

EXHIBIT 102

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 1 of 351 PageID #: 40333Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 1 of 351 PagelD #: 40333

A 2H S SSAC SSLARBE A IL

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 2 of 351 PageID #: 40334Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 2 of 351 PagelD #: 40334

US006701344B1

az United States Patent (10) Patent No.: US 6,701,344 B1
Holt et al. (45) Date of Patent: *Mar. 2, 2004

(64) DISTRIBUTED GAME ENVIRONMENT 5,734,865 A 3/1998 Yu
5,737,526 A 4/1998 Periasamyet al.

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil 3,754,830 A 5/1998 Butts ef al.
E. Bourassa, Bellevue, WA (US) 5,761,425 A 6/1998 Miller5,764,756 A 6/1998 Onweller

(73) Assignee: us) Company, Seattle, WA (List continued on next page.)
OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 PR Newswire, “Microsoft Boosts Accessibility to Internet
U.S.C. 154(b) by 417 days. Gaming Zone with Latest Release,” Apr. 27, 1998, pp. LE.*

PR Newswire, “Microsoft Announces Launch Date for

This patent is subject to a terminal dis- UltraCorps, Tis Second Premium Title for the Internet Gam-
elaimer. ing Zone,” Ma 27, 1998, pp. LIE*

Business Wire, “Boeing and Panthesis Complete SWAN

(21) Appl. No.: 09/629,042 Transaction,” Jul. 22, 2002, pp. HE.*

(22) Filed: Jul. 31, 2000 (List continued on next page.)

. Primary Examiner—Dung C. Dinh
sreeneeenees GO6F 15/16 Assistant Examiner—Bradley Edelman

(7A) Attorney, Agent, ar Firm—Perkins Coie LLP

(51) Int. Cl’...

(82) ULS. Ch oe 709/204; 709/205; 709/203;
709/243, 463/42 (57) ABSTRACT

(58) Field of Search 0.0.0... 709/204, 205, Abroadcast technique in which a broadcast channel overlays
709/227, 243, 203; 463/40, 42 a point-to-point communications network is provided. The

broadcasting of a message over the broadcast. channel is
(56) References Cited effectively a multicast to those computers of the network that

U.S. PATENT DOCUMENTS are currently connected to the broadcast channel. In one
embodiment, the broadcast technique provides a logical

soscons ‘ oyoot we etal. broadcast channel to which host computers through their
weg ane tne y executing processes can be connected. Each computerthat is

*

ee ‘ * 099 pour tals ~ yous connected to the broadcast channel can broadcast messages
5.117.422 A * 5/{992 Hauptscheinet al. 370/255 onto and receive messages off of the broadcast channel.
5,309,437 A 5/1994 Perlmanetal. Each computer that is connected to the broadcast channel
5,426,637 A 6/1995 Derbyetal. receives all messages that are broadcast while it is con-
§,459,725 A * 10/1995 Bodner et al. 0... . 370/390 nected. The logical broadcast channel is implemented using
5,471,623 A * W/1995 Napolitano, Je... 709/243 an underlying network system(e¢.g., the Internet) that allows
5,535,199 A 7/1996 Amatietal. each computer connectedto the underlying network system
oe A 0joss Sithon et al. to send messages to each other connected computer using
5.644.714 A * T1997 Kikinis ccccccccecsccccccee 700/219 each computer's address. Thus, the broadcast technique
5.673.265 A 9/1997 Guptaet al. effectively provides a broadcast channel using an underlying
5,696,903 A 12/1997 Mahany network system that sends messages on a point-to-point
5,732,074 A 3/1998 Spaur et al. basis.
5,732,086 A * 3/1998 Liang etal... 370/410
8,732,219 A 3/1998 Blumeret al. 19 Claims, 39 Drawing Sheets

message
from neighbor

Distribute
broadcast message

All neighborselected

2403
Send internal

message

AB-AB 000001

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 3 of 351 PageID #: 40335Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 3 of 351 PagelD #: 40335

US 6,701,344 BI
Page 2

U.S. PATENT DOCUMENTS

5,790,548 A 8/1998 Sistanizadchetal.
5,790,353 A 8/1998 Deaton, Jr. et al.
5,799,016 A 8/1998 Onweller
5,802,285 A 9/1998 Hirviniemi
5,850,592 A * 12/1998 Ramanathan...4535/7
5,864,711 A 1/1909 Mairs et al.
5,867,660 A 2/1999 Schmidt et al.
5,867,667 A 2/1999 Butman etal,
5,870,505 A 2/1999 Brachoet al.
5,874,060 A 2/1999 Mairs etal.
5,899,980 A 5/1999 Wilf et al.
§,907,610 A 5/1999 Onweller
5,925,097 A * 7/1999 Gopinath et al.0.40... 709/200
$928,335 A 7/1999 Morita
5,935,218 A 8/1999 Bell et al.
5,948,054 A 4/1999 Nielsen
5,949,975 A 9/1999 Batty etal.
5,956,484 A 9/1999 Rosenberg etal.
5,970,232 A * 10/1999 Passint et al. 709/238
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carteret al.
6,003,088 A 12/1999 Houston et al.
6,013,107 A 1/2000 Blackshear et al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga et al,
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.
6,094,676 A 7/2000 Gray et al.
6,115,580 A * 9/2000 Chuprunet al. ...
6,167,432 A * 12/2000 Jiang 709/204
6,173,314 Bi * 1/2001 Kurashimaet al.
6,199,116 BL 3/2001 May et al.
6,216,177 BL 4/2001 Maits et al.
6,223,212 Bi 4/2001 Batty et al.
6,243,691 BL 6/2001 Fisher et al.
6,268,855 Bi F2001 Mairs et al.
6,271,839 BL 8/2001 Mairs et al.
6,272,548 Bi * 8/2001 Cotter et alo 709/239
6,285,363 Bl 9/2001 Mairs et al.
6,304,928 BL 10/2001 Mairs ct al.
6,321,270 Bl * 11/2001 Crawley...
6,463,078 Bl * 10/2002 Engstromet al.
6,524,189 BL * 2/2003 Rautila

2002/0027896 Al * 3/2002 Hughes et al. ...
OTHER PUBLICATIONS

 teers 700/204

wee 709/238
» 370/466
-- 463/40

vee 370/342

Azar et al., “Routing Strategies for Fast Networks,” May
1992, INFOCOM 792, Eleventh Annual Joint Conference of
he JEEE Computer and Communications Societies, vol. 1,
170-179.*
Cho et al., “A Flood Routing Method for Data Networks,”
Sep. 1997, Proceedings of 1997 International Conference on
Information, Communications, and Signal Processing, vol.
3, pp. 1418-1422."
Komine et al., “A Distributed Restoration Algorithm for
Multiple-Link and Node Failures of Transport Networks,”
Dec. 199 Global Telecommunications Confercace, 1990,
and Exhibition, TEEE, vol. 1, pp. 459-463.*
Peercy et al, “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
aulty Hypercubes,” Jun. 1990, 20” International Sympo-

sium on Fault-Tolerant Computing, 1990, pp. 218~225.*
US.patent application Ser. No. 09/629,570, Bourassact al.,
filed Jul. 31, 2000.
U.S. patent application Ser. No. 09/629,577, Bourassa et al.,
filed Jul. 31, 2000.

USS. patent application Ser. No. 09/629,575, Bourassa et al,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,572, Bourassa et al.,
filed Jul. 31, 2000.
U.S. patent application Ser, No. 09/629,023, Bourassa et al.,
filed Jul, 31, 2000,
US.patent application Scr, No. 09/629,043, Bourassact al,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,024, Bourassaet al.,
filed Jul. 31, 2000.
US. patent application Ser. No. 09/629,576, Bourassa et al.,
filed Jul. 31, 2000.
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000(pp. 26-28).
The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).
The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) hitp://www.open2p.com/
Ipt... [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly
Network http://www.oreillynet.com/Ipt... [Accessed Jan.
29, 2002],
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-43-16).
Oram, Andy, “Peer-to~Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://linux.oreillynet.com/Ipt... [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies,”MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYI/BCP Archives http://www.fags,.org/
rfc1832.htmi [Accessed Jan. 29, 2002].
A. Databeam Corporate White Paper, “A Printer on the
7.120 Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http:/Avww.hill.com/library/publications/... [Accessed Jan.
29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapter 1-3 (pp. 147), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.
The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
121-1210), Chapter 13 (pp. 13-1-13-56), Chapter 16(pp.
16-1-16-26), Chapter 18 (pp. 18-1-18-52), Chapter 20
(pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration of the Problems of Distributed Systems,”
http:/Avww.des.warwick.ac.u... [Accessed Jan. 29, 2002].
Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM 795 Conference Record,
IEEE San Dicgo, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company,Inter-
national Patent Application No PCT/US01/24240, Jun. 5,
2002 (7 pages).

* cited by examiner

AB-AB 000002

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 4 of 351 PageID #: 40336Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 4 of 351 PagelD #: 40336

U.S. Patent Mar.2, 2004 Sheet 1 of 39 US 6,701,344 BL

m

Poy

Loo

<
AB-AB 000003

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 5 of 351 PageID #: 40337Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 5 of 351 PagelD #: 40337

U.S. Patent Mar.2, 2004 Sheet 2 of 39 US 6,701,344 BL

AB-AB 000004

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 6 of 351 PageID #: 40338Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 6 of 351 PagelD #: 40338

U.S. Patent Mar.2, 2004 Sheet 3 of 39 US 6,701,344 BL

m0 O

N RQ
or

<q 2
2

Ww 2

am

©

< os
220

AQ

Lu

AB-AB 000005

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 7 of 351 PageID #: 40339Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 7 of 351 PagelD #: 40339

U.S. Patent Mar.2, 2004 Sheet 4 of 39 US 6,701,344 BL

ig.4A
AB-AB 000006

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 8 of 351 PageID #: 40340Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 8 of 351 PagelD #: 40340

U.S. Patent Mar.2, 2004 Sheet 5 of 39 US 6,701,344 BL

oo

~
Lu .

A

t
AB-AB 000007

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 9 of 351 PageID #: 40341Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 9 of 351 PagelD #: 40341

U.S. Patent Mar.2, 2004 Sheet 6 of 39 US 6,701,344 BL

Fig.4C
AB-AB 000008

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 10 of 351 PageID #: 40342Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 10 of 351 PagelD #: 40342

U.S. Patent Mar.2, 2004 Sheet 7 of 39 US 6,701,344 BL

” <
w

WL e

bb

<
AB-AB 000009

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 11 of 351 PageID #: 40343Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 11 of 351 PagelD #: 40343

U.S. Patent Mar.2, 2004 Sheet 8 of 39 US 6,701,344 BL

AB-AB 000010

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 12 of 351 PageID #: 40344Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 12 of 351 PagelD #: 40344

U.S. Patent Mar.2, 2004 Sheet 9 of 39 US 6,701,344 BL

Qa

oO

us

m
DQ
wy

Lin °

0

<

oO

H

AB-AB 000011

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 13 of 351 PageID #: 40345Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 13 of 351 PagelD #: 40345

U.S. Patent Mar.2, 2004 Sheet 10 of 39 US 6,701,344 BL

a

2
ce bin

Ry

<
AB-AB 000012

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 14 of 351 PageID #: 40346Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 14 of 351 PagelD #: 40346

U.S. Patent Mar.2, 2004 Sheet 11 of 39 US 6,701,344 BL

Q

<

Ry
w

£0
nay

ma

oO

a <

2
£0

Oo ao

AB-AB 000013

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 15 of 351 PageID #: 40347Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 15 of 351 PagelD #: 40347

U.S. Patent Mar.2, 2004 Sheet 12 of 39 US 6,701,344 BL

Broadcaster
Fig.6

Application2 {channeltype channelinstance)
—

~o &
a &&5628a 2
3G OS
2 5.
ageQe
og=3

AB-AB 000014

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 16 of 351 PageID #: 40348Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 16 of 351 PagelD #: 40348

US 6,701,344 BLSheet 13 of 39Mar.2, 2004U.S. Patent

[euro]soyoqedsipfewer
cOL

002

ZLSh

odessoutgsuodsalaumnboy9AINN9Ybd

yszoproigfEL
ysanbesyeuu0)

yor|fe5
902yoouuo7)Ord

AB-AB 000015

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 17 of 351 PageID #: 40349Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 17 of 351 PagelD #: 40349

U.S. Patent Mar.2, 2004 Sheet 14 of 39 US 6,701,344 BL

Channel Instance,

Connect Aux Info)
801

Opencall in port

802 Fig. §

803

Seek portal - computer
(channel type channel

instance)

804

<a>N Return (false)
Y

805 806
Contacts

0

¥ Achieve connection

N 807
808

Install external dispatcher
Install external dispatcher

809

Connect request

ct

AB-AB 000016

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 18 of 351 PageID #: 40350Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 18 of 351 PagelD #: 40350

U.S. Patent Mar.2, 2004 Sheet 15 of 39 US 6,701,344 BL

Channel Type
Channel Instance

Seek portal
computer

902

Select next depth

All portal computers

selected

 Selected portal

computer connected

Return (success)

AB-AB 000017

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 19 of 351 PageID #: 40351Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 19 of 351 PagelD #: 40351

U.S. Patent Mar.2, 2004 Sheet 16 of 39 US 6,701,344 BL

Contact process

 Send external message

1002

Fig. 10

Add as connected portal
computer

AB-AB 000018

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 20 of 351 PageID #: 40352Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 20 of 351 PagelD #: 40352

U.S. Patent

Fig. 11

Mar.2, 2004 Sheet 17 of 39 US 6,701,344 BL

Connect request

1101

Wasa fully N 1102
connected portal found Restart

Dial call in port of portal
computer

1104

Na
¥ 1405

Send external message

1106

Receive external message

1107

Ntl
Y 1108

Set expect holes from
response

1109

Set diameter from response

111 1112

Ready to connect a||Addneighbor||
Nt 1113

AB-AB 000019

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 21 of 351 PageID #: 40353Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 21 of 351 PagelD #: 40353

U.S. Patent Mar.2, 2004 Sheet 18 of 39 US 6,701,344 BL

heck for externa
ca—‘

Fig. 121201 S
Answer

1202er

Receive external message

 ype = = seeking
connectioncall

Y

1205

Send external message

206
\

1207

Add other as fellow seeker

Return

AB-AB 000020

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 22 of 351 PageID #: 40354Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 22 of 351 PagelD #: 40354

U.S. Patent Mar.2, 2004 Sheet 19 of 39 US 6,701,344 BL

Achieve connection

1301

Connection - state = fully
connected

1302

Notify fellow seekers

Fig. 13

AB-AB 000021

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 23 of 351 PageID #: 40355Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 23 of 351 PagelD #: 40355

U.S. Patent Mar.2, 2004 Sheet 20of 39 US 6,701,344 BL

Fig. 1

1401 1415
Pick up and receive

1402 1416

Message N Hang up

1404

Handle seeking
connection call

1406

Handle connection

requestcall

1408

Handle edge proposal
call

Handle port
connection call

Handle connected ;

Port connect call

Connected statement statement

Condition repair Handle condition

statement ~ repair statement |

AB-AB 000022

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 24 of 351 PageID #: 40356Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 24 of 351 PagelD #: 40356

U.S. Patent Mar.2, 2004 Sheet 21 of 39 US 6,701,344 BL

Fig. 15Handle seeking
connection call

Set message to indicate
connected

1504

Add other as fellow

seeking process

1505

Send external message

AB-AB 000023

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 25 of 351 PageID #: 40357Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 25 of 351 PagelD #: 40357

U.S. Patent Mar.2, 2004 Sheet 22 of 39 US 6,701,344 BL

andle connection

requestcall

1601 60
N

1603 Return
Set newcomer's

holes_to_expect

1604
Set diameter estimate in

response .

508 Fig. 16
Set ready in response

2) 06

Sent external message
connect request resp.

4607

Set newcomer's
holesto_fill

608 1609

Ready i Add neighbor i
1611 Ne 1610

Newcomer's
Hang up holes_to_fill --

1612

ole = = 0 or
diameter > 1

1615

Holesto fill - = Z

617

—i Fill hole (requestor) i

AB-AB 000024

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 26 of 351 PageID #: 40358Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 26 of 351 PagelD #: 40358

U.S. Patent Mar.2, 2004 Sheet 23 of 39 US 6,701,344 BL

Add neighbor

1701

Identifies calling party EFig. 17

1702

Sets neighbor to
messages pending

703 a . 1704. ; yY onnection_state =

<Seeking connectio | partially connected
Nk

1705

Add as neighbor

1706

Install interal dispatcher
for new neighbor

17081707

WO
4709

1711 171

Y Purge pending edges

ala

Holes = = Y

expected hole

Nk

AB-AB 000025

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 27 of 351 PageID #: 40359Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 27 of 351 PagelD #: 40359

U.S. Patent Mar.2, 2004 Sheet 24 of 39 US 6,701,344 BL

Forward connection requestor
edge search distance remaining

Fig. 18

neighbors
>)

neighbor =
requestor

selected
it

N

Send internal message

4807

¥

1808

Note connection edge
search call

AB-AB 000026

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 28 of 351 PageID #: 40360Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18

U.S. Patent Mar.2, 2004 Sheet 25 of 39

Handle edge
proposalcall

N 4903

create edge (pending)

proposed
neighbors

1914 pending

Send external message N
1907

Send external message

1912 1908
N Holes odd N

Y

Y

1913 4909
Fill holil Add edge as pending
. 1910

| Add neighbor ;

Page 28 of 351 PagelD #: 40360

US 6,701,344 BL

in message
out message

Fig. 19

AB-AB 000027

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 29 of 351 PageID #: 40361Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 29 of 351 PagelD #: 40361

U.S. Patent Mar.2, 2004 Sheet 26 of 39 US 6,701,344 BL

Handle port
connection call

Send external message
(point-connect-resp

not ok)

 Caller is not

neighbor

Send external message
(point-connect-resp, ok)

2006

| Add neighbor /
2008

/ Connect request |

AB-AB 000028

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 30 of 351 PageID #: 40362Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 30 of 351 PagelD #: 40362

U.S. Patent Mar.2, 2004 Sheet 27 of 39 US 6,701,344 BL

Fill hole

Handle connection

ports search edit

Return

AB-AB 000029

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 31 of 351 PageID #: 40363Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 31 of 351 PagelD #: 40363

U.S. Patent Mar.2, 2004 Sheet 28 of 39 US 6,701,344 BL

Internal

dispatcher

2201

Fig. 33 Received internal message
2202

Assess diameter

This

process = =

Insert message into
pending connection buffer

Type
= = broadcast

2206 2007a Type :
== shutdown Y Handle shutdown

statement TO statement |
Nie

Y Pending
connection buffer

Lz,

message queue

YR Receive response ()

AB-AB 000030

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 32 of 351 PageID #: 40364Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 32 of 351 PagelD #: 40364

U.S. Patent Mar.2, 2004 Sheet 29 of 39 US 6,701,344 BL

Handle broadcast origin
message from neighbor

message

Fig. 23

AB-AB 000031

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 33 of 351 PageID #: 40365Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 33 of 351 PagelD #: 40365

U.S. Patent Mar.2, 2004 Sheet 30 of 39 US 6,701,344 BL

. Distribute message
Fig. 24 broadcast message from neighbor

All neighbor
selected

2403

Send internal

message

AB-AB 000032

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 34 of 351 PageID #: 40366Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 34 of 351 PagelD #: 40366

U.S. Patent Mar.2, 2004 Sheet 31 of 39 US 6,701,344 BL

Handle connection from neighbor
for search message

2601

Distribute internal .
Fig. 26

602

Y

603 2604

N | Court neighbor I

605

Is requestor
a neighbor

enerate

condition check

message w/neighbors

AB-AB 000033

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 35 of 351 PageID #: 40367Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 35 of 351 PagelD #: 40367

U.S. Patent Mar. 2, 2004 Sheet 32 of 39 US 6,701,344 BL

Court neighbor Prospect

Fig. 27 04

 Is prospect
a neighbor

N

2702

Dial prospect

703

N

Send and receive

external message

I Add neighbor |
2706

Hangup prospect

AB-AB 000034

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 36 of 351 PageID #: 40368Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 36 of 351 PagelD #: 40368

U.S. Patent Mar.2, 2004 Sheet 33 of 39 US 6,701,344 BL

Handle connection from neighbor
edge search call message

801

 Not

my message 11
holes >= Z

connection second
edge (requestor

remaining dist -1)

Remaining
distance > 0

Fill hole (self}

 connection edge- 2815
search (requestor,

0G
end interna

message (from
neighbor, ack

2806 W

2807

Send and receive

external message

AB-AB 000035

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 37 of 351 PageID #: 40369Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 37 of 351 PagelD #: 40369

U.S. Patent Mar.2, 2004 Sheet 34 of 39 US 6,701,344 BL

Handle edge search origin
from neighbor

messageFig. 29

AB-AB 000036

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 38 of 351 PageID #: 40370Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 38 of 351 PagelD #: 40370

U.S. Patent Mar.2, 2004 Sheet 35 of 39 US 6,701,344 BL

message

Fig. 30

Generate internal

message

Set message sequence

AB-AB 000037

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 39 of 351 PageID #: 40371Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 39 of 351 PagelD #: 40371

U.S. Patent Mar.2, 2004 Sheet 36 of 39 US 6,701,344 BL

messageAcquire message

Message
retrieved

 Return false

Return true

AB-AB 000038

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 40 of 351 PageID #: 40372Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 40 of 351 PagelD #: 40372

U.S. Patent Mar.2, 2004 Sheet 37 of 39 US 6,701,344 BL

‘Handle condition check

 Sameset of

neighbors

3205
elect a neighbor

ofsending process
not my neighbor

Set up message withlist
of neighbors

Send internal message

Send external message
to selected neighbor

AB-AB 000039

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 41 of 351 PageID #: 40373Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 41 of 351 PagelD #: 40373

U.S. Patent Mar.2, 2004 Sheet 38 of 39 US 6,701,344 BL

Handle condition

repair statement

Fig, 33

 Select a neighbor not
involved in condition

Removeselected

neighbor

AB-AB 000040

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 42 of 351 PageID #: 40374Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 42 of 351 PagelD #: 40374

U.S. Patent Mar.2, 2004 Sheet 39 of 39 US 6,701,344 BL

ae

Handle condition
double check

Fig. 34

 Sameset of

neighbors

Send internal message.
to-from neighbor

Send internal message

AB-AB 000041

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 43 of 351 PageID #: 40375Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 43 of 351 PagelD #: 40375

US 6,701,344 B1
1

DISTRIBUTED GAME ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S. patent application
Ser. No, 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application , Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNET.,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERYSERVICE,”filed on Jul.
31, 2000; and U.S. patent application Ser. No. 09/629,024,
entitled “DISTRIBUTED CONFERENCING SYSTEM,”
filed on Jul. 31, 2600, the disclosures of which are incor-
porated herein by reference.

TECHNICAL FIELD

‘The described technologyrelates generally to a computer
network and more particularly, to a broadcast channelfor a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
andpeer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allowprocesses on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a oumber of participants grows. For example, each
participating process would need to manage its direct con-
nections to all other participating processes. Programmers,
however,findit very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support. s
This limits the number ofpossible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients who are sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(CORBA). Client/Server middleware systems are not par-
ticularly well suited to sharing of information among many
participants. Io particular, when a client stores information

3S

iA

a

ma on

D> a

2
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Altcrnativcly, cach clicnt may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (.e., the server) would prevent communications
between anyof the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overheadon the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of informationefficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlving architecture of
the T.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network.
That is, cach message must pass through the root node in
order to be received byall participants.

Tt would be desirable to have a reliable communications

network that is suitable for the simultaneous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

VIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG, 2 illustrates a graph representing 20 computers
connected fo a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG, 4Aillustrates the broadcast channel of FIG. 1 with

an added computer.
FIG.4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added computer.
FIG.5A illustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. SB illustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG. SCillustrates the neighbors with empty ports con-

dition.

FIG. 3D illustrates two computers that are not neighbors
who now have empty ports.

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

AB-AB 000042

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 44 of 351 PageID #: 40376Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 44 of 351 PagelD #: 40376

US 6,701,344 B1
3

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG.7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing ofthe
seek portal computer routine in one embodiment.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment.

FIG.11 is a flow diagram illustrating the processing of the
connect request routine in one cmbodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagram of the processing of the achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram
handle connection request call routine in one embodiment.

FIG.17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing ofthe
orward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing ofthe
handle edge proposal call routine.

FIG.20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
All hole routine in one embodiment.

FIG.22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagramillustrating the processing of the
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing ofthe
distribute broadcast message routine in one embodiment.

FIG.26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

FIG.27 isa flow diagramillustrating the processing of the
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-ment.

FIG.29 is a flow diagram illustrating the processing ofthe
handle connection edge search response routine in one
embodiment.

FIG. 30 is a flow diagram illustrating the processing ofthe
broadcast routine in one embodiment.

FIG.31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagramillustrating processing of the
handle condition repair statement routine in one embodi-meat.

FIG. 34 is a flowdiagram illustrating the processing of the
pandle condition double check routine.

illustrating processing of the ~

40

is

oe) A

49

60

65

4
DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications nctwork is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel, Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (c.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each compuler’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (Le.,
edges) between host computers (i.c., nodes) through which
the broadcast channel is implemented. In one embodiment,
cach computeris connceted to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puterthat receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to cach computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of
the connections to its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus,the graph
is both 4-regular and 4-connected.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the compuiers (Le., the shoriest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computerFis directly connected to
computer B. ‘Thus, a message originating at computer A
would be sent directly to computer F, and then sent from

AB-AB 000043

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 45 of 351 PageID #: 40377Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 45 of 351 PagelD #: 40377

US 6,701,344 B1
5

computer F to computer B. The maximum ofthe distances
between the computers is the “diameter” of broadcast chan-
uel. The diameter of the broadcast channel represented by
FIG, L is two, That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
ofthis broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (Le., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (ie., broadcasting through the graph), and (3) the
disconnecting of computers fromthe broadcast channel(.¢.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer seeking
the connectionfirst locates a computer that is currently
fully connected to the broadcast channel and then
establishes a connection with fourof the computers that
are already connected to the broadcast channel. (This
assumes that there are at least four computers already
connected to the broadcast channel, When there are

fewer than five computers connected, the broadcast. 2
channel cannot be a 4-regular graph. In such a case, the
broadcast channel is considered to be in a “small

regime.” The broadcast technique for the small regime
is described below in detail. When five or more com-

puters are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description
assumes that the broadcast channel is in the large
regime, unless spccificd otherwisc.) Thus, the process
of connecting to the broadcast channel includes locat-
ing the broadcast channel, identifying the neighbors for
the conneciing computer, and then connecting tu each
identified neighbor. Each computer is aware of one or
more “portal computers” through which that computer
may locate the broadcast channel. A seeking computer
locates the broadcast channel by contacting the portal
computers until it finds one that is currently fully
connected to the broadeast channel. ‘The found portal
computerthen directs the identifying of four computers
{Le., to be the seeking computer’s neighbors) to which
the secking computer is to connect. Each of these four
computers then cooperates with the seeking computer
to effect the connecting of the seeking computer to the
broadcast channel. A computer that has started the
process of locating a portal computer, but does not yet
have a neighbor, is in the “seeking connection state.” A 5
computer that is connected to ai least one neighbor, but
not yet four neighbors, is in the “partially connected
state.” A computer that is currently, or has been, pre-
viously connected to four neighbors is in the “fully
connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers, In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-

do

is

30

Lp tA

40

tn an

60

68

6
nected. The pairs of computers B and E and computers Cand
D are the twopairs that are identified as the neighborsfor the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
byFIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computeris referred to as “edge pinning” as
the edge between two nodcs may be considered to be
stretched and pinned to a newnode.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicaling wilh
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, whichis a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordereddelivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space”that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports arc reserved for specific appli-
cations(e.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port andthe internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages through its external port. A seeking
computer trices “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or allermpting to connect to the broadcast channel andits
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the secking computer actually commu-
nicates through that transfer-to port, which is the external
port. ‘The callis transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The secking
computer could identify the call-in port number ofa portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connected to one ofits
neighbors. A possible problem with such a scheme for

AB-AB 000044

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 46 of 351 PageID #: 40378Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 46 of 351 PagelD #: 40378

US 6,701,344 B1
7

identifying the neighbors for the seeking computeris that the
diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
are added. FIGS. 4A-4C illustrate that possible problem.
FIG. 4A illustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to compuier
J. The diameter of this broadcast channel is still two. FIG.
4B illusirates the broadcast channel of FIG. 4A with an

added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E~J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G-A, A-E, and E~K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channcl is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique toidentify the
four neighbors of a computerin the seeking connection state. 2!
The random selection technique tends to distribute the
connections fo new seeking computers throughout the com-
puters of the broadcast channel which mayresult in smaller
overall diameters.

Broadcasting ‘Through the Graph
As described above, cach computer that is connected to

the broadcast channel can broadcast messages onto the
broadcast channel and docs reecive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of ils four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancyof the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel,if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if -the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computerthat originates a message numbersits own
messages sequentially. Because of the dynamic nalure ofthe
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. Thefirst

do

is

35

40

50

in an

60

65

8
message may have to travel a distance of four to reach the
receiving computer. The second message only has totravel
a distance of one. ‘I'hus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.c., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
reecived, If, however, the broadcast channcl is not in a
steady state, then problems can occur. In particular, a com-
puter may connectto the broadcast channelafter the second
message has already been received and forwarded on byits
new neighbors. When a newneighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queueall the messagesthat it receives until it can send them
in their proper ordertoits neighbors, This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors of the
newly connected computers. Each already connected neigh-
bor would forward messages asif receives them to its other
neighbors who are not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from cach originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received trom all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward cach message as it is reecived. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and S and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3 is finally received,
the already connected computer will send messages3, 4, and
5 ta the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
thenthe newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message3.It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

AB-AB 000045

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 47 of 351 PageID #: 40379Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 47 of 351 PagelD #: 40379

US 6,701,344 B1
9

Decomposing the Graph
A connected computer disconnects from the broadcast

channel either in a planned or unplanned manner. When a
computer disconnects in a planncd manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,if tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
iry to connect to the fourth computerin the list. [fa computer
cannot connect (e.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internalport receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A—SDillustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides lo disconnect, it sendsits list of neighbors to each of
its neighbors (computers A, E, F and 1) and then disconnects 2
from each ofits neighbors. When computers A andI receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a powerfailure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when cach attcmpts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (.c., i has a hole or emply port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadeast channel, which indicates that it has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
aconnected computer thatis also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashedlines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a conditionis referred to as
the “neighbors with emply ports” condition. Each neighbor
broadcasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channelis in the small regime. ‘he condition can
only be corrected when in the large regime. When in the

do

is

vyo

30

40

50

60

65

10
small regime, each computer will have less than four neigh-
bors. To detcet this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includesa list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime andrepair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have hadaportfilled. Llowever, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
reccived the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect to each other when
theyreceive the requests. If, however, the wo computers are
neighbors, then they repeat the condition repair processuntil
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer reccives the condition double check message,
it determines whetherit has the sameset of neighbors as the
sending computer. If so, the broadcast channelis in the small
regime and the condilion is net a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. SCillustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E, are already neighbors, whichgivesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer [hasa different set of neighbor(.c., the
broadcast channel is in the large regime). Computer A
selected computer D, whichis a neighbor of computer E and
sent il a condition repair request. When computer D received
the condition repair request, it disconnected from one ofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. ‘Therefore,
computers E and G can connect to each other.

AB-AB 000046

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 48 of 351 PageID #: 40380Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 48 of 351 PagelD #: 40380

US 6,701,344 B1
11

FIGS. 5E and 3F further illustrate the neighbors with
empty ports condition. FIG. 5Eillustrates the neighbors with
empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a porl connection request when it
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with emptyports condition and sends a condition check
message to computer B. Computer B recognizesthat it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that ihe broadcast
channelis in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizesthat the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check 2:
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

Asdescribed above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four inlernal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channet dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
eall-in port number of the portal computers when the port
aumbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected then the seeking
computer would eventually dial every user port. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it wouldtake the seeking computer
a long timetolocate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
oumbers randomly through out the user port number space

do

15

30

Lp tA

40

50

tn an

60

12

and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given
channel type and channel instance,it generates the same port
ordering. As described below, it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by secking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first cight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busyport is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computerthat can connect to the broadcast channel
has a list of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
secking computerlocates a portal computerthat is connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking computer would
sclect the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking techniqueis that all user ports
of each portal computer are dialed until a porial computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
numberaccording to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the number ofports that it will dial when
seeking a porial computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not

AB-AB 000047

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 49 of 351 PageID #: 40381Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 49 of 351 PagelD #: 40381

US 6,701,344 B1
13

connect when they first locate each other because the
broadcast channel mayalready be established and accessible
through a bigher-ordered port number on another portal
computer. If the two sccking computers were to connect to
each other, then two disjoint broadcast channels would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searched all the portal computers to a depth of cight, then the
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. If that other
secking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In sucha situation,it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

Asdescribed above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of 2:
currently connected computers. One advantage ofthe broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledgeofitself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-conncct form) will
not cause the broadcast channelto fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

‘lo select the four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. ‘This sending of the message corresponds to a
random walk throughthe graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
ithe message has traveled far cnough to represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect. this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
ihe distance thal it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
puter cannot connect to the seeking computer (e.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its

do

is

vyoO

30

Lp tA

40

£mn

50

tn an

60

65

14

neighbors with a new distance to travel. In one embodiment,
the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between cach other.

Because of the local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled ficld.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small,it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameterthat is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.
External Data Represcntation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer mayuse 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

The underlying peer-to-peer communications protocol
may send multiple messagesin a single message stream. The
traditional technique for retricving messages from a stream
has beento repeatedly invoke an operating system routine to
retrieve the next message in the stream. Theretrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slowin comparison to the invocations of local routines. To
overcomethe inefficiencies of such repeated calls, the broad-
cast technique in one embodiment, uses XDRto identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for cxample, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDRroutines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular

Tn the embodiment described above, each fully connected
computer has four internal connections.‘he broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thal il lakes to connect
a seeking computerto the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number ofinternal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers

AB-AB 000048

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 50 of 351 PageID #: 40382Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 50 of 351 PagelD #: 40382

US 6,701,344 B1
15

will have less than that odd numberof internal connections.
In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that cach compuler had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (€.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channcls

can be identified by channel type (e.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process allempts
to connect to a broadcast channel, it seeks a process cur- 2!
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
graminterfaces with a broadcaster component 602 for each
broadcast channel to which it is connected. The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication -of the broadcast channel to
whichthe application program wants to connect. ‘The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
thal the application program can invoke toretrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received, Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
{¢.g., keyboard and pointing device), output devices (c.g.,
display devices), and storage devices (e.g., disk drives), The
memory and storage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

Bad

do

is

40

£mn

50

60

65

16
FIG. 7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment. The
broadcaster component inchides a connect component 701,
an external dispatchcr 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer (if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invoked to retrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program
to broadcast messages in the broadcast channel.
A Distributed Game Environment

In one embodiment, a game environment is implemented
using broadcast channels. The game environment is pro-
vided by a game application program executing on each
player’s computer that intcracts with a broadcaster compo-
nent. Each player joins a game(e.g., a first person shooter
game) by connecting to the broadcast channel on which the
game is played. Each time a player takes an action in the
game a message representing that action is broadcast on the
game’s broadcast channel. In addition, a player may send
messages (€.g., strategy information) to one or more other
players by broadcasting a message. When the game appli-
cation program receives an indication of an action, either
received on the broadcast channel or generated by the player
at this computer, it updates its current state of the game. The
game may terminate when one of the players reaches a
certain score, defcats all other players, all players leave the
game, and so on.

o facilitate the creation of games for the game
environment, an application programming interface ((API”)
is provided to assist game developers. The API may provide
high-level game functions that would be used by most types
of first person shooter games. For example, the API may
include functions for indicating that a plaver has moved to
a new position, for shooting in a certain direction, for
reporting a score, for announcing the arrival and departure
of players, for sending a message to another player, and soon.

he game environment may provide a game website
through which players can view the state of current games
and register new games. The game web server would include
a mapping beiween each game and(he broadcast channel on
which the gameis to be played. When joining a game, the
user would download the broadcaster component and the
game application program from the web server. The user
would also download the description of the game, which
may include the graphics for the game. The web server
would also provide the channel type and channel instance
associated with the game and the identification of the portal

AB-AB 000049

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 51 of 351 PageID #: 40383Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 51 of 351 PagelD #: 40383

US 6,701,344 B1
17

computers for the game. The game environment may also
have a game monitor computer that connects to each game,
monitors the activity of the game, and reports the activity to
the web server, With this activity information, the web
server can provide information on the current state (e.g.,
number of players) of each game.

‘Lhe game environment may also be used for games other
than first person shooter games. For example, a variation of
a society simulation game can be played where players sign
up for different roles. Ifa role is unfulfilled or a player in that
role is not playing, then an automated player can take overthe role.

The following tables list messages sent by the broadcaster
components.

