Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 1 of 190 PagelD #: 42494

EXHIBIT 63

S 1T TR

(12)

United States Patent
Holt et al.

US006829634B1
10y Patent No.: US 6,829,634 B1
45) Date of Patent: Dec. 7, 2004

(54
(75)

(73)

BROADCASTING NETWORK

Inventors: Fred B. Holt, Seattle, WA (US); Virgil
E. Bourassa, Bellevue, WA (US)

Assignee: The Boeing Company, Seattle, WA
(US)

Noltice: Subject W any disclaimer, the term ol this
patent is extended or adjusted under 35
U.S.C. 154(b) by 737 days.

Appl. No.: 09/629,576

Filed: Jul. 31, 2000

Int. CL7 oo, GOGF 15/16
Us. Cl .. . 709/204; 709/205; 709/203;

709/243; 709/201; 709/238; 709/319; 709/225;
370/236

Field of Searchccccoeeuneee. 709/1006, 201,
709/238, 319

References Cited
U.S. PATENT DOCUMENTS

4,912,656 A 3/1990 Cain ct al.

5,056,085 A 10/1991 Vu

5,309437 A 5/1994 Perlman et al.

5426637 A 6/1995 Derby et al.

5.535,199 A 7/1996 Amri et al.

5,568,487 A 10/1996 Sitbon et al.
A

5,636,371 6/1997 Yu

5.073,205 A 9/1997 Gupta et al.
5,696,903 A 12/1997 Mahany
5732074 A 3/1998 Spaur et al.
5,732,219 A 3/1998 Blumer et al.
5,734,865 A 3/1998 Yu

5,737,526 A 4/1998 Periasamy et al.
5,754,830 A 5/1998 Butts et al.
5761425 A 6/1998 Miller
5,764,756 A 6/1998 Onweller
5,790,548 A 8/1998 Sistanizadeh et al.
5,790,553 A 8/1998 Deaton, Jr. et al.
5799016 A 8/1098 Onweller
5,802,285 A 9/1998 Hirviniemi

5,864,711 A 1/1999 Mairs el al.
5,867,660 A 2/1999 Schmidt et al.
5,867,667 A 2/1999 Butman et al.
5.870,605 A 2/1999 Bracho et al.
5,874.960 A 2/1999 Mairs et al.
5,899,980 A 5/1999 Wilf et al.
5,907,610 A 5/1999 Onweller
5928335 A 7/1999 Morita
5935215 A §/1999 Bell et al.
5,948,054 A 9/1999 Nielsen
59490975 A 9/1999 Balty et al.
5953318 A * 9/1999 Nattkemper et al. 370/236
5,950,484 A 9/1999 Rosenberg et al.
5974043 A 10/1999 Solomon

5.987.506 A 11/1999 Carter et al.
(List continued on next page.)
OTHER PUBLICATIONS

Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM *95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).

(List continued on next page.)

Primary Examiner—Hosain Alam
Assistant Examiner—Young N. Won
(74) Attorney, Agent, or Firm—Perkins Coie LLP

(57) ABSTRACT

A technique for broadcasting data across a network is
provided. An originating participant sends data to another
participant, which in turn sends the data that it receives from
a neighbor participant to its other neighbor participants.
Communication in the broadcast network is controlled by a
contact module that locates the neighbor participants to
which the seeking participant can be connected and by a join
module that establishes the connection between the neighbor
participants and the seeking participant. Data is numbered
sequentially so that data that is received out of order can be
quened and rearranged.

24 Claims, 39 Drawing Sheets

AB-AB 001086

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 3 of 190 PagelD #: 42496

US 6,829,634 Bl
Page 2

US. PATENT DOCUMLENTS

6,003,088 A 12/1999 Ilouston et al.
6,013,107 A 1/2000 Blackshear et al.
6,023,734 A 2/2000 Ratcliff et al.
6,029,171 A 2/2000 Smiga et al.
6,032,188 A 2/2000 Mairs et al.
6,038,602 A 3/2000 Ishikawa
6,047,289 A 4/2000 Thorne et al.

6,094,676
6,199,116 Bl
6.216,177 Bl
6,223.212 Bi
6,243,691 Bl
6,268,855 Bl
6,271,839 Bl

=

7/2000 Gray et al.
3/2001 May et al.
4/2001 Mairs et al.
4/2001 Batty et al.
6/2001 Fisher et al.
7/2001 Mairs ct al.
&/2001 Mairs et al.
6,285,363 Bl 9/2001 Mairs et al.
6,304,928 Bl 10/2001 Mairs et al.
6,611,872 B1 * §/2003 McCanne

OTHER PUBLICATIONS

ceenennnns 709/238

International Search Report for The Boeing Company, Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).

U.S. patent application Ser. No. 09/629,570, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,577, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,575, Bourassa et al.,
filed Jul. 31, 2000.

U S. patent application Ser. No. 09/629,572, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,023, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,043, Bourassa et al.,
filed Jul. 31, 2000.

U S. patent application Ser. No. 09/629,024, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,042, Bourassa et al.,
filed Jul. 31, 2000.

Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).

The Gamer's Guide, “First—Person Shooters,” Oct. 20, 1998
(4 pages).

The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2Zp.com/
Ipt/ . . . [Accessed Jan. 29, 2002].

Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly
Network http://www.oreillynet.com/Ipt . . . [Accessed Jan.
29, 2002].

Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-43-16).

Oram, Andy, “Peer—to—Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://linux.oreillynet.com/1pt . . . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies,”MIT
Undergraduate Journal of Mathematics (pp. 143-148).

Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYI/BCP Archives http://www.fags.org/rfcs/
rfc1832.himl [Accessed Jan. 29, 2002].

ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http://www.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002).

Bondy, I.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 147), 1976 American Elsevier
Publishing Co., Inc., New York, New York.

Cormen, Thomas H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw—Hill Book Company, New York.

The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13-1-13-56), Chapter 16
(pp. 16-1-16-26), Chapter 18 (pp. 18-1-18-52), Chapter
20 (pp. 20-1-20-22).

The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
hitp://www.dcs.warwick.ac.u . . . [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 001087

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 4 of 190 PagelD #: 42497

U.S. Patent Dec. 7, 2004 Sheet 1 of 39 US 6,829,634 Bl

1

F
ig.

AB-AB 001088

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 5 of 190 PagelD #: 42498

U.S. Patent Dec. 7, 2004 Sheet 2 of 39 US 6,829,634 Bl
n
< Qo
Q, "
<<\

7\4\\\. @

/1]
=

13

AB-AB 001089

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 6 of 190 PagelD #: 42499

U.S. Patent

Dec. 7, 2004 Sheet 3 of 39 US 6,829,634 Bl
o0 O
N
g
< So
w (=
m
O
<
< &
)
R
a
L

AB-AB 001090

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 7 of 190 PagelD #: 42500

U.S. Patent Dec. 7, 2004 Sheet 4 of 39 US 6,829,634 Bl

ig. 44

AB-AB 001091

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 8 of 190 PagelD #: 42501

U.S. Patent Dec. 7, 2004 Sheet 5 of 39 US 6,829,634 Bl

AB-AB 001092

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 9 of 190 PagelD #: 42502

U.S. Patent Dec. 7, 2004 Sheet 6 of 39 US 6,829,634 Bl

AB-AB 001093

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 10 of 190 PagelD #: 42503

U.S. Patent Dec. 7, 2004 Sheet 7 of 39 US 6,829,634 Bl

o 5
U .E:a
-8

AB-AB 001094

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 11 of 190 PagelD #: 42504

U.S. Patent Dec. 7, 2004 Sheet 8 of 39 US 6,829,634 Bl

ig. 5B

AB-AB 001095

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 12 of 190 PagelD #: 42505

U.S. Patent Dec. 7, 2004 Sheet 9 of 39 US 6,829,634 Bl

Fig. 5C

AB-AB 001096

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 13 of 190 PagelD #: 42506

U.S. Patent Dec. 7, 2004 Sheet 10 of 39 US 6,829,634 Bl

m
>
. .E:Q

<

AB-AB 001097

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 14 of 190 PagelD #: 42507

U.S. Patent Dec. 7, 2004 Sheet 11 of 39 US 6,829,634 Bl
o)
>OL
Ry
o
.:,.:h
\D @
Q
= Q) ()<
o
80
R,

AB-AB 001098

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 15 of 190 PagelD #: 42508

U.S. Patent Dec. 7, 2004 Sheet 12 of 39 US 6,829,634 Bl

600

Ports
603

User

S

N
1
/S
1
Broadcaster /

33 i

a .- . @ a - * &

3 g o

<] @ 3 o

S

S o
73] — ©) -

— ™~

288 S aE

%gs s 00 %“E

= b = v

n%” ﬂ-g

g53 g5§

AB-AB 001099

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 16 of 190 PagelD #: 42509

U.S. Patent Dec. 7, 2004 Sheet 13 of 39 US 6,829,634 Bl

8
N b g
r--E r--'E-g
: 25
23] F 22 ezl sz
'Sm N o ¥ < o ces
2E ch §¢ it -
2
a &F .
111 ik
S §§§ ' g égg:
8 g g g
O QO
(=] v
SIEE SIFF
83 55

AB-AB 001100

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 17 of 190 PagelD #: 42510

U.S. Patent Dec. 7, 2004 Sheet 14 of 39 US 6,829,634 Bl

01

Open call in port

802

Set connect-time

803

Seek portal - computer
(channel type channel
instance)

804

(Connect) (Charmel
Channel Instance,
8 Connect Aux Info)

Type,

Fig. 8

Return (fulse))

806
Achieve connection
BO7
Install external dispatcher
Install external dispatcher P
809
Connect request

(Return (true))

AB-AB 001101

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 18 of 190 PagelD #: 42511

U.S. Patent Dec. 7, 2004 Sheet 15 of 39 US 6,829,634 Bl

Seek portal Channel Type
computer Channel Instance
| 902

Select next depth

5

All portal computers
selected

Dial portal computer

807

Success

Y 908

Contact process

l 909

Hang up selected portal
computer

911

Check for external
call

AB-AB 001102

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 19 of 190 PagelD #: 42512

U.S. Patent Dec. 7, 2004 Sheet 16 of 39 US 6,829,634 Bl
Contact process
1001
Send external message Fig. 1 0
1002
Receive external message

1006

Add as fellow seeking
computer

1005

Add as connected portal
computer

AB-AB 001103

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 20 of 190 PagelD #: 42513

U.S. Patent Dec. 7, 2004 Sheet 17 of 39 US 6,829,634 Bl

Connect request

1102

{ Retum)
Dial call in port of portal

computer

Send external message

I 1106
Receive external message

1107
N

Success

Y 1108

Set expect holes from
fesponse

l 1109

Set diameter from response

111 1112
Ready to connect > Add neighbor

|

N[1113
Hang up

AB-AB 001104

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 21 of 190 PagelD #: 42514

U.S. Patent

Dec. 7, 2004

heck for ext
(Check for ptema)

1201

Answer

1202

Sheet 18 of 39

Success

Y
1203

Receive external message

1205
Send external message

206
N

Sucuss/

Y
12
Add other as fellow seeker

Cram)

US 6,829,634 Bl

Fig. 12

AB-AB 001105

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 22 of 190 PagelD #: 42515

U.S. Patent Dec. 7, 2004 Sheet 19 of 39 US 6,829,634 Bl

@:hicvc connecti@

Fig. 13

1301
Connection - state = fully
connected

1302
Notify fellow seekers

1303
Invoke connect call back

o

AB-AB 001106

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 23 of 190 PagelD #: 42516

U.S. Patent Dec. 7, 2004

(External dispatcher)

Sheet 20 of 39

Fig. 14

US 6,829,634 Bl

Pick up and recave
external message

statement

| 1415

Hang up

1406

Handle connection

request call

1408

Haudle edge proposal
&

1410

Handle port

connection call

1412

Handle connected

statement

1414

Handle condition

repair statement

AB-AB 001107

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 24 of 190 PagelD #: 42517

U.S. Patent Dec. 7, 2004 Sheet 21 of 39 US 6,829,634 Bl

Fig. 15
1502 1503
Set message to indicate Set message to not
connected connected
1504
Add other as fellow
seeking process

1605

Send external message

T

AB-AB 001108

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 25 of 190 PagelD #: 42518

U.S. Patent Dec. 7, 2004 Sheet 22 of 39 US 6,829,634 Bl

dle connection
request call

1601 1
Hang up Bl)ﬁ
) R
Set newcomer's m

holes_to_expect

{ 16
Set diameter estimate in
response

I 1605 Fig. 16

Set ready in response

R
Sent external message
connect request resp,
_ | 1607
Set newcomer's
holes_to_fill
1609
Add neighbor
| 1610
Newcomer's
holes_to_fill —-
]
Forward connection
edge search
[1615
Holestofill-=2 =
1617
Fill hole (requestor)

AB-AB 001109

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 26 of 190 PagelD #: 42519

U.S. Patent Dec. 7, 2004 Sheet 23 of 39 US 6,829,634 Bl

(Add neighbor)

1704
Identifies calling party F Ig. 1 7
17
Sets neighbor to =
messages pending
1704
Connection_state =
pertially connected
]
Add as neighbor
17
Install interal dispatcher
for new neighbor
707 17
Connecting buffer > Send interal stream
N
1709 1710
Holes == = Achieve connected
ected hole
N
1711 171
Hole==0 Purge pending edges
N
(_Rewm)

AB-AB 001110

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 27 of 190 PagelD #: 42520

U.S. Patent Dec. 7, 2004 Sheet 24 of 39 US 6,829,634 Bl
Forward connacﬁon) requestor
edge search distance remaining

Fig. 18

1808
Note connection edge
search call

(Crem)

AB-AB 001111

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 28 of 190 PagelD #: 42521

U.S. Patent Dec. 7, 2004 Sheet 25 of 39 US 6,829,634 Bl

1
Send external mcssn:_cul

Send external message |

1908
Y 1909
Fill hole Add edge as pendi
| 1910
Return Add neighbor

AB-AB 001112

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 29 of 190 PagelD #: 42522

U.S. Patent Dec. 7, 2004 Sheet 26 of 39 US 6,829,634 Bl

Fig. 20
N
2003
. Send external message
Caller is not .
. (point-connect-r
neighbor not ok) *
2004
Send external message ()
(point-connect-resp, ok)
005
N\SIWSS/Y
2007 2006
Hang up Add neighbor
2008
Connect request

AB-AB 001113

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 30 of 190 PagelD #: 42523

U.S. Patent Dec. 7, 2004 Sheet 27 of 39 US 6,829,634 Bl

Fig. 21 Initialize internal

2104 2103
Handle connection Distribute internal
ports search edit message

l |

AB-AB 001114

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18

U.S. Patent Dec. 7, 2004 Sheet 28 of 39
Internal
dispatcher
2201
I 2202
Assess diameter

22038

Insert message into

pending connection buffer

Achieve connection

Page 31 of 190 PagelD #: 42524

US 6,829,634 Bl

2005

Handle broadcast

200

Handle shutdown

statement

2212

Receive response ()

AB-AB 001115

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 32 of 190 PagelD #: 42525

U.S. Patent Dec. 7, 2004 Sheet 29 of 39 US 6,829,634 Bl
andle broadcast origin
message from neighbor
Process out of order
message

2304
Clear out of order info

AB-AB 001116

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 33 of 190 PagelD #: 42526

U.S. Patent Dec. 7, 2004 Sheet 30 of 39 US 6,829,634 Bl
. Distribute message
F 1g. 24 groadcast message from neighbor
| > 401
Select next neighbor

AB-AB 001117

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 34 of 190 PagelD #: 42527

U.S. Patent Dec. 7, 2004 Sheet 31 of 39 US 6,829,634 Bl

Handle connection from neighbor
for search message

2601
Distribute internal

e ~ Fig.26

2604

Is requestor .
2 neighbor Court neighbor

Generate
condition check
message w/neighbors

2607

Send internal message
to requestor

Retumn

AB-AB 001118

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 35 of 190 PagelD #: 42528

U.S. Patent Dec. 7, 2004 Sheet 32 of 39 US 6,829,634 Bl

(Court qeighbor) Prospect

Fig. 27

Send and receive
external message

2705

Add neighbor

-t
2706
Hang up prospect

(_ Rewm)

AB-AB 001119

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 36 of 190 PagelD #: 42529

U.S. Patent Dec. 7, 2004 Sheet 33 of 39 US 6,829,634 Bl

from neighbor
message
Fig. 28
Forward
| meaéngc(tion ::cnnnd =
requestor
remaining dist -1)
Fill hole (self) 2805
Forward |
b_——_"l 2815 connection edge | | |
Send internal search (requestor,
message (from 0)
neighbor, ack) %
—

| 2807
Send and receive

Reserve edge of from
neighbor

[2810

Add neighbor

1 2811
Remove neighbor

282 [~
Hang up

¥

AB-AB 001120

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 37 of 190 PagelD #: 42530

U.S. Patent Dec. 7, 2004 Sheet 34 of 39 US 6,829,634 Bl
CI'-Iandle edge search origin
resp. from neighbor
Fig. 29] message
Note connection edge
search response
902

Edge selected >

Y 2003
Reserve edge of from
neighbor

2904
Remove from neighbor

2905
Court neighbor

AB-AB 001121

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 38 of 190 PagelD #: 42531

U.S. Patent

Fig. 30

Dec. 7, 2004 Sheet 35 of 39

3003

number

Set message sequence

3004

US 6,829,634 Bl

message

Distribute imernal

(Cram)

AB-AB 001122

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 39 of 190 PagelD #: 42532

U.S. Patent Dec. 7, 2004 Sheet 36 of 39 US 6,829,634 Bl

C Acquire messagej message

AB-AB 001123

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 40 of 190 PagelD #: 42533

U.S. Patent Dec. 7, 2004 Sheet 37 of 39 US 6,829,634 Bl

@mﬂe condition check)

Fig. 32
W

3205

3203 Select a neighbor

Set up message with list of sending process

of neighbors not my neighbor
[3204 | 3208

mal
Send internal message Sgi gelmected nelw
1 3207
Add neighbor

AB-AB 001124

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 41 of 190 PagelD #: 42534

U.S. Patent Dec. 7, 2004 Sheet 38 of 39 US 6,829,634 Bl

Handle condition
repair statement

Fig. 33

3302

Select a neighbor not
involved in condition

3303
 Remove selected
neighbor

e

3304

Add neighbor

(Reem)

AB-AB 001125

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 42 of 190 PagelD #: 42535

U.S. Patent Dec. 7, 2004 Sheet 39 of 39 US 6,829,634 Bl
H:lndl;]coc:iditLOn
ke Fig. 34

Create list of neighbors

l 3407 —
to-from neighbor
3405
Send internal message

(e)

AB-AB 001126

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 43 of 190 PagelD #: 42536

US 6,829,634 Bl

1
BROADCASTING NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,” filed on Jul. 31, 2000 U.S. patent application
Ser. No. 09/629,577, "LEAVING A BROADCAST
CHANNEI.,” filed on Jul. 31, 2000 currently patented. U.S.
patent application Ser. No. 09/629,575, entitled “BROAD-
CASTING ON A BROADCAST CHANNEL,” filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,572,
entitled “CONTACTING A BROADCAST CHANNEL,”
filed on Jul. 31, 2000; U.S. patent application Ser. No.
09/629,023, entitled “DISTRIBUTED AUCTION
SYSTEM,” filed on Jul. 31, 2000 now under appeal. U.S.
patent application Scr. No. 09/629,043, cntitled “AN
INFORMATION DELIVERY SERVICE,” filed on Jul. 31,

2000 currently patented; U.S. patent application Ser. No.

