

EXHIBIT 63

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 1 of 190 PageID #: 42494Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 1 of 190 PagelD #: 42494

EXHIBIT 63

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 2 of 190 PageID #: 42495eeeelNTTTT

(12) United States Patent
Holt et al.

US006829634B1

(10) Patent No.: US 6,829,634 Bl
(45) Date of Patent: Dec. 7, 2004

(54)

(75)

(73)

BROADCASTING NETWORK

Inventors: Fred B. Holt, Seattle, WA (US); Virgil
E. Bourassa, Bellevue, WA (US)

Assignee: The Boeing Company, Seattle, WA
(US)

Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 737 days.

Appl. No.: 09/629,576

Filed: Jul. 31, 2000

Int. C17oeGO6F 15/16
ULS. Ch. oo... 709/204; 709/205; 709/203;

709/243; 709/201; 709/238; 709/319; 709/225;
370/236

Field of Search 0...eee709/106, 201,
709/238, 319

References Cited

U.S. PATENT DOCUMENTS

5,790,553
5,799,016
5,802,285

8/1998 Deaton, Jr. et al.
8/1998 Onweller
9/1998 Hirviniemi

4,912,656 A 3/1990 Cain ct al.
5,056,085 A 10/1991 Vu
5,309,437 A 5/1994 Perlman et al.
5,426,637 A 6/1995 Derbyet al.
5,535,199 A 7/1996 Amiri et al.
5,568,487 A 10/1996 Sitbon et al.
5,636,371 A 6/1997 Yu
5,673,205 A 9/1997 Guptaet al.
5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spauret al.
5,732,219 A 3/1998 Blumeretal.
5,734,865 A 3/1998 Yu
5,737,526 A 4/1998 Periasamyetal.
5,754,830 A 5/1998 Butts et al.
5,761,425 A 6/1998 Miller
5,764,756 A 6/1998 Onweller
5,790,548 A 8/1998 Sistanizadehetal.

A
A
A

5,864,711 A 1/1999 Mairs et al.
5,867,660 A 2/1999 Schmidt et al.
5,867,667 A 2/1999 Butmanetal.
5,870,605 A 2/1999 Brachoetal.
5,874,960 A 2/1999 Mairs et al.
5,899,980 A §/1999 Wilfet al.
5,907,610 A 5/1999 Onweller
5,928,335 A 7/1999 Morita
5,935,215 A 8/1999 Bell et al.
5,948,054 A 9/1999 Nielsen
5,949,975 A 9/1999 Battyet al.
5,953,318 A * 9/1999 Nattkemper et al. 370/236
5,956,464 A 9/1999 Rosenberg et al.
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carter et al.

(List continued on next page.)

OTHER PUBLICATIONS

Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °*95 Conference Record,

IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).

(List continued on next page.)

Primary Examiner—Hosain Alam
Assistant Examiner—Young N. Won
(74) Attorney, Agent, or Firm—Perkins Coie LLP

(57) ABSTRACT

A technique for broadcasting data across a network is
provided. An originating participant sends data to another
participant, whichin turn sendsthe data that it receives from
a neighbor participant to its other neighbor participants.
Communication in the broadcast network is controlled by a
contact module that locates the neighbor participants to
which the seeking participant can be connectedandby ajoin
module that establishes the connection between the neighbor
participants and the seeking participant. Data is numbered
sequentially so that data that is received out of order can be
queued and rearranged.

24 Claims, 39 Drawing Sheets

AB-AB 001086

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 3 of 190 PageID #: 42496Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 3 of 190 PagelD #: 42496

US 6,829,634 BI
Page 2

U.S. PATENT DOCUMENTS

6,003,088 A 12/1999 Tlouston et al.
6,013,107 A 1/2000 Blackshearet al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smigaet al.
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa

A6,047,289 4/2000 Thorne et al.
6,094,676 7/2000 Grayet al.
6,199,116 BL 3/2001 Mayet al.
6,216,177 Bl 4/2001 Mairs etal.
6,223,212 Bl 4/2001 Batty et al.
6,243,691 Bl 6/2001 Fisheret al.
6,268,855 Bl 7/2001 Mairs ctal.
6,271,839 Bl 8/2001 Mairs etal.
6,285,363 Bl 9/2001 Mairs et al.
6,304,928 Bl 10/2001 Mairs etal.
6,611,872 Bl * 8/2003 McCanne........

OTHER PUBLICATIONS

>
teeeeessee 709/238

International Search Report for The Boeing Company,Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
US. patent application Ser. No. 09/629,570, Bourassaet al.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,577, Bourassaet al.,
filed Jul. 31, 2000.
USS.patent application Ser. No. 09/629,575, Bourassa etal.,
filed Jul. 31, 2000.

US.patent application Ser. No. 09/629,572, Bourassaetal.,
filed Jul. 31, 2000.

US.patent application Ser. No. 09/629,023, Bourassaetal.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,043, Bourassa etal.,
filed Jul. 31, 2000.

US.patent application Ser. No. 09/629,024, Bourassaetal.,
filed Jul. 31, 2000.

US.patent application Ser. No. 09/629,042, Bourassaet al.,
filed Jul. 31, 2000.

Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).
The Gamer's Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).

The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) hittp://www.open2p.com/
ipt/.. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly
Network http://www.oreillynet.com/Ipt . . . [Accessed Jan.
29, 2002].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-13-16).

Oram, Andy, “Peer-to-Peer Makesthe Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://linux.oreillynet.com/1pt . . . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies,’MIT
Undergraduate Journal of Mathematics (pp. 143-148).

Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYIV/BCP Archives_http://www.faqs.org/rfcs/
rfc1832.html [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http://www.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].
Bondy,J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.

Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.

The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13-1-13-56), Chapter 16
(pp. 16-1-16-26), Chapter 18 (pp. 18—1-18-52), Chapter
20 (pp. 20-1-20-22).

The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http: //www.des.warwick.ac.u . . . [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 001087

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 4 of 190 PageID #: 42497Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 4 of 190 PagelD #: 42497

U.S. Patent Dec. 7, 2004 Sheet 1 of 39 US 6,829,634 B1

a
Prey

ube

<
AB-AB 001088

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 5 of 190 PageID #: 42498Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 5 of 190 PagelD #: 42498

U.S. Patent Dec. 7, 2004 Sheet 2 of 39 US 6,829,634 B1

AB-AB 001089

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 6 of 190 PageID #: 42499Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 6 of 190 PagelD #: 42499

U.S. Patent Dec. 7, 2004 Sheet 3 of 39 US 6,829,634 B1

3B
ig.

Fig.3A

AB-AB 001090

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 7 of 190 PageID #: 42500Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 7 of 190 PagelD #: 42500

U.S. Patent Dec. 7, 2004 Sheet 4 of 39 US 6,829,634 B1

AB-AB 001091

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 8 of 190 PageID #: 42501Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 8 of 190 PagelD #: 42501

U.S. Patent Dec. 7, 2004 Sheet 5 of 39 US 6,829,634 B1

F rig.4B
AB-AB 001092

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 9 of 190 PageID #: 42502Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 9 of 190 PagelD #: 42502

U.S. Patent Dec. 7, 2004 Sheet 6 of 39 US 6,829,634 B1

a X
LL 3p

Ry

<x
AB-AB 001093

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 10 of 190 PageID #: 42503Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 10 of 190 PagelD #: 42503

U.S. Patent Dec. 7, 2004 Sheet 7 of 39 US 6,829,634 B1

AB-AB 001094

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 11 of 190 PageID #: 42504Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 11 of 190 PagelD #: 42504

U.S. Patent Dec. 7, 2004 Sheet 8 of 39 US 6,829,634 B1

ig.5B
AB-AB 001095

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 12 of 190 PageID #: 42505Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 12 of 190 PagelD #: 42505

U.S. Patent Dec. 7, 2004 Sheet 9 of 39 US 6,829,634 B1

B 5C
ig.

AB-AB 001096

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 13 of 190 PageID #: 42506Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 13 of 190 PagelD #: 42506

U.S. Patent Dec. 7, 2004 Sheet 10 of 39 US 6,829,634 B1

oO m
u. be

<
AB-AB 001097

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 14 of 190 PageID #: 42507Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 14 of 190 PagelD #: 42507

U.S. Patent Dec. 7, 2004 Sheet 11 of 39 US 6,829,634 B1

oO

<

Ry
wy

x

mo

Q

QO <

a
Se
he

oO a

AB-AB 001098

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 15 of 190 PageID #: 42508Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 15 of 190 PagelD #: 42508

U.S. Patent Dee. 7, 2004 Sheet 12 of 39 US 6,829,634 B1

ig.6

Application2 (channeltype channelinstance)a4)
AB-AB 001099

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 16 of 190 PageID #: 42509Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 16 of 190 PagelD #: 42509

U.S. Patent Dee. 7, 2004 Sheet 13 of 39 US 6,829,634 B1

AB-AB 001100

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 17 of 190 PageID #: 42510Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 17 of 190 PagelD #: 42510

U.S. Patent Dec. 7, 2004 Sheet 14 of 39 US 6,829,634 B1

core
Channel Instance,

Connect Aux Info)
801

Open call in port

802 Fig. 8
Set connect-time

803

Seek portal - computer
(channel type channel

instance)

804

Y

806

[|

807

Install external dispatcher
aeie

|comer|

AB-AB 001101

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 18 of 190 PageID #: 42511Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 18 of 190 PagelD #: 42511

U.S. Patent Dee. 7, 2004 Sheet 15 of 39 US 6,829,634 B1

5

All portal computers
selected

Check for external
call

AB-AB 001102

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 19 of 190 PageID #: 42512Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 19 of 190 PagelD #: 42512

U.S. Patent Dee. 7, 2004 Sheet 16 of 39 US 6,829,634 B1

1001

Send external message

1002

 Fig. 10

A

AB-AB 001103

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 20 of 190 PageID #: 42513Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 20 of 190 PagelD #: 42513

U.S. Patent Dee. 7, 2004 Sheet 17 of 39 US 6,829,634 B1

Ready to connect

N 1113

AB-AB 001104

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 21 of 190 PageID #: 42514Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 21 of 190 PagelD #: 42514

U.S. Patent Dec. 7, 2004 Sheet 18 of 39 US 6,829,634 B1

heck for exte:
call

1201

Fig. 12

AB-AB 001105

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 22 of 190 PageID #: 42515Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 22 of 190 PagelD #: 42515

U.S. Patent Dec. 7, 2004 Sheet 19 of 39

1301

Connection - state = fully
connected

1302

Notify fellow seekers

Invoke connect call back

US 6,829,634 B1

Fig. 13

AB-AB 001106

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 23 of 190 PageID #: 42516Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 23 of 190 PagelD #: 42516

U.S. Patent Dee. 7, 2004 Sheet 20 of 39 US 6,829,634 B1

Handle connection

request call

Port connect call

Handle connected
Statement

ondition repair Handle condition

statement 7 repalr statement 5

Connected statement

AB-AB 001107

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 24 of 190 PageID #: 42517Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 24 of 190 PagelD #: 42517

U.S. Patent Dee. 7, 2004 Sheet 21 of 39 US 6,829,634 B1

1504

Add other as fellow

seeking process

AB-AB 001108

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 25 of 190 PageID #: 42518Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 25 of 190 PagelD #: 42518

U.S. Patent Dee. 7, 2004 Sheet 22 of 39 US 6,829,634 B1

andle connection.
request call

1601 50

J Uy

Set n

holes_to_expect
DU4

Set diameter estimate in

response

50 F;ig. 16
Set ready in response

OU

Sent external message
connect request resp,

0

Set newcomer’

holesto fill
$

608 a

| Add neighbor i

>=Z

Holes to fill - = Z

| Fill hole (requestor) iholes_tofill > 9

AB-AB 001109

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 26 of 190 PageID #: 42519Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 26 of 190 PagelD #: 42519

U.S. Patent Dec. 7, 2004 Sheet 23 of 39 US 6,829,634 B1

Add neighbor

Identifies calling party Fig. I 7

Sets neighbor to
messages pending

4

Y Connection_state =
ertially connectedconnectioy

Add as neighbor

UO

Install interal dispatcher
for new neighbor

707 Ur

Cg>

wo
)

\

 Holes = =

pected holes

N

1711

Purge pending edges

wo

AB-AB 001110

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 27 of 190 PageID #: 42520Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 27 of 190 PagelD #: 42520

U.S. Patent Dec. 7, 2004 Sheet 24 of 39 US 6,829,634 B1

requestor

distance remaining
Forward connection

edge search

801

XY

0

Fig. 18

 # of

neighbors
>I

tA

mart .
requestor

Note connection edge
search cal)

AB-AB 001111

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 28 of 190 PageID #: 42521Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 28 of 190 PagelD #: 42521

U.S. Patent Dee. 7, 2004 Sheet 25 of 39 US 6,829,634 B1

Handle edge in message
proposal call out message

Send external message N ,3)

Send external message

1912 1908

BeetCReum

c ary o

[ame Aad edge us pending
910

| Add neighbor |

AB-AB 001112

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 29 of 190 PageID #: 42522Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 29 of 190 PagelD #: 42522

U.S. Patent Dee. 7, 2004 Sheet 26 of 39 US 6,829,634 B1

Fig. 20 001
Holes > 0

Caller is not

neighbor

200

Send external message
(point-connect-resp

not ok)

 [comesieqet|

AB-AB 001113

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 30 of 190 PageID #: 42523Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 30 of 190 PagelD #: 42523

U.S. Patent Dee. 7, 2004 Sheet 27 of 39 US 6,829,634 B1

Fill hole

 Distribute internal

message| ports search edit

AB-AB 001114

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 31 of 190 PageID #: 42524Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 31 of 190 PagelD #: 42524

U.S. Patent Dee. 7, 2004 Sheet 28 of 39 US 6,829,634 B1

(aipacer_)dispatcher
2201

Fig. 2
UZ

= = shutdown statement

: 08
y Pending

connection buffer

Achieve connection N

message queue N

aaydt

AB-AB 001115

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 32 of 190 PageID #: 42525Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 32 of 190 PagelD #: 42525

U.S. Patent Dec. 7, 2004 Sheet 29 of 39 US 6,829,634 B1

Fig. 23

4

Clear out of order info

AB-AB 001116

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 33 of 190 PageID #: 42526Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 33 of 190 PagelD #: 42526

U.S. Patent Dec. 7, 2004 Sheet 30 of 39 US 6,829,634 B1

message

Fig. 24 from neighbor

2401

Select next neighbor

AB-AB 001117

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 34 of 190 PageID #: 42527Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 34 of 190 PagelD #: 42527

U.S. Patent Dec. 7, 2004 Sheet 31 of 39 US 6,829,634 B1

Handle connection from neighbor
for search message

2601

Distribute internal

message . Fip. 26

B02

<>
Y

enerate

condition check
message w/neighbors

2607

Send internal message
to requestor

AB-AB 001118

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 35 of 190 PageID #: 42528Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 35 of 190 PagelD #: 42528

U.S. Patent Dec. 7, 2004 Sheet 32 of 39 US 6,829,634 B1

Dial prospect

703

N
Holes > 0

Send and receive

external message

| Add neighbor [
106

Hang up prospect

AB-AB 001119

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 36 of 190 PageID #: 42529Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 36 of 190 PagelD #: 42529

U.S. Patent Dee. 7, 2004 Sheet 33 of 39 US 6,829,634 B1

 ¥ 2614

| Fill hole (self) |
2815

end interna

message (from |neighbor, ack

>
od)

2806 é

2807

Send and receive
external message

AB-AB 001120

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 37 of 190 PageID #: 42530Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 37 of 190 PagelD #: 42530

U.S. Patent Dec. 7, 2004 Sheet 34 of 39 US 6,829,634 B1

Note connection edge
search response

905

[esa|
906

Y

2908

ol

(Fats)

AB-AB 001121

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 38 of 190 PageID #: 42531Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 38 of 190 PagelD #: 42531

U.S. Patent Dec. 7, 2004 Sheet 35 of 39 US 6,829,634 B1

AB-AB 001122

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 39 of 190 PageID #: 42532Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 39 of 190 PagelD #: 42532

U.S. Patent Dec. 7, 2004 Sheet 36 of 39 US 6,829,634 B1

message

3101

Pop message queue
Fig. 3i

AB-AB 001123

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 40 of 190 PageID #: 42533Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 40 of 190 PagelD #: 42533

U.S. Patent Dee. 7, 2004 Sheet 37 of 39 US 6,829,634 B1

d external message
AB-AB 001124

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 41 of 190 PageID #: 42534Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 41 of 190 PagelD #: 42534

U.S. Patent Dec. 7, 2004 Sheet 38 of 39 US 6,829,634 B1

Handle condition
repair statement

 Select a neighbornot

involved in condition

AB-AB 001125

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 42 of 190 PageID #: 42535Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 42 of 190 PagelD #: 42535

U.S. Patent Dee. 7, 2004 Sheet 39 of 39 US 6,829,634 B1

Handle condition
double check

3401

Holes == 1

 Fig. 34

AB-AB 001126

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 43 of 190 PageID #: 42536Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 43 of 190 PagelD #: 42536

US 6,829,634 Bl
1

BROADCASTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000 U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000 currently patented. U.S.
patent application Ser. No. 09/629,575, entitled “BROAD-
CASTING ON A BROADCAST CHANNEL,”filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,572,
entitled “CONTACTING A BROADCAST CHANNEL,”

filed on Jul. 31, 2000; U.S. patent application Ser. No.
09/629,023, entitled “DISTRIBUTED AUCTION
SYSTEM,”filed on Jul. 31, 2000 now under appeal. U.S.
patent application Ser. No. 09/629,043, entitled “AN
INFORMATION DELIVERY SERVICE,”filed on Jul. 31,
2000 currently patented; U.S. patent application Ser. No. ,
09/629,024, entitled “DISTRIBUTED CONFERENCING
SYSTEM,”filed on Jul. 31, 2000; and U.S. patent applica-
tion Ser. No. 09/629,042,entitled “DISTRIBUTED GAME
ENVIRONMENT,” filed on Jul. 31, 2000 currently
patented, the disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channelfor a
subset of a computers of an underlying network.

BACKGROUND

There are a wide varicty of computcr nctwork communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
noneis particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
lor example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however,find it very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

chents whoare sharing the information. ‘lhe server functions
as a central authority for controlling access to shared
resourees. Examples of clicnt/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(“CORBA”). Client/server middleware systems are not par-

19

30

4)

45

50

60

65

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, cach other clicnt would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever newinformation is to be shared. In addition, the

reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.e., the server) would prevent communications
between anyofthe clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swampthe Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
usedin such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small numberofpartici-
pants is desired. In addition, the underlying architecture of
the T.120 Internet standardis a tree structure, which relies on
the root node of the tree for reliability of the entire network.
That is, each message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultaneous sharing of
information among a large numberofthe processes that are
widely distributed.

SUMMARYOF THE INVENTION

Embodiments of the invention deal with a non-routing
table based method for broadcasting messages in a network.
More specifically, a network in which each participanthas at
least three neighbor participants broadcasts data through
each of its connections to neighbor participants, which in
turn send the data that it receives to its other neighbor
participants. The data is numbered sequentially so that data
that is received out of order can be queued and rearranged.

Communication within the broadcast channel is con-

trolled by a contact module and by a join module. The
contact module locates a portal computer and requests the
located portal computerto provide an indication of neighbor
participants to which the participant can be connected. The
join module receives the indication of the neighbor partici-
pants and establishes a connection between the seeking
participant and each of the indicated neighbor participants.