EXTERNAL MESSAGES

Message Type Description

seeking_connection_call Indicates that a seeking process wonld like
to know whether the receiving processis
fully connected to the broadcast channel
Indicates that the sending process would like
the receiving process to initiate a connection
of the sendiag process to the broadcastchannel
Indicates that the sending processis
proposing an edge through which the
receiving process can connect to the
broadcast channel (i.¢., edge pinning)
Indicates that the sending process is
proposing a port through which the
yeceiving process can connect to thebroadcast. channel
Indicates that the sending process isconnected to the broadcast channel
Indicates that the receiving process should
disconnect from one ofits neighbors and
connect to one of the processes involved in
the avighbors with caipty port condition

connection__request__call

edgeproposal_call

port__connection__call

connected_stmt

condition repair stmt

INTERNAL MESSAGES

Message Type Description

broadcast_stmt Indicates a message that is being
broadcast through the broadcast
channel for the application programs
Indicates that the designated process
is looking for a port through whichit can connect to the broadcast channel
Indicates that the requesting process
is lonking for an edge through whichit can connect to the broadcast channel
Indicates whether the edge betweenthis
process and the sending neighbor has
been accepted by the requesting partyIndicates an estimated diameter of the
broadcast channel
Indicates to reset the estimated diameter
to indicated diamcter
Indicates that the sending neighboris
disconnecting from the broadcastchannel
Indicates that neighbors with empty portcondition have been detected
indicates that the neighbors with empty
ports have the same set of neighborsIndicates that the broadcast channel is
being shutdown

connection._port_search_stmt

connection.edge.search.call

connection edge search resp

diameter_estimate_stmt

diameter_reset__stmt

disconnect_stmt

condition_check__stmt

conditiondoublecheckstmt

shutdown__stmt

Flow Diagrams
FIGS. 8-34 are flow diagramsillustrating the processing

of the broadcaster component in one embodiment. FIG. 8 is

do

is

30

ty tA

49

a

in mn

60

18
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g,
session identifier), that idcntifics the broadcast channcl to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors, In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine scts the
connect time to the current time. The connect time is used to

identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect fo that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected oid process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance, The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seck portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805,else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

PIG, 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computersat that search depth. If
a portal computer is located at that search depth with a
processthat is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902, the routine selects the next

AB-AB 000050

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 52 of 351 PageID #: 40384Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 52 of 351 PagelD #: 40384

US 6,701,344 B1
19

search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, thatis for the
currently sclected depth, thon the routine returns a failure
indication, else the routine continues at block 904. In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channcl instance.
In block 904, the routine selects the next portal computer. In
decision block 905,if all the portal computers have already
been selected, then the rouline loops to block 902 to select
he next search depth, else the routine continues at block

906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
n decision block 907,if the dialing was successful, then the

routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a proccss executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
hrough the dialed port and determines whether that process

routine hangs up onthe selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine retums a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
‘o determine whether an external call has been made to this

rocess as a portal computer and processes that call. The
routine then loops to block 904 to sclect the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking_
connection__call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003, if the
external response message is successfully received (i.ec.,
seekingconnection_resp), then the routine continues at
block 1004, clse the routine returns. Wherever the broadcast
component requests to receive an external message,it sets a
ime out period. If the external message is not received

within that time out period, the broadcaster component
checks its own call-in port to see if another processis calling
it. In particular, the dialed process maybe calling the dialing

rocess, which may result in a deadlock situation. ‘The
roadcaster component may repeat the receive request sev-

eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicatesin its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006,the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing ofthe
connect request routing ia one embodiment. This routine

is fully connected to the broadcast channel. In block 909, the 2

do

is

vyo

30

40

tn an

60

65

20
requests a process of a portal computer that wasidentified as
being fully connectedto the broadcast channelto initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at Icast one process of a portal
computer waslocatedthat is fully connected tothe broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In onc embodiment, a
seeking computer may always searchits entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104,if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessfulif, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (Le., connection__request__call). In block
1106, the routine receives the response message (ic.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes G.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continuesat block 1112, else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighborroutine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. When in the targe regime, the random walk search
for a neighboris performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
atlempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202,if
the answeris successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the message indicates that
a seeking processis calling (Le., seeking connection call),
then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message
(ie., seeking_connection_resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of ihe external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process to a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-

AB-AB 000051

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 53 of 351 PageID #: 40385Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 53 of 351 PagelD #: 40385

US 6,701,344 B1
21

necting to the broadcast channel. For example, a fellow
secking process may become the first process fully con-
nected to the broadcast channel.

FIG.13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine scts
the connection state of this process to fully connected. In 1
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (i.e., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message, This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing cach message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (ie., seeking_
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (Le.,
connection__request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (Le., edge_
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (.c., port_connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (Le., connected_smt), the routine invokes the
handle connected statement in block 1112, clsce the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (ie.,
condition__repair_stmb), then the routine invokes the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loopsto block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 15 is a flow diagram illustrating the processing ofthe
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues al block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connectedto the broadcast channel and continues at
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
processto a list of fellow seeking processes. If this process

is

3S

tye o

49

ata

wa

tn a

D> a

22

is not fully connected, then it is attempting to connectto the
broadcast channel. In block 1505, the routine sends the
external message response (L.e., seeking _connection__resp)
to the secking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this
process fo initiate the connection of the process to the
broadcast channel. This routine cither allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) orstarts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberof holes that the calling process should expectin the
response message. In block 1604, the routine sets the
estimated diameterin the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
the numberof its holes is greater than zero and the calling
processis not a neighborof this process. In block 1606, the
routine sends to the calling process an external message that
is responsive to the connection request call (ie.,
connection__request__resp). In block 1607,the routine notes
the number of holes that the calling process needsto fill as
indicated in the request message. In decision block 1608,if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberof holes that
the calling process needs to fill and continuesat block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has po holes or the
estimated diameter is greater than one (i.e., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1618, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be
filled is greater than or cqual to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identificationof the calling process.
The fill hole routine broadcasts a connection port search
statement (Le., connection__port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG.17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighborto this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to

AB-AB 000052

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 54 of 351 PageID #: 40386Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 54 of 351 PagelD #: 40386

US 6,701,344 B1
23

ensure that there are no gaps in the messages initially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the secking conncctionstatc, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
rocess to partially connected. In block 1705, the routine

adds the calling process to the list of neighbors of this

dispatcher for the new neighbor. The internal dispatcher is
invoked when a messageis received from that newneighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
‘ully connected, then the routine continues at block 1708,

else the routine continues at block 1709. In one embodiment,
a processthat is partially connected may buffer the messages
hat it receives through an internal connection so that it can

send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected and the rouline continues at block 1710, clse the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposedto
this process for edge pinning, whichin this case is no longer
nceded.

FIG.18 is a flow diagram illustrating the processing of the

forward connection edge search routine in one embodiment. 3
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if
the numberof neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast
channel is in the small regime and the routine continucs at
block 1803. In decision block 1803, if the requesting process
is a neighborofthis process, then the routine returns,else the
routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.¢., connection.edge__search__call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors ofthis process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In biock 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808,else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Whenever sucha situation
is detected by the broadcaster component, it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the

rocess. In block 1706, the routine installs an internal ;

Bad

oO

boa

GeS

40

wn o

in an

24

recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reservedif the remaining forwarding distance is less than or
equal to onc. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing processthat
proposes to connect an edge between the proposing process
and oneofits neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus the number of pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continues at
block 1911. In decision block 1902,if the proposing process
or its neighboris a neighborof this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is alrcady
pending as a proposed neighbor, then the routine contimies
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response us
an external message to the proposing process (Le., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ic., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holes is odd, then the routine continues al block 1913,else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG.20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberofholes of this processis greater than zero, then the
routine continues at block 2002, cise the routine continucs at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continuesto block. 2003. In block 2003, the
routine sends a port connection response external message
(Le., port._connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external messageto the sending process
that indicates that is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and then returns. In block 2007, the
routine hangs up the exlernal connection. In block 2008, the
routine invokes the connect request routine to requestthat a
process connect to one of the holes of this process. The
routine then returns.

FIG.21is a flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine seads an internal

AB-AB 000053

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 55 of 351 PageID #: 40387Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 55 of 351 PagelD #: 40387

US 6,701,344 B1
25

message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (i.¢., connection__port_search_stmt). In decision
block 2102,if this process is the requesting process, then the
routine continuesat block 2103,else the routine continuesat
block 2104. In block 2103, the routine distributes the
message to the neighborsof this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sentthe internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the
information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has alrcady been reccived (i.c., a duplicate),
then the routine ignores the message and continuesat block
2208, else the routine continues at block 2203 A. In decision
block 2203 A, if the process is partially connected, then the
routine continues at block 2203 B,else the routine continues 2
at block 2204. In block 2203 B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.c., broadcast
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
ihe routine continues al block 2209, else the routine contin-
ues at block 2210. [he broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then
continucs in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, else the routine continues at block 2212. In
block 2212,the rouline invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG.23 is a flow diagram illustrating the processing ofthe
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast message itself. In block 2301,the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for each originating
process and then returns,

do

is

35

40

50

60

65

26
FIG.24 is a flow diagram illustrating the processing of the

distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, execpt for the neighbor who scent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor whosent
the message. In decision block 2402, if all such neighbors
have alreadybeenselected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26is a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each ofits neighbors other
than the sending neighbor. In decision block 2602, if the
numberofholes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continucs at block 2605, clsc the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message (i.e., condition__check)that includes a list of
this process’ neighbors. in block 2607, the routine sends the
message to the requesting neighbor.

FIG, 27is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703,if the numberofholes ofthis process is greater
than zero, then the routine continues at block 2704, else the
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.c., port_
connection_call) to the prospective neighbor and receives
its response (Le., port_connection_resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG.28is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. ‘This routine is passed a indication of the neighbor who
sent the message and the message itself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distanceis greater than zero,then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting

AB-AB 000054

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 56 of 351 PageID #: 40388Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 56 of 351 PagelD #: 40388

US 6,701,344 B1
27

process and the decremented forwarding distance, The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting process is a neighboror the edge betweenthis
process and the sending neighboris reserved because it has
alreadybeen offered to a process, then the routine continues
at block 28085, else the routine continues at block 2806. In
block 2805,the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicatorthat alternatively indicates to continuc
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the
routine sends an edge proposal call external message(i.e.,
edge proposal call) and receives the response (i.c., edge
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block 2!
2815. In decision block 2813,if this process is the requesting
process and the numberof holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.¢., connection
edge__searchresponse) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flow diagram illustrating the processing ofthe
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.e., connection__edge__search_resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902,if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continues at block 2903,else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. Tn block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, clse
the routine returns. In decision block 2907,if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG.30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block

do

is

49

in an

60

65

28
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (ic., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG.31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS, 32-34 are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in onc embodiment.
This message is sent by a neighbor processthat has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighbor and this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. [n block 3203, the
routine initializes a condition double check message (Le.,
condition_double__check) with the list of neighbors of this
process. In block 3204, the routinc sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.c., condition__repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG, 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighborof this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. ‘The
routine then returns.

FIG. 34is a flow diagram illustrating the processing of the
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whetherthe broadcast channelis in the
small regime. In decision block 34601,if ibis process has one
hole, then the routine continues at block 3402, else the
routine continuesat block 3403.If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine contioues at block

AB-AB 000055

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 57 of 351 PageID #: 40389Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 57 of 351 PagelD #: 40389

US 6,701,344 B1
29

3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, else the routine continues at block 3404. In block
3404, the routine scts the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (i.e., diameter__reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(ie., condition_check_stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number (e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel, The portal computer may also enforec security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

Whatis claimed is:

1. Acomputer network for providing a game environment
for a plurality of participants, each participant having con-
nections to at least three neighbor participants, wherein an
originating participant sends data to the other participants by
sending the data through each of its connections to its
neighbor participants and wherein each participant sends
data that it receives from a neighbor participant to its other
neighbor participants, further wherein the network is
m-regular, where m is the exact number of neighbor par-
ticipants of each participant and further wherein the number
of participants is at least twogreater than m thus resulting in
a non-complete graph.

2. The computer network of claim 1 wherein each par-
ticipant is connected to 4 other participants.

3. The computer network of claim 1 wherein each par-
ticipant is connected to an even numberof other participants.

4, The computer network of claim 1 wherein the network
is m-connected, where m is the number of neighbor partici-
pants of each participant.

5. The computer nctwork of claim 1 wherein the nctwork
is m-regular and m-connected, where m is the munber of
neighbor participants of cach participant.

6. The computer network of claim 1 wherein all the
participants are peers.

7. The computer network of claim 1 wherein the connec-
tions are peer-to-peer connections.

8. The computer network of claim 1 wherein the connec-
tions are TCP/IP connections.

9. ‘he computer network of claim 1 wherein each par-
ticipant is a process executing on a computer.

10. The computer network of claim 1 wherein a computer
hosts more than one participant.

40

15

Lp tA

40

£mn

S50

on n

30
ll. The computer network of claim 1 wherein each

participant sends to eachof its neighbors only one copy of
the data,

12. The computer network of claim 1 wherein the inter-
connections of participants form a broadcast channel for a
game of interest.

13. A distributed game system comprising:

a plurality of broadcast channels, each broadcast channel
for plaving a game, each of the broadcast channels for
providing game information related to said game to a
plurality of participants, each participant having con-
nections to at least three neighbor participants, wherein
an originating participant sends data to the other par-
ticipants by sending the data through each ofits con-
nections to its neighbor participants and wherein cach
participant sends data that it receives fram a neighbor
participantto its neighborparticipants, further where
the network is m-regular, where mi is the exact number
of neighbor participants of each participant and further
wherein the number of participants is at least two
greater than m thus resulting in a non-complete graph;

meansfor identifying a broadcast channel for a game of
interest; and

means for connecting to the identified broadcast channel.
14. The distributed game system of claim 13 wherein

meansfor identifying a game of interest includes accessing
a web server that maps games to corresponding broadcast
channel.

15. The distributed game system of claim 13 wherein a
broadcast channel is formed by player computers that are
each interconnectedto at least three other computers.

16. A computer network for providing a game cnviron-
ment for a plurality of participants, each participant having
connections to exactly four neighbor participants, wherein
an originating participant sends datato the other participants
by sending the data through each of its connections to its
neighbor participants and wherein cach participant sends
data that it receives from a neighbor participant to its
neighbor participants, further wherein the network is in a
stable 4-regular state and wherein there are at least six
participants to resulf in a non-complete graph.

17. The computer network of claim 16 wherein a com-
puter hosts more than one participant.

18. A computer network for providing a game environ-
ment for a plurality of participants, each participant having
connectionsto at least three neighbor participants, wherein
an originating participant sends data tothe other participants
by sending the data through each of its connections to its
neighbor participants and wherein each participant sends
data that it receives from a neighbor participant to its other
neighbor participants, further wherein the network is
m-regular and the network forms an incomplete graph.

19. fhe computer network of claim 18 wherein a com-
puter hosts more than one participant.

AB-AB 000056

EXHIBIT 103

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 58 of 351 PageID #: 40390Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 58 of 351 PagelD #: 40390

EXHIBIT 103

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 59 of 351 PageID #: 40391Case 1:16-cv-00454-RGA Document 475-1

az United States Patent

Holt et al.

(54) INFORMATION DELIVERY SERVICE

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil
E. Bourassa, Bellevue, WA (US)

(73) Assignee: The Boeing Company, Seattle, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 467 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 09/629,043

(22) Filed: Jul. 31, 2000

(SU) Tint. CI? ccc cesecetessterseeseiennens GO6F15/16

(82) ULS. Ch oe 709/204; 709/205; 709/203;
709/243; 463/92

(58) Field of Searchoe709/204, 205,
709/227, 243, 203; 463/40, 42

(56) References Cited
U.S. PATENT DOCUMENTS

4,912,656 A 3/1990 Cain et al.
5,056,085 A 10/1991 Vu
5,058,105 A * 10/1991 Mansour et al. » 370/228
5,079,767 A * 1/1992 Perlman 370/408
5,117,422 A * 5/1992 Hauptschein et al. 370/255
5,309,437 A $/1994 Perlman et al.
5,426,637 A 6/1995 Derbyet al.
§,459,725 A * 10/1995 Bodner et alo 0.0.00... 370/390
5,471,623 A * 11/1995 Napolitano, Jn... 709/243
5,535,199 A 7/1996 Amri et al.
5,568,487 A 10/1996 Sithonet al.
5,636,371 A 6/1997 Yu
5,644,714 A * F/1997 Bikinis ooceseeserees 700/219
5,673,265 A 9/1997 Gupta ct al.
5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spaur et al.
5,732,086 A * 3/1998 Liang et al... 370/410
5,732,219 A 3/1998 Blumeret al.

Distribute

All neighborselected

Send internal
messagei‘ |

 broadcast message,

Filed 04/24/18 Page 59 of 351 PagelD #: 40391

US006714966B1

(10) Patent No.: US 6,714,966 B1

(45) Date of Patent: *Mar.30, 2004

A 3/1998 Yu

A 4/1998 Periasamyetal.
A 5/1998 Butts et al.
A 6/1998 Miller
A 6/1998 Onweller
A 8/1998 Sistanizadeh et al.

§,790,553 A 8/1998 Deaton, Jy. et al.
5,799,016 A 8/1998 Onweller
5,802,285 A 9/1908 Hirviniemi
5,850,592 A * 12/1908 Ramanathan we 4558/7
5,864,711 A 1/1999 Mairs et al.
5,867,660 A 2/1999 Schmidt et al.
5,867,667 A 2/1999 Butmanet al.
5,870,605 A 2/1999 Bracho etal.

(List continued on next page.)
OTHER PUBLICATIONS

PR Newswire, “Microsoft Boosts Accessibility to Internet
Gaming Zone with Latest Release,” Apr. 27, 1998, pp. 1ff.*
PR Newswire, “Microsoft Announces Launch Date for
UltraCorps, Its Second Premium Title for the Internet Gam-
ing Zone,” Ma 27, 1998, pp. 1 if.*
Business Wire, “Boeing and Panthesis Complete SWAN
Transaction,” Jul. 22, 2002, pp. Lif.*

(List continucd on next page.)

Primary Examiner—Dung C. Dinh
Assistant Examiner—Brad Edelman

(7A) Attorney, Agent, ar Firm—Perkins Coie LLP

(57) ABSTRACT

A computer network for providing an information delivery
service for a plurality of participants over the network is
disclosed. Each participant has connectionsto at least three
neighbor participants. An originating participant sends data
to the other participants by sending the data through each of
its connections to its neighbor participants. Purther, each
participant sends data thai it receives from a neighbor
participant to its other neighborparticipants. The network is
m-regular where mis the exact oumber of neighbor partici-
pants of each participant and the network is an incomplete
graph.

17 Claims, 39 Drawing Sheets

message
from neighbor

2403

AB-AB 000291

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 60 of 351 PageID #: 40392Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 60 of 351 PagelD #: 40392

US 6,714,966 B1
Page 2

U.S. PATENT DOCUMENTS

5,874,960 A 2/1999 Mairs ctal.
5,899,980 A 5/4999 Wiet al.
5,907,610 A 5/1999 Onweller
5,925,097 A * 7/1999 Gopinath et al. o......... 709/200
§,928,335 A 7/1999 Morita
5,935,215 A 8/1999 Bell et al.
5,948,054 A 9/1999 Nielsen
5,949,975 A 9/1999 Batty et al.
5,956,484 A 9/1999 Rosenberg et al.
§,970,232 A * 10/1999 Passint et abo oo. 709/238
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carter et al.
6,003,088 A 12/1999 [louston etal.
6,013,107 A 1/2000 Blackshearet al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga etal.
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.
6,094,676 A 7/2000 Gray et al.
6,115,580 A * 9/2000 Chupninet al. vee 4SS/L
6,167,432 A * 12/2000 Jiang » 709/204
6,173,314 Bl * 1/2001 Kurashima et aloo... 700/204
6,199,116 Bi
6,216,177 Bi
6,223,212 BL
6,243,691 BL

3/2001 Mayet al.
4/2001 Mairs et al.
4/2001 Batty et al.
6/2001 Fisher et al.

6,268,855 Bi 7/2001 Mairset al.
6,271,839 Bt 8/2001 Mairs et al.
6,272,548 Bi * 8/2001 Cotter et alo wo 709/239
6,285,363 Bi 9/2001 Mairs et al.
6,304,928 Bl 10/2001 Mairs et al.
6,321,270 Bl*11/2001 Crawley... « 709/238

*

6,463,078 Bi * 10/2002 Engstrom et al. » 370/466
6,524,189 Bi * 2/2003 Rautila wee 463/40

2002/0027896 Ai * 3/2002 Hughes et al., 370/342

OTHER PUBLICATIONS

Azar et al., “Routing Strategies for Fast Networks,” May
1992, INFOCOM 792, Eleventh Annual Joint Conference of
the JEEE Computer and Communications Societies, vol. 1,
pp. 170-179.*
Cho et al., “A Flood Routing Method for Data Networks,”
Sep. 1997, Proceedings of 1997 International Conference on
Information, Communications, and Signal Processing, vol.
3, pp. 1418-1422.*
Komine et al., “A Distributed Restoration Algorithm for
Multiple-Link and Node Failures of Transport Networks,”
Dee. 199 Global Telecommunications Conference, 1990,
and Exhibition, TEEE, vol. 1, pp. 459-463."
Peercy et al., “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
Faulty Hypercubes,” Jun. 1999, 20” International Sympo-
sium of Fault~Tolcrant Computing, 1990, pp. 218-225.*
Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,
TELE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company,Inter-
national patent application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
U.S.patent application Ser. No. 09/629,570, Bourassaetal.,
filed Jul. 31, 2000.

USS. patent application Ser. No. 09/629,577, Bourassaet al,
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,575, Bourassaetal.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,572, Bourassa et al,
filed Jul. 31, 2000.
US. patent application Ser. No. 09/629,023, Bourassaet al,
filed Jul. 31, 2000.
US. patent application Ser. No. 09/629,576, Bourassaet al.,
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,024, Bourassaet al.
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,042, Bourassa et al.,
filed Jul. 31, 2000.
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26~28).
The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).
The O'Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) hitp://www.open2p.com/
Ipt/... [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reily
Network http:/Avww.oreillynet.com/Ipt... [Accessed Jan. 29,
2002].
Internetworking ‘Technologies Handbook, Chapter 43 (pp.
3-1-4316).

Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
hitp://linux.oreillynet.com/Ipt... [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies, “MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYV/BCP Archives—http:/Avww.faqs.org/rfes/
rfci832.html [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, *A Primer on the ‘1.120
Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Assoicates, Inc.,
http:/Avww.hill.com/library/publications/t... [Aecessed Jan.
29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas H. et al,, Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.
The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
21-1-12-10), Chapter 12 (pp. 13-1-13-56), Chapter 16
(pp. 16-1-16--26), Chapter 18 (pp. 18—-1-18-52), Chapter
20 (pp. 20-1~20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http:/Avww.des.warwick.ac.u... [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 000292

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 61 of 351 PageID #: 40393Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 61 of 351 PagelD #: 40393

U.S. Patent Mar. 30,2004 Sheet 1 of 39 US 6,714,966 BL

AB-AB 000293

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 62 of 351 PageID #: 40394Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 62 of 351 PagelD #: 40394

US 6,714,966 BLSheet 2 of 39Mar.30, 2004U.S. Patent

AB-AB 000294

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 63 of 351 PageID #: 40395Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 63 of 351 PagelD #: 40395

U.S. Patent Mar. 30,2004 Sheet 3 of 39 US 6,714,966 BL

a oO

N a
ory

< sh
heey

Ry

uw Q

m

O

=
< wv

be
Sib

ay

Q

LL

AB-AB 000295

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 64 of 351 PageID #: 40396Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 64 of 351 PagelD #: 40396

U.S. Patent Mar. 30,2004 Sheet 4 of 39 US 6,714,966 BL

AB-AB 000296

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 65 of 351 PageID #: 40397Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 65 of 351 PagelD #: 40397

U.S. Patent Mar. 30,2004 Sheet 5 of 39 US 6,714,966 BL

AB-AB 000297

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 66 of 351 PageID #: 40398Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 66 of 351 PagelD #: 40398

U.S. Patent Mar. 30,2004 Sheet 6 of 39 US 6,714,966 BL

Fig.4C
AB-AB 000298

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 67 of 351 PageID #: 40399Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 67 of 351 PagelD #: 40399

U.S. Patent Mar. 30,2004 Sheet 7 of 39 US 6,714,966 BL

AB-AB 000299

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 68 of 351 PageID #: 40400Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 68 of 351 PagelD #: 40400

U.S. Patent Mar. 30,2004 Sheet 8 of 39 US 6,714,966 BL

= 69
iw

LL °

be

<
AB-AB 000300

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 69 of 351 PageID #: 40401Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 69 of 351 PagelD #: 40401

U.S. Patent Mar. 30,2004 Sheet 9 of 39 US 6,714,966 BL

a

oO

Lu

co
1S)
ess

Li. °

£0

{

1)

|

AB-AB 000301

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 70 of 351 PageID #: 40402Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 70 of 351 PagelD #: 40402

U.S. Patent Mar. 30,2004 Sheet 10 of 39 US 6,714,966 BL

° aS
try

LL. .

be

<x
AB-AB 000302

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 71 of 351 PageID #: 40403Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 71 of 351 PagelD #: 40403

U.S. Patent Mar. 30,2004 Sheet 11 of 39 US 6,714,966 BL

Q

<x

Ry
lw

ob

ma

O

Qa <

KY
w

Re

© m

AB-AB 000303

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 72 of 351 PageID #: 40404Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 72 of 351 PagelD #: 40404

U.S. Patent Mar. 30,2004 Sheet 12 of 39 US 6,714,966 BL

600

602 Broadcaster Broadcaster Broadcaster
Fig.6

601

 Application1 (channeltype channelinstance) Application2 (channeltype channelinstance)

AB-AB 000304

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 73 of 351 PageID #: 40405Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 73 of 351 PagelD #: 40405

US 6,714,966 BLSheet 13 of 39Mar.30, 2004U.S. Patent

IAgyoyedsipjewsoquy
c0L

£02.

Jayayedsip

eussxgroaZ0Ls|PUeH202

00L

o8essawaunboy
vOysvopeoig

/bd
sonbasyosuu07d

902

[euedPISSO/LOL
yosuu07)

asucdsazBAOOY

WIeQ[peoyoauuo’?)
OLL

AB-AB 000305

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 74 of 351 PageID #: 40406Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 74 of 351 PagelD #: 40406

U.S. Patent Mar. 30,2004 Sheet 14 of 39 US 6,714,966 BL

(Channel Type,
Channel Instance,

Connect Aux Info)
801

Opencall in port

802 Fig. 8

803

Seek portal - computer
(channel type channel

instance)

804

<a>x
Y

805 806

Contacts
¥ Achieve connection

0

807

Install external dispatcher
808

Install external dispatcher

|come|

AB-AB 000306

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 75 of 351 PageID #: 40407Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 75 of 351 PagelD #: 40407

U.S. Patent Mar. 30,2004 Sheet 15 of 39 US 6,714,966 BL

Seek portal Channel Type
computer ChannelInstance

902

Select next depth

903

All depths selected ¥ Return (failure)

Select next portal computer
Fig. 9

905

All portal computers
selected

N 906

Dial portal computer

907

Success

¥ 908

| Contact process ;
909

Hangupselected portal
computer

computer connected

914

Check for external N
call

Return (success)

AB-AB 000307

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 76 of 351 PageID #: 40408Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 76 of 351 PagelD #: 40408

U.S. Patent Mar. 30,2004 Sheet 16 of 39 US 6,714,966 BL

Contact process

1005

Add as connected portal
computer Answering process

connected

Add as fellow seeking
computer

AB-AB 000308

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 77 of 351 PageID #: 40409Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 77 of 351 PagelD #: 40409

U.S. Patent Mar. 30,2004 Sheet 17 of 39 US 6,714,966 BL

Connect request

Fig. 11

Restart
Receive external message

1107
N

¥ 1108

Set expect holes from
response

1109

Set diameter from response

1112

i Add neighbor |

AB-AB 000309

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 78 of 351 PageID #: 40410Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 78 of 351 PagelD #: 40410

U.S. Patent Mar. 30,2004 Sheet 18 of 39 US 6,714,966 BL

Check for externa

cal] .
Fig. 12

1201

1202

N

Receive external message

 ype = = seeking
connection call

Send external message

Success

Add otheras fellow seeker

AB-AB 000310

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 79 of 351 PageID #: 40411Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 79 of 351 PagelD #: 40411

U.S. Patent Mar. 30,2004 Sheet 19 of 39 US 6,714,966 BL

Achieve connection

Fig. 13
1301

Connection- state = fully
connected

1302

Notify fellow seekers

1303

Invoke connect call back

AB-AB 000311

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 80 of 351 PageID #: 40412Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 80 of 351 PagelD #: 40412

U.S. Patent Mar. 30,2004 Sheet 20of 39 US 6,714,966 BL

External dispatcher

1415

Hang up

Handle seeking
connection call

Handle connection
requestcall

Handle edge proposal
lt

Handle port
connection call

Handle connected
statement

Condition repair Handle condition
statement repair statement

AB-AB 000312

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 81 of 351 PageID #: 40413Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 81 of 351 PagelD #: 40413

U.S. Patent Mar. 30,2004 Sheet 21 of 39 US 6,714,966 BL

Handle seeking Fig. 15
connectioncall

1502

Set message to indicate
connected Set message to not

connected

Add otherasfellow
seeking process

Send external message |

AB-AB 000313

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 82 of 351 PageID #: 40414Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 82 of 351 PagelD #: 40414

U.S. Patent Mar. 30,2004 Sheet 22 of 39 US 6,714,966 BL

andle connection

requestcall

1601 60

<Comeces >
1603 Return

Set newcomer's

holes_to_expect

. __1604
Set diameter estimate in

response
60

Set ready in response

606

Sent external message
connect request resp.

1607
Set newcomer's

holes_to_fill

Fig. 16

608 1609

¥ i Add neighbor |
1611 " 1610

Newcomer's
Hang up holes_to_fill --

N ole = =(0or

diameter > |

Forward connection

edge search

> N Holesto fill - = Z

1616 1617

4 .

polestofill > 0 ou Fill hole (requestor) |
Ni a

AB-AB 000314

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 83 of 351 PageID #: 40415Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 83 of 351 PagelD #: 40415

U.S. Patent Mar. 30,2004 Sheet 23 of 39 US 6,714,966 BL

_ Add neighbor

1701 .
Identifies calling party Fig. 17

1702

Sets neighbor to
messages pending

1703 1704
i . Y Connection_state =

SQECKING—— partially connected
N

1705

Add as neighbor

1706

Install interal dispatcher|
for new neighbor |

1707 1708

eo
4709 0

Holes = = Y Achieve connected
ed hole

1711 1712

Purge pending edges

N

AB-AB 000315

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 84 of 351 PageID #: 40416Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 84 of 351 PagelD #: 40416

U.S. Patent Mar. 30,2004 Sheet 24 of 39 US 6,714,966 BL

Forward connection requestor
edge search distance remaining

Fig. 18

#

neighbors
>I

neighbor =
requestor

All neighbors
selected

N

1807

Y

1808

Note connection edge
search call

AB-AB 000316

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 85 of 351 PageID #: 40417Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 85 of 351 PagelD #: 40417

U.S. Patent Mar. 30,2004 Sheet 25 of 39 US 6,714,966 BL

Handle edge in message
proposalcall out message

Fig. 19

N 1903

create edge (pending)

neighbors
1944 pending

Send external message N
1907

Send external message

y 1912 4908

Y
1913 Y 4909

| Fill hole Add edge as pending
" 1910

Return | Add neighbor |

AB-AB 000317

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 86 of 351 PageID #: 40418Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 86 of 351 PagelD #: 40418

U.S. Patent Mar. 30,2004 Sheet 26 of 39 US 6,714,966 BL

Handle port
connection call

Fig. 20 2001

N

2003

Send external message
(point-connect-resp

not ok)

Caller is not

neighbor

Y

2004
ReturnSend external message (Return)

(point-connect-resp, ok)

005

2006

; Connect request |

AB-AB 000318

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 87 of 351 PageID #: 40419Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 87 of 351 PagelD #: 40419

U.S. Patent Mar. 30,2004 Sheet 27 of 39 US 6,714,966 BL

Fill hole

01

Initialize internal

message

Handle connection Distribute internal
ports search edit message

AB-AB 000319

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 88 of 351 PageID #: 40420Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 88 of 351 PagelD #: 40420

U.S. Patent Mar. 30,2004 Sheet 28 of 39 US 6,714,966 BL

Internal

dispatcher

2201

F,ig 22 Received internal message
2202

Assess diameter

 This

process = =

Y Partially comected>

pending connection buffer
Type

= = broadcast
statement

2005
Handle broadcast

message

Type 2206 2007
== shutdown ¥ Handle shutdown

statement statementNmea

Y Pending
connection buffer

za,‘

Is 210
message queue

empty 2212

Y Receive response ({)

AB-AB 000320

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 89 of 351 PageID #: 40421Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 89 of 351 PagelD #: 40421

U.S. Patent Mar. 30,2004 Sheet 29 of 39 US 6,714,966 BL

Handle broadcast origin —
message from neighbor

message

Fig. 23 2301

Process out of order

message

Clear out of order info

AB-AB 000321

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 90 of 351 PageID #: 40422Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 90 of 351 PagelD #: 40422

U.S. Patent Mar. 30,2004 Sheet 30of 39 US 6,714,966 BL

message

from neighborFig. 24
Distribute

broadcast message

All neighbor
selected

Send internal

message

AB-AB 000322

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 91 of 351 PageID #: 40423Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 91 of 351 PagelD #: 40423

U.S. Patent Mar. 30,2004 Sheet 31 of 39 US 6,714,966 BL

Handle connection from neighbor
for search message

2601

Distribute internal .
Fig. 26

eS(Return)
603 2604

 Is requestor N Court neighbor
a neighbor

Y

(Ren)

2606
enerate

condition check
message w/neighbors

2607

Send internal message
to requestor

AB-AB 000323

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 92 of 351 PageID #: 40424Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 92 of 351 PagelD #: 40424

U.S. Patent Mar. 30,2004 Sheet 32 of 39 US 6,714,966 BL

Court neighbor Prospect

Fig. 27

 Is prospect
a neighbor

2702

Dial prospect

703

Send and receive

external message

| Add neighbor
2706

Hang up prospect

AB-AB 000324

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 93 of 351 PageID #: 40425Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18

U.S. Patent Sheet 33 of 39Mar.30, 2004

Handle connection

edge search call

Fig. 28 201
N Not

my message 11
holes >= Z

2813

Message Y
N —from this pt. && 802

holes = = | Remaining Y
distance > 0

2814

Fill hole (self)

 Requestor
is neighbor or edge

reserved

-
2815

end interna

message (from

neighbor, ack
IN____ 2806

Dial requestor

2807

Send and receive
external message

808

is edge acceptable

Reserve edge of from
neighbor

Page 93 of 351 PagelD #: 40425

US 6,714,966 BL

from neighbor
message

2803

Forward
connection second

edge (requestor
remaining dist -1)

connection edge
search (requestor,

AB-AB 000325

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 94 of 351 PageID #: 40426Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 94 of 351 PagelD #: 40426

U.S. Patent Mar. 30,2004 Sheet 34 of 39 US 6,714,966 BL

origin
from neighbor

Fig. 29 message

Note connection edge
search response

Reserve edge of from
neighbor

Y 9908

Fill hole (self) |

AB-AB 000326

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 95 of 351 PageID #: 40427Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 95 of 351 PagelD #: 40427

U.S. Patent Mar. 30,2004 Sheet 35 of 39 US 6,714,966 BL

messageBroadcast 8

3001

Y

Fig. 30

3002

Generate internal

message

3003

Set message sequence
number

3004

Distribute internal

message

AB-AB 000327

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 96 of 351 PageID #: 40428Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 96 of 351 PagelD #: 40428

U.S. Patent Mar. 30,2004 Sheet 36 of 39 US 6,714,966 BL

. message
Acquire message

3101

Pop message queue

Message
retrieved

Fig. 31

Return false

Return true

AB-AB 000328

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 97 of 351 PageID #: 40429Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 97 of 351 PagelD #: 40429

U.S. Patent Mar. 30,2004 Sheet 37 of 39 US 6,714,966 BL

Handle condition check

 , 3202

Same set of

neighbors

elect a neighbor
of sending process

not my neighbor _

Send external message
to selected neighbor

| Add neighbor

Set up message withlist
of neighbors

2

Send internal message

Return

AB-AB 000329

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 98 of 351 PageID #: 40430Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 98 of 351 PagelD #: 40430

U.S. Patent Mar. 30,2004 Sheet 38 of 39 US 6,714,966 BL

Handle condition

repair statement

Fig. 33

Select a neighbor not
involved in condition

Removeselected

neighbor

3304

Add neighbor :

AB-AB 000330

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 99 of 351 PageID #: 40431Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 99 of 351 PagelD #: 40431

U.S. Patent Mar. 30,2004 Sheet 39 of 39 US 6,714,966 BL

Handle condition
double check °

Fig. 34
3401

N

Y

Sameset of

neighbors

Send internal message Reset diameter to |

to-from neighbor
3405

Send internal message

AB-AB 000331

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 100 of 351 PageID #: 40432Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 100 of 351 PagelD #: 40432

US 6,714,966 B1
1

INFORMATION DELIVERY SERVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser,
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application ,
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNET.,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,024, entitled
“DISTRIBUTED CONFERENCING SYSTEM,” filed on
Jul. 31, 2000; and U.S. patent application Ser. No. 09/629,
042, entitled “DISTRIBUTED GAME ENVIRONMENT,”
filed on Jul. 31, 2600, the disclosures of which are incor-
porated herein by reference.