09/629,024, entitled “DISTRIBUTED CONFERENCING
SYSTEM,” (iled on Jul. 31, 2000; and U.S. patent applica-
tion Ser. No. 09/629,042, entitled “DISTRIBUTED GAME
ENVIRONMENT,” filed on Jul. 31, 2000 currently
patented, the disclosures of which are incorporated herein by
reference.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There arc a wide varicty of computcr network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
tlechniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
I'or example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely manner to all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-l1o-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manage its direct con-
nections to all other participating processes. Programmers,
however, find it very difficult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that thev can support.
This limits the number of possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various
clients who are sharing the information. I'he server functions
as a central authority for controlling access to shared
resources. Examples of client/scrver middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture
(“CORBA”). Client/server middleware systems are not par-

10

30

40

45

50

60

65

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, cach other clicnt would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.
Such a callback technique presents a performance bottleneck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.., the server) would prevent communications
between any of the clients.

The multicasting network protocols allow the sending of
broadcast messages 1o multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware 1s provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D).C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus, it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small number ol partici-
pants 1s desired. In addition, the underlying architecture of
the T.120 Internet standard is a tree structure, which relies on
the root nodc of the tree for rcliability of the cntire network.
That is, each message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications
network that is suitable for the simultaneous sharing of
information among a large number of the processes that are
widely distributed.

SUMMARY OF THE INVENTION

Embodiments of the invention deal with a non-routing
table based method for broadcasting messages in a network.
More specifically, a network in which each participant has at
least three neighbor participants broadcasts data through
each of its connections to neighbor participants, which in
turn send the data that it receives to its other neighbor
participants. The data is numbered sequentially so that data
that is received out of order can be queued and rearranged.

Communication within the broadcast channel is con-
trolled by a contact module and by a join module. The
contact module locates a portal computer and requests the
located portal computer to provide an indication of neighbor
participants to which the participant can be connected. The

join module receives the indication of the neighbor partici-

pants and establishes a connection between the seeking
participant and each of the indicated neighbor participants.

Each participant in the network is connected to neighbor
participants, and the participants and connections between
them form an m-rcgular graph, where m is greater than 2. In
addition, when a participant receives data from a neighbor
participant, it sends the data to its other neighbor partici-
pants.

AB-AB 001127

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 44 of 190 PagelD #: 42537

US 6,829,634 Bl

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with
an added computer.

FIG. 4B illustrates the broadcast channel of FIG. 4A with
an added computer.

FIG. 4C also illustrates the broadeast channel of FIG. 4A
with an added computer.

FIG. 5A illustrates the disconnecting of a computer from
the broadcast channel in a planned manner.

FIG. 5B illustrates the disconnecting of a computer from
the broadcast channel in an unplanned manner.

FIG. 5C illustrates the neighbors with empty ports con- 2

dition.

FIG. 5D illustrates two computers that are not neighbors
who now have empty ports.

FIG. 5E illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the
large regime.

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment.

FIG. 8 1s a flow diagram illustrating the processing of the
connect routing in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment.

FIG. 141s a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 151s a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing of the -

forward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine.

FIG. 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadecast message routine in one embodiment.

5

15

]
wn

w

0

33

b

40

45

50

=

0

=3

5

4

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

FIG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment.

FIG. 301is a flow diagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a [low diagram illustrating processing ol the
handle condition repair statement routine in one embodi-
ment.

FIG. 34 is a flow diagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the
network that are currently connected to the broadeast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel 1o which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadeast
messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system to scnd messages to cach other connceted computer
using each computer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (i.e.,
edges) between host computers (i.e., nodes) through which
the broadcast channel is implemented. In one embodiment,
each computer is connected to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channcl. A graph in which cach nodc is connccted to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of

AB-AB 001128

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 45 of 190 PagelD #: 42538

US 6,829,634 Bl

5

the connections to its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connccted.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connecled 1o the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.c., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between
computers A and B, but computer F is directlv connected to
computer B. Thus, a message originating at computer A
would be sent directly to computer I, and then sent from
computer F to computer B. The maximum of the distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by

FIG. 1 is two. That is, a message sent by any computer -

would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connecled to a broadcast channel. The diameter
of this broadcast channel is 4. In particular, the shortest path

between computers 1 and 3 contains four connections (1-12, 33

12-15, 15-18, and 18-3).

‘I'he broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.e., composing the
graph), (2) the broadeasting of messages over the broadcast
channel (ie., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.e.,
decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking
the connection first locates a computer that is currently fully
conneeted to the broadeast channcl and then cstablishes a
connection with four of the computers that are already
connected to the broadcast channel. (This assumes that there

are at least four computers already connected to the broad- :

cast channel. When there are fewer than five computers
connected, the broadcast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the

small regime is described below in detail. When five or more

computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the
broadcast channel includes locating the broadeast channel,
identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channcl. A sccking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-

40

45

6

puter then directs the identifying of four computers (i.e., to
be the seeking computer’s neighbors) to which the secking
computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connect-
ing of the seeking computer to the broadcast channel. A
computer that has started the process of locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected (o
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. ‘Thus, some connections between computers need to
be hroken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
necled to each other. Each of these pairs of compulters breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and
D are the two pairs that are identified as the neighbors for the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
cach of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting cach of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
becausce it is uscd for scnding non-broadcast mcssages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. A seeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space” that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HT'TP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifics an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive

AB-AB 001129

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 46 of 190 PagelD #: 42539

US 6,829,634 Bl

7

non-broadcast messages through its external port. A seeking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers when it is connected
to or attempting to connect to the broadcast channel and its
call-in port is dialed. (In this description, a tclephone meta-
phor is used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
secking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

A seeking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connected to one of its
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computer is that the
diameter of the broadcast channel may increase when cach
seeking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
arc added. FIGS. 4A-4C illustrate that possible problem.
FIG. 4A illustrates the broadcast channel of FIG. 1 with an
added computer. Computer J was connected to the broadcast
channel by edge pinning edges C-D and E-H to computer
I. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an
added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E-J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shorlest path [rom computer G (o computer K is
through edges G-A, A-L, and E-K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer I was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computer in the seeking connection state.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph

As described above, each computer that is connected to
the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channcl, c¢xcept the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it

5

10

15

3

0

]
wn

30

33

b

40

45

50

wn
wn

60

65

8

reccives to its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two computers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbers its own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. The first
message may have to travel a distance of four to reach the
receiving computer. The second message only has 1o travel
a distance of one. Thus, it is possible for the second message
to reach the receiving computer before the first message.

When the broadcast channel is in a steady state (i.e., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queuc messages until all earlier ordered messages are
received. If, however, the broadcast channel 1s not in a
steady state, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwarded on by its
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
thc mcssages in order, it would wait indcfinitcly for the
second message.

One solution to this problem is to have each computer
queuc all the messages that it receives until it can send them
in their proper order to its neighbors. This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
that may have less impact on the propagation speed is (o
queue messages only at computers who are neighbors of the
newly connected computers. Each already connected neigh-
bor would forward messages as it receives them to its other
neighbors who are not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat

AB-AB 001130

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 47 of 190 PagelD #: 42540

US 6,829,634 Bl

9

the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then reccive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message 3 is finally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. [f messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. Tt is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast
channel either in a planned or unplanned manner. When a
computer disconnects in a planned manner, it sends a

disconnect message to each of its four neighbors. The :

disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message, it tries o connect to one of
the computers on the list. In one embodiment, the first

computer in the list will try to connect to the second :

computer in the list, and the third computer in the list will
try to connect to the fourth computer in the list. If a computer
cannol connect (e.g, the first and second computers are
already connected), then the computers may try connecting
in various other combinations. If connections cannot be
established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receives the
mcessage, it can then cstablish a connection with the com-
puter that broadcast the message. FIGS. 5A-5D illustrate the
disconnecting of a computer from the broadcast channel.
FIG. SA illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides to disconnect, it sends its list of neighbors to each of

its neighbors (computers A, E, F and I) and then disconnects :

from cach of its neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner, :

such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (i.¢., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channcl, which indicatcs that it has onc intcrnal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computer that is also short a connection receives

5

]
wn

b
wn

40

45

10

the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, L, I, and I, recognizes the
disconnection, each neighbor broadcasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are necighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it
has an cmpty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadeast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to
receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includes a list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
neighbors. If the lists are different, then this condition has
occurred in the large regime and repair 1s needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have had a port filled. However, two computcrs arc still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect to each other when
they receive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whether it has the same set of neighbors as the
sending computer. If so, the broadcast channel is in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double checck message scnds a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original

AB-AB 001131

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 48 of 190 PagelD #: 42541

US 6,829,634 Bl

11

neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and [responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E, are already neighbors, which gives rise (o the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and scnt
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E has a different set of neighbor (i.c., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one of its
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with
empty ports condition. FIG. 5E illustrates the neighbors with
empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
each computer broadcasts a port connection request when it
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channel is
in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the
large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channel is in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four intcrnal ports. Gencerally, uscr ports cannot be
statically allocated to an application program because other
applications programs executing on the same computer may
use conflicting port numbers. As a result, in one

5

10

15

20

]
wn

30

35

b

40

45

50

wn
wn

=

0

65

12

embodiment, the computers connected to the broadcast
channel dvnamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attempting 1o connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connected, then the secking
computer would eventually dial every user port. In addition,
if each application program on a computer tried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time 1o locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering ol the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given
channel type and channel instance, it generates the same port
ordering. As described below, it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for each broadcast channel. Thus, a secking
computer will dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight secking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.

Locating a Portal Computer

Each computer that can connect to the broadcast channcl
has a list of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A

AB-AB 001132

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 49 of 190 PagelD #: 42542

US 6,829,634 Bl

13

secking computer locates a portal computer that is connected
to the broadeast channel by successively dialing the ports of
cach portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connccted to the broadcast channcl is found. If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of each portal computer are dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the number of ports that it will dial when
secking a portal computer that is fully connected. If the
secking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadeast channel with itsell as the first fully
connected computer.

When a seeking computer locates a portal computer that

is itself not fully connected, the two computers do not -

connect when they first locate each other because the
broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect (o

each other, then two disjoint broadcast channels would be 3

formed. Each seeking computer can share its experience in
trving to locate a portal computer with the other seeking
computer. In particular, if one secking computer has
searched all the portal computers to a depth of eight, then the
one seeking computer can share that it has searched (o a
depth of eight with another seeking computer. If that other
secking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
eight and that other seeking computer can advance ifs
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer

cannot locate a fully connected port computer at a higher -

depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.

Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting

computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledge of itself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any one computer (actvally any three
computers when in the 4-regular and 4-conncet form) will
not cause the broadcast channel to fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

5

3
=]

40

45

14

To select the four computers, a portal computer sends an
edge connection request message through one of its internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
scleeted. This sending of the mcessage corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
nection request message to the seeking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the
randomly selected computer. If that randomly selected com-
putcr cannot connect to the sccking computer (c.g., becausc
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its
neighbors with a new distance to travel. In one embodiment,
the forwarding computer toggles the new distance 1o travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained
by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-
puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter
message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that
an edge connection request message should travel.

External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel may use the XDR (“external Data Representation”™)
format.

The underlying peer-to-pcer communications protocol
may send multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to

AB-AB 001133

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 50 of 190 PagelD #: 42543

US 6,829,634 Bl

15

retrieve the next message in the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcome Lhe inefficiencies of such repeated calls, the broad-
cast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.

M-Regular

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a secking computer to the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers

will have less than that odd number of internal connections. ~

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
nects to the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.

Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection to that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast
channel is well suited for computer processes (e.g., appli-

cation programs) that execute collaboratively, such as net-

work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels
can be identified by channel type (¢.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.
Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each

5

10

15

20

w
=]

3

b

45

50

60

65

16

broadcast channel to which it is connected. The broadcaster
component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one cmbodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoke to retrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are compulter-readable medium
that may contain computcr instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The
broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
cach internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. The connect component identi-
fies the external port and installs the external dispalcher [or
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect
request component 706 to ask the portal computer (if fully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messages are stored in the broadcast
message queue 709. The acquire message component is
invoked 1o retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

AB-AB 001134

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 51 of 190 PagelD #: 42544

US 6,829,634 Bl

17

External Messages

EXTERNAL MESSAGES

Message Type Deseription

seeking
connection__call

Indicates that a seeking process would like to know
whether the receiving process is fully connected to the
broadeast channel

Indicates that the sending process would like the
receiving process to initiate a connection of the
sending process to the broadeast channel

Indicates that the sending process is proposing an edge

connection__
request__call

edge_ proposal__

call through which the receiving process can connect to the
broadeast channel (i.e., edge pinning)
port_ Indicates that the sending process is proposing a port

connection__call through which the receiving process can connect to the
broadeast channel

Indicates that the sending process is connected to the
broadcast channel

Indicates that the receiving process should disconnect
from one of its neighbors and connect to one of the
processes involved in the neighbors with empty port
condition

connected__stmt

condition__
repair__stmt

Internal Messages

INTERNAL MESSAGES

Message Type Deseription

broadcast__stmt Indicates a message that is being broadcast through
the broadcast channel for the application programs
Indicates that the designated process is looking for a
port through which it can connect to the broadcast
channel

Indicates that the requesting process is leoking for
an edge through which it can connect to the
broadeast channel

Indicates whether the edge between this process and
the sending neighbor has been accepted by the
requesting party

Indicates an estimated diameter of the broadcast

connection__poit__
search_stmt

connection__edge__
search_call

connection__edge

search_resp

diameter__estimate__

stmt channel
diameter__reset__ Indicates to reset the estimated diameter to
stmt indicated diameter

disconnect_stmt Indicates that the sending neighbor is disconnecting

from the broadecast channel

condition__check Indicates that neighbors with empty port condition
stmt have been detected

condition double Indicates that the neighbors with empty ports have
check__stmt the same set of neighbors

shutdown__stmt Indicates that the broadeast channel is being

shutdown

Flow Diagrams

FIGS. 8-34 arc flow diagrams illustrating the processing
of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this

5

10

15

3

0

(=]
wn

30

b

5

40

45

tn

0

un
wn

60

65

18

process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connccted statc. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The porl is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect time is used to
identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this sitvation. In
block 803, thc routinc invokes the scck portal computer
routine passing the channel type and channel instance. The
seck portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadeast channel for the passed type and instance. In
decision block 804, it the seek portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805, else
the routine returns an unsuccessful indication. In decision
block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the
routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcher is
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passcd the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth. If
a portal computer is located at that search depth with a
process that is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks
902-911, the routine loops selecting each search depth until
a process is located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904, In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channcl with the passed channcl type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 to select

AB-AB 001135

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 52 of 190 PagelD #: 42545

US 6,829,634 Bl

19

the next scarch depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the scarch depth.
In decision block 30 907, if the dialing was successful, then
the routine continues at block 908, else the routine loops 1o
block 904 to select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is fully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this
process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG. 10is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This rouline
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking
connection_call) to the answering process indicating that a
secking process wants to know whether the answering
process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message
from the answering process. In decision block 1003, if the
external response message is successfully received (i.c.,
seeking__connection__resp), then the routine continues at
block 1004, else the routine returns. Wherever the hbroadcast
component requests to receive an external message, it sets a
time out period. If the external message is not received
within that time out period, the broadcaster component
checks its own call-in port to see if another process is calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
cral times. If the cxpected message is not reccived, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the

connect request routine in one embodiment. This routine :

requests a process of a portal computer that was identified as
being fully connected to the broadcast channel to initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nccted from the broadeast channcl. In onc cmbodiment, a
seeking computer may always search its entire search depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine

5

10

15

3

0

]
wn

30

33

b

40

45

50

60

65

20

restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
onc of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channel (i.e., connection__request__call). In block
1106, the routine receives the response message (i.c.,
connection_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes (i.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk search
for a neighbor is performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is
invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202, if
the answer is successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204, if the type of the message indicates that
a seeking process is calling (i.e., seeking connection_ call),
then the routine continucs at block 1205, clsc the routine
returns. In block 1205, the routine sends an external message
(i.e., seeking connection_resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other secking process to a list of fellow sceking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the
state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadeast channcl. In block 1301, the routine scts
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external