Each participant in the network is connected to neighbor
participants, and the participants and connections between
them form an m-regular graph, where m is greater than 2. In
addition, when a participant receives data from a neighbor
participant, it sends the data to its other neighbor partici-
pants.

AB-AB 001127

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 44 of 190 PageID #: 42537Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 44 of 190 PagelD #: 42537

US 6,829,634 Bl
3

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast

FIG. 2 illustrates a grap

channel.

h representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the bro

an added computer.

adcast channel of FIG. 1 with

FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added computer.

FIG. 5Aillustrates the disconnecting of a computer from
the broadcast channel in a planned manner.

FIG. 5B illustrates the disconnecting of a computer from
the broadcast channel in an unplanned manner.

FIG. 5Cillustrates the neighbors with empty ports con- 2
dition.

FIG, 5D illustrates two computers that are not neighbors
who now have empty ports.

FIG, 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5Fillustrates the situation of FIG. 5E when in the

large regime.

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel.

FIG. 7 is a block diagram 1 llustrating the sub-components
of the broadcaster component in one embodiment.

FIG. 8 is a flow diagram illustrating the processing ofthe
connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing ofthe
seck portal computer routine in one embodiment.

FIG, 10 is a flow diagramillustrating the processing of the
contact process routine in one embodiment.

FIG, 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG. 13 is a flow diagram of the processing ofthe achieve
connection routine in one embodiment.

FIG. 141saflow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagramillustrating processing of the
handle connection request call routine in one embodiment.

FIG, 17 isa flow diagram il
add neighbor routine in one

FIG. 18 isa flow diagram i

lustrating the processing of the
embodiment.

forward connection edge search routine in one embodiment.
FIG, 19 isa flow diagram illustrating the processing of the

handle edge proposalcall routine.
FIG, 20 is a flow diagram illustrating the processing of the

handle port connectioncall routine in one embodiment.
FIG, 21 isa flow diagram il

fill hole routine in one emba

FIG, 22 is a flow diagram i
internal dispatcher routine in

FIG, 23 is a flow diagram il
handle broadcast message ro

lustrating the processing of the
diment.

lustrating the processing of the
one embodiment.

lustrating the processing of the
utine in one embodiment.

lustrating the processing of the -

5

15

ba A

ta a

35ta

4)

45

50

an Qo

a 5

4

FIG, 24is a flowdiagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG, 26 is a flowdiagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

FIG. 27 is a flowdiagram illustrating the processing of the
court neighbor routine in one embodiment.

FIG, 28 is a flowdiagram illustrating the processing of the
handle connection edge search cal] routine in one embodi-
ment.

FIG. 29 is a flowdiagram illustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG. 30 is a flowdiagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31 is a flowdiagram illustrating the processing of the
acquire message routine in one embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment.

FIG, 34 is a flowdiagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers ofthe
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connectedto the underlying network
system to send messages to cach other connected computer
using each computer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (ie.,
edges) between host computers(i.e., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computer is connectedto four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each ofits
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the messagetoits
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel. A graph in which cach node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of

AB-AB 001128

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 45 of 190 PageID #: 42538Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 45 of 190 PagelD #: 42538

US 6,829,634 Bl
5

the connections to its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referredto as being 4-connected. Thus, the graph
is both 4-regular and 4-conneccted.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.c., the shortest path between the
twonodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computerF. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computerF is directly connected to
computer B, Thus, a message originating at computer A
would be sent directly to computer I, and then sent from
computer F to computer B. The maximum of the distances
between the computersis the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer -
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
ofthis broadcast channelis 4. In particular, the shortest path
between computers | and 3 contains four connections (1-12, 3°
12-15, 15-18, and 18-3).

‘The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.e., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (i.e., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel(i.e.,
decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking
the connectionfirst locates a computerthat is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connected to the broadcast channel. (This assumes thatthere
are at least four computers already connected to the broad- :
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channelis consideredto
be in a “small regime.” The broadcast technique for the
small regime is described belowin detail. When five or more :
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A secking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-

4)

45

6

puter then directs the identifying of four computers(i.c., to
be the seeking computer’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the seeking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connectedstate.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. ‘hus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Eachof these pairs of computers breaks
the connection between them, and then each of the four

computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and
D are the twopairs thatare identified as the neighbors for the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computeris referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is uscd for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either throughtheir internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space” that
is shared amongall the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connectedto the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifics an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

AB-AB 001129

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 46 of 190 PageID #: 42539Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 46 of 190 PagelD #: 42539

US 6,829,634 Bl
7

non-broadcast messages throughits external port. Aseeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call onits
call-in port. A portal computer answers whenit is connected
to or attempting to connect to the broadcast channelandits
call-in port is dialed. (In this description, a telephone mcta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
secking computer to the broadcast channel. The seeking
computer could identify the call-in port numberofa portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which mayresult in improved performance.

Asecking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connectedto oneofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computeris that the
diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomeselongated in the direction of where the new nodes -
are added. FIGS. 4A-4C illustrate that possible problem.
FIG, 4A illustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connectedto the broadcast
channel by edge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channelis still two. FIG. 3°
4B illustrates the broadcast channel of FIG. 4A with an

added computer. Computer K was connectedto the broad-
cast channel by edge pinning edges E-J and B—C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G—A, A-E, and E-K. FIG. 4Calsoillustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the

selection of neighbors impacts the diameter ofthe broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection techniquetoidentify the
four neighbors of a computer in the seeking connection state.
The random selection technique tends to distribute the -
connections to new seeking computers throughout the com-
puters of the broadcast channel which mayresult in smaller
overall diameters.

Broadcasting Through the Graph

As described above, each computer that is connected to
the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message toits three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it

5

4)

45

wn on

8

receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancyof the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computerthat originates a message numbersits own
messages sequentially. Because of the dynamic natureof the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
andthus the distance between them changesto one. Thefirst
message may have totravel a distance of four to reach the
receiving computer. The second message only has to travel
a distance of one. Thus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (1.e., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steadystate, then problems can occur. In particular, a com-
puter may connectto the broadcast channel after the second
message has already been received and forwarded on by its
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indcfinitcly for the
second message.

One solution to this problem is to have each computer
queueall the messages that it receives until it can send them
in their proper order toits neighbors. This solution, however,
maytend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors of the
newly connected computers. Each already connected neigh-
bor would forward messagesasit receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
maytrack the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat

AB-AB 001130

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 47 of 190 PageID #: 42540Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 47 of 190 PagelD #: 42540

US 6,829,634 Bl
9

the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, cach computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
reccive messages 4 and 5 and then reccive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3 isfinally received,
the already connected computer will send messages3,4, and
5 to the newly connected computer. [f messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer wouldprocess messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message3.It is
possible that a newly connected computerwill receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor.If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a
computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The ;
disconnect message includes a list that identifies the four
neighbors ofthe disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second ;
computer in the list, and the third computer in the list will
try to connect to the fourth computerin the list. If a computer
cannot connect (e.g, the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, cach computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receives the
message, it can then cstablish a connection with the com-
puter that broadcast the message. FIGS. SA-SDillustrate the
disconnecting of a computer from the broadcast channel.
FIG, 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect, it sendsits list of neighbors to each of
its neighbors (computers A, E, F and I) and then disconnects :
from each ofits neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashedline, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner, :
such as resulting from a powerfailure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection(1.¢., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicates that it has onc internal

port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computerthat is also short a connection receives

5

ba A

ta on

4)

45

10

the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG, 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, LE, I, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shownby the dashed lines, computers F andI and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request whenit detects that it
has an cmpty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check messageincludesa list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighborthat is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involvedin the condition
will have had a port filled. However, two computersarc still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect to each other when
theyreceive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the same set of neighbors as the
sending computer.If so, the broadcast channelis in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original

AB-AB 001131

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 48 of 190 PageID #: 42541Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 48 of 190 PagelD #: 42541

US 6,829,634 Bl
11

neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and [respondedto the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, which gives rise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E hasa different set of neighbor(i.c., the
broadcast channel is in the large regime). Computer A
selected computer D, whichis a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from oneofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG, 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5Ffurther illustrate the neighbors with
empty ports condition. FIG. 5E illustrates the neighbors with
empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizcs thatit has
the sameset of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channelis in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. 5F illustrates the situation of FIG. SE whenin the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizesthat the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from whichit disconnected
tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. ‘he broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, uscr ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one

5

19

15

20

ba A

30

35ta

4)

45

50

wn on

an Qo

65

12

embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number ofthe portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking
computer would eventually dial every user port. In addition,
if each application program on a computer tried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time tolocate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port numberorder that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomlythrough out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computerfor a given
channel type and channel instance,it generates the sameport
ordering. As described below, it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used whenallocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port maybe significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorderthe first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances ofdialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through whichit
can connect to the broadcast channel. In one embodiment,

each computer has the same set of portal computers. A

AB-AB 001132

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 49 of 190 PageID #: 42542Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 49 of 190 PagelD #: 42542

US 6,829,634 Bl
13

secking computer locates a portal computer that is connected
to the broadcast channel by successively dialing the ports of
each portal computerin the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique isthat all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computerat that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth,that is the numberofports that it will dial when
secking a portal computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not -
connect when they first locate each other because the
broadcast channel may already be establishedandaccessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
each other, then two disjoint broadcast channels would be 3°
formed. Each seeking computer can share its experience in
trving to locate a portal computer with the other seeking
computer. In particular, if one seeking computer has
searchedall the portal computersto a depth of eight, then the
one seeking computer can share that it has searched to a
depth ofeight with another seeking computer. Ifthat other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In suchasituation, it may be possible that twodisjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher -
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting :
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledgeofitself andits neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-conneet form) will
not cause the broadcast channel to fail. This local knowledge
makesit difficult for a portal computer to randomly select
four neighbors for a seeking computer.

5

ba o

4)

45

14

To select the four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
sclected. This sending of thc message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the messagehastraveled far enough to represent a randomly
selected computer, That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors ofthe
secking computer, then the seeking computer cannot connect
throughthat internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request messagetravels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel, The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
putcr cannot connectto the sccking computer(c.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its
neighbors with a new distance to travel. In one embodiment,
the forwarding computer toggles the newdistance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained

by each computer connected to the broadcast channel, the
computers neednot generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameteris too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameteris used to establish the distance that

an edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
mayuse 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel may use the XDR (“external Data Representation”)
format.

The underlying peer-to-peer communications protocol
maysend multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to

AB-AB 001133

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 50 of 190 PageID #: 42543Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 50 of 190 PagelD #: 42543

US 6,829,634 Bl
15

retrieve the next messagein the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the numberofbytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcomethe inefficiencies of such repeatedcalls, the broad-
cast technique in one embodiment, uses XDRto identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDRroutines do not involve system calls and
are thus more efficient than repeated system calls.

M-Regular

In the embodimentdescribed above, each fully connected
computerhas four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of

internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thatit takes to connect
a seeking computerto the broadcast channel may, however,
increase as the number of internal connections increases.

When the numberofinternal connectors is even, then the

broadcast channel can be maintained as m-regular and
m-connected(in the steady state). If the numberofinternal
connections is odd, then when the broadcast channel has an

odd number of computers connected, one of the computers
will have less than that odd numberofinternal connections. ~

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.

Components

FIG, 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumedthat there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net- :
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (¢.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadeast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each

5

19

15

20

ta o

5ta

45

50

60

65

16
broadcast channel to whichit is connected. The broadcaster

component may be implementas an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one cmbodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component mayalso provide an acquire message function
that the application program can invoketo retrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answeredal the call-in port, they are transferred to
other ports that serve as the external andinternal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(¢.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory andstorage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures maybestored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG, 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The
broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 anda
reccive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect componentto establish a connection to a des-
ignated broadcast channel. The connect component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer (if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invokedtoretrieve messages from the broadcast queue. The
broadcast componentis invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

AB-AB 001134

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 51 of 190 PageID #: 42544Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 51 of 190 PagelD #: 42544

US 6,829,634 Bl
17

External Messages

EXTERNAL MESSAGES

Message Type Description

seeking_
connection__call

Indicates that a seeking process would like to know
whether the receiving process is fully connected to thebroadcast channel

Indicates that the sending process would like the
receiving process to initiate a connection of the
sending process to the broadcast channel
Indicates that the sending process is proposing an edge

connection__
request__call

edge__proposal__
call through which the receiving process can connect to the

broadeast channel (i.e., edge pinning)
port_ Indicates that the sending process is proposing a port
connection_eall through which the receiving process can connectto the

broadeast channel

Indicates that the sending process is connected to thebroadcast channel

Indicates that the receiving process should disconnect
from one of its neighbors and connectto one of the
processes involved in the neighbors with empty port
condition

connected_stmt

condition__
repair_stmt

Internal Messages

INTERNAL MESSAGES

Message Type Description

broadcast_stmt Indicates a message that is being broadcast through
the broadcast channel for the application programs
Indicates that the designated process is looking for a
port through which it can connect to the broadcast
channel

connection__poit_
search_stmt

connection_edge_
search_call

connection_edge
search_resp

diameter_estimate__
stmt
diameter_reset_
stmt
disconnect_stmt

Indicates that the requesting process is looking for
an edge through whichit can connect to thebroadcast channel

Indicates whether the edge between this process and
the sending neighbor has been accepted bythe
requesting partyIndicates an estimated diameter of the broadcast
channel
Indicates to reset the estimated diameterto
indicated diameter
Indicates that the sending neighbor is disconnecting
from the broadcast channel

condition__check Indicates that neighbors with empty port condition
stmt have been detected
condition double Indicates that the neighbors with empty ports have
check_stmt the same set of neighbors
shutdown stmt Indicates that the broadcast channel is being

shutdown

Flow Diagrams

FIGS. 8-34 are flow diagramsillustrating the processing
of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes thelist of portal
computers and a connection callback routine. When the
connectionis established, the connection callback routine is

invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this

5

be a

5

ba 0

bh A

30

35

4)

45

a 0

un on

60

a 5

18

process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opensthe call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect timeis used to

identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channelof a certain channel type and channe] instance using
one call-in port and then disconnects, and another process
maythen connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seck portal computer
routine passing the channel type and channel instance. The
seck portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer,then the routine continues at block 805,else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the
routine continues at block 808. In block 806, the routine
invokesthe achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing ofthe
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computersat that search depth. If
a portal computer is located at that search depth with a
processthatis fully connectedto the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902,the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904. In blocks

904-911, the routine loops selecting each portal computer
and determining whether a process ofthat portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer.In
decision block 905,if all the portal computers have already
been selected, then the routine loops to block 902 to select

AB-AB 001135

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 52 of 190 PageID #: 42545Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 52 of 190 PagelD #: 42545

US 6,829,634 Bl
19

the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented bythe search depth.
In decision block 30 907, if the dialing was successful, then
the routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering processof the portal computer
through the dialed port and determines whether that process
is fully connectedto the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been madeto this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process ofthe selected portal com-
puter that answeredthe call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
rouline sends an external message (i.e., seeking_
connection_call) to the answering process indicating that a
secking process wants to know whether the answering
processis fully connectedto the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003,if the
external response message is successfully received (i.c.,
seeking __connection_resp), then the routine continues at
block 1004, else the routine returns. Wherever the broadcast
component requests to receive an external message,it sets a
time out period. If the external message is not received
within that time out period, the broadcaster component
checksits own call-in port to see if another processis calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. ‘The
broadcaster component may repeat the receive request sev-
cral times.If the expected messageis not reccived, then the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG, 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. This routine :
requests a process ofa portal computer that was identified as
being fully connected to the broadcast channelto initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was locatedthat is fully connectedto the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process ofthe portal
computer may nolongerbein thelist if it recently discon-
nected from the broadcast channel. In one embodiment, a

seeking computer may alwayssearch its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine

5

19

15

ba 0

ba A

30

35ta

4)

45

50

60

65

20

restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104,if the dialing is successful, then the
routine continues at block 1105, else the routine continuesat
block 1113. The dialing may be unsuccessfulif, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (i.e., connection__request_call). In block
1106, the routine receives the response message (i.c.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected numberof
holes (i.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter

of the broadcast channel based on the received response. In
decision block 1111,if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add

neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk search
for a neighboris performed.In block 1113,the routine hangs
up the external connection with the answering process
computer and then returns.

FIG, 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202, if
the answer is successful, then the routine continuesat block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the messageindicatesthat
a seeking processis calling (i.e., seeking__connection_call),
then the routine continucs at block 1205, clsc the routine

returns.In block 1205, the routine sends an external message
(i.e., seeking_connection_resp) to the other seeking pro-
cess indicating that this processis also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other secking process to a list of fellow seeking
processes and then returns. This list may be usedif this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may becomethe first process fully con-
nected to the broadcast channel.

FIG, 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connectedto the
requested broadeast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external

AB-AB 001136

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 53 of 190 PageID #: 42546Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 53 of 190 PagelD #: 42546

US 6,829,634 Bl
21

message to them (i.e., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG, 14 isa flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402,if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.c., seeking_
connection_call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the

message type is for a connection request call (Le.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (i.c., edge
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (ie., port_connect_call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In

decision block 1411, if the message type is a connected
statement (i.e., connected_stmt), the routine invokes the
handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition_repair__stmt), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 15 is a flow diagram illustrating the processing ofthe
handle seeking connection call routine in one embodiment.
This routine is invoked when a sccking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continues at
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
processtoa list of fellow seeking processes. If this process :
is not fully connected, thenit is attempting to connect to the
broadcast channel. In block 1505, the routine sends the

external message response (i.c., seeking _connection__resp)
to the seeking process and then returns.

