d 1051, 1053 (Fed. Cir. 1987). "[A]n invention is anticipated if the same device, including all the claim limitations, is shown in a single prior art

Applicant: Hansen et al. Application No.: 12/525,976

reference. Every element of the claimed invention must be literally present, arranged as in the claim." Richardson v. Suzuki Motor Co., 868 F.2d 1226, 1236 (Fed.Cir. 1989) (citing Perkin-Elmer Corp. v. Computervision Corp., 732 F.2d 888, 894 (Fed. Cir. 1984); Kalman v. Kimberly-Clark Corp., 713 F.2d 760, 771-72 (Fed. Cir. 1983)). "[A]bsence from the reference of any claimed element negates anticipation." Kloster Speedsteel AB v. Crucible, Inc., 793 F.2d 1565, 1571 (Fed. Cir. 1986).

Under 35 U.S.C. § $112,1^{\text {st }}$ paragraph a patent specification must describe the claimed invention in sufficient detail to allow a person having ordinary skill in the art to reasonably conclude that the inventor had possession of the claimed invention. See, e.g., Moba, B.V. v. Diamond Automation, Inc., 325 F.3d 1306, 1319, 66 USPQ2d 1429, 1438 (Fed. Cir. 2003); Vas-Cath, Inc. v. Mahurkar, 935 F.2d at 1563, 19 USPQ2d at 1116. An applicant may show possession of the invention as claimed using such descriptive means as words, structures, figures, diagrams that fully set forth the claimed invention. See, e.g., Pfaff v. Wells, Inc., 525 U.S. 55, 68, 119 S.Ct. 304, 312, 48 USPQ2d 1641, 1647 (1998); Eli Lilly, 119 F.3d at 1568, 43 USPQ2d at 1406; Amgen, Inc. v. Chugai Pharmaceutical, 927 F.2d 1200, 1206, 18 USPQ2d 1016, 1021 (Fed. Cir. 1991) (one must define a compound by "whatever characteristics sufficiently distinguish it"). "Compliance with the written description requirement is essentially a fact-based inquiry that will 'necessarily vary depending on the nature of the invention claimed.'" Enzo Biochem, 323 F.3d at 963, 63 USPQ2d at 1613. An applicant may incorporate subject matter by reference. 37 C.F.R 1.57. Even "essential material" may be incorporated by reference, but only by way of an incorporation by reference to a U.S. patent or U.S. patent application publication. Essential material may include material that is

Applicant: Hansen et al. Application No.: 12/525,976

necessary to provide a written description of the claimed invention as required by the 35 U.S.C. 112, $1^{\text {st }}$ paragraph. 37 C.F.R 1.57(c)(1).

Under 37 CFR 1.83(a), the drawings in a nonprovisional application must show every feature of the invention specified in the claims. However, conventional features disclosed in the description and claims, where their detailed illustration is not essential for a proper understanding of the invention, should be illustrated in the drawing in the form of a graphical drawing symbol or a labeled representation.

C. Claim 1 is Not Properly Rejected Under 35 U.S.C. §102(b) as Being Anticipated by Gallay

Gallay is directed to "a water tight control device for a watch, for example for winding up the watch or setting the time or date." Gallay Col 1 , lines 6-8. This type of device typically includes "a crown with a central cavity surrounded by an annular cavity, [and] a watertight seal arranged in the annular cavity." Gallay Col 1, lines 911. Claim 1 of the subject application is directed to a push button connection for an injection device which minimizes the forces a user must apply to inject a dose. See page 1, lines 26-27. These two devices are directed to different purposes and accordingly have different structures. Gallay lacks a pivot bearing formed between the bottom surface of the push button and the top surface of the driving part. For at least this reason, claim 1 is patentable over the Gallay reference.

In more detail, claim 1 is directed to a push button connection for an injection device. An example of such a device is shown in the drawings. Figures 3 and 4 are reproduced below. The relevant reference numbers are circled.

Applicant: Hansen et al. Application No.: 12/525,976

Fig. 1

The device includes a push button (10) mountable on a driving part (20). The driving part (20) is rotatable relative to the push button (10) (See e.g., page 4, lines 26-29, Figure 1 - reference numbers 10 and 20). The push button (10) further comprises a bore (12) with a bottom surface (17) (See e.g., page 5, lines 4-7 and 1213, Figure 1 - reference numbers 12 and 17). The bore (12) surrounds a protrusion (21) on the driving part (20) (See e.g., page 5, lines 15-16, Figure 1 - reference

Applicant: Hansen et al. Application No.: 12/525,976

numbers 12, 20 and 21). The protrusion (21) has a top surface (22) and wherein a pivot bearing is formed between the bottom surface (17) and the top surface (22) (See e.g., page 5, lines 15-16 and 24-26, Figure 1 - reference numbers 17, 18, 21 and 22). When a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button (See e.g., page 4 , line 34 - page 5 , line 2 , page 5 , line 34 -page 6 , line 2, Figures 1 and 2).

A more detailed view of the pivot bearing shown in Figure 1 is set out below:

In this example, the "bottom surface 17 of the bore 12 is formed with a raised pointer forming a pivot 18 ." See page 5 , lines $12-13$. As noted in the application as filed, "[w]hen a user pushes on the injection button, the force applied is directed to the forward movement of the driving part, however, since the push button and the driving part rotate relatively to each other a friction between these rotating parts will occur." See page 1, lines 29-32. The pivot bearing recited in claim 1 minimizes the friction and the forces a user must apply to inject a dose. Gallay is directed to a completely different application and therefor lacks a pivot bearing as recited in claim 1.

Applicant: Hansen et al. Application No.: 12/525,976

As noted above, Gallay is directed to "a water tight control device for a watch, for example for winding up the watch or setting the time or date." Gallay Col 1, lines 6-8. This type of device typically includes "a crown with a central cavity surrounded by an annular cavity, [and] a watertight seal arranged in the annular cavity." In the rejection, the crown 13 is equated to the push button and the coupling member 20 is equated to the driving part. The cylindrical part 25, coil spring 26 , and end 11 b of sleeve 11 are identified as forming a pivot bearing. A general description of the operation of a water tight watch crown as recited in Gallay is in order.

Operation of a watch crown is well known. In general, the crown is movable between at least two positions. For example, the crown is pulled out to set the time and pressed in once the time is set. As noted above, the crown disclosed in Gallay is waterproof. In order to achieve this, the crown engages a threaded portion of the watch case so that when the crown is effectively in the "pressed in" position, the waterproof seal surrounding the watch stem is compressed (this is also very well known). Gallay is directed to an improvement in this seal and lacks any disclosure with respect to a pivot bearing formed between the bottom surface of the crown and the top surface of the coupling member.

Gallay expressly states that crown is formed with an annular cavity 15 and the lateral external wall of the annular cavity 15 is provided with a thread 17 , which is complementary to the thread of the lateral external face 8 of the widened part of the tube 4. See the highlighted portion of Figures 1 and 2 below. Figure 1 shows the crown in the extended position (unscrewed). Figure 2 shows the crown in the screwed in, position.

Applicant: Hansen et al. Application No.: 12/525,976

Applicant: Hansen et al. Application No.: 12/525,976

It is readily apparent that as the watch crown 13 is depressed and screwed in, threads 8 and 17 are engaged. Once the crown is screwed all the way in, the threads provide compressive force on the seal 19. This provides a waterproof seal. See Col 2 , line $66-\operatorname{col} 3$, line 4 , Col 3 , lines $7-16$. In light of this, it is also apparent that Gallay cannot have a pivot bearing formed between the bottom surface of the crown and the top surface of the coupling member. The function of the pivot bearing recited in claim 1 is to reduce frictional forces between the push button and the driving part in an injection pen as the user presses the push button towards the driving part. There is no corresponding bearing in Gallay since it is not required, i.e., there is no need to reduce frictional forces when the user presses on the crown. Instead, the crown is formed with a cavity with a threaded lateral external wall to control the movement of the crown as it moves towards the coupling member. If the user were to press on the crown, the threads 8 and 17 would bear the forces. These threads as well as the cylindrical part 25 , coil spring 26 , and end 11 b of sleeve 11 (identified in the rejection as forming a pivot bearing) do not form a pivot bearing between the bottom surface of the crown and the top surface of the coupling member as recited in claim 1. For at least these reasons claim 1 is allowable over Gallay.

D. Claim 1 is Not Properly Rejected Under 35 U.S.C. §112, $1^{\text {st }}$ paragraph

Claim 1 was rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The final office action states that the claim limitation of "wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button" is not described in enough specificity to understand what structures and operational elements on the driving part causes the driving part to rotate

Applicant: Hansen et al. Application No.: 12/525,976

relative to the push button,(when the user presses the button and directs force to the driving part).

The specification cites US Patent No. 6,235,004 and US Patent No. 7,427,275 in the background portion. The specification also expressly states "[a]ll references, including publications, patent applications, and patents, cited herein are incorporated by reference in their entirety and to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein." See page 3, lines 16-19. Even if the subject matter recited in US Patent No. 6,235,004 and US Patent No. 7,427,275 is considered essential, it is properly incorporated by reference under 37 C.F.R 1.57.

Claim 1 is directed to an improvement in the push button connection for an injection device. The specific mechanism for actually operating an injection pen is not claimed. A person having ordinary skill in the art is well versed as to how such devices operate. For this reason, the rejection under 35 USC 112, first paragraph is misplaced. To the extent there is any question as to how such devices operate, US Patent No. 6,235,004 (the ‘004 patent) and US Patent No. 7,427,275 (the '275 patent) provide a detailed description and drawings that show the structure required to cause the driving part to rotate relative to the push button in an injection pen. For example in '004 patent, injection button 23 and drum 17 rotate with respect to each other when the injection button is pressed. See Col 7, lines 1721. The structure for driving the drum is disclosed throughout the '004 patent specification. For at least these reasons, claim 1 complies with the written description requirement under 35 U.S.C. 112, first paragraph.

Applicant: Hansen et al. Application No.: 12/525,976

E. The Drawings are not Properly Objected To Under 37 CFR 1.83

The general rule under 37 CFR 1.83(a) is that drawings in a nonprovisional application must show every feature of the invention specified in the claims. However, conventional features disclosed in the description and claims where their detailed illustration is not essential for a proper understanding of the invention, should be illustrated in the drawing in the form of a graphical drawing symbol or a labeled representation.

As explained above, claim 1 is directed to an improvement in the push button connection for an injection device. The specific mechanism for actually operating an injection pen is not claimed. A person having ordinary skill in the art is well versed as to how such devices operate. The phrase "wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button" as recited in claim 1 provides context under which the claimed pivot bearing operates. The specifics of how the driving part is rotated is not essential for a proper understanding of the invention since it relates to operation of a typical injection pen such as the type disclosed in US Patent No. 6,235,004 (incorporated by reference and discussed above). Appellants note that Figure 2 (reproduced below) provides graphical drawing symbols that represent the forces during rotational movements between the push button and driving part. These graphical drawing symbols provide for a proper understanding of the invention in accordance with 37 CFR 1.83(a).