AB-AB 001136

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 53 of 190 PagelD #: 42546

US 6,829,634 Bl

21

message to them (i.e., connected stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the received messages have been handled. In block 1401,
the routine answers (¢.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.e., seeking
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message lype is for a connection request call (i.e.,
connection__request__call), then the routine invokes the
handle connection request call routine in block 1406, clse
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (ie., edge
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (i.e., port__connect__call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (ic., connected_ stmt), the routine invokes the
handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message lype is a condition repair statement (i.e.,
condition__repair__stmt), then the routine invokes the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 151s a flow diagram illustrating the processing of the
handle secking connection call routine in one embodiment.
This routinc is invoked when a sccking proccss is calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continues at
block 1505. In block 1503, the routine sets a message o
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking

process to a list of fellow seeking processes. If this process :

is not fully connected, then it is attempting to connect to the
broadcast channel. In block 1505, the routine sends the
external message response (i.e., seeking connection_ resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.
T'his routine is invoked when the calling process wants this
process to initiate the connection of the process to the
broadcast channcl. This routinc cither allows the calling
process to establish an internal connection with this process
(e.g.. if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In

5

10

15

20

3

w

0

35

b

40

45

50

LN
wn

60

65

22

decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, clsc the routine hangs up on the cxternal port
in block 1602 and returns. In block 1603, the routine sets the
number of holes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimaled diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
the number of its holes is greater than zero and the calling
process is not a neighbor of this process. In block 1606, the
routine sends to the calling process an external message that
is responsive to the connection request call (i.c.,
connection_request_resp). In block 1607, the routine notes
the number of holes that the calling process needs to fill as
indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
ncighbor routine to add the calling process as a ncighbor. In
block 1610, the routine decrements the number of holes that
the calling process needs to fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, il this process has no holes or the
estimated diameter is greater than one (i.c., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be
filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616, if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
holc routinc passing the identification of the calling proccss.
The fill hole routine broadcasts a connection port search
statement (.., connection__port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 1s a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messages initially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connecting to its first neighbor and the routine continues
at block 1704, clse the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of ncighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that new neighbor

AB-AB 001137

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 54 of 190 PagelD #: 42547

US 6,829,634 Bl

23

through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connccted, then the routine continues at block 1708,
clse the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives through an internal connection so that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this
process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed 1o

this process for edge pinning, which in this case is no longer ,

needed.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request (o
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, clse the
routine continues at block 1802. In decision block 1802, if
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast
channel is in the small regime and the routine continues at
block 1803. In decision block 1803, if the requesting process

1s a neighbor of this process, then the routine returns, else the 3s

routine continues at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.e., connection_edge_ search_ call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routinc scnds a conncction cdge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 10 select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Whenever such a situation
is detected by the broadcaster component, it attempts to find
another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to

fill two holes. In block 1808, the routine notes that the :

recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighbor is
reserved if the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

F1G. 19 1s a flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is reccived from a proposing proccss that
proposes to connect an edge between the proposing process
and one of its neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process

10

30

40

45

50

60

65

24

minus the number of pending edges is greater than or equal
to one, then this process still has holes to be filled and the
routinc continucs at block 1902, clsc the routine continucs at
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighbor of this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (i.e., edge__
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. In block 1911, the routine sends an external message
(i.e., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holes is odd, then the routine continues at block 1913, else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

FIG. 201s a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
number of holes of this process is greater than zero, then the
routine continues at block 2002, ¢lse the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(i.e., port_connection_resp) to the sending process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicates that is okay to connect this process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighbor of this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

I'lG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal mes-
sage (i.e., connection_port_search stmt). In decision
block 2102, if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns,

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine

AB-AB 001138

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 55 of 190 PagelD #: 42548

US 6,829,634 Bl

25

is passed an indication of the neighbor who sent the internal
message. In block 2201, the routine receives the internal
message. This routine identifics the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the
information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has already been received (i.e., a duplicate),
then the routine ignores the message and continues at block
2208, clse the routine continues at block 2203A. In decision
block 2203A, if the process 1s partially connected, then the
routine continues at block 22038, else the routine continues
at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message tvpe and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.e., broadcast__
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriatc han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208, if the partially connected buffer is full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connecls to new
neighbors. If, however, that buffer becomes full, then the
process assumes that it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,
the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is emply, then the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast message itself In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order to the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for each originating
process and then returps.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops (o block 2401 (o select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one

5

10

15

20

3

30

3

b

40

45

50

wn
wn

60

=3

5

26

embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of its neighbors other
than the sending neighbor. In decision block 2602, if the
number of holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continues at block 2605, clse the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routine connects this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, clse the routine
returns. In block 2606, the routine generates a condition
check message (i.e., condition__check) that includes a list of
this process’ neighbors. In block 2607, the routine sends the
message o the requesting neighbor.

FIG. 27 is a flow diagram illustrating thc processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the number of holes of this process is greater
than zero, then the routine continues at block 2704, else the
routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.e., port
connection__call) to the prospective neighbor and receives
its response (i.e., port_connection_resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the message itself. This routine either
[orwards the message 1o a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this
process and the sending neighbor is reserved because it has
already been offered to a process, then the routine continues
at block 2805, clse the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicator that altcrnatively indicates to continuc
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the

AB-AB 001139

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 56 of 190 PagelD #: 42549

US 6,829,634 Bl

27

routine sends an edge proposal call external message (i.c.,
edge_ proposal__call) and receives the response (i.e., edge__
proposal__rcsp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813, if this process is the requesting
process and the number of holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.e., connection__
edge_ search_response) to the sending neighbor indicating
acknowlcdgement and then returns. The graphs arc scnsitive
lo parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge
search response (i.e., connection edge search resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continues at block 2903, else
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine 1o connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, ¢lse
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is
invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has

at least one neighbor, then the routine continues at block :

3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (i.e., broadcast_stmt). ln block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-

5

15

20

]
wn

30

35

b

40

45

50

LN
wn

60

65

28

gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channcl. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS, 32-34 are flow diagrams illustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a flow diagram illustrating processing
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, il the number of holes of
this process 1s equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202, if the sending neighbor and this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (i.e.,
condition_double_check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
ol this process. In block 3206, the routine sends a condition
repair message (i.e., condition_ repair_ stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304, In
block 3302, the routine sects a neighbor that is not involved
the neighbors with empty ports condition. In block 3303, the
routine removes the selected neighbor as a neighbor of this
process. Thus, this process that is executing the routine now
has at least one hole. In block 3304, the routine invokes the
add neighbor routine to add the process that sent the message
as a neighbor of this process. The routine then returns.

F1G. 34 1s a flow diagram illustrating the processing of the
handle condition double check routine. This routine deter-
mincs whether the neighbors with cmpty ports condition
really is a problem or whether the broadcast channel is in the
small regime. In decision block 3401, if this process has one
hole, then the routine continues at block 3402, else the
routine continues at block 3403. If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (i.e., diameter reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(i.e., condition_check stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been

AB-AB 001140

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 57 of 190 PagelD #: 42550

US 6,829,634 Bl

29

described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number (e.g., 128 bits) to help prevent
an unauthorized uscr to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast
channel. Accordingly, the invention is not limited except by
the claims.

What is claim is:

1. A non-routing table based computer network having a
plurality of participants, each participant having connections
to at least three neighbor participants, wherein an originating
participant sends data to the other participants by sending
the data through each of its connections to its neighbor
participants, wherein each participant sends data that it
receives from a neighbor participant to its other neighbor
participants, wherein data is numbered sequentially so that
data received out of order can be queued and rearranged,
further wherein the network is m-regular and m-connected,
where m is the number of neighbor participants of each
participant, and further wherein the number of participants
is at least two greater than m thus resulting in a non-
complete graph.

2. The computer network of claim 1 wherein each par-
ticipant is connected Lo 4 other participants.

3. The computer network of claim 1 wherein each par-
ticipant is connected to an even number of other participants.

4. The computer network of claim 1 wherein all the
participants are peers.

5. The computer network of claim 1 wherein the connec-
lions are peer-to-peer conneclions.

6. The computer network of claim 1 wherein the connec-
tions are TCP/IP connections.

7. The computer network of claim 1 wherein each par-
licipant is a process execuling on a compuler.

8. The computer network of claim 1 wherein a computer
hosts more than one participant.

9. The computer network of claim 1 wherein each par-
ticipant sends to each of its neighbors only one copy of the
data.

10. A non-routing table based broadcast channel for
parlicipanls, comprising:

a communications network that provides peer-to-peer
communications between the participants connected o
the broadcast channel; and

for each participant connected to the broadcast channel,
an indication of four neighbor participants of that
participant; and

a broadcast component that receives data from a neighbor
participant using the communications network and that
sends the received data to its other neighbor partici-
pants to effect the broadecasting of the data to each

5

15

20

]
wn

30

40

45

50

participant of the to broadcast channel, wherein the

network is m-regular and m-connected, where m is the
number of neighbor participants of each participant,
and further wherein the number of participants is at
least two greater than m thus resulting in a non-
complete graph.

30

11. The broadcast channel of claim 10 wherein the broad-
cast component disregards received data that it has already
sent to its neighbor participants.

12. The broadcast channel of claim 10 wherein a partici-
pant connects to the broadcast channel by contacting a
participant already connected to the broadcast channel.

13. The broadcast channel of claim 10 wherein each
participant is a computer process.

14. The broadcast channel of claim 10 wherein each
participant is a computer thread.

15. The broadcast channel of claim 10 wherein cach
participant is a computer.

16. The broadcast channel of claim 10 wherein the
communications network uses TCP/IP protocol.

17. The broadcast channel of claim 10 wherein the
communications network is the Internet.

18. The broadcast channel of claim 10 wherein the
participants are peers.

19. A non-routing tablc bascd computer-readable medium
containing instructions for controlling communications of a
participant of a broadcast channel within a network, by a
method comprising:

locating a portal compuler;

requesting the located portal computer to provide an

indication of neighbor participants to which the par-
ticipant can be connccted;

receiving the indications of the neighbor participants; and
establishing a connection between the participant and
cach of the indicated neighbor participants, wherein a
connection between the portal computer and the par-
ticipant is not established, wherein a connection
between the portal computer and the neighbor partici-
pants is not cstablished, furthcr whercin the nctwork is
m-regular and m-connected, where m is the number of
neighbor participants of each participant, and further
wherein the number of participants is at least two
greater than m thus resulting in a non-complete graph.

20. The computer-readable medium of claim 19 wherein
cach participant is a computer process.

21. The computer-readable medium of claim 19 wherein
the indicated participants are computer processes executing
on different computer systems.

22. The computer-readable medium of claim 19 includ-
ing:

receiving data from a neighbor participant of the partici-

pant; and

transmitting the received data to the other neighbor par-

ticipanis.

23. The computer-readable medium of claim 19 includ-
ing:

receiving a request to connect to another participant,

disconnecting from a neighbor participant; and

connecting to the other participant.

24. The computer-readable medium of claim 19 wherein
the connections are established using the TCP/IP protocol.

AB-AB 001141

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 58 of 190 PagelD #: 42551

EXHIBIT 64

B | 1|11 T

US006910069B1
.
a2y United States Patent 10y Patent No.: US 6,910,069 B1
Holt et al. 45) Date of Patent: Jun. 21, 2005
»
(54) JOINING A BROADCAST CHANNEL 5,696,903 A 12/1997 Mahany
5,732,074 A 3/1998 Spaur et al.
(75) Inventors: Fred B. Holt, Seattle, WA (US), Virgi[5,732,086 A * 3/1998 Liang et al. 370/410
E. Bourassa, Bellevue, WA (US) 5732219 A 3/1998 Blumer et al.
’ ’ 5,734,865 A 3/1998 Yu
P \ . . 5,737,526 A 4/1998 Periasamy et al.
(73) Assignee: ;[LI;;Bneing Company, Seattle, WA 5754830 A 5/1998 Butts el al.
(Continued)
(*) Notice: Subject W any disclaimer, the term ol this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 708 days. Cho et al., “A Flood Routing Method for Data Networks,”
Sep. 1997, Proceedings of 1997 International Conference on
(21) Appl. No.: 09/629,570 Information, Communications and Signal Processing, vol. 3,
2) Filed: Jul. 31, 2000 pp. 1418-1422.* L . . ,
(22) File Ju ’ Bandyopadhyay et al., “A Flexible Architecture for Multi—
(51) Imt. CL7 oo, GOGF 15/177 Hop Optical Networks,” Oct. 1998, 7th International Con-
(52) US.CL .. . 709/221; 709/252; 709/243; ference on Computer Communications and Networks, 1998,
709,227 pp. 472-478.*
(58) Field of Search ... 7097221, 220, “ontinued
700/252, 243, 227, 223, 204, 238; 370/225, (Continued)
200, 400; 455/428 Primary Examiner—Glenton B. Burgess
Assistant Examiner—Bradley Edelman
(56) References Cited (74) Attorney, Agent, or Firm—Perkins Coie LLP

4,912,656
5,056,085
5,058,105
5,079,767
5.099,235
5,101,480
5,117,422
5,300,437
5,345,558
5.426,637
5.459.725
5.471,623
5,511,168
5,535,199
5,568,487
5,636,371
5.644,714
5,673,265

3/1990
10/1991
10/1991

1/1992

*3/1992
* 0 3/1992
= 5/1992

5/1994

9/1994

6/1995
10/1995

* 11/1995

4/1996

7/1996
10/1996

6/1997

7/1997

9/1997

U.S. PATENT DOCUMENTS

Cain ¢t al.

Vu

Mansour el al.

Perlman

Crookshanks 455/13.1
Shin et al.ocovveeeen. 710/317
Hauptschein et al. 370,255
Perlman et al.

Opher et al.

Derby et al.

Bodner et al.
Napolitano, Jr.
Perlman et al.

Anri et al.

Sitbon et al.

Yu

Kikinis

Gupta et al.

7009/243

(57) ABSTRACT

A technique for adding a participant to a network is pro-
vided. This technique allows for the simultaneous sharing of
information among many participants in a network without
the placement of a high overhead on the underlying com-
munication network. 'To connect to the broadcast channel, a
seeking computer first locates a computer that is fully
connected to the broadcast channel. The seeking computer
then establishes a connection with a number of the comput-
ers that are already connected to the broadcast channel. The
technique for adding a participant o a network includes
identilying a pair of participants that are connected to the
network, disconnecting the participants of the identified pair
from each other, and connecting each participant of the
identified pair of participants to the added participant.

17 Claims, 39 Drawing Sheets

AB-AB 001392

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 60 of 190 PagelD #: 42553

US 6,910,069 B1
Page 2

5,757,795
5,761,425
5,764,756
5,790,548
5,790,553
5,799,016
5,802,285
5.850,592
5,864,711
5,867,660
5,867,667
5,870,605
5,874,960
5,899,980
5,907,610
5,025,007
5928335
5,935.215
5,946,316
5,948,054
5,949,975
5,953,318
5,956,484
5,970,232
5,074,043
5,087,506
6,003,088
6,013,107
6,023,734
6,029,171
6,032,188
6,038,602
6,047,289
6.065,063
6,073,177
6,094,676
6,115,580
6.151,633
6,167,432
6,173,314
6,195,366
6,199,116
6.216,177
6.223.212
6,243,691
6,252,884
6,268,855
6,269,080
6,271,839
6,272,548
6,285,363
6,304,928
6,321,270
6,353,599
6,415,270
6,434,622
6,463,078
6,490,247
6,499,251
6,505,289
6,524,189
6,553,020
6,603,742
6.611,872
6,618,752
6,701 344

2002/0027896

US. PATENT DOCUMLENTS

e s e i i’ ==

Bl
B1
B1
B1
Bl
Bl
Bl
B1

5/1998
6/1998
6/1998
§/1998
8/1998
8/1998
9/1998
12/1998
1/1999
2/1999
2/1999
2/1999
2/1999
5/1999
5/1999
7/1999
7/1999
§/1999
§/1999
9/1999
9/1999
9/1999
9/1999
10/1999
10/1999
11/1999
12/1999
1/2000
2/2000
2/2000
2/2000
3/2000
4/2000
* 5/2000
6/2000
7/2000
G9/2000
11/2000
12/2000
1/2001
2/2001
3/2001
4/2001
442001
6/2001
6/2001
7/2001
7/2001
§/2001
8/2001
6/2001
10/2001
112001
3/2002
7/2002
§/2002
10/2002
* 12/2002
12/2002
*1/2003
2/2003
4/2003
8§/2003
§/2003
9/2003
3/2004
3/2002

Schnell
Miller
Onweller

Sistanizadeh et al.

Deaton, JIr. et al.
Onweller
Hirviniemi
Ramanathan
Mairs et al.
Schmidt et al.
Butman et al.
Bracho et al.
Mairs et al.
Wilf et al.
Onweller
Gopinath et al.
Morita

Bell ¢t al.

Chen et al.
Nielsen

Batty et al.
Nattkemper et al.
Rosenberg et al.
Passint et al.
Solomon

Carter et al.
[louston et al.
Blackshear et al.
Ratcliff et al.
Smiga et al.
Mairs et al.
Ishikawa
Thorne et al.
Abali ..o,
Hebel et al.
Gray et al.
Chuprun et al.
Hurst

Jiang
Kurashima et al.
Kayashima
May et al.
Mairs et al.
Batty et al.
Fisher el al.
Hunter

Mairs et al.
Kumar

Mairs et al.
Cotter et al.
Mairs et al.
Mairs et al.
Crawley

Bi el al.
Rackson et al.
Monteiro et al.
Engstrom et al.

Gilbert et al. ...

Weder

Han et al.

Rautila

Hughes et al.
Steele et al.