TECHNICAL FIELD

‘The described technology relates generally to a computer
network and more particularly, to a broadcast channelfor a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computersthat are widely distributed.
For cxample, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allowprocesses on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manageits direct con- 5
nections to all other participating processes. Programmers,
however, find it very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the numberofpossible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients whoare sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(CORBA’). Client/server middleware systems are not par-
ticularly well suited to sharing of information among many
participants. In particular, when a client stores information

ft o

3S

syo

2
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Altcrnatively, cach clicnt may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (.c., the server) would prevent communications
between any of the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overheadon the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the T.120 Internet standardis a tree structure, whichrelies on
the root node of the tree for reliability of the entire network.
That is, cach message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultaneous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

VIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG, 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG, 4A illustrates the broadcast channel of FIG. 1 with

an added computer.
FIG.4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added computer.
FIG.SAillustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. SB illustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG. SC illustrates the neighbors with empty ports con-

dition.

FIG, SD illustrates two computers that are not neighbors
who now have empty ports.

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

AB-AB 000332

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 101 of 351 PageID #: 40433Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 101 of 351 PagelD #: 40433

US 6,714,966 B1
3

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG.7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment.

FIG.11 is a flow diagram illustrating the processing of the
connect request routine in one cmbodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagram of the processing ofthe achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram
handle connection request call routine in one embodiment.

FIG.17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing ofthe
orward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing ofthe
handle edge proposal call routine.

FIG.20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
All hole routine in one embodiment.

FIG.22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagramillustrating the processing of the
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing ofthe
distribute broadcast message routine in one embodiment.

FIG.26 is a flow diagram illustrating the processing of the
bandie connection port search statement routine in one
embodiment.

FIG. 27 isa flow diagrami
court neighbor routine in one

FIG. 28 is a flow diagram i
handle connection edge searcment.

FIG.29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG. 30 is a flow diagram illustrating the processing ofthe
broadcast routine in one cmbodiment.

FIG.31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagramillustrating processing of the
handle condition repair statement routine in one embodi-meat.

FIG. 34 is a flow diagram illustrating the processing of the
handle condition double check routine.

ustrating the processing of the
embodiment.

ustrating the processing of the
h call routine in one embodi-

illustrating processing of the ~

do

is

Lp tA

40

£mn

in mn

60

65

4
DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications nctwork is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (c.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each compuler’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (Le.,
edges) between host computers (i.c., nodes) through which
the broadcast channel is implemented. In one embodiment,
cach computeris connceted to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puterthat receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to eflect the broadcasting of
the message to cach computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of
the connections to its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG.1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the compuiers (Le., the shorlest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computerF is directly connected to
computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from

AB-AB 000333

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 102 of 351 PageID #: 40434Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 102 of 351 PagelD #: 40434

US 6,714,966 B1
5

computer F to computer B. The maximum ofthe distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel, The diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
compulers to the broadcast channel (Lc., composing ihe
graph), (2) the broadcasting of messages over the broadcast
channel (i.c¢., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.¢.,
decomposing the graph) composing the graph.
Composing the Graph

To connectto the broadcast channel, the computer seeking
the connection first locates a computer that is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are alrcady
connected to the broadcast channel. (This assumesthat there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular 2:
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the
small regime is described below in detail. Whenfive or more
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” ‘This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer <
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers(i.¢., to
be the seeking computer’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the sccking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection stale.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computerthat is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection belween them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 34,
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and
D are the twopairs thatare identified as the neighborsfor the
new computer Z. The connections between each of these

do

is

49

SO

60

65

6
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
byFIG. 3B. The process of breaking the connection between
two neighbors and reconnecting cach of the former neigh-
bors to another computeris referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a newnode.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“Sntemal’ connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-hroadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network, The TCP/IP protocol providesfor reliable and
ordered delivery of messages between computers. The TCP/
IP protecol provides each computer with a “port space” that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. ‘The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HTTP messages), The remainder of
the ports are user ports that are available to any process. In
one embodiment, a sct of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in portis used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages through its external port. A seeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call onits
call-in port. A portal computer answers whenit is connected
to or aticmpting to conncetto the broadeast channel and its
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
secking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
coniputer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connectto the broadcast chan-
nel by connecting to computers cither directly connected to
the found portal computer or directly connectedto one ofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computeris that the
diameter of the broadcast channel may increase when each
seeking coniputer uses the same found portal computer and

AB-AB 000334

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 103 of 351 PageID #: 40435Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 103 of 351 PagelD #: 40435

US 6,714,966 B1
7

establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
are added. FIGS. 4A-4C illustrate that possible problem.
FIG.4A illustrates the broadcast channel of FIG. 1 with an
added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
J, The diameter of this broadcast channel is still two. HIG.
4B illustrates the broadcast channel of FIG. 4A with an
added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E—J and B-Cto com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G—A, A-E, and E-K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connectedto the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a randomselection technique to identify the
four neighbors of a computer in the secking connectionstate.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph
As described above, each computer that is connected to

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. ‘The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
naling computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer bas four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbers its own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changesto one. Thefirst
message may have to travel a distance of four to reach the
receiving compuier. The second message only has to travel
a distance of one. ‘Thus,it is possible for the second message
to reach the receiving comrputer before the first message.

do

is

vyoO

ty cA

40

S50

tn A

60

65

8
When the broadcast channelis in a steady state (Le., no

computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
cach computer will cventually reecive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connectto the broadcast channelafter the second
message has already been received and forwarded onbyits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queue all the messagesthat it receives until it can send them
in their proper orderto its neighbors. This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors ofthe
newly connected computers. Each already connected neigh-
bor would forward messages as it receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the bighest sequence number of the messages
already reccived and forwarded on from cach originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then receive message 3. In
such a casc, the alroady connected computer would forward
queue messages 4 and 5. When message 3 is finally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and § and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message3. It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.
Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a
computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The

AB-AB 000335

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 104 of 351 PageID #: 40436Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 104 of 351 PagelD #: 40436

US 6,714,966 B1
9

disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In onc embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to connectto the fourth computerin thelist. If a computer
cannot connect (e.g, the first and second computers are
alrcady connected), then the computers maytry connceting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer,
When a computer with an available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A—Dillustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decidesto disconnect, it sendsits list of neighbors to each of
its neighbors (computers A, E, F and J) and then disconnects
from cach of its ncighbors. When computers A and I reecive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When, a computer disconnects in an unplanned manner, 2:
such as resulting from a powerfailure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (i.¢., it has a bole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates that it has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computerthat is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, cach neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

Tt is possible that a planned or unplanned disconnection
may result in two neighbors each having an emptyinternal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request whenit detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
emply port. Such a condition may also occur when the
broadcast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the otber aeighbor.

do

is

vyoO

30

Lp tA

40

50

tn mn

60

65

10
The condition check message inchides a list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer reccives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus,one of the original neighbors involved in the condition
will have had a port filled. However, two computersare still
in need of a connection, the other original neighbor and the
computer that is nowdisconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors,then they will connect to each other when
they receive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighborthat receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the sameset of neighbors as the
sending computer. If so, the broadcast channelis in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computerthat received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer thal receives (hat condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. SCillustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and | responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, which givesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nizedthat computer E hasa different set of neighbor(i-e., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sentit a condition repair request. When computer D received
the condition repair request, it disconnected from oneofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are nol neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. FIG. SE iTlusirates the neighbors with
empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manver, then

AB-AB 000336

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 105 of 351 PageID #: 40437Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 105 of 351 PagelD #: 40437

US 6,714,966 B1
11

each computer broadcasts a port connection request when it
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channel is
in the small regime.

FIG. SFillustrates the situation of FIG. 5E when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B reccives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of ils
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

Asdescribed above, the TCP/IP protocol designates ports
above number 2056 as user ports. ‘he broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. 'Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking
computer would eventually dial every user port. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many ofthe low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long timeto locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithmto identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given
channel type and channel instance,it generates the same port
ordering. As described below,it is possible for a computer

40

is

40

£mn

60

65

12

to be connected to multiple broadeast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instanee in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many computers arc at the same time secking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port maybe significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the bashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the secking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances ofdialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through whichit
can connect to the broadeast channcl. In onc embodiment,
each computer has the same set of portal computers. A
seeking computer locates a portal computerthatis connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A -secking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found.If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of cach portal computer arc dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the secking computer selects a port
number according to the algorithm andthen dials each portal
computer at that port number. If no acceptable call-in port to

» the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, thatis the numberof portsthat it will dial when
seeking a portal computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computerthat
is itself not fully connected, the two computers do not
connect when they first locate each other because the
broadcast channel may already be established and accessible
through a higher-ordered port number on another portal

AB-AB 000337

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 106 of 351 PageID #: 40438Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 106 of 351 PagelD #: 40438

US 6,714,966 B1
13

computer. If the two seeking computers were to connect to
cach other, then two disjoint broadcast channcls would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searched all the portal computers to a depth ofeight, then the
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. Lf that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depthsfive through
eight and that other seeking computer can advance its
searching to a depth of nine.

Tn one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it maybe possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting
computer are prefcrably selected randomly from the set of
currently connected computers. One advantage of the broad-
east channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer

has local knowledge ofitself and its neighbors. This limited 2
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channelto fail. ‘Vhis local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

‘To sclect the four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com- 2
puter again sends the edge connection requesi message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message hastraveled far enough to represent a randomly
selected computer. ‘That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course,if cither of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

Tn one embodiment, the distance that the edge connection
request messagetravels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
puter cannot connect to the seeking computer (¢.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to oneof its
neighbors with a new distance to travel. In one embodiment,
the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

do

is

40

£mn

50

60

65

14
Because of the local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameterof the
broadcast channel. In onc embodiment, cach message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter rcecives a message that has traveled a distance that
indicates that the estimated diameteris too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a compuler receives an estimated diameter
message that indicates a diameterthat is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.
External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer mayuse 32-bit integers, and another computer
may usc 64-bit integers. As another cxample, one computer
may use ASCII to represent text and another computer may
use Unicode, To allow communications between heteroge-
neous computers, the messages sent over ihe broadcast
channel mayuse the XDR (“External Data Representation”)
format.

The underlying peer-to-peer communications protocol
may send multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the number of bytes indicated bythe retrieved size.
Such calls to the operating system can, however, be very
slowin comparison to the invocations of local routines. To
overcome the inefliciencies of such repeated calls, the broad-
cast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thatit takes to connect
a secking computer to the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steadystate). If the numberof internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd number ofinternal connections.
In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become

AB-AB 000338

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 107 of 351 PageID #: 40439Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 107 of 351 PagelD #: 40439

US 6,714,966 B1
15

m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumedthat there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More gencrally, a
network of computers may have multiple broadcast 1
channels, each computer may be connected to more than one
broadcast channel, and each compuler can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes(e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (¢.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channcl, it sccks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes, Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to whichit is connected. The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program.In
one embodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoketo retrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

‘The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
{e.g., keyboard and pointing device), output devices (e.g,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are conputer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG.7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The
broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for

15

wyo

Lp tA

40

50

60

65

16
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
grammay provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect componentidenti-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect
request component 706 to ask the portal computer(if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messages are stored in the broadcast
message queue 709. The acquire message component is
invoked to retrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program
to broadcast messages in the broadcast channel.
An Information Delivery Service

In one embodiment, an information delivery service
application is implemented using the broadcast channel. The
information delivery service allows participants to monitor
messages as they arc broadcast on the broadcast channel.
Each participant may function as a producer of information,
as a consumer of information, or both. The producers
broadcast messages on the broadcast channel, and consum-
ers receive the broadcast messages. For example, a sports
broadcast channel may be used to disseminate the results of
sporting events. Certain organizations, such as the National
Football League, may be authorized to broadcast results of
sporting events on the broadcast channel. The operators of
the broadcast channel maysell subscriptionsto the broadcast
channel to sports enthusiasts. The information delivery
service may be used to distribute a broad range of content
including newsarticles, stock prices, weather alerts, medical
alerts, traffic reports, and so on.

The information delivery service may provide a directoryweb site where consumers can locate and subscribe to

broadcast channelsof interest. ‘The directory may provide a
hierarchical organization of topics of the various broadcast
channels. When a user decides to subscribe to a broadcast
channel, the broadcaster component and information deliv-
ery service application program may be downloaded to the
user’s computer if not already available on the user’s
computer. Also, the channel type and channel instance
associated with that broadcast channel and the identification

of the portal computers for that broadcast channel may be
downloaded to the subseriber’s computer. The information
delivery service may also provide a subscriberidentifier that
may be used by a portal computer to authorize access to or
track who bas connecied to the broadcast channel.

The information delivery service web site may also allow
an entity to create new broadcast channels. For example, the
NFL may want a broadcast channel dedicated to the dis-
semination of information under its control. In which case,
the entity would interact with the web site to create the
broadcast channel. The creation of ihe broadcast channel
would entail the generation of a channel type and channel
instance, the specification of security level (e.g., encrypted
messages), the specification of subscriber qualifications, andso on.

A user may subscribe to a broadcast channel for an
individual topic, which corresponds to a leaf node in the
hierarchy, or a user may subscribe to a category of topics,

AB-AB 000339

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 108 of 351 PageID #: 40440Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 108 of 351 PagelD #: 40440

US 6,714,966 B1
17

which corresponds to a non-leaf node in the hierarchy. For
example, a user may subscribe to a category of sports scores
or subscribe to the topic of NFL scores. In one embodiment,
each topic would have its own broadcast channel. As a
result, the subscribing to a category of topics would mean
subscribing to multiple broadcast channels. Alternatively, a
categoryof topics may have a single broadcast channel. if a
user subscribes to fust one topic in the category, the infor-
mation delivery service application program executing at the
subscriber’s computer would simply disregard messages not
related to the topic.

Many different fee structures can be used bythe infor-
mation delivery service. Asubscriber may be chargedafixed
fee per month for subscribing to a topic. Alternatively, a
subscriber may be charged based on time actually con-
nected. For example, when a subscriber’s computer is
connected, it might broadcast an identification message
every hour or so. A billing computer could monitor the
broadcast and record the connect time based on the identi-

fication messages.If the billing computer does not receive
an identification message for a certain time period, it
assumes that the subscriber’s computer has disconnected.
Also, the operator of the broadcast channel may derive
revenue from advertisements broadcast over the broadcast

channel. The fee for advertising on a broadcast channel may
vary based on the number of subscribers connected to the
broadcast channelat the time the advertisementis broadcast.

The following tables list messages sent by the broadcaster
components.

18
Flow Diagrams

FIGS. 8-34 are flow diagramsillustrating the processing
of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants ta connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program, Whenthis pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connecttime is used to

identify the instance of the process that is connected through
this external porl. One process may connect to a broadcast
channel of a certain channel type and channel instance using

Message Type Description
EXTERNAL MESSAGES

seeking...connection._.call Indicates that a secking process would like to know whether the
receiving process is fully connected to the broadcast channel

connection_request__call Indicates that the sending process would like the receiving
process lo initiate a connection of the sending process to the
broadcast channel

edge__proposal__call Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel(i.c., edge pinning)

port__connection,_call Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcastchannel

connected_stmt
channel

condition_repair_stmt

Indicates that the sending process is connected to the broadcast

Indicates that the receiving process should disconnect from one
ofits neighbors and connect to one of the processes involved in
the neighbors with empty port conditionINTERNAL MESSAGES

broadcast_stmt

connection__por!__search__stmt

Indicates a message that is being broadcast through the
broadcast channel for the application programs
Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edge_search_call Indicates that the requesting process is looking for an edge
ibrough which it can connect to the broadcast chanael

connection_edge. rchresp Indicates whether the edge between this process and the
sending avighber has been accepted by the requesting
party

diameter_estimate_sumt
diameter reset stmt

diameter
disconnect__stmt

the broadcast channel
condition.checkstmt

been detected

Indicates an estimated diameter of the broadcast channel
Indicates to reset the estimated diameter to indicated

Indicates that the sending neighboris disconnecting from

Indicates that neighbors wilh empty port condition have

condition_double_check_stmt Indicates that the neighbors with empty ports have the
same set of neighbors

shutdown__stmt Indicates that the broadcast channel is being shutdown

AB-AB 000340

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 109 of 351 PageID #: 40441Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 109 of 351 PagelD #: 40441

US 6,714,966 B1
19

one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
sceck portal computcr routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seck portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805, clse
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the
routine continues at block 808. In block 806, the routine
invokes the achicve connection routine to change the state of
this process to fully connected. In block 867, the routine
installs the external dispatcher for processing messages
received through this process’ external port [or the passed
channel type and channel instance. When a message is 2:
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer.‘he routine
then returns.

FIG, 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect, This routine, for each search depth (e.g., port
number), checks the portal computersat that search depth. If
a portal computer is located at that search depth with a
processthat is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902,the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this executionof the loap,that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904. In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer.In
decision block 905,if all the portal computers have already
been selected, then the routine loops to block 902 to select
he next search depth, else the routine continues at block

906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907, if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering processof the portal computer
hrough the dialed port and determines whether that process

is Fully connected to the broadcast channel. In block 909,the

do

is

30

40

£mn

S50

on n

60

65

20
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, clse the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG.10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
deiermines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.c., seeking _
connection__call) to the answering process indicating that a
seeking process wants to know whether the answering
process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003, if the
external response message is successfully received (i.c.,
seekingconnection_resp), then the routine continues at
block 1004, else the routine returns. Wherever the broadcast
component requests to receive an external message, it sels a
time out period. If the external message is not received
within that time out period, the broadcaster component
checksits owncall-in port to see if another processis calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicatesin its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns.In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. ‘This routine
requests a process of a portal computer that was identified as
being fully connected to the broadcast channelto initiate the
connection of this process to the broadcast channcl. In
decision block 1101, if at least one process of a portal
computer was located thatis fully connectedto the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
seeking computer may always search its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105,else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (.e., connection__request__call). In block
1106, the routine receives the response message (i.e.,
connection__request_resp). In decision block 1107, if the
response message is successfully received, then the routine

AB-AB 000341

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 110 of 351 PageID #: 40442Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 110 of 351 PagelD #: 40442

US 6,714,966 B1
21

continues at block 1108, else the routine continues at block
L113. In block 1108, the routine sets the expected number of
holes (i.e., empty internal connections) for this process
based on the reccived response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadeast channel based on the received response. In
decision block 1111,if the dialed process is ready to connect
to this pracess as indicated by the response message, then
the routine continues at block 1112,else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
eally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and thenreturns.

FIG. 12 is a flow diagram of the processing of the check
for cxternal call routine in onc embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine allempts to
answera call on the call-in port. In decision block 1202,if 2
the answeris successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204, if the type of the message indicates that
a seeking process is calling (.c., seekingconnection__ call),
then the routine continues at block 1205, else the routine
returns. In block 1208S,the routine sends an external message
{ic., seckingconnection_resp) to the other sccking pro-
cess indicating that this pracess is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the rouline continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process to a list of fellow secking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a ow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (Le., connected stint). In block 1303,the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG.14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine contiques at block

do

is

iA

40

tn a

60

65

22

1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (ie., seeking
conncetion__call), then the routine invokes the handle seck-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (ic.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406, clsc
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (ic., edge_
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connectcall (Le., port_.connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (Le., connected stint), the routine invokes the
handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition_repair_stint), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loopsto block 1414.
In block 1414,the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG.153 is a flow diagram illustrating the processing ofthe
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues al block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continuesat
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes. If this process
is not fully connected, thenit is attempting to connectto the
broadcast channel. In block 1505, the routine sends the
external message response(i.c., secking__connection_resp)
to the seeking process and thenreturns.

FIG. 16 is a flowdiagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to establish an internal connection with this process
(e.g. if in the small regime) orstarts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberof holesthat the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
the numberofits holes is greater than zero and the calling
process is not a neighbor of this process. In block 1606, the
routine sends to the calling process an external message that
is responsive to the connection request call (Le.,

AB-AB 000342

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 111 of 351 PageID #: 40443Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 111 of 351 PagelD #: 40443

US 6,714,966 B1
23

connection__request__resp). In block 1607, the routine notes
the numberof holes that the calling process needsto fill as
indicated in the request message. In decision block 1608,if
this process is rcady to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1618, the routine decrements the numberof holes that
the calling process needsto fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In ;
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (ic., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616.

In blocks 1613-1615, the routine loops forwarding a
request for an edge through which to connect to the calling
process to the broadcast channel. One request is forwarded
for each pair of holes of the calling process that needs to be
filled. In decision block 1613, if the number of holes of the
calling process to be filled is greater than or equal to two, 2
then the routine continues at block 1614, clsc the routine
continues at block 1616. In block 1614, the routine invokes
the forward connection edge search routine. The invoked
routine is passed to an indication of the calling process and
the random walk distance. In one embodiment, the distance
is twice in the estimated diameter of the broadcast channel,

In block 1614, the routine decrementsthe holes left to fill by
twoand loopsto block 1613. In decision block 1616, if there
is still a hole to fill, then the routine continues at block 1617,
else the routine returns. In block 1617, the routine invokes
the fill hole routine passing the identification of the calling
process. The fill hole routine broadcasts a connection port
search statement(i.c., connection__port__scarch_stint) for a
hole of a connected process through which the calling
process can connect to the broadcast channel. The routine
then returns.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
he process calling on the external port as a neighborto this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messagesinitially sent to
the new neighbor. The cxtcrnal port becomes the internal

ort for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In

process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
nrocess. In block 1706, the routine installs an internal
dispatcher for the new neighbor. ‘The internal dispatcher is
invoked when a message is received fromthat new neighbor
hrough the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buller the messages
that it receives through an internal connectionsothat it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
newneighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected aod the routine continues at block 1710, else the

 lock 1704, the routine sets the connection state of this 5

fet o

twLa)

boA

Lp tA

£on

ina

D> ia

24
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to
this process for edge pinning, whichin this case is no longer
needed.

FIG.18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request lo
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor,that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if
the numberof neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast
channelis in the small regime and the routine continucs at
block 1803. In decision block 1803,if the requesting process
is a neighborof this process, then the routine returns, else the
routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.e., connection__edge__search_call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if ail the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call intcrnal message to the sclected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continuesat block 1808,else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversucha situation
is detected by the broadcaster component,it attempts to find
another neighbor by invoking the fill holes routine tofill a
single hole or the forward connecting edge search routine to
fill ewo holes. In block 1808, the routine notes that the
recently sent connection edge search call has not yet been

5 acknowledged and indicates that the edge to this neighboris
reserved if the remaining forwarding distanceis less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a Howdiagram illustrating the processing ofthe
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and oneofits neighbors to this process for edge pinning. In
decision block 1901, if the aumber of holes of this process
minus the number of pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continuesat
block 1911. In decision block 1902,if the proposing process
or iis neighboris a neighborof this process, then the rouline
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already

5 pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as

AB-AB 000343

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 112 of 351 PageID #: 40444Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 112 of 351 PagelD #: 40444

US 6,714,966 B1
25

an external message to the proposing process (i.e., edge_
proposal resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continucsat block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
ofholes is odd, then the routine continues at block 1913, else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG. 20 is a flow diagram illustrating the processing ofthe
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
number ofholesof this processis greater than zero, then the
routine continuesat block 2002, clsc the routine continuesat
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003,the
routine sends a port connection response external message 2!
(i¢., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external messageto the sending process
that indicatesthat is okay to connectthis process.In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continucs at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and thenreturns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to requestthat a
process connect to one of the holes of this process, The
routine then returns.

FIG. 21 isa flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (Le., connection_port_search_stmi). In decision
block 2102,if this processis the requesting process, then the
routine continues at block 2103, else the routine continues at 5
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104,the routine invokes the
bandie connection port search routine and then returns.

FIG. 22 is a flow diagramillustrating the processing ofthe
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sentthe internal
message. In block 2201, the routine receives the internal
message, This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.e., a duplicate),
then the routine ignores the message and continuesat block
2208, else the routine continues at block 2203 A. In decision

do

is

oe) A

49

tn an

60

65

26
block 2203 A,if the processis partially connected, then the
routine continues at block 2203 B,else the routine continues
at block 2204.In block 2203 B,the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcaststatement (.e., broadcast__
stmt), then the routine invokes the handic broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected buffer is full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster component collects allits
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, else the routine continues al block 2212. In
block 2212,the routine invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG.23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. ‘This
routine is passed an indicationof the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitsclf. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
naling process until it can send them in sequence number
order to the application prograrn. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for cach originating
process and then returns.

FIG.24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor whosent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have alreadybeen selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagramillustrating the processing of the
handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberofholesof this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603,if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court

AB-AB 000344

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 113 of 351 PageID #: 40445Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 113 of 351 PagelD #: 40445

US 6,714,966 B1
27

neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continucs at block 2606, cisc the routine
returns. In block 2606, the routine generates a condition
check message (Le., condition__check) that includesa list of
this process’ neighbors. In block 2607,the routine sends the
message to the requesting neighbor.

FIG. 27is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connec! to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701,if the
prospective neighboris already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberof holes of this process is greater
than zero, then the routine continues at block 2704, else the
routine continucs at block 2706. In block 2704, the routine
sends a port connection call external message (i.e., port_
connection_call) to the prospective neighbor and receives
lls response (i.c., port_connection_resp). Assuming the
response is successfully received, in block 2705, the routine 2
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG.28 is a flow diagram illustrating the processing ofthe
handie connection edge search call routine in one embodi-
meant. This routine is passed a indication of the neighbor who
sent the message and the message itself This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distanceis greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting process is a neighbor or the edge between this
process and the sending neighboris reserved because it has
alreadybeen offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicator that alternatively indicates to continue
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting processvia the call-in port. In block 2807,the
routine sends an edge proposal call external message (i.¢.,
edge__proposal__call) andreceives the response (i¢., edge_
proposal_resp). Assuming that the responseis successfully
received, ihe routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add seighber routine. In block 2811, the routine

40

15

wyoO

oe) A

49

50

60

68

28
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813,if this process is the requesting
process and the numberof holes of this process cquals onc,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (Le., connection
edge__searchresponse) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG.29is a flow diagramillustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.c., conncection__cdgc_scarch__resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicatesthat the edge is acceptable as indicated
in the message, then the routine continues at block 2903,else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighboras a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continucs at block 2907, cise
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the rouline returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG.30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block
3002, clsc the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (Le., broadcast __simt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. ‘he acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
reirieved, then the rouline returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagramillustrating processing
of the handle condition check message in one embodiment.
‘This message is sent by a neighbor processthat has one hole
and has received a request to connect to a hole ofthis

AB-AB 000345

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 114 of 351 PageID #: 40446Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 114 of 351 PagelD #: 40446

US 6,714,966 B1
29

process. In decision block 3201, if the number of holes of
this proccss is equal to onc, then the routine continues at
block 3202, else the neighbors with erapty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighbor and this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203,the
routine initializes a condition double check message(i.c.,
condition__double__check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (ie., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

TIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-
nects to the processthat sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In 2!
block 3303, the routine removes the selected neighbor as a
neighborof this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. ‘The
routine then returns.

FIG, 34 is a flow diagram illustrating the processing ofthe
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channel is inthe <
small regime. In decision block 3401, if this process has one
hole, then the routine continues at block 3402, else the
routine continuesat block 3403. If this process does not have
one hole, then the set of neighbors of this processis not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 34085,the routine broadcasts a diameter reset
internal message (i.e., diameter_reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(ie., condition_check__stm1) with the list of neighbors to
the neighbor who sent the condition double check message
and thea returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on (he broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number (e.g, 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

do

is

40

£mn

50

60

65

30
What is claimed is:
1. A computer nctwork for providing an information

delivery service for a plurality of participants, cach partici-
pant having connections to at least three neighbor
participants, wherein an originating participant sends data to
the otherparticipants by sending the data through eachofits
comnections to its neighbor participants and wherein each
participant sends data that it receives from a neighbor
participantto its other neighbor participants, further wherein
the network is m-regular, where m is the exact number of
neighborparticipants of each participant and further wherein
the numberofparticipantsis at least two greater than m thus
resulting in a non-complete graph.

2. The computer network of claim 1 wherein each par-
ticipant is connected to 4 other participants.

3. The computer network of claim 1 wherein each par-
ticipant is connected to an even numberofother participants.

4. The computer network of claim 1 wherein the network
is m-connected, where m is the numberof neighbor partici-
pants of each pariicipant.

5. The computer network of claim 1 wherein the network
is m-regular and m-connected, where m is the number of
neighbor participants of each participant.

6. The computer network of claim 1 wherein all the
participants are peers.

7. The computer network of claim 1 wherein the connec-
tions are peer-to-peer connections.

8. The computer network of claim 1 wherein the connec-
tions ace TCP/IP connections.

9. The computer network of claim 1 wherein each par-
ticipant is a process executing on a computer.

10. The computer network of claim 1 wherein a computer
hosts more than one participant.

11. The computer network of claim 1 wherein each
participant sends to each of its neighbors only one copy of
the data.

12. The computer network of claim 1 wherein the inter-
connections of participants form a broadcast channel for a
topic of interest.

13. An information delivery service comprising:
a plurality of broadcast channels, each broadcast channel

for distributing informationrelating to a topic, each of
the broadcast channels for providing said information
related to a topic to a plurality of participants, each
participant having connections to at least three neigh-
bor participants, wherein an originating participant
sends data to the other participants by sending the data
through each of its connections to its neighbor partici-
pants and wherein each participant sends data that it
receives from a neighbor participant to its neighbor
participants, further wherein the network is m-regular,
where m is the exact numberofneighbor participants of
each participant and further wherein the number of
participants is at least two greater than m thus resulting
in a non-complete graph;

means for identifying a broadcast channel for a topic of
interest; and

means for connecting to the identified broadcast channel.
14. The information delivery service of claim 13 wherein

means for identifying a topic of interest includes accessing
a web server that maps topics io corresponding broadcast
channel.

15. The information deliver service of claim 13 wherein

a broadcast channel is formed by subscriber computers that
are each interconnected to at least three other subscriber
computers.

16. A computer network for providing an information
delivery service for a plurality of participants, each partici-

AB-AB 000346

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 115 of 351 PageID #: 40447Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 115 of 351 PagelD #: 40447

US 6,714,966 B1
31 32

pant having connections to exactly four neighbor network is in a stable 4-regular state and wherein there are
participants, wherein an originating participant sends data to at least six participants fo result in a non-complete graph.
the other participants by sending the data through eachofits 17. The computer network of claim 16 wherein a com-
connections to its neighbor participants and wherein cach puter hosts more than one participant.
participant sends data that it receives from a neighbor 5
participant to its neighbor participants, further wherein the ee

AB-AB 000347

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 116 of 351 PageID #: 40448Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 116 of 351 PagelD #: 40448

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO.—: 6,714,966 BL Page | of 1
DATED : March 30, 2004
INVENTOR(S) _: Fred B. Holt et al.

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 9

Line 8, “(e.g,” should be -- (e.g., --3

Column 21

Line 55, “stint” shouldbe -- stmt--;

Column 22.

Lines 19 and 23,“stint” should be -- stmt --;

Column 23

Line 33, “stint” should be -- stmt --;

Column 25,
Line 67, delete space between “2203” and “A”

Column 26

Line 1, delete space between “2203” and “A”;
Lines 2 and 3, delete space between “2203” and “B”;

Column 27

Line 32, insert period between “itself” and “This”;

Column 29,
Line 62, “(e.g,” should be -- (e.g., --3

Signed and Sealed this

‘Twenty-ninth Day of June, 2004

ox WEale!

JON W. DUDAS

Acting Director of the United States Patent and Trademark Office

AB-AB 000348

EXHIBIT 104

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 117 of 351 PageID #: 40449Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 117 of 351 PagelD #: 40449

A 2H S SSAC SS LAB E ALL

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 118 of 351 PageID #: 40450Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 118 of 351 PagelD #: 40450

(12) United States Patent
Bourassa et al.

(10) Patent No.:
(45) Date of Patent:

US006920497B1

US 6,920,497 B1
Jul. 19, 2005

64)

(75)

(73)

(*)

CONTACTING A BROADCAST CHANNEL

Inventors: Virgil E. Bourassa, Bellevue, WA
(US); Fred B. Holt, Seattle, WA (US)

Assignee: The Boeing Company, Seattle, WA
(US)

Notice:—Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
US.C. 154(b) by 750 days.

Appl. No.: 09/629,572

Filed: Jul. 31, 2600

Et. C1occeeststeetesennens GO6F15/16
US. Ch wo. . 709/227; 709/250
Field of Search 709/249, 250,

709/227, 370/389, 392, 463; 710/62

References Cited

US. PATENT DOCUMENTS

4,912,656 A 3/1990 Cain et al.
5,056,085 A 10/1991 Vu
5,058,105 A 10/1991 Mansour et al.
5,079,767 A 1/1992 Perlman
5,099,235 A 3/1992 Crookshanks
5101480 A 3/1992 Shin
5,117,422 A 5/1992 Hauptschein
5,309,437 A 5/1994 Perlman et al.
5,345,558 A 9/1994. Opher
5,426,637 A 6/1995 Derby et al.
§,459,725 A 10/1995 Bodner etal.
5,471,623 A 11/1995 Napolitano
5,511,168 A 4/1996 Perlman
5,535,199 A 7/1996 Amari et al.
5,568,487 A 10/1996 Sitbonet al.
5,636,371 A 6/1997 Yu
5,644,714 A 7/1997 Kikinis
5,673,265 A 9/1997 Gupta et al.
5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spaur et al.
5,732,086 A 3/1998 Liang
5,732,219 A 3/1998 Blumeret al.
5,734,865 A 3/1998 Yu

5,737,526 A 4/1998 Periasamyetal.
5,754,830 A 5/1998 Buttset al.
5,787,795 A 5/1998 Schnell...ee 370/392
5,761,425 A 6/1998 Miller
5,764,756 A 6/1998 Onweller
5,796,548 A 8/1998 Sistanizadeh et al.
5,790,553 A 8/1998 Deaton, Jy.et al.
5,799,016 A 8/998. Onweller
5,802,285 A 9/1998 Hirviniemi
5,850,592 A 12/1998 Ramanathan
5,864,711 A 1/1999 Mairs etal.
5,867,660 A 2/1909 Schmidtet al.
5,867,667 A 2/1999 Butmanet al.
5,870,605 A 2/1999 Bracho et al.
5,874,960 A 2/1999 Mairs et al.
5,883,894 A * 3/1999 Patel et al. wu... 370/438
5,899,980 A 5/1999 Wilf et al.
5,907,610 A 5/1999 Onweller
5,925,097 A 7/1999 Gopinath et al.
5,928,335 A 7/1999 Morita

(Continued)

OTHER PUBLICATIONS

Bandyopadhyay et al., “A Flexible Architecture for Multi-
Hop Optical Networks,” Oct. 1998, 7th International Con-
ference on Computer Communications and Networks, 1998,
pp. 472-478.

(Continued)

Primary Examiner-—Bradley Edelman
(74) Attorney, Agent, or Firm-~Perkins Coie LLP

(57) ABSTRACT

A method of connecting to a network through a portal
computer. A seeking computer dials the communications
ports of a portal computer until it locates a call-in port. A
port ordering algorithm is used to identify the call-in port.
Communications ports selected by the port ordering algo-
rithm may be re-ordered. The seeking computer uses the
selected call-in port to request that the portal computer
coordinate the connection of the seeking computer to the
network.

16 Claims, 39 Drawing Sheets

AB-AB 001786

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 119 of 351 PageID #: 40451Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 119 of 351 PagelD #: 40451

US 6,920,497 BL
Page 2

U.S, PATENT DOCUMENTS

5,935,215 A 8/1999 Bell et al.
5,946,316 A 8/1999 Chen et al.
5,948,054 A 9/1999 Nielsen
5,949,975 A 9/1999 Batty
5,956,484 A 9/1999 Rosenberg etal.
§,970,232 A 10/1999 Passint et al.
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carter et al.
6,003,088 A 12/1999 Houston et al.
6,013,107 A 1/2000 Blackshear et al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smigaet al.
6,032,188 A 2/2000 Mairs ctal.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.
6,065,063 A §/2000 Abali
6,073,177 A 6/2000 Hebel et al.
6,004,676 A 7/2000 Gray et al.
6,115,580 A 9/2000 Chuprunct al.
6,151,633 A 11/2000 Hurst
6,167,432 A 12/2000 Jiang
6,173,314 BL 1/2001 Kurashimaetal.
6,195,366 Bi * 2/2001 Kayashima et al. ou... 370/475
6,199,116 Bl 3/2001 Mayet al.
6,216,177 Bi 4/2001 Mairs etal.
6,223,212 Bi 4/2001 Bally et al.
6,243,691 BL 6/2001 Fisher et al.
6,252,884 BL 6/2001 Hunter
6,268,855 BL 7/2001 Mairs et al.
6,269,080 BL 7/2001 Kumar
6,271,839 Bi 8/2001 Mairs etal.
6,272,548 BL 8/2001 Cotteret al.
6,285,363 Bi 9/2001 Mairs etal.
6,304,928 Bi 10/2001 Mairset al.
6,321,270 BI=11/2001 Crawley
6,353,599 BL 3/2002 Bi et al.
615,270 BL 9/2002 Rackson
6,421,735 Bl * 7/2002 Jung et al. oe709/250
6,434,622 BL 8/2002 Monteiro
6,449,251 Bi * 9/2002 Awadallah et al. 370/22
6,449,601 BL
6,463,078 BL
6,490,247 BL
6,505,289 BL
6,524,189 BL
6,553,020 BL
6,603,742 BL
6,618,752 BL
6,701,344 BL

2002/0027896 Al

9/2002 Friedland
10/2002 Engstromet al.
12/2002 Gilbert

1/2003 Han
2/2003 Rautila
4/2003 Hughes
8/2003 Steele
9/2003 Mooreet al.
3/2004 Holt
3/2002 Hughes etal.