$\operatorname{mg} 2$
See also page 5, line 31 - page 6 , line 5 describing the forces that occur when the user presses on the push button and the driving part rotates relative to the push button. To the extent additional drawings are required for a proper understanding of the invention, these drawings are provided by the patents that are incorporated by reference. For at least these reasons, the drawings as originally filed are compliant with 37 CFR 1.83(a) and no drawing corrections are required.

Applicant: Hansen et al. Application No.: $12 / 525,976$

VIII. CONCLUSION

Appellant respectfully submits that for at least all of the foregoing reasons, the Office Action fails to particularly point out how Gallay discloses every element of the rejected claim. Appellant has also demonstrated that rejected claim 1 passes muster under 35 U.S.C. §112, first paragraph and 37 CFR 1.83(a). The Board is, therefore, respectfully requested to reverse the Examiner's decision to finally reject claim 1 and to allow the application to issue in its present form.

Respectfully submitted,

Date: July 25, 2013
By: /Marc A. Began, Reg. No. 48,829/
Marc A. Began, Reg. No. 48,829
Novo Nordisk Inc.
Customer Number 23650
(609) 987-5800

Use the following customer number for all correspondence regarding this application. 23650

Applicant: Hansen et al. Application No.: $12 / 525,976$

CLAIMS APPENDIX

1. A push button connection for an injection device comprising:
a push button mountable on a driving part being rotatable relatively to the push button and which push button further comprises a bore with a bottom surface and which bore surrounds a protrusion on the driving part which protrusion has a top surface and wherein a pivot bearing is formed between the bottom surface and the top surface, wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button.

Claims 2-8. (Cancelled)

Applicant: Hansen et al. Application No.: $12 / 525,976$

EVIDENCE APPENDIX

US Patent No. 6,235,004
US Patent No. 7,427,275

Applicant: Hansen et al. Application No.: $12 / 525,976$

RELATED PROCEEDINGS APPENDIX

None

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: HANSEN, Torben Stroem et al.
Conf. No.: 2853
Application No.: 12/525,976
Group Art Unit: 3763
Filed: December 16, 2009
Examiner: GRAY, Phillip A.
For: Injection Button

REPLY BRIEF UNDER 37 C.F.R. § 41.41

Commissioner for Patents
U.S. Patent and Trademark Office

Customer Service Window, Mail Stop Appeal Brief - Patents
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Sir:
This Reply Brief pursuant to 37 CFR § 41.41 is presented in response to the Examiner's Answer dated November 20, 2013.

This Reply Brief is submitted by January 20, 2014, and should be entered and considered as of right because it is filed within two months of the Notification Date of the Examiner's Answer.

Although no fees are believed necessary, should any fees be required, the Commissioner is hereby authorized to charge any required fees or refund excess payments to Novo Nordisk Inc. Deposit Account No. 14-1447.

Claim 1 is currently pending. All other claims have been canceled to expedite the appeal.

I. REPLY:

The Examiner's Answer (p. 5) notes that (emphasis added by Appellant):
The claim language of "wherein when a user presses on the push button the force is directed toward the driving part and wherein the driving part rotates relative to the push button . . ." is a functional limitation. It is well established that a recitation with respect to the manner in which an apparatus is intended to be employed, i.e., a

> functional limitation, does not impose any structural limitation upon the claimed apparatus which differentiates it from a prior art reference disclosing the structural limitation of the claim. Where the prior ar is inherently capable of performing the function described in a functional limitation, such functional limitation does not define the claimed apparatus over the prior art.

In response, Appellant respectfully disagrees. And respectfully submit the Examiner's rejection is incorrect for several reasons. First, the Examiner fails to show how each and every element of the claim is present in Gallay. He argues that it is appropriate to ignore some elements recited in the claim by stating that they are merely functional limitations. Of course, even functional limitations must be considered during Examination. Second, the Examiner misinterprets Gallay and argues that the bearing element in the claim is satisfied by a seal in Gallay under the doctrine of inherency. A seal is not inherently a bearing. Finally, the Examiner does not explain how the "pivot" limitation in "pivot bearing" is fulfilled by the Gallay disclosure.

The Examiner's rejection must be overturned because he incorrectly ignores the functional limitations in the claim and mistakenly assumes patent law treats functional limitations in the same way as statements of intended use. It is black letter law that all $\underline{\text { limitations }}$ of a claim must be considered, even functional limitations. As the court held in In re Exherd, 176 USPQ (CCPA 1973), "there is nothing inherently wrong in defining something by what it does rather than by what it is." In his reply, the examiner is confusing statements of intended use with functional limitations. See bottom of page 2 of the Examiner's answer where he states that the applicants "only positively claim the 'push button' and its ability to have the functional limitation (or intended use) of wherein when a user presses on the push button the force is direct toward the driving part and wherein the driving part rotates relative to the push button." By using the parenthetical (or intended use) the Examiner is thus admitting that he deems functional limitations to be the same as intended uses. See also page 5 of the Examiner's answer where he states "Examiner is reading these as function type or intended use limitations. (Again, confusing functional limitations with statements of intended use). This is wrong as a matter of law.

A functional limitation must be evaluated and considered, just like any other claim limitation "for what it conveys to one of ordinary skill in the pertinent art." See MPEP $2173.05(\mathrm{~g})$. "A functional limitation is an attempt to define something by what it does, rather than by what it is." See In re Swinehart 429 F.2d 210 (CCPA 1971). That is exactly the case here, where the claim requires rotation between the button and the driving part and the formation of a pivot bearing between the two parts.

Moreover, the definition of a bearing is a machine part in which another part turns. (See http://www merriam-webster.com/dictionary/bearing). The claim plainly recites that a bearing (more specifically, a pivot bearing) is part of the invention, i.e., it is a claim limitation.

Therefore, since the claim requires a bearing --and a bearing, by definition involves rotation-- the requirement of rotation between the button and the driving part is implicitly present, as well as explicitly present, in the claim. There is no logical way to read the claim without realizing that the claim requires rotation between two parts when an axial force is exerted on the button. Indeed, why else would there be a bearing between the two parts that rotate, if not to facilitate the rotation?

Finally, in In re Jasinski (Fed Cir 2013) the Federal Circuit held that when the functional limitation goes to the heart of the invention, it must be considered. That is exactly the case here. A complete read of the instant specification --which the claims must be read in view of-- clearly shows that the claimed invention is drawn to a pivot bearing in an injection device. Injection devices are well known and virtually all modern injection devices operate by transforming axial movement into rotational motions, as is described in claim 1. (See the multiple patents incorporated by reference into the instant patent application). It is absolutely indisputable that one of ordinary skill in the art -- reading the patent as a whole-- would understand that the claim is directed to the bearing in the push button mechanism of an injection pen and involves having a driving part rotate when the injection button is pressed. As such, one of ordinary skill would never understand how the sealed wrist watch crown of Gallay could anticipate claim 1, since Gallay does not contain the rotational limitation of claim 1.

The Examiner's rejection must also be overturned because he has not shown how Gallay supplies the limitation of a pivot bearing. It is indisputable that Gallay disclose a seal for a wrist watch crown. The Examiner admits as much but then incorrectly applies the doctrine of inherency to argue that the seal necessarily could function as a pivot bearing, as is required by claim 1. Prior art inherently anticipates a claim only if the missing element or feature would be necessarily present or the natural result of following what the prior art teaches to persons of ordinary skill in the art. Atlas Powder Co. v. Ireco, Inc., 190 F.3d 1342, 1347 (Fed. Cir. 1999). It is not sufficient if the result only possibly or probably results from the practice of the prior art. Glaxo Group Ltd. v. Apotex, Inc., 376 F.3d 1339, 1349 (Fed. Cir. 2004). Moreover, "[a]n invitation to investigate is not an inherent disclosure." Metabolite Labs., Inc. v. Lab. Corp. of Am. Holdings, 370 F.3d 1354, 1367 (Fed. Cir. 2004). Nothing in Gallay indicates to one of skill in the art that the disclosed sealed crown system is inherently capable of rotating relative to a driving part when the crown is pressed inward. Indeed, the Examiner defines the bottom surface in Gallay 15 and the top surface 25 as forming a pivot bearing. But Gallay itself describe element 14 as a seal. (Gallay Col 2 , lines 59-63). A seal is a substance, especially an adhesive agent such as wax or putty, used to close or secure something or to prevent seepage of moisture or air. See http://www thefreedictionary.com/seal. A seal is not a bearing. And there is no way that one of ordinary skill in the art would not recognize that a seal necessarily and naturally be the equivalent of a bearing.

Moreover, common sense dictates that Gallay is not inherently capable of performing the function of the invention as claimed. Anyone who has ever used a watch with a crown (the subject of Gallay) knows that pressing on the crown and rotation of the crown are different operations and do not occur simultaneously. One pulls on the crown to set a watch. There is no rotation of the crown relative to a driven part when the crown is pressed. Nothing in Gallay suggests that its seal could form a pivot bearing between a driving part and the button itself, as is required by claim 1 . Why would it? Gallay is a watch crown not a push button.

Finally, even if the Board determines that Gallay's seal is a bearing. It is clearly not a pivot bearing. The Examiner has not explained how Gallay creates a pivot bearing. The
examiner completely ignores the term "pivot" in "pivot bearing" and provides no arguments whatsoever how the Gallay watch crown is a "pivot bearing." This reason alone is sufficient to reverse the Examiner's rejection.

With respect to the other rejection based on section 112 and the rejection based on the drawings, applicants rely upon their submissions in the opening brief in this appeal and do not find it necessary to reargue those herein.

II. CONCLUSION

Appellant respectfully submits that for at least all of the foregoing reasons, the Examiner fails to particularly point out how Gallay anticipates claim 1, inherently or explicitly. The Board is, therefore, respectfully requested to reverse the Examiner's decision to finally reject claims1 and to allow the application to issue in its present form.

Respectfully submitted,
Date: January 16, 2014
/Marc A. Began, Reg. No. 48,829/
Marc A. Began, Reg. No. 48,829
Novo Nordisk Inc.
Customer Number 23650
(609) 987-5800

Use the following customer number for all correspondence regarding this application.
23650
PATENT TRADEMARK OFFICE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Steenfeldt-Jensen et al.

Serial No.: 10/442,855

Filed: May 21, 2003
For: Injection Syringe

Group Art Unit: 3763
Examiner: Williams, Catherine Serke
Confirmation No.: 3829

Amendment in a REISSUE Application

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Sir:
In Response to the Office Action of June 22, 2007, please amend the reissue application as follows:

Amendments to the claims begin on page 2 of this paper.
Remarks begin on page 9 of this paper.
Conclusion is at page 12 of this paper.