McCanne
Moore et al.
Holt et al.
Hughes et al.

e 709,242

eereene 370/222

vevennens 112/11

ceeenenes 370/347
creeeeens 370,254

OTIICR PUBLICATIONS

Hsu, “On Four—Connecting a Triconnected Graph,” Oct.
1992, Annual Symposium on Foundations of Computer
Science, 1992, pp. 70-79.*

Shiokawa et al., “Performance Analysis of Network Con-
nective Probability of Multihop Network under Correlated
Breakage,” Jun. 1996, 1996 IEEE International Conference
on Communications, vol. 3, pp. 1581-1585.*

Komine et al., “A Distributed Restoration Algorithm [or
Multiple—Link and Node Failures of Transport Networks,”
Dec. 199 IEEE Globecom 90, ‘Communications: Connect-
ing the [Future,” vol. 1, pp. 459—463.*

U.S. Appl. No. 09/629,576, filed Jul. 31, 2000, Bourassa et

. 09/629,577, filed Jul. 31, 2000, Bourassa et

. 09/629,575, filed Jul. 31, 2000, Bourassa et

. 09/629,572, filed Jul. 31, 2000, Bourassa et

. 09/629,023, filed Jul. 31, 2000, Bourassa et

. 09/629,043, filed Jul. 31, 2000, Bourassa et

. 09/629,024, filed Jul. 31, 2000, Bourassa et

. 09/629,042, filed Jul. 31, 2000, Bourassa et
Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).

The Gamer’s Guide, “First—Person Shooters,” Oct. 20, 1998
(4 pages).

The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/

Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly

Network http://www.oreillynet.com/Ipt . . . [Accessed Jan.
29, 2003].

Internetworking Technologies Handbook, Chapter 43 (pp.
43-1-43-16).

Oram, Andy, “Peer—to—Peer Makes the Internet Interesting
Again,” Sep. 22, 2000 (7 pages) The O’Reilly Network
http://linux.oreillynet.com/1pt . . . [Accessed Jan. 29, 2002].
Montc, Richard, “The Random Walk for Dummics,”MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYI/BCP Archives htp:/www.lags.org/rlcs/
rfc1832.html [Accessed Jan. 29, 2002].

A Databeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
http://www.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].

Bondy, J.A., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inc., New York, New York.

Cormen, Thomas, H. et al., Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw—Hill Book Company, New York.

AB-AB 001393

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 61 of 190 PagelD #: 42554

US 6,910,069 B1
Page 3

The Common Object Request Broker: Architecture and
Specification, Review 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13-1-13-56), Chapter 16
(pp. 16-1-16-26), Chapter 18 (pp. 18-1-18-52), Chapter
20 (pp. 20-1-20-22).

The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Systems,”
http://www.des.warwick.acu . . . [Accessed Jan. 29, 2002].
Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM °95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company, Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).

Yavatkar et al,, “A reliable Dissemination Protocol for
Intcractive Collaborative Applications,” Proc. ACM Multi-
media, 1995, p. 333-344; hup://citeseer.nj.nec.com/article/
yavatkar95reliable. htm.

Business Wire, “Boeing Panthesis Complete SWAN Trans-
action,” Jul. 22, 2002, pp 1fL.

PR Newswire, “Microsoft Annouces Launch Date for
UltraCrops, Its Second Premium Title for the Internet Gam-

ing Zone,” Mar. 27, 1998, pp1 ff.

PR Newswire, “Microsoft Boosts Accessibility to Internet
Gaming Zone with Latest Release,” Apr. 27, 1998, pp 11f.

Peercy et al., “Distributed Algorithms for Shortest—Path,
Deadlock-Free Routing and Broadcasting in Arbitrarily
Faulty Hypercubes,” Jun. 1990, 20th International Sympo-
sium on Fault-Tolerant Computing, 1990, pp-218-225.

Azar et al, “Routing Strategies for Fast Networks,” May
1992, INFOCOM 92 Eleventh Annual Joint Conlerence ol
the IEEE Computer Communications Societies, vol. 1,
170-1794H.

* cited by examiner

AB-AB 001394

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 62 of 190 PagelD #: 42555

U.S. Patent Jun. 21, 2005 Sheet 1 of 39 US 6,910,069 Bl

AB-AB 001395

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 63 of 190 PagelD #: 42556

U.S. Patent Jun. 21, 2005 Sheet 2 of 39 US 6,910,069 Bl
o

< (1=

@ =\ "
S A

~ /’ ‘{“a w0
4 AN
A\

0
—
/71
,T
b’-‘#ﬁr—-
10
ig

AB-AB 001396

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 64 of 190 PagelD #: 42557

U.S. Patent Jun. 21, 2005 Sheet 3 of 39 US 6,910,069 Bl
m O
N Q
he!
< .
20
w ()
1]
O
< NS
80
R
(]
L

AB-AB 001397

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 65 of 190 PagelD #: 42558

U.S. Patent Jun. 21, 2005 Sheet 4 of 39 US 6,910,069 Bl

AB-AB 001398

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 66 of 190 PagelD #: 42559

U.S. Patent Jun. 21, 2005 Sheet 5 of 39 US 6,910,069 Bl

oa]
S
18 .E:Q

- 8

AB-AB 001399

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 67 of 190 PagelD #: 42560

U.S. Patent Jun. 21, 2005 Sheet 6 of 39 US 6,910,069 Bl

@ &
‘
3 »
20
i
g

AB-AB 001400

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 68 of 190 PagelD #: 42561

U.S. Patent Jun. 21, 2005 Sheet 7 of 39 US 6,910,069 Bl

AB-AB 001401

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 69 of 190 PagelD #: 42562

U.S. Patent Jun. 21, 2005 Sheet 8 of 39 US 6,910,069 Bl

AB-AB 001402

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 70 of 190 PagelD #: 42563

U.S. Patent Jun. 21, 2005 Sheet 9 of 39 US 6,910,069 Bl
)
(3
w

)
O
v
. .
20

<«

o)
-

AB-AB 001403

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 71 of 190 PagelD #: 42564

U.S. Patent Jun. 21, 2005 Sheet 10 of 39 US 6,910,069 Bl

AB-AB 001404

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 72 of 190 PagelD #: 42565

U.S. Patent Jun. 21, 2005 Sheet 11 of 39 US 6,910,069 Bl
(]
(<
R
(PN
20
\.) @
O
- Q0+
<3
v
20

AB-AB 001405

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 73 of 190 PagelD #: 42566

U.S. Patent Jun. 21, 2005 Sheet 12 of 39 US 6,910,069 Bl
Q
@

1
>
i

1
Broadcastcr/c(’

o = o 'é
3 2 3 37
g - & = - * @
g =
g o S
3 @ © O
.20
— -—
2 — % —
--'Q)S NUS
£2§ EES
‘§T;_§ e o 0 ggg
it 53t

AB-AB 001406

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 74 of 190 PagelD #: 42567

US 6,910,069 B1

Sheet 13 of 39

Jun. 21, 2005

U.S. Patent

L “B1d
N 3sw]
wa IpueH
hayozedsi(]
ewatug 807 onanb a%essow
. 8w annboy
€0L . weopeosg :
602 ¥OL
. | Bsw
) 3|pusH]
80L IseoprOlg
[
19y2redsTp AW
rewsaju]
€04
N Ssw g 1senbay
SIpueH 195UU0Ty
101 0L
1ayoyedsip ' eviod
[ewaixyg [Sswi g 198 100UU0D)
- opus
20. [PuBH o7 i
L0L

004

asuodsas
u.amw\uo.&

LLL

youq |20
Pauuo)

01

AB-AB 001407

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 75 of 190 PagelD #: 42568

U.S. Patent Jun. 21, 2005
C Connect)
801
Open call in port
802

Set connect-time

803

instance)

Seek portal - computer
1 (channel type channel

Install external dispatcher

809

Connect request

Sheet 14 of 39 US 6,910,069 B1

(Channe! Type,
Channel Instance,
Comnect Aux Info)

Fig. &8

Return (falsc))

806

Achieve connection

807
Install external dispatcher

o

(Return (true))

AB-AB 001408

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 76 of 190 PagelD #: 42569

U.S.

|

Patent Jun. 21, 2005

Sheet 15 of 39 US 6,910,069 B1

Seek portal Channel Type
computer Channel Instance

902

Select next depth

»

All depths selected

N

Retum (failure)

904

Select next portal computer .
‘ P P Fig. 9

All portal computers
selected

Dial portal computer

Success

Contact process L

l 909
Hang up selected portal
computer
911 910
Check for external Selected portal

call

computer connected

Return (success)

AB-AB 001409

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 77 of 190 PagelD #: 42570

U.S. Patent Jun. 21, 2005 Sheet 16 of 39 US 6,910,069 Bl

Contact process

1001
Send external message F‘g. 10

1002
Receive external message

1006
Add as fellow seeking

computer

1005

Add as connected portal
computer

1

Answering process
connected

AB-AB 001410

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 78 of 190 PagelD #: 42571

U.S. Patent Jun. 21, 2005 Sheet 17 of 39 US 6,910,069 Bl

Fig. 11

(Return)
Dial call in port of portal

computer

1104

Success

Y 1105
Send external message

{ 1106
Receive exiernal message

<

1108

Set expect holes from
response

{ 1109
Set diameter from response

111 1112
Ready to connect L4 Add neighbor

|

N 1113
Hang up

=)

AB-AB 001411

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 79 of 190 PagelD #: 42572

U.S. Patent Jun. 21, 2005 Sheet 18 of 39 US 6,910,069 Bl
heck for exte:
cail L
Fig. 12
1201

Send external message

206
Success/ N
Y
1207

Add other as fellow seeker

Crmn)

AB-AB 001412

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 80 of 190 PagelD #: 42573

U.S. Patent Jun. 21, 2005 Sheet 19 of 39 US 6,910,069 Bl

@:hieve connectim)

1301

Connection - state = fully
connected

Fig. 13

1302
Notify fellow seekers

1303
Invoke connect call back

)

AB-AB 001413

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 81 of 190 PagelD #: 42574

U.S. Patent

Jun. 21, 2005 Sheet 20 of 39 US 6,910,069 B1
@memai dispatc.hea Fig I 4
1401 1415
Pick up and receive Hang op
external message
1402 1416
Message N Hang up
I
Y C Retum)
1403 — 1404
Seeking connection call Y il;ln ec!fgfz cal%
N
1405 .1405
Connection request call Y Hmri];u t;(s’tnnc:cntmn
N
1407 1408
Edge proposal call Handle e‘gﬁ proposal
N
1410
Port connect call m}mdclt‘:?o??aﬂ

Connected statement

1413
Condition repair
statement

1412

Handle connected

statement

1414

Han&ive_condition

repair statement

AB-AB 001414

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 82 of 190 PagelD #: 42575

U.S. Patent Jun. 21, 2005 Sheet 21 of 39

1502
Set message to indicate

connected

Handle seeking

connection call

US 6,910,069 B1

Fig. IS

1503

Set message to not
connected

501
Fully connected

1504

Add other as fellow

seeking

process

1505

Send external message

{ Return }

AB-AB 001415

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 83 of 190 PagelD #: 42576

U.S. Patent Jun. 21, 2005 Sheet 22 of 39 US 6,910,069 Bl

andle connection
request call

1
Hang up eﬁﬁ

Set newcomer's

holes_to_expect

| 1
Set diameter estimate in

response .
l 1605 Fig. 16
Set ready in response
| 1606
Sent external message
connect request resp.
| 1607
Set newcomer's
holes_to_fill
608 1609
Add neighbor
1611 N 1619
Hang u Newcomer's
gup holes_to_fill --
|
161
Forward connection
edge search
I 1615
Holestofill-=2Z |-
1617
Fill hole (requestor)

AB-AB 001416

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 84 of 190 PagelD #: 42577

U.S. Patent Jun. 21, 2005 Sheet 23 of 39 US 6,910,069 Bl

C Add neighbor)

1701]
Identifies calling party Fig. 17

1702

Sets neighbor to
messages pending

703 17

- : Y Connection_state =
peking connects partially connected

N]
1705

Add as neighbor

1706
Install interal dispatcher
for new neighbor

707 1708
Connecting buffer Send interal stream
1710
Achieve connected
171
Purge pending edges
N -
(Retumn)

AB-AB 001417

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 85 of 190 PagelD #: 42578

U.S. Patent

Fig. 18

Jun. 21, 2005

Sheet 24 of 39

requestor
distance remaining

neighbors

A

1804

Select random neighbor

All neighbors

selected

Send internal message

1807

Success

1808

Note connection edge
search call

Retumn

US 6,910,069 B1

AB-AB 001418

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 86 of 190 PagelD #: 42579

U.S. Patent

Jun. 21, 2005

Sheet 25 of 39 US 6,910,069 B1

Handle edge
proposal call

in message
out message

Fig. 19

a party
at end of edges a

eighbor

1903
create edge (pending)

1904

proposed
neighbors

1911

Send external message

pending

1907

Send external message

Fill hole

1908
(e)

Y 4009

P
-

Retumn

Add edge as pending

1910

Add neighbor

AB-AB 001419

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 87 of 190 PagelD #: 42580

U.S. Patent Jun. 21, 2005 Sheet 26 of 39 US 6,910,069 Bl

Handle port
connection call

Fig. 20
Holes >0 N
2003
; Send external message
Caller i not (point-connect-resp
neighbor not ok)
2004 Return
Send external message
(point-connect-resp, ok)
005
N Qﬁﬁ/ Y
2007 2006
Hang up Add neighbor
2008
Connect request

AB-AB 001420

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 88 of 190 PagelD #: 42581

U.S. Patent Jun. 21, 2005

Sheet 27 of 39

{ Fill hole)

2101

Fig. 21

Initialize internal

message

N
2104

Handle connection
ports search edit

102
arty the request- Y

W

US 6,910,069 B1

2103

Distribute internal
message

=

AB-AB 001421

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18

U.S. Patent Jun. 21, 2005 Sheet 28 of 39

Page 89 of 190 PagelD #: 42582

US 6,910,069 B1

Fig. 22

Internal
dispatcher

2201

Received intemal message

I 2202

Assess diameter

Insert message into

i i fTe
pending connection buffer 2005
_ = broadcast Handle broadcast
statement it
Tope 2007
Handle shutdown
= = shutdown
statement statement
connection buffer
2209
Achieve connection
message queue
empty 2212

Receive résponse ()

AB-AB 001422

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 90 of 190 PagelD #: 42583

U.S. Patent Jun. 21, 2005 Sheet 29 of 39 US 6,910,069 Bl

andle broadcasD origin

message from neighbor
y message
Process out of order
message
2302
Distnbute broadcast
message

2304

4 Clear out of order info

AB-AB 001423

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 91 of 190 PagelD #: 42584

U.S. Patent Jun. 21, 2005 Sheet 30 of 39 US 6,910,069 Bl
. Distobute message
F 1g. 24 Qroadcast TMessage from neighbor
2401
Select next neighbor

All neighbor
selected

Return)

_ 2403

Send internal
message

|

AB-AB 001424

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 92 of 190 PagelD #: 42585

U.S. Patent Jun. 21, 2005 Sheet 31 of 39 US 6,910,069 Bl

Handle connection) from neighbor
for search message

2604

Is requestor Court neighbor

a neighbor
(Returmn)

(enerate
condition check
message w/neighbors

2607

Send internal message
to requestor

Cron)

AB-AB 001425

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 93 of 190 PagelD #: 42586

U.S. Patent Jun. 21, 2005 Sheet 32 of 39 US 6,910,069 Bl

C Court neighbor) Prospect

Fig. 27

Retum)

Send and receive
external message

2705

Add neighbor

Lt

3

27

Hang up prospect

(Rewm)

AB-AB 001426

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 94 of 190 PagelD #: 42587

U.S. Patent Jun. 21,2005 Sheet 33 of 39 US 6,910,069 B1
Handle connection from neighbor
edge search call message
Fig. 28

N . y
from this pt. && 2803
oles==1 FO!:WII'&
connection second | |
edge (requestor
2814 remaining dist -1)
Fill hole (self) 2805
Forward
% > | 2815 -~ Requestor connection edge | | |
Send internal is neighbor or edge search (requestor,
message (from reserved 0)
neighbor, ack)
2806 W
Retumn Dial requestor
I 2807

Send and receive
external message

Reserve edge of from
neighbor

] 2810
Add neighbor

| __ 2811
Remove neighbor

2812 | —

Hang up

¥

AB-AB 001427

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 95 of 190 PagelD #: 42588

U.S. Patent Jun. 21, 2005 Sheet 34 of 39 US 6,910,069 Bl

resp. from neighbor
message

(Hnndle edge seaxch) origin
1

Fig. 29

Note connection edge
search response

902
Edge selected

Y 203

Reserve edge of from

neighbor

2904

Remove from neighbor

2805
Court neighbor

Fill hole (self)

>

AB-AB 001428

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 96 of 190 PagelD #: 42589

U.S. Patent Jun. 21, 2005 Sheet 35 of 39 US 6,910,069 Bl

| Broadcast) message

Fig. 30

Generate internal

message

3003

Set message sequence
number

3004

Distribute internal
message

((rewm)

AB-AB 001429

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 97 of 190 PagelD #: 42590

U.S. Patent

Fig. 31

Jun. 21, 2005

{ Acquire message)

3101

Sheet 36 of 39

Pop message queue

o)

Return false)

US 6,910,069 B1

AB-AB 001430

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 98 of 190 PagelD #: 42591

U.S. Patent Jun. 21, 2005 Sheet 37 of 39 US 6,910,069 Bl

@ndle condition ch@

Fig. 32
1 3203 Select a nelghbcazorz 0
—== ele
Set upo}n:esfgggo\:;th list of sending process
not my neighbor
1 3204 | 3206
. Send external message

Send internal message to selected neighbor

1 3007
Add neighbor

AB-AB 001431

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 99 of 190 PagelD #: 42592

U.S. Patent Jun. 21, 2005 Sheet 38 of 39 US 6,910,069 Bl

C Handle condition

repair statement

Fig. 33 301

N

Y
3302

Select a neighbor not
involved in condition

3303
- Remove selected ‘

neighbor

o ——

3304

Add neighbor

Crn)

AB-AB 001432

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 100 of 190 PagelD #: 42593

U.S. Patent Jun. 21, 2005 Sheet 39 of 39 US 6,910,069 Bl
Handle condition
double check Fig. 3 4

Same set of

neighbors

Create list of neighbors

3404

3407

Send internal message
to-from neighbor

Reset diameter to 1

3405
Send internal message

(Return)

AB-AB 001433

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 101 of 190 PagelD #: 42594

US 6,910,069 B1

1
JOINING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEI.,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNEL,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. (09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,” filed on Jul. 31,
2000; U.S. patent application Ser. No. (09/629,043, entitled
“AN INFORMATION DELIVERY SERVICE,” filed on Jul.