OTHER PUBLICATIONS

Hsu, “On-Four—Connecting a Triconnected Graph,” Oct.
1992, Annual Symposium on Foundations of Computer
Science, 1992, pp. 70-79.
Cho, et al, “A Flood Routing Method for Data Networks,”
Sep. 1997, Proceedings of 1997 International Conference on
Information, Communications and Signal Processing, vol. 3,
pp. 1418-1422.
Shiokawa et al., “Performance Analysis on Network Con-
nective Probability of Multihop Network Under Correlated
Breakage,” Jun. 1996, 1996 IEEE International Conference
on Communications, vol. 3, pp. 1581-1585.
Komine et al, “A Distributed Restoration Algorithm for
Multiple—Link and Node Failures of Transport Networks,”
Dec. 1999, IEEE Globecom °90, Communicaitons: Com-
mecting the Future, vol. 1, pp. 459-463.

Peercy et al., “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
Faulty Hypercubes,” Jun. 1990, 20th International Sympo-
sium on Fault~Tolerant Computing, 1990, pp-218-225.
Yavatkar et al, “A reliable Dissemination Protocol for
Interactive Collaborative Applications,” Proc. ACM Multi-
media, 1995, p. 333-344; hitp://citeseer.nj.nec.com/article/
yavatkar95reliable. htlm.
PR Newswire, “Microsoft Boosts Accessibility to Internet
Gaming Zone with Latest Release,” Apr. 27, 1998, pp 1ff.
PR Newswire, “Microsoft Annouces Launch Date for Ultra-
Corps, Its Second Premium Title for the Internet Gaming
Zone,” Mar. 27, 1998, pp 1 ff.
Business Wire, “Bocing Panthesis Complete SWAN Trans-
action,” Jul. 22, 2002, pp Lf.
Azar, et al., “Routing Strategies for Fast Networks,” May
1992 INFOCOM 792, Eleventh Annual Joint Conference of
the TEEE Computer and Communications Societies, vol. 1.,
pp 170-179.
US. Appl. No. 09/629,570, filed Jul. 31, 2000, Bourassa et
al.

U.S. Appl. No. 09/629,577, filed Jul. 31, 2000, Bourassa et
al.

ULS. Appl. No. 09/629,575, filed Jul. 31, 2000, Bourassa et
al.

US. Appl. No. 09/629,576, filed Tul. 31, 2000, Bourassa et
al.

US. Appl. No. 09/629,023, filed Jul. 31, 2000, Bourassa et
al.

US. Appl No. 09/629,043, filed Jul. 31, 2000, Bourassa et
al.

US. Appl. No. 09/629,024, filed Jul. 31, 2000, Bourassa et
al.

US. Appl. No. 09/629,042, filed Jul. 31, 2000, Bourassa et
al.

Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).
The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).
The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) htip://www.open2p.com/
ipt/ .. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and reenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’ Reilly
Network http://www.oreillynet.com/1pt . . . [Accessed Jan.
29, 2002].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-143-16).
Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O'Reilly Network
http://linux.oreillynet.com/Ipt . .. [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies,’MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYY/BCP Archives—http://www.fags.org/rfcs/
rfci832.html [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

AB-AB 001787

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 120 of 351 PageID #: 40452Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 120 of 351 PagelD #: 40452

US 6,920,497 BL
Page 3

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http://www.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.
The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13—1-13-56), Chapter 16
(pp. 16-1-16-26), Chapter 18 (pp. 18-1-18~52), Chapter
20 (pp. 20-1-20-22).

The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
hitp:/Avww.des.warwick.ac.u .. . [Accessed Jan. 29, 2002].

Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,

IEEE San Diego, Califomia, Nov. 5-8, 1995 (pp. 236-240).

International Search Report for The Boeing Company,Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).

* cited by examiner

AB-AB 001788

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 121 of 351 PageID #: 40453Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 121 of 351 PagelD #: 40453

U.S. Patent Jul. 19, 2005 Sheet 1 of 39 US 6,920,497 BI

m@

ey

an)

<
AB-AB 001789

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 122 of 351 PageID #: 40454Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 122 of 351 PagelD #: 40454

US 6,920,497 B1Sheet 2 of 39Jul. 19, 2005U.S. Patent

AB-AB 001790

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 123 of 351 PageID #: 40455Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 123 of 351 PagelD #: 40455

U.S. Patent Jul. 19, 2005 Sheet 3 of 39 US 6,920,497 BI

a O

NJ

« ~
og

ome

RK

uu Q

mM

O

< a
2

QO

Lu

AB-AB 001791

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 124 of 351 PageID #: 40456Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 124 of 351 PagelD #: 40456

U.S. Patent Jul. 19, 2005 Sheet 4 of 39 US 6,920,497 BI

AB-AB 001792

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 125 of 351 PageID #: 40457Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 125 of 351 PagelD #: 40457

U.S. Patent Jul. 19, 2005 Sheet 5 of 39 US 6,920,497 BI

ne

3
se

<
AB-AB 001793

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 126 of 351 PageID #: 40458Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 126 of 351 PagelD #: 40458

U.S. Patent Jul. 19, 2005 Sheet 6 of 39 US 6,920,497 BI

on

_*
220

<
AB-AB 001794

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 127 of 351 PageID #: 40459Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 127 of 351 PagelD #: 40459

U.S. Patent Jul. 19, 2005 Sheet 7 of 39 US 6,920,497 BI

AB-AB 001795

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 128 of 351 PageID #: 40460Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 128 of 351 PagelD #: 40460

U.S. Patent Jul. 19, 2005 Sheet 8 of 39 US 6,920,497 BI

AB-AB 001796

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 129 of 351 PageID #: 40461Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 129 of 351 PagelD #: 40461

U.S. Patent Jul. 19, 2005 Sheet 9 of 39 US 6,920,497 BI

B

5C
ig.

AB-AB 001797

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 130 of 351 PageID #: 40462Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 130 of 351 PagelD #: 40462

U.S. Patent Jul. 19, 2005 Sheet 10 of 39 US 6,920,497 BI

am

a
i. °

6

<
AB-AB 001798

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 131 of 351 PageID #: 40463Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 131 of 351 PagelD #: 40463

U.S. Patent Jul. 19, 2005 Sheet 11 of 39 US 6,920,497 BI

 <

4
86
Rey

ma

Oo

o <

a
20

oO m

AB-AB 001799

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 132 of 351 PageID #: 40464Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 132 of 351 PagelD #: 40464

U.S. Patent Jul. 19, 2005 Sheet 12 of 39 US 6,920,497 BI

ig.6

(channeltype channelinstance)Application2
mn,

aa2
ese
a
a

<S3
AB-AB 001800

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 133 of 351 PageID #: 40465Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 133 of 351 PagelD #: 40465

U.S. Patent Jul. 19, 2005 Sheet 13 of 39 US 6,920,497 BI

2 =

SEs ry £2
83 ge |

AB-AB 001801

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 134 of 351 PageID #: 40466Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 134 of 351 PagelD #: 40466

U.S. Patent Jul. 19, 2005 Sheet 14 of 39 US 6,920,497 BI

ChannelInstance,

B04 Connect Aux Info)
Open call in port

802 Fig. 8
Set connect-time

803

Seek portal - computer
(channel type channel

instance)

804

<ae
¥

806

oe
N

808 80

Install external dispatcher Install external dispatcher

| Connect request |

AB-AB 001802

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 135 of 351 PageID #: 40467Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 135 of 351 PagelD #: 40467

U.S. Patent Jul. 19, 2005 Sheet 15 of 39 US 6,920,497 BI

Seek portal Channe! Type
computer Channel Instance

902

Select next depth

Return (failure)

Fig. 9
All portal computers

selected

Dial portal computer

907

Y 908

[comemoses|
909

Hang up selected portal
computer

910
Selected portal

computer connected
 Check for external

call

Y

AB-AB 001803

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 136 of 351 PageID #: 40468Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 136 of 351 PagelD #: 40468

U.S. Patent Jul. 19, 2005 Sheet 16 of 39 US 6,920,497 BI

Contact process

AB-AB 001804

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 137 of 351 PageID #: 40469Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 137 of 351 PagelD #: 40469

U.S. Patent Jul. 19, 2005 Sheet 17 of 39 US 6,920,497 BI

Fig, 1]
1104 10

Wasafully

 connected portal found

Dialcall in port ofportal Return
computer

a1104
¥ 1105

Y 1108

Set expect holes from
response

1109

Set diameter from response

111 1112

Soomes>]
N 1113

Hang up

Return

AB-AB 001805

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 138 of 351 PageID #: 40470Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 138 of 351 PagelD #: 40470

U.S. Patent Jul. 19, 2005 Sheet 18 of 39 US 6,920,497 BI

Check for externa
call

Fig. 12
1201

4202

LN

Receive external message

ype = = seeking
connection call

Send external message

\N

Add other as fellow seeker_
Return

AB-AB 001806

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 139 of 351 PageID #: 40471Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 139 of 351 PagelD #: 40471

U.S. Patent Jul. 19, 2005 Sheet 19 of 39 US 6,920,497 BI

Achieve connection

1304
Connection - state = fully

connected

Fig. 13

AB-AB 001807

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 140 of 351 PageID #: 40472Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 140 of 351 PagelD #: 40472

U.S. Patent Jul. 19, 2005 Sheet 20 of 39 US 6,920,497 BI

External dispatcher Fig. 14

Pick up and receive
external message

Connected statement Handle connected
staternent

ondition repair Handle condition

Statement ~ repair statement a

AB-AB 001808

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 141 of 351 PageID #: 40473Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 141 of 351 PagelD #: 40473

U.S. Patent Jul. 19, 2005 Sheet 21 of 39 US 6,920,497 BI

Fig. 15

Set message to not
connected

Add other as fellow
seeking process

 Set message to indicate
connect

i

Send external message

AB-AB 001809

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 142 of 351 PageID #: 40474Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 142 of 351 PagelD #: 40474

U.S. Patent Jul. 19, 2005 Sheet 22 of 39 US 6,920,497 BI

andle connection

requestcall

1601 BO

Set newcomer’s (Return)
holes_to_expect

BU

BUG7

Set diameter estimate in
response

Fig. 16OU)

Set ready in response

*{8i)

Sent external message
connect requestresp,

Set newcomer’s
holestofill

608 609

| Addneighbor i
7°.

AB-AB 001810

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 143 of 351 PageID #: 40475Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 143 of 351 PagelD #: 40475

U.S. Patent Jul. 19, 2005 Sheet 23 of 39 US 6,920,497 BI

Add neighbor

O

Identifies calling party Fig. 17
Ue

Sets neighborto
messages pending

703 . =

<nconmeigp>Y [Conransa=Soi
VY

Add as neighbor

: Ut
Install interal dispatcher

for new neighbor

707 N8

0

Y .; Achieve connected |

_ Purge pending edges

 Holes = =

expected holes

N

AB-AB 001811

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 144 of 351 PageID #: 40476Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 144 of 351 PagelD #: 40476

U.S. Patent Jul. 19, 2005 Sheet 24 of 39 US 6,920,497 BI

Forward connection requestor
edge search distance remaining

Fig. 18

#

neighbors
>I

 neighbor =
requestor

1808

Note connection edge
search call

Return

AB-AB 001812

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 145 of 351 PageID #: 40477Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 145 of 351 PagelD #: 40477

U.S. Patent Jul. 19, 2005 Sheet 25 of 39 US 6,920,497 BI

Handle edge in message
proposal call Out message

Fig. 19

N 003

create edge (pending)

Send extemal message N
190

Send extemal message

1912
19N Holes odd 08 N

Y¥

i
a Y .

== Add edge as pending

1910

Co) eames ff

AB-AB 001813

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 146 of 351 PageID #: 40478Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 146 of 351 PagelD #: 40478

U.S. Patent Jul. 19, 2005 Sheet 26 of 39 US 6,920,497 BI

Handle port
connectioncall

2001

: N

U0¢Caller is not- Send external message
neighbor

Fig. 20

(point-connect-resp
not ok)

Y

Od

Send extemal message (_Rewn
(point-connect-resp, ok)}.

: 2006

L=="T
2008

=|

AB-AB 001814

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 147 of 351 PageID #: 40479Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 147 of 351 PagelD #: 40479

U.S. Patent Jul. 19, 2005 Sheet 27 of 39 US 6,920,497 BI

Fill hole

Handle connection
ports search edit

Distribute internal
message

AB-AB 001815

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 148 of 351 PageID #: 40480Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 148 of 351 PagelD #: 40480

U.S. Patent Jul. 19, 2005 Sheet 28 of 39 US 6,920,497 BI

Internal
dispatcher

201

Fig. 22
02

Assess diameter

N

2203A

Partially connected

Insert aa
pending conneesion buffer N

Type ~2204 2005

= = broadcast | Handle broadcaststatement Inessage

Type ~2206 2007
= = shutdown Handle shutdown

statement — Statement |
N

Pending
connection buffer

2209 full

Is

message queue

Y Receive response ()

AB-AB 001816

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 149 of 351 PageID #: 40481Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 149 of 351 PagelD #: 40481

U.S. Patent Jul. 19, 2005 Sheet 29 of 39 US 6,920,497 BI

andle broadcast origin
message from neighbor

Fig. 23 o301 message
Process out oforder

message

302

Distributebroadcast
message

AB-AB 001817

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 150 of 351 PageID #: 40482Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 150 of 351 PagelD #: 40482

U.S. Patent Jul. 19, 2005 Sheet 30 of 39 US 6,920,497 BI

Distribute message
Fig. 24 from teighboe

Send internal

message

AB-AB 001818

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 151 of 351 PageID #: 40483Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 151 of 351 PagelD #: 40483

U.S. Patent Jul. 19, 2005 Sheet 31 of 39 US 6,920,497 BI

Handle connection
for search

2601

Distribute internal
message

602

N

603

‘Is requestor
a neighbor

z

605

pnerate

condition check
message w/neighbo

Send internal message
to requestor

from neighbor
message

Fig. 26

BU4oeaa!

|cowesciinor|]

AB-AB 001819

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 152 of 351 PageID #: 40484Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 152 of 351 PagelD #: 40484

U.S. Patent Jul. 19, 2005 Sheet 32 of 39 US 6,920,497 BI

Court neighbor Prospect

701Fig. 27

 Is prospect
a neighbor

N

Dial prospect

703

N

2702

4

Send and receive

external message

[Add neighbor
2706

Hang up prospect

Return

AB-AB 001820

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 153 of 351 PageID #: 40485Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 153 of 351 PagelD #: 40485

U.S. Patent Jul. 19, 2005 Sheet 33 of 39

Handle connection
edge search call

801
Not

my message 11
holes >= Z,

Message

from this pt. &&
oles = =]

2814

; Fill hole (self) [
¥ 2815

end intern,

; message (from ;
} 806

807

neighbor, ack

Send and receive
external message

7

B09

Reserve edge of from
neighbor

2810

| Add neighbor
Remove neighbor

connection second

remaining

US 6,920,497 B1

from neighbor
message

 edge (requestorA dist -1

connection edge
search (requestor,

0)

VY

AB-AB 001821

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 154 of 351 PageID #: 40486Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 154 of 351 PagelD #: 40486

Jul. 19, 2005 Sheet 34 of 39

Handle edge search
resp.

ev

Note connection edge
search response

902

Edgeselected

U.S. Patent

Fig. 29

¥ 2.3

Reserve edge offrom
neighbor

$102

Remove from neighbor

908y_2

| Fill hole (self) |

CRewn_)

US 6,920,497 B1

origin
from neighbor
message

AB-AB 001822

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 155 of 351 PageID #: 40487Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 155 of 351 PagelD #: 40487

U.S. Patent Jul. 19, 2005 Sheet 35 of 39 US 6,920,497 BI

 message

 Fig. 30

Generate internal

Set message sequence
number

3004

Distribute internal
message

AB-AB 001823

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 156 of 351 PageID #: 40488Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 156 of 351 PagelD #: 40488

U.S. Patent Jul. 19, 2005 Sheet 36 of 39 US 6,920,497 BI

message

Fig. 31

AB-AB 001824

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 157 of 351 PageID #: 40489Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 157 of 351 PagelD #: 40489

U.S. Patent Jul. 19, 2005 Sheet 37 of 39 US 6,920,497 BI

Handle condition check

Sameset of

neighbors

Set up message with

ofneighbors

Send internal message

 Send external message

to selected neighbor

AB-AB 001825

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 158 of 351 PageID #: 40490Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 158 of 351 PagelD #: 40490

U.S. Patent Jul. 19, 2005 Sheet 38 of 39 US 6,920,497 BI

Fig, 33

Handle condition
repair statement

301

Holes = = 0 N

Select a neighbor not
involved in condition

Removeselected
neighbor

3304

i Add neighbor i

AB-AB 001826

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 159 of 351 PageID #: 40491Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 159 of 351 PagelD #: 40491

U.S. Patent Jul. 19, 2005 Sheet 39 of 39 US 6,920,497 BI

Handle condition
double check

 Fig, 34

3401

Holes = = 1

Same

neighbors

403

Holes = = 0

 Createlist ofneighborsi
r4

 Send interna] message
to-from neighbor

AB-AB 001827

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 160 of 351 PageID #: 40492Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 160 of 351 PagelD #: 40492

US 6,920,497 BI
1

CONTACTING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,” filed on Jul. 31, 2000, now U.S. Pat. No.
6,829,634; U.S. patent application Ser. No. 09/629,570,
entitled “IOINING A BROADCASTING CHANNET.,”
filed on Jul. 31, 2000; U.S. patent application Ser. No.
09/629,577, entitled “LEAVING A BROADCAST
CHANNEL,” filed on Jul. 31, 2000, now U.S. Pat. No.
6,732,147, U.S. patent application Ser. No. 09/629,575,
entitled “BROADCASTING ON A BROADCAST

CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,023, entitled “DISTRIBUTED AUCTION
SYSTEM,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,043,entitled “AN INFORMATION DELIV-
ERY SERVICE,”filed on Jul. 31, 2000, now U.S. Pat. No.
6,714,966; U.S. patent application Ser. No. 09/629,024,
entitled “DISTRIBUTED CONFERENCING SYSTEM,”
filed on Jul. 31, 2000; and U.S. patent application Ser. No.
09/629,042, entitled “DISTRIBUTED GAME
ENVIRONMENT,”filed on Jul. 31, 2000, now U.S. Pat. No.
6,701,344, the disclosures of which are incorporated herein
byreference.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware, Each ofthese communications
techniques have their advantages and disadvantages, but
noneis particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCPAP, and UDP,allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point .
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, cach
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however, find it very difficult to manage single connections, ¢
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the numberof direct connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients whoare sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture

60

5 dition.

2

(CORBA”). Clent/server middleware systems are not par-
ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling placcs a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (.e., the server) would prevent communications
between any of the clients.

‘The nvulticasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting nctwork pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the 1.120 Internet standard, which is
used in such products as Data Conmnection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-

5 ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the ‘I. 120 Internet standard is a tree structure, which relies
on the root node of the tree for reliability of the entire
network. That is, cach message must pass through the root
node in order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultancous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added computer.
FIG, 5A illustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. 5B illustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG, 5C illustrates the neighbors with empty ports con-

FIG. 5D illustrates two computers that are not neighbors

who now have empty ports.

AB-AB 001828

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 161 of 351 PageID #: 40493Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 161 of 351 PagelD #: 40493

US 6,920,497 BI
3

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. SF illustrates the situation of FIG. SE when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG. 7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment.

FIG. 10 isa flow diagram illustrating the processing ofthe
contact process routine in one embodiment.

FIG.11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagramof the processing of the achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a low diagram illustrating the processing of t
add neighbor routine in one embodiment.

FIG. 18 isa flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 isa flow diagram illustrating the processing ofthe
handle edge proposal call routine.

TIG, 20 is a flow diagram illustrating the processing ofthe
handle port connection call routine in one embodiment.

FIG. 21 isa flow diagram illustrating the processingof the
fill hole routine in one embodiment.

FIG.22 is a flow diagramillustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagram illustrating the processingof t
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing oft
distribute broadcast message routine in one embodiment.

FIG. 26 isa flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

TG. 27 isa flow diagram illustrating the processingof the
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG, 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31 isa flow diagram illustrating the processing of the
acquire message routine in one embodiment.

FIG, 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-ment.

CG

a

oO ine on uw an

40

69

4

FIG.34 is a flowdiagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each conmputer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (Le.,
edges) between host computers (Le., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computer is connectedto four other computers,referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the messageto its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channelonly if all four of
the connections to its neighbors fail. The graph used. by the
broadcast technique also bas the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
propertyis referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG. | illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers ofthe broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (Le., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is dircetly

5 connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computer F is directly connected to

AB-AB 001829

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 162 of 351 PageID #: 40494Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 162 of 351 PagelD #: 40494

US 6,920,497 BI
5

computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from
computer F to computer B. The maximumof the distances
between the computersis the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.e., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (i.e., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel(i.e.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer secking
the connection first locates a computer that is currently ally
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connected to the broadcast channel. (This assumesthat there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channelis consideredto
be in a “small regime.” The broadcast technique for the
small regime is described belowin detail. When five or more 3
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to cach identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers (ie., to
be the secking computer’s neighbors) to which the secking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the sccking computcr to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computerthat is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computersis already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connectto four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

19

15

49

45

59

in on

69

65

6
D are the twopairs that are identified as the neighbors for the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting cach of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/AP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space” that
is shared amongall the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HTTP messages). The remainderof
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages throughits external port. Aseeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or attempting to connect to the broadcast channel andits
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computerscither directly connected to
the found portal computer or directly connected to one ofits
neighbors. A possible problem with such a scheme for
identifying the neighborsfor the seeking computeris that the

AB-AB 001830

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 163 of 351 PageID #: 40495Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 163 of 351 PagelD #: 40495

US 6,920,497 BI
7

diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
arc added. FIGS. 4A~-4C illustrate that possible problem.
FIG, 4A illustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an

added computer.
Computer K was connected to the broadcast channel by

edge pinning edges E-J and B-Cto a computer K. The
diameter of this broadcast channel is three, because the
shortest path from computer G to computer K is through
edges G-A, A~E, and E-K. FIG. 4C also illustrates the
broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computerin the seeking connection state.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which mayresult in smaller
overall diameters.

Broadcasting through the Graph
As described above, each computer that is connected to

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copics of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computerthat originates a message numbersits own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a ecriain recciving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. Thefirst

49

15

twwa

40

45

59

55

69

a Hn

8
message may have to travel a distance of four to reach the
receiving computer. The second message only has to travel
a distance of one. Thus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channelis in a steady state (Le., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problem can occur. In particular, a com-
puter may connect to the broadcast channelafter the second
message has already been received and forwarded on byits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queue all the messagesthatit receives until it can send them
in their proper orderto its neighbors. This solution, however,
maytend to slow downthe propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speedis to
queue messages only at computers who are neighbors ofthe
newly connected computers. Each already connected neigh-
bor would forward messages as it receives them to its other
neighbors whoare not newly connected, but notto the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when if can ensure thal no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages fromthe originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connccted computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3 is finally received,
the already connected computer will send messages3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connecied computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3.It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlicr than the messages ofthe first sct reecived, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

AB-AB 001831

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 164 of 351 PageID #: 40496Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 164 of 351 PagelD #: 40496

US 6,920,497 BI
9

Decomposing the Graph
A connected computer disconnects from the broadcast

changel either in a planned or unplanned manner. When a
computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to connectto the fourth computerin the list. If a computer
cannot connect (¢.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available intemalport receives the
message, it can then establish a connection with the com-
puterthat broadcast the message. FIGS. 5A-5D illustrate the
disconnecting of a computer from the broadcast channel.
FIG. SA illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect,it sendsits list of neighbors to each of
its neighbors (computers A, E, F and 1) and then disconnects
from eachofits neighbors. When computers A andI receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (Le., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates that it has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computer that is also short connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 3B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, E, FE, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects thatit
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its ncighbor also has an
empty port. Such a condition may also occur when the
broadcast channelis in the small regime. The condition can
only be corrected when in the large regime. When in the

49

i)

bwA

40

fan

59

55

69

10
small regime, each computer will bave less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includes a list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lisis are different, then this condition has
occurredin the large regime andrepair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from oneof its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
‘Tbus, one of the original neighbors involved in the condition
will have had a port filled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect to each other when
theyreceive the requests. If, however, the two computersare
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible thal the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the same set of neighbors as the
sending computer. If so, the broadcast channel is in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 3C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, which givesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E hasa different set of neighbor(i.e., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one ofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

AB-AB 001832

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 165 of 351 PageID #: 40497Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 165 of 351 PagelD #: 40497

US 6,920,497 BI
i

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. PIG. SEillustrates the neighbors with
empty ports condition in the small regime. Ia this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request when if
detects the disconnect. When computcr A reecives the port
connection request form computer B, it detects the neigh-
bors with emptyports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. SPF illustrates the situation of FIG. 5E when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channel is in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computerB receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries fo connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
secking computer, however, does not knowin advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computerstarting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the :
seeking computer would eventually find the call-in port. Ef
the portal computer is not connected, then the seeking
computer would eventually dial every userport. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slowprocess, it would take the seeking computer
a longtime to locate the call-in port of a portal computer. To
ounimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In onc embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space

49

= A

29

uw an

40

fean

12

and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given
channel type and channel instance, it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for cach broadcast channel. Thus, a secking
computer will dial the ports of a portal computerin the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channelthrough a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm, For example, cach secking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight secking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through whichit
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
seeking computerlocates a portal computerthat is connected
to the broadeast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking compuler would

s select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a sccking technique is that all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the number of ports that it will dial when
seeking a portal computer that is fully connected. If the
secking computer exhausts its search depth, then either the
broadeast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itsclf as the first fully

5 connected computer.
Whena seeking computer locates a portal computer that

is itself not fully connceted, the two computers do not

AB-AB 001833

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 166 of 351 PageID #: 40498Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 166 of 351 PagelD #: 40498

US 6,920,497 BI
13

connect when they first locate each other because the
broadcast channel may already be established and accessible
through a higher-ordered port aumber on another portal
computer. If the two seeking computers were to connect to
each other, then two disjoint broadcast channels would be
formed. Each secking computer can share ifs expericnec in
trying to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searched all the portal computers to a depth ofeight, then the
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. [f that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cansot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

Asdescribed above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledge ofitself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channelto fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal computer sends an
edge connection request message through oneof its internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the cdge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
secking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. ‘The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly sclected computer. If that randomly sclected com-
puter cannot connect to the seeking computer(€.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one ofits

49

15

49

69

14

neighbors with a new distance totravel. In one embodiment,
the forwarding computer toggles the newdistance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Becauseofthe local nature of the information maintained

by cach computcr connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameterthat is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.
Extemal Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
mayuse 64-bit integers. As another example, one computer
mayuse ASCII to represent text and another computer may
use Unicode. To allow communications between heleroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

The underlying peer-to-peer communications protocol
maysend multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcomethe inefficiencies of such repeated calls, the broad-
cast technique in once embodiment, uses XDR to identify
the message boundaries in a stream of messages. The
broadcast technique may request the operating system to
provide the next, for example, 1,024 bytes from the stream.
The broadcast technique can then repeatedly invoke the
XDR routines to retricve the messages and usc the success
or failure of each invocation to determine whether another

block of 1,024 bytes needs to be retrieved from the operating
system. The invocation of XDR routines do not involve
system calls and are thus more efficient than repeated system
calls.

M-Regular
In the embodiment described above, cach fully connected

computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a seeking conrputer to the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal
connections is odd, then when the broadcast channel has an

AB-AB 001834

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 167 of 351 PageID #: 40499Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 167 of 351 PagelD #: 40499

US 6,920,497 BI
15

odd number of computers connected, one of the computers
will have less than that odd numberofinternal connections.
In such a situation, the broadcast network is neither
m-regular nor m-connecited. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-conncetcd. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel! and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (¢.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (¢.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs 3
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to which it is connected. The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback rouline that the
broadcaster component invokes to notify the application
program that the connection has been completed, thatis the
process centers the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoketo retrieve the next

Message Type

seekingconnection_call

comnection__request__cal]

edge__proposal_call

port__connectioncall

19

15

twA

40

connected_stmt

16
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back soutine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has becn received. Each broadcaster componcnt
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices(e.g., disk drives). The
memory and storage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be storedor transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG.7 is a block diagramillustrating the sub-components
of the broadcaster component in one embodiment. The
broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer(if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invokedto retrieve messages from the broadcast queue. The
broadcast component is invokedby the application program
to broadeast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

EXTERNAL MESSAGES

Description

Indicates that a seeking process would like to know whether the
receiving process is fully connected to the broadcast channel
Indicates that the sending process would like the receiving
process to initiate a connection of the sending process to thebroadcast channel
Indicates that the sending process is proposing an edge through
which the receiving process can connect to the broadcast
channel (.e., edge pinning)
Indicates that the sending process is proposing a port through
which the receiving process can connect to the broadcastchannel
Indicates that the sending process is connected to the broadcast
channel

AB-AB 001835

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 168 of 351 PageID #: 40500Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18

US 6,920,497 BI
17

-continued

EXTERNAL MESSAGES

Message Type Description

18

condition_repairstmt Indicates that the receiving process should disconnect from one
of ils neighbors and connect to one of the processes invelved. in
the neighbors with empty pert condition

INTERNAL MESSAGES

Message Type Description
broadcast_stmt

connection... port_search.stmt

Indicates a message that is heing broadcast. through the
broadcast channel for the application programs
Indicates that the designated process is looking for a port
through which it can connect to the broadcast channel

connection_edgesearchcall Indicates that the requesting process is looking for an edge
through which it can connectto the broadcast channel

connection.edge__searchresp Indicates whether the edge between this process and the
sending neighbor has been accepted by the requosting
party

diameter_estimate_stmt
diameter_reset_simt

diameter
disconnect__stmt

the broadcast channel
condition__check_stmt

been detected
condition. double. checkstmt

same set of neighbors
shutdown_stmt

Indicates an estimated diameter of the broadcast channel
indicates to reset the estimated diameter to indicated

Indicates that the sending neighboris disconnecting from

Indicates that neighbors with empty port condition have

indicates that the neighbors with empty ports have the

Indicates thal the broadcast channel is being shutdown

Flow Diagrams
FIGS, 8-34 are flow diagrams illustrating the processing

of the broadcaster component in one embodiment. FIG.8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
statc. When a portal computcr is located that is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the <
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is ‘
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect time is used to

identify the instance of the process that is connectedthrough
this external port. One process may connect to a broadcast
channelof a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In

35 block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
seck portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating fully connected process on that portal
computer, then the routine continues at block 805, else the
routine returns an unsuccessful indication. In decision block

805, if no portal computer other than the portal computer on
which the process is executing was located, then Lhis is the
first process to fully connect to broadcast channel and the
routine continues at block 806, else the routine continues at
block 808. In block 806, the routine invokes the achicve
connection routine to changethestate of this process to fully
connected. In block 807, the routine installs the external
dispatcher for processing messages received through this
process’ external port for the passed channel type and
channel instance. When a message is received through that
external port, the external dispatcher is invoked. The routine
then returns. In block 808, the routine installs an external
dispatcher. In block 809, the routine invokes the connect
request routine to initiate the process of identifying neigh-
bors for the seeking computer. The routine then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed ihe channel type and channel instance of
the broadcast channel to which this process wishes to
connect. ‘This routine, for each search depth (e.g. port
number), checks the portal computers at that search depth.If
a portal computer is located at that scarch depth with a
process that is filly connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until

AB-AB 001836

Page 168 of 351 PagelD #: 40500

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 169 of 351 PageID #: 40501Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 169 of 351 PagelD #: 40501

US 6,920,497 BI
19

a process is located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the scarch depths have alrcady
been selected during this execution ofthe loop, thatis for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904. Tn blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 to select
the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907,if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whetherthat process
is fully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering processis fully connected tothe
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine 3
to determine whether an external call has been made to this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG, 10is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., secking _
connection__call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003, if the
external response message is successfully received (Le.,
sccking__connection_resp), then the routine continucs at
block 1004, cise the routine returns. Wherever the broadcast
component requests to receive an external message, it sets a
time out period. If the external message is not received
within that time out period, the broadcaster component
checksits own call-in port to see if another processis calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev- 5
eral times. If the expected messageis not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers andthen returns. In block 1006,the routine
adds the answering proccss to a list of fellow secking
process es and then returns.

FIG. 11 is a flow diagram illustrating the processing ofthe
connect request routine in one embodiment. This routine

bhg

uw an

49

20
requests a process ofa portal computer that was identified as
being fully connected tothe broadcast channelto initiate the
connection of this process to the broadcast channel. la
decision block 1101, if at least one process of a portal
computer was locatedthat is fully connected to the broadcast
channel, then the routine continucs at block 1103, clso the
routine continues at block 1102. A process of the portal
computer may no longer be inthelist if it recently discon-
nected from the broadcast channel. In one embodiment, a
seeking computer may alwayssearch its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104,if the dialing is successful, then the
routine continues at block 11085, else the routine continues at
block 1113. The dialing may be unsuccessfulif, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadeast channel (Le., connection_request_call). In block
1106, the routine receives the response message (Le.,
connection__request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108,ihe routine sets the expected number of
holes (.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 11111, if the dialed process is ready to
connect to this processas indicated by the response message,
then the routine continues at block 1112, else the routine
continues at block 1113. In block 1112, the routine invokes
the add neighbor routine to add the answering process as a
neighbor to this process. This adding of the answering
process typically occurs whenthe broadcast channelis in the
small regime. When in the large regime, the random walk
search for a neighbor is performed. In block 1113, the
routine hangs up the external connection with the answering
process computer and then returns.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fcllow secking process is
attempting to establish a connectionto the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202,if
the answer is successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the message indicatesthat
a seeking processis calling (i.e., seeking__connection_call),
then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message
(ie., seeking_connection_resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process to a list of fellow secking
processes and then returns. This list may be used if this

5 process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-

AB-AB 001837

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 170 of 351 PageID #: 40502Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 170 of 351 PagelD #: 40502

US 6,920,497 BI
21

necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

statc of this process to fully conncctcd to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is nowfully connectedto the
requested broadcast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (.¢., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14 isa flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that 2
message. This routine loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message wasretrieved, then the routine continues at block
1403,else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.c., seeking_
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (i.e.,
connection._request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call @e., edge_
proposal__call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (i.e., port__connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (Le., connectedsimt), the routine invokes the
handle connected statement in block 1412, else the routine
continues at block 1412a@. In decision block 1412a, if the
message type is a condition repair statement (i.c.,
condition__repair__stmt), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to process the next message. After each 5¢
handling routine is invoked, the routine loops to block 1414.
In block 1414,the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 15 isa flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connectedto the broadcast channel and continues at
block 1505. In block 1503, the routine scts a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
processto a list of fellow seeking processes. If this process

bead

uw an

40

fean

22

is not fully connected, then it is attempting to connectto the
broadcast channel. In block 1505, the routine sends the
external message response (Le., seekingconnection__resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603,else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberofholesthatthe calling process should expectin the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This processis ready to connect when
the numberofits holes is greater than zero and the calling
processis not a neighborof this process. In block 1606, the
routine sends to the calling process an external message that
is fesponsive to the connection request call (.e.,
connection__request_resp). In block 1607,the routine notes
the number of holesthat the calling process needs to fill as
indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberof holes that
the calling process needs to fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (Le. in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwardedfor each pair of holes of
the calling process that needs to be filled, In decision block
1613, if the number of holes of the calling process to be

s filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokcs the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement (i.e., connection__port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flowdiagramillustrating the processing of the
add neighbor routine in one embodiment. ‘This routine adds
the process calling on the external port as a neighborto this
process. In block 1701, the routine identifics the calling

5 process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to

AB-AB 001838

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 171 of 351 PageID #: 40503Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 171 of 351 PagelD #: 40503

US 6,920,497 BI
23

ensure that there are no gaps in the messages initially sent to
the sew neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connectingto its first neighbor and the routine continues
at block 1704, clse the routine continucs at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that newneighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives through an internal connectionso that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
routine continues at block 1711. In block 1716, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to
this process for edge pinning, whichin this case is no longer
needed.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast
channel is in the small regime and the routine continues at
block 1803. In decision block 1803, if the requesting process
is a ncighborof this process, then the routine returns, clsc the
routine continues at block 1804. In blocks 1804—1807, the
routine loops attempting to send a connection edge search
call internal message (.c., connection edge__search__call) to
a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, clse the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversuch a situation
is detected by the broadcaster component,it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the

bead

oh A

twA

uw an

40

45

24

recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reserved if the remaining forwarding distance is less thao or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a flowdiagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and one of its neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus the number of pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continues at
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighborof this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (ic¢., edge
proposal_resp) indicating that the proposed edge is
accepied. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
of holes is odd, then the routine continues at block 1913,else
the routine returns. In block 1913, the routine invokes the fll
hole routine and then returns.

FIG. 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2002, else the routine continues at
block 2003, In decision block 2002, if the sending process
is not a ncighbor, then the routine continucs at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(ie., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicates that is okay to connect this process, In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. ‘The
routine then returns.

FIG,21 is a flowdiagram illustrating the processing of the
5 fill hole routine in one embodiment. This routine is passed

an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal

AB-AB 001839

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 172 of 351 PageID #: 40504Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 172 of 351 PagelD #: 40504

US 6,920,497 BI
25

message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port scarch request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (i.e, connection__port_search_stmt). In decision
block 2102,if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighborsof this process through the internal
ports and then returns. In block 2104,the routine invokesthe
handle connection port search routine and then returns.