FIG, 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
This routine is invoked whenthe calling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine cither allows the calling
processto establish an internal connection with this process
(e.g., if in the small regime)orstarts the process of identi-
fying a process to which the calling process can connect. In

5

19

15

20

ba A

ta a

35ta

4)

45

50

ai on

60

65

22

decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, clsc the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the

numberofholes that the calling process should expectin the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whetherthis process is ready to connect
to the calling process. This process is ready to connect when
the numberofits holes is greater than zero andthe calling
processis not a neighborofthis process. In block 1606, the
routine sendsto the calling process an external message that
is responsive to the connection request call (i.e.,
connection_request_resp). In block 1607, the routine notes
the numberof holes that the calling process needs to fill as
indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberofholesthat
the calling process needsto fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (i.c., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the numberof holes of the calling process to be
filled is greater than or equal to two, then the routine
continues at block 1614,else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,

the routine decrementsthe holesleft to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling proccss.
The fill hole routine broadcasts a connection port search
statement(i.e., connection__port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flowdiagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighborto this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are nogaps in the messagesinitially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
processis in the seeking connectionstate, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a messageis received from that new neighbor

AB-AB 001137

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 54 of 190 PageID #: 42547Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 54 of 190 PagelD #: 42547

US 6,829,634 Bl
23

through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continuesat block 1709. In one embodiment,
a processthatis partially connected maybuffer the messages
that it receives through an internal connection so that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routinereturns. In block

1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to

this process for edge pinning, which in this case isno longer >
needed.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk.In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if

the numberof neighbors of this process is greater than one,
then the routine continuesat block 1804,else this broadcast

channel is in the small regime andthe routine continuesat
block 1803. In decision block 1803, if the requesting process
is a neighborofthis process, then the routine returns, else the 35
routine continues at block 1804. In blocks 1804—1807, the
routine loops attempting to send a connection edge search
call internal message (i.e., connection_edge__search_ call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805,if all the neighbors of this process have already
been selected, then the routine cannot forward the message
andthe routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection cdge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continuesat block 1808, else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversucha situation
is detected by the broadcaster component,it attempts to find
another neighbor by invoking the fill holes routine tofill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the «
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reserved ifthe remaining forwarding distanceis less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a flow diagram illustrating the processing ofthe
handle edge proposal call routine. This routine is invoked
when a message is reccived from a proposing proccss that
proposes to connect an edge between the proposing process
and oneofits neighbors to this process for edge pinning. In
decision block 1901, if the numberofholes of this process

19

30

4)

45

50

60

65

24

minus the numberof pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, clsc the routine continuesat
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighbor of this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process(i.c., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continuesat block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
of holes is odd, then the routine continuesat block 1913, else
the routinereturns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG. 20 is a flowdiagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberofholes of this process is greater than zero, then the
routine continues at block 2002, else the routine continues at

block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(ie., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external messageto the sending process
that indicatesthat is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continuesat block 2007. In block 2006, the routine invokes

the add neighbor routine to add the sending process as a
neighborofthis process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

PIG. 21 is a flowdiagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle

a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (i.e., connection port_search stmt). In decision
block 2102,if this process is the requesting process, then the
routine continues at block 2103, else the routine continuesat
block 2104. In block 2103, the routine distributes the
message to the neighborsof this process through the internal
ports and then returns.In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG, 22 is a flowdiagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine

AB-AB 001138

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 55 of 190 PageID #: 42548Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 55 of 190 PagelD #: 42548

US 6,829,634 Bl
25

is passed an indication of the neighbor whosent the internal
message. In block 2201, the routine receives the internal
message. This routine identifics the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

informationin the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.c., a duplicate),
then the routine ignores the message and continues at block
2208, clse the routine continues at block 2203A.In decision

block 2203A,if the process is partially connected, then the
routine continues at block 22038,else the routine continues

at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204,In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.e., broadcast__
stmt), then the routine invokes the handle broadcast message
routine in block 2205. Aftcr invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209,else the routine contin-

ues at block 2210. The broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is now fully connected and that the
expected numberof connections was too high, because the
broadcast channelis now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then

continues in block 2210. In decision block 2210, if the

application program message queue is empty, then the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message andthen returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitself In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokesthe distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the

messages in the correct orderif possible for each originating
process and then returns.

FIG. 24 isa flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor whosent
the message. In decision block 2402,if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the messageto the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG, 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one

5

19

15

20

ba A

30

5ta

4)

45

50

wn on

60

a 5

26

embodiment. This routine is passed an indication of the
neighbor that sent the message and the messageitself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603,if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continuesat block 2604.In block 2604, the routine invokes

the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message(i.e., condition__check) that includes a list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27 is a flowdiagramillustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighboris already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberof holes of this process is greater
than zero, then the routine continues at block 2704, else the
routine continues at block 2706. In block 2704, the routine

sends a port connection call external message (i.e., port
connection_call) to the prospective neighbor and receives
its response (i.e., port_connection_resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighboras a neighborof this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG, 28 is a flowdiagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the messageitself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this processis not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if

the forwarding distanceis greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block

2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if

the requesting process is a neighboror the edge between this
process and the sending neighboris reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicator that alternatively indicates to continue
the random walk for one or two more computers. The routine
then continuesat block 2815. In block 2806, the routine dials

the requesting processvia the call-in port. In block 2807,the

AB-AB 001139

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 56 of 190 PageID #: 42549Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 56 of 190 PagelD #: 42549

US 6,829,634 Bl
27

routine sends an edge proposal call external message(i.¢.,
edge__proposal__call) and receives the response(1.¢., edge__
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813,if this process is the requesting
process and the numberofholes of this process equals one,
then the routine continues at block 2814,else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an

connection edge search response message(i.e., connection__
edge__search_response) to the sending neighborindicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG, 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication ofthe
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.¢., connectionedgesearch_resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continuesat block 2903, else
the routine returos. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907,if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block :
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the

routine generates an internal message of the broadcast
Statement type (ie¢., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG, 31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-

5

15

20

ba A

30

35ta

4)

45

50

ai on

60

65

28

gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS, 32-34 are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This messageis sent by a neighbor processthat has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighborandthis process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (i.e.,
condition_double_check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.¢., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing ofthe
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine sects a neighbor thatis not involved
the neighbors with empty ports condition. In block 3303, the
routine removes the selected neighbor as a neighbor ofthis
process. Thus,this processthat is executing the routing now
hasat least one hole. In block 3304, the routine invokes the

add neighborroutine to addthe processthat sent the message
as a neighbor of this process. The routine then returns.

FIG. 34 is a flowdiagram illustrating the processing ofthe
handle condition double check routine. This routine deter-

mines whether the neighbors with cmpty ports condition
really is a problem or whether the broadcast channelis in the
small regime.In decision block 3401, if this process has one
hole, then the routine continues at block 3402, else the
routine continuesat block 3403.If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continuesat block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameter forthis process
to one. In block 3405, the routine broadcasts a diameter reset

internal message (i.e., diameter_reset) indicating that the
estimated diameter is one andthen returns. In block 3406,

the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(.e., condition_check_stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been

AB-AB 001140

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 57 of 190 PageID #: 42550Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 57 of 190 PagelD #: 42550

US 6,829,634 Bl
29

described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized uscr to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel. Accordingly, the invention is not limited except by
the claims.

Whatis claim is:

1. A non-routing table based computer network having a
plurality of participants, each participant having connections
to at least three neighborparticipants, wherein an originating
participant sends data to the other participants by sending
the data through each of its connections to its neighbor
participants, wherein each participant sends data that it
receives from a neighbor participant to its other neighbor
participants, wherein data is numbered sequentially so that
data received out of order can be queued and rearranged,
further wherein the network is m-regular and m-connected,
where m is the number of neighbor participants of each
participant, and further wherein the numberofparticipants
is at least two greater than m thus resulting in a non-
complete graph.

2. The computer network of claim 1 wherein each par-
licipant is connected to 4 other participants.

3. The computer network of claim 1 wherein each par-
ticipantis connected to an even numberofotherparticipants.

4. The computer network of claim 1 wherein all the
participants are peers.

5. The computer network of claim 1 wherein the connec-
lions are peer-to-peer connections.

6. The computer network of claim 1 wherein the connec-
tions are TCP/IP connections.

7. The computer network of claim 1 wherein each par-
licipant is a process executing on a computer,

8. The computer network of claim 1 wherein a computer
hosts more than one participant.

9. The computer network of claim 1 wherein each par-
ticipant sends to each ofits neighbors only one copy ofthe
data.

10. A non-routing table based broadcast channel for
participants, comprising:

a communications network that provides peer-to-peer
communications between the participants connected to
the broadcast channel; and

for each participant connected to the broadcast channel,
an indication of four neighbor participants of that
participant; and

a broadcast componentthat receives data from a neighbor
participant using the communications network andthat
sends the received data to its other neighbor partici-
pants to effect the broadcasting of the data to each

5

15

20

ba A

30

4)

45

50

participant of the to broadcast channel, wherein the ~
network is m-regular and m-connected, where m is the
number of neighbor participants of each participant,
and further wherein the number of participants is at
least two greater than m thus resulting in a non-
complete graph.

30
11. The broadcast channelofclaim 10 wherein the broad-

cast componentdisregards received data that it has already
sent to its neighbor participants.

12. The broadcast channel of claim 10 wherein a partici-
pant connects to the broadcast channel by contacting a
participant already connected to the broadcast channel.

13. The broadcast channel of claim 10 wherein each

participant is a computer process.
14. ‘The broadcast channel of claim 10 wherein each

participant is a computer thread.
15. The broadcast channel of claim 10 wherein each

participant is a computer.
16. The broadcast channel of claim 10 wherein the

communications network uses TCP/IP protocol.
17, The broadcast channel of claim 10 wherein the

communications network is the Internet.
18. The broadcast channel of claim 10 wherein the

participants are peers.
19. Anon-routing table based computer-rcadable medium

containing instructions for controlling communications of a
participant of a broadcast channel within a network, by a
method comprising:

locating a portal computer;

requesting the located portal computer to provide an
indication of neighbor participants to which the par-
ticipant can be connected;

receiving the indications oftheneighborparticipants; and

establishing a connection between the participant and
each of the indicated neighbor participants, wherein a
connection between the portal computer and the par-
licipant is not established, wherein a connection
hetween the portal computer and the neighborpartici-
pants is not cstablished, furthcr whercin the nctwork is
m-regular and m-connected, where m is the number of
neighbor participants of each participant, and further
wherein the number of participants is at least two
greater than m thus resulting in a non-complete graph.

20. The computer-readable medium of claim 19 wherein
each participant is a computer process.

21. The computer-readable medium ofclaim 19 wherein
the indicated participants are computer processes executing
on different computer systems.

22. The computer-readable medium of claim 19 includ-
ing:

receiving data from a neighbor participant ofthe partici-
pant; and

transmitting the received data to the other neighbor par-
ticipants.

23. The computer-readable medium of claim 19 includ-
ing:

receiving a request to connect to another participant;

disconnecting from a neighborparticipant; and
connecting to the other participant.
24. The computer-readable medium ofclaim 19 wherein

the connections are established using the TCP/IP protocol.

AB-AB 001141

EXHIBIT 64

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 58 of 190 PageID #: 42551Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 58 of 190 PagelD #: 42551

EXHIBIT 64

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 59 of 190 PageID #: 42552eS SESSTTT

US006910069B1
*

a2) United States Patent (10) Patent No.: US 6,910,069 Bl
Holt et al. (45) Date of Patent: Jun. 21, 2005,

(54) JOINING A BROADCAST CHANNEL 5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spauret al.

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil 5,732,086 A * 3/1998 Liang et al. wo...S7O/410
E. Bourassa, Bellevue, WA (US) 5,732,219 A 3/1998 Blumeret al.

, , 5,734,865 A 3/1998 Yu
. is . . . 5,737,526 A 4/1998 Periasamyet al.

(73) Assignee: us) Company, Seattle, WA 5754830 A 5/1998 Bults et al.
(Continued)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by708 days. Choet al., “A Flood Routing Method for Data Networks,”

Sep, 1997, Proceedings of 1997 International Conference on
(21) Appl. No.: 09/629,570 Information, Communications and Signal Processing, vol.3,
22) Filed: Jul. 31, 2000 pp. 1418-1422.* . ,(22) File ju , Bandyopadhyay et al., “A Flexible Architecture for Multi-

(51) Int. CI? ooeeeeeeseeee GO6F 15/177 Hop Optical Networks,” Oct. 1998, 7th International Con-
(52) US. Ch woes: 709/221; 709/252; 709/243; ference on Computer Communications and Networks, 1998,

709/227 pp. 472-478.*

(58) Field of Search wo... 709/221, 220, ontinued709/252, 243, 227, 223, 204, 238; 370/225, (Continued)
260, 400; 455/428 Primary Examiner—Glenton B. Burgess

Assistant Examiner—Bradley Edelman
(56) References Cited (74) Attorney, Agent, or Firm—Perkins Coie LLP

4,912,656
5,056,085
5,058,105
5,079,767
5,099,235
5,101,480
5,117,422
5,309,437
5,345,558
5,426,637
5,459,725
5,471,623
5,511,168
5,535,199
5,568,487
5,636,371
5,644,714
5,673,265

PEPPERSESESEPEEEEES
3/1990

10/1991
10/1991

1/1992
= 3/1992
* 3/1992
* 3/1992

5/1994
9/1994
6/1995

10/1995
* 11/1995

4/1996
7/1996

10/1996
6/1997
7/1997
9/1997

U.S. PATENT DOCUMENTS

Cain ct al.
Vu
Mansouretal.
Perlman
Crookshanks... eee 455/13.1
Shin et al. T10/317
Hauptscheinet al. 370/255
Perlmanet al.

Opheretal.
Derbyetal.
Bodneret al.

Napolitano, Jr. 709/243
Perlmanet al.
Aanriet al.
Sitbon et al.
Yu
Kikinis

Gupta et al.

cc)

Sate
sy

Sareeporeta|compe
At

<n
ee

aaa
TiRecerve eclernah nesmage

(57) ABSTRACT

A technique for adding a participant to a network is pro-
vided. This technique allows for the simultaneous sharing of
information among manyparticipants in a network without
the placement of a high overhead on the underlying com-
munication network. ‘lo connect to the broadcast channel, a
seeking computer first locates a computer that is fully
connected to the broadcast channel. The seeking computer
then establishes a connection with a number of the comput-
ers that are already connectedto the broadcast channel. The
technique for adding a participant to a network includes
identifying a pair of participants thal are connected to the
network, disconnecting the participants ofthe identified pair
from each other, and connecting each participant of the
identified pair of participants to the added participant.

17 Claims, 39 Drawing Sheets

AB-AB 001392

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 60 of 190 PageID #: 42553Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 60 of 190 PagelD #: 42553

US 6,910,069 B1
Page 2

5,757,795
5,761,425
5,764,756
5,790,548
5,790,553
5,799,016
5,802,285
5,850,592
5,864,711
5,867,660
5,867,667
5,870,605
5,874,960
5,899,980
5,907,610
5,925,097
5,928,335
5,935,215
5,946,316
5,948,054
5,949,975
5,953,318
5,956,484
5,970,232
5,974,043
5,987,506
6,003,088
6,013,107
6,023,734
6,029,171
6,032,188
6,038,602
6,047,289
6,065,063
6,073,177
6,094,676
6,115,580
6,151,633
6,167,432
6,173,314
6,195,366
6,199,116
6,216,177
6,223,212
6,243,691
6,252,884
6,268,855
6,269,080
6,271,839
6,272,548
6,285,363
6,304,928
6,321,270
6,353,599
6,415,270
6,434,622
6,463,078
6,490,247
6,499,251
6,505,289
6,524,189
6,553,020
6,603,742
6,611,872
6,618,752
6,701,344

2002/0027896

U.S. PATENT DOCUMENTS

BDHSSSPerrrrerereerrerererrrrerererererererrerere
we

B

Daw
Bnh

=

 FrROReWean

5/1998
6/1998
6/1998
8/1998
8/1998
8/1998
9/1998

12/1998
1/1999
2/1999
2/1999
2/1999
2/1999
5/1999
5/1999
7/1999
7/1999
8/1999
8/1999
9/1999
9/1999
9/1999
9/1999

10/1999
10/1999
11/1999
12/1999

1/2000
2/2000
2/2000
2/2000
3/2000
4/2000
5/2000
6/2000
7/2000
9/2000

11/2000
12/2000

1/2001
2/2001
3/2001
4/2001
4/2001
6/2001
6/2001
7/2001
7/2001
8/2001
8/2001
9/2001

10/2001
11/2001
3/2002
7/2002
8/2002

10/2002
12/2002
12/2002

1/2003
2/2003
4/2003
8/2003
8/2003
9/2003
3/2004
3/2002

Schnell
Miller
Onvweller
Sistanizadehet al.

Deaton, Jr. et al.
Onvweller
Hirviniemi
Ramanathan
Mairs etal.
Schmidt et al.
Butmanet al.
Brachoet al.
Mairs etal.
Wilf et al.
Onvweller

Gopinath et al.
Morita
Bell ct al.
Chen et al.
Nielsen

Battyet al.
Nattkemperetal.
Rosenberg et al.
Passint et al.
Solomon
Carter et al.
Ilouston et al.
Blackshearet al.
Ratcliff et al.

Smiga et al.
Mairs etal.
Ishikawa
Thorne et al.
Abali oc.
Hebelet al.

Grayet al.
Chuprunet al.
Hurst

Jiang
Kurashimaet al.

Kayashima
Mayetal.
Mairs etal.

Batty etal.
Fisheretal.
Hunter
Mairs etal.
Kumar
Mairs etal.
Cotter et al.
Mairs et al.
Mairset al.

Crawley
Biet al.
Racksonet al.
Monteiro et al.

Engstrom etal.
Gilbert et al.
Weder
Hanet al. wu...
Rautila

Hughes etal.0...... 370/347
Steele et al. 370/254
McCanne
Mooreet al.
Holt et al.

Hughesetal.

cesseecesee TOO/242

veereree 370/222

vevensenee TLZ/11

OTHER PUBLICATIONS

Hsu, “On Four—Connecting a Triconnected Graph,” Oct.
1992, Annual Symposium on Foundations of Computer
Science, 1992, pp. 70-79.*
Shiokawa et al., “Performance Analysis of Network Con-
nective Probability of Multihop Network under Correlated
Breakage,” Jun. 1996, 1996 [EEE International Conference
on Communications, vol. 3, pp. 1581-1585.*
Komine et al., “A Distributed Restoration Algorithm [or
Multiple—Link and Node Failures of Transport Networks,”
Dec. 199 IEEE Globecom *90, ‘Communications: Connect-
ing the Future,’ vol. 1, pp. 459-463.*
U.S. Appl. No. 09/629,576, filed Jul. 31, 2000, Bourassa et

1. No. 09/629,577,filed Jul. 31, 2000, Bourassa et

. No. 09/629,575, filed Jul. 31, 2000, Bourassa et

. No. 09/629,572,filed Jul. 31, 2000, Bourassa et

US. Appl. No. 09/629,023,filed Jul. 31, 2000, Bourassa et

U.S. Appl. No. 09/629,043, filed Jul. 31, 2000, Bourassa et

. No. 09/629,024, filed Jul. 31, 2000, Bourassa et

1. No. 09/629,042,filed Jul. 31, 2000, Bourassa et

Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000(pp. 26-28).
The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998
(4 pages).
The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/
Ipt/ .. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’ Reilly
Networkhttp://www.oreillynet.com/Ipt . . . [Accessed Jan.
29, 2003].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-43-16).
Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) ‘he O’Reilly Network
http://linux.oreillynet.com/1pt .. . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummics,’MIT

Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYIV/BCP Archives—http://www.faqs.org/rles/
rfc1832.html [Accessed Jan. 29, 2002].
ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).
Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates,Inc.
http://www.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].
Bondy,J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.
Cormen, Thomas, H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.

AB-AB 001393

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 61 of 190 PageID #: 42554Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 61 of 190 PagelD #: 42554

US 6,910,069 B1
Page 3

The Common Object Request Broker: Architecture and
Specification, Review 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13-1-13-56), Chapter 16
(pp. 16—-1—-16—26), Chapter 18 (pp. 18-1—18-52), Chapter
20 (pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http://www.des.warwick.ac.u ... [Accessed Jan. 29, 2002].
Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company,Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).
Yavatkar et al, “A reliable Dissemination Protocol for
Interactive Collaborative Applications,” Proc. ACM Multi-
media, 1995, p. 333-344; http://citeseer.nj.nec.com/article/
yavatkar95reliable.htm.

Business Wire, “Boeing Panthesis Complete SWAN Trans-
action,” Jul. 22, 2002, pp Lif.