31, 2000, now U.S. Pat. No. 6,714,966; U.S. patent appli-)

cation Ser. No. 09/629,024, entitled “DISTRIBUTED CON-
FERENCING SYSTEM,” filed on Jul. 31, 2000; and U.S.
patent application Ser. No. 09/629,042, entitled “DISTRIB-
UTED GAME ENVIRONMENT,” filed on Jul. 31, 2000,
the disclosures of which are incorporated herein by refer-
ence.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-to-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each ol these communications
techniques have their advantages and disadvantages, but
none is particularly well suited to the simultaneous sharing
of information among computers that are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely manner to all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. For example, each
participating process would need to manage its direct con-
nections to all other participating processes. Programmers,

however, find it very difficult to manage single connections,

and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the number of possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various
clients who are sharing the information. The server functions
as a ccntral authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), database servers,
and the common object request broker architecture

10

30

40

45

50

60

65

2

(“CORBA™). Client/server middleware systems are not par-
ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
sharcd. Such polling places a very high overhcad on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.
Such a callback technique presents a performance bottleneck
because a single server needs 1o callback to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.c., the server) would prevent communications
between any of the clients.

‘I'he multicasting network protocols allow the sending of
broadcast messages 1o multiple recipients of a network. The
current implementations of such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) to sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
rely on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus, it
is neither suitable nor desirable to use peer-to-peer middle-
ware systems when more than a small number of partici-
pants is desired. In addition, the underlying architecture of
the '1.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network.
That is, cach message must pass through the root node in
order to be received by all participants.

It would be desirable to have a reliable communications
nctwork that is suitablc for the simultancous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected o a broadceast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new computer Z to the broadcast channel.

FIG. 4A illustrates the broadcast channel of FIG. 1 with
an added computer.

FIG. 4B illustratcs the broadeast channcl of FIG. 4A with
an added computer.

FIG. 4C also illustrates the broadcast channel of FIG. 4A
with an added computer.

FIG. 5A illustrates the disconnecting of a computer from
the broadcast channel in a planned manner.

FIG. 5B illustrales the disconnecting of a compuler [rom
the broadcast channel in an unplanned manner.

FIG. 5C illustrates the neighbors with empty ports con-
dition.

FIG. 5D illustrates two computers that are not neighbors
who now have emply ports.

AB-AB 001434

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 102 of 190 PagelD #: 42595

US 6,910,069 B1

3

FIG. SE illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. SE when in the
large regime.

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment.

FIG. 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment.

FIG. 10is a flow diagram illustrating the processing of the
contact process routine in one embodiment.

FIG. 11 is a How diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 151is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine.

I'lG. 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 1s a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

I'lG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing of the -

handle connection edge search response rouline in one
embodiment.

FIG. 30 s a flow diagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31is a flow diagram illustrating the processing of the
acquirc message routine in one embodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment.

10

30

40

45

50

60

65

4

FIG. 34 is a flow diagram illustrating the processing of the
handle condition double check routine.

DETAILED DESCRIPTION

A broadcast technique in which a broadcast channel
overlays a point-to-point communications network is pro-
vided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
nel. In one embodiment, the broadcast technique provides a
logical broadcast channel to which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast
channel. Each computer that is connected to the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system 1o send messages to each other connected computer
using each computer’s address. Thus, the broadcast tech-
nique effectively provides a broadcast channel using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (i.e.,
edges) between host computers (i.c., nodes) through which
the broadcast channel is implemented. In one embodiment,
cach computer is connected to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To broadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message to each computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of
the conncetions to its ncighbors fail. The graph uscd by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes Al represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message to each
computer on the broadeast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need to
traverse between each pair of computers is the “distance”
between the computers (i.e., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is onc because computer A is dircetly
connected to computer F. The distance between computers A
and B is two because there is no direct connection between
computers A and B, but computer F is directly connected to

AB-AB 001435

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 103 of 190 PagelD #: 42596

US 6,910,069 B1

5

computer B. Thus, a message originating at computer A
would be sent directly to computer F, and then sent from
computer F to computer B. The maximum of the distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than (wo connections Lo reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a broadcast channel. The diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
1215, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
computers to the broadcast channel (i.e., composing the
graph), (2) the broadeasting of messages over the broadcast
channel (ie., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.c.,
decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadecast channel, the computer seeking
the connection first locates a computer that is currently fully
connected to the broadcast channel and then establishes a
connection with four of the computers that are already
connected to the broadcast channel. (This assumes that there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connecled, the broadeast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the

small regime is described below in detail. When five or more :

computers are connected, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channel is in the large regime, unless
specified otherwise.) Thus, the process of connecting to the

broadcast channel includes locating the broadcast channel, 33

identifying the neighbors for the connecting computer, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers (i.e., to
be the seeking computer’s neighbors) (o which the secking
computer is to connect. Each of these four computers then
cooperates with the seeking computer to effect the connect-
ing of the sccking computer to the broadcast channcl. A
computer that has started the process of locating a portal
computer, but does not vet have a neighbor, is in the

“seeking connection state.” A computer that is connected to :

at least one neighbor, but not yet four neighbors, is in the
“partially connccted state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of :

the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies two pairs of computers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (two from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustratc the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

5

3
=]

40

45

6

D are the two pairs that are identified as the neighbors for the
new computer Z. The connections between each of these
pairs is broken, and a connection between computer Z and
each of computers B, C, D, and E is established as indicated
by FIG. 3B. The process of breaking the connection between
two ncighbors and rcconnecting cach of the former ncigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four of the ports are referred to as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
messages either through their internal ports of their connec-
tion or through their external ports. A seeking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technique establishes
the computer connections using the TCP/IP communications
protocol, which is a point-to-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space™ that
is shared among all the processes that may execute on that
computer. The ports are identified by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (e.g., port 80 for HT'TP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected to the broadcast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dvnamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive
non-broadcast messages through its external port. A seeking
compuler (ries “dialing” (he port numbers ol the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers when it is connected
to or attempting to connect to the broadeast channel and its
call-in port is dialed. (In this description, a telephone meta-
phor is used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicatcs through that transfcr-to port, which is the cxtcrnal
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The secking
computer then communicates via that external port to
request the portal computer to assist in connecting the
seeking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadcast technique
uses a hashing algorithm to select the port number order,
which may result in improved performance.

A seeking computer could connect to the broadcast chan-
ncl by connecting to computers cither dircetly connccted to
the found portal computer or directly connected to one of its
neighbors. A possible problem with such a scheme for
identifying the neighbors for the secking computer is that the

AB-AB 001436

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 104 of 190 PagelD #: 42597

US 6,910,069 B1

7

diameter of the broadcast channel may increase when each
secking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conceptually, the graph
becomes elongated in the direction of where the new nodes
arc added. FIGS. 4A—4C illustratc that possible problem.
FIG. 4A illustrates the broadcast channel of FIG. 1 with an
added computer. Computer J was connected to the broadcast
channel by edge pinning edges C—D and E-H to computer
J. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an
added computer. Computer K was connected to the broad-
cast channel by edge pinning edges E-J and B—C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G-A, A-E, and E-K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D—-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
selection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
four neighbors of a computer in the seeking connection state.
The random selection technique tends to distribute the
connections to new seeking computers throughout the com-
puters ol the broadeast channel which may resull in smaller
overall diamelters.

Broadcasting Through the Graph

As described above, each computer that is connected to :

the broadecast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channel. The computer that
originates a message o be broadcast sends that message 1o

each of its four neighbors using the internal connections. 33

When a computer receives a broadcast message from a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives 1o its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the compulers is 3N+1, where
N is the number of computers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copics
of the message.

The redundancy of the message sending helps to ensure

the overall reliability of the broadcast channel. Since each :

computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the

internal connection between two computers is slow, each :

computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbers its own
messages sequentially. Because of the dynamic nature of the
broadcast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a cerfain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. The first
message may have to travel a distance of four to reach the

5

3
=]

40

45

8

receiving computer. The second message only has to travel
a distance of one. Thus, it is possible for the second message
to reach the receiving computer before the first message.

‘When the broadcast channel is in a steady state (i.e., no
computers connecling or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
cach computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwarded on by its
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is to have each computer
queue all the messages that it receives until it can send them
in their proper order to its neighbors. This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadecast channel. Another solution
that may have less impact on the propagation speed is to
queue messages only at computers who are neighbors of the
newly connected computers. Each already connected neigh-
bor would [orward messages as il receives them (o its other
neighbors who are not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In one embodiment, the already connected neighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
computer. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
embodiment, each computer may queue messages and only
[orwards 1o the newly connected compuler those messages
as the gaps are filled in. For example, a computer might
receive messages 4 and 5 and then receive message 3. In
such a casc, the alrcady connected computer would forward
queue messages 4 and 5. When message 3 is finally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second set of messages contains a message that is ordered
carlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordercd messages.

Decomposing the Graph

A connected computer disconnects from the broadcast

channel either in a planned or unplanned manner. When a

AB-AB 001437

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 105 of 190 PagelD #: 42598

US 6,910,069 B1

9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnecting computer. When a neighbor
receives the disconnect message, it (ries to connect to one of
thc computers on the list. In onc cmbodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
trv to connect to the fourth computer in the list. If a computer
cannot connect (e.g., the first and second computers are
already connected), then the computers may Iry connecting
in various other combinations. If connections cannot be
established, each computer broadcasts a message that it
needs to establish a connection with another computer.
When a computer with an available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. 5A-5D illustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decides 1o disconnect, it sends its list of neighbors to each of
its neighbors (computers A, E, F and I) and then disconnects
from each of its neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F.

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-
nection when each attempts to send its next message to the
now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
nection (i.e., it has a hole or empty port). When a connected
computer detects that one of its neighbors is now

disconnected, it broadcasts a port connection request on the 3

broadcast channel, which indicates that it has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computer that is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port 10 establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnected in an unplanned manner. When each of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, cach ncighbor broadeasts a port connection
request indicating that it needs to fill an empty port. As
shown by the dashed lines, computers F and I and computers
A and E respond to each other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are

already connected and cannot fill their empty ports by 3

connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Each neighbor
broadcasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives the port connection request from the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channel is in the small regime. The condition can
only be corrceted when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. To detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to

10

30

b
o

40

45

50

60

65

10

receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includes a list of the neighbors
of the sending computer. When the receiving computer
receives the list, it compares the list to its own list of
ncighbors. If the lists arc diffcrent, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects from one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have had a port filled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
are not neighbors, then they will connect 1o each other when
they receive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deler-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whether it has the same set of neighbors as the
sending computer. If so, the broadcast channel is in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and I responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E, are already neighbors, which gives rise to the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E has a different set of neighbor (i.e., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer E and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one of its
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
cmpty ports and arc not currcntly neighbors. Thercfore,
computers E and G can connect to each other.

FIGS. 5E and 5F further illustrate the neighbors with

empty ports condition. FIG. 5E illustrates the neighbors with

AB-AB 001438

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 106 of 190 PagelD #: 42599

US 6,910,069 B1

11

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
cach computer broadcasts a port connection request when it
detects the disconnect. When computer A receives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B. Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channel is
in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the
large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channel is in
the large regime because it has a set of neighbors that is

different from computer B. The edges extending up from 2

computer C and D indicate connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message to one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries o connect (o
computer B and the neighbor from which it disconnected
tries to connect to computer A.
Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uses five user port numbers on each computer: one external
port and four internal ports. Generally, user ports cannot be

statically allocated to an application program because other 33

applications programs executing on the same computer may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
attlempting to connect to) the broadcast channel, then the
seeking computer would eventually find the call-in port. [f

the portal computer is not connected, then the seeking :

computer would eventually dial every user port. In addition,
if each application program on a computer tried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because

many of the low-ordered port numbers would be used by :

other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time to locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm to identify the port number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port order. The
algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each port number once. In addition, every
time the algorithm is executed on any computer for a given

5

3
=]

30

40

45

12

channel type and channel instance, it generates the same port
ordering. As described below, it is possible for a computer
to be connected to multiple broadcast channels that are
uniquely identified by channel type and channel instance.
The algorithm may be “seeded” with channel type and
channcl instance in order to gencrate a unique ordering of
port numbers for each broadcast channel. Thus, a seeking
computer will dial the ports of a portal computer in the same
order as the portal computer used when allocating its call-in
port.

If many compulers are at the same time seeking connec-
tion to a broadcast channel through a single portal computer,
then the ports of the portal computer may be busy when
called by seeking computers. The seeking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, each seeking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the seeking computers would use different
orderings, the likelihood of [inding a4 busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight secking computers
could be simultancously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can connect to the broadcast channel
has a list of one or more portal computers through which it
can connect to the broadcast channel. In one embodiment,
each computer has the same set of portal computers. A
seeking computer locates a portal computer that is connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. If
no call-in port is found, then the seeking computer would
select the next portal computer and repeat the process until
a portal computer with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of cach portal computer arc dialed until a portal computer
fully connected to the broadcast channel is found. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The seeking computers may have a maximum
search depth, that is the number of ports that it will dial when
seeking a portal computer that is fully connected. If the
seeking computer exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
seeking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connccted computer.

When a seeking computer locates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 001439

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 107 of 190 PagelD #: 42600

US 6,910,069 B1

13

broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect 1o
each other, then two disjoint broadcast channels would be
formed. Each seeking computer can share its experience in
trving to locatc a portal computer with the other sccking
computer. In particular, if one seeking computer has
searched all the portal computers to a depth of eight, then the
one secking computer can share that it has searched to a
depth of eight with another secking computer. If that other
seeking computer has searched to a depth of, for example,
only four, it can skip searching through depths five through
cight and that other secking computer can advance its
searching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannol locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two separate broadcast channels would be formed.
Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting
computer are preferably selected randomly from the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge ol the broadcast channel. Rather, cach compulter
has local knowledge of itself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of anv one computer (actually any three
computers when in the 4-regular and 4-connect form) will
not cause the broadcast channel to fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal computer sends an
edge connection request message through one of its internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled lar enough (o represent a randomly
selected computer. That receiving computer will offer the
internal connection upon which it received the edge con-
ncction request message to the secking computer for edge
pinning. Of course, if either of the computers at the end of
the offered internal connection are already neighbors of the
secking computer, then the seeking computer cannot connect
through that internal connection. The computer that decided
that the message has traveled far enough will detect this
condition of already being a neighbor and send the message
to a randomly sclected neighbor.

In one embodiment, the distance that the edge connection :

request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance to travel before sending the mes-
sage on. The computer that receives a message with a
distance to travel that is zero is considered to be the
randomly selected computer. If that randomly selected com-
putcr cannot conncct to the secking computer (c.g., becausc
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its
neighbors with a new distance to travel. In one embodiment,

10

30

40

45

50

60

65

14

the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained
by each computer connected to the broadcast channel, the
computers need not generally be awarce of the diameter of the
broadcast channel. In one embodiment, each message sent
through the broadcast channel has a distance traveled field.
Each computer that forwards a message increments the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-
puter receives a message that has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter
message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that
an edge connection request message should travel.
External Data Representation

The computers connected to the broadcast channel may
internally store their data in different formats. For example,
one computer may use 32-bit integers, and another computer
may use 64-bit integers. As another example, one computer
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous compulers, the messages sent over the broadcast
channel may use the XDR (“eXternal Data Representation™)
format.

The underlying peer-to-peer communications protocol
may send multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. The retrieval of each
message may require two calls to the operating system: one
to retrieve the size of the next message and the other to
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcome the inefficiencies of such repeated calls, the broad-
cast technique in one embodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
nexl, [or example, 1,024 bytes [rom the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
cach invocation to determine whether another block of 1,024
byvtes needs to be retrieved from the operating system. The
invocation of XDR routines do not involve system calls and
are thus more efficient than repeated system calls.
M-Regular

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 6, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a seeking computer 1o the broadcast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connccted (in the stcady statc). If the number of internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd number of internal connections.

AB-AB 001440

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 108 of 190 PagelD #: 42601

US 6,910,069 B1

15

In such a situation, the broadcast network is neither
m-regular nor m-connected. When the next computer con-
ncets to the broadcast channcl, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection o that broadcast channel. More generally, a
network of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadecast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast
channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Each computer process can connect
to one or more broadcast channels. The broadcast channels
can be identified by channel type (e.g., application program
name) and channel instance that represents separate broad-
cast channels for that channel type. When a process attempts
to connect to a broadcast channel, it seeks a process cur-
rently connected to that broadcast channel that is executing
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 executing as separate processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to which it is connected. The broadcaster
component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcaster component may execute as a
separate process or thread from the application program. In
one embodiment, the broadcaster component provides func-
tions (e.g., methods of class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notify the application
program that the connection has been completed, that is the
process enters the [ully connected state. The broadeaster
component may also provide an acquire message function
that the application program can invoke to retrieve the next
message that is broadcast on the broadcast channcl.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

‘The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are computer-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-recadable media, such as a com-
munications link.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The

10

40

45

50

60

65

16

broadcaster component includes a connect component 701,
an external dispatcher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadcast channel. T'he connect component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal computer
component 705 to identify a portal computer that is con-
nected to the broadcast channel and invokes the connect
request component 706 o ask the portal computer (il [ully
connected) to select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
message, and invokes the appropriate handling routine 708.
The received broadcast messages are stored in the broadcast
message queue 709. The acquire message component is
invoked to retrieve messages from the broadcast queue. The
broadcast component is invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
components.