TIG, 22 is a flow diagram illustrating the processing ofthe
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sentthe internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invekes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originating process of the message or 2
the message has already been received (i.c., a duplicate),
then the routine ignores the message and continues at block
2208, else the routine continues at block 2203A.In decision
block 2203A,if the processis partially connected, then the
routine continues at block 2203B,else the routine continues
at block 2204. In block 22038, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207,the routine decodes the
message type and invokes the appropriate routine to handle
the message. or example, in decision block 2204, if the
type of the message is broadcast statement(Le., broadcast__
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected buffer is full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster componentcollectsall its
internal messages in a buffer while partially connected so
that it can forward the messages as if connects to new
neighbors. If, however, that buffer becomes full, then the
process assumes that it is now fully connected andthat the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, clsc the routine continucs at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message andthen returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a low diagram illustrating the processing ofthe
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast message itself. In block 301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program.In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
reecive messages, then the routinc continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messagesin the correctorderif possible for each originating
process and then returns.

bead

= A

bwA

49

26
FIG.24 is a flowdiagram illustrating the processing of the

distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
scleets the next neighbor other than the ncighbor whoscat
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG.26 is a flowdiagram illustrating the processing ofthe
handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberofholes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the rouline continues al block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message (i.e., condition_check) that includesa list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG,27 is a flowdiagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the number of holesof this process is greater
than zero, then the routine continues at block 2704, else the
rouline continues at block 2706. In block 2704, the routine
sends a port connection call external message (1.e., port_.
connection__call) to the prospective neighbor and receives
its response (i.c., port_connection_resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighborofthis process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28 is a flowdiagram illustrating the processing ofthe
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the message itself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802,if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continucs at block

5 2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting

AB-AB 001840

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 173 of 351 PageID #: 40505Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 173 of 351 PagelD #: 40505

US 6,920,497 BI
27

process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge betweenthis
process and the sending neighbor is reserved becauseit has
already been offered to a process, then the routine continues
at block 2805, clse the routine continucs at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicatorthat alternatively indicates to continue
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807,the
routine sends an edge proposal call external message (i.c.,
edge__proposal_call) and receives the response(Le., edge__
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between 2
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813, if this process is the requesting
process and the number of holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.e., connection
edge__search__response) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 isa flow diagram illustrating the processing ofthe
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.¢., connection__edge__search__resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continues at block 2903, else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process, In
decision block 2906, if the invoked routine was 5
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block

bead

= A

uw an

49

fea

w2

28
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (i.e., broadcast._stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distributc intcrnal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG.31 is a flowdiagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine maybe invoked bythe application program
or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS, 32-34are flow diagramsillustrating the processing
of messages associated with the neighbors with emptyports
condition. FIG. 32 is a flow diagramillustrating processing,
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one bole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighborand this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (Le.,
conditiondouble__check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (Le., condition_repair__stmt) externally to
the selected pracess. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-

5 nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, clse the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighborof this process. Thus, this processthat is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34is a flowdiagram illustrating the processing ofthe
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime. In decision block 3401,if this process has one
hole, then the routine continues at block 3402, clse the
routine continues at block 3403.If this process does not have
one hole, then the set of neighbors of this process is not the
same as the sct of neighbors of the scnding proccss. In

5 decision block 3402,if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block

AB-AB 001841

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 174 of 351 PageID #: 40506Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 174 of 351 PagelD #: 40506

US 6,920,497 BI
29

3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
rcturns, clsc the routine continucs at block 3404. In block
3404, the routine sets the estimated diameterforthis process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (i.e., diameter__reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(i.e., condition_check_stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

Whatis claimed is:

1. A method in a computer for locating a computer
through which to connect to a network, the method com-
prising:

providing an identification of a portal computer or a
plurality of portal computers, the portal computeror the
plurality of portal computers having a communications
port or communications ports with a call-in port being
enabled for communications when the portal computer
or the plurality of portal computers is in a state to
coordinate the connection of a seeking computerto the
network, wherein the call-in port is a type of commu-
nications port;

selecting the communications port or communications
ports of the portal computer or the plurality of portal
computers and attempting to communicate with the
selected communications port or communications ports
until communications with the call-in port is
suecessful, wherein a port ordering algorithm is used to
identify the call-in port, and wherein the communica-
tions ports selected by the port ordering algorithm may
be re-ordered; and

using the call-in port to request that the portal computer
or the plurality of portal computers coordinate the
connecting of the seeking computer to the network.

2. The method of claim 1 wherein the portal computer or
the plurality of portal computers selects a call-in port, and

49

= MA

29

further wherein the communications ports are selected in an ~
order that is the same as used by the portal computer when
it selected a call-in port.

3. The method of claim 1 wherein the communications

ports are selected based on a hashing algorithm ordering.
4. The method of claim 3 wherein the hashing algorithm

ordering provides an ordering in which each communica-
tions port is selected without re-selecting a communications
port,

30
5. The method of claim 3 wherein the hashing algorithm

ordering is modified to reduce conflicts with other seeking
computers that use the same hashing algorithm.

6. The method of claim 5 wherein a numberofthe first

communications ports ordered by the hashing algorithm are
reordered.

7. The method of claim 1 wherein the identification of a

plurality of portal computers is provided and when a com-
munications port is selected, attempting to communicate
with each of the identified portal computers through the
selected communications port before selecting the next
communications port.

8. The method of claim 1 wherein the communications

ports are TCP/IP ports.
9, Acomponent in a computer system for locating a call-in

port of a portal computer, comprising:
means for identifying the portal computer, the portal

computer having a dynamically selected call-in port for
communicating with other computers;

means for identifying the call-in port of the identified
portal computer by repeatedly trying to establish a
connection with the identified portal computer through
contacting a communications port or communications
ports until a connection is successfully established;

meansfor selecting the call-in port of the identified portal
computer using a port ordering algorithm; and

means for re-ordering the communications ports selected
by the port ordering algorithm.

10. The component of claim 9 wherein the communica-
tions ports are contacted in an order that is the same as that
used by the portal computer when it dynamically selects a
communications port.

Ll. The component of claim 9 whercin the communica-
tions ports are contacted based on a hashing algorithm
ordering.

12. The component of claim 11 wherein the hashing
algorithm ordering provides an ordering in which each
communications port is tried without contacting a commnu-
nications port more than once.

13. The component of claim 11 wherein the hashing
algorithm ordering is modified to reduce conflicts with other
computers that use the same hashing algorithm.

14. The component of claim 13 wherein a numberofthe
first communications ports ordered bythe hashing algorithm
are reordered.

15. The component of claim 9 including:

meansfor identifying a plurality of portal computers; and
means fortrying to establish a connection with each of the

identified portal computers through a single communi-
cations port before trying the next communications
port.

16. The component of claim 9 wherein the communica-
tions ports are TCP/IP ports.

AB-AB 001842

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 175 of 351 PageID #: 40507Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 175 of 351 PagelD #: 40507

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO.—: 6,920,497 BL Page | of 1
DATED : July 19, 2005
INVENTOR(S) _: Bourassa etal.

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 5

Line 21, “ally” should be -- fully --;

Column 8,
Line 12, “problem”should be -- problems --.

Signed and Sealed this

Thirteenth Day of September, 2005

Woe
JON W. DUDAS

Director ofthe United States Patent and Trademark Office

AB-AB 001843

EXHIBIT 105

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 176 of 351 PageID #: 40508Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 176 of 351 PagelD #: 40508

A 2H S SSAC SS LAB E ALC

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 177 of 351 PageID #: 40509Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 177 of 351 PagelD #: 40509

United States Patent

US006829634B1

(12) (10) Patent No.: US 6,829,634 B1
Holt et al. (45) Date of Patent: Dec. 7, 2004

(54) BROADCASTING NETWORK 5,864,711 A 1/1999 Mairs etal.
5,867,660 A 2/1999 Schmidt etal.

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil 5,867,667 A 2/1999 Butmanetal.
E. Bourassa, Bellevue, WA (US) 3,870,605 A 2/1999 Bracho et al.5,874,960 A 2/1999 Mairset al.

(73) Assignee: The Boeing Company, Seattle, WA aorety ‘ 2joss oieal
(US) 5,928,335 A 7/1999 Morita

. : 5 : : $,985,215 A 8/1999 Bell et al.
(*) Notice: Subject to any disclaimer, the term of this vous 054 A 9/1999 Nielsen

patent is extended or adjusted under 35 5,949,975 A 9/1999 Battyet al.
U.S.C. 154(b) by 737 days. 5,953,318 A * 9/1909 Nattkemperet al. 370/236

5,956,484 A 9/1999 Rosenberg et al.

(21) Appl. No.: 09/629,376 5,974,043 A 10/1999 Solomon5,987,506 A. 11/1999 Carter et al.
(22) Filed: Jul. 31, 2000 . .

: (List continued on next page.)
CBU) UMC1? nieceeecteeteeenes GO6F 15/16
(52) U.S. CL. 709/204; 709/205; 709/203; OTHER PUBLICATIONS

709/243; 709/201; 709/238, 709/319, 709/225; Alagar, S. and Venkatesan, S., “Reliable Broadcast in
_ ; 370/236 Mobile Wireless Networks,” Department of Computer Sci-

(58) Field of Search 709/106, 201, ence, University of Texas at Dallas, Military Communica-
709/238, 319 tions Conference, 1995, MILCOM °95 Conference Record,

IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
(56) References Cited

(List continued on next page.)U.S. PATENT DOCUMENTS

4,912,656 A 3/1990. Cain et al. Primary Examiner—Hosain Alam
5,056,085 A 10/1991 Wu Assistant Examiner—Young N. Won
5,309,437 A 5/1994 Perlmanet al. (74) Attorney, Agent, or Firm—Perkins Coie LLP
5,426,637 A 6/1995. Derbyet al.
5,535,199 A 7/1996 Amiri etal. 67) ABSTRACT
ee ‘ MYloos sitbon et al. A technique for broadcasting data across a network is
2 6/1 4 provided. An originating participant sends data to another5,673,265 A 9/1997 Gupta etal. setts oe : ; :
5,696.903 A 12/1997 Mahany participant, which in turn sends the data thatit receives from
5,732,074 A 3/1998 Spauret al. a neighbor participant to its other neighbor participants.
5,732,219 A 3/1998 Blumeretal. Communication in the broadcast network is controlled by a
5,734,865 A 3/1998 Yu contact module that locates the neighbor participants to
5,737,526 A 4/1998 Periasamyet al. which the seeking participant can be connected and by a join
5,754,830 A 3/1998 Butts et al. module that establishes the connection between the neighbor
3,761,425 A 6/1998 Miller participants and the seeking participant. Data is numbered
5,764,756 A 6/1998 Onweller sequentially so that data that is received out of order can be
5,790,548 A 8/1998 Sistanizadehet al. ueued and rearranged
5,790,553 A ‘8/1998 Deaton, Jr. et al. 4 ‘ arranged.
5,799,016 A 8/1998 Onweller
5,802,285 A 9/1998 Hirviniemi 24 Claims, 39 Drawing Sheets

AB-AB 001086

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 178 of 351 PageID #: 40510Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 178 of 351 PagelD #: 40510

US 6,829,634 BL
Page 2

U.S, PATENT DOCUMENTS

6,003,088 A 12/1999 Tlouston et al.
6,013,107 A 1/2000 Blackshear etal.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga etal.
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.
6,094,676 A
6,199,116 BL
6,216,177 BL
6,223,212 BI
6,243,691 BL
6,268,855 BL
6,271,839 Bi

7/2000 Gray et al.
3/2001 Mayet al.
4/2001 Mairs et al.
4/2001 Batty et al.
6/2001 Fisher et al.
7/2001 Mairs ct al.
8/2001 Mairs et al.

6,285,363 Bi 9/2001 Mairs etal.
6,304,928 Bi 10/2001 Mairset al.
6,611,872 BL * 8/2003 McCanne

OTHER PUBLICATIONS

tseeserres 109/238

International Search Report for The Boeing Company,lnter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
US.patent application Ser. No. 09/629,570, Bourassa etal.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,577, Bourassa etal.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,575, Bourassa et al.,
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,572, Bourassa etal.,
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,023, Bourassaetal.,
filed Jul. 31, 2000.
USS. patent application Ser. No. 09/629,043, Bourassaet al.,
filed Jul. 31, 2000,
US.patent application Ser. No. 09/629,024, Bourassaetal.,
filed Jul. 31, 2000.
US. patent application Ser. No. 09/629,042, Bourassa etal.,
filed Jul. 31, 2000.
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).
The Gamer's Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).

The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/
1pt/ .. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly
Network bttp://www.oreillynet.com/1pt . . . [Accessed Jan.
29, 2002].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-143-16).
Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://inux.oreillynet.com/1pt .. . [Accessed Jan. 29, 2002],
Monte, Richard, “The Random Walk for Dummies,’MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/SSTD/FYV/BCP Archives—http:/Avww.fags.org/rfes/
rfc1832.btml [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCP/AP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
hitp:/Avww.hill.com/library/publications/ . . . [Accessed
Jan. 29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas H. et al. Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.
The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13~1-13-56), Chapter 16
(pp. 16-1-16~26), Chapter 18 (pp. 18-1-18~52), Chapter
20 (pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
hitp://Awww.des.warwick.ac.u .. . [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 001087

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 179 of 351 PageID #: 40511Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 179 of 351 PagelD #: 40511

U.S. Patent Dec. 7, 2004 Sheet 1 of 39 US 6,829,634 BI

AB-AB 001088

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 180 of 351 PageID #: 40512Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 180 of 351 PagelD #: 40512

U.S. Patent Dec. 7, 2004 Sheet 2 of 39 US 6,829,634 BI

Fig.2
AB-AB 001089

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 181 of 351 PageID #: 40513Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 181 of 351 PagelD #: 40513

U.S. Patent Dec. 7, 2004 Sheet 3 of 39 US 6,829,634 BI

m ©

N me
or)

< Bo

Ww CQ

a

©

<
< "

A
i

Q

Lu

AB-AB 001090

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 182 of 351 PageID #: 40514Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 182 of 351 PagelD #: 40514

U.S. Patent Dec. 7, 2004 Sheet 4 of 39 US 6,829,634 BI

AB-AB 001091

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 183 of 351 PageID #: 40515Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 183 of 351 PagelD #: 40515

U.S. Patent Dee. 7, 2004 Sheet 5 of 39 US 6,829,634 BI

F rig.4B
AB-AB 001092

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 184 of 351 PageID #: 40516Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 184 of 351 PagelD #: 40516

U.S. Patent Dec. 7, 2004 Sheet 6 of 39 US 6,829,634 BI

AB-AB 001093

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 185 of 351 PageID #: 40517Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 185 of 351 PagelD #: 40517

U.S. Patent Dec. 7, 2004 Sheet 7 of 39 US 6,829,634 BI

78] a
u. be

Ry

ft
AB-AB 001094

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 186 of 351 PageID #: 40518Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 186 of 351 PagelD #: 40518

U.S. Patent Dec. 7, 2004 Sheet 8 of 39 US 6,829,634 BI

AB-AB 001095

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 187 of 351 PageID #: 40519Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 187 of 351 PagelD #: 40519

U.S. Patent Dec. 7, 2004 Sheet 9 of 39 US 6,829,634 BI

B 5C
ig.

AB-AB 001096

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 188 of 351 PageID #: 40520Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 188 of 351 PagelD #: 40520

U.S. Patent Dec. 7, 2004 Sheet 10 of 39 US 6,829,634 BI

AB-AB 001097

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 189 of 351 PageID #: 40521Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 189 of 351 PagelD #: 40521

U.S. Patent Dee. 7, 2004 Sheet 11 of 39 US 6,829,634 BI

a

<

Ry
wy

be
Rey

a

oO

oO <

a
Se
Ry

oO am

AB-AB 001098

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 190 of 351 PageID #: 40522Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 190 of 351 PagelD #: 40522

U.S. Patent Dec. 7, 2004 Sheet 12 of 39 US 6,829,634 BI

Fig.6

(channeltype Application2 (channeltype channelinstance)Application1
3
B
=

io
AB-AB 001099

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 191 of 351 PageID #: 40523Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 191 of 351 PagelD #: 40523

U.S. Patent Dee.7, 2004 Sheet 13 of 39

700
702

External dispatcher
Q3

Internal dispatcher 1 7063
Internal ‘Dispatcher 4

707
Handle Emsgl 707 Handle EmsgN 70

Handle Imsg1
708

Handle ImsgN
ig.7

701

705

©

Connectoon
709 Broadcast msg queue

US 6,829,634 B1

AB-AB 001100

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 192 of 351 PageID #: 40524Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 192 of 351 PagelD #: 40524

U.S. Patent Dec. 7, 2004 Sheet 14 of 39 US 6,829,634 BI

conse
Channel Instance,
Connect Aux Info)

801

Open call in port

802 Fig. 8
Set connect-time

803

Seek portal - computer
(channel type channel

instance)

804

<a
Y

805
Contacts

ae oe ¥ Achieve connection
0

N

808
Install external dispatcher

eacaspoe

809

|comet|

AB-AB 001101

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 193 of 351 PageID #: 40525Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 193 of 351 PagelD #: 40525

U.S. Patent Dec. 7, 2004 Sheet 15 of 39 US 6,829,634 BI

Seek portal Channel Type
computer Channel Instance

902

903

All depths selected > Retum (Failure)

N 904

rig. 9

on 5

All portal computers
selected

Dial portal computer

907

¥ 908

La|
909

Hang up selected portal
computer

Check for external
call

Y¥

AB-AB 001102

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 194 of 351 PageID #: 40526Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 194 of 351 PagelD #: 40526

U.S. Patent Dec. 7, 2004 Sheet 16 of 39 US 6,829,634 BI

1001

Send external message

Fig. 10

 1002

AB-AB 001103

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 195 of 351 PageID #: 40527Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 195 of 351 PagelD #: 40527

U.S. Patent Dec. 7, 2004 Sheet 17 of 39 US 6,829,634 BI

Connect request

Fig. 11

4101 1102

connected portal found N Restart

Dial call in port of portal
computer

1104

Y

Fesponse

i11

Ready to connect a
N 1113

AB-AB 001104

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 196 of 351 PageID #: 40528Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 196 of 351 PagelD #: 40528

U.S. Patent Dec. 7, 2004 Sheet 18 of 39 US 6,829,634 BI

Check for extern
call

1201

Fig, 12

AB-AB 001105

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 197 of 351 PageID #: 40529Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 197 of 351 PagelD #: 40529

U.S. Patent Dec. 7, 2004 Sheet 19 of 39 US 6,829,634 BI

Achieve connection

Fig. 13

Invoke connect call back

AB-AB 001106

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 198 of 351 PageID #: 40530Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 198 of 351 PagelD #: 40530

U.S. Patent Dec. 7, 2004 Sheet 20 of 39 US 6,829,634 BI

Fig. 14

1401

Pick up and receive
external message

 4409

Port connect call

Connected statement

Condition repair Handle condition

statement ~ repair statement | |

Handle connected
statement

AB-AB 001107

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 199 of 351 PageID #: 40531Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 199 of 351 PagelD #: 40531

U.S. Patent Dec. 7, 2004 Sheet 21 of 39 US 6,829,634 BI

connected

1502

Set message to indicate
connected

1504

Add other as fellow
seeking process

AB-AB 001108

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 200 of 351 PageID #: 40532Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 200 of 351 PagelD #: 40532

U.S. Patent Dec. 7, 2004 Sheet 22 of 39 US 6,829,634 BI

andle connection.

request cal}

4 §01 EH)

aie

Sei neweomers (Rerum_)
holestoexpect

Y 4
Set diameter estimate in

response
SU

Set ready in response

Ux

Sent external message
connect request resp,

0

Set newcomer's

holes_to_fill

Zz

Fig. 16

5
eléh

i Add neighbor
670

Newcomer's

holestofill —

N Holes to fill - = Z

 er! 2

to,fil . , 7| Fill hole (requestor) i

AB-AB 001109

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 201 of 351 PageID #: 40533Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 201 of 351 PagelD #: 40533

U.S. Patent Dec. 7, 2004 Sheet 23 of 39 US 6,829,634 BI

Add neighbor

Identifies calling party Fig. 17

Sets neighborto
messages pending

£03 Y Connection_state = “
<Seeking connection connected{|

Addas neighbor

O6

Install interal dispatcher
for new neighbor

707 O8

Cut

Td

0

Y

xpected hole:
N

1711

Hole = = 0 ; Purge pending edges

Cana

AB-AB 001110

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 202 of 351 PageID #: 40534Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 202 of 351 PagelD #: 40534

U.S. Patent Dec. 7, 2004 Sheet 24 of 39 US 6,829,634 BI

Forward connection requestor
edge searcl distance remaining

Fig. 18

>t

neighbor = elect random neirequestor Select m neighbor

1808

Note connection edge
search cal]

AB-AB 001111

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 203 of 351 PageID #: 40535Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 203 of 351 PagelD #: 40535

U.S. Patent Dec. 7, 2004 Sheet 25 of 39 US 6,829,634 BI

Handle edge in message
proposal call out message

91

Send external message
N

1907

Send external message

. 1912 1908
ee

4 0 v $09

| Fill hole i Add edgeas pendi
1310

Gen) [nmi|

AB-AB 001112

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 204 of 351 PageID #: 40536Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 204 of 351 PagelD #: 40536

U.S. Patent Dec. 7, 2004 Sheet 26 of 39 US 6,829,634 BI

Fig. 20 001
Holes > 0

200

: Send external messagCaller is not :
. (point-connect-rneighbor not ok) “sp .

 004

Send external message
(point-connect-resp, ok)

2008

[coment|

AB-AB 001113

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 205 of 351 PageID #: 40537Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 205 of 351 PagelD #: 40537

U.S. Patent Dec. 7, 2004 Sheet 27 of 39 US 6,829,634 BI

Fill hole

messageDistribute internal ;

AB-AB 001114

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 206 of 351 PageID #: 40538Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 206 of 351 PagelD #: 40538

U.S. Patent Dec. 7, 2004 Sheet 28 of 39 US 6,829,634 BI

Internal

2201

Fig. 22
O as

This 2203

2203A
Partially ed

2
connect

| Insert message into N
pending connection buffer

Type
04

== broadcast >. /statement

2007206
Handle shutdown

statement

statement “a |
y Pending

08

connection buffer

209 full

Achieve connection N

; 2210I N
message queue

my 2212

AB-AB 001115

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 207 of 351 PageID #: 40539Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 207 of 351 PagelD #: 40539

U.S. Patent Dec. 7, 2004 Sheet 29 of 39 US 6,829,634 BI

origin
from neighbor

Fig. 23

AB-AB 001116

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 208 of 351 PageID #: 40540Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 208 of 351 PagelD #: 40540

U.S. Patent Dec. 7, 2004 Sheet 30 of 39 US 6,829,634 BI

Fig, 24

AB-AB 001117

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 209 of 351 PageID #: 40541Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 209 of 351 PagelD #: 40541

U.S. Patent Dec. 7, 2004 Sheet 31 of 39 US 6,829,634 BI

Handle connection from neighbor
for search message

2601

Distribute intemal

message Fig. 26

502

S——{__ Rew)

 enerate

condition check
message w/neighboea a

2607

Send internal message
to requestor

AB-AB 001118

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 210 of 351 PageID #: 40542Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 210 of 351 PagelD #: 40542

U.S. Patent Dec. 7, 2004 Sheet 32 of 39 US 6,829,634 BI

rove

Fig. 27 701

mgs >t Caan)a neighbor

N

2702

Dial prospect

703

Holes > 0 N

Send and receive

external message

Add neighbor

706

Hang up prospect

AB-AB 001119

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 211 of 351 PageID #: 40543Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 211 of 351 PagelD #: 40543

U.S. Patent Dec.7, 2004 Sheet 33 of 39 US 6,829,634 BI

¥ 2844

| Fill hole (self) | Forward

A> 2815 connection edge
end imema search (requestor,

message (from | Q)neighbor, ack
2806 y

280

Send and receive
external message

AB-AB 001120

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 212 of 351 PageID #: 40544Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 212 of 351 PagelD #: 40544

U.S. Patent Dec. 7, 2004 Sheet 34 of 39 US 6,829,634 BI

Handle edge search origin
resp. from neighbor

Fig. 29 0 message

[eso|
906

XY

Y 2908

[a|

AB-AB 001121

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 213 of 351 PageID #: 40545Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 213 of 351 PagelD #: 40545

U.S. Patent Dec. 7, 2004 Sheet 35 of 39 US 6,829,634 BI

AB-AB 001122

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 214 of 351 PageID #: 40546Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 214 of 351 PagelD #: 40546

U.S. Patent Dec.7, 2004 Sheet 36 of 39 US 6,829,634 BI

Fig, 3i

AB-AB 001123

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 215 of 351 PageID #: 40547Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 215 of 351 PagelD #: 40547

U.S. Patent Dec. 7, 2004 Sheet 37 of 39 US 6,829,634 BI

landle condition check

 Set up message with list
ofneighbors

Send internal message

Send external message
to selected neighbor

AB-AB 001124

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 216 of 351 PageID #: 40548Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 216 of 351 PagelD #: 40548

U.S.Patent Dec.7, 2004 Sheet 38 of 39 US 6,829,634 BI

Handle condition
repair statement

301

Holes = = 0

Select a neighbor not
involved in condition

Removeselected
neighbor

Fig. 33

AB-AB 001125

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 217 of 351 PageID #: 40549Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 217 of 351 PagelD #: 40549

U.S. Patent Dec.7, 2004 Sheet 39 of 39 US 6,829,634 BI

Handle condition
double check

Holes == 1

Fig. 34

Send internal message
to-from neighbor

AB-AB 001126

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 218 of 351 PageID #: 40550Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 218 of 351 PagelD #: 40550

US 6,829,634 BI
1

BROADCASTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to US. patent application Ser.
No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000 US. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNEL,” filed on Ful. 31, 2000 currently patented. US.
patent application Ser. No. 09/629,575, entitled “BROAD-
CASTING ON A BROADCAST CHANNEL,”filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,572,
entitled “CONTACTING A BROADCAST CHANNEL,”
filed on Jul. 31, 2000; U.S. patent application Ser. No.
09/629,023, entitled “DISTRIBUTED AUCTION
SYSTEM,”filed on Jul. 31, 2000 now under appeal. U.S.
patent application Ser. No. 09/629,043, entitled “AN
INFORMATION DELIVERY SERVICE,” filed on Jul. 31,
2000 currently patented; U.S. patent application Ser. No.
09/629,024, entitled “DISTRIBUTED CONFERENCING
SYSTEM,”filed on Jul. 31, 2000; and U.S. patent applica-
tion Ser. No. 09/629,042, entitled “DISTRIBUTED GAME
ENVIRONMENT,” filed on Jul. 31, 2000 currently
patented, the disclosures of whichare incorporated herein by
reference.

TECHNICAL FIELD

The described technologyrelates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide varicty of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computersthat are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely manner to all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well ;
as a number of participants grows. For example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however,find it very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients who are sharing the information. lhe server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(“CORBA”). Client/server middleware systems are not par-

tun

twwa

49

45

69

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, cach other clicnt would necd to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (.e., the server) would prevent communications
between any of the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting, These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the T.1.20 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network.
That is, each message must pass through the root node in
order to be received byall participants.

It would be desirable to have a reliable communications

network that is suitable for the simultancous sharing of
information among a large number of the processesthat are
widely distributed.

SUMMARY OF THE INVENTION

Embodiments of the invention deal with a non-routing
table based method for broadcasting messages in a network.
Morespecifically, a network in which each participant has at
least three neighbor participants broadcasts data through
each of its connections to neighbor participants, which in
turn send the data that it receives to its other neighbor
participants. The data is numbered sequentially so that data
that is received out of order can be queued and rearranged.

Communication within the broadcast channel is con-

trolled by a contact module and by a join module. The
contact module locates a portal computer and requests the
located portal computer to provide an indication of neighbor
participants to which the participant can be connected. The
join module receives the indication of the neighbor partici-
pants and establishes a connection between the seeking
participant and each of the indicated neighbor participants.

Each participant in the network is connected to neighbor
participants, and the participants and connections between
them form an m-regular graph, where mis greater than 2. In

5 addition, when a participant receives data from a neighbor
participant, it sends the data to its other neighbor partici-
pants.

AB-AB 001127

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 219 of 351 PageID #: 40551Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 219 of 351 PagelD #: 40551

US 6,829,634 BI
3

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added. computer.
FIG. SA illustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. 5B illustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG. 3C illustrates the neighbors with empty ports con-

dition.

FIG. 5D illustrates two computers that are not neighbors
who now have empty ports.

FIG. SE illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG. 7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment.

FIG. 10 isa flow diagramillustrating the processing of the
contact process routine in one embodiment.

FIG, 11 is a flow diagramillustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagramofthe processing of the achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processingof t
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 isa flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 isa flow diagram illustrating the processing ofth
handle edge proposal call routine.

FIG. 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 isa flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagram illustrating the processing oft
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagram illustrating the processingof the
handle broadcast message routine in one embodiment.

a

ce

oO

twwa

tua o

uw an

40

55

69

4

FIG. 24 is a flowdiagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG.26 is a flowdiagram illustrating the ¢
handle connection part search statement
embodiment.

FIG.27 is a flowdiagram illustrating the
court neighbor routine in one embodiment.

FIG. 28 is a flowdiagram illustrating the processing of the
handle connection edge search call routine in one embodi-ment.

rocessing of the
routine in one

rocessing of the

FIG.29is a flowdiagram illustrating the
handle connection edge search response
embodiment,

processing of the
routine in one

FIG. 30 is a flowdiagram illustrating the
broadcast routine in one embodiment.

FIG. 31 is a Howdiagram illustrating the processing of the
acquire message routine in one embodiment.

FIG, 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-ment.

FIG. 34is a flowdiagram illustrating the processing of the
handle condition double check routine.

processing of the

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to cach other connected computer
using each computer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (e.,
edges) between host computers (i.e., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computeris connected to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puterthat receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to cach computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel. A graph in which cach node is conneeted to four

5 other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of

AB-AB 001128

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 220 of 351 PageID #: 40552Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 220 of 351 PagelD #: 40552

US 6,829,634 BI
5

the connectionsto its neighbors fail. The graph used by the
broadcast technique also has the propertythat it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG.1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.c., the shortest path between the
two nodes ofthe graph). For example, the distance between 2
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computer F is directly connected to
computer B. Thus, a message originating at computer A
would be sent directly to computer [', and then sent from
computer F to computer B. The maximum ofthe distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two, That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
of this broadcast channelis 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

‘The broadcast technique inchides (1) the connecting of
computers to the broadcast channel (ie., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (ic., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (iec.,
decomposing the graph) composing the graph.

Composing the Graph
To connect to the broadcast channel, the computer seeking

the connection first locates a computer that is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connected to the broadcast channel. (This assumes that there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channelis considered to
be in a “small regime.” The broadcast technique for the
small regimeis described belowin detail. When five or more
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to cach identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A sccking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-

49

fe an

6

puter then directs the identifying of four computers (i.c., to
be the seeking computer’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connect-
ing of the seeking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computerthat is currently, or
has been, previously connected to four neighbors is in the
“fully connectedstate.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. ‘hus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and
D are the twopairs that are identified as the neighbors for the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send nen-broadecast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCPAP protocol provides for reliable and
ordered delivery of messages between computers, The TCP/
IP protocol provides each computer with a “port space”that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (€.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be uscd as its

5 call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

AB-AB 001129

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 221 of 351 PageID #: 40553Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 221 of 351 PagelD #: 40553

US 6,829,634 BI
7

non-broadcast messages through its external port. Aseeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or attempting to connect to the broadcast channel and its
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. Thecall is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connected to one ofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computeris that the
diameter of the broadcast channel may increase when each
seeking computer uses the same foundportal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes 3
are added. FIGS. 4A-4C illustrate that possible problem.
FIG. 4A illustrates the broadcast channel of FIG, 1 with an

added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channelis still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an

added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E—J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G-A, A-E, and E-K. FIG. 4Calso illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-—J to computer K. The diameterof
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computer in the seeking connectionstate.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph

As described above, cach computer that is connected to
the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it

tun

49

40

59

69

8
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is scnt between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel,if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computerthat originates a message numbersits own
messages sequentially. Because of the dynamic nature of the
broadeast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. The first
message may have to travel a distance of four to reach the
receiving computer. The second message only has totravel
a distance of one. Thus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (Le., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwarded on byits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queuc all the messagesthat it receives until it can send them
in their proper orderto its neighbors. This solution, however,
maytend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors ofthe
newly connected computers. Each already connected neigh-
bor would forward messages asit receives them to its other
neighbors who are not newly connected, butnotto the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat

AB-AB 001130

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 222 of 351 PageID #: 40554Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 222 of 351 PagelD #: 40554

US 6,829,634 BI
9

the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then reecive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3 is finally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. Lf messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor.If the
second set of messages contains a message that is ordered
earlier than the messages ofthe first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a
computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The 3
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,if tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to connect to the fourth computerin the list. If a computer
cannot connect (e.g, the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receivesthe
message, it can then cstablish a connection with the com-
puter that broadcast the message. FIGS. SA-SDillustrate the
disconnecting of a computer from the broadcast channel.
FIG. SAillustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect, it sends its list of neighbors to each of
its neighbors (computers A, E, F and 1) and then disconnects
from cach of its neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (Le., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates that it bas one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computerthat is also short a connection receives

1)

15

49

59

atn

69

10
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5Billustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, [, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shownby the dashed lines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
mayresult in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a conditionis referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includes a list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. [f the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one ofits neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have hada port filled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors,then they will connect to each other when
theyreceive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor whoalso has the condition. When
the computer receives the condition double check message,
it determines whetherit has the same set of neighbors as the
sending computer. Ifso, the broadcast channelis in the small
regime and the condition is not a problem. Hf the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computerthat receives that condition check message directs
one of it neighbors to connect to one of the original

AB-AB 001131

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 223 of 351 PageID #: 40555Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 223 of 351 PagelD #: 40555

US 6,829,634 BI
i

neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
putersA and E,are already neighbors, whichgivesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E has a different set of neighbor(i-c., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one of its
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. FIG. SE illustrates the neighbors with
empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computcr B. Computer B recognizcs that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channelis in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channel is
in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.

Port Selection

Asdescribed above, the TCP/IP protocol designates ports
above number 2056 as user ports. ‘The broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one

bead

oh A

NwA

uw an

45

fta

69

12

embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port numbcr of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking
computer would eventuallydial every user port. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time to locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given
channel type and channel instance, it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computerin the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadeast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of fiading a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.

Locating a Portal Computer
Each computer that can connect to the broadcast channel

5 has a list of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A

AB-AB 001132

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 224 of 351 PageID #: 40556Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 224 of 351 PagelD #: 40556

US 6,829,634 BI
13

seeking computerlocates a portal computerthat is connected
to the broadcast channel by successivelydialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadeast channel is found. If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast 2
channel. The seeking computers may have a maximum
search depth,that is the numberof ports that it will dial when
seeking a portal computer that is fully connected. If the
secking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the
broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
each other, then two disjoint broadcast channels would be
formed, Each seeking computer can share its experience in
trying to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searchedall the portal computers to a depth ofeight, then t
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depthsfive through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In sucha situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.

&

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting 5
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledge ofitself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channelto fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

oh MA

2 i

40

a on

14

To select the four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
putcr cannot connect to the secking computer (c.g., because
it is already connected to it), then that randomly selected
cormputer forwards the edge connection request to one ofits
neighbors with a new distance to travel. In one embodiment,
the forwarding computer toggles the newdistance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because ofthe local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distancetraveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCH to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel may use the XDR (“external Data Representation”)
format.

The underlying peer-to-pecr communications protocol
5 may send multiple messagesin a single message stream. The

traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to

AB-AB 001133

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 225 of 351 PageID #: 40557Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 225 of 351 PagelD #: 40557

US 6,829,634 BI
15

retrieve the next message in the stream. The retrieval of each
message may require twocalls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the numberof bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of lecal routines. To
overcomethe inefficiencies of such repeated calls, the broad-
cast technique in one embodiment, uses XDRto identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.

M-Regular

Tn the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the ~
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the numberof internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd numberof internal connections.

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.

Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
cennections to the same broadcast channel. The broadcast

channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (¢.g., application program
name) and channel instance that represents separate broad-
cast channelsfor that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The secking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each

49

15

40

45

59

wn tn

60

16
broadcast channel to whichit is connected. The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment,the broadcaster componcnt provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed,that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoketo retrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answeredat the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(¢.g., keyboard and pointing device), output devices (¢.g.,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The
broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each infernal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that arc invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect component identi-
fies the external port and insialls the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer (if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invokedto retrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program
to broadeast messages in the broadcast channel.

The followingtables list messages sent by the broadcaster
components.