IN THE CLAIMS:

Please amend the claims to read as follows:

1. (Amended) A medication delivery pen comprising:
a housing having proximal and distal ends and including a holder for containing a cartridge containing a medication to be delivered through a conduit connected to the cartridge,
a piston rod having a not circular cross-section and an outer thread, and
a piston rod drive for driving said piston rod in a distal direction inside the cartridge, said piston rod drive including a first part rotatably mounted within said housing and mating with the not circular cross-section of said piston rod, and a second part integral with said housing and having an internal thread mating the thread of said piston rod to form a [self-locking] thread connection, wherein rotation of said first part in a first direction relative to said second part drives said piston rod in a distal direction; and
a one-way coupling comprising:
a) an annular ring of equally spaced internal ratchet notches situated on the inside of said housing, which internal notches have a steep front edge and a ramp shaped trailing edge,
b) a pawl surrounding said piston rod and having at least a pair of resilient arms, each arm having a free end, said pawl being connected with said first part of said piston rod drive, and
c) means situated on said free end of each arm for engaging in the internal ratchet notches of said annular ring, which means abuts said steep front edge of said internal notches, thereby preventing said pawl body from rotating in one direction relatively to said housing, the prevented direction being one by which the piston rod would be transported in a proximal direction.
2. (Original) A medication delivery pen according to claim 1, wherein said two or more arms are disposed with the same relative spacing around the circumference of said pawl.
3. (Original) A medication delivery pen according to claim 1 , wherein said steep front edges of said internal notches on opposite sides of said annular ring are parallel to each other.
4. (Original) A medication delivery pen according to claim 1, wherein said arms extend circumferentially from a body portion of said pawl and wherein said means situated on said free end of each arm is the end-surface of the arm lying circumferentially opposite said pawl and abutting said steep front edge of said internal notches.
5. (Original) A medication delivery pen according to claim 1, wherein said arms extend circumferentially from said pawl body and wherein said means situated on said free end of each arm includes a protrusion.
6. (Amended) A medication delivery pen comprising:
a housing having proximal and distal ends and including a holder for containing a cartridge containing a medication to be delivered through a conduit connected to said cartridge,
a piston rod having a not circular cross-section and an outer thread, and
a piston rod drive for driving said piston rod in a distal direction inside the cartridge, said piston rod drive including a first part having an internal thread mating the thread of said piston rod to form a [self-locking] thread connection, and a second part integral with said housing and mating with the not circular cross-section of said piston rod, wherein rotation of said first part in a first direction relative to said second part drives the piston rod in a distal direction; and
a one-way coupling comprising:
a) an annular ring of equally spaced internal ratchet notches situated on the inside of said housing, which internal notches have a steep front edge and a ramp shaped trailing edge,
b) a pawl surrounding said piston rod and having at least a pair of resilient arms, each arm having a free end, said pawl being connected with said first part of said piston rod drive, and
c) means situated on said free end of each arm for engaging in the internal ratchet notches of said annular ring, which means abuts said steep front edge of the internal notches, thereby preventing said pawl body from rotating in one direction relatively to said housing, the prevented direction being one by which the piston rod would be transported in a proximal direction.
7. (Original) A medication delivery pen according to claim 6, wherein said two or more arms are disposed with the same relative spacing around the circumference of said pawl.
8. (Original) A medication delivery pen according to claim 6, wherein said steep front edges of said internal notches on opposite sides of said annular ring are parallel to each other.
9. (Original) A medication delivery pen according to claim 6, wherein said arms extend circumferentially from a body portion of said pawl and wherein said means situated on said free end of each arm is the end-surface of the arm lying circumferentially opposite said pawl and abutting said steep front edges of said internal notches.
10. (Original) A medication delivery pen according to claim 6, wherein said arms extends circumferentially from said pawl body and wherein said means situated on said free end of each arm includes a protrusion.
11. (Amended) A medication delivery pen comprising:
a housing having proximal and distal ends and including a holder for containing a cartridge containing a medication to be delivered through a conduit connected to said cartridge,
a piston rod having a not circular cross-section and an outer thread, and
a piston rod drive for driving said piston rod in a distal direction inside the cartridge, said piston rod drive including a first part having an internal thread mating the thread of said piston rod to form a [self-locking] thread connection, a second part mating with the not circular cross-
section of said piston rod, wherein said first and second parts are rotatable relative to one another to drive the piston rod in an axial direction; and a one-way coupling comprising:
a) an annular ring member of equally spaced internal ratchet notches, and
b) a pawl member having at least a pair of resilient arms, each arm having a free end for engaging said ratchet notches so as to allow rotation between said ring and said pawl in a first rotational direction and prevent rotation between said ring and said pawl in a second rotational direction, wherein said members are coupled between said housing and said piston rod drive such that rotation between said members in said first rotational direction causes the piston rod to move in a distal direction, and such that said members prevent movement of said piston rod in said proximal direction.
12. (Twice Amended) An injection device comprising:
a housing for holding a cartridge of medication, the housing having a distal end and a proximal end;
a threaded rotatable piston rod (6) having a not-circular cross-section;
a piston rod drive [means] comprised of:
a first rotatable part that engages the not-circular cross-section of the piston rod so as to allow rotation of the piston rod to accompany rotation of the first part while allowing the piston rod to move proximally and distally with respect to the first part;
a second part that engages the threads on the piston rod and is fixed in the housing, thereby causing the piston rod to move distally when the piston rod is rotated in a first direction and proximally when the piston rod is rotated in a second direction; and
a one way coupling [means] for allowing the first part to rotate in the first direction and thereby drive piston rod to move distally but prevents the piston rod from rotating in the second direction that [which] would cause the piston rod to move proximally.
13. (New) A dose injecting apparatus for an injection device that comprises a cartridge (89) of medication from which multiple dose of medication are apportioned and a dose scale drum means (17) for indicating the size of a set dose and for indicating that the apportioned set dose has been delivered; the dose injecting apparatus comprising: a rotatable piston rod (6) that rotates only during injecting of medication, wherein the rotatable piston rod comprises a distal portion having an external thread (7) disposed thereon and wherein the piston rod has a proximal portion opposite the distal portion; a first part comprised of a rotatable tubular member $(26,23,33,45,85)$ that engages and causes the rotatable piston rod (6) to rotate during injection of medication; a second non-rotatable part $(\mathbf{4}, 40)$ fixed to a housing (1), the second part $(4,40)$ having an internal thread (5) engaging the thread (7) on the distal portion of the rotatable piston rod (6) so that when the rotatable piston rod (6) rotates it screws thru the internal thread (5) of the non-rotating second part $(\mathbf{4}, \mathbf{4 0})$; and wherein during injection of medication: (i) the piston rod rotates only in one direction, that direction being one that induces the piston rod to move axially in a distal, medication expelling direction and not in a direction that would induce the piston rod to move in a proximal direction, and (ii) the piston rod advances distally to expel medication as a result of the screwed engagement of the thread (7) on the distal portion of the piston rod (6) with the internal thread (5) of the non-rotatable part $(4,40)$.
14. (New) The dose injecting apparatus of claim 13, wherein the proximal portion of the piston rod contains a helical thread (37) that is different than the thread (7) on the distal portion and wherein the tubular member has in its interior a corresponding helical thread (36) that engages the helical thread (37) on the proximal portion of the piston rod, and wherein the threaded engagement between the tubular member and the thread on the
proximal portion of the piston rod cause the rotation of the piston rod during injecting of medication.
15. (New) The dose injecting apparatus of claim 13, wherein the tubular member has a non-circular interior that engages a non-circular portion of the piston rod so that when the tubular member rotates during injection of medication, it rotates the the piston rod.
16. (New) The dose injecting apparatus of claim 15, wherein the tubular member has a thread (47) on it outer surface.

REMARKS

BROADENING REISSUE

This is a broadening reissue application. Applicants intend to claim their invention more broadly than they have previously done. This application was filed within two years of issuance of the patent from which it is a reissue. Accordingly, the claims here are much broader in scope than the claims of the patent that originally issued and the Examiner should consider this new scope, which is limited only by the explicit language of the claims. The Examiner should not assume that these claims have scope similar to those previously patented or previously presented in this or any other application claiming the same priority applications as the instant application.

Accordingly, the Examiner should examine these claims anew and conduct a full search and examination and not rely upon any previous searches or examinations. The Examiner should not assume that the specification limits the claims, and should not assume that the claims contain any limitation not explicitly recited therein. The Examiner is urged to give the claims the broadest possible meaning under applicable statutes and case law when examining them for patentability and to consider each element on only each element of the claims when examining them. Where means plus function language is used, it is the intent of the applicants to invoke 35 USC 112 $6^{\text {th }}$ paragraph. Where such means plus function language is not present, applicants do not desire to invoke 35 USC $1126^{\text {th }}$ paragraph.

CONFORMANCE WITH REISSUE RULES FOR AMENDMENTS TO CLAIMS

Claim 12 has been underlined to conform with the rules regarding amendments in reissue applications.

SUPPORT FOR NEW CLAIMS

Claims 13-16 have been added to claim unique, novel and non-obvious aspects of one of the invention described in the application and to broaden the scope of protection conferred by any patent issuing with the new claims. Support for the elements of claim 13 can be found in Figures $3,7,8,13,14$, and 17 and the corresponding text at col. 7 line 48 thru col. 8 line 34 , for example.

Applicants have inserted reference numerals into the claims in order to show where support for each element can be found in the written description of the patent. It is appropriate to include reference numerals (See MPEP 608.01(m).

Claims 14 is supported by Figure 8 and the corresponding text at col. 7 lines 56-65, for example.

Claim 15 is supported by Figure 17 and the corresponding text at col. 8 lines 45-63 and col. 11 lines 15-17, for example.

Claim 16 is supported by Figure 13 and the corresponding text at col. 8 lines 45-63, for example.

NO IMPLICIT OR EXPLICIT DISCLAIMER OR DISAVOWAL OF CLAIM SCOPE

Applicants note that they are not limiting their invention to the particular embodiments shown in the figures by including reference numerals. (See MPEP 608.01(m)). And are not limiting the claims to inventions previously patented or applied for in this or any parent to the present application. The claims require only those elements explicitly set forth therein and does not require elements not explicitly recited therein. The Examiner should assume that applicants have purposely excluded any element that is not expressly recited in the claim. The new claims are not limited by the particular structures shown in the figures that correspond to the reference numerals used in the claims. These figures and structures merely show an example of the claimed embodiment and demonstrate support for the claim language. Those of ordinary skill in the art will recognize that the claimed invention may be embodied in manners other than that shown in the figures or described in the text and still be within the scope of the claimed subject matter of this patent application.

Accordingly, the figures may show more elements than would be necessary to infringe the pending claims. Indeed, the claims are broader in scope than the figures shown in the patent and would cover embodiments that are not identical to the figures or lack elements shown in the figures so long as those elements are not explicitly recited in the language of the claims.

ACCOMPANYING INFORMATION DISCLOSURE STATEMENT

Finally Applicants note that several other broadening reissues from US Patent 6235004 are pending and applicants would be willing to merge those pending reissues with the instant reissue applications. These applications are cited in the supplemental IDS filed in December 2007, just prior to submission of this paper.