EXTERNAL MESSAGES

Message Type

secking connection__call

Description

Indicates that a seeking process would like to
know whether the receiving process is fully
connecled o the breadeast channgl

Indicates that the sending process would like
the receiving process to initiate a connection
of the sending process to the broadeast
channel

Indicates that the sending process is
proposing an edge through which the
receiving process can connect to the
broadeast channel (ie., edge pinning)
Indicates that the sending process is
proposing a port through which the
receiving process can connect to the
broadeast channel

Indicates that the sending process is
connected to the breadeast channel

Indicates that the receiving process should
disconnect from one of its neighbors and
connect to one of the processes involved in
the neighbors with empty port condition

connection__request__czll

edge_proposal__call

port__connection__call

connected__stmt

condition repair stmt

INTERNAL MESSAGES

Message Type Description

broadcast__stmt Indicates a message that is being
broadcast through the broadeast channel
for the application programs

Indicates that the designated process is
looking for a port through which it can
connect to the broadeast channel
Indicates that the requesting process is
looking for an edge through which it
can connect to the broadcast channel

connection__port__search_stmt

connection__edge__search__call

AB-AB 001441

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 109 of 190 PagelD #: 42602

US 6,910,069 B1

17

-continued

INTERNAL MESSAGES

Message Type Description

connection__edge_search__resp Indicates whether the edge between this
process and the sending neighbor has
been accepted by the requesting party
Indicates an estimated diameter of the
broadcast channel

Indicates to reset the estimated diameter
to indicated diameter

Indicates that the sending neighbor is
disconnecting from the broadcast
channel

Indicates that neighbors with empty port
condition have been delected

Indicates that the neighbors with empty
ports have the same set of neighbors
Indicates that the broadcast channel is
being shutdown

diameter__eslimate__stmt
diameter__resel__stmt

disconnect__stmt

condition__check__stmt
condition__double_ check _stmt

shutdown__stmt

Flow Diagrams

FIGS. 8-34 are flow diagrams illustrating the processing
of the broadcaster component in one embodiment. FIG. 8 is
a flow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (e.g., application name) and channel instance (e.g.,
session identifier), thal identifies the broadcast channel (o
which this process wants to connect. The routine 1s also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the seeking connection
state. When a portal computer is located that is connected

and this routine connects to at least one neighbor, this 33

process enters the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is 1o communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
connect time to the current time. The connect time is used to
identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of a certain channel type and channel instance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may try to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In

block 803, the routine invokes the seek portal computer :

routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, if the seek portal computer routine is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805, else
the routine returns an unsuccesstul indication. In decision
block 805, if no portal computer other than the portal
computer on which the process is executing was located,
then this is the first process to fully connect to broadcast
channel and the routine continues at block 806, else the

10

30

40

45

50

60

65

18

routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the external dispatcher for processing messages
received through this process’ external port for the passed
channcl typc and channcl instancc. When a message is
received through that external port, the external dispatcher is
invoked. The routine then returns. In block 808, the routine
installs an external dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth. If
a portal computer is located at that search depth with a
process that is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks
902-911, the routine loops selecting each search depth until
a process is located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a [ailure
indication, else the routine continues at block 904, In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine selects the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 to select
the next search depth, else the routine continues at block
906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907, if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 1o select the next portal computer. The dialing will
be successful if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance ol a process executing on that portal computer. In
block Y08, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is fully connected 1o the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this
process as a portal computer and processes that call. The
routine then loops to block 904 to select the next portal
computer.

FIG. 10is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking
conncction__call) to the answering process indicating that a
seeking process wants to know whether the answering
process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message

AB-AB 001442

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 110 of 190 PagelD #: 42603

US 6,910,069 B1

19

from the answering process. In decision block 1003, if the
external response message is successfully received (i.c.,
secking connection_resp), then the routine continues at
block 1004, else the routine returns. Wherever the broadcast
component requests 1o receive an external message, it sets a
timec out period. If the cxternal message is not reccived
within that time out period, the broadcaster component
checks its own call-in port to see if another process is calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
eral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1005, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006, the routine

adds the answering process to a list of fellow seecking 2

processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. This routine
requests a process of a portal computer that was identified as
being fully connected to the broadcast channel to initiate the
connection of this process to the broadcast channel. In
decision block 1101, il at least one process ol a portal
computer was located that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
seeking computer may always search its entire search depth
and find multiple portal computers through which it can

connect to the broadcast channel. In block 1102, the routine 3

restarts the process of connecting to the broadcast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage (o the dialed process requesting a connection 10 the
broadcast channel (i.c., connection__request__call). In block
1106, the routine receives the response message (i.e.,
conneetion_request_resp). In decision block 1107, if the
response message is successfully received, then the routine
continues at block 1108, else the routine continues at block

1113. In block 1108, the routine sets the expected number of :

holes (i.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to

three. In block 1109, the routine sets the estimated diameter :

of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues at block 1113. In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. ‘This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
rcgime. When in the large regime, the random walk scarch
for a neighbor is performed. In block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

10

30

40

45

60

65

20

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is
invoked to identify whether a fellow seeking process is
attempting to establish a connection to the broadcast channel
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202, if
the answer is successful, then the routine continues at block
1203, clse the routine returns. In block 1203, the routine
receives the external message from the external port. In
decision block 1204, if the type of the message indicates that
a seeking process is calling (i.e., seeking connection_ call),
then the routine continues at block 1205, else the routine
returns. In block 1205, the routine sends an external message
(1.e., seeking_connection__resp) to the other seeking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process 1o a list of fellow seeking
processes and then returns. This list may be used if this
process can find no process that is fully connected to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting to the broadcast channel. For example, a fellow
seeking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a [low diagram ol the processing of the achieve
connection routine in one embodiment. This routine sets the
state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the connection state of this process to fully connected. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message to them (i.e., connected__stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 141s a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This rouline loops processing cach message until
all the received messages have been handled. In block 1401,
the routine answers (e.g., picks up) the external port and
retricves an external message. In decision block 1402, if a
message was retrieved, then the routine continues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.e., seeking
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (i.e.,
connection__request__call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (ie., edge
proposal_call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (ie., port__connect_call), then the
routinc invokes the handle port conncction call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message type is a connected
statement (i.e., connected stmt), the routine invokes the

AB-AB 001443

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 111 of 190 PagelD #: 42604

US 6,910,069 B1

21

handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition__repair_stmt), then the routine invokes the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to proccss the next message. After cach
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continues at block 1401 to receive the next message.

FIG. 15is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking process is calling to
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message 1o indicate that this process
is fully connected to the broadcast channel and continues at

block 1505. In block 1503, the routine sets a message to 2

indicate that this process is not fully connected. In block
1504, the routine adds the identification of the secking
process to a list of fellow seeking processes. If this process
is not fully connected, then it is attempting to connect to the
broadcast channel. In block 1505, the routine sends the
external message response (i.e., seeking connection_ resp)
to the seeking process and then returns.

FIG. 16 1s a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

This routine is invoked when the calling process wants this :

process to initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process to establish an internal connection with this process
(e.g., if in the small regime) or starts the process of identi-

fying a process to which the calling process can connect. In 3

decision block 1601, if this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, else the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
number of holes that the calling process should expect in the
response message. In block 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
Lo the calling process. This process is ready Lo connect when
the number of its holes is greater than zero and the calling
process is not a neighbor of this process. In block 1606, the
routine sends to the calling process an cxternal message that
is responsive to the connection request call (i.e.,
connection__request__resp). In block 1607, the routine notes

the number of holes that the calling process needs to fill as :

indicated in the request message. In decision block 1608, if
this process is ready to connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add

neighbor routine to add the calling process as a neighbor. In :

block 1610, the routine decrements the number of holes that
the calling process needs to fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
estimated diameter is greater than one (i.e., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to conncet to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be

5

3
=]

40

45

22

filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
nection edge search routine. The invoked routine is passed
to an indication of the calling process and the random walk
distancc. In onc cmbodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616, if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification of the calling process.
The fill hole routine broadcasts a connection port search
statement (i.e., connection__port_search_stmt) for a hole of
a connected process through which the calling process can
connect to the broadecast channel. The routine then returns.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine sets
a flag to indicate that the neighbor has not yet received the
broadcast messages from this process. This flag is used to
ensure that there are no gaps in the messages initially sent to
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection slale, then this process
1s connecting to 1ts first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process to partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an internal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that new neighbor
through the internal port of that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives through an internal connection so that it can
send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if the number of holes of this process equals the
expected number of holes, then this process is fully con-
nccted and the routine continucs at block 1710, clsc the
routine continues at block 1711. In block 1710, the routine
invokes the achieve connected routine to indicate that this
process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to
this process for edge pinning, which in this case is no longer
needed.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connect a requesting process to a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zcro, then the routine continucs at block 1804, clsc the
routine continues at block 1802. In decision block 1802, if
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast

AB-AB 001444

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 112 of 190 PagelD #: 42605

US 6,910,069 B1

23

channel is in the small regime and the routine continues at
block 1803. In decision block 1803, if the requesting process
is a neighbor of this process, then the routine returus, else the
routine continues at block 1804. In blocks 18041807, the
routine loops attempting to send a connection edge search
call intcrnal message (i.c., connectioncdge_ scarch_ call)
to a randomly selected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the neighbors of this process have already
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, the routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Whenever such a situation

is detected by the broadcaster component, it attempts to find 2

another neighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In block 1808, the routine notes that the
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighbor is
reserved if the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

I'lG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposes to connect an edge between the proposing process
and one of its neighbors to this process for edge pinning. In

decision block 1901, if the number of holes of this process 3

minus the number of pending edges is greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, else the routine continues at
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighbor of this process, then the routine
continues at block 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, il a proposed neighbor is already
pending as a proposed neighbor, then the routine continues
at block 1911, else the routine continues at block 1907. In
block 1907, the routine sends an edge proposal response as
an external message to the proposing process (i.e., edge__
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing

process on the external port as a neighbor. The routine then :

returns. In block 1911, the routine sends an external message
(ie., edge_proposal_resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holes is odd, then the routine continues at block 1913, else
the routine returns. In block 1913, the routine invokes the fill
hole routine and then returns.

F1G. 201s a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an cxternal message is received
then indicates that the sending process wants to connect 1o
one hole of this process. In decision block 2001, if the
number of holes of this process is greater than zero, then the

10

30

40

45

50

LN
wn

60

65

24

routine continues at block 2002, else the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
else the routine continues to block 2003. In block 2003, the
routine sends a port connection response external message
(i.c., port_conncction resp) to the scnding process that
indicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
connection response external message to the sending process
that indicates that is okay to connect this process. In decision
block 2005, if the sending of the message was successful,
then the routine continues at block 2006, else the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighbor of this process and then returns. Tn block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routine then returns.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment. This routine is passed
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message to other processes. If another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection porl search stalement internal mes-
sage (1.e., connection__port__search__simt). In decision
block 2102, if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG. 22 1s a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This routine
is passed an indication of the neighbor who sent the internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether 10 change the
estimated diameter of the broadcast channel based on the
information in the received message. In decision block 2203,
il this process is the originaling process ol the message or
the message has already been received (i.e., a duplicate),
then the routine ignores the message and continues at block
2208, clsc the routine continucs at block 2203A. In decision
block 2203A, if the process is partially connected, then the
routine continues at block 22038, else the routine continues
at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.e., broadcast__
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208, if the partially connected buffer is full, then
the routine continues at block 2209, else the routine contin-
ues at block 2210. The broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects to new
ncighbors. If, howcver, that buffer becomes full, then the
process assumes that it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,

AB-AB 001445

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 113 of 190 PagelD #: 42606

US 6,910,069 B1

25

the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is empty, then the
routine returns, else the routine continues at block 2212. In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The reccived
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast message itself. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from each origi-
nating process until it can send them in sequence number
order 1o the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for each originating
process and then returns,

FIG. 24 1s a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.
This routine sends the broadeast message (o cach ol the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine sends the message to the selected neighbor
and then loops to block 2401 1o select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the 3:

handle connection port search statement routine in one
embodiment. This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message 1o each of its neighbors other
than the sending neighbor. In decision block 2602, if the
number of holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, il the requesting process is a neighbor,
then the routine continues at block 2605, clse the routine
continues at block 2604. In block 2604, the routine invokes
the court neighbor routine and then returns. The court
ncighbor routine conncets this process to the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message (i.e., condition_ check) that includes a list of
this process’ neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
rcturns, clsc the routine continucs at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the number of holes of this process is greater
than zero, then the routine continues at block 2704, else the

10

30

40

45

50

wn
wn

60

65

26

routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.e., port__
connection__call) 1o the prospective neighbor and receives
its response (i.e., port_connection_ resp). Assuming the
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent the message and the message itself. This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk 1s not complete and the routine continues at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this
process and the sending neighbor is reserved because it has
already been offered to a process, then the routine continues
at block 2805, clse the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicator that alternatively indicates to continue
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the
routine sends an edge proposal call external message (i.c.,
edge proposal_call) and receives the response (i.e., edge
proposal__resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, else the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending neighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add ncighbor routine. In block 2811, the routine
removces the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813, if this process is the requesting
process and the number of holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.e., connection__
edge_search__response) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadcaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flow diagram illustrating the processing of the
handle conncction cdge scarch responsc routine in onc
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 001446

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 114 of 190 PagelD #: 42607

US 6,910,069 B1

27

search response (i.e., connection_edge search_resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continucs at block 2903, clsc
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, if the invoked routine was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is
invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
at least one neighbor, then the routine continues at block
3002, else the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generales an internal message of the broadcast
statement type (1.e., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine to broadcast the message on the broadcast channel.
The routine returns.

FIG. 31is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire

message routine may be invoked by the application program 3

or by a callback routine provided by the application pro-
gram. This routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FIGS. 32-34 are flow diagrams illustrating the processing
of messages associated with the neighbors with empty ports
condition. FIG. 32 is a llow diagram illustraling processing
of the handle condition check message in one embodiment.
This message is sent by a neighbor process that has one hole
and has received a request to conncet to a hole of this
process. In decision block 3201, if the number of holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202, if the sending neighbor and this process have the
same set of neighbors, the routine continues at block 3203,
else the routine continues at block 3205. In block 3203, the

routine initializes a condition double check message (i.e., :

condition__double_ check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor of the sending process that is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.c., condition_repair__stmt) externally to
the selected process. In block 3207, the routine invokes the
add ncighbor routinc to add the sclected ncighbor as a
neighbor of this process and then returns.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-

10

30

40

45

50

60

28

ment. This routine removes an existing neighbor and con-
nects to the process that sent the message. In decision block
3301, if this process has no holes, then the routine continucs
at block 3302, clse the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighbor of this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add neighbor routine to add the process
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34 is a flow diagram illustrating the processing of the
handle condition double check routine. This routine deter-
mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channel is in the
small regime. In decision block 3401, if this process has one
hole, then the routine continues at block 3402, else the
routine continues at block 3403. If this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighbors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, clsc the routine continues at block 3406. In decision
block 3403, if this process has no holes, is then the routine
returns, else the routine continues at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter resct
internal message (i.e., diameter__reset) indicating that the
estimated diameter is one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(i.e., condition_check stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
deseribed, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypted. Also, the channel instance or session identifier
may be a very large number (e.g., 128 bits) o help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast
channel. Accordingly, the invention is not limited except by
the claims.

What is claimed is:

1. A computer-based, non-routing table based, non-switch
based method for adding a participant to a network of
participants, each participant being connected to three or
more other participants, the method comprising:

identifying a pair of participants of the network that are

connected wherein a seeking participant contacts a
fully connected portal computer, which in turn sends an
edge connection request to a number of randomly
selected neighboring participants to which the seeking
participant is to connect;

disconnecting the participants of the identified pair from

each other; and

connecting each participant of the identified pair of par-

ticipants to the seeking participant.

2. The method of claim 1 wherein each participant is
conncceted to 4 participants.

3. The method of claim 1 wherein the identifying of a pair
includes randomly selecting a pair of participants that are
connected.

AB-AB 001447

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 115 of 190 PagelD #: 42608

US 6,910,069 B1

29

4. The method of claim 3 wherein the randomly selecting
of a pair includes sending a message through the network on
a randomly selected path.

5. The method of claim 4 wherein when a participant
receives the message, the participant sends the message to a
randomly sclected participant to which it is connccted.

6. The method of claim 4 wherein the randomly selected
path is proportional to the diameter of the network.

7. The method of claim 1 wherein the participant to be
added requests a portal computer to initiate the identifying
of the pair of participants.

8. The method of claim 7 wherein the initiating of the
identifying of the pair of participants includes the portal
computer sending a message to a connected participant
requesting an edge connection.

9. The method of claim 8 wherein the portal computer
indicates that the message is to travel a distance proportional
to the diameter of the network and wherein the participant
that receives the message after the message has traveled that

distance is one of the participants of the identified pair of 2

participanis.

10. The method of claim 9 wherein the certain distance is
twice the diameter of the network.

11. The method of claim 1 wherein the participants are
connected via the Internet.

12. The method of claim 1 wherein the participants are
connecled via TCP/IP conneclions.

10

30

13. The method of claim 1 wherein the participants are
computer processes.

14. A computer-based, non-switch based method for add-
ing nodes to a graph that is m-regular and m-connected to
maintain the graph as m-regular, where m is four or greater,
the method comprising:

identifying p pairs of nodes of the graph that are
connected, where p is one half of m, wherein a seeking
nodc contacts a fully connceted portal node, which in
turn sends an edge connection request to a number of
randomly selected neighboring nodes to which the
seeking node is to connect;

disconnecting the nodes of each identified pair from each
other; and

connecting each node of the identified pairs of nodes to

the sccking node.