PR Newswire, “Microsoft Annouces Launch Date for

UltraCrops, Its Second Premium Title for the Internet Gam-
ing Zone,” Mar. 27, 1998, pp1 ff.

PR Newswire, “Microsoft Boosts Accessibility to Internet
Gaming Zone with Latest Release,” Apr. 27, 1998, pp Lf.

Peercy et al., “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
Faulty Hypercubes,” Jun. 1990, 20th International Sympo-
sium on Fault-Tolerant Computing, 1990, pp—218-—225.

Azar et al., “Routing Strategies for Fast Networks,” May
1992, INFOCOM °92 Eleventh Annual Joint Conference of

the IEEE Computer Communications Societies, vol. 1,
170-179##4.

* cited by examiner

AB-AB 001394

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 62 of 190 PageID #: 42555Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 62 of 190 PagelD #: 42555

U.S. Patent Jun. 21, 2005 Sheet 1 of 39 US 6,910,069 B1

oO

ry

ui. 20

 ¢
AB-AB 001395

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 63 of 190 PageID #: 42556Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 63 of 190 PagelD #: 42556

US 6,910,069 B1Sheet 2 of 39Jun. 21, 2005U.S. Patent

AB-AB 001396

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 64 of 190 PageID #: 42557Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 64 of 190 PagelD #: 42557

U.S. Patent Jun. 21, 2005 Sheet 3 of 39 US 6,910,069 B1

a O

N 6
ory

<_{ .
oe

Ww 2

m

©

< s
80
a,

Q

Lu

AB-AB 001397

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 65 of 190 PageID #: 42558Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 65 of 190 PagelD #: 42558

U.S. Patent Jun. 21, 2005 Sheet 4 of 39 US 6,910,069 B1

AB-AB 001398

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 66 of 190 PageID #: 42559Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 66 of 190 PagelD #: 42559

U.S. Patent Jun. 21, 2005 Sheet 5 of 39 US 6,910,069 B1

AB-AB 001399

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 67 of 190 PageID #: 42560Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 67 of 190 PagelD #: 42560

U.S. Patent Jun. 21, 2005 Sheet 6 of 39 US 6,910,069 B1

AB-AB 001400

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 68 of 190 PageID #: 42561Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 68 of 190 PagelD #: 42561

U.S. Patent Jun. 21, 2005 Sheet 7 of 39 US 6,910,069 B1

AB-AB 001401

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 69 of 190 PageID #: 42562Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 69 of 190 PagelD #: 42562

U.S. Patent Jun. 21, 2005 Sheet 8 of 39 US 6,910,069 B1

AB-AB 001402

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 70 of 190 PageID #: 42563Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 70 of 190 PagelD #: 42563

U.S. Patent Jun. 21, 2005 Sheet 9 of 39 US 6,910,069 B1

a

oO

EE

m
Ss)
w

iL .

20

<

oO

ei

AB-AB 001403

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 71 of 190 PageID #: 42564Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 71 of 190 PagelD #: 42564

U.S. Patent Jun. 21, 2005 Sheet 10 of 39 US 6,910,069 B1

mo

g
bb

cy

<<
AB-AB 001404

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 72 of 190 PageID #: 42565Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 72 of 190 PagelD #: 42565

U.S. Patent Jun. 21, 2005 Sheet 11 of 39 US 6,910,069 B1

Qo

<

Ry
rN

26

v4)

oO

Oo <

fe
wy

seh

QO m

AB-AB 001405

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 73 of 190 PageID #: 42566Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 73 of 190 PagelD #: 42566

U.S. Patent Jun. 21, 2005 Sheet 12 of 39 US 6,910,069 B1

Broadcaster Po
ig.6

z

:

:
Application2 {channeltype channelinstance)Application| (channeltype

AB-AB 001406

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 74 of 190 PageID #: 42567Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 74 of 190 PagelD #: 42567

US 6,910,069 B1Sheet 13 of 39Jun. 21, 2005U.S. Patent

002

sayoyedsipyewiaixq
cOZ

jeyod
SOL

agessaulasuodsesautnboySAPaOOY
J)IROPROIY
O

che
isanbolOOO’)

498q189
$02yauU07)Ord

yoouuos)
—_

OL

AB-AB 001407

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 75 of 190 PageID #: 42568Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 75 of 190 PagelD #: 42568

U.S. Patent Jun. 21, 2005 Sheet 14 of 39 US 6,910,069 B1

Cm
Channel Instance,
Connect Aux Info)

801

Open call in port

802 Fig. 8

803

Seek portal - computer
(channel type channel

instance)

804

<a>
Y

805 806

807

Install external dispatcher
808

Install external dispatcher

809

|commer|

AB-AB 001408

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 76 of 190 PageID #: 42569Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 76 of 190 PagelD #: 42569

U.S. Patent Jun. 21, 2005

Seek portal
computer

902

Select next depth

All portal computers
selected

Dial portal computer

907

Y 908

| Contact process ;
909

Hang up selected portal
computer

910

Selected portal
computer connected

Check for external]
call

Y

Sheet 15 of 39 US 6,910,069 B1

Channel Type
Channel Instance

Retum (failure)

Fig. 9

AB-AB 001409

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 77 of 190 PageID #: 42570Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 77 of 190 PagelD #: 42570

U.S. Patent Jun. 21, 2005 Sheet 16 of 39 US 6,910,069 B1

4005

Add as connected portal
computer

 Answering process
connected

Add asfellow seeking
computer

AB-AB 001410

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 78 of 190 PageID #: 42571Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 78 of 190 PagelD #: 42571

U.S. Patent Jun. 21, 2005 Sheet 17 of 39 US 6,910,069 B1

Fig. 11 4101 1102
Wasafully N Restart

connected portal found

Dial call in port of portal
computer

1104

N

111 1112

<eerwenes>—{]ae
N 1113

AB-AB 001411

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 79 of 190 PageID #: 42572Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 79 of 190 PagelD #: 42572

U.S. Patent Jun. 21, 2005 Sheet 18 of 39 US 6,910,069 B1

Check for exte:
call

1201

Fig. 12

Send external message

Add other as fellow seeker

AB-AB 001412

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 80 of 190 PageID #: 42573Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 80 of 190 PagelD #: 42573

U.S. Patent Jun. 21, 2005 Sheet 19 of 39 US 6,910,069 B1

Achieve connection

Connection- state = fully

Notify fellow seekers

1303

Invoke connect call back

 Fig. 13

AB-AB 001413

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 81 of 190 PageID #: 42574Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 81 of 190 PagelD #: 42574

U.S. Patent Jun. 21, 2005 Sheet 20 of 39 US 6,910,069 B1

External dispatcher Fig 14
1415

Seeking connectioncall

Port connect cail
Handle port

connection call

Handle connected
statement

 Connected statement
Handle condition
repair statement

Condition repair
statement

AB-AB 001414

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 82 of 190 PageID #: 42575Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 82 of 190 PagelD #: 42575

U.S. Patent Jun. 21, 2005 Sheet 21 of 39 US 6,910,069 B1

Handle seeking
connection call

Fig. 15

4503

Set message to not
connected

1504

Add otheras fellow
seeking process

 501

Fully connected

AB-AB 001415

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 83 of 190 PageID #: 42576Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 83 of 190 PagelD #: 42576

U.S. Patent Jun. 21, 2005 Sheet 22 of 39 US 6,910,069 B1

andle connection
requestcall

1601 xe
N

OY Return
Set newcomer's
holes_to_expect

Set diameter estimate in

response

5 Fig. 16
Set ready in response

DUD

Sent external message
connect request resp.

hel 4

Set newcomer's

holes_to_fill

608 BUY

[ane

onaé

Newcomer's

holes_to_fill --

: Forward connection | {i
i

edge search

Holesto fill - =

TU Fill hole (requestor) }

AB-AB 001416

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 84 of 190 PageID #: 42577Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 84 of 190 PagelD #: 42577

U.S. Patent Jun. 21, 2005 Sheet 23 of 39 US 6,910,069 B1

uv 7
Identifies calling party Fig. 17

0

Sets neighbor to
messages pending

J03 Y Connection_state = “<Singconnects partially connected
N

1705

Add as neighbor

UO

Install interal dispatcher
for new neighbor

Connectin

707 08

tia
N

“= i tedexpected hole Achieve connecte
N

1711

Purge pending edges

aan

AB-AB 001417

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 85 of 190 PageID #: 42578Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 85 of 190 PagelD #: 42578

U.S. Patent Jun. 21, 2005 Sheet 24 of 39 US 6,910,069 B1

Fig. 18

 # of

neighbors
>]

804

neighbor = Select random neighbor
requestor

aie:
selected

1806

 BOE

Note connection edge
search call

AB-AB 001418

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 86 of 190 PageID #: 42579Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 86 of 190 PagelD #: 42579

U.S. Patent Jun. 21, 2005 Sheet 25 of 39 US 6,910,069 B1

Handle edge in message
proposal call out message

Fig. 19

create edge (pending)

proposed
neighbors

9 pending

Send external message N
1907

1912 1908

Y¥ Q
1913 Y 4999

| | Fill hole | Add edge as pending
4910

[aie |

AB-AB 001419

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 87 of 190 PageID #: 42580Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 87 of 190 PagelD #: 42580

U.S. Patent

Fig. 20

Jun. 21, 2005

| Connect request :

Sheet 26 of 39

Handle port
connection call

2003

‘ Send external message
Caller ts not (point-connect-resp

neighbor not ok)

2006

; Add neighbor |

US 6,910,069 B1

AB-AB 001420

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 88 of 190 PageID #: 42581Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 88 of 190 PagelD #: 42581

U.S. Patent Jun. 21, 2005 Sheet 27 of 39 US 6,910,069 B1

Fill hole

Handle connection Distribute internal
ports search edit message

AB-AB 001421

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 89 of 190 PageID #: 42582Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 89 of 190 PagelD #: 42582

U.S. Patent Jun. 21, 2005 Sheet 28 of 39 US 6,910,069 B1

Internal

2201

Fig 22 Received internal message
2202

ae
pending connection buffer

 = = broadcast
statement

2007

Handle shutdown
statement

 Type
== shutdown

statement

Y Pending
connection buffer

|__za02,tl
210

N
message queue

Y ive response ()

AB-AB 001422

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 90 of 190 PageID #: 42583Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 90 of 190 PagelD #: 42583

U.S. Patent Jun. 21, 2005 Sheet 29 of 39 US 6,910,069 B1

andle broadcast origin
message from neighbor

message

2304

Clear out oforder info

AB-AB 001423

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 91 of 190 PageID #: 42584Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 91 of 190 PagelD #: 42584

U.S. Patent Jun. 21, 2005 Sheet 30 of 39 US 6,910,069 B1

message

from neighbor

All neighbor
selected

Send internal

message

AB-AB 001424

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 92 of 190 PageID #: 42585Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 92 of 190 PagelD #: 42585

U.S. Patent Jun. 21, 2005 Sheet 31 of 39 US 6,910,069 B1

for search message

260

Distribute internal .
Fig. 26

602

Y

603 2604

[seen|

605

Is requestor
a neighbor

enerate

condition check

message w/neighbors

2607

Send internal message
to requestor

AB-AB 001425

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 93 of 190 PageID #: 42586Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 93 of 190 PagelD #: 42586

U.S. Patent Jun. 21, 2005 Sheet 32 of 39 US 6,910,069 B1

704

Prospect

Fig. 27

 Is prospect
a neighbor

 N

703

Holes > 0

Send and receive

external message

 2706

Hang up prospect
AB-AB 001426

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 94 of 190 PageID #: 42587Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 94 of 190 PagelD #: 42587

U.S. Patent Jun. 21,2005 Sheet 33 of 39 US 6,910,069 B1

Handle connection from neighbor
edge search call message

Fig. 28

801

N Not
my message 11

holes >= Z
2813

N Message Y
from this pt. && 802 803

oles==1] a .

Remaining cogneceionge (requestor
¥ 2814 naining di

Requestor
is neighbor or edge

reserved

 end interna
connection edge

search (requestor,
message (from 0)
neighbor, ack 2806 YY

Dial requestor

2807

Send and receive

external message

AB-AB 001427

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 95 of 190 PageID #: 42588Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 95 of 190 PagelD #: 42588

U.S. Patent Jun. 21, 2005 Sheet 34 of 39 US 6,910,069 B1

Handle edge search origin
resp. from neighbor

; 301 message

Note connection edge
search response Fig. 29

AB-AB 001428

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 96 of 190 PageID #: 42589Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 96 of 190 PagelD #: 42589

U.S. Patent Jun. 21, 2005 Sheet 35 of 39 US 6,910,069 B1

Y

3002

Generate internal

message

3003

Set message sequence
number

3004

Distribute internal

message

AB-AB 001429

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 97 of 190 PageID #: 42590Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 97 of 190 PagelD #: 42590

U.S. Patent Jun. 21, 2005 Sheet 36 of 39 US 6,910,069 B1

message

3101

Pop message queue

Fig. 31

AB-AB 001430

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 98 of 190 PageID #: 42591Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 98 of 190 PagelD #: 42591

U.S. Patent Jun. 21, 2005 Sheet 37 of 39 US 6,910,069 B1

andle condition check

Fig. 32

3203 - 3205
Set up message with list ofsendingprocess

of neighbors not my neighbor

3204 3206

Send internal message SenSSeciadneighbes.
3207

| Add neighbor

AB-AB 001431

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 99 of 190 PageID #: 42592Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 99 of 190 PagelD #: 42592

U.S. Patent Jun. 21, 2005 Sheet 38 of 39 US 6,910,069 B1

Handle condition
repair statement

AB-AB 001432

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 100 of 190 PageID #: 42593Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 100 of 190 PagelD #: 42593

U.S. Patent Jun. 21, 2005 Sheet 39 of 39 US 6,910,069 B1

Handle condition
double check

Sameset of

neighbors

Send internal message

Send internal message
to-from neighbor

AB-AB 001433

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 101 of 190 PageID #: 42594Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 101 of 190 PagelD #: 42594

US 6,910,069 B1
1

JOINING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST

CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,”filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERY SERVICE,”filed on Jul.
31, 2000, now U.S. Pat. No. 6,714,966; U.S. patent appli- "
calion Ser. No. 09/629,024, entitled “DISTRIBUTED CON-
FERENCING SYSTEM,”filed on Jul. 31, 2000; and U.S.
patent application Ser. No. 09/629,042, entitled “DISTRIB-
UTED GAME ENVIRONMENT,” filed on Jul. 31, 2000,
the disclosures of which are incorporated herein by refer-ence.

TECHNICAL FIELD

The described technology relates generally to a computer
network and moreparticularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Eachof these communications
techniques have their advantages and disadvantages, but
noneis particularly well suited to the simultaneous sharing
of information among computersthat are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely manner toall participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however,find it very difficult to manage single connections, .
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the numberof direct connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients whoare sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture

19

30

4)

45

50

60

65

2

(“CORBA”). Client/server middleware systemsare not par-
ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling placcs a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to callback to each client
whenever newinformation is to be shared. In addition, the

reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.e., the server) would prevent communications
between anyof the clients.

‘The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus,it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small numberofpartici-
pants is desired. In addition, the underlying architecture of
the ‘1.120 Internet standardis a tree structure, whichrelies on
the root node of the tree for reliability ofthe entire network.
That is, cach message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultancous sharing of
information among a large numberofthe processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG, 1 illustrates a graphthat is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4Aillustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4B illustrates the broadcast channel of FIG. 4A with

an added computer.
FIG. 4C also illustrates the broadcast channel of FIG. 4A

with an added computer.
FIG, 5Aillustrates the disconnecting of a computer from

the broadcast channel in a planned manner.
FIG. 5Billustrates the disconnecting of a computer from

the broadcast channel in an unplanned manner.

FIG. 5C illustrates the neighbors with empty ports con-
dition.

FIG. 5D illustrates two computers that are not neighbors
who now have empty ports.

AB-AB 001434

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 102 of 190 PageID #: 42595Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 102 of 190 PagelD #: 42595

US 6,910,069 B1
3

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime.

FIG.6 is a block diagram illustrating components of a
computer that is connected to

FIG. 7 is a block diagram 1

a broadcast channel.

llustrating the sub-components
of the broadcaster component in one embodiment.

FIG, 8 is a flow diagram il lustrating the processing of the
connect routine in one embodiment.

FIG, 9 is a flow diagram il
seck portal computer routine

lustrating the processing of the
in one embodiment.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment.

FIG. 11 is a How diagram illustrating the processing ofthe
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG. 13 is a flow diagram of the processing ofthe achieve
connection routine in one embodiment.

FIG. 14 isaflow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG, 15 is a flow diagram illustrating the processing of the
handle seeking connectioncall routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 isa flow diagram il
add neighbor routine in one

FIG, 18 isa flow diagram il

lustrating the processing ofthe
embodiment.

lustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram i lustraling the processing ofthe
handle edge proposal call routine.

L1G. 20is a flow diagram 1 lustrating the processing ofthe
handle port connection call routine in one embodiment.

FIG, 21 isa flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagram i lustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagram 1 Justrating the processing of the
handle broadcast message routine in one embodiment.

FIG, 24 is a flow diagram il
distribute broadcast message

FIG, 26 isaflow diagram il
handle connection port sea
embodiment.

T'1G. 27 is a flow diagram i

lustrating the processing of the
routine in one embodiment.

lustrating the processing of the
rch statement routine in one

lustrating the processing of the
court neighbor routine in one embodiment.

FIG, 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG, 29 is a flow diagram il
handle connection edge search response rouline in one
embodiment.

FIG. 30 is a flow diagram i lustrating the processing of the
broadcast routine in one embodiment.

FIG. 31 isa flow diagram il

lustrating the processing of the

acquire message routine in one embodiment.
FIG. 32 is a flow diagram illustrating processing of the

handle condition check message in one embodiment.
FIG, 33 is a flow diagram illustrating processing of the

handle condition repair statement routine in one embodi-
ment.

lustrating the processing of the ~

19

30

4)

45

50

60

65

4

FIG, 34is a flowdiagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channelis effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel, In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected, The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system lo send messages to each other connected computer
using, each computer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (i.e.,
edges) between host computers (i.¢., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computeris connectedto four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the messagetoits
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel, A graph in which each node is connected to four
other nodesis referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of
the conncctionsto its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
propertyis referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.e., the shortest path between the
twonodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between

computers A and B, but computer Fis directly connected to

AB-AB 001435

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 103 of 190 PageID #: 42596Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 103 of 190 PagelD #: 42596

US 6,910,069 B1
5

computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from
computer F to computer B. The maximum of the distances
between the computersis the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
of this broadcast channelis 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.e., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (i¢., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel(i.c.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer seeking
the connection first locates a computer that is currentlyfully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connected to the broadcast channel. (This assumesthat there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the
small regime is described below in detail. When five or more 2
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel, 35
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers(1.e., to
be the seeking compulter’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the secking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to :
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connectedstate.”

Since the broadcast channel is a 4-regular graph, each of :
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each ofthese pairs of computers breaks
the connection between them, and then each ofthe four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

5

ba o

4)

45

6

D are the two pairs that are identified as the neighbors forthe
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, andEis established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting cach of the former ncigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connectionsofthe
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. Aseeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space” that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages throughits external port. Aseeking
compuler tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or attempting to connectto the broadcast channel andits
call-in port is dialed. (In this description, a telephone meta-
phoris used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicatcs through that transfcr-to port, which is the cxternal
port. Thecall is transferredso that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer could identify the call-in port number ofa portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which mayresult in improved performance.