AB-AB 001134

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 226 of 351 PageID #: 40558Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 226 of 351 PagelD #: 40558

US 6,829,634 BI
17

External Messages

EXTERNAL MESSAGES

Message Type Description

seeking_
connection_call

ndicates that a seeking process would like to know
whether the receiving process is fully connected to thebroadcast channel

connection... ndicates that the sending process wouldlike the
request__call receiving process {o initiate a connection of the

sending process to the broadcast channel
edgeproposal__ Indicates that the sending process is proposing an edge

 call through which the receiving process can connect fo the
roadcast channel (i.¢., edge pinning)

port ndicates that the sending process is proposing a port
connection_call through whichthe receiving process can connect to thebroadcast channel

ndicates that the sending process is connected to thebroadcast channel
Indicates that the receiving process should disconnect
yor one ofits neighbors and connect to one of the

processes involved in the neighbors with empty portcondition

connected__stmt

condition.
repairstmt

Internal Messages

INTERNAL MESSAGES

Message Type Description

broadcast_stmt Indicates a message that is being broadcast through
the broadcast channel for the application programs
Indicates that the designated process is looking for a
port through which it can connect to the broadcastchannel
Indicates that the requesting process is looking for
an edge through whichit can connect to thebroadcast channel
indicates whether the edge between this process and
the sending neighbor has been accepted by the
requesting party
Indicates an estimated diameter ofthe broadcast
channel
Indicates to reset the estimated diameter to
indicated diameter
Indicates that the sending neighboris disconnecting
from the broadcast channel
Indicates that neighbors with empty port conditionhave been detected
Indicates that the neighbors with empty ports have
the same set of neighbors
Indicates that the broadcast channel is beingshutdown

connection.port__
search_stint

connection.edgesearch, call

connection_edge__
search_resp

diameter__estimate
stm.
diameter_reset_
stmt
disconnect__stmt

condition_check_
stmt
condition double
check._.stmt
shutdown__stmt

Flow Diagrams

FIGS, 8-34 are flow diagramsillustrating the processing
of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (€.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this

15

59

wn on

69

65

18
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect time is used to

identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate withit
thinkingit is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seck portal computer
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer,then the routine continues at block 805,else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth.If
a portal computer is located at that search depth with a
processthat is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a process is located. In block 902,the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
beenselected during this execution of the loop,that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 9604, In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905, if all the portal computers have already
beenselected, then the routine loops to block 902 to select

AB-AB 001135

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 227 of 351 PageID #: 40559Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 227 of 351 PagelD #: 40559

US 6,829,634 BI
19

the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the scarch depth.
In decision block 30 907,if the dialing was successful, then
the routine continues at block 908,else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering processof the portal computer
through the dialed port and determines whetherthat process
is fully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910,if the answering processis fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been madeto this

process as a portal computer and processes that call. The 3,
routine thea loops to block 904 to select the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking_
connection_call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003, if the
external response message is successfully received (Le.,
seckingconnection_resp), then the routine continues at
block 1004, else the routine returns. Wherever the broadcast
component requests to receive an external message,it sets a
time out period. If the external message is not received
within that time out period, the broadcaster component
checks its own call-in port to see if another processis calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. ‘The
broadcaster component may repeat the receive request sev-
cral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicatesin its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1604, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected <
portal computers and then returns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. This routine ¢
requests a process of a portal computer that was identified as
being fully connected to the broadcast channelto initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was locatedthat is fully connected to the broadcast
channel, then the routine continues at block 1103, clse the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nectcd from the broadcast channel. In one embodiment, a
seeking computer may alwayssearch its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine

bead5

ty Kn

40

20
restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104,if the dialing is successful, then the
routine continues at block 1108, else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (i.e., connection_request_call). In block
1106, the routine receives the response message (ie.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes G.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based onthe received response. In
decision block 1111,if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, clse the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. Whenin the large regime, the random walk search
for a neighboris performed. In block 1113,the routine hangs
up the external connection with the answering process
computer and then returns.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202,if
the answeris successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the message indicates that
a seeking processis calling (i.e., seeking_connection_call),
then the routine continues at block 1205, clsc the routine
returns. In block 1205, the routine sends an external message
(ie., seekingconnection_resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other secking process to a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG.13 is a flow diagram ofthe processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine scts

5 the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external

AB-AB 001136

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 228 of 351 PageID #: 40560Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 228 of 351 PagelD #: 40560

US 6,829,634 BI
21

message to them (i.e., connected__stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14 isa flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine continues at block
1403,else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.c., seeking__
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (L.e., 3,
connection.request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (Le., edge__
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (.e., port_connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In ;
decision block 1411, if the message type is a connected
statement (i.c., connected__stmt), the routine invokes the
handle connected statement in block 1112, else the routine
continues af block 1212. In decision block 1412, if the
message type is a condition repair statement (e.,
condition_repair__stmt), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414,the routine hangs up on the extemal port and
continues at block 1401 to receive the next message.

FIG. 15 is a flow diagram illustrating the processing ofthe
handle seeking connection call routine in one embodiment.
This routine is invoked when a sccking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continues at
block 1505. In block 1503, the routine sets a message to
indivate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes. If this process
is not fully connected, then it is attempting to connect to the
broadcast channel. In block 1505, the routine sends the
external message response (.¢., seekingconnection__resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine cithcr allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In

= A

NwA

tua o

uw an

49

45

22

decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, clsc the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberofholes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
the numberof its holes is greater than zero and the calling
process is not a neighbor of this process. In block 1606, the
routine sendsto the calling process an external messagethat
is responsive to the connection request call (e.,
connection__request__resp). In block 1607, the routine notes
the number of holes that the calling process needsto fill as
indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a ncighber. In
block 1610, the routine decrements the numberof holes that
the calling process needsto fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (i-e., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be
filled is greater than or equal to two, then the routine
continues at block 1614, clse the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. ‘The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement (L.e., connection__port__search__stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG, 17 is a flowdiagram illustrating the processing ofthe
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensurethat there are no gaps in the messagesinitially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
processis in the seeking connection state, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this

5 process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a messageis received from that new neighbor

AB-AB 001137

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 229 of 351 PageID #: 40561Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 229 of 351 PagelD #: 40561

US 6,829,634 BI
23

through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continucs at block 1708,
else the routine continuesat block 1709. In one embodiment,
a process thatis partially connected may buffer the messages
that it receives through an internal connection so that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expecied number of holes, then this process is fully con-
nected and the routine continues at block 1710, clse the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edgeis an edge that has been proposed to
this process for edge pinning, which in this case is no longer 4
needed.

FIG. 18 isa flow diagram illustrating the processing ofthe
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor,that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if 3
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast
channel is in the small regime and the routine continues at
block 1803. In decision block 1803,if the requesting process
is a neighborofthis process, then the routine returns, else the
routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.e., connection_edge__search_call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808,else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast s
channel in an woplanned manner. Wheneversuch a situation
is detected by the broadcaster component, it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the «
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reserved if the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FG. 19 isa flow diagram illustrating the processingof the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and one of its neighborsto this process for edge pinning. In
decision block 1961, if the number of holes of this process

ty Kn

40

45

24

minus the number of pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continucs at block 1902, clsc the routinc continuesat
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighborof this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (i.c., edge__
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine fo add the proposing
process on the external port as a neighbor. The routine then
returos. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
of holes is odd, then the routine continues at block 1913,else
the routine returns. In block 1913,the routine invokes the fill
hole routine and then returns.

FIG. 20 is a flowdiagram illustrating the processing ofthe
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2002, else the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicates that is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008,the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

TIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a bole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a bele, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (i.e., connection.port_searchstmt). In decision
block 2102,if this process is the requesting process,then the
routine continues at block 2103,else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104,the routine invokes the

5 handle connection port search routine and then returns.
FIG. 22 is a flowdiagram illustrating the processing ofthe

internal dispatcher routine in one embodiment. This routine

AB-AB 001138

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 230 of 351 PageID #: 40562Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 230 of 351 PagelD #: 40562

US 6,829,634 BI
25

is passed an indication of the neighbor whosentthe internal
message. In block 2201, the routine receives the internal
message. This routinc identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.¢., a duplicate),
then the routine ignores the message and continues at block
2208, else the routine continues at block 2203A.In decision
block 2203A,if the process is partially connected, then the
routine continues at block 22038,else the routine continues
at block 2204. In block 2203B,the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204—2207,the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.¢., broadcast,
stmt), then the routine invokes the handle broadcast message 2
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster componentcollectsall its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitself In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program.In block 2302,the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for each originating
process and then returas.

FIG, 24 isa flow diagram illustrating the processing ofthe
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to cach of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403,the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one

25

a an

40

45

nh4

55

26
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each ofits neighbors other
than the sending neighbor. In decision block 2602, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generafes a condition
check message (i.e., condition_check) that includesa list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG.27is a flowdiagram illustrating the proccssing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703,if the numberof holes of this process is greater
than zero, then the routine continues at block 2704, else the
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.e., port
connection_call) to the prospective neighbor and receives
its response (i.e., port_connection_resp). Assuming the
response is successfully received, in block 2708,the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG,28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the messageitself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if
the requesting process is a neighboror the edge between this
process and the sending neighbor is reserved becauseit has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
anda toggle indicator that alternatively indicates to continuc

5 the random walk for one or two more computers. The routine
then continuesat block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807,the

AB-AB 001139

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 231 of 351 PageID #: 40563Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 231 of 351 PagelD #: 40563

US 6,829,634 BI
27

routine sends an edge proposal call external message (Le.,
edge__proposal__call) and receives the response(ie., edge__
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continuesat block
2815. In decision block 2813, if this process is the requesting
process and the numberof holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message(i.e., connection__
edge_search_response) to the sending neighborindicating ,
acknowledgement and then returns. The graphs arc sensitive
to parity. Thatis, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.e., connection_edge_searchresp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902,if the request-
ing process indicatesthat the edge is acceptable as indicated
in the message, then the routine continues at block 2903,else
the routine returas. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagram illustrating the processing of the s
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001,if this process has
at least one neighbor, then the routine continues at block ;
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (Le., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31 isa flow diagram illustrating the processingof the
acquire message routine in one embodiment. The acquire
message routine may be invokedby the application program
or by a callback routine provided by the application pro-

19

bwA

uw an

40

28

gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighborand this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (.c.,
condition,doublecheck) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (Le., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine sects a neighbor that is not involved
the neighbors with empty ports condition. In block 3303,the
routine removes the selected neighbor as a neighborofthis
process. Thus, this process that is executing the routine now
has at least one hole. In block 3304, the routine invokes the
add neighborroutine to add the process that sent the message
as a neighbor of this process. The routine then returns.

FIG. 34 is a flowdiagram illustrating the processing of the
handle condition double check routine. This routine deter-

mincs whether the acighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime. In decision block 3461, if this process has one
hole, then the routine continues at block 3402, else the
routine continues at block 3403.If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402,if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameterforthis process
to one. In block 3405,the routine broadcasts a diameter reset
internal message (i.c., diameter__reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(ie., condition_check_stmt) with the list of neighbors to
the neighbor who sent the condition double check message

5 and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been

AB-AB 001140

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 232 of 351 PageID #: 40564Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 232 of 351 PagelD #: 40564

US 6,829,634 BI
29

described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
exatuple, the commrunications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized uscr to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

What is claim is:

1. A non-routing table based computer network having a
plurality of participants, each participant having connections
to at least three neighbor participants, wherein an originating
participant sends data to the other participants by sending
the data through each of its connections to its neighbor
participants, wherein each participant sends data that it
receives from a neighbor participant to its other neighbor
participants, wherein data is numbered sequentially so that
data received out of order can be queued and rearranged,
further wherein the network is m-regular and m-connected,
where m is the number of neighbor participants of each
participant, and further wherein the numberof participants
is at least two greater than m thus resulting in a non-
complete graph.

2. The computer network of claim 1 wherein each par-
ticipant is connected to 4 other participants.

3. The computer network of claim 1 wherein each par-
ticipant is connected to an even numberofotherparticipants.

4. The computer network of claim 1 wherein all the
participants are peers.

§. The computer network of claim 1 wherein the connec-
tions are peer-to-peer connections.

6. The computer network of claim 1 wherein the connec-
tions are TCP/IP connections.

7, The computer network of claim 1 wherein each par-
ticipant is a process executing on a computer.

8. The computer network of claim 1 wherein a computer
hosts more than one participant.

9. The computer network of claim 1 wherein each par-
ticipant sends to each of its neighbors only one copy of the
data.

10. A non-routing table based broadcast channel for
participants, comprising:

a communications network that provides peer-to-peer
communications between the participants connected to
the broadcast channel; and

for each participant connected to the broadcast channel,
an indication of four neighbor participants of that
participant; and

a broadcast componentthat receives data from a neighbor
participant using the communications network and that
sends the received data to its other neighbor partici-
pants to effect the broadcasting of the data to each
participant of the to broadcast chaanel, wherein the
network is m-regular and m-connected, where m is the
number of neighbor participants of each participant,
and further wherein the number of participants is at
least two greater than m thus resulting in a non-
complete graph.

49

15

twA

30

40

45

59

in mn

30
LL. The broadcast channel of claim 10 wherein the broad-

cast component disregards received data that it has already
sent to its neighbor participants.

12. The broadcast channel of claim 10 wherein a partici-
pant connects to the broadcast channel by contacting a
participant already connected to the broadeast channel.

13. The broadcast channel of claim 10 wherein each

participant is a computer process.
14. ‘The broadcast channel of claim 10 wherein each

participant is a computer thread.
15. The broadcast channel of claim 10 wherein each

participant is a computer.
16. The broadcast channel of claim 10 wherein the

communications network uses TCP/IP protocol.
17. The broadcast channel of claim 10 wherein the

communications network is the Internet.
18. The broadcast channel of claim 10 wherein the

participants are peers.
19. Anon-routing table bascd computer-readable medium

containing instructions for controlling communications of a
participant of a broadcast channel within a network, by a
method comprising:

locating a portal computer;
requesting the located portal computer to provide an

indication of neighbor participants to which the par-
ticipant can be connected;

receiving the indications of the neighbor participants; and
establishing a connection between the participant and

each of the indicated neighbor participants, wherein a
connection between the portal computer and the par-
licipant is not established, wherein a connection
between the portal computer and the neighborpartici-
pants is not cstablished, further wherein the nctwork is
m-regular and m-connected, where m is the number of
neighbor participants of each participant, and further
wherein the number of participants is at least two
greater than m thus resulting in a non-complete graph.

20. The computer-readable medium of claim 19 wherein
each participant is a computer process.

21. The computer-readable medium of claim 19 wherein
the indicated participants are computer processes executing
on different computer systems.

22. The computer-readable medium of claim 19 includ-
ing:

receiving data from a neighbor participant of the partici-
pant; and

transmitting the received data to the other neighbor par-
ticipants.

23. The computer-readable medium of claim 19 includ-
ing:

receiving a request to connect to another participant,
disconnecting from a neighbor participant; and
connecting to the other participant.
24. The computer-readable medium of claim 19 wherein

the connections are established using the TCP/IPprotocol.

AB-AB 001141

EXHIBIT 106

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 233 of 351 PageID #: 40565Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 233 of 351 PagelD #: 40565

A 2H S SSAC SSLAB E FI OW

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 234 of 351 PageID #: 40566Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 234 of 351 PagelD #: 40566

az United States Patent
Holt et al.

(54) LEAVING A BROADCAST CHANNEL

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil
E. Bourassa, Bellevue, WA (US)

(73) Assignec: The Boeing Company, Scattl, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
US.C. 154(b) by 719 days.

(21) Appl. No.: 08/629,577

Jul. 31, 2000(22) Tiled:

(51) Int. Ch’...
(52) U.S. Ch...
(58) Field of Search..........

uw. GOOF 15/16
709/204; 709/227

.. 709/204, 227,

709/217

(56) References Cited
U.S. PATENT DOCUMENTS

4,912,656 A 3/1990 Cain et al.
5,056,085 A 10/1991 Vu
5,309,437 A 5/1994 Perlmanet al.
5,426,637 A 6/1995 Derby et al.
5,535,199 A 7/1996 Amriet al.
5,568,487 A 10/1996 Sithon et al.
5,636,371 A 6/1997 Yu
5,673,265 A 9/1997 Guptaet al.
5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spauret al.
5,732,219 A 3/1998 Blumeret al.
5,734,865 A 3/1998 ‘Yu
5,737,526 A 4/1998 Periasamyct al.
5,754,830 A 5/1998 Butts et al.
5,761,425 A 6/1998 Miller
5,764,756 A 6/1998 Onweller
5,790,548 A 8/1998 Sistanizadehetal.
5,790,553 A 8/1998 Deaton, Jr. et al.
5,799,016 A 8/1998 Onweller
5,802,285 A 9/1998 Hirviniemi
5,864,711 A 1/1999 Mairs et al.

(List continued on next page.)

A

US006732147B1

US 6,732,147 B1
May 4, 2004

(10) Patent No.:
(45) Date of Patent:

OTHER PUBLICATIONS

Bondy et al. “Graph Theory With Applications” American
Elsevier Publishing Co. Inc. pp. 47~50 Secion 3.3.*
Yavatkar et al. “A Reliable Dissemination Protocol for

Intcractive Collaborative Applications” Proc. ACM Multi-
media, 1995 p.333-344 http:/citeseer.nj.nec.com/article/
yavatkar95reliable.btml.*
Alagar, S. and Venkatesan, 5., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company, Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
U.S. patent application Ser. No. 09/629,570, Bourassa etal.,
filed Jul. 31, 2000.

US.patent application Ser. No. 09/629,576, Bourassaet al.,
filed Jul. 31, 2000.

US. patent application Ser. No. 09/629,575, Bourassaet al,
filed Jul. 31, 2000.
US. patent application Ser, No,09/629,572, Bourassaet al.,
filed Tul. 31, 2000.

(List continued on next page.)

Primary Examiner—Patrice Winder
Assistant Examiner-—-David Lazaro

(74) Attorney, Agent, or Firm—Perkins Coie LEP

67) ABSTRACT

A method for leaving a multicast computer network is
disclosed. The method allows for the disconnection of a first

computer from a second computer. When the first computer
decides to disconnect from the second computer, the first
computer sends a disconnect message to the second com-
puter. Then, when the second computer receives the discon-
nect message from the first computer, the second computer
broadcasts a connection port search message to flad a third
computer to which it can connect.

16 Claims, 39 Drawing Sheets

AB-AB 000779

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 235 of 351 PageID #: 40567Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 235 of 351 PagelD #: 40567

US 6,732,147 B1
Page 2

U.S. PATENT DOCUMENTS

5,867,660 A 2/1999 Schmidt ct al.
5,867,667 A 2/1999 Butmanet al.
5,870,608 A 2/1999 Brachoet al.
5,874,960 A 2/1999 Mairs et al.
5,899,980 A 5/1999 Wilf etal.
5,907,610 A 5/1999 Onweller
5,928,335 A 7/1999 Morita
5,935,218 A 8/1999 Bell et al.
5,946,316 A * 8/1999 Chenetal wo... 370/408
5,948,054 A 9/1999 Nielsen
5,949,975 A 9/1999 Batty et al.
5,956,484 A 9/1999 Rosenberg et al.
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carter et al.
6,003,088 A 12/1999 Houston etal.
6,013,107 A 1/2000 Blackshear et al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga etal.
6,032,188 A 2/2000 Mairs etal.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thomeet al.
6,073,177 A * 6/2000 Hebel et al. + 709/228
6,094,676 A 7/2000 Gray et al.
6,199,116 Bi 3/2001 May et al.
6,216,177 Bi 4/2001 Mairset al.
6,223,212 BL 4/2001 Battyet al.
6,243,691 Bi 6/2001 Fisher et. al.
6,252,884 BL * 6/2001 Hunter occceeeeres 370/43
6,268,855 Bi T2001 Mairs et al.
6,271,839 BL 8/2001 Mairs et al.
6,285,363 Bi 9/2001 Mairs et al.
6,304,928 Bi 10/2001 Mairs etal.
6,353,599 Bi * 3/2002 Biet abo . 370/328

6,618,752 Bi * 9/2003 Moore et al.

OTHER PUBLICATIONS

» 709/217

US. patent application Ser. No. 09/629,023, Bourassa et al.
filed Jul. 31, 2000.
U.S. patent application Ser. No, 09/629,043, Bourassact al.
filed Jul. 31, 2000.
U.S. patent application Ser. No. 09/629,024, Bourassaetal.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,042, Bourassaet al.,
filed Jul. 31, 2000.
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).

The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).
The O'Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/
Ipt/. . . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000(7 pages) The O’ Reilly
Network http://Awww.oreillynet.com/Ipt.. . [Accessed Jan.
29, 2002].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1 43-16).
Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
hitp://linux.oreillynet.com/ipt .. . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies, "MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYV/BCP Archives—http://www.faqs.org/rfcs/
rfc1832.html [Accessed Jan. 29, 2002].
A Databeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
hitp:/Avww.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Iac., New York, New York.
Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.
The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12~1-12~10), Chapter 13 (pp. 13-1-13~56) Chapter 16 (pp.
16-1 -16-26), Chapter 18 (pp. 18-1 -18-52), Chapter 20
(pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http:/Avww.des.warwick.ac.u . . . [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 000780

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 236 of 351 PageID #: 40568Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 236 of 351 PagelD #: 40568

U.S. Patent May 4, 2004 Sheet 1 of 39 US 6,732,147 BL

m

ol

ube

<
AB-AB 000781

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 237 of 351 PageID #: 40569Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 237 of 351 PagelD #: 40569

US 6,732,147 BLSheet 2 of 39May4, 2004U.S. Patent

AB-AB 000782

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 238 of 351 PageID #: 40570Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 238 of 351 PagelD #: 40570

U.S. Patent May4, 2004 Sheet 3 of 39 US 6,732,147 BL

ig.3B

ig.3A

AB-AB 000783

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 239 of 351 PageID #: 40571Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 239 of 351 PagelD #: 40571

U.S. Patent May 4, 2004 Sheet 4 of 39 US 6,732,147 BL

AB-AB 000784

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 240 of 351 PageID #: 40572Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 240 of 351 PagelD #: 40572

U.S. Patent May 4, 2004 Sheet 5 of 39 US 6,732,147 BL

AB-AB 000785

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 241 of 351 PageID #: 40573Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 241 of 351 PagelD #: 40573

U.S. Patent May 4, 2004 Sheet 6 of 39 US 6,732,147 BL

Fig.4C
AB-AB 000786

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 242 of 351 PageID #: 40574Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 242 of 351 PagelD #: 40574

U.S. Patent May 4, 2004 Sheet 7 of 39 US 6,732,147 BL

AB-AB 000787

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 243 of 351 PageID #: 40575Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 243 of 351 PagelD #: 40575

U.S. Patent May 4, 2004 Sheet 8 of 39 US 6,732,147 BL

AB-AB 000788

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 244 of 351 PageID #: 40576Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 244 of 351 PagelD #: 40576

U.S. Patent May 4, 2004 Sheet 9 of 39 US 6,732,147 BL

a

oO

Ww

mo
S)
wy

Le .

A

<

oO

eI

AB-AB 000789

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 245 of 351 PageID #: 40577Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 245 of 351 PagelD #: 40577

U.S. Patent May 4, 2004 Sheet 10 of 39 US 6,732,147 BL

AB-AB 000790

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 246 of 351 PageID #: 40578Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 246 of 351 PagelD #: 40578

U.S. Patent May 4, 2004 Sheet 11 of 39 US 6,732,147 BL

QO

<

Ry
wy

2h

ma

oO

Q <

RY
wy

bota

Rey

oO a

AB-AB 000791

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 247 of 351 PageID #: 40579Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 247 of 351 PagelD #: 40579

U.S. Patent May 4, 2004 Sheet 12 of 39 US 6,732,147 BL

600

Broadcaster Broadcaster Broadcaster
Fig.6

am
oLe

sQ
5

5
Ss

Application| (channeltype (channeltype channelinstance)
AB-AB 000792

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 248 of 351 PageID #: 40580Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 248 of 351 PagelD #: 40580

US 6,732,147 BLSheet 13 of 39May4, 2004U.S. Patent

LS1q
odessoulannboy

SAIBOOY

podbLLyseopRoigold
ysonbasywanue>

ypeqjjeo
902yeuu0)OZ

yoouu07)OL

asuodsos

AB-AB 000793

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 249 of 351 PageID #: 40581Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 249 of 351 PagelD #: 40581

U.S. Patent May 4, 2004 Sheet 14 of 39 US 6,732,147 BL

Channel Instance,

Connect Aux Info)
801

802 Fig. 8

803

Seek portal - computer
(channel type channel

instance)

804

<uN Return (false)
Y

Achieve connection

806

807
808

Install external dispatcher
Install external dispatcher

809

|]comesomie|

AB-AB 000794

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 250 of 351 PageID #: 40582Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 250 of 351 PagelD #: 40582

U.S. Patent May 4, 2004 Sheet 15 of 39 US 6,732,147 BL

computer Channel Instance
902

Select next depth

All portal computers

selected

Dial portal computer

Y

 Selected portal
computer connected

Check for external
call

AB-AB 000795

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 251 of 351 PageID #: 40583Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 251 of 351 PagelD #: 40583

U.S. Patent May 4, 2004 Sheet 16 of 39 US 6,732,147 BL

Contact process

 Add as connected portal| ¥ Answering process

computer connected

AB-AB 000796

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 252 of 351 PageID #: 40584Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 252 of 351 PagelD #: 40584

U.S. Patent May 4, 2004 Sheet 17 of 39 US 6,732,147 BL

Connect request

Fig. Ll 02
N Restart

connected portal found

Dial call in port of portal
computer

1104

N(
Y

=a ~> Oool

Send external message

1106

Receive external message 1107

N

Y 1108
Set expect holes from

response

1109

Set diameter from response

4111 1112

N 1113

AB-AB 000797

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 253 of 351 PageID #: 40585Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 253 of 351 PagelD #: 40585

U.S. Patent May 4, 2004 Sheet 18 of 39 US 6,732,147 BL

Check for externa
call

Fig. 12
1201

1202

N

Receive external message

 ype = = seeking
connection call

Send external message

Add other as fellow seeker

AB-AB 000798

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 254 of 351 PageID #: 40586Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 254 of 351 PagelD #: 40586

U.S. Patent May 4, 2004 Sheet 19 of 39 US 6,732,147 BL

Achieve connection

1301

Connection- state = fully
connected

1302

Notify fellow seekers

1303

Invoke connectcall back

Fig. 13

AB-AB 000799

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 255 of 351 PageID #: 40587Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 255 of 351 PagelD #: 40587

U.S. Patent=May 4,2004 Sheet 20of 39 US6,732,147 BL

Fig. 14
1401 1415

Pick up and receive

1402 1416

Message N Hang up

1404

| Handle seeking

connection call

1406

Handle connection

request call

1408

[ent edge proposalcall

Port connect call

Handle port
connection call

Connected statement
Handle connected

statement

Handle condition

repair statement

 Condition repair

statement

AB-AB 000800

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 256 of 351 PageID #: 40588Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 256 of 351 PagelD #: 40588

U.S. Patent May 4, 2004 Sheet 21 of 39 US 6,732,147 BL

Handle seeking
connection call

Fig. 135

1503

Set message to not
connected

 Set message to indicate
connected

1804

Add other as fellow

seeking process

AB-AB 000801

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 257 of 351 PageID #: 40589Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 257 of 351 PagelD #: 40589

U.S. Patent May 4, 2004 Sheet 22 of 39 US 6,732,147 BL

andle connection

request call

1601 602
Comecied >

1603 Return
Set newcomer's

holes_to_expect
1604

Set diameter estimate in

response .
1605 Fig. 16

OU

Set ready in response

Sent external message
connect request resp.

1607
Set newcomer's

holes_to_fill

608 S03

| Add neighbor }Ready

611 Ni 510

Hang u Newcomer's
Sup holes_to_fill --

 diameter > |

oles_to_fill Forward connection

edge search

Holes to fill - = Z

617

ewcormer's Yy .

polesto_fill > 0 _ Fill hole (requestor) i

AB-AB 000802

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 258 of 351 PageID #: 40590Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 258 of 351 PagelD #: 40590

U.S. Patent May 4, 2004 Sheet 23 of 39 US 6,732,147 BL

Add neighbor

01

Identifies calling party Fig. 17
0

Sets neighbor to
messages pending

1704
203 4 Connection state =<SEtkingcomts5> partially connected

N
1705

Add as neighbor

1706

Install interal dispatcher
for new neighbor

1707

N

10

[st|expected hole

N

1711 1712

¥ Purge pending edges

ao

AB-AB 000803

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 259 of 351 PageID #: 40591Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 259 of 351 PagelD #: 40591

U.S. Patent May 4, 2004 Sheet 24 of 39 US 6,732,147 BL

Forward connection requestor
edge search distance remaining

Fig. 18

1802

neighbors ¥

be
neighbor = s
requestor

All neighbors

selected

Return N
1806

Send internal message

{807

y

1808

Note connection edge
search call

AB-AB 000804

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 260 of 351 PageID #: 40592Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 260 of 351 PagelD #: 40592

U.S. Patent May 4, 2004 Sheet 25 of 39 US 6,732,147 BL

Handle edge in message
proposalcall out message

Fig. 19

 1914

Send external message N
1907

Send external message

|

N a2 1908

Y 91
Y 1909

| . Fill hole | Add edgeas pending
1910

| Add neighbor |

AB-AB 000805

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 261 of 351 PageID #: 40593Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 261 of 351 PagelD #: 40593

U.S. Patent May 4, 2004 Sheet 26 of 39 US 6,732,147 BL

 Handle port
connectioncall

Send external message
(point-connect-resp

not ok}

Caller is not

neighbor

Send external message
(point-connect-resp, ok)

| Add neighbor
2008

Connect request |

AB-AB 000806

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 262 of 351 PageID #: 40594Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 262 of 351 PagelD #: 40594

U.S. Patent May 4, 2004 Sheet 27 of 39 US 6,732,147 BL

Fill hole

Initialize internal
message

Handle connection Distribute internal
ports search edit message

AB-AB 000807

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 263 of 351 PageID #: 40595Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 263 of 351 PagelD #: 40595

U.S. Patent May 4, 2004 Sheet 28 of 39 US 6,732,147 BL

Internal

dispatcher

2201

F,i2. 22 Received internal message
2202

Assess diameter

This

process = =

¥

Insert message into
pending connection buffer

Type
= = broadcast

statement

2206 2007
= = shutdown Y Handle shutdownstatement

statement

Yy Pending

connection buffer

m8

message queue

Receive response ()

AB-AB 000808

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 264 of 351 PageID #: 40596Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 264 of 351 PagelD #: 40596

U.S. Patent

Fig. 23

May4, 2004 Sheet 29 of 39

origin
from neighbor
message

Handle broadcast

message

2301

Process out of order

message

2302

Distribute broadcast

message

303 2304

as a new

neighbor received ¥ Clear out of order info

messages oO

US 6,732,147 BL

AB-AB 000809

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 265 of 351 PageID #: 40597Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 265 of 351 PagelD #: 40597

U.S. Patent May 4, 2004 Sheet 30 of 39 US 6,732,147 BL

. Distribute message
Fig. 24 from neighbor

All neighbor
selected

Send internal

message

AB-AB 000810

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 266 of 351 PageID #: 40598Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 266 of 351 PagelD #: 40598

U.S. Patent May 4, 2004 Sheet 31 of 39 US 6,732,147 BL

Handle connection from neighbor
for search message

2601

Distribute internal .
Fig. 26

602

Y

603 2604

605

 Ts requestor
a neighbor

enerate

condition check

message w/neighbors

AB-AB 000811

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 267 of 351 PageID #: 40599Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 267 of 351 PagelD #: 40599

U.S. Patent May 4, 2004 Sheet 32 of 39 US 6,732,147 BL

Fig. 27 not

Is prospect
a neighbor

N

2702

Dial prospect

703

N

Send andreceive

external message

: Add neighbor /
2706

Hang up prospect

AB-AB 000812

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 268 of 351 PageID #: 40600Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18

U.S. Patent May 4, 2004 Sheet 33 of 39

Handle connection

edge search call

801

 Not

my message 11]
holes >= Z

 N from this pt. &&
holes = =

Remaining

distance > 0
2814

A> Requestor
c end interna 2812 is neighbor or edge

message (from : reservedneighbor, ack
IN__2806

2807

Send and receive

external message

808

is edge acceptable

PY _.2809

Reserve edge of from
neighbor

2810

| Add neighbor |
2811

Removeneighbor

2812

Hang up

VY

Page 268 of 351 PagelD #: 40600

US 6,732,147 BL

from neighbor
message

Forward
connection second

edge (requestor
remaining dist -1)

 Forward

connection edge
search (requestor,

0

AB-AB 000813

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 269 of 351 PageID #: 40601Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 269 of 351 PagelD #: 40601

U.S. Patent May 4, 2004 Sheet 34 of 39 US 6,732,147 BL

origin
from neighbor

message

AB-AB 000814

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 270 of 351 PageID #: 40602Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 270 of 351 PagelD #: 40602

U.S. Patent May 4, 2004 Sheet 35 of 39 US 6,732,147 BL

message
Fig. 30

Generate internal

message

Set message sequence
number

AB-AB 000815

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 271 of 351 PageID #: 40603Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 271 of 351 PagelD #: 40603

U.S. Patent May 4, 2004 Sheet 36 of 39 US 6,732,147 BL

messageAcquire message

 Message
retrieved

 Return false

Return true

AB-AB 000816

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 272 of 351 PageID #: 40604Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 272 of 351 PagelD #: 40604

U.S. Patent May 4, 2004 Sheet 37 of 39 US 6,732,147 BL

andle condition check

Fig. 32
320%

:

Y

3202

Y Sameset of N
neighbors

3203 | 3205
ith li ta nengnborSet up message withlist ofsendini B process

of neighbors not my neighbor
3204 3206

Send internal message Send external message
to selected neighbor

3207

| Add neighbor |

AB-AB 000817

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 273 of 351 PageID #: 40605Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 273 of 351 PagelD #: 40605

U.S. Patent May 4, 2004 Sheet 38 of 39 US 6,732,147 BL

Fig. 33

oe

Handle condition

repair statement

Select a neighbor not‘ . ele

involved in condition

Removeselected

neighbor

3304

| Add neighbor :

AB-AB 000818

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 274 of 351 PageID #: 40606Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 274 of 351 PagelD #: 40606

U.S. Patent May 4, 2004 Sheet 39 of 39 US 6,732,147 BL

Sameset of

neighbors

 3407

Send internal message
to-from neighbor

Send internal message

AB-AB 000819

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 275 of 351 PageID #: 40607Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 275 of 351 PagelD #: 40607

US 6,732,147 B1
1

LEAVING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S. patent application
Ser. No, 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application , Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023,entitled
“DISTRIBUTED AUCTION SYSTEM,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERYSERVICE,”filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,024,
entitled “DISTRIBUTED CONFERENCING SYSTEM,”
filed on Jul. 31, 2000; and US. patent application Ser. No.
09/629,042, entitled “DISTRIBUTED GAME
ENVIRONMEN'L” filed on Jul. 31, 2000, the disclosures of
which are incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultancous sharing
of information among computersthat are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters fo communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. Tor example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however, findit very difficult to manage single connections,
and management of multiple connections is much more s
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients who are sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(*CORBA’). Clicnt/server middleware systems are not par-

a an

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that now information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (Le., the server) would prevent communications
between anyof the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of informationefficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s 1).C.-share and
Microsoft’s NetMeeting. ‘These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middic-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the T.120 Internet slandard is a tree structure, whichrelies on
the root node ofthe tree for reliability of the entire network.
That is, each message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultaneous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. L illustrates a graphthat is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4Aillustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG, 4C alsoillustrates the broadcast channel of FIG. 4A

with an added computer.
FIG. 3Aillustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. 3Billustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG. 5Cillustrates the neighbors with empty ports con-

dition.

FIG. SD illustrates two computers that are not neighbors
who now have empty ports.

AB-AB 000820

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 276 of 351 PageID #: 40608Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 276 of 351 PagelD #: 40608

US 6,732,147 B1
3

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. SF illustrates the situation of FIG. 5E when in the

large regime.
FIG. 6 is a block diagram illustrating componenis of a

computer that is connected to a broadcast channel.
FIG.7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG, 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment.

FIG.10 is a flow diagram illustrating the processing ofthe
contact process routine in onc embodiment.

FIG. 11 is a flowdiagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagram of the processing ofthe achieve
connection routine in one embodiment.

rating the processing ofthe
one embodiment.

FIG.14 is a flow diagram illu:
external dispatcher routine in

FIG. 15 is a flow diagrami
handle seeking connection ca

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

n

us
l routine in one embodiment.

a

rating the processing of the ~

add neighbor routine in one
FIG. 18 is a flow diagram i

FIG. 20 is a flow diagram i

FIG. 22 is a flow diagrami

FIG. 23 is a flow diagram i
handle broadcast message ro

distribute broadcast message
FIG, 26 is a flow diagram i

embodiment.

FIG. 27 is a flow diagram i
court neighbor routine in one

FIG.28 is a flow diagram i

FIG. 17 isaflow diagram illu

FIG. 19 is a flow diagram illus
handle edge proposal call routine.

internal dispatcher routine in

rating the processing of the
embodiment.

lustrating the processing of the
forward connection edge search routine in one embodiment.

rating the processing of the

ULa
rating the processing of the

handle port connection call routine in one embodiment.
FIG. 21is a flow diagram illus

fill hole routine in one embodiment.
rating the processing of the

ustrating the processing of the
one embodiment.

lustrating the processing ofthe
utine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing of the

routine in one embodiment.

lustrating the processing ofthe
handle connection port search statement routine in one

ustrating the processing of the
embodiment.

ustrating the processing ofthe
handle connection edge search call routine in one embodi-ment.

FIG. 29 is a flow diagram i lustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG. 30 is a flow diagram illustrating the processingofthe
broadcast routine in one embodiment.

FIG. 31 isa flow diagram i

ustrating the processing of the

acquire message routine in one embodiment.
FIG. 32 is a flow diagram illustrating processing of the

handle condition check message in one embodiment.
FIG. 33 is a flow diagram illustrating processing of the

handle condition repair statement routine in one embodi-
meat.