15. The method of claim 14 wherein identifying of the p
pairs of nodes includes randomly selecting a pair of con-
nected nodes.

16. The method of claim 14 wherein the nodes are
computers and the connections are point-to-point commu-
nications connections.

17. The method of claim 14 wherein m is even.

AB-AB 001448

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 116 of 190 PagelD #: 42609

EXHIBIT 65

Case 1:16-cv-00453-RGA Document 492-1 lﬂmmmmw

a2 United States Patent
Holt et al.

21

US 6,732,147 B1
May 4, 2004

10y Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(")

LEAVING A BROADCAST CHANNEL.

Inventors: Fred B. Holt, Seattle, WA (US); Virgil

E. Bourassa, Bellevue, WA (US)

Assignee: The Boeing Company, Scattle, WA
(Us)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 719 days.
Appl. No.: 09/629,577
Filed: Jul. 31, 2000
Int. CL7 ... GOGF 15/16
US. Cl e 709/204; 7097227
Field of Search ..o, 709/204, 227,
709217
References Cited
U.S. PATENT DOCUMENTS
4,012,656 A 3/1990 Cain et al.
5,056,085 A 10/1991 Vu
5309437 A 5/1994 Perlman et al.
5426637 A 6/1995 Derby et al.
5,535,199 A 7/1996 Amri et al.
5,568,487 A 10/1996 Sitbon et al.
5,636,371 A 6/1997 Yu
5,673,265 A 9/1997 Gupta et al.
5,096,903 A 2/1997 Mahany
5,732,074 A 3/1998 Spaur et al.
5,732219 A 3/1998 Blumer et al.
5,734,865 A 3/1998 Yu
5,737,526 A 4/1998 Pcriasamy ct al.
5,754,830 A 5/1998 Butts et al.
5,761,425 A 6/1998 Miller
5,764,756 A 6/1998 Onweller
5,790,548 A 8/1998 Sistanizadeh et al.
5,790,553 A 8/1998 Deaton, Ir. et al.
5,799,016 A 8/1998 Onweller
5,802,285 A 9/1998 Hirviniemi
5,804,711 A 1/1999 Mairs et al.
(List continued on next page.)
A

OTHER PUBLICATIONS

Bondy et al. “Graph Theory With Applications” American
Elsevier Publishing Co. Inc. pp. 47-50 Secion 3.3.%
Yavatkar et al. “A Reliable Dissemination Protocol for
Interactive Collaborative Applications™ Proc. ACM Multi-
media, 1995 p.333-344 http:/citeseer.nj.nec.com/article/
yavatkar95reliable. html. *

Alagar, S. and Venkatesan, S., “Reliable Broadcast in
Mobile Wireless Networks,” Department of Computer Sci-
ence, University of Texas at Dallas, Military Communica-
tions Conference, 1995, MILCOM 95 Conference Record,
IEEE San Diego, California, Nov. 5-8, 1995 (pp. 236-240).
International Search Report for The Boeing Company, Inter-
national Patent Application No. PCT/US01/24240, Jun. 5,
2002 (7 pages).

U.S. patent application Ser. No. 09/629,570, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,576, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,575, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No.09/629,572, Bourassa et al.,
filed Jul. 31, 2000.

(List continued on next page.)

Primary Examiner—Patrice Winder
Assistant Examiner—David Lazaro
(74) Arntorney, Agent, or Firm—Perkins Coie T1.I.P

67 ABSTRACT

A method [or leaving a mullicast computer network is
disclosed. The method allows for the disconnection of a first
computer from a second computer. When the first computer
decides to disconnect from the second computer, the first
computer sends a disconnect message to the second com-
puter. Then, when the second computer receives the discon-
nect message from the first computer, the second computer
broadcasts a connection port search message to find a third
computer to which it can connect.

16 Claims, 39 Drawing Sheets

AB-AB 000779

A

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 118 of 190 PagelD #: 42611

US 6,732,147 B1
Page 2

U.S. PATENT DOCUMENTS

5,867,660 A 2/1999 Schmidt ct al.

5,867,667 A 2/1999 Butman et al.

5.870,605 A 2/1999 Bracho et al.

5,874,960 A 2/1999 Mairs et al.

5,890 080 A 5/1999 Wilf et al.

5907610 A 51999 Onweller

5928335 A 7/1999 Morita

5935215 A 8/1999 Bell et al.

5946316 A * 81999 Chenelal.ccoeevuneeee. 370/408
5948054 A 9/1999 Nielsen

5940975 A 9/1999 Batty et al.

5,056,484 A 9/1999 Rosenberg et al.

5974043 A 10/1999 Solomon

5,987 506 A 11/1999 Carler el al.

6,003,088 A 12/1999 Houston et al.

6,013,107 A 1/2000 Blackshear et al.

6,023,734 A 2/2000 Rateliff et al.

6,029,171 A 2/2000 Smiga et al.

6,032,188 A 2/2000 Mairs et al.

6,038,602 A 3/2000 Ishikawa

6,047,289 A 4/2000 Thorne et al.

6,073,177 A * 6/2000 Hebel et al. 709/228
6,004,676 A 7/2000 Gray et al.

6,199,116 Bl 3/2001 May et al.

6,216,177 Bl 4/2001 Mairs et al.

6,223,212 Bl 4/2001 Baity et al.

6,243 691 Bl 6/2001 Fisher el al.

6,252,884 B1 * 6/2001 Huntercooocrnnnn. 370/443
6,268,855 Bl 7/2001 Mairs et al.

6,271,839 Bl 8/2001 Mairs et al.

6,285,363 Bl 9/2001 Mairs el al,

6,304,928 Bl 10/2001 Mairs et al.

6,353,509 Bl * 3/2002 Bietal.oocoonenen 370/328
6,618,752 B1 * 9/2003 Moore et al. 709/217

OTHER PUBLICATIONS

U.S. patent application Ser. No. 09/629,023, Bourassa et al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,043, Bourassa ct al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,024, Bourassa ct al.,
filed Jul. 31, 2000.

U.S. patent application Ser. No. 09/629,042, Bourassa et al.,
filed Jul. 31, 2000.

Murphy, Patricia, A., “The Next Generation Networking
Paradigm: Producer/Consumer Model,” Dedicated Systems
Magazine—2000 (pp. 26-28).

The Gamer’s Guide, “First—Person Shooters,” Oct. 20, 1998
(4 pages).

The O’Reilly Network, “Gnutella: Alive, Well, and Chang-
ing Fast,” Jan. 25, 2001 (5 pages) http://www.open2p.com/
Ipt/ . . . [Accessed Jan. 29, 2002].

Oram, Andy, “Gnutella and Freenet Represents True Tech-
nological Innovation,” May 12, 2000 (7 pages) The O’Reilly
Network http://www.oreillynet.com/1pt . . . [Accessed Jan.
29, 2002].

Internetworking Technologies Handbook, Chapter 43 (pp.
43-1 —43-16).

Oram, Andy, “Peer—to—Peer Makes the Internet Interesting
Again,” Scp. 22, 2000 (7 pages) The O’Reilly Network
hitp:/linux.oreillynet.com/Lpt . . . [Accessed Jan. 29, 2002].
Monte, Richard, “The Random Walk for Dummies, "MIT
Undergraduate Journal of Mathematics (pp. 143-148).
Srinivasan, R., “XDR: External Data Representation Stan-
dard,” Sun Microsystems, Aug. 1995 (20 pages) Internet
RFC/STD/FYI/BCP Archives htip://www.fags.org/tlcs/
rfc1832.himl [Accessed Jan. 29, 2002].

ADatabeam Corporate White Paper, “A Primer on the T.120
Series Standards,” Copyright 1995 (pp. 1-16).

Kessler, Gary, C., “An Overview of TCP/IP Protocols and
the Internet,” Apr. 23, 1999 (23 pages) Hill Associates, Inc.
hitp:/Awww.hill.com/library/publications/t . . . [Accessed
Jan. 29, 2002].

Bondy, I.LA., and Murty, U.S.R., “Graph Theory with Appli-
cations,” Chapters 1-3 (pp. 1-47), 1976 American Elsevier
Publishing Co., Inoc., New York, New York.

Cormen, Thomas H. et al, Introduction to Algorithms,
Chapter 5.3 (pp. 84-91), Chapter 12 (pp. 218-243), Chapter
13 (p. 245), 1990, The MIT Press, Cambridge, Massachu-
setts, McGraw-Hill Book Company, New York.

The Common Object Request Broker: Architecture and
Specification, Revision 2.6, Dec. 2001, Chapter 12 (pp.
12-1-12-10), Chapter 13 (pp. 13-1-13-56) Chapter 16 (pp.
16-1 -16-26), Chapter 18 (pp. 18-1 —-18-52), Chapter 20
(pp. 20-1-20-22).

The University of Warwick, Computer Science Open Days,
“Demonstration on the Problems of Distributed Svstems,”
hitp://www.dcs.warwick.ac.u . . . [Accessed Jan. 29, 2002].

* cited by examiner

AB-AB 000780

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 119 of 190 PagelD #: 42612

U.S. Patent May 4, 2004 Sheet 1 of 39 US 6,732,147 Bl

m
~
Lo S

<

AB-AB 000781

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 120 of 190 PagelD #: 42613

U.S. Patent May 4, 2004 Sheet 2 of 39 US 6,732,147 Bl

ig. 2

AB-AB 000782

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 121 of 190 PagelD #: 42614

U.S. Patent May 4, 2004 Sheet 3 of 39 US 6,732,147 Bl
o $)
N
P ~
20
m D
m
QO
< NS
20
R
()
Ll

AB-AB 000783

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 122 of 190 PagelD #: 42615

U.S. Patent May 4, 2004 Sheet 4 of 39 US 6,732,147 Bl

(b1}
S
|.L -9

<

AB-AB 000784

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 123 of 190 PagelD #: 42616

U.S. Patent May 4, 2004 Sheet 5 of 39 US 6,732,147 Bl

@ a
A
[FN .E:Q

<

AB-AB 000785

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 124 of 190 PagelD #: 42617

U.S. Patent May 4, 2004 Sheet 6 of 39 US 6,732,147 Bl

m
O
-+
LL.S,;O
RS
<

AB-AB 000786

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 125 of 190 PagelD #: 42618

U.S. Patent May 4, 2004 Sheet 7 of 39 US 6,732,147 Bl

AB-AB 000787

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 126 of 190 PagelD #: 42619

U.S. Patent May 4, 2004 Sheet 8 of 39 US 6,732,147 Bl

AB-AB 000788

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 127 of 190 PagelD #: 42620

U.S. Patent May 4, 2004 Sheet 9 of 39 US 6,732,147 Bl
0
3
w

m
)
g
L. .
20
R

- §

O
=

AB-AB 000789

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 128 of 190 PagelD #: 42621

U.S. Patent May 4, 2004 Sheet 10 of 39 US 6,732,147 Bl

m
s
5
<

AB-AB 000790

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 129 of 190 PagelD #: 42622

U.S. Patent May 4, 2004 Sheet 11 of 39 US 6,732,147 Bl

()<

SF

ig.

ig. SE

AB-AB 000791

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 130 of 190 PagelD #: 42623

U.S. Patent May 4, 2004 Sheet 12 of 39 US 6,732,147 Bl
o
3
5 £ S
=y ©

g
1
1
Broadcaster/(

o
S) [E’
© @ w0 o
s _3 .« s s
-
2 S S
=1 [a5] w0 -]
A
o0
3
- -
o
3 - © —_
=
§58 E&2
538 ® o o § g =
- — — ::: -El
282 a g
af g &5 g
ICA < 2
<2 g £

AB-AB 000792

US 6,732,147 Bl

AB-AB 000793

Sheet 13 of 39

May 4, 2004

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 131 of 190 PagelD #: 42624
U.S. Patent

L 31
N Ssui g
4 a[pueH
1atoyedsi b _
[euaju] BOL uMMH o8essowr asuodsas
0L m eopvosg annboy 9A1909Y
. 3 60L 14072 L
. [osW |
dpuey
BOL 15eopROIg
1
Joyoredsip $17 O
[ewssug ¢
€0L
N Ssur g 1senbai
apuey jaciililug]
deq [[eo
L0L 904 P2UU0)
Jayojedsip ' enod (V] 72
[eWIXY [Sswg 395§ 103UU0)
0L S[pueH Q
¢ S0Z [0Z
0L
004

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 132 of 190 PagelD #: 42625

U.S. Patent May 4, 2004 Sheet 14 of 39 US 6,732,147 Bl

(Connect) (Channel Type,
Channel Instance,

Connect Aux Info)

801

Open call in port

802 Fig. 8

Set connect-time

803

Seek portal - computer
(channel type channel
instance)

Return (false))

806

Contacts

0

Achieve connection

807

808
Install external dispatcher

Install external dispatcher

809

" Connect request

(Return (true))

AB-AB 000794

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 133 of 190 PagelD #: 42626

U.S. Patent May 4, 2004 Sheet 15 of 39 US 6,732,147 Bl

Seek portal Channel Type
computer Channel Instance

| 902

Select next depth

All depths selected

N 904
Select next portal computer

>
1

All portal computers
selected

Contact process

l 909
Hang up selected portal
computer
911 910
Check for external Selected portal

call computer connected

AB-AB 000795

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 134 of 190 PagelD #: 42627

U.S. Patent May 4, 2004 Sheet 16 of 39 US 6,732,147 Bl

(Contact process)

1001
Send external message Fig 10

1002

Receive external message

Success

1006

Add as fellow seeking
computer

1005

Add as connected portal
computer

Answering process
connected

AB-AB 000796

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 135 of 190 PagelD #: 42628

U.S. Patent May 4, 2004 Sheet 17 of 39 US 6,732,147 Bl

(Connect request)

Fig. 11 1102

Restart

connected portal found

Dial call in port of portal
computer

Success

Y 1105
Send external message

1 1106

Receive external message

Success

Set expect holes from
response

| 1109
Set diameter from response

1112
Add neighbor

AB-AB 000797

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 136 of 190 PagelD #: 42629

U.S. Patent May 4, 2004 Sheet 18 of 39

heck for exte
call

1201

Answer

1202
N

US 6,732,147 Bl

Fig. 12

Success

1203

Receive external message

ype = = seeking

connecW

1205
Send external message

206
N

Sucoess/

Y
1207
Add other as fellow seeker

o)

AB-AB 000798

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 137 of 190 PagelD #: 42630

U.S. Patent May 4, 2004 Sheet 19 of 39 US 6,732,147 Bl

Echieve connecti@

Fig. 13

1301

Connection - state = fully

connected
1302
Notify fellow seekers

1303

Invoke connect call back

(" rem)

AB-AB 000799

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 138 of 190 PagelD #: 42631

U.S. Patent May 4, 2004 Sheet 20 of 39 US 6,732,147 Bl
@xtemal dispatch@ Fig. 1 4
~ 1401 1415

Pick up and receive
external message

Hang up

1416

Hang up

(Retlurn)
1404

Handle seeking
connection call

Message

1406

Handle connection
request call

1408

Handle edge proposal
call

1410

Handle port
connection call

1412

Handle connected
statement

Connected statement

1414

Handle condition
repair statement

Condition repair
statement

AB-AB 000800

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 139 of 190 PagelD #: 42632

U.S. Patent May 4, 2004 Sheet 21 of 39 US 6,732,147 Bl

Handle seeking Fi ig. 15
connection call
1502 1503
Set message to indicate Set message to not
connected connected
1504
Add other as fellow
seeking process

1505

Send external message

AB-AB 000801

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 140 of 190 PagelD #: 42633

U.S. Patent May 4, 2004 Sheet 22 of 39
andle connection
request call
1601 160
N Hang up
03
Set newcomer's
holes_to_expect
I 1604
Set diameter estimate in
response .
| 1605 F ig. 16
Set ready in response
I 160
Sent external message
connect request resp.
I 1607
Set newcomer's
holes_to_fill
608 1609
- Add neighbor
1611 N[« 1610
Newcomer's
holes_to_fill --
]
1614
Forward connection
edge search
l 1615

holes_to_fill > Q

Holesto fill-=2Z

1617

Fill hole (requestor)

(Retrt:rn)

US 6,732,147 Bl

AB-AB 000802

U.S. Patent

May 4, 2004

(Add neighbor)

170°

Identifies calling party

1702

Sets neighbor to
messages pending

703
g s>

Sheet 23 of 39

Fig. 17

1704

Connection_state =
partially connected

|

N
1705
Add as neighbor
1706

Install interal dispatcher

for new neighbor

1708

Send interal stream

1710

Achieve connected

1712

Purge pending edges

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 141 of 190 PagelD #: 42634

US 6,732,147 B1

AB-AB 000803

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 142 of 190 PagelD #: 42635

U.S. Patent May 4, 2004 Sheet 24 of 39 US 6,732,147 Bl
Forward connection requestor
edge search distance remaining

Fig. 18

neighbors

1804

neighbor =

Select random neighbor
requestor

Send internal message

1807

Y Success
1808

Note connection edge
search call

(Return)

AB-AB 000804

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18

U.S. Patent May 4, 2004

Sheet 25 of 39

Handle edge
proposal call

Page 143 of 190 PagelD #: 42636

US 6,732,147 Bl

in message
out message

Fig. 19

1911

Send external message

Fill hole

.