A seeking computer could connect to the broadcast chan-
nel by connecting to computers cither dircetly connected to
the found portal computeror directly connected to one ofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computeris that the

AB-AB 001436

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 104 of 190 PageID #: 42597Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 104 of 190 PagelD #: 42597

US 6,910,069 B1
7

diameter of the broadcast channel may increase when each
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
arc added. FIGS. 4A-4Cillustrate that possible problem.
FIG. 4Aillustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channelis still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an

added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E-J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computerK is
through edges G-A, A-E, and E-K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connectedto the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter ofthe broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection techniqueto identify the
four neighbors of a computer in the seeking connectionstate.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which mayresult in smaller
overall diameters.

Broadcasting Through the Graph
As described above, each computer that is connected to 2

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections. 35
When a computer receives a broadcast message from a
neighbor, it sends the message toits three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that il
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message thal is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
exceptfor the originating computer, which sends four copics
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each :
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each :
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbersits own
messages sequentially. Because of the dynamicnature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer anda certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changesto one. Thefirst
message may haveto travel a distance of four to reach the

5

ba o

4)

45

8

receiving computer. The second message only has to travel
a distance of one. Thus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.c., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steadystate, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwardedon by its
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queueall the messagesthat it receives until it can send them
in their proper orderto its neighbors. This solution, however,
maytendto slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers whoare neighborsof the
newly connected computers. Each already connected neigh-
bor would forward messagesas il receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 andthen receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3is finally received,
the already connected computer will send messages3, 4, and
§ to the newly connected computer.If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3.It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor.If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.
Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a

AB-AB 001437

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 105 of 190 PageID #: 42598Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 105 of 190 PagelD #: 42598

US 6,910,069 B1
9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to connectto the fourth computerin the list. If a computer
cannot connect (¢.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS, 5A-SDillustrate the
disconnecting of a computer from the broadcast channel.
FIG, 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect, it sendsits list of neighbors to each of
its neighbors (computers A, E, F andI) and then disconnects
from each ofits neighbors. When computers A andI receive
the message they establish a connection between them as
indicated by the dashedline, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (1.€., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the 35
broadcast channel, which indicates that it has one internal

port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computerthatis also short a connection receives
the connection request, it communicates with the requesting
computer throughits external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each ofits
neighbors, computers A, E, F, and I, recognizes the
disconnection, cach neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
‘A. and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadeast channelis in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to

19

30

ta a

4)

45

50

60

65

10

receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includesa list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists arc diffcrent, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighborthat is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, oneofthe original neighbors invalved in the condition
will have hadaportfilled. However, two computersarestill
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect to each other when
theyreceive the requests.If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one ofits neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the sameset of neighbors as the
sending computer.If so, the broadcast channelis in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition, In this illustration, computer H disconnected in an
unplanned manner, but computers F andI responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E,are already neighbors, whichgivesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E hasa different set of neighbor (1.e., the
broadcast channel is in the large regime). Computer A
selected computer D, whichis a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from oneofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G nowhave
cmpty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. FIG. SE illustrates the neighbors with

AB-AB 001438

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 106 of 190 PageID #: 42599Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 106 of 190 PagelD #: 42599

US 6,910,069 B1
11

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes thatit has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channelis in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from 2
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one ofits
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other 35
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not knowin advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking :
computer would eventually dial every user port. In addition,
if each application program on a computer tried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numberedport for its call-in port because
many of the low-ordered port numbers would be used by :
other application programs. Since the dialing of a port is a
relatively slowprocess, it would take the seeking computer
a long time to locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port numberorder that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order.The
algorithm preferably distributes the ordcring of the port
numbers randomly through out the user port number space
and onlyselects each port number once. In addition, every
time the algorithm is executed on any computerfor a given

5

~] o

30

4)

45

12

channel type and channel instance,it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channcl instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used whenallocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port maybesignificantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood offinding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through whichit
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
seeking computer locates a portal computerthat is connected
to the broadcast channel by successively dialing the ports of
each portal computerin the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of cach portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number andrepeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth,that is the numberofports that it will dial when
seeking a portal computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computerthat
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 001439

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 107 of 190 PageID #: 42600Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 107 of 190 PagelD #: 42600

US 6,910,069 B1
13

broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer, If the two secking computers were to connect to
each other, then two disjoint broadcast channels would be
formed. Each seeking computer can share its experience in
trving to locate a portal computcr with the other sccking
computer. In particular, if one seeking computer has
searchedall the portal computersto a depthof eight, then the
one seeking computer can share that it has searched to a
depth of eight with another seeking computer. If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

Asdescribed above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledgeofitself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channel to fail. This local knowledge
makesit difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal computer sends an
edge connection request message throughoneofits internal
connections that is randomlyselected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enoughto represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the secking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
secking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor andsendthe message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection :
request messagetravels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer.If that randomly selected com-
puter cannot connect to the secking computer(c.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to oneofits
neighbors with a newdistance to travel. In one embodiment,

19

30

4)

45

50

60

65

14

the forwarding computer toggles the newdistance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Becauseofthe local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameteris used to establish the distance that

an edge connection request message shouldtravel.
External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
mayuse 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

The underlying peer-to-peer communications protocol
maysend multiple messagesin a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. The retrieval of each
message may require twocalls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the numberof bytes indicated by the retrievedsize.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. ‘To
overcomethe inefficiencies of such repeatedcalls, the broad-
cast technique in one embodiment, uses XDRtoidentify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes fromthe stream. The broad-
cast technique can then repeatedly invoke the XDRroutines
to retrieve the messages and use the success or failure of
cach invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a seeking computerto the broadcast channel may, however,
increase as the number ofinternal connections increases.

When the number ofinternal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steadystate). If the numberofinternal
connections is odd, then when the broadcast channel has an

odd number of computers connected, one of the computers
will have less than that odd numberofinternal connections.

AB-AB 001440

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 108 of 190 PageID #: 42601Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 108 of 190 PagelD #: 42601

US 6,910,069 B1
15

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
neets to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagramillustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (c.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels

can be identified by channel type (¢.g., application program
name) and channel! instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connectedto that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to whichit is connected. The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment, the broadcaster component provides func- :
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoke toretrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which maybea virtual function provided by
the application program) that the broadcaster component :
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answeredatthe call-in port, theyare transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices(e.g.,
display devices), and storage devices (e.g., disk drives). The
memoryandstorage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
messagestructures may be storedor transmittedvia a signal
transmitted on a computer-rcadable media, such as a com-
munications link.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The

5

ba o

ta on

4)

45

65

16

broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. ‘lhe connect component identi-
fies the external port andinstalls the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer(iffully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messagesare stored in the broadcast
message queue 709. The acquire message component is
invokedto retrieve messages from the broadcast queue. The
broadcast componentis invokedby the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

EXTERNAL MESSAGES

Message Type

seeking_connection_call

Description

Indicates that a seeking process would like to
know whether the receiving process is fully
connecled to the breadeast channel
Indicates that the sending process would like
the receiving process to initiate a connection
of the sending process to the broadcast
channel
Indicates that the sending process is
proposing an edge through whichthe
receiving process can connect to the
broadcast channel (Le., edge pinning)
Indicates that the sending
proposing a port through which the
receiving process can connect to thebroadcast channel
Indicates that the sending process is
connected to the broadcast channel
Indicates that the receiving process should
disconnect from one of its neighbors and
connect to one of the processes involved in
the neighbors with empty port condition

connection_request__call

edge__proposal_call

process isport_connection_call

connected_stmt

condition repair stmt
INTERNAL MESSAGES

Message Type Description

broadcast_stmt Indicates a message that is being
broadcast through the broadcast channel
for the application programs
Indicates that the designated process is
looking for a port through whichit canconnectto the broadcast channel

Indicates that the requesting process is
looking for an edge through whichitcan connect to the broadcast channel

connection_port_search_stmt

connection_edge_search_call

AB-AB 001441

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 109 of 190 PageID #: 42602Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 109 of 190 PagelD #: 42602

US 6,910,069 B1
17

-continued

INTERNAL MESSAGES

Message Type Description

connection_edge_search_resp Indicates whether the edge between this
process and the sending neighbor has
been accepted by the requesting party
Indicates an estimated diameter of the
broadcast channel
Indicates to reset the estimated diameter
to indicated diameter
Indicates that the sending neighboris
disconnecting fromthe broadcastchannel

Indicates thal neighbors with empty portcondition have been detected

Indicates thal the neighbors with empty
ports have the same set of neighbors
Indicates that the broadcast channel is
being shutdown

diameter_estimate_stmt

diameter__reset_stmt

disconnect_stmt

condition_check_stmt

condition__double_check_stmt

shutdown_stmt

Flow Diagrams
FIGS. 8-34 are flow diagramsillustrating the processing

of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), thal identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is

invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this 35
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opensthe call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connecttimeto the current time. The connecttimeis used to

identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connectedold process. In such a case,
the connect time can be usedto identify this situation. In
block 803, the routine invokes the seek portal computer :
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer,then the routine continuesat block 805,else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the

19

30

4)

45

50

60

65

18
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808,the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routineto initiate the process of
identifying neighbors for the seeking computer. ‘The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect, This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth. If
a portal computer is located at that search depth with a
processthatis fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904. In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process ofthat portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905,if all the portal computers have already
been selected, then the routine loops to block 902 toselect
the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907,if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 toselect the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering processof the portal computer
through the dialed port and determines whether that process
is fully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering processis fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG, 10 is a flowdiagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking_
connection_call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message

AB-AB 001442

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 110 of 190 PageID #: 42603Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 110 of 190 PagelD #: 42603

US 6,910,069 B1
19

from the answering process. In decision block 1003,if the
external response message is successfully received (i.e.,
seckingconnection_resp), then the routine continues at
block 1004, else the routine returns. Wherever the broadcast
component requests to receive an external message,it sets a
time out period. If the cxtcrnal message is not reccived
within that time out period, the broadcaster component
checks its own call-in port to see if another processis calling
it. In particular, the dialed process maybecalling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004,if the answering process indicates in its
response messagethat it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine

adds the selected portal computer to a list of connected
portal computersand then returns. In block 1006, the routine
adds the answering process to a list of fellow seeking 2
processes and then returns.

FIG. 11 is a flow diagramillustrating the processing of the
connect request routine in one embodiment. This routine
requests a processof a portal computerthat was identified as
being fully connected to the broadcast channel toinitiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longerbein thelist if it recently discon-
nected from the broadcast channel. In one embodiment, a

seeking computer may always searchits entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine 35
restarts the process of connecting to the broadcast channel
andreturns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at

block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-

save lo the dialed process requesting a connection to the
broadcast channel(i.e., connection__request__call). In block
1106, the routine receives the response message (i.e.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of §
holes (i.e., empty internal connections) for this process
based on the received response. Whenin the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter :
of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112,else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. ‘his adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. Whenin the large regime, the random walk scarch
for a neighboris performed.In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

19

30

4)

45

60

65

20

FIG, 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answera call on the call-in port. In decision block 1202,if
the answeris successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204,if the type of the message indicatesthat
a seeking processis calling (i.e., seeking_connection_call),
then the routine continues at block 1205, else the routine

returns. In block 1205,the routine sends an external message
(Le., seeking__connection_resp) to the other seeking pro-
cess indicating that this processis also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine

adds the other seeking process to a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (i.e., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program andthen returns.

FIG, 14 is a flowdiagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This rouline loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (e.g., picks up) the external port and
retrieves an external message. In decision block 1402,if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external portin block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.e., seeking
connection_call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (i.e.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,

if the message type is edge proposal call (ie., edge
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (i.e., port_connect_call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (i.e., connected_stmt), the routine invokes the

AB-AB 001443

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 111 of 190 PageID #: 42604Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 111 of 190 PagelD #: 42604

US 6,910,069 B1
21

handle connected statement in block 1112,else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.c.,
condition_repair__stmt), then the routine invokes the handle
condition repair routine in block 1413,else the routine loops
to block 1414 to proccss the next message. After cach
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG, 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block

1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continuesat
block 1505. In block 1503, the routine sets a message to 2
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes.If this process
is not fully connected, then it is attempting to connect to the
broadcast channel. In block 1505, the routine sends the

external message response (i.¢., seeking _connection_resp)
to the seeking process and then returms.

FIG. 16 is a flow diagram illustrating processing ofthe
handle connection request call routine in one embodiment.
This routine is invoked when the calling process wants this 2
process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In 35
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues

at block 1603, else the routine hangs up on the external port
in block 1602 andreturns. In block 1603, the routine sets the

numberofholes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready lo connect when
the numberofits holes is greater than zero and the calling
processis not a neighborofthis process. In block 1606, the
routine sends to the calling process an external messagethat
is responsive to the connection request call (i.e.,
connection_request_resp). In block 1607, the routine notes
the numberofholes that the calling process needs to fill as :
indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add

neighborroutine to add the calling process as a neighbor. In :
block 1610, the routine decrements the numberofholes that
the calling process needsto fill and continuesat block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (ie., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to befilled. In decision block
1613, if the number of holes of the calling process to be

5

ba o

4)

45

22

filled is greater than or equal to two, then the routine
continuesat block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-

nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrementsthe holesleft to fill by two and loops
to block 1613. In decision block 1616,if thereis still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement(i.e., connection__port_search_ stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG, 17 is a flowdiagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighborto this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messagesinitially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
processis in the seeking connection slate, then this process
is connectingtoits first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this

process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a messageis received from that new neighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continuesat block 1709. In one embodiment,

a process that is partially connected may buffer the messages
that it receives through an internal connection sothatit can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected numberof holes, then this process is fully con-
nected and the routine continucs at block 1710, clse the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block

1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposedto
this process for edge pinning, whichin this case is no longer
needed.

FIG. 18 is a flowdiagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomlyselected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continucs at block 1804, clsc the
routine continues at block 1802. In decision block 1802,if

the numberof neighbors of this processis greater than one,
then the routine continues at block 1804, else this broadcast

AB-AB 001444

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 112 of 190 PageID #: 42605Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 112 of 190 PagelD #: 42605

US 6,910,069 B1
23

channelis in the small regime and the routine continues at
block 1803. In decision block 1803,if the requesting process
is a neighborof this process, then the routine returns,else the
routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.c., connection_edge__scarch_call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continuesat block 1808, else the
routine loops to block 1804 to select the next neighbor.
Whenthe sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Wheneversuchasituation
is detected by the broadcaster component,it attempts to find 2
another neighbor by invoking the fill holes routine tofill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reservedif the remaining forwarding distanceis less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

T1G. 19 isa flow diagram illustrating the processing ofthe
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and oneofits neighbors to this process for edge pinning. In
decision block 1901, if the numberof holes of this process 35
minus the numberof pending edgesis greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902,else the routine continues at

block 1911. In decision block 1902,if the proposing process
or its neighboris a neighborofthis process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process(i.c., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful then the routine continues at block
1909, else the routine returns. In block 1909, the routine

adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then :
returns. In block 1911, the routine sends an external message
(i.e., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holesis odd, then the routine continues at block 1913,else
the routine returns. In block 1913, the routine invokes thefill
hole routine and then returns.

FIG, 20 is a flow diagram illustrating the processing ofthe
handle port connection call routine in one embodiment. This
routine is invoked when an external message is reccived
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
numberofholes of this processis greater than zero, then the

19

30

4)

45

50

ai on

60

65

24

routine continues at block 2002, else the routine continuesat
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(i.c., port_conncction_resp) to the sending proccss that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicates that is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continuesat block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborofthis process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

FIG. 21 is a flowdiagramillustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle

a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (1.€., connection_port_search_stmt). In decision
block 2102, if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the

message to the neighborsof this process through the internal
ports andthen returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG. 22 is a flowdiagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sent the internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message. In decision block 2203,
if this process is the originaling process of the message or
the message has already been received (i.e., a duplicate),
then the routine ignores the message and continuesat block
2208, clsc the routine continucs at block 2203A.In decision
block 2203A,if the process is partially connected, then the
routine continues at block 2203B, else the routine continues
at block 2204. In block 2203B,the routine adds the message
to the pending connection buffer and continues at block
2204.In decision blocks 2204-2207, the routine decodesthe

message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement(i.c., broadcast__
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209, else the routine contin-

ues at block 2210. The broadcaster componentcollects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumesthat it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,

AB-AB 001445

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 113 of 190 PageID #: 42606Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 113 of 190 PagelD #: 42606

US 6,910,069 B1
25

the routine invokes the achieve connection routine and then

continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The reccived
response routine is a callback routine of the application
program.

FIG. 23 is a flowdiagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitself. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokesthe distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the rouline continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct orderif possible for each originating
process and then returns,

FIG. 24 isaflow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors ofthis process, except for the neighbor whosent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the 3s
handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the messageitself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberofholes of this processis greater than zero, then the
routine continues at block 2603, else the routine returns. In

decision block 2603,if the requesting process is a neighbor,
then the routine continues at block 2605, else the routine
continues at block 2604. In block 2604, the routine invokes

the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message(i.e., condition__check) that includesalist of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighboris already a neighbor, then the routine
rcturns, clsc the routine continucs at block 2702. In block

2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberof holes of this process is greater
than zero, then the routine continues at block 2704, else the

19

30

4)

45

50

wn on

60

65

26
routine continues at block 2706, In block 2704, the routine
sends a port connection call external message(i.e., port
connection__call) to the prospective neighbor and receives
its response (1.e., port_connection_resp). Assuming the
responseis successfully received, in block 2705, the routine
adds the prospective neighbor as a neighborofthis process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28 is a flowdiagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message andthe messageitself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this processis not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802,if

the forwarding distance is greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting process is a neighboror the edge betweenthis
process and the sending neighboris reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In

block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
anda toggle indicatorthat alternatively indicates to continue
the random walk for one or two more computers. The routine
then continuesat block 2815.In block 2806, the routine dials
the requesting processvia the call-in port. In block 2807, the
routine sends an edge proposal call external message(i.c.,
edge__proposal__call) andreceives the response (i.¢., edge
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision

block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block

2812. In block 2809, the rouline reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813,if this process is the requesting
process and the numberofholes of this process equals one,
then the routine continues at block 2814, else the routine
continuesat block 2815. In block 2814, the routine invokes
the fill hole routine, In block 2815, the routine sends an

connection edge search response message(1.€., connection__
edge_search_response) to the sending neighbor indicating
acknowledgementand then returns. The graphsare sensitive
to parity. That is, all possible paths starting from a node and
endingat that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flowdiagram illustrating the processing of the
handle connection cdge scarch response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 001446

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 114 of 190 PageID #: 42607Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 114 of 190 PagelD #: 42607

US 6,910,069 B1
27

search response (i.c., connection_edge_search_resp) has
been received andif the forwarding distance is less than or
equal to one unreserves the edge betweenthis process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continuesat block 2903,clse
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907,if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG, 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is

invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block
3002, else the routine returns since it is the only process
connected to be broadcast channel, In block 3002, the
rouline generates an internal message of the broadcast
statement type (1¢., broadcast_stmt). In block 3003, the
routine sets the sequence numberof the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG, 31 isaflow diagram illustrating the processing of the
acquire message rouline in one embodiment. The acquire
message routine may be invoked by the application program 35
or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagramsillustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG, 32 is a Now diagramillustrating processing
of the handle condition check message in one embodiment.
This messageis sent by a neighborprocess that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the numberof holes of
this process Is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighbor andthis process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the

routine initializes a condition double check message (i.¢., :
conditiondouble_check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a

neighbor of the sending process thatis not also a neighbor
of this process.In block 3206, the routine sends a condition
repair message (i.e., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG, 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-

19

30

4)

45

50

60

28

ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continucs
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighbor of this process. Thus, this processthat is executing
the routine now hasat least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34 is a flowdiagram illustrating the processing of the
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime.In decision block 3401,if this process has one
hole, then the routine continues at block 3402, else the
routine continues at block 3403.If this process does not have
one hole, then the set of neighborsofthis process is not the
same as the set of neighbors of the sending process. In
decision block 3402,if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, clse the routine continues at block 3406. In decision
block 3403,if this process has no holes, is then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (i.¢., diameter_reset) indicating that the
estimated diameter is one andthen returns. In block 3406,

the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(i.e., condition_check_stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments ofthe technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast

channel, Accordingly, the inventionis not limited except by
the claims.