Bad

do

is

vyoO

40

60

65

4

FIG.34 is a flow diagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one cmbodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Lach computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network sysiem (¢.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each computer’s address. Thus, the broadcast tech-
niquc cflcctively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (Le.,
edges) between host computers (.¢., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computeris connectedto four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each compuler over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel onlyif all four of
the connectionsto its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
propertyis referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG.1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A~I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (.e., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between

cormputers A and B, but computerFis directly connected to

AB-AB 000821

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 277 of 351 PageID #: 40609Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 277 of 351 PagelD #: 40609

US 6,732,147 B1
5

computer B. Thus, a message originating at computer A
would be sent dircetly to computer F, and then sent from
computer F to computer B. The maximumof the distances
between the computersis the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a-broadcast channel. The diameter
ofthis broadcast channelis 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.c., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (e., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.¢.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer seeking
the conncction first locates a computer that is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connectedto the broadcast channel. (This assumesthatthere
are at least four computers already connected to the broad- 2:
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the
small regime is described belowin detail. Whenfive or more
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
hat the broadcast channel is in the large regime, unless

specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
hat computer may locate the broadcast channel. A seeking

computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. ‘The found portal com-

uter then directs the identifying of four computers (ic., to
be the seeking computer’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the seeking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computerthat is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of compulers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel! before computer Z is con-
nected. The pairs ofcomputers B and E and cormputers C and

40

15

vyoO

30

40

£mn

on n

60

65

6
Dare the two pairs that are identified as the neighborsfor the
new computer Z. The connections between cach of these
pairs is broken, and a connection between computer Z and
cach of computers B, C, D, and E is cstablished as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a newnode.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections ofthe
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages cither through their internal ports of their connee-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
TP protocol provides each computer with a “port space” that
is shared amongall the processes that may execute on-that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations(c.g., port 80 for HTTP messages), The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer comnected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in portis used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages throughits extemal port. A seeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or attempting to connect to the broadcast channel and its
call-in port is dialed, (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. Thecall is transferred so that other computers can place
calls to that computer via the call-in port. ‘The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connected to oneofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computeris that the

AB-AB 000822

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 278 of 351 PageID #: 40610Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 278 of 351 PagelD #: 40610

US 6,732,147 B1
7

diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conecpiually, the graph
becomes elongatedin the direction of where the new nodes
are added. FIGS. 4A~4Cillustrate that possible problem.
FIG.4A illustrates the broadcast channel of FIG. 1 with an

added computer, Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-Hto computer
J. The diameter of this broadcast channelis still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an
added computer, Computer K was connected to the broad-
east channel by edge pinning edges E-J and B—-Cte com-
puter K, The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G~A, A~E, and E~K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computerin the secking connection state.
The random selection technique tends to distribute the 2
connections to new secking computers throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph
As described above, each computer that is connected to

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancyof the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel,if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, cach
computer has three other connections through which it may
receive a copy of each message sooner.

Each computerthat originates a message numbersits own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. ‘Thefirst
message may have to travel a distance of four to reach the

do

is

30

Lp tA

40

£mn

60

65

8
receiving computer. The second message only hasto travel
a distance of onc. Thus,it is possible for the second message
to reach the receiving computer before the first message.

Whenthe broadcast channelis in a steady state {ie., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received, If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connectto the broadcast channelafter the second
message has already been received and forwarded on byits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queueall the messages that it receives until it can send them
in their proper ordertoits neighbors. This solution, however,
may tend to slow downthe propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors of the
newly, connected computers. Each already connected neigh-
bor would forward messagesas it receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In onc embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, cach computer may quene messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For cxample, a computer might
receive messages 4 and 5 and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message 3 is finally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.
Decomposing the Graph

A connected computer disconnects from the broadcast
chanoel either in a planned or unplanned manner. When a

AB-AB 000823

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 279 of 351 PageID #: 40611Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 279 of 351 PagelD #: 40611

US 6,732,147 B1
9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third commputer in the list will
try to connectto the fourth computerin the list. Ifa computer
eannot connect (e.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internalport receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A-5Dillustrate the
disconnecting of a computer from the broadcast channel.
FIG. SAillustrates the disconnecting of a computer fromthe
broadcast channel in a planned manner. When computer H
decides to disconnect, it sendsits list of neighbors to cach of
its neighbors (computers A, E, F and J) and then disconnects
from eachof its neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E 2
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a powerfailure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection(i.c., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates thal i has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
aconnected computerthat is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When cach of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that il needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
A and E respond to cach other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an emptyinternal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request whenit detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadeast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. ‘lo detect this condition in the large regime, which
would be a problem if oot repaired, the first neighbor to

Bad

do

is

38

40

50

ina

60

68

10
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includesa list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to onc of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have had a port filled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors,then they will connect to cach other when
they receive the requests. If, however, the two computersare
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the same set of neighbors as the
sending computer. If so, the broadcast channclis in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computerthat received the
condition double check message sends a condition check
message to the original neighbors with the condition. ‘Ihe
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, which gives rise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E has a different set of neighbor (Le., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sentit a condition repair request. When computer D received
the condition repair request, it disconnected from oneofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D iflustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 35E and 5f further illustrate the neighbors with
empty ports condition. FIG. SE illustrates the neighbors with

AB-AB 000824

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 280 of 351 PageID #: 40612Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 280 of 351 PagelD #: 40612

US 6,732,147 B1
11

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detcets the disconnect. When computer A reecives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B, Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channelis in the small regime because is also has the same
sei of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. SF illustrates the situation of FIG. 5E when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizesthat the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B, When computer B receives the condition check
message, it sends a condilion repair message to one of the
neighbors of computer C. The computer that receives the 2:
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
iries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on cach computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applicalions programs execuling on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter necds to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
altempling to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the secking
computer would eventually dial every user port. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port aumbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the secking computer
a long timeto locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port-number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port-order.
The algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithan is executed on any computer for a given

do

is

vyoO

iA

40

in an

60

65

12

channel type and channel instance,it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniqucly identified by channcl type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port maybe significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busyport is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through whichit
can connect to the broadcast channel. In one embodiment,
each computer bas the same set of portal computers. A
seeking computerlocates a portal computerthat is connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial aff its ports until a call-in port of a computer
that is fully connected to the broadcast channelis found.If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port

) number accordingto the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
gumbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth,that is the number ofports that it will dial when
seeking a portal computer that is fully connected. If the
secking computer exhausis its search depth, then either ihe
broadcast channel has not yet been established or, if the
secking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer Iocates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 000825

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 281 of 351 PageID #: 40613Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 281 of 351 PagelD #: 40613

US 6,732,147 B1
13

broadeast channel mayalready be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
cach other, then two disjoint broadcast channcls would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searched all the portal computersto a depth ofeight, then the
one secking computer can share that it has scarched to a
depth of eight with another seeking computer. If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting
compuler are preferably selected randomly from the set of

currently connected computers. One advantage of the broad- 2
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledgeofitself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channelto fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select ihe four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk throughthe graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
selected computer. That recciving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the compulers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer-cannot con-
nect through that internal connection. The computer that
decidedthat the message has traveled far enough will detect
this condition of already being a neighbor and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request messagetravels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
puter cannot connectto the seeking computer (e.g., because
it is already connected toit), then that randomly selected
computer forwards the edge connection request to one ofits
oevighbors with a new distance to travel. In one embodiment,

do

is

vyoO

30

Lp tA

40

50

tn an

60

65

14

the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware ofthe diameterof the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computcr that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-
puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.
External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer mayuse 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

‘The underlying peer-to-peer communications protocol
may send multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. Theretrieval of each
message may require two calls to the operating system: one
to retrieve the size of ihe next message and the other to
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slowin comparison to the invocations of local routines. To
overcomethe inefficiencies of such repeated calls, the broad-
cast technique in one embodiment, uses KDR to identify the
message boundaries in a stream of messages.‘The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDRroutines
to retrieve the messages and use the success or failure of
each invocation to determine whether anotherblock of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not invelve system calls and
are thus more efficient than repeated system calls.
M-Regular.

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each conrputer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thatit takes to connect
a seeking computerto the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-reguiar and
m-connected (in the steadystate). If the numberof internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd oumberof internal connections.

AB-AB 000826

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 282 of 351 PageID #: 40614Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 282 of 351 PagelD #: 40614

US 6,732,147 B1
15 16

In such a situation, the broadcast network is neither broadcaster component includes a connect component 701,
m-rogular nor m-connected. When the next computer con- an external dispatcher 702, an internal dispatcher 703 for
uecis to the broadcast channel, it can again become each internal connection, an acquire message component
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the

FIG. 6 is a block diagram illustrating components of a broadcaster component. The application program invokes
computer that is connected to a broadcast channel. The the connect component to establish a connection to a des-
above description generally assumedthat there was only one, , ignated broadcast channel. The connect componcat identi-
broadcast channel and that cach computer had only one fies the external port and installs the external dispatcher for
connection to that broadcast channel. More generally, a handling messages that are received on the external port.
network of computers may have multiple broadcast The connect component invokes the seek porial computer
channels, each computer may be connected to more than one component 704 to identify a portal computer that is con-
broadcast channel, and cach computer can have multiple nected to the broadcast channel and invokes the connect
connections to the same broadcast channel. The broadcast 15 request component 706 to ask the portal computer(if fully
channel is well suited for computer processes (e.g., appli- connected) to select neighbor processes for the newly con-
cation programs) that execute collaboratively, such as net- necting process. The external dispatcher receives external
work meeting programs. Lach computer process can connect messages, identifies the type of message, and invokes the
o one or more broadcast channels. The broadcast channels appropriate handling routine 707. The internal dispatcher
can be identified by channel type (€.g., application program 29 Feceives the internal messages, identifies the type of
name) and channel instance that represents separate broad- message, and invokes the appropriate handlingroutine 708.
cast channels for that channeltype. When 4 process attempts The received broadcast messages are stored in the broadcast
to connect to a broadcast channel, it seeks a process cur- message queue 709. The acquire message componentis
rently connected to thatbroadcast channel iat is executing invoked to retrieve messages from the broadcast queue. The
on a portal computer. The seeking process identifies the 25 broadcast componentis invoked by the application program
broadcast channel by channel type and channel instance. to broadcast messages in the broadcast channel,

Computer 600 includes multiple application programs . : .
601 executing as separate processes. Each application pro- The following tables list messages scnt by the broadcaster
gram interfaces with a broadcaster component 602 for each components.broadcast channel to which it is connected. ‘The broadcaster 30

component may be implement as an object that is instanti-

ated within the process space of the application program. EXTRRNAT, MESS
Alternatively, the broadcastcr componcat may cxecute as a
separate process or thread from the application program. In—Message ‘Type Description

i s i fune- 35 , ; i : :
one embodiment, the broadcaster component provides fune- 35 seekingconnection_call Indicates that a seeking process would like to
tions (¢.g., methods of class) that can be invoked by the Icnow whether the receiving processis fully
application programs.‘The primary functions provided may connected to the broadcast channel
include a connect function that an application program connection_request.cail Indicates that the sending process would like
invokes passing an indication of the broadcast channel to the receiving process to initiate a connection: Yo : of the sending process to the broadcast
which the application program wants to connect. The appli- 40 channel
cation program may provide a callback routine that the edge__proposal_call Indicates that the sending processis

broadcaster component invokes to notify the application proposing an edge through which ue
program that the connection has been completed,that is the centChantelGe, edespimsing) the Sroad-= " P ae oe 7 Cie . a . anes . " oF :
process enters the fully connected state. The broadcaster port_connection_call Indicates thal the sending process is
component may also provide an acquire message function 45 proposing a port through which the receiving

that the application program can invoke to retrieve the next 4 prooess can connect the broadcast channel
message that is broadcast on the broadcast channel. coanected_stimt Indicates that the sending process is. soe . connected to the broadcast channel
Alternatively, the application programy may provide a call- condition__repair stmt Indicates that the receiving process should
back routine (which may be a virtual function provided by disconnect from one ofits neighbors and
the application program) that the broadcaster component 50 connect to one of the processes involved in
invokes to notify the application program that a broadcast the neighbors with empty port condition
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports. 88

The computers connecting to the broadcast channel mayINTERNALMESSAGES.
include a central processing unil, memory, input devices Message Type Description
(e.g., keyboard and pointing device), output devices (e€.g., rn

display devices), and storage devices (e.g., disk drives). The broadeast_stmt Indleates a message ma is heing proade
memory and storage devices are compuler-readable medium 60 theapplication propane| enannel tor
that may contain computer instructions that implement the connection._port_search_stmt Indicates that the designated process is
broadcaster component. In addition, the data structures and looking for a port Uhrough which it can

message structures may be stored or transmitted via a signal ‘on ed h call rae fotie proadcas: chanaelancmitte 6 reads *, thas a came connection_edge_search__cal adicates that the requesting process is
transmitted on a computer readable media, such as a com jooking for an edge through which i
munications link. . . . 65 can connect to the broadcast

FIG.7 is a block diagram illustrating the sub-components channel
of the broadcaster component in one embodiment. The

AB-AB 000827

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 283 of 351 PageID #: 40615Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 283 of 351 PagelD #: 40615

US 6,732,147 B1
17

-continued

INTERNAL MESSAGES

Message Type Description

connection.edge_searchresp Indicates whether the edge between this
process and the sending neighbor has
been accepted bythe requesting partyIndicates an estimated diameter ofthe
broadcast channel
Indicates to reset the estimated diameter
to indicated diameter
Indicates that the sending neighboris
disconnecting from the broadcastchannel
Indicates that neighbors with empty portcondition have been detected
Indicates that the neighbors with empty
ports have the same set of neighborsIndicates that the broadcast channel is
being shutdown

diameter estimate_stmt

diameter_reset_stmt

disconnect__stmt

conditioncheck__stmt

condition_double_check_stmt

shutdown_stmt

Flow Diagrams
FIGS. 8-34 are flow diagramsillustrating the processing

of the broadcaster componcat in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel 2!
type (e.g., application name) and channel instance (e.g.
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list ofportal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the secking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. ‘The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect time is used to

identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel Lype and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadeast channel for the passed type and instance. In
decision block 804, if the seck portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805, else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the

40

is

vyoO

iA

40

£mn

50

tn an

60

65

18
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to changethestate of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received throughthat external port, the external dispatcher is
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computersat that search depth. If
a portal computer is located at that search depth with a
processthat is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this executionof the loop,that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904. In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channelinstance.
In block 904, the routine sciccts the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 to select
the next search depih, else ihe routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented bythe search depth.
In decision block 907,if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is fully connectedto the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made tothis

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG.10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.c., seeking_
connection__call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel.In block
1002, the routine receives the external response message

AB-AB 000828

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 284 of 351 PageID #: 40616Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 284 of 351 PagelD #: 40616

US 6,732,147 B1
19

from the answering process. In decision block 1003, if the
external response message is successfully received (i.c.,
seeking_connection_resp), then the routine continues at
block 1004, cisc the routine returns. Wherever the broadcast
componentrequests to receive an external message, it sets 4
time out period. [f the external message is not received
within that time out period, the broadcaster component
checks its own call-in port to see if another process is calling
it. In particular, the dialed process maybe calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
eral times. [f the expected message is not received, (hen the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and thenreturns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flowdiagram illustrating the processing of the
connect request routine in one embodiment. This routine
requests 4 process of a portal computer that was identified as
being fully connected to the broadcast channelto initiate the 2!
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer waslocated that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
secking computer may always scarchits entire scarch depth
and find multiple portal computers through which it can
connectto the broadcast channel. In block 1102, the routine
restarts ihe process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessfulif, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (i.c., conneetion_request_call). In block
1106, the routine receives the response message {ic.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the rouline
continues at block 1108, else the routine continues at block
1113. In block 1108,the routine sets the expected number of
holes (i.e., empty internal connections) for this process
based on the received response. Whenin the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 1111,if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues at block 113. In block 1112, the routine invokes the add
neighborroutine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
eally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk search
for a neighboris performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

do

is

Lp tA

40

60

65

20
FIG. 12 is a flow diagram of the processing of the check

for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202,if
the answeris successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
reecives the external message from the external port. In
decision block 1204,if the type of the message indicates that
a seeking processis calling (Le., seeking_connection__call),
then the routine continues al block 1205, else the routine
returns. In block 1205, the routine sends an external message
(ie., seeking connection resp) to the other seeking pro-
cess indicating that this processis also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process to a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG.13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation programthat the process is now fully connectedto the
requested broadcast channel. In block 1301, the routine sets
the connection statc of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (Le., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG.14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the reccived messages have been handled.In block 1401,
the routine answers (e.g., picks up) the external port and
retrieves an external message. In decision block 1402,if a
message wasretrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (ie., seeking__
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (Le.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406,else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (ie., edge_
propesal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (ie., port__connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (Le., connected stmt), the routine invokes the

AB-AB 000829

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 285 of 351 PageID #: 40617Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 285 of 351 PagelD #: 40617

US 6,732,147 B1
21

handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition_repair__stmt), thon the routine invokcs the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continucs at block 1401 to reccive the next message.

FIG.15 is a flow diagram illustrating the processing of the 1
handle seeking connection call routine in one embodiment.
This routine is tavoked when a seeking process is calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
ified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, ihe routine sets a message to indicate that this process
is fully connected to the broadcast channel and continuesat
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
rocess to a list of fellow seeking processes. If this process

is not fully connected, then itis allempting lo connect to the
broadcast channel. In block 1508, the routine sends the
external message response (i.¢., seeking_connection__resp)
o the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
‘This routine is invoked when the calling process wants this

rocess to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
rocess to establish an internal connection with this process

(e.g., if in the small regime) or starts the process of identi-
ying a process to which the calling process can connect. In

decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberofholesthat the calling process should expectin the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
ihe numberof its holes is greater than zcro and the calling
process is not a neighbor of this process. In block 1606, the
routine sends to the calling process an external message that
is responsive to the connection request call (Le.,
connection_request_resp). In block 1607, the routine notes
the numberof holes that the calling process needsto fill as
indicated in the request message. In decision block 1608,if
this process is ready to connectto the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberof holes that
the calling process needsto fill and continuesat block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (.e., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs tobe filled. In decision block
1613, if the number of holes of the calling process to be

ft o

wa8

GeS

tp an

£mn

wn o

ina

QB a

D> a

22

filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection cdge scarch routine. The invoked routine is passed
to an indication of the calling process and the random watk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616, if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement (i.c., connection port search stmt) fora hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighborto this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702,the routine sets
a flag to indicate that the neighbor has not yet receivedthe
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messages initially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that new neighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a processthat is partially connected may buffer the messages
that it receives is through an internal connection sothatit
can send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if thc number of holes of this process cquals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
rouline continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to
this process for edge pinning, whichin this case is no longer
needed.

PIG.18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor,that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the

5 routine continues at block 1802. In decision block 1802, if
the numberof neighbors of this process is greater than one,
then the routine coutinues at block 1804, else this broadcast

AB-AB 000830

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 286 of 351 PageID #: 40618Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 286 of 351 PagelD #: 40618

US 6,732,147 B1
23

channel is in the small regime and the routine continues at
block 1803. In decision block 1803,if the requesting process
is a neighborof this process, then the routine returns, else the
routine continucs at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (.¢., connection__edge__searchcall)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805,if all the neighbors of this process have already
been selected, then the routine cannot forward the message :
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 to select the next neighbor.
Whenthe sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversucha situation
is detected by the broadcaster component, it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge searchroutine to
fill two holes. In is block 1808, the routine notes that the
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reserved if the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an cdge between the proposing process
and one ofits neighborsto this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus the number of pending edges is greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continues at
block 1911. In decision block 1902,if the proposing process
or its neighbor is a neighbor ofthis process, then the routine
continues at block 1911, else the routine contimiesat block
1903. In block 1903, the routine indicates that the edge is
pending betweenthis process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continucs
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (i.c., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910,the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine thea
returns, In block 191, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
of holes is odd, then the routine continues at block 1913,else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG. 20 is a flow diagram illustrating the processing ofthe
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
aunberof holes of this processis greater than zero, then the

ft o

40

45

ao

tna

24
routine continues at block 2002, else the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
clsc the routine continucs to block 2003. In block 2003, the
routine sends a port connection response external message
(Le., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external messageto the sending process
that indicates that is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues al block 2006, clse the rouline
continues at block 2007, In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal, mes-
sage (Le., connection._port_searchstmt). In decision
block 2102,if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG.22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sentthe internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.c., a duplicate),
then the routine ignores the message and continues at block
2208, else the routine continuesat block 2203A.In decision
block 2203A,if the process is partially connected, then the
routine continues at block 2203B,else the routine continues
at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcaststatement (Le., broadcast
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209, clse the routine contin-
ues at block 2210. The broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is nowfully connected and that the
expected number of connections was too high, because the
broadcast channelis now in the small regime. Ie block 2209,

AB-AB 000831

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 287 of 351 PageID #: 40619Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 287 of 351 PagelD #: 40619

US 6,732,147 B1
25

the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, clse the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
assing the acquired message and then returns. The received

response roufine is a callback routine of the application
program.

FIG.23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor whosent the broadcast message,
and the broadcast messageitself. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
he message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
reccive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct orderif possible for each originating
process and then returns.

FIG. 24 is a flow diagram illustrating the processing of the 2

distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
ihe message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection port search stalement routine in one
embodiment. ‘(his routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each ofits neighbors other
than the sending neighbor. In decision block 2602, if the
number ofholesof this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603,if the requesting process is a neighbor,
then the routine continucs at block 2605 cise the routine
continues at block 2604, In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message(i.e., concition__.check) that includes a list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberof holes of this process is greater
than zero, thea the routine contioues at block 2704, else the

do

is

iA

40

£mn

50

tn an

60

65

26
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.c., port
connection_call) to the prospective neighbor and receives
its response (i.c., port_connection__resp). Assuming the
response is successfullyreceived, in block 2705,the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the message itself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning.In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting processis still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not compicte and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting process is a neighboror the edge between this
process and the sending neighboris reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicatorthat altcrnatively indicates to continuc
the random walk for one or two more computers. The routine
then continuesat block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the
routine sends an edge proposal call external message (i.e.,
edge__proposal__call) and receives the response (i.e., edge__
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813,if this processis the requesting
process and the numberof holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (Le., connection
edgesearchresponse) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG.29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 000832

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 288 of 351 PageID #: 40620Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 288 of 351 PagelD #: 40620

US 6,732,147 B1
27

search response (ie., connection.edgesearch._resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902,if the request-
ing process indicates that the edge is acceptable as indicated
in the message,then the routine continuesat block 2903,else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2964, the routine removes the sending ncighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagramillustrating the processing ofthe
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
al least one neighbor, then the rouline continues at block
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (.e., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG.31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine maybe invoked by the application program
or by a callback routine provided by the application pro-
gram. ‘This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102,if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This message is sent by a neighborprocess that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighbor andthis process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3208. In block 3203, the
routine initializes a condition double check message (Le.
condition_double__check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process thai is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.c., condition_repair__stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-

do

is

40

60

28
ment, This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighboras a
neighborof this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add ncighbor routine to add the proccss
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34is a flow diagramillustrating the processing of the
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime. In decision block 3461, if this process has one
hole, then the routine continues at block 3402, else the
routine continuesat block 3403.If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, clse the routine continucs at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter reset
inlernal message (Le., diameter__reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(ie., conditioncheck_stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel inslance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast
channel.

Accordingly, the invention is not limited except by the
claims,

We claim:

1. A method of disconnecting a first computer from a
second computer, the first computer and the second com-
puter being connected to a broadcast channel, said broadcast
channel forming an m-regular graph where mis at least 3,
the method comprising:

when the first computer decides to disconnect from the
second computer, the first computer sends a disconnect
message to the second computer, said disconnect mes-
sage including a list of neighborsof the first computer;
and

when the second computer receives the disconnect mes-
sage from the first computer, the second computer
broadcasts a connection port search message on the
broadcast channel to find a third computer to which it
can connect in order to maintain an m-regular graph,
said third computer being one of the neighbors on said
list of neighbors.

AB-AB 000833

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 289 of 351 PageID #: 40621Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 289 of 351 PagelD #: 40621

US 6,732,147 B1
29

2. The method of claim 1 wherein the second computer
receives a port connection message indicating that the third
computer is proposing that the third computer and the
second computcr connect.

3. The method of claim 1 wherein the first computer
disconnects from the second computer after sending the
disconnect message.

4, The method of claim 1 wherein the broadcast channel

is implemented using the Internet.
5. The method of claim 1 wherein the first computer and

second computer are connected via a TCP/IP connection.
6. A method for healing a disconnection of a first com-

puter from a second computer, the computers being con-
nected to a broadcast channel, said broadcast channel being
an m-regular graph where m is at least 3, the method
comprising:

attempting to send a message from the first computer to
the second computer; and

when the attempt to send the message is unsuccessful,
broadcasting from the first computer a connection port
search message indicating that the first computer needs
a connection; and

having a third computernotalready connectedto saidfirst
computer respond to said connection port search mes-
sage i a manner as to maintain an m-regular graph.

7. The methodof claim 6 including:
when a third computer receives the connection port search

message and the third computer also needs a
connection, sending 4 message from the third computer
to the first computer proposing that the first computer
and third computer connect.

8. The method of claim 7 including:
when the first computer receives the message proposing

that the first computer and third computer connect,
sending from the first computer to the third computer a
message indicating that the first computer accepts the
proposal to connect the first computer to the third
computer.

9. The method of claim 6 wherein each computer con-
nected to the broadcast channel is connected toat least three

other computers.

Bad

40

15

40

30
10. The method of claim 6 wherein the broadcasting

includes sending the message to cach computer to which the
first computer is connected,

il. A computer-readable medium containing instructions
for controlling disconnecting of a computer from another
computer, the computer and the other computer being con-
nected to a broadcast channel, said broadcast channel being
an m-regular graph where m is at least 3, comprising:

a component that, when the computer decides to discon-
nect from the other computer, the computer sends a
disconnect message to the other computer, said discon-
nect message including a list of neighbors of the
computer; and

a component that, when the computer receives a discon-
nect message from another computer, the computer
broadcasts a connection port search message on the
broadcast channel to find a computer to which it can
connect in order to maintain an m-regular graph, said
computer to which it can connect being one of the
neighbors onsaid list of neighbors.

12. The computer-readable medium of claim LL including:
a component that, when the computer receives a connec-

tion port search message and the computer needs to
connectto another computer, sends to the computerthat
sent the connection port search message a port connec-
tion message indicating that the computer is proposing
that the computer thal sent the connection port search
message connect to the computer.

13. The computer-readable medium of claim 12 includ-
ing:

a component that, when the computer receives a port
connection message, connecting to the computer that
sent the port connection message.

14. The computer-readable medium of claim 11 wherein
the computers are connected via a TCP/IP connection.

15, The computer-readable medium of claim 11 wherein
the computers that are connected to the broadcast channel
are peers.

16. The computer-readable medium of claim L1 wherein
the broadcast channel is implemented using the Internet.

* * * * *

AB-AB 000834

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 290 of 351 PageID #: 40622Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 290 of 351 PagelD #: 40622

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO. =: 6,732,147 BL Page 1 of 2
DATED : May 4, 2004
INVENTOR(S) : Fred B. Holt

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 5,
Line 9, “a-broadcast” should be -- a broadcast --;

Column 6,
Line 30, “on-that” should be -- on that --;

Column &,

Line 26, delete comma between “newly”;

Column 11,

Line 60, “port-number” shouldbe -- port number--;
Line 63, “port-order” should be -- port order --;

Column 13,
Line 50, “computer-cannot” should be -- computer cannot--;

Column 14,
Line 51, delete period after “Regular”;

Column 22,
Line 41, delete “is” between “receives” and “through”;

Column 23,
Line 23, delete “is” between “In” and “block”;

Column 25,

Line 45, insert comma between “2605”and “else”;

AB-AB 000835

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 291 of 351 PageID #: 40623Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 291 of 351 PagelD #: 40623

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO. =: 6,732,147 BL Page 2 of 2
DATED : May 4, 2004
INVENTOR(S) : Fred B. Holt

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 25 (cont’d),
Line 46, delete comma between “2604” and “In”;

Signed and Sealed this

Twenty-seventh Day of July, 2004

WD
JON W. DUDAS

Acting Director ofthe United States Patent and Trademark Office

AB-AB 000836

EXHIBIT 107

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 292 of 351 PageID #: 40624Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 292 of 351 PagelD #: 40624

A PH S SSALSSLABE AB

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 293 of 351 PageID #: 40625Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 293 of 351 PagelD #: 40625

a2) United States Patent

US006910069B1

(10) Patent No.: US 6,910,069 B1
 Holt et al. (45) Date of Patent: Jun. 21, 2005

(54) JOINING A BROADCAST CHANNEL 5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spauret al.

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil 5,732,086 A * 3/1998 Liang et al. 4s 370/410
E. Bourassa, Bellevue, WA (US) 5,732,219 A 3/1998 Blumeret al.5,734,865 A 3/1998 Yu

, ces con : . . 5,737,526 A 4/1998 Periasamy et al.

(73) Assignee: (us) Company, Seattle, WA 5.754.830 A 5/1998 Bulls et 2
(Continued)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
USC. 154(b) by 708 days. Cho et al, “A Flood Routing Method for Data Networks,”

Sep. 1997, Proceedings of 1997 International Conference on
(21) Appl. No.: 09/629,570 Information, Communications and Signal Processing,vol. 3,

4 ade pp. 1418-1422.*
(22) Filed: Jul. 31, 2000 Bandyopadhyayet al., “A Flexible Architecture for Multi-
(SI) Tate C1)ceeeteneeees GO6F 15/177 Hop Optical Networks,” Oct. 1998, 7th International Con-
(52) US. Ch ores 709/221; 709/252; 709/243; ference on Compuicr Communications and Networks, 1998,

709/227 pp. 472-478."
(58) Field of Search oo...cere 709/221, 220, sags

709/252, 243, 227, 223, 204, 238; 370/225, (Continued)
260, 400; 455/428 Primary Examiner-—Gleaton B. Burgess

Assistant Examiner—Bradiey Edelman
(56) References Cited (74) Attorney, Agent, or Firm—Perkins Coie LLP

U.S. PATENT DOCUMENTS (57) ABSTRACT

4,912,656 A 3/1990 Cain ctal. A technique for adding a participant to a network is pro-
9,056,085 A 10/1991 Vu vided, This technique allowsfor the simultaneoussharing of
3,058,105 A 10/1991 Mansour et al. information among many participants in a network without
5,079,767 A 1/1992 Perlman ormal § Many parlicip ‘
5.099.235 A * 3/1992 Crookshanks seco... 455/13.1 the placement of a high overhead on the underlying com-
5,101,480 A * 3/1902 Shin et alo veces 710/317 munication network.‘lo connect to the broadcast channel, a
5,117,422 A * 5/1992 Hauptschein et al. 370/255 seeking computer first locates a computer that is fully
5,309,437 A 5/1994 Perlmanetal. connected to the broadcast channel. The seeking computer
5,345,558 A 9/1994 Opheretal. then establishes a connection with a number of the comput-
5,426,637 A 6/1995 Derbyet al. ers that are already connected to the broadcast channel. The
5,459,725 A 10/1995 Bodneret al. . technique for adding a participant to a network includes
SA71,623 A * 11/1995 Napolitano, dr. 709/243 identifying a pair of participants that are connected to the
5,511,168 A 4/1996 Perlman ct al. network, disconnecting the participants of the identified pair
3,535,199 A 7/1996 Amii ot al. from each other, and connecting each ticipant of th
5,568,487 A 10/1996 Sitbon. et al. : = Ener, a g each participant of the
5,636,371 A 6/1997 Yu identified pair of participants to the added participant.
5,644,714 A 7/1997 Kikinis
5,673,265 A 9/1997 Gupta etal. 17 Claims, 39 Drawing Sheets

AB-AB 001392

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 294 of 351 PageID #: 40626Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 294 of 351 PagelD #: 40626

US 6,910,069 B1
Page 2

5,787,795
5,761,425
5,764,756
5,790,548
5,790,553
5,799,016
5,802,285
5,850,592
5,864,711
5,867,660
5,867,667
5,870,605
5,874,960
5,899,980
5,907,610
5,925,097
5,928,335
5,935,218
5,946,316
5,948,054
5,949,975
5,053,318
5,956,484
5,970,232
5,974,043
5,987,506
6,003,088
6,013,107
6,023,734
6,029,171
6,032,188
6,038,602
6,047,289
6,065,063
6,073,177
6,094,676
6,115,580
6,151,633
6,167,432
6,173,314
6,195,366
6,199,116
6,216,177
6,223,212
6,243,691
6,252,884
6,268,855
6,269,080
6,271,839
6,272,548
6,285,363
6,304,928
6,321,270
6,353,599
6,415,270
6,434,622
6,463,078
6,490,247
6,499,254
6,505,289
6,524,189
6,553,020
6,603,742
6,611,872
6,618,752
6,701,344

2002/0027896

U.S, PATENT DOCUMENTS

A
A
A
A
A
A

>PPrrrrrrrrrrrrrrrrrrrrrrrrrrr>re
BL
BI
Bi
Bl
Bi
Bi
BL
B2
Bi
Bl
Bi
BL
BL
BL
Bl
Al

Fa

¥

3/1998
6/1998
6/1998
8/1998
8/1998
8/1998
9/1998

12/1998
1/1999
2/1999
2/1999
2/1999
2/1999
5/1999
5/1999
7/1999
F/1999
1999

8/1999
9/1999
9/1999
9/1999
9/1999

10/1999
10/1999
11/1999
12/1999

1/2000
2/2000
2/2000
2/2000
3/2000
4/2000
8/2006
6/2000
7/2000
9/2000

11/2000
12/2000

1/2001
2/2001
3/2001
4/2001
4/2001
6/2001
6/2001
7/2001
7/2001
8/2001
8/2001
9/2001

10/2001
41/2001
3/2002
7/2002
8/2002

10/2002
12/2002
12/2002

4/2003
2/2003
4/2003
8/2003
8/2003
9/2003
3/2004
3/2002

Schnell
Miller
Onweller
Sistanizadehet al.
Deaton, Jr. et al.
Onweller
Hirviniemi
Ramanathan
Mairs et al.
Schmidtetal.
Butmanet al.
Brachoetal.
Mairs et al.
Wilf et al.
Onweller

Gopinath et al.
Morita
Bell ct al.
Chen et al.
Nielsen

Batty et al.
Nattkemperet al.
Rosenberg et al.
Passint et al.
Solomon
Carter et al.
Houston et al.
Blackshearet al.
Ratcliff et al.
Smiga et al.
Mairs et al.
Ishikawa
Thorne et al.
Abali ccsccseeeeseeee 709/242
Hebel et al.

Gray et al.
Chuprunet al.
Hurst

Jiang
Kurashimaet al.

Kayashima
Mayetal.
Mairs et al.

Battyet al.
Fisheret al.
Hunter
Mairs et al.
Kumar
Mairset al.
Cotter et al.
Mairs et al.
Mairs et al.

Crawley
Bi et al.
Racksonetal.
Monteiroet al.
Engstrom et al.
Gilbert et al oo... 370/222
Weder
Han et abo Fi2/it
Rautila
Hughes etal 370/347
Steele et ale wu 370/254
McCanne
Moore et al.
Holt et al.
Hugheset al.

OTHER PUBLICATIONS

Hsu, “On Four-Connecting a Triconnected Graph,” Oct.
1992, Annual Symposium on Foundations of Computer
Science, 1992, pp. 70-79.*
Shiokawa et al., “Performance Analysis of Network Con-
nective Probability of Multihop Network under Correlated
Breakage,’ Jun. 1996, 1996 HEEE International Conference
on Communications, vol. 3, pp. 1581-1585.*
Komine et al, “A Distributed Restoration Algorithm for
Multiple—-Link and Node Failures of Transport Networks,”
Dec. 199 IEEE Globecom 790, ‘Communications: Connect-
ing the Tuture,’ vol. 1, pp. 459-463,*
U.S. Appl No. 09/629,576, filed Jul. 31, 2000, Bourassa et
al.

US. AppL No. 09/629,577,filed Jul. 31, 2000, Bourassa et

. No. 09/629,575, filed Jul. 31, 2000, Bourassa et

. No. 09/629,572, filed Jul. 31, 2000, Bourassa et

. No. 09/629,023, filed Jul. 31, 2000, Bourassa et

. No. 09/629,043, filed Jul. 31, 2000, Bourassa et

ULS. Appl.
al.

USS. Appl.
al.

Murphy, Patricia, A.. “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine-—-2000 (pp. 26-28).
The Gamer’s Guide, “First~Person Shooters,” Oct. 20, 1998
(4 pages).
The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) hitp://www.open2p.com/
ipt/.. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’ Reilly
Networkhttp://www.oreillynet.com/Ipt . .. [Accessed Jan.
29, 2003].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-43-16).
Oram, Andy, “Peer-to-Peer Makes the Intemet Interesting
Again,” Sep. 22, 2000 (7 pages) ‘The O’Reilly Network
http:/Ainux.oreillynet.com/Ipt... [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummics,’MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYV/BCP—Archives—ittp:/Avww.fags.org/rfes/
rfci832.html [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCPAP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
hitp:/Awww.hill.com/library/publicationsA . . . [Accessed
Jan. 29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas, H. et al. Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.