REQUEST FOR AN IN PERSON INTERVIEW

In the event that the Examiner does not believe that all claims are in condition for allowance, applicants respectfully request that the Examiner contact the undersigned attorney in order to set up an in person interview.

CONCLUSION

Applicants respectfully submit that all claims are in condition for allowance and request early action to that end is requested after a new and complete search and examinatopm. The Commissioner is hereby authorized to charge any fees (including but not limited to fees for extensions of time or fees for additional claims or multiple dependent claims, etc.) in connection with this paper or this application, and to credit any overpayments, to Deposit Account No. 14-1447. The Examiner is hereby invited to contact the undersigned by telephone if there are any questions concerning this amendment or application.

Respectfully submitted,

Date: December 20, 2007
/Marc A. Began, Reg. No. 48,829/
Marc A. Began, Reg. No. 48,829
Novo Nordisk Inc.
Customer Number 23650
(609) 987-5800

Use the following customer number for all correspondence regarding this application

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Klitgaard et al.
Application No.: 11/122211

Filed: May 4, 2005
For: Dose Setting Limiter

Group Art Unit: 3744
Examiner: Gilbert, Andrew

AMENDMENT IN A REISSUE APPLICATION

MS: Reissue
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450
Sir:
In response to the Office Action of November 7, 2008, kindly amend the application as set forth below.

Amendments to the claims begin on page $\underline{2}$ of this paper
Remarks begin on page $\underline{6}$ of this paper
Conclusion is at page $\mathbf{3 6}$ of this paper

IN THE CLAIMS:

Please amend the claims to read as follows:

1. (Amended) A limiting mechanism that prevents setting of a dose that exceeds the injectable amount of liquid left in a cartridge of an injection device wherein a dose is set by rotating a dose setting member relative to a driver and away from a fixed stop in the injection device, and the dose is injected by pressing an injection button which [rotating] rotates back the dose setting member which during this rotation carries the driver with it to rotate this driver which moves the piston rod forward, wherein the driver is provided with a track having a length which is related to the total injectable amount of medicament in the cartridge and which track is engaged by a track follower coupled to the dose setting member to follow rotation of this dose setting member and wherein the driver is disk shaped and the track has a spiral shape which is engaged by the track follower which is flexibly coupled to the dose setting member so that the track follower can be moved radially when it follows the track of the driver element.

2-16 (Canccllcd)
17. (New) A dose setting limiter assembly that prevents the setting of a dose which exceeds the remaining injectable amount of medication in a multiple dose cartridge in an injection device which comprises: a cylindrical dose setting member (30) having an outer wall provided with a helical groove (29) which allows the dose setting member to be screwed out of the injection device and away from an initial position when the dose setting member is rotated during dose setting and screwed into the device and toward the initial position to reduce the size of a set dose, wherein during injection of the set dose the dose setting member (30) is pressed back into the device and as a result of the helical groove (29) it rotates back toward the initial position;
wherein the dose setting limiter assembly comprises:
(i) a helical track (33) disposed on the outer surface of a hollow cylindrical driver
(31) that drives a separate piston rod forward; and
(ii) a follower (32) that engages the helical track (33); wherein the follower moves along the helical track (33) when the dose setting member is rotated during dose setting; but wherein the follower does not move along the track during injection of the set dose, wherein the injection of the set dose is carried out by pressing an injection button which: (i) presses the dose setting member back into the device, and (ii) to cause the dose setting member to rotate back to the initial position, wherein the rotation back is cause by the helical groove (29) on the dose setting member; wherein the position of the follower along the track is indicative of the total sum of the set and injected doses; and wherein the total length of the helical track that the follower can move along corresponds to the amount of injectable medication in the cartridge; and
wherein the follower abuts a stop at the end of the track during dose setting before the dose setting element can be rotated to dial up a dose that would exceed the injectable amount of modication remaining in the cartridgc.
18. (New) The dose setting limiter assembly of claim 17 , wherein when the follower abuts the stop at the end of the track during dialing up of a dose the dose setting member cannot be rotated further to increase the size of the dose.
19. (New) The dose limiter assembly of claim 18, wherein the follower is a nut like element and the helical track (33) is a thread and wherein the follower engages the thread.
20. (New) The dose limiter assembly of claim 19 wherien the driver, the helical grove, the helical track and the dose setting member are oriented so that they are all coaxial.
21. (New) An injection device dose setting member, piston rod driver, and dose setting limiter assembly, which operates with an injection device housing and prevents the setting of a dose that exceeds the injectable amount of medication remaining in a multiple dose cartridge;

Attorney Docket No.: 6036.209-US
wherein the dose limiter assembly comprises a rotatable hollow cylindrical dose setting member (30) containing a threaded groove (29) on its outer surface that cooperates with a housing thread so that the dose setting member screws out of the housing during setting of a dose when it is rotated, screws back into the housing to reduce the size of a set dose when it is rotated back and screws back into the housing when an injection button is pressed; a hollow cylindrical driver (31) that is coaxial with the dose setting member (29), a helical track (33) disposed on the outer surface of the driver (31): wherein the helical track has a length that corresponds to the injectable amount of medication in the cartridge; wherein the dose limiter assembly comprises a follower (32) that engages the helical track (33) and moves along the helical track (33) when the dose setting member is rotated during dose setting but that remains in a fixed position on the helical track (33) when the dose setting member is rotated back when the injection button is pressed during injecting of medication, and wherein the distance the follower moves during dose setting corresponds to the size of the set dose and wherein the follower (32) abuts a stop at the end of the helical track when an attempt is made to rotate the dose setting member during dose setting that would result in a dose being set that exceeds the remaining injectable amount of medication in the cartridge.

22 (Ncw) The assembly of claim 21, whercin the dose setting member is prevented from rotating to increase the size of a set dose when the follower hits the stop.
23. (New) The assembly of claim 21, wherein the track on the driver forms a thread and fol$\underline{\text { lower comprises a nut like element that threadly engages the thread. }}$
24. (New) The assembly of claim 22, wherein the track on the driver forms a thread and the follower comprises a nut like element that threadly engages the thread.
25. (New) An injection device dose limiter assembly for use with both

1. a rotatable helical dose setting member, which threadly engages an injection device housing element so that (i) when it is rotated to set the size of a dose it screws out of an injection device housing, (ii) when it is rotated back to reduce the size of a set dose it screws back into the housing, and (iii) when an injecton button is pressed during injecting of medication the dose setting member

Attorney Docket No.: 6036.209-US is pressed back into the housing and rotates back, and with
2. a hollow cylindrical piston rod driver that drives a separate piston rod during injection of the set dose;
wherein the dose limiter prevents the setting of a dose that is larger than the injectable amount of medication remaining in a multi dose cartridge and
wherein the dose limiter assembly comprises:
a helical track disposed on the outside of the driver; and
a follower that moves along the track during dose setting but remains stationary with respect to the helical track during dose injecting when an injection button is pressed which causes the dose setting member to be screwed back into the housing; wherein the length of the track that the follower is capable of moving along corresponds to the injectable amount of medication in an injection device multiple dose cartridge; and
wherein during dose setting:
the follower moves a distance along the track that corresponds to the size of the dose being set; and
whercin the follower abuts a stop before the size of the set dose cxcceds the injectable amount of medication remaining in the cartridge.
26. (New) The assembly of claims 17,21 , or 25 , wherein the follower abuts the stop when
the size of the set dose equals the injectable amount of medication remaining in the cartridge.
27. (New) The assembly of claims 17,21 , or 25 wherein the helical track has a length adapted to ensure that the follower stops advancing when the size of a set dose is equal to that remaining for injection.
28. (New) The assembly of claims $1,17,21$, or 25 , wherein the injection button moves a distance proportional to, but a number of times greater than, the distance a piston in the cartridge moves during delivery of the set dose during dose injecting.

REMARKS

Terminal Disclaimers Filed Herewith

To advance prosecution, terminal disclaimers are submitted herewith to overcome the obviousness type double patenting rejections, even though applicants do not believe that such rejections are appropriate. Applicants' attorney notes that these terminal disclaimers were previously filed but for some reason had not been entered. They are submitted again and Applicants respectfully request entry of the terminal disclaimer this time. Should there be a problem with these terminal disclaimers, the Examiner should contact the Applicants' attorney via telephone or email immediately so that prosecution of this reissue may be advanced as soon as possible.

Claim Amendments

Applicants have amended the claims as suggested by the Examiner in the November 14, 2008 interview at the USPTO and to address the Examiner's objections in the previous office action. The formatting complies with Patent Office rules for Reissue applications.

In particular, claim 17 has been amended, as suggested by the Examiner at the November $14^{\text {th }}$ interview, to define that "rotate back" during injection means that the dose setting member be rotated back toward the position it was at prior to when it was rotated to set a dose. Applicants' attorney believes that this new language only clarifies what had already existed in the claims. Support for this language can be found in the Abstract, the specification at column 2 lines 6-18, Column 4 lines 21-23 and lines 39-40 and lines 45-48 and the original claims. Claim 17 has also been reformatted to make examination casicr.

Since this is a reissue, the amendments to the claims conform with the MPEP requirements and patent office rules. However, in order that the Examiner can better understand the changes in claims 17,21 , and 25 , they are reproduced below with the some of the major additions underlined and deletions noted in the margin. ${ }^{1}$

[^0]Attorney Docket No.: 6036.209-US
17. (New) A dose setting limiter assembly that prevents the setting of a dose which exceeds the remanine injectable amome of medication in a multiple dose cartridge in an injection device which comprises: a cylindrical dose setting member (30) having an outer wall provided with a helical groove 29 which allows the dose setting member to be screwed out of the injection device and away froman matyostron when the dose setting member is rotated during dose setting and screwed nto the bevice and townd the intial oosition to reduce the size of a set dose, wherein during injection of the set dose the dose setting member 30) is pressed back into the device and as a result of the helical groove 29 it rotates back toward tee minal

Deleted:

Deleted: inward

Deleted:

21. (New) An injection device dose setting member, piston rod driver, and dose setting limiter assembly, which operates with an injection device housing and prevents the setting of a dose that exceeds the injectable amount of medication momenge in a multiple dose cartridges

Deleted: an

Deleted:

 wherein the dose boiter assembly comprises a rotatable hollow cylindrical dose setting member (30) containing a threaded groove 29) on its outer surface that cooperates with a housingAttorney Docket No.: 6036.209-US
thread so that the dose setting member screws out of the housing during setting of a dose when it is rotated, screws back into the housing to reduce the size of a set dose when it is rotated back and screws back into the housing when an injection button is pressed; a hollow cylindrical driver (31) that is coaxial with the dose setting member (29), a helical track 33 , disposed on the outer surface of the driver 31); wherein the helical track has a length that corresponds to the injectable amonen of medication in the cartridge; wherein the dose lmiter assembly comprises a follower (32) that engages the helical track (33) and moves along the helical track 33 , when the dose setting member is rotated during dose setting but that remains in a fixed position on the helical track when the dose setting member is rotated back when the injection button is pressed during injecting of medication, and wherein the distance the follower moves during dose setting corresponds to the size of the set dose and wherein the follower (32) abuts a stop at the end of the helical track when an attempt is made to rotate the dose setting member during dose setting that would result in a dose being set that exceeds the remaining injectable amoun of medication in the cartridge.