Whatis claimedis:

1. Acomputer-based, non-routing table based, non-switch
based method for adding a participant to a network of
participants, each participant being connected to three or
more other participants, the method comprising:

identifying a pair of participants of the network that are
connected wherein a seeking participant contacts a
fully connected portal computer, whichin turn sends an
edge connection request to a number of randomly
selected neighboring participants to which the seeking
participant is to connect;

disconnecting the participants of the identified pair from
each other; and

connecting each participant of the identified pair of par-
ticipants to the seeking participant.

2. The method of claim 1 wherein each participant is
connected to 4 participants.

3. The method of claim 1 wherein the identifying of a pair
includes randomly selecting a pair of participants that are
connected.

AB-AB 001447

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 115 of 190 PageID #: 42608Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 115 of 190 PagelD #: 42608

US 6,910,069 B1
29

4. The method of claim 3 wherein the randomly selecting
of a pair includes sending a message through the network on
a randomly selected path.

5. The method of claim 4 wherein when a participant
receives the message, the participant sends the message to a
randomly selected participant to which it is connected.

6. The method of claim 4 wherein the randomly selected
path is proportional to the diameter of the network.

7. The method of claim 1 wherein the participant to be
added requests a portal computerto initiate the identifying
of the pair of participants.

8. The method of claim 7 wherein the initiating of the
identifying of the pair of participants includes the portal
computer sending a message to a connected participant
requesting an edge connection.

9. The method of claim 8 wherein the portal computer
indicates that the messageis to travel a distance proportional
to the diameter of the network and wherein the participant
that receives the message after the message has traveledthat
distance is one of the participants of the identified pair of
participants.

10. The method of claim 9 wherein the certain distance is
twice the diameter of the network.

11. The method of claim 1 wherein the participants are
connected via the Internet.

12. The methodof claim 1 wherein the participants are
connected via TCP/IP connections.

19

30

13. The method of claim 1 wherein the participants are
computer processes.

14. Acomputer-based, non-switch based method for add-
ing nodes to a graph that is m-regular and m-connected to
maintain the graph as m-regular, where m is fouror greater,
the method comprising:

identifying p pairs of nodes of the graph that are
connected, wherepis one half of m, wherein a seeking
node contacts a fully connected portal node, which in
turn sends an edge connection request to a number of
randomly selected neighboring nodes to which the
secking node is to connect;

disconnecting the nodes ofeach identified pair from each
other; and

connecting each node of the identified pairs of nodes to
the secking node.

15. The method of claim 14 wherein identifying of the p
pairs of nodes includes randomly selecting a pair of con-
nected nodes.

16. The method of claim 14 wherein the nodes are

computers and the connections are point-to-point commu-
nicalions connections.

17. The method of claim 14 wherein m is even.

AB-AB 001448

EXHIBIT 65

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 116 of 190 PageID #: 42609Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 116 of 190 PagelD #: 42609

EXHIBIT 65

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 117 of 190 PageID #: 42610Case 1:16-cv-00453-RGA Document 492-1 TTC uo“°°21

a2) United States Patent
Holt et al.

US 6,732,147 B1
May4, 2004

(io) Patent No.:
(45) Date of Patent:

(54) LEAVING A BROADCAST CHANNEL. OTHER PUBLICATIONS

(75) Inventors: Fred B. Holt, Seattle, WA (US); Virgil Bondy et al. “Graph Theory With Applications” American
E. Bourassa, Bellevue, WA (US) Elsevier Publishing Co. Inc. pp. 47-50 Secion 3.3.*

Yavatkar et al. “A Reliable Dissemination Protocol for

(73) Assignee: The Boeing Company,Scattlc, WA Interactive Collaborative Applications” Proc. ACM Multi-
(US) media, 1995 p.333-344 http:/citeseer.nj.nec.com/article/

; ; . ; yavatkar95reliable.html.*
(*) Notice: Subjectto any disclaimer, the term ofthis Alagar, S. and Venkatesan, S., “Reliable Broadcast in

patent isextended or adjusted under 35 Mobile Wireless Networks,” Department of Computer Sci-
U.S.C. 154(b) by 719 days. ence, University of Texas at Dallas, Military Communica-

tions Conference, 1995, MILCOM °95 Conference Record,
(21) Appl. No.: 09/629,577 IEEE SanDiego, California, Nov. 5-8, 1995 (pp. 236-240).

. International Search Report for The Boeing Company, Inter-
22) Tiled: ul. 31, 2000 P S Sompany,(22) Tiled Jul. 31, national Patent Application No. PCT/US01/24240,Jun.5,

(SL) Int. Ch?occGO6GF15/16 2002 (7 pages).
(52) ULS. Ch. oeeecereneeererereeeeerereee 709/204; 709/227 US. patent application Ser, No. 09/629,570, Bourassa etal.,
(58) Field of Search oo...een 709/204, 227, filed Jul. 31, 2000.

709/217 U.S. patent application Ser. No. 09/629,576, Bourassaetal.,
; . filed Jul. 31, 2000.

(56) References Cited US. patent application Ser. No. 09/629,575, Bourassaetal.,
U.S. PATENT DOCUMENTS filed Jul. 31, 2000.

4012656 A 3/1990 Cain et al USS. patent application Ser. No.09/629,572, Bourassa et al.,> jO26 a in et al. = 9
5,056,085 A 10/1991 Vu filedJul. 31, 2000.
5,309,437 A 5/1994 Perlman et al. (List continued on next page.)
5,426,637 A 6/1995 Derbyetal. -

ooo47 ‘ ltooe Qnetal Primary Examiner—Patrice Winder
5636371 A 6/1997 Yu , Assistant Examiner—David Lazaro
5.673.265 A 9/1997 Gupta et al. (74) Attorney, Agent, or Firm—Perkins Coie LIP
5,096,903 A 2/1997 Mahany
5,732,074 A 3/1998 Spauret al. 67) ABSTRACT
3,732,219 A S798 Blumeret al. A method for leaving a multicast computer network is
3,734,865 A 3/1998 Yu disclosed. The method allows for the disconnectionofa first
5,737,526 A 4/1998 Periasamyct al. . .
5,754,830 A 5/1998 Butts et al computer from a second computer. When thefirst computer
5761425 A 6/1998 Miller decides to disconnect from the second computer, thefirst
5,764,756 A 6/1998 Onweller computer sends a disconnect message to the second com-
5,790,548 A 8/1998 Sistanizadeh et al. puter. Then, when the second computer receives the discon-
5,790,553 A 8/1998 Deaton,Jr, et al. nect message from thefirst computer, the second computer
5,799,016 A 8/1998 Onweller broadcasts a connection port search message to find a third
5,802,285 A 9/1998 Hirviniemi computer to which it can connect.
5,864,711 A 1/1999 Mairs et al.

(List continued on next page.) 16 Claims, 39 Drawing Sheets

A B

AB-AB 000779

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 118 of 190 PageID #: 42611Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 118 of 190 PagelD #: 42611

US 6,732,147 B1
Page 2

U.S. PATENT DOCUMENTS

5,867,660 A 2/1999 Schmidtctal.
5,867,667 A 2/1999 Butmanet al.
5,870,605 A 2/1999 Brachoetal.
5,874,960 A 2/1999 Mairsetal.
5,899,980 A 5/1999 Wilf et al.
5,907,610 A 5/1999 Onweller
5,928,335 A 7/1999 Morita
5,935,215 A 8/1999 Bell et al.
5,946,316 A * 8/1999 Chenetal. wo. 370/408
5,948,054 A 9/1999 Nielsen
5,949,075 A 9/1999 Batty etal.
5,956,484 A 9/1999 Rosenberg etal.
5,974,043 A 10/1999 Solomon
5,987,506 A 11/1999 Carter et al.
6,003,088 A 12/1999 Houston et al.
6,013,107 A 1/2000 Blackshearet al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga ct al.
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.
6,073,177 A * 6/2000 Hebel et ab. occ709/228
6,094,676 A 7/2000 Grayet al.
6,199,116 Bl 3/2001 Mayetal.
6,216,177 B1 4/2001 Mairsetal.
6,223,212 Bl 4/2001 Battyet al.
6,243,691 Bl 6/2001 Fisher et al.
6,252,884 Bl * 6/2001 Hunter «0... ccsseeceeene F70/443
6,268,855 Bl 7/2001 Mairs etal.
6,271,839 Bl 8/2001 Mairs etal.
6,285,363 B1 9/2001 Mairs et al.
6,304,928 Bl 10/2001 Mairs et al.
6,353,599 Bl * 3/2002 Biet al. oe S7U/S28
6,618,752 Bl * 9/2003 Moore et al. 709/217

OTHER PUBLICATIONS

US.patent application Ser. No. 09/629,023, Bourassaet al.,
filed Jul. 31, 2000.
U.S.patent application Ser. No. 09/629,043, Bourassa et al.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,024, Bourassaet al.,
filed Jul. 31, 2000.
US.patent application Ser. No. 09/629,042, Bourassaet al.,
filed Jul. 31, 2000.
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000(pp. 26-28).

The Gamer’s Guide, “First-Person Shooters,” Oct. 20, 1998

(4 pages).
The O*Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/
Ipt/ .. . [Accessed Jan. 29, 2002].
Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’ Reilly
Network http://www.oreillynet.com/1pt . . . [Accessed Jan.
29, 2002].
Internetworking Technologies Handbook, Chapter 43 (pp.
43-1 —43-16).

Oram, Andy, “Peer-to-Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://linux.oreillynet.com/Ipt . . . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies, "MIT
Undergraduate Journal of Mathematics (pp. 143-148).

Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYI/BCP Archives_http://www.fags.org/rfes/
rfc1832.html [Accessed Jan. 29, 2002].
A Databeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http:/Avww.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].
Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.

Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.

The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12—1-12-10), Chapter 13 (pp. 13-1-13-56) Chapter 16 (pp.
16-1 —16-26), Chapter 18 (pp. 18-1 —-18-52), Chapter 20
(pp. 20-1-20-22).
The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Svstems,”
http:/Awww.des.warwick.ac.u . .. [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 000780

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 119 of 190 PageID #: 42612Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 119 of 190 PagelD #: 42612

U.S. Patent May4,2004 Sheet 1 of 39 US 6,732,147 BL

m

Pay

ude

f
AB-AB 000781

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 120 of 190 PageID #: 42613Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 120 of 190 PagelD #: 42613

US 6,732,147 BlSheet 2 of 39May4, 2004U.S. Patent

AB-AB 000782

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 121 of 190 PageID #: 42614Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 121 of 190 PagelD #: 42614

U.S. Patent May4,2004 Sheet 3 of39 US 6,732,147 BL

a O

N

< -
2

LL Q

mM

O

< 5
20
Re

Q

Lu

AB-AB 000783

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 122 of 190 PageID #: 42615Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 122 of 190 PagelD #: 42615

U.S. Patent May4,2004 Sheet 4 of39 US 6,732,147 BL

AB-AB 000784

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 123 of 190 PageID #: 42616Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 123 of 190 PagelD #: 42616

U.S. Patent May4,2004 Sheet 5 of 39 US 6,732,147 BL

AB-AB 000785

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 124 of 190 PageID #: 42617Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 124 of 190 PagelD #: 42617

U.S. Patent May4,2004 Sheet 6 of 39 US 6,732,147 BL

Fig.4C
AB-AB 000786

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 125 of 190 PageID #: 42618Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 125 of 190 PagelD #: 42618

U.S. Patent May4,2004 Sheet 7 of 39 US 6,732,147 BL

AB-AB 000787

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 126 of 190 PageID #: 42619Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 126 of 190 PagelD #: 42619

U.S. Patent May4,2004 Sheet 8 of 39 US 6,732,147 BL

ig.5B
AB-AB 000788

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 127 of 190 PageID #: 42620Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 127 of 190 PagelD #: 42620

U.S. Patent May4,2004 Sheet 9 of 39 US 6,732,147 BL

a

0

Ww

ive]
1S)
ley

LL °

20
Ray

<x

oO

om|

AB-AB 000789

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 128 of 190 PageID #: 42621Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 128 of 190 PagelD #: 42621

U.S. Patent May4,2004 Sheet 10of39 US6,732,147 BI

” a
L lw

op

<
AB-AB 000790

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 129 of 190 PageID #: 42622Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 129 of 190 PagelD #: 42622

U.S. Patent May4,2004 Sheet 11 of 39 US 6,732,147 BL

<q

Ry
wy

sb
Ray

a

©

a <

a
ss

© mM

AB-AB 000791

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 130 of 190 PageID #: 42623Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 130 of 190 PagelD #: 42623

U.S. Patent May4,2004 Sheet 12 of 39 US 6,732,147 BL

4

Broadcaster Broadcaster Broadcaster
Fig.6

me
oC
2—

S
2
<<

(channeltype channelinstance) Application2 (channeltype channelinstance)
AB-AB 000792

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 131 of 190 PageID #: 42624Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 131 of 190 PagelD #: 42624

US 6,732,147 B1Sheet 13 of 39May4, 20004U.S. Patent

jeyod
[|3swqypog

a[puepyy

SOL

ood

adessoulannboy
rz

04yseoproig
™

bd

ysonbayoouuo7)
oO

OLyoouuo?)
LOZ

asuodse1SAIQ0OY
bb

4peq[jesyeuuog
Old

AB-AB 000793

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 132 of 190 PageID #: 42625Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 132 of 190 PagelD #: 42625

U.S. Patent May4, 2004 Sheet 14 of39 US 6,732,147 B1

ChannelInstance,

Connect Aux Info)
801

802 Fig. 8

803

Seek portal - computer
(channel type channel

instance)

804

<uN Retum(false)
Y

805 806

¥ Achieve connection

807
808

. Install external dispatcher
Install external dispatcher

809

]comesomee|

AB-AB 000794

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 133 of 190 PageID #: 42626Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 133 of 190 PagelD #: 42626

U.S. Patent May4,2004 Sheet 15 of 39 US 6,732,147 BL

Channel Type
Channel Instance

Seek portal
computer

902

 Select next depth

Return (failure)

All portal computers

selected

 Hangupselected portal
computer

 Selected portal
computer connected

Check for external
call
 Return (success)

AB-AB 000795

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 134 of 190 PageID #: 42627Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 134 of 190 PagelD #: 42627

U.S. Patent May4,2004 Sheet 16 of 39 US 6,732,147 BL

Contact process

Send external message

Fig. 10

1002

Receive external message

Add as fellow seeking
computer

Add as connected portal N
computer

Y
 Answering process

connected

AB-AB 000796

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 135 of 190 PageID #: 42628Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 135 of 190 PagelD #: 42628

U.S. Patent

Fig. 11

May4, 2004 Sheet 17 of 39 US 6,732,147 B1

Connect request

1102

N Restart

connected portal found

Dial call in port of portal
computer

1104

Y 1105

Send external message

Receive external message

1107

N

 _ — oO oO)

Y 1108
Set expect holes from

response

1109

Set diameter from response

1 1112

Ready to connect ai Add neighbor i
N 1113

AB-AB 000797

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 136 of 190 PageID #: 42629Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 136 of 190 PagelD #: 42629

U.S. Patent May4,2004 Sheet 18 of 39 US 6,732,147 BL

 heck for externa
call

 ype ==seeking
connection call

Addotheras fellow seeker

AB-AB 000798

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 137 of 190 PageID #: 42630Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 137 of 190 PagelD #: 42630

U.S. Patent May4,2004 Sheet 19 of 39 US 6,732,147 BL

Achieve connection

1301

Connection- state = fully
connected

Fig. 13

1302

1303

Invoke connectcall back

AB-AB 000799

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 138 of 190 PageID #: 42631Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 138 of 190 PagelD #: 42631

U.S. Patent May4, 2004

External dispatcher

1401

Pick up and receive
external message

1402

Message

Y

1403

Seeking connectioncall

Port connect call

Connected statement

Condition repair
statement

Sheet 20 of 39

Fig. 14

Hang up

Handle seeking| connection call

requestcall

connectioncall

Handle connection

Handle edge proposal
Ml

Handle connected
statement

Handle condition

repair statement

US 6,732,147 B1

1415

Hang up

1416

1404
1406

AB-AB 000800

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 139 of 190 PageID #: 42632Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 139 of 190 PagelD #: 42632

U.S. Patent May4,2004 Sheet 21 of 39 US 6,732,147 BL

Handle secking
connectioncall

Fig. 15

 Set message to notSet message to indicate

connectedconnected

 Add other as fellow

seeking process

Send external message

AB-AB 000801

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 140 of 190 PageID #: 42633Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 140 of 190 PagelD #: 42633

U.S. Patent May4,2004 Sheet 22 of 39 US 6,732,147 BL

andle connection

request call

1601 602
x

1603 Return
Set newcomer's

holes_to_expect

604
Set diameter estimate in

response
60

Set ready in response

50

OU

Fig. 16

1

Sent external message
connect request resp

1

Set newcomer's

holesto_fill

608 DUS

. Add neighbor i
Newcomer's

holes_to_fill --

Ready

611

 Forward connection

edge search

Holesto fill - = Z

¥ i Fill hole (requestor) PN

AB-AB 000802

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 141 of 190 PageID #: 42634Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 141 of 190 PagelD #: 42634

U.S. Patent May4,2004 Sheet 23 of 39 US 6,732,147 BL

Add neighbor

0

Identifies calling party Fig. 17

170

Sets neighbor to
messages pending

1704
. £03 Y Connection_state =

<Seeking connectio partially connected
N

1705

Add as neighbor

1706

Install interal dispatcher
for new neighbor

707 1708

N

10

aco

711 1712

Y Purge pending edges

ao

AB-AB 000803

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 142 of 190 PageID #: 42635Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 142 of 190 PagelD #: 42635

U.S. Patent May4, 2004 Sheet 24 of 39 US 6,732,147 B1

Forward connection

edge search

requestor

distance remaining

Fig. 18

 neighbors ¥
>1

1804

neighbor = Select random neighbor
requestor

1808

Note connection edge
search call

AB-AB 000804

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 143 of 190 PageID #: 42636Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 143 of 190 PagelD #: 42636