No. 09/629,024, filed Jul. 31, 2000, Bourassa et

No. 09/629,042, filed Tul. 31, 2000, Bourassa et

AB-AB 001393

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 295 of 351 PageID #: 40627Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 295 of 351 PagelD #: 40627

US 6,910,069 BL
Page 3

The Common Object Request Broker: Architecture and
Specification, Review 2.6, Dec. 2001, Chapter 12 (pp.
{2~1-12-10), Chapter 13 (pp. 13-1-13-56), Chapter 16
(pp. 16-1-16-26), Chapter 18 (pp. 18-1-18~52), Chapter
20 (pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http://Awww.des.warwick.acu ... [Accessed Jan. 29, 2002].
Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company,Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
Yavatkar et al, “A reliable Dissemination Protocol for
Interactive Collaborative Applications,” Proc. ACM Multi-
media, 1995, p. 333-344; http://citescer.nj.nec.com/article/
yavatkar95reliable.htm.

Business Wire, “Bocing Panthesis Complete SWAN Trans-
action,” Jul. 22, 2002, pp LE.

PR Newswire, “Microsoft Annouces Launch Date for
UltraCrops, Its Second Premium Title for the Internet Gam-
ing Zone,” Mar. 27, 1998, pp1 ff.

PR Newswire, “Microsoft Boosts Accessibility to Internet
Gaming Zone with Latest Release,” Apr. 27, 1998, pp LE&.

Peercy et al., “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
Faulty Hypercubes,” Jun. 1990, 20th International Sympo-
sium on Fault-Tolerant Computing, 1990, pp—218~-225.

Azar et al., “Routing Strategies for Fast Networks,” May
1992, INFOCOM °92 Eleventh Annual Joint Conference of
the TEEE Computer Communications Societies, vol. 1,
170-179###.

* cited by examiner

AB-AB 001394

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 296 of 351 PageID #: 40628Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 296 of 351 PagelD #: 40628

U.S. Patent Jun. 21, 2005 Sheet 1 of 39 US 6,910,069 BI

a

rm

u bo

<{
AB-AB 001395

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 297 of 351 PageID #: 40629Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 297 of 351 PagelD #: 40629

US 6,910,069 B1Sheet 2 of 39Jun. 21, 2005U.S. Patent

AB-AB 001396

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 298 of 351 PageID #: 40630Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 298 of 351 PagelD #: 40630

U.S. Patent Jun. 21, 2005 Sheet 3 of 39 US 6,910,069 BI

co oO

N 9
wr

<I .
20

Ww Q

m

©

< BS
80

Q

Lud

AB-AB 001397

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 299 of 351 PageID #: 40631Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 299 of 351 PagelD #: 40631

U.S. Patent Jun. 21, 2005 Sheet 4 of 39 US 6,910,069 BI

AB-AB 001398

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 300 of 351 PageID #: 40632Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 300 of 351 PagelD #: 40632

U.S. Patent Jun. 21, 2005 Sheet 5 of 39 US 6,910,069 BI

AB-AB 001399

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 301 of 351 PageID #: 40633Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 301 of 351 PagelD #: 40633

U.S. Patent Jun. 21, 2005 Sheet 6 of 39 US 6,910,069 BI

Fig.4C
AB-AB 001400

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 302 of 351 PageID #: 40634Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 302 of 351 PagelD #: 40634

U.S. Patent Jun. 21, 2005 Sheet 7 of 39 US 6,910,069 BI

AB-AB 001401

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 303 of 351 PageID #: 40635Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 303 of 351 PagelD #: 40635

U.S. Patent Jun. 21, 2005 Sheet 8 of 39 US 6,910,069 BI

AB-AB 001402

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 304 of 351 PageID #: 40636Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 304 of 351 PagelD #: 40636

U.S. Patent Jun. 21, 2005 Sheet 9 of 39 US 6,910,069 BI

a

oO

iu

m
YU
w

aL °

20

<

oO

It

AB-AB 001403

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 305 of 351 PageID #: 40637Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 305 of 351 PagelD #: 40637

U.S. Patent Jun. 21, 2005 Sheet 10 of 39 US 6,910,069 BI

AB-AB 001404

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 306 of 351 PageID #: 40638Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 306 of 351 PagelD #: 40638

U.S. Patent Jun. 21, 2005 Sheet 11 of 39 US 6,910,069 BI

Qo

<

ay
aN

be

m

oO

oO <

hay
we,

bd

oO am

AB-AB 001405

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 307 of 351 PageID #: 40639Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 307 of 351 PagelD #: 40639

U.S. Patent Jun. 21, 2005 Sheet 12 of 39 US 6,910,069 BI

Broadcaster Pos
ig.6

channelinstance) Application2 {channeltype channelinstance)= 2
&2oe

a:
a2
29

AB-AB 001406

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 308 of 351 PageID #: 40640Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 308 of 351 PagelD #: 40640

US 6,910,069 B1Sheet 13 of 39Jun. 21, 2005U.S. Patent

202sayoredsip‘jeuodfener|8sur942go]pueyé02S0zZ0Z

002

adessauainboysPopROlgil’che
qyanboryoouuo’syoouuo-)

wr

Uea
_,

OZ

asuodsosDAIOO'Y
bbe

youd|peoyeuwo
OL

AB-AB 001407

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 309 of 351 PageID #: 40641Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 309 of 351 PagelD #: 40641

U.S. Patent Jun. 21,2005 Sheet 14 of 39 US 6,910,069 B1

cnt
Channel Instance,

Connect Aux Info)
801

Opencall in port

g02 Fig. 8

803

Seek portal - computer
(channel type channel

instance)

804

<a>
Y .

805 806

¥ l Achieve connection
807

Install external dispatcher
Install external dispatcher

: Connect request

AB-AB 001408

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 310 of 351 PageID #: 40642Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 310 of 351 PagelD #: 40642

U.S. Patent

Check for external
calf

Jun. 21, 2005 Sheet 15 of 39 US 6,910,069 B1

Seek portal Channel Type
computer Channel Instance

$02

Select next depth

All depths selected ¥. Return (failure)

Fig. 9

All portal computers
selected

Dial portal computer

907

| Contact process
Hang up selected portal

computer

910

Selected portal
computer connected

Y

AB-AB 001409

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 311 of 351 PageID #: 40643Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 311 of 351 PagelD #: 40643

U.S. Patent Jun. 21, 2005 Sheet 16 of 39 US 6,910,069 BL

1001

Fig. 10

|Receive external message

4605

Add as connected portal|Y¥
computer

1004 1006
Answering process N_| Add as fellow seeking

connected computer

Return

AB-AB 001410

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 312 of 351 PageID #: 40644Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 312 of 351 PagelD #: 40644

U.S. Patent Jun. 21, 2005 Sheet 17 of 39 US 6,910,069 BI

1102

Restart
Dial call in port of portal

computer

 411 41112

<erwees>i Add neighbor
N 1113

AB-AB 001411

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 313 of 351 PageID #: 40645Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 313 of 351 PagelD #: 40645

U.S. Patent Jun. 21, 2005 Sheet 18 of 39 US 6,910,069 BI

heck for externa

call e
Fig. 12

1201

1202

N

Receive external message

 ype = = seeking
connection call

Send external message

<a
Add other as fellow seeker

AB-AB 001412

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 314 of 351 PageID #: 40646Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 314 of 351 PagelD #: 40646

U.S. Patent Jun. 21, 2005

Achieve connection

Connection - state = fully

Notify fellow seekers

1303

invoke connect call back

Sheet 19 of 39 US 6,910,069 B1

Fig. 13

AB-AB 001413

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 315 of 351 PageID #: 40647Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 315 of 351 PagelD #: 40647

U.S. Patent Jun. 21, 2005 Sheet 20 of 39 US 6,910,069 BI

External dispatcher Fiig. 14
1401

Pick up and receive
external message

Port connect call

Connected statement

Condition repair Handle condition
statement repair statement

AB-AB 001414

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 316 of 351 PageID #: 40648Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 316 of 351 PagelD #: 40648

U.S. Patent Jun. 21, 2005 Sheet 21 of 39 US 6,910,069 BI

Handle seeking
connection call

Fig. 15

Set messageto indicate
connected

Add other as fellow
seeking process

AB-AB 001415

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 317 of 351 PageID #: 40649Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 317 of 351 PagelD #: 40649

U.S. Patent Jun. 21, 2005 Sheet 22 of 39 US 6,910,069 BI

andle connection

request call

1601 BO
x

Set newcomer's
holes_to_expect

0SOG
Set diameter estimate in

response

55 Fig. 16
Set ready in response

BUD

Sent external message
connect request resp.

60

Set newcomer's
holes_to_fill

608 Bd

| Add neighbor i
640

Ready

.@)

lewcomer'’s Y : tpolestofill > 0 a Fill hole (requestor)

AB-AB 001416

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 318 of 351 PageID #: 40650Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 318 of 351 PagelD #: 40650

U.S. Patent Jun. 21, 2005 Sheet 23 of 39 US 6,910,069 BL

Add neighbor

Fig. 17

Sets neighbor to
messages pending

f £03 Y Connection_state = -
<Seeking connectio partially connectedN—

1705

Add as neighbor

O6

Install interal dispatcher
for new neighbor

707 08

enstan
N

1709

Achieve connected
expected hole

N

1711

Purge pending edges

wo

AB-AB 001417

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 319 of 351 PageID #: 40651Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 319 of 351 PagelD #: 40651

U.S. Patent Jun. 21, 2005 Sheet 24 of 39 US 6,910,069 BI

Forward connection

requestor

distance remaining

neighbors
> 1

804

neighbor = Select random neighbor
requestor

eG
selected

Fig. 18

AB-AB 001418

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 320 of 351 PageID #: 40652Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 320 of 351 PagelD #: 40652

U.S. Patent Jun. 21, 2005 Sheet 25 of 39

Handle edge
proposal cal!

1901Holes- 90
N

pending edge of >
=]

Y

1902
a party

at end ofedges a

N 490

create edge (pending)

Send external message
4907

N

Send external message

4912

N Holes odd

Y 1913 ¥ 1909

. ; Fill hole | Add edge as pending
4810

; Add neighbor ;

1908

N

US 6,910,069 B1

in message
out message

Fig. 19

AB-AB 001419

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 321 of 351 PageID #: 40653Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 321 of 351 PagelD #: 40653

U.S. Patent Jun. 21, 2005 Sheet 26 of 39 US 6,910,069 BL

Handle port
connection call

Fig. 20

Send external message
(point-connect-resp

not ok)

Caller is not

neighbor

2006

; Add neighbor |

El

AB-AB 001420

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 322 of 351 PageID #: 40654Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 322 of 351 PagelD #: 40654

U.S. Patent Jun. 21, 2005 Sheet 27 of 39 US 6,910,069 BI

Fill hole

Handle connection Distribute internal

ports search edit message

AB-AB 001421

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 323 of 351 PageID #: 40655Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 323 of 351 PagelD #: 40655

U.S. Patent Jun. 21, 2005 Sheet 28 of 39 US 6,910,069 BI

Internal

dispatcher

2201

Fig. 22
2202

¥ Partially connected

pending connection buffer
Type

= = broadcast
statement

2007

Handle shutdown
statement

Type
== shutdown

Statement

™~.2208
y Pending

connection buffer

[___2200,
[Aticomeion "Achieve connection

message queue

ee
Y Receive response (3

AB-AB 001422

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 324 of 351 PageID #: 40656Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 324 of 351 PagelD #: 40656

U.S. Patent Jun. 21, 2005 Sheet 29 of 39 US 6,910,069 BL

origin
from neighbor

andle broadcast

message

301

AB-AB 001423

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 325 of 351 PageID #: 40657Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 325 of 351 PagelD #: 40657

U.S. Patent Jun. 21, 2005 Sheet 30 of 39 US 6,910,069 BL

messageDistribute *
from neighborbroadcast messageFig. 24

All neighbor

selected

Send internal

message

AB-AB 001424

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 326 of 351 PageID #: 40658Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 326 of 351 PagelD #: 40658

U.S. Patent Jun. 21, 2005 Sheet 31 of 39 US 6,910,069 BL

Handle connection from neighbor
for search message

260

Distribute internal .
Fig. 26

is requestor
a neighbor

605

enerate

condition check

message w/neighbors

AB-AB 001425

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 327 of 351 PageID #: 40659Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 327 of 351 PagelD #: 40659

U.S. Patent Jun. 21, 2005 Sheet 32 of 39

 Is prospect
a neighbor

N

2702

Dial prospect

S 703
Send and receive

external message

| Add neighbor ;
2706

Hang up prospect

US 6,910,069 B1

Prospect

AB-AB 001426

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 328 of 351 PageID #: 40660Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 328 of 351 PagelD #: 40660

U.S. Patent Jun. 21, 2005 Sheet 33 of 39 US 6,910,069 B1

Handle connection from neighbor
edge search call message

801

 Not

my message 11
holes >= Z

ge (requestor
aining dist -|

A> 2 comnection edge
end interna search (requester,

message (from 0)
neighbor, ack

2806 W

2807

Send and receive
external message

AB-AB 001427

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 329 of 351 PageID #: 40661Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 329 of 351 PagelD #: 40661

U.S. Patent Jun. 21, 2005 Sheet 34 of 39 US 6,910,069 BL

Handle edge search origin
resp. from neighbor

7 O01 message

Note connection edge
search response

902

Edge selected s

Y 90

neighbor

2904

Fig. 29

Y 2908

Lamef

AB-AB 001428

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 330 of 351 PageID #: 40662Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 330 of 351 PagelD #: 40662

U.S. Patent Jun. 21, 2005 Sheet 35 of 39 US 6,910,069 BL

Y

3002

Generate internal
message

3003

Set message sequence
number

3004

Distribute internal

message

AB-AB 001429

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 331 of 351 PageID #: 40663Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 331 of 351 PagelD #: 40663

U.S. Patent Jun. 21, 2005 Sheet 36 of 39 US 6,910,069 B1

message

3101

Pop message queue

Fig. 31

AB-AB 001430

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 332 of 351 PageID #: 40664Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 332 of 351 PagelD #: 40664

U.S. Patent Jun. 21, 2005 Sheet 37 of 39 US 6,910,069 BL

andle condition check

Fig. 32

Sameset of

neighbors

elect a neighbor

of sending process
not my neighbor

3203

Set up message with list
of neighbors

3204

Send internal message

AB-AB 001431

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 333 of 351 PageID #: 40665Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 333 of 351 PagelD #: 40665

U.S. Patent Jun. 21, 2005 Sheet 38 of 39 US 6,910,069 BL

Handle condition
repair statement

AB-AB 001432

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 334 of 351 PageID #: 40666Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 334 of 351 PagelD #: 40666

U.S. Patent Jun. 21, 2005 Sheet 39 of 39 US 6,910,069 B1

Handle condition
double check

Fig. 34

Sameset of

neighbors
3403

4

06

Create list of neighbors

Send internal message
to-from neighbor

AOA

Send internal message

AB-AB 001433

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 335 of 351 PageID #: 40667Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 335 of 351 PagelD #: 40667

US 6,910,069 B1
1

JOINING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S.patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNELT.,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023,entitled
“DISTRIBUTED AUCTION SYSTEM,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERY SERVICE,”filed on Jul.
31, 2000, now US. Pat. No. 6,714,966; U.S. patent appli-
cation Ser. No. 09/629,024, entitled “<DISTRIBUTED CON-
FERENCING SYSTEM,”filed on Jul. 31, 2000; and U.S.
patent application Ser. No. 09/629,042, entitled “DISTRIB-
UTED GAME ENVIRONMENT,”filed on Jul. 31, 2000,
the disclosures of which are incorporated herein by refer-ence,

TECHNICAL FIELD

The described technologyrelates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point .
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however, find it very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the number of possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients whoare sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture

40

60

5 dition,

2

(“CORBA”). Client/server middleware systemsare not par-
ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling placcs a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to callback to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (.e., the server) would prevent communications
between anyof the clients.

‘The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implemcntations of such multicasting nctwork pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. [P multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the 1.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-

5 ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the ‘1.120 Internet standard is a tree structure, which relies on
the root nade of the tree for reliability of the entire network.
That is, cach message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultancous sharing of
information among a large number of the processesthat are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 illustrates a graphthat is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C alsoillustrates the broadcast channel of FIG. 4A

with an added computer.
FIG, 5Aillustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. 5B illustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.
FIG, SC illustrates the neighbors with empty ports con-

FIG. 5D illustrates two computers that are not neighbors

who now have empty ports.

AB-AB 001434

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 336 of 351 PageID #: 40668Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 336 of 351 PagelD #: 40668

US 6,910,069 B1
3

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. SF illustrates the situation of FIG. SE when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG. 7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment.

FIG. 10 isa flow diagram illustrating the processing ofthe
contact process routine in one embodiment.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG.13 is a flow diagramof the processing of the achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a flow diagram illustrating the processing of th
add neighbor routine in one embodiment.

FIG. 18 isa flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 isa flow diagram illustrating the processing of the
handle edge proposal call routine.

TG. 20 is a flow diagram illustrating the processing of t
handle port connection call routine in one embodiment.

FIG. 21 isa flow diagram illustrating the processing of th
fill hole routine in one embodiment.

FIG.22 is a flow diagramillustrating the processing ofthe
internal dispatcher routine in one embodiment.

FIG, 23 is a flow diagram illustrating the processing of t
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG. 26 isaflow diagram illustrating the processing ofthe
handle connection port search statement routine in one
embodiment.

Co

o

om

Co

TG. 27 isa flow diagram illustrating the processing of the ‘
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processingof t
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG, 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31isa flow diagram illustrating the processing of the
acquire message routine in onc embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment.

oD

29

twwa

uw an

49

55

69

4

FIG.34 is a flowdiagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (¢.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each conyputer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (Le.,
edges) between host computers (Le., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computeris connectedto four other computers,referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the messageto its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channelonly if all four of
the connections to its ncighbors fail. The graph used. by the

s broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
propertyis referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.c., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly

5 connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computer F is directly connected to

AB-AB 001435

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 337 of 351 PageID #: 40669Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 337 of 351 PagelD #: 40669

US 6,910,069 B1
5

computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from
computer F to computer B. The maximumof the distances
between the computersis the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (Le., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (.¢., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel(i.e.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer seeking
the connectionfirst locates a computer that is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connected to the broadcast channel. (This assumes that there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is consideredto
be in a “small regime.” The broadcast technique for the
small regimeis described belowin detail. Whenfive or more
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to cach identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers (.e., to
be the seeking computer’s neighbors) to which the secking
computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connect-
ing of the secking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computerthat is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to eachother. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer, FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

un

49

15

40

59

mn on

60

65

6
D are the two pairs that are identified as the neighborsfor the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting cach of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCPAP protocol provides for reliable and
ordereddelivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space” that
is shared amongall the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HTTP messages). The remainderof
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages throughits external port. Aseeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or attempting to connect to the broadcast channel andits
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfcr-to port, which is the external
port. The call is transferredso that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer couldidentify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which mayresult in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computers cither directly connectedto
the found portal computer or directly connected to one ofits
neighbors. A possible problem with such a scheme for
identifying the neighborsfor the seeking computeris thal the

AB-AB 001436

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 338 of 351 PageID #: 40670Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 338 of 351 PagelD #: 40670

US 6,910,069 B1
7

diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
arc added. FIGS. 4A~-4C illustrate that possible problem.
FIG, 4A illustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an

added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E~J and B—C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G-A, A~-E, and E-K. FIG. 4Calso illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E—J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computer in the seeking connectionstate.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph
As described above, cach computer that is connected to 3

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of ils four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copics
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbersits own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. The first
message may have to travel a distance of four to reach the

un

49

1

40

45

59

wn on

69

8

receiving computer.The second message only hasto travel
a distance of one. Thus,it is possible for the second message
to reach the reeciving computer before the first message.

When the broadcast channel is in a steady state (Le., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steadystate, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwarded on byits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queueall the messages thatit receives until it can send them
in their properorderto its neighbors. This solution, however,
maytend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors ofthe
newly connected computers. Each already connected neigh-
bor would forward messages as it receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message 3 is finally received,
the already connected computer will send messages3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3.It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.
Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a

AB-AB 001437

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 339 of 351 PageID #: 40671Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 339 of 351 PagelD #: 40671

US 6,910,069 B1
9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message, if tries fo connect to one of
the computcrs on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to connect to the fourth computerin the list. If a computer
cannot connect (e.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A~-SDillustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decidesto disconnect,it sendsits list of neighbors to each of
its neighbors (computers A, E, F and J) and then disconnects
from eachofits neighbors. When computers A andI receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the 3
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (i.e., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates that it has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computerthat is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, cach neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashedlines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request whenit detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channelis in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to

un

19

15

40

59

69

10
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includesa list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists arc diffcrent, then this condition has
occurred in the large regime andrepair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one ofits neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors invalved in the condition
will have had a portfilled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors,then they will connect to each other when
theyreceive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check messaye deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the same set of neighbors as the
sending computer. If so, the broadcast channelis in the small
regime and the condition is not a problem. If the set of
neighborsare different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it seighbors ta connect ta one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, which gives rise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E hasa different set of neighbor (e., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one ofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G nowhave
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. FIG. SE illustrates the neighbors with

AB-AB 001438

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 340 of 351 PageID #: 40672Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 340 of 351 PagelD #: 40672

US 6,910,069 B1
i

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer Breceives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other ihan computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simplytry to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking
computer would eventually dial every user port. In addition,
if each application program on a computertried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by 5
other application programs. Since the dialing of a port is a
relatively slowprocess, it would take the seeking computer
a long timeto locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number orderthat a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given

= A

40

12

channel type and channel instance, it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to gencrate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computerin the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50%chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
bas a list of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
seeking computer locates a portal computerthat is connected
to the broadcast channel! by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking computer would
select the next portal compuler and repeat the process unl
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of cach portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computerat that port number. If no acceptable call-in port to
the broadcast channel is found, then the secking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the number ofports that it will dial when
seeking a portal computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 001439

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 341 of 351 PageID #: 40673Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 341 of 351 PagelD #: 40673

US 6,910,069 B1
13

broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
each other, then two disjoint broadcast channels would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other secking
computer. In particular, if one seeking computer has
searched all the portal computers to a depth ofeight, then the
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

Tn one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation,it may be passible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

Asdescribed above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of
currently connected computers. One advantage ofthe broad-
cast channel, however, is that no computer has global
knowledgeof the broadcast channel. Rather, cach computer
has local knowledge of itself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channelto fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal computer sends an
edge connection request message through oneof its internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveledfar enough to represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the sccking computer for cdgc
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request messagetravels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. [f that randomly selected com-
puter cannot connect to the secking computer (c.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one ofits
neighbors with a newdistance to travel. In one embodiment,

un

49

15

tw wn

30

35

40

aan

59

wn on

69

14

the forwarding computer toggles the newdistance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because ofthe local nature of the information maintained

by each computer connected to the broadcast channel, the
computers necd not generally be aware of the diameterof the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that

an edge connection request message should travel.
External Data Representation

‘The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
mayuse 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

The underlying peer-to-peer communications protocol
may send multiple messages in a single message stream. The
traditional technique forretrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. Theretrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the numberof bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcomethe inefficiencies of such repeatedcalls, the broad-
cast technique in one embodiment, uses XDRto identify the
message boundaries in a stream of messages. The broadcast
technique may tequest the operating system to provide the
next, for example, 1,024 bytes from the stream, The broad-
cast technique can then repeatedly invoke the XDRroutines
to retrieve the messages and use the success or failure of
cach invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thatit takes to connect
a seeking computer to the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the stcadystate). If the number of internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd numberof internal connections.

AB-AB 001440

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 342 of 351 PageID #: 40674Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 342 of 351 PagelD #: 40674

US 6,910,069 B1
15

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (e.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connectedto that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to which it is connected. The broadcaster 3

component may be implement as an objectthat is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment, the broadcaster component provides func-
tions {e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
inclide a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, thatis the
process enters the fully connected stale. The broadcaster
component may also provide an acquire message function
that the application program can invoke to retrieve the next
message that is broadcast on the broadcast channcl.
Alternatively, the application program may provide a call-
back routine (which maybe a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answeredat the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(¢.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices(e.g., disk drives). The
memory and storage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmiticd on a computcr-rcadable media, such as a com-
munications link.

FIG.7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The

un

49

15

twwa

40

59

wn on

69

16

broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. ‘The connect component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer (if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invoked to retrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

EXTERNAL MESSAGES

Message Type Description

sceking_connection_call Indicates that a seeking process would like to
kKaow whether the receiving process is fullyconnecled to the broadcast channel
Indicates that the sending process would like
the receiving process to initiate a connection
of the sending process to the broadcastchannel
Indicates that the sending process is
proposing an edge through which the
receiving process can connect to the
broadcast channel (Le., edge pinning)
Indicates that the sending process is
proposing a port through whichthe
receiving process can connect to thebroadcast channel
Indicates that the sending process isconnected to the broadcast channel
Indicates that the receiving process should
disconnect from one of its neighbors and
connect to one of the processes involved in
the neighbors with empty port condition

connection__cequest__call

edge__proposal__call

port_connection_call

connected_stmt

condition repair stmt

INTERNAL MESSAGES

Message Type Description.

broadcast__stmt Indicates a message that is being
broadcast through the broadcast channel
for the application programs
Indicates that the designated process is
looking for a port through which it canconnect to the broadcast channel
Indicates that the requesting process is
looking for an edge through which it
can connect to the broadcast channel

connection__port_search_stmt

connection__edge__search_call

AB-AB 001441

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 343 of 351 PageID #: 40675Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 343 of 351 PagelD #: 40675

US 6,910,069 B1
17

-continued

INTERNAL MESSAGES

Message Type Description

connection_edgesearchresp Indicates whether the edge between this
process and the sending neighbor has
been accepted by the requesting partyindicates an estimated diameter of the
broadcast channel
Indicates to reset the estimated diameter
to indicated diameter
Indicates that the sending neighbor is
disconnecting from the broadcastchannel
Indicates that neighbors with empty portcondition have been detected
Indicates that the neighbors with empty
ports have the same set of neighbors
Indicates that the broadcast channel is
being shutdown

diameter__estimate_stmt

diameter_reset__stmt

disconnect_stmt

condition_check_stmt

condition_double_checkstmt

shutdown__stmt

Flow Diagrams
FIGS. 8-34 are flow diagrams illustrating the processing

of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includesthe list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invokedto notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located thal is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, ihe routine sets the
connect time to the current time. The connect time is used to

identify the instance of the process that is connected through
this external port. Onc process may connect to a broadcast
channel of a certain channel type and channelinstance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continuesat block 805, else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer othcr than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the

un

49

15

biA

30

40

45

59

wn on

69

18
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG.9 is a flow diagramillustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth. If
a portal computer is located at that search depth with a
process that is fully connected to the broadcast channel, thea
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902,the routine selects the next
search depth using a port number ordering algorithm, In
decision block 903, if all the search depths have already
beenselected during this execution of the loop, thatis for the
currently selected depth, then the routine reiurns a failure
indication, else the routine continues at block 904. In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905,if all the porial computers have already
been selected, then the routine loops to block 902 to select
the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907,if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is fully connectedto the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910,if the answering processis fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been madeto this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking_
connection__call) to the answering process indicating that a
seeking process wanis to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message

AB-AB 001442

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 344 of 351 PageID #: 40676Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 344 of 351 PagelD #: 40676

US 6,910,069 B1
19

from the answering process. In decision block 1003,if the
external response message is successfully received (Le.,
seekingconnection_resp), then the routine continues at
block 1004, else the routine returns, Wherever the broadcast
component requests to receive an external message,it sets a
time out period. If the external message is not reccived
within that time out period, the broadcaster component
checksits own call-in port to see if another processis calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicatesin its
response message thatit is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006, the routine
adds the answering process to a list of fellow secking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. This routine
requests a process of a portal computer that was identified as
being fully connected to the broadcast channelto initiate the
connection of this process to the broadcast channel. In
decision block 1101, if al least one process of a portal
computer was located that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
seeking computer may always search its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel {i.e., connection__request__call). In block
1106, the routine receives the response message (ie.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes (Le., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero, When in the small
regime, the expected number of holes varies from one to
three, In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112,else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. ‘his adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk scarch
for a neighboris performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

sended

= A

uw an

49

20
FIG. 12 is a flow diagram of the processing of the check

for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202,if
the answer is successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the message indicates that
a seeking processis calling (i.c., seeking__connection_call),
then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message
(ie., seeking_connection_resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns, In block 1207, the routine
adds the other seeking process to a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case,this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a flow diagramof the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (Le., connected__stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14 is a flow diagram illustrating the processing ofthe
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This rouline loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (e.g., picks up) the external port and
retrieves an external message. In decision block 1402,if a
message was retrieved, then the routine continues at block
1403,else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (ie., seeking__
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404,else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (Le.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (ie., edge_
proposal_call), then the routine invokes the handle edge
proposalcall routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (ie., port__connect__call), then the
routine invokes the handle port connection call routine in

$ block 1410, else the routine continues at block 141L In
decision block 1411, if the message type is a connected
statement (Le., connectedstmt), the routine invokes the

AB-AB 001443

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 345 of 351 PageID #: 40677Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 345 of 351 PagelD #: 40677

US 6,910,069 B1
al

handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (.e.,
condition__repair__stmt), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to process the next message. After cach
handling routine is invoked, the routine loops to block 1414.
In block 1414,the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 13 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block L501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message fo indicate that this process
is fully connected to the broadcast channel and continuesat
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes. If this process
is not fully connected, then it is attempting to connectto the
broadcast channel. In block 1505, the routine sends the
external message response (i.e., seeking_connection_resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 andreturns. In block 1603, the routine sets the
numberof holes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This processis ready lo connect when
the numberofits holes is greater than zero and the calling
process is not a neighborof this process. In block 1606, the
routine sendsto the calling process an external message that
is responsive to the connection request call (e.,
connection_request_resp). In block 1607, the routine notes
the number of holes that the calling process needsto fill as
indicated in the request message. In decision block 1608,if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberof holes that
the calling process needs to fill and continuesat block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (ie., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to conncet to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be

= A

29

uw an

40

22

filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine ceturos. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement(i.¢., connection_port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flowdiagram illustrating the processing ofthe
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messagesinitially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
processis in the seeking connectionstate, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a messageis received fromthat new neighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives through an internal connection so that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block

§ 1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected and the routine continucs at block 1716, clsc the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. Apending edge is an edge that has been proposed to
this process for edge pinning, which in this case is no longer
needed.

FIG. 18 is a flowdiagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomlyselected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continucs at block 1804, clsc the

5 routine continues at block 1802. In decision block 1802, if
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast

AB-AB 001444

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 346 of 351 PageID #: 40678Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 346 of 351 PagelD #: 40678

US 6,910,069 B1
23

channel is in the small regime and the routine continues at
block 1803. In decision block 1803, if the requesting process
is a neighborof this process, theathe routine returns, else the
routine continues at block 1804. In blocks 1804~-1807, the
routine loops attempting to send a connection edge search
eall internal message (i.c., conncetion._cdge__scarch call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 18085,if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversuchasituation
is detected by the broadcaster component,it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the
recently sent connection edge search cali has not yet been
acknowledged and indicates that the edge to this neighboris
reservedif the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

L1G. 19 isa flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and one of its neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus the number of pending edges is greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continues at
block 1911. In decision block 1902,if the proposing process
or its neighboris a neighborof this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an cdge proposal response as
an external message to the proposing process (ie., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holesis odd, then the routine continues at block 1913, else
the routine returns. In block 1913, the routine invokesthefill
hole routine and then returns.

FIG. 20 isa flow diagram illustrating the processingof the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberofholesof this process is greater than zero, then the

= MA

twwa

49

45

wy2

24
routine continues at block 2002, else the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, thea the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(i.c., port_connection_resp) to the sending process that
indicates that it is not okay to comnect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicatesthat is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In bicck 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborof this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008,the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

FIG. 21is a flowdiagramillustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes~-

block 2102,if this processis the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG. 22 is a flowdiagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor whosentthe internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.c., a duplicate),
then the routine ignores the message and continues at block
2208, clsc the routine continucs at block 2203A.In decision
block 2203A,if the process is partially connected, then the
routine continues at block 2203B,cise the routine continues
at block 2204.In block 2203B,the routine adds the message
to the pending connection buffer and continues at block
2204,In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement {i.c., broadcast_
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209, else the routine contin-
uesat block 2210. The broadcaster componentcollectsall its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors, If, however, that buffer becomes full, then the

5 process assumes that it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is nowin the small regime. In block 2209,

AB-AB 001445

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 347 of 351 PageID #: 40679Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 347 of 351 PagelD #: 40679

US 6,910,069 B1
25

the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, thea the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquircd message and then returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing ofthe
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitself, In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messagesin the correct orderif possible for each originating
process and then returns.

FIG. 24 is a flow diagram illustrating the processingof the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor whosent 3
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403,the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing ofthe
handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
ncighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message(i.e., condition__check) that includesa list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighboris already a neighbor, then the routine
returns, clse the routine continucs at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberof holes of this process is greater
than zero, then the routine continues at block 2704, else the

= A

29

twa

uw an

40

26
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (.e., port__
conuection._call) to the prospective neighbor and receives
its response (Le., port_connection__resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a ncighborofthis process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG.28 is a flowdiagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the messageitself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting process is a neighbor or the edge between this
process and the sending neighbor is reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicatorthat alternatively indicates to continue
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807,the
routine sends an edge proposal call external message (ic.,
edge__proposal__call) and receives the response (Le., edge__
proposal__resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813,if this process is the requesting
process and the numberof holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.¢., connection__
edge_search_response) to the sending neighbor indicating
acknowledgementand then returns. The graphsare sensitive
to parity. Thatis, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG.29is a flowdiagram illustrating the processing of the
handle connection edge scarch response routine in one

5 embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 001446

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 348 of 351 PageID #: 40680Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 348 of 351 PagelD #: 40680

US 6,910,069 B1
27

search response (i.¢., connection__edge__search__resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902,if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continues at block 2903, else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (Le., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31 is a flow diagram illustrating the processingof the
acquire message routine in one embodiment. The acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102,if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagrams illustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one hole
and has reecived a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition 5
does not exist any more and the routine returns. In decision
block 3202,if the sending neighborand this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (ie.,
condition__double_check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.c., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-

= MA

29

bwA

w an

40

45

55

69

28
ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continucs
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3393, the routine removes the selected neighbor as a
neighbor of this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. The
routine then returns.

FIG.34 is a flowdiagram illustrating the processing of the
handle condition double check routine. This routine deter-
mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime. In decision block 3401, if this process has one
hole, then the routine continues at block 3402, else the
routine continues at block 3403. If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, clse the routine continues at block 3406. In decision
block 3403, if this process has no holes,is then the routine
returns, else the routine continues at black 3404. In block
3404, the routine sets the estimated diameterfor this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message {i.e., diameter_reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(ie., condition_checkstmt) with the list of neighbors to
the neighbor who sent the condition double check message
and thea returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

Whatis claimed is:

1. Acomputer-based, non-routing table based, non-switch
based method for adding a participant to a network of
participants, each participant being connected to three or
more other participants, the method comprising:

identifying a pair of participants of the network that are
connected wherein a secking participant contacts a
fully connected portal computer, whichin turn sends an
edge connection request to a number of randomly
selected neighboring participants to which the seeking
participant is to connect;

disconnecting the participants of the identified pair from
each other; and

connecting cach participant of the identified pair of par-
ticipants to the seeking participant.

2. The method of claim 1 wherein each participant is
connected to 4 participants.

3. The method of claim | wherein the identifying of a pair
includes randomlyselecting a pair of participants that are
connected.

AB-AB 001447

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 349 of 351 PageID #: 40681Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 349 of 351 PagelD #: 40681

US 6,910,069 B1
29

4, The methodof claim 3 wherein the randomly selecting
of a pair includes sending a message through the network on
a randomly selected path.

5. The method of claim 4 wherein when a participant
receives the message, the participant sends the message to a
randomly sclected participant to which it is connected.

6. The method of claim 4 wherein the randomly selected
path is proportional to the diameter of the network.

7. The method of claim 1 wherein the participant to be
added requests a portal computer to initiate the identifying
of the pair of participants.

8. The method of claim 7 wherein the initiating of the
identifying of the pair of participants includes the portal
computer sending a message to a connected participant
requesting an edge connection.

9. The method of claim 8 wherein the portal computer
indicates that the message is to travel a distance proportional
to the diameter of the network and wherein the participant
that receives the message after the message has traveled that
distance is one of the participants of the identified pair of
participants.

10. The method of claim 9 wherein the certain distance is
twice the diameter of the network.

li. The method of claim 1 wherein the participants are
connected via the Internet.

12. The method of claim 1 wherein the participants are
connected via TCP/IP connections.

30
13. The method of claim 1 wherein the participants are

computer processes.
14. A computer-based, non-switch based method for add-

ing nodes to a graph that is m-regular and m-connected to
maintain the graph as m-regular, where m is four or greater,
the method comprising:

identifying p pairs of nodes of the graph that are
connected, where p is one half of m, wherein a seeking
node contacts a fully connected portal node, which in
turn sends an edge connection request to a number of
randomly selected neighboring nodes to which the
seeking node is to connect;

disconnecting the nodes of each identified pair from each
other; and

connecting each node of the identified pairs of nodes to
the secking node.

15. The method of claim 14 wherein identifying of the p
pairs of nodes includes randomly selecting a pair of con-
nected nodes,

16. The method of claim 14 wherein the nodes are

computers and the connections are point-to-point commu-
nications connections.

17, The method of claim 14 wherein m is even.

AB-AB 001448

EXHIBIT 108

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 350 of 351 PageID #: 40682Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 350 of 351 PagelD #: 40682

A fH S SSACSSELABE AH

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 351 of 351 PageID #: 40683Case 1:16-cv-00454-RGA Document 475-1 Filed 04/24/18 Page 351 of 351 PagelD #: 40683

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