Deleted: , which presses on the dose setting member

Deleted: amount of
 Deleted: further

Deleted: amount of

Deleted: and

Deleted: amount of

Deleted: about

Deleted: on

Deleted: a jection button is pressed which causes the dose setting member to be screwed back into the housing; wherein the length of the track that the follower is capable of moving along corresponds to the injectable amoun of medication in an injection device multiple dose cartridge; and wherein during dose setting the follower moves a distance along the track that corresponds to the size of the dose being set; and wherein the follower abuts a stop before the size of the set dose exceeds the injectable amount of medication semaming in the cartridge.

Applicants have also amended claim 1 to add the explicit requirement that an injection button be pressed and that the purpose of the limiter is to prevent setting of a dose that exceeds the injectable amount of medication remaining. Support for this amendment can be found throughout the specification, see e.g column 3, line 55 and column 2 Summary of the Invention. In addition, Applicants have added a new dependent claim 28, which is supported by the specification. (See e.g., column 1 lines 45-67). Minor amendments have also been made to some of the other claims, including an amendment to claim 25 wherein the phrase "stationary on" has been changed to "stationary with respect to." In addition in claims 21 and 25, amount of "injectable medication" has been change to "injectable amount of medication" or "remaining amount of injectable medication." This makes clear that the purpose of the invention is to prevent the setting of a dose that is larger than the amount in the cartridge that is available for injection. Of course, some residual amount will always remain in the cartridge, however that amount is not available for injection. Also in claim 25, an amendment now makes clear that the track is disposed on the outside of the driver instead of "about the driver." See Figure 3 for support for this amendment. Additionally, in claim 25 the word "element" has been added after housing to clarify that the dose setting member need only engage something associated with the housing. ${ }^{2}$ Thesc amendments mercly clarify the claims and attempt to make them easier to read and understand. In claim 27 "to be injected" has been replaced with "for injection." And in claim 26, "injectable"has been inserted bedfore amount and deleted in from of "medication."

Overview/Background

Applicants' attorncy wishes to thank the Examiner for the hour long intervicw on November 14, 2008 at 10 am . The interview was very constructive in that Applicants' attorney was able to demonstrate how the presently claimed invention can be used with commercial products, such as the FlexPen ${ }^{(\sqrt{8})}$ product by Novo Nordisk, assignee of the instant application, as well as the commercial product Solsotar ${ }^{\circledR}$ by Sanofi-Aventis. As was noted at the in-

[^1]terview, there is ongoing litigation in the USA and in Germany regarding intellectual property rights owned by Novo Nordisk and the use of certain technology by Sanofi-Aventis in the Solostar ${ }^{\circledR}$ device. These litigations include a litigation related to a Novo Nordisk owned German utility model and an EP patent owned by Novo Nordisk that claims a dose limiter mechanism. Additionally, a nullity proceeding on the German utility model is pending in Germany. Should the Examiner request, Applicants can provider further details on these litigations. ${ }^{3}$

35 USC Section 102 Rejections of the Previous Office Action

In the previous Office Action, the Examiner has rejected claims 17-27 under 35 USC 102 based upon four documents. In all cases, the Examiner has asserted that each of the four documents anticipate the claims. Applicant's attorney respectfully submits that the Examiner has not made out a prima facie case of anticipation. None of the reference taken alone or in combination for that matter would render the pending claim unpatentable under 35 USC 102 or under 35 USC 103. And therefore the rejections should be withdrawn. Indeed, Applicants believe that all claims are in condition for allowance and respectfully request reconsideration and immediate allowance of the pending claims.

As is apparent from the Examiner's rejections, it seems that one of the fundamental aspects of the claimed invention is not understood by the Examiner. That is, the dose limiting device of the present invention works in an injection device where a dose is set by rotating a dose setting member in one direction and wherein during injection, the dose setting member rotates back toward its initial pre-dose setting postiionewhen an injection button is pressed. ${ }^{4}$

[^2]Also, during an injection operation, a disk shaped or hollow, cylindrical piston rod driver drives a separate piston rod to expel the dose from the cartridge (2) in the device. An important aspect of the invention is to prevent a rotatable dose setting member from being rotated to a position that would set a dose that is larger than that what remains in the pen during the setting of a dose setting ${ }^{5}$. See e.g., claims 18 and 22. For example, if a pen syringe only has 20 units of insulin, it is desirable to prevent a user from setting a 30 unit dose as the pen would not be capable of delivering the set dose and the user might not realize that he did not get the entire set dose. In some cases it is very desirable to prevent a user from dialing up a dose that is larger than the number of units remaining in the pen that can be injected.

What is claimed in at least some of the claims is the interaction of a follower along a track on a hollow cylindrical piston rod driver that drives the separate piston rod and how the follower moves relative to the track (or the track relative to the follower), during dose setting and the interaction of the follower along the track during injecting when, as in one aspect of the injecting operation, the dose setting member rotates back as a result of being pressed back into the device.

The invention accomplishes a dose limiting aspect that prevents the dialing up of dose that is larger than the quantity of medication remaining in the device, by allowing a follower to move relative to a track (or a track to move relative to a follower) during setting and adjusting of a dose and to remain fixed along the track, i.e., track dose not move relative or the follower or the follower does not mover relative to the track, during an injection operation, which by definition is the pressing of an injection button and no more. As the follower moves along the track (or the track along the follower) only during dose setting, it acts as a summation machine for the set and injected doses. Thus, the length which the follower can move along the track (or track along the follower) defines the volume of the drug that re-

[^3]mains in the pen syringe cartridge that is available to be injected. ${ }^{6}$ One important aspect of the claims is that if a dose setting member rotates back as a result of being pressed into the device, the relative position of the follower on the track remains fixed, but if the member is rotated as a result of dose setting or dose adjustment the follower does move along the track (or the track along the follower) thus adjusting the sum of the set and injected doses as compared to the total injectable amount of medication in the device whenever a dose is set. When an attempt is made to set a dose that exceeds the remaining amount of medication in the device, the dose setting member is prevented from rotating. See e.g., claims 18 and 22. Thus, before an injection is made, the user will know that the device does not contain enough medication to deliver the desired dose.

With the above background to the pending claims, Applicant's attorney sets forth the below some of the reasons why the Examiner's application of the four cited documents to the pending claims fails to render them unpatentable. Applicant's attorney has only set forth the reasoning with respect to claim 17 but as the remaining claims also require the same elements, which are also not present in the four cited documents, that reasoning applies to the remaining rejected claims as well. In addition, the table below set forth, with citation to the documents, some of the more significant errors in relying upon these documents to reject the pending claims. It docs not neccssarily include cvery flaw in the Examincr's reasons for rejecting the claims. Applicants respectfully submit that the Examiner must withdraw the previous rejections based on the following arguments.

Applicable law of Anticipation

Applicants' attorney notes that in order to reject the pending claims based on prior art, the prior art must show a device having the structure defined by the claims and the components must operate in the manner required by the pending claims. Thus, function and structure are important aspects, as is how the structures cooperate with each other. The prior art does not explicitly or inherently show the recited structures interacting in operation in the manner required by the claims.

[^4]
Summary of Arguments with Respect to

Harris, Chanoch, Balkwill, and Steenfeldt-Jensen

Set forth below is a summary of key reasons why the Examiner's rejections based on the four cited documents must be withdrawn. For a detailed explanation with citations to the reference the Examiner should and must consider the detailed tables that also appear further below.

Rejections based on Harris must be withdrawn

The Examiner's rejection with respect to Harris must be withdrawn for the numerous reasons identified in the below table, which includes the fact that element 86 , identified by the Examiner as the dose setting element, does not rotate during injection as is required by the claim. There is no helical groove on an outer wall of element 86. The Examiner's assertion that 94 is a threaded groove that engages a housing thread 19 is not supported by Harris, which defines 94 as a tang and 19 has a linear groove. Moreover, the follower 104 of Harris does not move along a helical track during dose setting. After a dose is set, 104 is then set by the user and then remains in place during dose setting and dose adjusting. The claims explicitly require that the follower move during rotation of the dose setting element during dose setting. (See e.g., claim 17 which requires "wherein the follower moves along the helical track (33) WHEN the dose setting member is rotated DURING dose setting.").

Additionally, the Examiner is wrong in stating that the length of 106 corresponds to the amount of drug in the cartridge. The length of the thread 106 in Harris is does not correspond to the injectable amount of medication in the cartridge, it corresponds to a limitation on the maximum size of a dose a user can set on the device. A user can still set a dose larger than that which is remaining in the cartridge.

Rejections based on Chanoch must be withdrawn

The Examiner's rejection in view of Chanoch must also be withdrawn for numerous reason. Not least is the fact that the Examiner has not pointed to an element in Chanoch that is a hollow piston rod driver that drives a separate piston rod. The Examiner's assertion that 88 is a hollow piston rod driver with a helical groove on its outer surface reads the requirement that the driver be hollow and that it drive a separate piston rod out of the claim. Indeed, element 88 is a piston rod, not a hollow driver that drives a separate piston rod. Moreover, the assertion that element 34 is a follower that moves along the track 94 during dose

Attorney Docket No.: 6036.209-US
setting but remains stationary on the track during injection, ignores the explicity teaching of Chanoch, and if Chanoch were so modified it would be inoperable. It is the rotation of 34 during dosing along thread 94 that causes element 88 to move relative, in an axial manner, to 34. The thread 94 moves along 34 during injection and therefore does not and cannot remain fixed along 34 during injection. The pending claims require that the follower not move along the track during injection. In summary, Chanoch teaches away from the invention.

Rejections based on Balkwill must be withdrawn

The Examiner's rejections based on Balkwill are also flawed for numerous reasons and must be withdrawn. Among them is the fact the Examiner ignores explicity claim limitations that are not shown or even suggested by Balkwill. For Example, the Examiner argues that element 12 is a dose setting member that has a helical groove on its outer wall that causes it to screw out of the device during the setting of a dose. He identifies element 14 as a thread or helical groove. Balkwill himself defines element 14 as an upper body. And element 12 does not contain a helical groove on its outer wall. Moreover, as is shown in Figures 1 and 2, element 12 does not screw out of the device during dose setting, as is required by the claims. And 12 does not rotate back when it is pressed back into the device during injection. Element 12 is never pressed back into the device, as is required in claim 17. While element 22 is pressed back into the device, it docs not cause clement 12 to rotate when it is presscd back in. Moreover, element 22 does not even rotate when it is pressed back into the device.

Additionally, the Examiner fails to point to a hollow piston rod driver in Balkwill that drives a separate piston rod. Like in Chanoch, the Examiner points to a solid piston rod, element 26, and claims that is a driver for driving a separate piston rod. Of course, this impermissibly reads a limitation out of the claim. Indeed, it reads out the "hollow" limitation, as well as the "driver" limitation. In short, element 26 is a solid piston rod, it is not a driver for a separate piston rod. If element 26 were deemed to be a piston rod driver, what would it drive? What then is the piston rod? And how is it hollow?