U.S. Patent May4,2004 Sheet 25 of 39 US 6,732,147 BL

Handle edge in message
proposalcall out message

Fig. 19

 1911

Send external message N
1907

Send external message

1912 1908
N

Y 1909Fill hole 1 Add edge as pending
1910

| Add neighbor |
Retum

AB-AB 000805

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 144 of 190 PageID #: 42637Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 144 of 190 PagelD #: 42637

U.S. Patent May4,2004 Sheet 26 of 39 US 6,732,147 BL

Handle port
connection call

Send external message
(point-connect-resp

not ok)

Caller is not

neighbor

Send external message
(point-connect-resp, ok)

2006

Add neighbor /

2008

|comesteave|

AB-AB 000806

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 145 of 190 PageID #: 42638Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 145 of 190 PagelD #: 42638

U.S. Patent May4,2004 Sheet 27 of 39 US 6,732,147 BL

Fill hole

2101

Initialize internal
message

Handle connection Distribute internal
ports search edit message

AB-AB 000807

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 146 of 190 PageID #: 42639Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 146 of 190 PagelD #: 42639

U.S. Patent May4,2004 Sheet 28 of 39 US 6,732,147 BL

Internal

dispatcher

2201

Fig. 22 Received internal message
2202

Assess diameter

This

process = =

originating

Partially connected

pending connection buffer
Type

= = broadcast
statement

Type 206 2007
== shutdown Y Handle shutdown

N

Yy Pending
connection buffer

La,

message queue

AB-AB 000808

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 147 of 190 PageID #: 42640Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 147 of 190 PagelD #: 42640

U.S. Patent May4,2004 Sheet 29 of 39 US 6,732,147 BL

Handle broadcast origin
message from neighbor

message

Fig. 23
Process out of order

message

2304

Clear out of order infoY

AB-AB 000809

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 148 of 190 PageID #: 42641Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 148 of 190 PagelD #: 42641

U.S. Patent May4,2004 Sheet 30of39 US6,732,147 BI

message

from neighbor
Distribute

broadcast messageFig. 24

All neighbor
selected

Sendinternal

message

AB-AB 000810

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 149 of 190 PageID #: 42642Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 149 of 190 PagelD #: 42642

U.S. Patent May4,2004 Sheet 31 of 39 US 6,732,147 BL

Handle connection from neighbor
for search message

2601

Distribute internal .
Fig. 26

603 2604

Is requestor N

SS(Reum—)
2606

Generate
condition check

message w/neighbors

2607

Send internal message
to requestor

AB-AB 000811

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 150 of 190 PageID #: 42643Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 150 of 190 PagelD #: 42643

U.S. Patent May4,2004 Sheet 32 of 39 US 6,732,147 BL

701

Prospect

 Fig. 27
Is prospect
a neighbor

N

Dial prospect

Sendandreceive

external message

: Add neighbor /

Hang up prospect

AB-AB 000812

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 151 of 190 PageID #: 42644Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 151 of 190 PagelD #: 42644

U.S. Patent May4,2004 Sheet 33 of39

Handie connection

edge search call

B01

 Not

my message |]
holes >= Z

 N ‘from this pt. &&
holes = =

Remaining,
distance > 0

US 6,732,147 B1

from neighbor
message

Forward
connection second

edge (requestor

Y 2814 remainingdist -1)

| Forward
2815 connection edge

end interna search (requestor,

message (from | 0neighbor, ack
2806 \A/

V

Retum Dial requestor

2807

Send and receive

external message

Reserve edge of from
neighbor

AB-AB 000813

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 152 of 190 PageID #: 42645Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 152 of 190 PagelD #: 42645

U.S. Patent May4,2004 Sheet 34 of 39 US 6,732,147 BL

Handle edge search origin
from neighbor
messageFig. 29

Note connection edge
search response

Reserve edge of from
neighbor

AB-AB 000814

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 153 of 190 PageID #: 42646Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 153 of 190 PagelD #: 42646

U.S. Patent May4,2004 Sheet 35 of 39 US 6,732,147 BL

message

Fig. 30

Generate internal

message

AB-AB 000815

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 154 of 190 PageID #: 42647Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 154 of 190 PagelD #: 42647

U.S. Patent May4,2004 Sheet 36 of 39 US 6,732,147 BL

messageAcquire message

 Message
retrieved

 Return false

AB-AB 000816

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 155 of 190 PageID #: 42648Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 155 of 190 PagelD #: 42648

U.S. Patent May4,2004 Sheet 37 of 39 US 6,732,147 BL

andle condition check

Fig. 32
3201

S—(C_ Rew)
Y

Y N

neighbors

3203 | 3205
ith li t a neighborSet up messagewithlist CtCCh

ofneighbors ofsendingpropess
3204 3206

Sendinternal message sendGreedndighbee
3207

| Add neighbor ;

AB-AB 000817

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 156 of 190 PageID #: 42649Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 156 of 190 PagelD #: 42649

U.S. Patent May4,2004 Sheet 38 of 39 US 6,732,147 BL

Handle condition

repair statement

Select a neighbor not
involved in condition

Removeselected

neighbor

3304

: Add neighbor :

AB-AB 000818

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 157 of 190 PageID #: 42650Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 157 of 190 PagelD #: 42650

U.S. Patent May4,2004 Sheet 39 of 39 US 6,732,147 BL

Handle condition
double check

Sameset of

neighbors

Send internal message
to-from neighbor

Send interna] message

AB-AB 000819

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 158 of 190 PageID #: 42651Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 158 of 190 PagelD #: 42651

US 6,732,147 B1
1

LEAVING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,”filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNET,,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,”filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,”filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERY SERVICE,”filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,024,
entitled “DISTRIBUTED CONFERENCING SYSTEM,”
filed on Jul. 31, 2000; and U.S. patent application Ser. No.
09/629,042, entiled “DISTRIBUTED GAME
EN VIRONMEN'L”filed on Jul. 31, 2000, the disclosures of
which are incorporated herein by reference.

‘TECHNICAL FIELD

The described technologyrelates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultancous sharing
of information among computersthat are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely mannerto all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allowprocesses on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manageits direct con-
nections to all other participating processes. Programmers,
however, find il very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number ofdirect connections that they can support.
This limits the numberof possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various

clients whoare sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(“CORBA”). Client/server middleware systems are not par-

10

20

25

4)

50

55

60

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when newinformation is available to be shared.

Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.c., the server) would prevent communications
between anyof the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the 1.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. ‘hese peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus, it
is neither suitable nor desirable to use pecr-to-pecr middle-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the 1.120 Internet standardis a tree structure, whichrelies on
the root node of the tree for reliability of the entire network.
That is, each message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications

network that is suitable for the simultaneous sharing of
information among a large numberof the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

‘ri 1G. 1 illustrates a graphthat is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with

an added computer.
FIG. 4Billustrates the broadcast channel of FIG. 4A with

an added computer.
FIG.4C also illustrates the broadcast channel of FIG. 44

with an added computer.

FIG. 5A illustrates the disconnecting of a computer from
broadcast channel in a planned manner.

FIG. 5B illustrates the disconnecting of a computer from
broadcast channel in an unplanned manner.

FIG. 5Cillustrates the neighbors with empty ports con-
dition.

‘1G. 5D illustrates two computers that are not neighbors
who now have empty ports.

=

AB-AB 000820

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 159 of 190 PageID #: 42652Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 159 of 190 PagelD #: 42652

US 6,732,147 B1
3

FIG. SE illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime.
FIG. 6 is a block diagram illustrating components of a

computer that is connected to a broadcast channel.
FIG.7 is a block diagram illustrating the sub-components

of the broadcaster component in one embodiment.
FIG. 8 is a flow diagram illustrating the processing of the

connect routine in one embodiment.

FIG. 9 is a Now diagram illustrating the processing of the
seek portal computer routine in one embodiment.

FIG, 10is a flow diagram illustrating the processing of the
contact process routine in onc embodiment.

FIG.11 is a flowdiagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing ofthe check
for external call routine in one embodiment.

FIG, 13 is a flow diagram of the processing of the achieve
connection routine in onc embodiment.

FIG, 141s a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15 is a flow diagramillustrating the processing ofthe
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a flow diagram illustrating the processing ofthe
add neighbor routine in one embodiment,

FIG. 18 is a flow diagram illustrating the processing ofthe
forward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine,

FIG. 20 is a flow diagram illustrating the processing ofthe
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagramillustrating the processing of the
internal dispatcher routine in one embodiment.

FIG,23 is a flow diagram illustrating the processing ofthe
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG. 26 is a flow diagram illustrating the processing ofthe
handle connection port search statement routine in one
embodiment.

FIG. 27is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment.

FIG.28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing ofthe
handle connection edge search response routine in one
embodiment.

FIG. 30 is a flow diagram illustrating the processing ofthe
broadcast routine in one embodiment.

FIG.31 is a flow diagram illustrating the processing ofthe
acquire message routine in one embodiment.

FIG. 32 is a flow diagramillustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment.

4S

10

15

tua on

4)

55

60

4

FIG.34 is a flow diagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast

messages onlo and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) thal
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each computer’s address. Thus, the broadcast tech-
nique cffcctively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (i.e.,
edges) between host computers (i.¢., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computer is connectedto four other computers,referred
to as neighbors. (Actually, a process executing on a com-
puter is connectedto four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each ofits
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each compuler over a logical broadcast
channel. A graph in which each node is connected to four
other nodesis referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel onlyif all four of
the connectionsto its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graphinto disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG.1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers(i.e., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and Fis one because computer A is directly
connected to computer F. The distance hetween computers A
and B is two because there is no direct connection between

computers A and B, but computerFis directly connected to

AB-AB 000821

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 160 of 190 PageID #: 42653Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 160 of 190 PagelD #: 42653

US 6,732,147 B1
5

computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from
compuler F to computer B. The maximum of the distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connectionsto reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a-broadcast channel. ‘he diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.c., composing the
graph), (2) the broadcasting of messages over the broadcast
channel(i.e., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.e.,
decomposing the graph) composing the graph.
Composing the Graph

To connect to the broadcast channel, the computer secking
the conncctionfirst locates a computer that is currently fully
connected to the broadcast channel and then establishes a

connection with four of the computers that are already
connectedto the broadcast channel. (This assumesthat there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the
small regimeis described below in detail. Whenfive or more
computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadcast channel,
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A secking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. ‘he found portal com-
puter then directs the identifying of four computers (i.c., to
be the seeking computer’s neighbors) to which the seeking
computer is to connect. Each of these four computers then
cooperates with the seeking computerto effect the connect-
ing of the seeking computer to the broadcast channel. A
compuler that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connectedstate.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connectedstate.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken sothat the seeking computer can connectto four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and3B illustrate the process of a new
computer 7 connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

20

25

4)

50

55

60

6

D are the twopairs that are identified as the neighborsfor the
new computer Z. The connections between cach of these
pairs is broken, and a connection between computer Z and
cach of computers B, C, D, andEis established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computeris referred to as “edge pinning”as
the edge between two nodes may be considered to be
stretched and pinned to a newnode.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connectionsof the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages cither through their internal ports of their connec-
tion or through their external ports. Asecking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordereddelivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space”that
is shared amongall the processes that may execute on-that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations(c.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the compuler connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

non-broadcast messages throughits external port. A seeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers whenit is connected
to or atlempting to connect to the broadcast channel and its
call-in port is dialed. (Inthis description, a telephone mela-
phoris used to deseribe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. ‘he seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer couldidentify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

Aseeking computer could connect to the broadcast chan-
nel by connecting to computerseither directly connected to
the found portal computer or directly connected to oneofits
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computerJs that the

AB-AB 000822

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 161 of 190 PageID #: 42654Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 161 of 190 PagelD #: 42654

US 6,732,147 B1
7

diameter of the broadcast channel may increase when each
secking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomeselongated in the direction of where the new nodes
are added. FIGS. 4A-4C illustrate that possible problem.
FIG. 4Aillustrates the broadcast channel of FIG. 1 with an

added computer. Computer J was connected to the broadcast
channel by cdge pinning edges C-D and E-H to computer
J. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an

added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E-J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G—A, A-E, and E-K.FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computer in the seeking connectionstale.
The random selection technique tends to distribute the
connections to new secking computers throughout the com-
puters of the broadcast channel which mayresult in smaller
overall diameters.

Broadcasting Through the Graph
As described above, each computer that is connected to

the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbersits own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer anda certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may hecome neighbors
andthus the distance between them changesto one.‘he first
message may have to travel a distance of four to reach the

20

25

4)

50

55

60

5

8

receiving computer. The second message only has to travel
a distance of onc. Thus,it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channelis in a steady state (i.e., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connect to the broadcast channelafter the second
message has already been received and forwarded on byits
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queueall the messages that it receives until it can send them
in their proper order to its ncighbors. This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
thal may have less impact on the propagation speed is to
queue messages only at computers who are neighbors of the
newly, connected computers. Each already connected neigh-
bor would forward messagesas it receives them to its other
neighbors whoare not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages trom each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In onc embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message asit is received. In another
embodiment, cach computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For cxample, a computcr might
receive messages 4 and 5 and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message3is finally received,
the already connected computer will send messages3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. It is
possible that a newly connected computerwill receive a set
of messages from an originating computer through one
neighbor and then receive another set of message fromthe
same originating computer through another neighbor. If the
second sel of messages contains a message thal Is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.
Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a

AB-AB 000823

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 162 of 190 PageID #: 42655Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 162 of 190 PagelD #: 42655

US 6,732,147 B1
9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message,it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to conncet to the fourth computerin thelist. If a computer
cannot connect (e.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be

established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer withan available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A-5Dillustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect, it sendsits list of ncighbors to cach of
its neighbors (computers A, E, F and I) and then disconnects
from each ofits neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to sendits next message to the 3
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection(i.c., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicales that it has one internal
port that needs a connection. ‘Ihe port connection request
identifies the call-in port of the requesting computer. When
a connected computer that is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When cach of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating thal it needs to fill an empty port. As
shownby the dashedlines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an emptyinternal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Lach neighbor
broadcasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives the port connection request fromthe other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channelis in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. ‘Io detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to

4S

20

25

4)

50

55

60

5

10

receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includesa list of the neighbors
of the sending computer. When the recciving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to onc of the ncighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have hada port filled.However, two computers are still
in need of a connection, the other original neighbor and the
computer that is nowdisconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
arc not neighbors, then they will conncct to cach other when
they receive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair processuntil
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whetherit has the sameset of neighbors as the
sending computer. If so, the broadcast channelis in the small
regime and the condition is not a problem. If the set of
neighbors aredifferent, then the computer that receivedthe
condition double check messave sends a condition check
message to the original neighbors with the condition. ‘lhe
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5Cillustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
pulers A andE,are already neighbors, whichgivesrise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E hasa different set of neighbor (i.e., the
broadcast channel is in the large regime). Computer A
selected computer D, whichis a neighbor of computer E and
sentit a condition repair request. When computer D received
the condition repair request, it disconnected from oneofits
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G nowhave
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5! further illustrate the neighbors with
empty ports condition. FIG, 5E illustrates the neighbors with

AB-AB 000824

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 163 of 190 PageID #: 42656Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 163 of 190 PagelD #: 42656

US 6,732,147 B1
11

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request whenit
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channelis in the small regime because Is also has the same
set of neighbors as computers A andB, computer C may then
broadcast a message indicating that the broadcast channelis
in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the

large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channelis in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, il sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on cach computer: onc external
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs execuling on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer, If the portal computer is connected to (or
allempling lo connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the seeking
computer would eventually dial every user port. In addition,
if each application program on a computer triedto allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time to locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port-number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port-order.
The algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithmis executed on any computer for a given

10

15

4)

55

60

12

channel type and channel! instance,it generates the same port
ordering. As described below,it is possible for a computer
to be connected to multiple broadcast channels that are
uniqucly identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a secking
computerwill dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by secking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port maybe significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the secking computers would use different
orderings, the likelihood of finding a busyport is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that cight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can conncet to the broadcast channel
hasalist of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
seeking computer locates a portal computer that is connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
andthen dialall its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found.If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking techniqueis that all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
numberaccording to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are hkely allocated at lower-ordered port
oumbers, the seeking computerfirst dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the numberofports thatit will dial when
seeking a portal computer that is fully connected. If the
seeking compuler exhausts ils search depth, theneither the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 000825

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 164 of 190 PageID #: 42657Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 164 of 190 PagelD #: 42657

US 6,732,147 B1
13

broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
cach other, then two disjoint broadcast channcls would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other seeking
computer. In particular, if one secking computer has
searchedall the portal computers to a depth of eight, then the
one sccking computer can share that it has scarched to a
depth of eight with another seeking computer.If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may havea different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledgeof itself andits neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers(as far as the broadcasting is concerned)
and the failure of any one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channel to fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal computer sends an
edge connection request message through oneofits internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
selected computer. That recciving computer will offer the
internal connection upon whichit received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer-cannot con-
nect through that internal connection. The computer that
decided that the message has traveled far enough will detect
this condition of already being a neighbor and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request messagetravelsis established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the

randomly selected computer. If that randomly selected com-
puter cannot connect to the seeking computer(e.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its
neighbors with a new distance to travel. In one embodiment,

20

25

tua on

4)

50

55

60

5

14

the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained

by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameterofthe
broadcast channel. In one embodiment, cach message sent
through the broadcast channel has a distance traveled field.
Each compuicr that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-

puler receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter

message. When a computer receives an estimated diameter
message that indicates a diameter thatis larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameteris used to establish the distance that

an edge connection request message should travel.
External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer mayuse 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel mayuse the XDR (“eXternal Data Representation”)
format.

‘The underlying peer-to-peer communications protocol
may send multiple messagesin a single message stream. The
traditional technique for retrieving messages from a stream
has beento repeatedly invoke an operating systcm routine to
retrieve the next messagein the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the numberof bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparisonto the invocations of local routines. To
overcomethe inefficiencies of such repeatedcalls, the broad-
cast technique in one embodiment, uses XDRto identify the
message boundaries in a stream of messages.‘he broadcast
technique mayrequest the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDRroutines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved [rom the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular.

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers ofinternal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of

internal connections increase, the diameter of the broadcast

channel tends to decrease, and thus propagation time for a
message tends to decrease. The time thatit takes to connect
a seeking computerlo the broadcast channel may, however,
increase as the number of internal connections increases.

When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd oumber of internal connections.

AB-AB 000826

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 165 of 190 PageID #: 42658Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 165 of 190 PagelD #: 42658

US 6,732,147 B1
15

In such a situation, the broadcast network is neither
m-rcgular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd numberof
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumedthat there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast

channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
lo one or more broadcast channels. The broadcast channels

can be identified by channel type (e.g., application program
name) and channel instance that represents scparate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is execuling
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to whichit is connected. ‘The broadcaster

component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may cxecute as a
separate process or thread from the application program. In
one embodiment, the broadcaster componentprovides func-
lions (e.g., methods of class) that can be invoked by the
application programs. ‘Ihe primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
whichthe application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
programthat the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquirc message function
that the application program can invoketo retrieve the next
message that is broadcast on the broadcast channel.
Altematively, the application program may provide a call-
back routine (which maybe a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answeredat the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory andstorage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG.7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The

20

4)

55

60

65

16

broadcaster componentincludes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect componcnt identi-
fies the external port andi installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect

request component 706 to ask the portal computer(if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messages are stored in the broadcast
message queue 709, The acquire message component is
invokedlo retrieve messages [rom the broadcast queue, The
broadcast componentis invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages scnt by the broadcaster
components.