Rejections based on Steenfeldt-Jensen must be withdrawn

The Examiner rejections based on Steenfeldt-Jensen must also be withdrawn if for no other reason that he has failed to identify how Steenfeldt-Jensen prevents the setting of a dose that exceeds the remaining medication in the pen syringe device. In addition, the Examiner once again determines that a solid piston rod, element 6 , is a hollow piston rod driver
for driving a separate piston rod. He does this notwithstanding the fact that Steenfeldt Jensen explicitly defines element 6 as a piston rod and defines other elements as drivers. (See elements 85 in Figure 17, 26 in Figure 2, element 45 in Figure 13). In none of these figures is there a track having a length corresponding to the injectable amount of medication available in the pen. ${ }^{7}$ The Examiner has ignored the explicit teaching of Steenfeldt-Jensen that states element 6 is the piston rod. Like in the other rejections, the Examiner ignores the fact that the driver by definition must drive a separate piston rod. Thus, the piston rod cannot be a piston rod driver.

In addition to this fundamental flaw, even if one were to assume the piston rod 6 of Steenfeldt-Jensen were hollow and drives a separate piston rod, Steenfeldt-Jensen would not prevent the setting of a dose that exceeds the amount of medication remaining in the device. The nut 40 , which the Examiner deems to be a follower, moves relative to the track 7 on the piston rod 6 , only during injection not during dose setting. The pending claims require movement of the track relative to the follower (or the follower relative to the track) during dose setting and no relative movement between the track and follower during dose injecting.

Thus, Steenfeldt-Jensen operates in a manner that is opposite the manner required by the claims and therefore cannot anticipate or render obvious the claims. Indeed, as was demonstrated to the Examincr at the November $14^{\text {th }}$ intcrvicw, Stecnfeldt-Jensen dose not preclude the setting of a dose that would exceed the remaining injectable amount of medication in the pen without the addition of the present invention. Moreover, the Examiner has utterly failed to explain how the dosage setting element in Steenfeldt-Jensen would be prevented from being dialed up to an amount that exceeds the amount of medication remaining in the device. The interaction of the components cited by the Examiner would only become relevant after a dose is set, which is too late in time to prevent the setting of dose that exceeds the amount of medication left in an injection.

[^5]A more detailed explanation of the some of the flaws in thee Examiner's rejections
is set forth in the tables below:
$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Claim 17 (Prior to current } \\ \text { amendment) }\end{array} & \begin{array}{l}\text { Examiner's application of } \\ \text { Harris to the particular ele- } \\ \text { ments of claim 17 }\end{array} & \begin{array}{l}\text { Reasons why the Examiner's } \\ \text { application of Harris does not } \\ \text { anticipate Claim 17, }\end{array} \\ \hline \begin{array}{l}\text { A dose setting limiter that } \\ \text { prevent setting of a dose } \\ \text { which exceeds the amount of } \\ \text { injectable mcdication in a } \\ \text { multiple dose cartridge in an } \\ \text { injection device }\end{array} & \begin{array}{l}\text { The Examiner states that } \\ \text { Harris discloses an injection } \\ \text { device that prevents the set- } \\ \text { ting of a dosc that cxcceds } \\ \text { the injectable amount of } \\ \text { medication in a multiple dose } \\ \text { cartridge, but does not cite } \\ \text { any language in the specifi- } \\ \text { cation that supports this na- } \\ \text { ked asscrtion. }\end{array} & \begin{array}{l}\text { The Examiner has failed to } \\ \text { point to language citing the } \\ \text { required function of the dose } \\ \text { limitcr and thus thc Examincr } \\ \text { has not made out a prima fa- } \\ \text { cie case of anticipation. }\end{array} \\ \begin{array}{l}\text { Harris discloses an apparatus } \\ \text { that allows a user to limit the } \\ \text { sizc of a maximum, not to a } \\ \text { limiter that prevents the set- } \\ \text { ting of a dose that exceeds } \\ \text { the remaining capacity of the } \\ \text { syringe which is what the } \\ \text { instant claim of the pending } \\ \text { reissue patent application is } \\ \text { directed toward, i.e., an em- } \\ \text { bodiment of an invention that } \\ \text { prevents a user from setting a } \\ \text { dose that is larger than the } \\ \text { amount of medication re- } \\ \text { maining in the device. See }\end{array} \\ \text { pending claim 17 last } \\ \text { wherein clause which sttes } \\ \text { "wherein the follower abuts a } \\ \text { stop at the end of the track } \\ \text { during dose setting before the } \\ \text { dose setting element can be } \\ \text { rotated to dial up dose that } \\ \text { would exceed the injectable } \\ \text { amount of medication in the } \\ \text { cartridge." }\end{array}\right\} \begin{array}{l}\text { For example, the Examiner } \\ \text { cites no language from Harris } \\ \text { that suggests the Harris de- } \\ \text { vice would prevent a user } \\ \text { from dialing a 34 unit dose } \\ \text { when only 20 units remain in } \\ \text { the pen. See for example, }\end{array}\right\}$

		figures 5-9, in which the Harris device is set to allow what appears to be a maximum dose size to 34 units in a pen that is capable of delivering 60 units per dose. But after a user exhaust all but 20 units of medication, the user can still dial up 34 units even though the device does not have 34 units remaining. See also column 4, lines 1536, which states clearly that "the principle function of the follower 104 is to set a maximum allowable dose where the syringe is going to be used by persons who may have difficulty remembering the proper dosage or may have some other physical disability which does not permit them to appreciate fully the meaning of the indicia." Thus, Harris discloses a limiter that prevents an impaired patient from overdosing rather than a limiter that prevents an impaired patient from under dosing by setting a dose that a device is not capable of giving.
which comprises		
a cylindrical dose setting member 30 having an outer wall provided with a helical groove 29 which allows the dose setting member to be screwed out of the injection device when the dose setting member is rotated during dose setling and screwed inward to reduce the size of a sct dosc,	The Examiner asserts that Harris discloses a dose setting member 86 having a threaded groove 94 . The Examiner asserts that the threaded groove 94 cooperates with a housing thread 19	Element 86 does not have an outer wall with a helical groove. See Figs. 4, 2 and 1. Element 94 is not a groove and is not helical. Nor is it the equivalent of a helical groove. As discussed above and below, 94 is a radial projecting tang and not a threaded groove. See Figure 4 and col-

Attorney Docket No.: 6036.209-US
$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { so that the dose setting mem- } \\ \text { ber screws out of the housing } \\ \text { during setting of a dose when } \\ \text { it is rotated, screws back into } \\ \text { the housing to rcducc the sizc } \\ \text { of a set dose when it is ro- } \\ \text { tated back. }\end{array} & \begin{array}{l}\text { umn 4 lines 27-30. } \\ \text { Moreover, element 19 is a } \\ \text { linear groove not a thread. } \\ \text { Scc Harris figurc 4 and col- } \\ \text { umn 4 lines 27-30. Note that } \\ \text { by definition a thread is heli- } \\ \text { cal. In fact, 94 and 19 act to } \\ \text { prevent rotation and thus } \\ \text { cannot cause rotation in the } \\ \text { manner claim 17 requires. }\end{array} \\ \text { (See column 4 lines 32-25). }\end{array}\right\}$

Attorney Docket No.: 6036.209-US

		normal force can be applied to the end of the device (see column 6, lines 42-55) to inject a dose. "It will be noted that with the force F applicd to the proximal end 98 , the cap 72 and plunger rod 56 have both moved linearly [i.e., not rotated] through a distance L which is identical to the distance D shown in FIG. 6. The motion of the plunger rod 56 causes forward motion of plunger 36 as shown in FIG. 2 to dispense the liquid within the container 14." See also column 6 lines 47-53. Thus, during injection element 86 does not rotate back. And claim 17 explicitly requires rotation back during injection. In short, the claim requires rotation back of the dose setting member during injection and Harris teaches the opposite, i.e., linear movement during injecting. Moreover, rotation of 86 would not cause dispensing of fluid in the Harris device as it would result in canceling the set dose. No one could reasonably believe 94 is a helical groove on the outer surface. Moreover, element 19 in Harris is a linear groove. 94 and 19 actual act together to prevent rotation. Scc column 4 lines 32-35 which state 'the tang 94 also aids linear movement of the cap with respect to the housing under the application of a force

Attorney Docket No.: 6036.209-US

		normal to the proximal end 98 of cap $72 . "$
wherein the dose setting limiter assembly comprises:		
(i) a helical track 33 disposed on the outer surface of a hollow cylindrical driver 31	Examiner cites the cap element 100 as the driver	
that drives a separate piston rod forward and		
(ii) a follower 32 that engages the helical track 33; wherein the follower moves along the helical track 33 when the dose setting member is rotated during dose setting; but wherein the follower does not move along the track when the dose setting member is rotated back when an injection button is pressed during injection to press the dose setting member back into the injection device;	Examiner asserts that element 104 is a follower but does not cite language in the Harris patent that satisfies the other requirements for the claimed follower. The examiner makes another naked assertion that the element 104 function in the manner required by the claim elements.	The Examiner's naked assertions about the element 104 are incorrect because Harris does not teach that 104 move along a track during dose setting when the dose setting member is rotated. Harris teaches that first a dose is set then a user moves 104 along a track where it will remain. See column 6 lines 25-30. For example, Harris states "the cap 72 can first be rotated to the desired maximum measured value . . Next the follower 104 is rotated." Thus, by Harris's own language 104 is not moved along the track when the dose setting member is rotated during dose setting, it is moved after the dose setting member is rotated during dose setting. (The word "next" in this passage means next in a sequence of events and cannot possibly mean "during" as the pending claims require). See also figure 6 corresponds to the setting of the follower on the track after setting a dose. Moreover, once 104 is set by a user it does not move along a track when a user next dials a dose during dose setting.

Attorney Docket No.: 6036.209-US

		See column 6, lines 55-65, and column 7 lines 1-5. The point of setting 104 is so that when a dose is then set, the sct dose cannot excecd the maximum value allowed by 104. As further evidence that Harris teaches the opposite of the claim limitation (which requires that the follower move along the track during dose setting) see column 6, line 37 , which states "with the follower 104 set in the position shown in Figure 7, the cap 72 an be rotated back [without expelling a dose]." As is shown in Figure 8 the follower remains in it position on the track during this rotation back. Figure 8 clearly shows that 104 had not moved relative to a track during rotation of 86 to during adjustment of the dose size or cancellation of the dose. See also, column 6 lines 55-65, which state that when it is necessary to again use the syringe, the cap is rotated and the follower now limits the motion which can take place to something significantly less than that which could have been achieved before the follower was moved in Figure 6. Thus, in accordance with these provisions of the Harris patent and the corresponding figures, the follower does not move along the track during dose setting. If it were to move, it would not serve its intended purpose of limiting a dose size to a predetermined valuc.

Attorney Docket No.: 6036.209-US

wherein the position of the follower along the track is indicative of the total sum of the set and injected doses and		
	The examiner states that distance the follower moves during the setting of a dose corresponds to the size of the set dose	First, as is discussed above, 104 does not move during setting of a dose. Second, to the extent 104 is moved, the distance it is moved corresponds to a maximum size that a dose can be set. See column 6 , lines $15-26$. No where docs Harris state that 104 moves a distance corresponding to the size of the set dose. (In fact Harris specifically states that the set dose might be less than the distance 104 was previously moved. See column 7 lines 3-5). Moreover once 104 is set, for subsequent doses 104 does not move along a track. In fact, the whole point of 104 is that it remains fixed along the track for both subsequent dose settings. In short, nothing in Harris suggests that when the device is nearly empty, one could not set a dose up to the limit allowed by 104 that is greater than the amount remaining in the pen. For example if 10 units remain in the pen syringe and 104 limits maximum dose size to 15 units, a patient could still set 15 units which would exceed the amount of available medication by 5 units. Thus, this feature of Harris does not prevent the setting of a dose that exceeds the useable amount of medication in the

Attorney Docket No.: 6036.209-US

		device.
wherein the total length of the helical track that the follower can move along corresponds to the amount of injectable medication in the cartridge and wherein the follower abuts a stop at the end of the track during dose setting before the dose setting element can be rotated to dial up a dose that would exceed the injectable amount of medication remaining in the cartridge.	The Examiner states Harris discloses these limitation, but does not provide citation to the specification of Harris.	The Harris specification makes clear that the distance 104 is moved is determined by the user as the largest dose that the device can then be set to. See column 6 lines 15-36. Note that as shown in Figure 7 the follower is set to limit the dose to just under 36 units, for discussion purposes assume please assume the set dose is 34 units. If a user attempted to set a 34 unit dose when only 20 units remained in the syringe the follower would not prevent this. Thus, Harris does not prevent the setting of a dose larger than that which remains in the syringe. 104 and its engagement with a thread do not keep track of the amount of remaining medication in the device and therefore do prevent a user from setting a dose that the device is in capable of delivering. Finally there is no indication whatsoever that the length of the track on which 104 moves is in anyway related to the amount of useable medication in the pen. 104 limits the size of each dose that can be delivered by the syringe.

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Claim 17 } & \begin{array}{l}\text { Examiner's application of } \\
\text { Balkwill to the particular } \\
\text { clements of claim 17 }\end{array} & \begin{array}{l}\text { Reasons why Balkwill does } \\
\text { not anticipate Claim 17, }\end{array} \\
\hline \begin{array}{l}\text { A dose setting limiter that } \\
\text { prevent setting of a dose } \\
\text { which exceeds the amount of } \\
\text { injectable medication in a } \\
\text { multiple dose cartridge in an } \\
\text { injection device }\end{array} & & \\
\hline \text { which comprises } & & \begin{array}{l}\text { The examiner asserts that } \\
\text { element 12 is a dose setting } \\
\text { member and that element 14 } \\
\text { is a threaded groove. }\end{array} \\
\hline \begin{array}{l}\text { A cylindrical dose setting } \\
\text { member 30 having an outer } \\
\text { wall provided with a helical } \\
\text { groove 29 }\end{array} & \begin{array}{l}\text { Element 12 does not contain } \\
\text { an outer wall with a helical } \\
\text { groove. Element 14 is de- } \\
\text { fined as an upper body. See } \\
\text { column 9 line 8. Also see } \\
\text { Figures 1, 2, and 5b. More- } \\
\text { over, even if the Examiner } \\
\text { intended to state that 14a } \\
\text { (and not 14) is a threaded } \\
\text { groove, the specification }\end{array}
$$

teaches that it is a cam

molded inside the upper body\end{array}\right\}\)| 14. See column 9 lines 17- |
| :--- |
| 18. |

Attorney Docket No.: 6036.209-US
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { rotates back into the device } \\ \text { toward the fixed stop; }\end{array} & \begin{array}{l}\text { lause as stated at column10 } \\ \text { lines 53-58 the dose remains } \\ \text { displayed subsequent to in- } \\ \text { jection. }\end{array} \\ \hline \begin{array}{ll}\text { Moreover, the Balkwill pat- } \\ \text { ent states clearly the injec- } \\ \text { tion procedure requires three } \\ \text { steps: } \\ \text { "set to zero, set the dose, }\end{array} \\ \text { make the injection" See col- } \\ \text { umn 6 lines l-5. Thus, the } \\ \text { dose setting member in } \\ \text { Balkwill dose not rotate dur- } \\ \text { ing injection because if it did } \\ \text { rotate back during an injec- } \\ \text { tion, there would be no need } \\ \text { to set to zero before the next } \\ \text { injection. } \\ \text { In addition, element 12 is not } \\ \text { pressed back into the device. }\end{array}\right\}$

wherein the position of the follower along the track is indicative of the total sum of the set and injected doses and whercin the total length of the helical track that the follower can move along corresponds to the amount of injectable medication in the cartridge and wherein the follower abuts a stop at the end of the track during dose setting before the dose setting element can be rotated to dial up a dose that would exceed the injectable amount of medication remaining in the cartridge.	The Examiner asserts that element 28 is a follower and that it remains fixed on a track when the dose setting member rotates back when an injection button is pressed.	As element 12, the element that the Examiner states is the dose setting member, does not rotate back during injection, this limitation of the claim is not met by Balkwill. Moreover, as element 26 is a piston rod not a hollow driver that drives a separate piston rod, this limitation is not met. Not only is element 26 not a driver for a separate piston rod, it is not even hollow.

Attorney Docket No.: 6036.209-US

Claim 17	Examiner's application of Chanoch to the particular elements of claim 17	Reasons why Chanoch does not anticipate claim 17
A dose setting limiter that prevent setting of a dose which exceeds the amount of injectable medication in a multiple dose cartridge in an injection device		
Which comprises		
A cylindrical dose setting member 30 having an outer wall provided with a helical groove 29 which allows the dose setting member to be screwed out of the injection device away from an initial position when the dose setting member is rotated during dose setting and screwed inward to reduce the size of a set dose, wherein during injection of the set dose: (i) the dose setting member 30 is pressed back into the device and (ii) as a result of the helical groove 29 it rotates back towards an initial position;	Examiner asserts that element 58 is a dose setting member containing a threaded groove 70	
wherein the dose setting limiter assembly comprises:		
(i) a helical track 33 disposed on the outer surface of a hollow cylindrical driver 31 that drives a separate piston rod forward and	The Examiner asserts that 88 is the driver and the track is the thread 94 but the examiner does not cite any language to support an assertion that 88 drives a separate piston rod.	Element 88 is the piston rod it does not drive a separate piston rod. It cannot be both the piston rod and a driver for a separate piston rod. Moreover, element 88 is not hollow.
(ii) a follower 32 that engages the helical track 33; wherein the follower moves along the helical track 33 when the dose setting member is rotated during dose setting; but whercin the follower does not move along	The Examiner asserts element 34 is a follower and that 34 moves along 94 during dose setting, but does not state how this is possible.	The Examiner is incorrect as Element 34 does not move along a track during setting of a dose. As is stated at column 7 , when a dose is set the nut does not rotate (see also column 7 lincs 23-25) and the piston rod dose not

Attorney Docket No.: 6036.209-US

the track when the dose setting member is rotated back when an injection button is pressed during injection to press the dose setting member back into the injection device;	Examiner also states that 34 does not move along 94 during injection but again fails to state how this is possible.	rotate (see column 8 lines 1113 (stating "rotation of lead screw 88 is prevented by grooves 96 and tabs"), therefore clement 34 cannot move along 94 during setting of dose. Moreover, as is stated in columns 7-8, when the injection button is pressed, rotation of the nut 34 is induced and since rotation of lead screw is prevented and since nut 34 is axially fixed, lead screw advances relative to the nut 34 . Thus, during injection the nut moves along or relative to the thread 94. In fact this is what drives the dose from the syringe. In sum, the rotation of nut 94 in combination with a rotationally fixcd piston rod 88 drives the piston rod 88 forward. When 88 moves forward it moves relative to 88 and thus track 94 is moved along 34 during injection. This is the opposite of what is claimed in the instant reissue patent application.
wherein the position of the follower along the track is indicative of the total sum of the set and injected doses and wherein the total length of the helical track that the follower can move along corresponds to the amount of injectable medication in the cartridge and wherein the follower abuts a stop at the end of the track during dose setting before the dose setting element can be rotated to dial up a dose that would exceed the injectable amount of	The Examiner asserts that Chanoch teaches that the distance the follower moves during dose setting corresponds to the size of the set dose and that element 34 abuts a stop to prevent the setting of a dose that would exceed the remaining amount of medication in the device.	Even if one were ignore the express teachings of the patent and add to the disclosure in the manner done so by the Examiner, element 34, which the Examiner deemed as a follower, would not abut a stop at the end of thread 94 during dose setting because during dose setting 34 and 88, along with thread 94 do not move relative to each other during dose setting. To the extent 34 might abut a stop along thread 94 it would

Case 1:17-cv-00227-JFB-SRF Document 39-1 Filed 01/29/18 Page 111 of 118 PageID \#: 504

Attorney Docket No.: 6036.209-US

| medication remaining in the
 cartridge. | do so during injecting not
 during do setting. |
| :--- | :--- | :--- |

Claim 17	Examiner's application of Steenfeldt Jensen to the particular elements of claim 17	Reasons why Balkwill does not anticaple Claim 17,
A dose setting limiter that prevent setting of a dose which exceeds the amount of injectable medication in a multiple dose cartridge in an injection device	Examiner makes as assertion that Steenfeldt-Jensen contains a dose limiter that prevents the setting of a dose that would exceed the remaining amount of injectable medication in an injection device. He provides no citation to anything in Steenfeldt -Jensen that supports this naked assertion.	The Examiner's naked assertion about the scope of Steenfeldt-Jensen is unsupported. Steenfeldt-Jensen discloses a pen with a gearing where the dose setting member moves a greater distance upon injection than the piston rod. In fact, the embodiments in SteenfeldtJensen are in need of the dose limiting mechanism of the present invention. With Steenfeldt-Jensen, it is possible to set a dose on the dose setting element that is larger than the amount remaining in the pen. In fact, the commercial product FlexPen ${ }^{\circledR}$ sold by the assignee of the instant application is based on one of the designs in Steenfeldt-Jensen. (See also, the commercially available product Solostar from Sanoti-Aventis that also employs the invention defined by the claims of this reissue patent application.) One should note however the design of the dose limiter in the instant reissue had to be incorporated into SteenfeldtJensen FlexPen in order to achieve a dose limiter that prevents the setting of a dose larger than that which remains in the pen. In sum, Steenfeldt-Jensen does not have a dose limiter that prevents the setting of a