EXTERNAL MESSAGES

Message Type Description

seeking connection_call Indicates that a seeking process wouldlike to
know whether the receiving process is fullyconnected to the broadcast channel

Indicates that the sending process would like
the receiving process to initiate a connection
of the sending process to the broadcastchannel
Indicates that the sending process is
proposing an edge through which the
receiving process can connect to the broad-
cast channel (ie., edge pinning)
Indicates that the sending process is
proposing a pert through which the receiving
process can connect to the broadcast channel
Indicates that the sending process isconnected to the broadcast channel
Indicates that the receiving process should
disconnect from one of its neighbors and
connect to one of the processes involved in
the neighbors with empty port condition

connection__request_call

edge__proposal_call

porlt_connection_call

connected__stmt

condition_repair_stmt

INTERNAL MESSAGES

Message Type Description

hroadcast_stmt Indicates a message that is being broad-
cast through the broadcast channel for
the application programs
Indicates that the designated process is
louking for a port through which it canconnect to the broadcast channel
Indicates that the requesting process is
looking for an edge through which itcon connect to the broadcast
channel

connection_port_search_stmt

connection_edge_search_call

AB-AB 000827

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 166 of 190 PageID #: 42659Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 166 of 190 PagelD #: 42659

US 6,732,147 B1
17

-continued

INTERNAL MESSAGES

Message Type Description

connection_edge_search_resp Indicates whether the edge betweenthis
process and the sending neighbor has
been accepted by the requesting partyIndicates an estimated diameter ofthe
oroadesst channel
Indicates to reset the estimated diameter
to indicated diameter
Indicates that the sending neighbor is
disconnecting from the broadcastchannel
Indicates that neighbors with empty port
condition have been detected
Indicates that the neighbors with empty
ports have the same set of neighbors
Indicates that the broadcast channel is
being shutdown

diameter_estimate_stmt

diameter_reset_stmt

disconnect_stmt

condition_check_stmt

condition__double_check_stmt

shutdown_stmt

Flow Diagrams
FIGS. 8-34 are flow diagramsillustrating the processing

of the broadcaster component in onc embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (¢.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the 3
connectionis established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the sccking conncction
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this
process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block $01, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. ‘he port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connecttimeis used to

identify the instance of the processthat is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channelinstance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process maytry to communicate with it
thinkingit is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continuesat block 805, else
the routine returns an unsuccessful indication. In decision

block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the

10

15

25

4)

45

50

55

60

65

18
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to changethe state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcheris
invoked. The routine then returns. In block 808, the routine
installs an cxtcrnal dispatcher. In block 809, the routinc
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadeast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computersat that search depth. If
a portal computer is located at that search depth with a
processthat is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks

902-911, the routine loops selecting each search depth until
a processis located, In block 902,the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904, In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine sclects the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 to select
the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented bythe search depth.
In decision block 907,if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is fully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this

process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answeredthe call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking_
connection_call) to the answering process indicating that a
seeking process wants to know whether the answering
processis fully connected to the broadcast channel. In block
1002, the routine receives the external response message

AB-AB 000828

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 167 of 190 PageID #: 42660Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 167 of 190 PagelD #: 42660

US 6,732,147 B1
19

from the answering process. In decision block 1003, if the
external response message is successfully received (i.c.,
seekingconnection_resp), then the routine continues at
block 1004, clse the routine returns. Wherever the broadcast
component requests to receive an external message,it sets a
time out period. If the external message is not received
within that time out period, the broadcaster component
checks its own call-in port to see if another processis calling
it. In particular, the dialed proccss may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component mayrepeat the receive request sev-
eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicatesin its
response messagethat it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers andthen returns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes andthen returns.

FIG.11 is a flowdiagram illustrating the processing of the
connect request routine in one embodiment. This routine
requests a process of a portal computer that was identified as
being fully connected to the broadcast channel to initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was locatedthat is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
rouline continues at block 1102. A process of the portal
computer may no longerbe in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
secking computer may always searchits cntire scarch depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts (he process of connecting lo the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continuesat
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (i.c., connection__request__call). In block
1106, the routine receives the response message (i.c.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes (i.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number ofholes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response, In
decision block 1111,if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues al block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. Whenin the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

20

25

4)

50

55

60

5

20

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is

invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202, if
the answer is successful, then the routine continuesat block
1203, else the routine returns. In block 1203, the routine
reccives the external message from the cxternal port. In
decision block 1204,if the type of the message indicates that
a seeking processIs calling (i.e., seeking_connection_call),
then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message
(ic., secking connection resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other secking process to a list of fellow secking
processes and then returns. This list may be used if this
process can find no proccss that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may becomethe first process fully con-
nected to the broadcast channel.

FIG.13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the

state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation programthat the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the connection state of this proccss to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them(ie., connected_stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program andthen returns.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the reccived messages have been handled. In block 1401,
the routine answers (e.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.e., seeking_
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (i.e.,
connection_request_call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (Le., edge
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (i.e., port_connect_call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (ie., connected stmt), the routine invokes the

AB-AB 000829

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 168 of 190 PageID #: 42661Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 168 of 190 PagelD #: 42661

US 6,732,147 B1
21

handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition_repair_stmt), then the routine invokes the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking processis calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a messageto indicate that this process
is fully connected to the broadcast channel and continuesat
block 1505. In block 1503, the routine sets a message to
indicate that this proccss is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes.If this process
is not fully connected, thenil is allempting to connect to the
broadcast channel. In block 1505, the routine sends the
external message response (i.¢., seeking__connection__resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
‘This routine is invoked when thecalling process wants this
process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to cstablish an internal conncction with this proccss
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
numberof holes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whetherthis process is ready to connect
to the calling process. This processis ready to connect when
the numberofits holes is greater than zero and the calling
process is not a neighborofthis process. In block 1606, the
routine sends to the calling process an external messagethat
is responsive to the connection request call (ie.,
connection_request_resp). In block 1607, the routine notes
the numberof holes that the calling process needs to fill as
indicated in the request message. In decision block 1608,if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the numberof holes that

the calling process needsto fill and continuesat block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
eslimated diameter is greater than one (ie., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needsto be filled. In decision block
1613, if the number of holes of the calling process to be

20

25

4)

50

55

60

65

22

filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameterof the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616,if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement (i.c., connection port search stmt) fora hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routinescts
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messages initially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connecting to its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that new neighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives is through an internal connection so that it
can send these messages as it connects to new neighbors.In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process cquals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this

process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposedto
this process for edge pinning, whichin this case is no longer
needed.

l'IG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesling process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if
the number of neighbors of this processis greater than one,
then the routine continues at block 1804, else this broadcast

AB-AB 000830

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 169 of 190 PageID #: 42662Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 169 of 190 PagelD #: 42662

US 6,732,147 B1
23

channelis in the small regime and the routine continuesat
block 1803. In decision block 1803,if the requesting process
is a neighborofthis process, then the routine returns, else the
routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.¢., connection_edge_search_call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the ncighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continuesat block 1808,else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor mayhave disconnected from the broadcast
channel in an unplanned manner. Whenever sucha situation
is detected by the broadcaster component, it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In is block 1808, the routine notes that the
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighboris
reservedif the remaining forwarding distanceis less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

FIG. 19 is a flow diagram illustrating the processing ofthe
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing proccss
and oneofits neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus the number of pending edges is vreater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continuesat
block 1911. In decision block 1902, if the proposing process
or its neighboris a neighborof this process, then the routine
continues at black 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending betweenthis process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continucs
at block 1911, else the routine continues at black 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (i.c., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912,if the number
of holes is odd, then the routine continues at block 1913,else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG, 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connectto
one hole ofthis process. In decision block 2001, if the
number of holes of this process is greater than zero, then the

10

15

4)

55

60

24
routine continues at block 2002, else the routine continuesat
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
clsc the routine continucs to block 2003. In block 2003, the
routine sends a port connection response external message
(i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response ¢xternal message to the sending proccss
that indicates that is okay to connectthis process. In decision
block 2005, if the sending of the message was successful,
then the routine continues al block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighborofthis process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one ofthe holes ofthis process. The
routine then returns,

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in onc embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message lo other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal, mes-
sage (i.e., connection_port_search_stmt). In decision
block 2102,if this processis the requesting process, then the
routine continues at block 2103, else the routine continuesat
block 2104, In block 2103, the routine distributes the
message to the neighborsofthis process through the internal
ports andthen returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG,22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed anindication of the neighbor whosentthe internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the

information in the received message.In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.c., a duplicatc),
then the routine ignores the message and continues at block
2208, else the routine continues at block 2203A.In decision
block 2203A,if the process is partially connected, then the
routine continues at block 22038, else the routine continues
at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204—2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.e., broadcast
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208,if the partially connected bufferis full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster componentcollects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
neighbors. If, however, that buffer becomes full, then the
process assumes that it is nowfully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,

AB-AB 000831

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 170 of 190 PageID #: 42663Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 170 of 190 PagelD #: 42663

US 6,732,147 B1
25

the routine invokes the achieve connection routine and then

continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, clsc the routine continucs at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indicationof the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast messageitself. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
orderto the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
reccive messages, then the routine continucs at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correctorder if possible for each originating
process and then returns.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 to select the next neighbor.

FIG, 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment. ‘his routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
numberof holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continues at block 2605 clsc the routine

continues at block 2604, In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message(i.e., condition__check) that includes a list of
this process’ neighbors.In block 2607, the routine sends the
message to the requesting neighbor.

FIG.27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighboris already a neighbor, then the routine
returns, else the routine continues at block 2702. In block

2702, the routine dials the prospective neighbor. In decision
block 2703, if the numberofholes of this process is greater
than zero, then the routine continues at block 2704, else the

20

25

4)

50

55

60

5

26
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.¢., port
connection__call) to the prospective neighbor and receives
its response (i.¢., port_conncction_resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG.28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routineis passed a indication of the neighbor who
sent the message and the message ilsell!. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting processis still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continucs at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804,if
the requesting processis a neighboror the edge betweenthis
process and the sending neighboris reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
anda toggle indicator that alternatively indicatcs to continuc
the random walk for one or two more computers. The routine
then continuesat block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the
routine sends an edge proposal call external message (i.e.,
edge__proposal__call) andreceives the response(i.c., edge
proposal_resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continuesat block
2815.In decision block 2813,if this processis the requesting
process and the numberof holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.e., connection
edge__search_response) to the sending neighbor indicating
acknowledgementandthen returns. The graphs are sensitive
to parity. Thatis, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odddistances.

FIG.29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 000832

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 171 of 190 PageID #: 42664Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 171 of 190 PagelD #: 42664

US 6,732,147 B1
27

search response (1.c., connection_edge_search_resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor.In decision block 2902,if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continuesat block 2903,else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked rouline was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagramillustrating the processing of the
broadcast routine in one embodiment. This routine is

invokedby the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
al least one neighbor, then the routine continues at block
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (i.e., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31 is aflow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine maybe invokedby the application program
or by a callback routine provided by the application pro-
gram. ‘This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagrams illustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202,if the sending neighborandthis process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (i.e.,
condition__double_check) with thelist of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.¢., condition_repair_stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a How diagram illustrating processing ofthe
handle condition repair statement routine in one embodi-

20

25

4)

50

55

60

65

28

ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighborofthis process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the proccss
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34is a flow diagramillustrating the processing of the
handle condition double check routine. This routine deter-

mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channelis in the
small regime. In decision block 3401,if this process has one
hole, then the rouline continues at block 3402, else the

routine continuesat block 3403. If this process does not have
one hole, then the set of neighborsof this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision

block 3403, if this process has no holes, then the routine
returns, clsc the routine continucs at block 3404. In block
3404, the routine sets the estimated diameterfor this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (ie., diameter_resel) indicating thal the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(.e., condition_check_ stmt) with the list of neighbors to
the neighbor whosent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments ofthe technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number(¢.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast
channel.

Accordingly, the invention is not limited except by the
claims.

We claim:

1. A method of disconnecting a first computer from a
second computer, the first computer and the second com-
puter being connected to a broadcast channel, said broadcast
channel forming an m-regular graph where m is at least 3,
the method comprising:

when the first computer decides to disconnect from the
second computer,the first computer sends a disconnect
message to the second computer, said disconnect mes-
sage includinga list of neighbors of the first computer;
and

when the second computer receives the disconnect mes-
sage from the first computer, the second computer
broadcasts a connection port search message on the
broadcast channelto find a third computer to which it
can connect in order to maintain an m-regular graph,
said third computer being one ofthe neighbors on said
list of neighbors.

AB-AB 000833

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 172 of 190 PageID #: 42665Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 172 of 190 PagelD #: 42665

US 6,732,147 B1
29

2. The method of claim 1 wherein the second computer
receives a port connection message indicating that the third
computer is proposing that the third computer and the
second computer connect.

3. The method of claim 1 wherein the first computer
disconnects from the second computer after sending the
disconnect message.

4. The method of claim 1 wherein the broadcast channel

is implemented using the Internet.
§. The method of claim 1 wherein the first computer and

second computer are connected via a TCP/IP connection.
6. A method for healing a disconnection of a first com-

puter from a second computer, the computers being con-
nected to a broadcast channel, said broadcast channel being
an m-regular graph where m is at least 3, the method
comprising:

attempting to send a message from thefirst computer to
the second computer; and

when the attempt to send the message is unsuccessful,
broadcasting from thefirst computer a connection port
search message indicating that the first computer needs
a connection; and

having a third computernot already connectedto saidfirst
computer respond to said connection port search mes-
sage in a manner as to maintain an m-regular graph.

7. The method of claim 6 including:

whena third computerreceives the connection port search
message and the third computer also needs a
connection, sending 4 message from the third computer
to the first computer proposing that the first computer
and third computer connect.

8. The method of claim 7 including:
when the first computer receives the message proposing

that the first computer and third computer connect,
sending fromthe first computerto the third computer a
message indicating that the first computer accepts the
proposal to connect the first computer to the third
computer.

9. The method of claim 6 wherein each computer con-
nected to the broadcast channel is connected to at least three

other computers.

10

15

4)

30

10. The method of claim 6 wherein the broadcasting
includes sending the message to cach computer to which the
first computer is connected.

11. Acomputer-readable medium containing instructions
for controlling disconnecting of a computer from another
computer, the computer and the other computer being con-
nected to a broadcast channel, said broadcast channel being
an m-regular graph where m is at least 3, comprising:

a component thal, when the computer decides to discon-
nect from the other computer, the computer sends a
disconnect message to the other computer, said discon-
nect message including a list of neighbors of the
computer; and

a component that, when the computer receives a discon-
nect message from another computer, the computer
broadcasts a connection port search message on the
broadcast channel to find a computer to which it can
connect in order to maintain an m-regular graph, said
computer to which it can connect being one of the
neighbors on said list of neighbors.

12. The computer-readable medium of claim LL including:
a component that, when the computer receives a connec-

lion port search message and the computer needs to
connect to another computer, sends to the computer that
sent the connection port search message a port connec-
tion message indicating that the computer is proposing
that the computer that sent the connection port search
message connect to the computer.

13. The computer-readable medium of claim 12 includ-
ing:

a component that, when the computer receives a port
connection message, connecting to the computer that
sent the port connection message.

14. The computer-readable medium of claim 11 wherein
the computers are connected via a TCP/IP connection.

15. The computer-readable mediumof claim 11 wherein
the computers that are connected to the broadcast channel
are peers.

16. The computer-readable medium of claim 11 wherein
the broadcast channel is implemented using the Internet.

AB-AB 000834

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 173 of 190 PageID #: 42666Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 173 of 190 PagelD #: 42666

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO,—: 6,732,147 Bl Page 1 of 2
DATED : May 4, 2004
INVENTOR(S) _: Fred B. Holt

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 5,
Line 9, “a-broadcast” should be -- a broadcast --;

Column 6,
Line 30, “on-that” should be -- on that --;

Column 8,

Line 26, delete comma between “newly”;

Column 11,

Line 60, “port-number” shouldbe -- port number --;
Line 63, “port-order” should be -- port order --;

Column 13,

Line 50, “computer-cannot” should be -- computer cannot--;

Column 14,

Line 51, delete period after “Regular”;

Column 22,

Line 41, delete “is” between “receives” and “through”;

Column 23,
Line 23, delete “is” between “In” and “block”;

Column 25,
Line 45, insert comma between “2605”and “else”;

AB-AB 000835

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 174 of 190 PageID #: 42667Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 174 of 190 PagelD #: 42667

UNITED STATES PATENT AND TRADEMARKOFFICE

CERTIFICATE OF CORRECTION

PATENT NO,—: 6,732,147 Bl Page 2 of 2
DATED : May 4, 2004
INVENTOR(S) _: Fred B. Holt

It is certified that error appears in the above-identified patent and that said Letters Patentis
hereby corrected as shown below:

Column 25 (cont’d),
Line 46, delete comma between “2604” and “In”;

Signed and Sealedthis

Twenty-seventh Day of July, 2004

We
JON W. DUDAS

Acting Director of the United States Patent and Trademark Office

AB-AB 000836

EXHIBIT 66

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 175 of 190 PageID #: 42668Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 175 of 190 PagelD #: 42668

EXHIBIT 66

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 176 of 190 PageID #: 42669Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 176 of 190 PagelD #: 42669

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 67

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 177 of 190 PageID #: 42670Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 177 of 190 PagelD #: 42670

EXHIBIT 67

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 178 of 190 PageID #: 42671Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 178 of 190 PagelD #: 42671

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 68

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 179 of 190 PageID #: 42672Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 179 of 190 PagelD #: 42672

EXHIBIT 68

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 180 of 190 PageID #: 42673Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 180 of 190 PagelD #: 42673

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 69

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 181 of 190 PageID #: 42674Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 181 of 190 PagelD #: 42674

EXHIBIT 69

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 182 of 190 PageID #: 42675Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 182 of 190 PagelD #: 42675

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 70

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 183 of 190 PageID #: 42676Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 183 of 190 PagelD #: 42676

EXHIBIT 70

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 184 of 190 PageID #: 42677Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 184 of 190 PagelD #: 42677

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 71

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 185 of 190 PageID #: 42678Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 185 of 190 PagelD #: 42678

EXHIBIT 71

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 186 of 190 PageID #: 42679Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 186 of 190 PagelD #: 42679

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 72

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 187 of 190 PageID #: 42680Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 187 of 190 PagelD #: 42680

EXHIBIT 72

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 188 of 190 PageID #: 42681Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 188 of 190 PagelD #: 42681

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

EXHIBIT 73

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 189 of 190 PageID #: 42682Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 189 of 190 PagelD #: 42682

EXHIBIT 73

THIS EXHIBIT HAS BEEN
REDACTED ,IN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 190 of 190 PageID #: 42683Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 190 of 190 PagelD #: 42683

THIS EXHIBIT HAS BEEN

REDACTEDIN ITS ENTIRETY