Attorney Docket No.: 6036.209-US

		dose that is larger than the amount of injectable medica- tion remaining in the pen. Applicants note that Stcenfcldt-Jcnscn providcs for multiple designs for a geared pen which are suitable for use with the present in- vention but that does not mean Steenfeldt-Jensen an- ticipates or renders obvious the claimed invention. It merely provides examples of needs for the present inven- tion, much like an automo- bile provides a need for im- proved tires without antici- pating or rendering obvious a new tire design.

		reference. In sum, element 6 is explicitly defined as a piston rod and therefore cannot. be a piston rod driver for driving a scparate piston rod. Moreover, there is no indication whatsoever that element 6 is hollow. Hollowness is required by the claim.
(ii) a follower 32 that engages the helical track 33; wherein the follower moves along the helical track 33 when the dose setting member is rotated during dose setting; but wherein the follower does not move along the track when the dose setting member is rotated back when an injection button is pressed during injection to press the dose setting member back into the injection device;	Examiner asserts that element 40 is a follower that moves along a helical track during dose setting.	Element 40 is a nut that is fixed to the housing, It is both rotationally and axially fixed to the housing. Element 6 , the piston rod, rotates during injection but does not rotated during dose setting. Thus, since clement 40 and 6 are threadly engaged, and neither rotate during dose setting, element 40 cannot move along the thread 7 during dose setting and remain fixed during injection. In sum, Steenfeldt-Jensen teaches the opposite of what the claim requires.
wherein the position of the follower along the track is indicative of the total sum of the set and injected doses and wherein the total length of the helical track that the follower can move along corresponds to the amount of injectable medication in the cartridge and wherein the follower abuts a stop at the end of the track during dose setting before the dose setting element can be rotated to dial up a dose that would excecd the injectable amount of medication remaining in the cartridge.	The Examiner asserts that element 85 is a stop that acts to prevent the setting of a dose that exceeds the amount of medication remaining in the device.	Even if thread 7 were to have a length corresponding to the size of the dose in the cartridge (something the Examiner assumes without citation to the specification), and a element 85 were a stop that engages the nut 40, the device would still allow for a dose that exceeds the amount remaining in the cartridge to be set on the dose setting element 80 because element 85 would only abut nut 40 when the piston rod is being driven forward, i.e. during an injection. The claim requires preventing the setting of a dose

Attorney Docket No.: 6036.209-US
$\left.\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { that exceeds the remaining } \\ \text { amount of medication in the } \\ \text { pen during dose selting. } \\ \text { Thus, even assuming that the } \\ \text { Examincr's cmbcllishment of } \\ \text { the Steenfeldt-Jensen refer- } \\ \text { ence were somehow plausi- } \\ \text { ble, the Examiner fails to } \\ \text { demonstrate, for example, } \\ \text { how the if in the Steenfeldt- } \\ \text { Jensen device only 20 units } \\ \text { remained in the cartridge, the } \\ \text { dose setting element 80 } \\ \text { would be prevented from be- } \\ \text { ing dialed to 21 units or } \\ \text { more. Put simply, even if } \\ \text { one were to take the position } \\ \text { that 80 and 40 would abut } \\ \text { during injection a position } \\ \text { which the Examiner has not } \\ \text { supported with citation to the }\end{array} \\ \text { specification - the dose set- } \\ \text { ting member would merely } \\ \text { stop rotating during the injcc- } \\ \text { tion. But at this point it } \\ \text { would be too late for a user } \\ \text { to learn that the injectable } \\ \text { amount of medication in the } \\ \text { syringe is less than the set } \\ \text { dose. In contrast, the } \\ \text { claimed invention requires } \\ \text { that a dose cannot be set that } \\ \text { exceeds the amount of medi- } \\ \text { cation left in the syringe thus } \\ \text { preventing a user from ever } \\ \text { getting into this situation. }\end{array}\right\}$

Attorney Docket No.: 6036.209-US

Nature and Purpose of this Reissue Application

Applicants note that this is a broadening reissue patent application and that the intent of filing this application was to broaden the claims of the issued patent. Claiming the invention too narrowly is the error that Applicants wish to correct with this Reissue Application. (See the reissuc oath submittcd in this application.) As such, the language of the now claims is broader than what was originally claimed in the original issued patent. The claims are clear on their face and limitations from the specifications should not be read into the claims. Applicant's contend that one of ordinary skill in the art should be able to read the pending claims and understand them without the need to refer to the specification. It is noted that in cases where some of the new claims contain some language that is taken verbatim or nearly verbatim from the specification (or original or previously pending claims) it should be assumed that only that language that is explicitly recited in the claims is required by the claims. Language that is not recited in the current claims that is either in the specification or the original claims or previously pending claims has been intentionally not included in the pending claims by the Applicants so as to broaden their claimed invention as is their right under applicable patent law. In short, reference or inclusion of some language from the specification or old claims or even the file history of the original or reissue application does not mean that other non-included language should be considered when construing the claims. The claims mean only what they say on their face. Nothing else should be read into them when examining them or when construing them for infringement purposes.

Indeed, a purpose of filing this reissue is to claim broadly the concept of providing a track, or threads, on a cylindrical driver that is engaged by a track follower, which moves along the track during dose setting but does not move relative to the track during injection when an injection button is depressed and a dose setting member rotates back toward a zero position during the pressing of the button. As is described in some of the claims, one way to obtain " $[t]$ he limitation of the set dose is obtained by giving threads an appropriate length." Column 2 lines 47-50. That broad concept is embodied in the pending claims. Of course, it is the claims --when interpreted according to the ordinary and plain meaning of the words used therein-- that define the invention. For purposes of determining claims scope for infringement, all the claims require is that at least the element recited therein operate in the manner described in therein.

Attorney Docket No.: 6036.209-US
Finally, to the extent that anything in the specification or the file history of this reissue application or the original patent could in anyway be construed as a disclaimer of claim scope, applicants hereby EXPRESSLY RESCIND ANY SUCH DISCLAIMER OF CLAIM
SCOPE. To infringe the claims of this application all that is required is that the elements recited in the claims be present in an accused product and that they operate in the manner described in the claims. Of course, other elements could also be present in the accused product so long as at least the recited elements are present. Indeed, applicants have used the claim language "wherein" and "comprising" for this reason as it is open language and the meaning of these terms is well-known patent law.

CONCLUSION

As discussed at the interview, it is believed that the claims are in condition for allowance, and a determination to that effect is earnestly solicited.

The commissioner is authorized to charge any and all fees in connection with this application, including fecs for extensions of time, should such extensions be neccssary to the Novo Nordisk Deposit account. 14-1447 and to credit any overpayments to the same.

Respectfully submitted,

Date: November 21, 2008
/Marc A. Began, Reg. No. 48,829/
Marc A. Began, Reg. No. 48,829
Novo Nordisk Inc.
Customer Number 23650
(609) 987-5800

Use the following customer number for all correspondence regarding this application.
23650
patent trademark office

[^0]: ${ }^{1}$ The Examiner should of course read and examine each claim in its entirety since applicants desire issuance of only the best possible and most enforceable claims. It is noted that the claims define the subject matter of the invention. The terms of the claims should be given their broadest ordinary and plain meaning when examining them and when construing them for purposes of infringement. Nothing should be read into the claims.

[^1]: ${ }^{2}$ For example, and without limitation, the dose setting member could engage a single unitary housing or it could engage an element associated with a single unit housing, such as a piece that snaps into or fits into another piece that houses something. Arguably such a piece that snaps into or fits into another housing piece would still be part of a housing, but to avoid all doubt, applicants have added this footnote to broadly define housing as including multi-component housings. Indeed, even a single unitary housing can be manufactured from several components that are fitted together so long as in use it houses something or functions as a housing.

[^2]: ${ }^{3}$ As Applicants' attorney discussed with the Examiner, Sanofi-Aventis's lawyers have made allegations that a dose limiter for a pen syringe was previous invented by a consultant, named Bernard Sams, working for Novo Nordisk in the 1990s. Some information on this is provided in the litigation documents submitted in a previously submitted IDS. See e.g., Declaration of Bernard Sams. But compare with the pending claim language.
 ${ }^{4}$ It should be noted that the manner in which one configures the pen to operate, e.g., the interconnections of the dose setting member and driver and piston rod are not important or relevant for the claims and there are numerous ways that the driver may be driven and numcrous ways that the piston rod may be driven by the driver. All such ways that are known by those of ordinary skill in the art are within the scope of the claims so long as each element of the claim is present. Applicants' attorney notes that there are several commercially available products that use the claimed invention. Indeed, as was demonstrated to the Examiner at the interview with Applicants' attorney on November 14,2008, the present invention is well-suited for use in the commercial product FlexPen ${ }^{(8)}$ manufactured by the assignee of this reissue application, as well as, in a device configured in a manner such as the device Solostar ${ }^{(3)}$, which is manufactured by Sanofi-Aventis and is commercially available in the U.S.A. Both products use the invention as claimed and both were demonstrated to the Examiner during the interview on the $14^{\text {th }}$ of November. During that interview, the Examiner indicated that he understood how the

[^3]: claimed invention operated in the FlexPen ${ }^{(B)}$ and Solostar ${ }^{(8)}$ devices. Applicants' attorney notes that Flexpen ${ }^{(B)}$ corresponds to one or the embodiments in the Steenfeldt-Jensen patent. The Solostar ${ }^{\circledR}$ device's operation is detailed further in the litigation materials submitted in the IDS in this application. In short, the Solostar device uses an axially displaceable driver to drive a rotating two threaded piston rod. See also Published US App. Ser Nos. 10/790866 and 11/520598, which Applicants' attorney believes describes the basic operation of at least the Solostar ${ }^{\circledR}$ device. The beauty of applicants invention is that it is well-suited for pen syringe systems with virtually all types of cylindrical drivers (e.g., drivers that rotate and/or axially move to drive a piston rod), and can be adapted for use with such drivers by inclusion of a track and follower in the manner claimed.
 ${ }^{5}$ Of course, the claims are not limited to anything but that which is explicitly required on their faces. No limitations should be read into the claims from the specification or elsewhere. The specification is merely illustrative of one or few embodiments. The basic concept of the claims is applicable to multiple embodiments regardless of any language in the specification.

[^4]: ${ }^{6}$ Of course, the total volume in the cartridge will always be somewhat larger than the amount available for injection since not every last drop of medication in the cartridge can be pressed out. The invention is directed at the useable or injectable amount of medication and not the absolute total volume of that which is placed into a cartridge by a manufacturer.

[^5]: ${ }^{7}$ To the extent element 47 could be considered a helical track, it does not have a length corresponding to the injectable amount of medication in the pen and the only element that appears to engage 47 is a tubular nut element 48 that moves along 47 during injecting, which of course is the opposite of what is required by the pending claims of this reissue application. Indeed, the pending claims require no relative motion between a follower and a track during dose injecting. For this embodiment of Steenfeldt-Jensen to operate relative motion is needed during injecting. Moreover, as the interaction of 47 and 48 occur after dose setting and during injecting, this interaction does not prevent the setting of a dose that exceeds the injectable amount of medication remaining in the pen syringe.