{ Return)

Add edge as pending

‘ 1910

Add neighbor

Return

AB-AB 000805

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 144 of 190 PagelD #: 42637

U.S. Patent May 4, 2004 Sheet 26 of 39

Handle port
connection call

US 6,732,147 Bl

2003

Send external message
(point-connect-resp

not ok)

Y

{ Return)

Fig. 20
Holes >0
Caller is not
neighbor
2004
Send external message
(point-connect-resp, ok)
005
2007
Hang up
2008
Connect request

2006

Add neighbor

AB-AB 000806

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 145 of 190 PagelD #: 42638

U.S. Patent May 4, 2004

Fill hole

Sheet 27 of 39

g

2101

Fig, 21

Initialize internal

message

N

Is this

\

2104

Handle connection
ports search edit

party the

ing part

request-

102

Y

US 6,732,147 Bl

2103

Distribute internal

message

Return

UK

AB-AB 000807

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 146 of 190 PagelD #: 42639

U.S. Patent May 4, 2004 Sheet 28 of 39 US 6,732,147 Bl
Internal
dispatcher
2201
Flg 22 | Received internal message
l 2202
Assess diameter

This

process = =

2203B

Insert message into
pending connection buffer

2005
= = broadcast Handle broadcast
statement message
Type 206 2007
= = shutdown Handle shutdown
statement statement
connection buffer
2209
Achieve connection
N
2212
Y Receive response ()

AB-AB 000808

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 147 of 190 PagelD #: 42640

U.S. Patent May 4, 2004 Sheet 29 of 39 US 6,732,147 Bl
Handle broadcast origin
message from neighbor
y message
Fig. 23 2301 °

Process out of order
message

2302

Distribute broadcast
message

303

as a new
neighbor received
messages

Y

2304

Clear out of order info

AB-AB 000809

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 148 of 190 PagelD #: 42641

U.S. Patent May 4, 2004 Sheet 30 of 39 US 6,732,147 Bl
. Distribute message
. roadcast message 0om neil or
Fig. 24 (uomemmscge) from msigh
™ 2401

Select next neighbor

All neighbor
selected

Return)

2403

Send internal
message

AB-AB 000810

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 149 of 190 PagelD #: 42642

U.S. Patent May 4, 2004 Sheet 31 of 39 US 6,732,147 Bl

(Handle connection) from neighbor

for search message

2601
Distribute internal

message F lg. 26

2604
Court neighbor

Cran)

Is requestor
a neighbor

2606
Generate
condition check
message w/neighbors

2607

Send internal message
to requestor

-

Come)

AB-AB 000811

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 150 of 190 PagelD #: 42643

U.S. Patent May 4, 2004 Sheet 32 of 39 US 6,732,147 Bl

(Court neighbor) Prospect

Fig. 27

Is prospect
a neighbor

Return)

Dial prospect

703

Y
2704

Send and receive
external message

2705

Add neighbor

-t

2706

Hang up prospect

(" Rewm)

AB-AB 000812

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 151 of 190 PagelD #: 42644

U.S. Patent

Fig. 28

May 4, 2004

Sheet 33 of 39

Handle connection
edge search call

N From this pt. &&
holes ==

Fill hole (self)

2815

Send internal
message (from
neighbor, ack)

Retum

US 6,732,147 Bl

from neighbor

message
B0
Not
my message 11
holes >=Z
3
Forward
Y connection second | |
distance > 0 edge (requestor
remaining dist -1)
2805
804 Forward
- Requestor connection edge | | |
is neighbor or edge search (requestar,
reserved 0)
2806 W
Dial requestor
[2807

Send and receive
external message

Y 2809

Reserve edge of from
neighbor

| 2810

Add neighbor

[2811
Remove neighbor
2812 I —

Hang up

v

AB-AB 000813

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 152 of 190 PagelD #: 42645

U.S. Patent May 4, 2004 Sheet 34 of 39 US 6,732,147 Bl
(Handle edge search origin
resp. from neighbor
F. 1g. 29 2001 message

Note connection edge
search response

902

Edge selected

Y

2903

Reserve edge of from
neighbor

2904

Remove from neighbor

2905
Court neighbor

Fill hole (self)

i

{ Return)

AB-AB 000814

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 153 of 190 PagelD #: 42646

U.S. Patent May 4, 2004 Sheet 35 of 39 US 6,732,147 Bl

(Broadcast) message

Fig. 30

Generate internal
message

3003

Set message sequence
number

3004

Distribute internal
message

Cromn)

AB-AB 000815

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 154 of 190 PagelD #: 42647

U.S. Patent May 4, 2004 Sheet 36 of 39 US 6,732,147 Bl

(Acquire message) message

Fig. 31 3101

Pop message queue

Message

. Return false)
retrieved

AB-AB 000816

U.S. Patent

May 4, 2004 Sheet 37 of 39
andle condition ch@
Fig. 32

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 155 of 190 PagelD #: 42648

US 6,732,147 Bl

3203

Set up message with list
of neighbors

I 3204

Send internal message

W

|

[3205

Select a neighbor
of sending process
not my neighbor

3206

Send external message
to selected neighbor

| 3207

Add neighbor

AB-AB 000817

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 156 of 190 PagelD #: 42649

U.S. Patent May 4, 2004 Sheet 38 of 39 US 6,732,147 Bl

Handle condition
repair statement

Fig. 33 3301

N

Y
3302

Select a neighbor not
involved in condition

3303

Remove selected
neighbor

il

3304

Add neighbor

>

AB-AB 000818

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 157 of 190 PagelD #: 42650

U.S. Patent May 4, 2004

Handle condition
double check

Sheet 39 of 39

Fig. 34

Holes ==

Same set of

neighbors

Create list of neighbors

3407

Send internal message
to-from neighbor

N

3404

Reset diameter to 1

3405

Send internal message

C Return)

US 6,732,147 Bl

AB-AB 000819

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 158 of 190 PagelD #: 42651

US 6,732,147 B1

1
LEAVING A BROADCAST CHANNEL

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to U.S. patent application Ser.
No. 09/629,576, entitled “BROADCASTING
NETWORK,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,570, entitled “JOINING A BROADCAST
CHANNEL,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,577, “LEAVING A BROADCAST
CHANNETI,,” filed on Jul. 31, 2000; U.S. patent application
Ser. No. 09/629,575, entitled “BROADCASTING ON A
BROADCAST CHANNEL,” filed on Jul. 31, 2000; U.S.
patent application Ser. No. 09/629,572, entitled “CON-
TACTING A BROADCAST CHANNEL,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,023, entitled
“DISTRIBUTED AUCTION SYSTEM,” filed on Jul. 31,
2000; U.S. patent application Ser. No. 09/629,043, entitled
“AN INFORMATION DELIVERY SERVICE,” filed on Jul.
31, 2000; U.S. patent application Ser. No. 09/629,024,
entitled “DISTRIBUTED CONFERENCING SYSTEM,”
filed on Jul. 31, 2000; and U.S. patent application Ser. No.
09/629,042, cntitled “DISTRIBUTED GAME
ENVIRONMEN,” filed on Jul. 31, 2000, the disclosures of
which are incorporated herein by reference.

TECHNICAL FIELD

The described technology relates generally to a computer
network and more particularly, to a broadcast channel for a
subset of a computers of an underlying network.

BACKGROUND

There are a wide variety of computer network communi-
cations techniques such as point-lo-point network protocols,
client/server middleware, multicasting network protocols,
and peer-to-peer middleware. Each of these communications
techniques have their advantages and disadvantages, but
nonc is particularly well suited to the simultancous sharing
of information among computers that are widely distributed.
For example, collaborative processing applications, such as
a network meeting programs, have a need to distribute
information in a timely manner to all participants who may
be geographically distributed.

The point-to-point network protocols, such as UNIX
pipes, TCP/IP, and UDP, allow processes on different com-
puters to communicate via point-to-point connections. The
interconnection of all participants using point-to-point
connections, while theoretically possible, does not scale well
as a number of participants grows. TI'or example, each
participating process would need to manage its direct con-
nections to all other participating processes. Programmers,
however, [ind it very dillicult to manage single connections,
and management of multiple connections is much more
complex. In addition, participating processes may be limited
to the number of direct connections that they can support.
This limits the number of possible participants in the sharing
of information.

The client/server middleware systems provide a server
that coordinates the communications between the various
clients who are sharing the information. The server functions
as a central authority for controlling access to shared
resources. Examples of client/server middleware systems
include remote procedure calls (“RPC”), datahase servers,
and the common object request broker architecture
(“CORBA”). Client/server middleware systems are not par-

20

40

50

55

60

2

ticularly well suited to sharing of information among many
participants. In particular, when a client stores information
to be shared at the server, each other client would need to
poll the server to determine that new information is being
shared. Such polling places a very high overhead on the
communications network. Alternatively, each client may
register a callback with the server, which the server then
invokes when new information is available to be shared.
Such a callback technique prescnts a performance bottlencck
because a single server needs to call back to each client
whenever new information is to be shared. In addition, the
reliability of the entire sharing of information depends upon
the reliability of the single server. Thus, a failure at a single
computer (i.c., the server) would prevent communications
between any of the clients.

The multicasting network protocols allow the sending of
broadcast messages to multiple recipients of a network. The
current implementations ol such multicasting network pro-
tocols tend to place an unacceptable overhead on the under-
lying network. For example, UDP multicasting would
swamp the Internet when trying to locate all possible par-
ticipants. IP multicasting has other problems that include
needing special-purpose infrastructure (e.g., routers) 1o sup-
port the sharing of information efficiently.

The peer-to-peer middleware communications systems
relv on a multicasting network protocol or a graph of
point-to-point network protocols. Such peer-to-peer middle-
ware is provided by the T.120 Internet standard, which is
used in such products as Data Connection’s D.C.-share and
Microsoft’s NetMeeting. These peer-to-peer middleware
systems rely upon a user to assemble a point-to-point graph
of the connections used for sharing the information. Thus, it
is necither suitable nor desirable to usc peer-to-peer middle-
ware systems when more than a small number of partici-
pants 1s desired. In addition, the underlving architecture of
the T.120 Internet standard is a tree structure, which relies on
the root node of the tree for reliability of the entire network.
That is, cach message must pass through the rool node in
order 1o be received by all participants.

It would be desirable (o have a reliable communicalions
network that is suitable for the simultaneous sharing of
information among a large number of the processes that are
widely distributed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents a broadcast channel.

FIG. 2 illustrates a graph representing 20 computers
connected to a broadcast channel.

FIGS. 3A and 3B illustrate the process of connecting a
new compuler Z to the broadcast channel.

F1G. 4A illustrates the broadcast channel of FIG. 1 with
an added computer.

FIG. 4B illustrates the broadcast channel of FIG. 4A with
an added computer.

FIG. 4C also illustrates the broadcast channel of FIG. 4A
with an added computer.

FIG. 5A illustrates the disconnecting ol a compulter [rom
the broadcast channel in a planned manner.

FIG. 5B illustrates the disconnecting of a computer from
the broadcast channel in an unplanned manner.

FIG. 5C illustrates the neighbors with empty ports con-
dition.

FIG. 5D illustrates two computers that are not neighbors
who now have empty ports.

AB-AB 000820

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 159 of 190 PagelD #: 42652

US 6,732,147 B1

3

FIG. SE illustrates the neighbors with empty ports con-
dition in the small regime.

FIG. 5F illustrates the situation of FIG. 5E when in the
large regime.

FIG. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel.

FIG. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment.

FIG. 8 is a flow diagram illustrating the processing of the
connect routine in one embodiment.

FIG. 9 is a flow diagram illustrating the processing of the
seek portal computer routine in one embodiment.

FIG. 101s a flow diagram illustrating the processing of the
contact proccss routine in onc cmbodiment.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment.

FIG. 12 is a llow diagram ol the processing ol the check
for external call routine in one embodiment.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in onc cmbodiment.

FIG. 141s a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment.

FIG. 15is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one embodiment.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment.

FIG. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.

FIG. 19 is a flow diagram illustrating the processing of the
handle edge proposal call routine,

F1G. 20 is a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment.

FIG. 21 is a flow diagram illustrating the processing of the
fill hole routine in one embodiment.

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment.

FIG. 23 is a flow diagram illustrating the processing of the
handle broadcast message routine in one embodiment.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcast message routine in one embodiment.

F1G. 26 1s a flow diagram illustrating the processing of the
handle connection port search statement routine in one
embodiment.

FIG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
c¢cmbodiment.

F1G. 30 1s a flow diagram illustrating the processing of the
broadcast routine in one embodiment.

FIG. 31 is a flow diagram illustrating the processing of the
acquire message routine in one emhodiment.

FIG. 32 is a flow diagram illustrating processing of the
handle condition check message in one embodiment.

FIG. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-
ment.

5

10

15

[
o

40

55

60

4

FIG. 34 is a flow diagram illustrating the processing of the

handle condition double check routine.
DETAILED DESCRIPITON

A broadcast technique in which a broadcast channel
overlays a point-lo-point communicalions network is pro-
vided. The broadcasting of a message over the broadcast
channel is effectively a multicast to those computers of the
network that are currently connected to the broadcast chan-
ncl. In onc cmbodiment, the broadcast tcchnique provides a
logical broadcast channel 1o which host computers through
their executing processes can be connected. Each computer
that is connected to the broadcast channel can broadcast
messages onto and receive messages off of the broadcast
channel. Lach computer that is connected 1o the broadcast
channel receives all messages that are broadcast while it is
connected. The logical broadcast channel is implemented
using an underlying network system (e.g., the Internet) that
allows each computer connected to the underlying network
system to send messages to each other connected computer
using each computer’s address. Thus, the broadcast tech-
nique cifectively provides a broadecast channcl using an
underlying network system that sends messages on a point-
to-point basis.

The broadcast technique overlays the underlying network
system with a graph of point-to-point connections (i.e.,
edges) between host compulers (i.¢., nodes) through which
the broadcast channel is implemented. In one embodiment,
cach computer is connected to four other computers, referred
to as neighbors. (Actually, a process executing on a com-
puter is connected to four other processes executing on this
or four other computers.) To bhroadcast a message, the
originating computer sends the message to each of its
neighbors using its point-to-point connections. Each com-
puter that receives the message then sends the message to its
three other neighbors using the point-to-point connections.
In this way, the message is propagated to each computer
using the underlying network to effect the broadcasting of
the message o ecach computer over a logical broadcast
channel. A graph in which each node is connected to four
other nodes is referred to as a 4-regular graph. The use of a
4-regular graph means that a computer would become
disconnected from the broadcast channel only if all four of
the connections to its neighbors fail. The graph used by the
broadcast technique also has the property that it would take
a failure of four computers to divide the graph into disjoint
sub-graphs, that is two separate broadcast channels. This
property is referred to as being 4-connected. Thus, the graph
is both 4-regular and 4-connected.

FIG. 1 illustrates a graph that is 4-regular and 4-connected
which represents the broadcast channel. Each of the nine
nodes A-I represents a computer that is connected to the
broadcast channel, and each of the edges represents an
“edge” connection between two computers of the broadcast
channel. The time it takes to broadcast a message 1o each
computer on the broadcast channel depends on the speed of
the connections between the computers and the number of
connections between the originating computer and each
other computer on the broadcast channel. The minimum
number of connections that a message would need 1o
traverse between each pair of computers is the “distance”
between the computers (i.e., the shortest path between the
two nodes of the graph). For example, the distance between
computers A and F is one because computer A is directly
connected to computer F. The distance hetween computers A
and B is two because there is no direct connection between
computers A and B, but computer F is directly connected to

AB-AB 000821

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 160 of 190 PagelD #: 42653

US 6,732,147 B1

5

computer B. Thus, a message originating at computer A
would be sent dircetly to computer F, and then scnt from
compuler F 1o computer B. The maximum ol the distances
between the computers is the “diameter” of broadcast chan-
nel. The diameter of the broadcast channel represented by
FIG. 1 is two. That is, a message sent by any computer
would traverse no more than two connections to reach every
other computer. FIG. 2 illustrates a graph representing 20
computers connected to a-broadcast channel. The diameter
of this broadcast channel is 4. In particular, the shortest path
between computers 1 and 3 contains four connections (1-12,
12-15, 15-18, and 18-3).

The broadcast technique includes (1) the connecting of
compuicrs to the broadcast channel (i.e., composing the
graph), (2) the broadcasting of messages over the broadcast
channel (i.e., broadcasting through the graph), and (3) the
disconnecting of computers from the broadcast channel (i.c.,
decomposing the graph) composing the graph.

Composing the Graph

To connect to the broadcast channel, the computer seeking
the conncction first locates a computer that is currently fully
connected to the broadcast channel and then establishes a
connection with four of the computers that are already
connected (o the broadeast channel. (This assumes that there
are at least four computers already connected to the broad-
cast channel. When there are fewer than five computers
connected, the broadecast channel cannot be a 4-regular
graph. In such a case, the broadcast channel is considered to
be in a “small regime.” The broadcast technique for the
small regime is described below in detail. When five or more
computers are connecled, the broadcast channel is consid-
ered to be in the “large regime.” This description assumes
that the broadcast channcl is in the large regime, unless
specified otherwise.) Thus, the process of connecting 1o the
broadcast channel includes locating the broadcast channel,
identilying the neighbors [or the connecting compuler, and
then connecting to each identified neighbor. Each computer
is aware of one or more “portal computers” through which
that computer may locate the broadcast channel. A seeking
computer locates the broadcast channel by contacting the
portal computers until it finds one that is currently fully
connected to the broadcast channel. The found portal com-
puter then directs the identifying of four computers (i.c., to
be the seeking computer’s neighbors) to which the seeking
compuicr is to conncet. Each of these four computers then
cooperates with the seeking computer to effect the connect-
ing of the seeking computer to the broadcast channel. A
compuler that has started the process ol locating a portal
computer, but does not yet have a neighbor, is in the
“seeking connection state.” A computer that is connected to
at least one neighbor, but not yet four neighbors, is in the
“partially connected state.” A computer that is currently, or
has been, previously connected to four neighbors is in the
“fully connected state.”

Since the broadcast channel is a 4-regular graph, each of
the identified computers is already connected to four com-
puters. Thus, some connections between computers need to
be broken so that the seeking computer can connect to four
computers. In one embodiment, the broadcast technique
identifies (wo pairs of compulers that are currently con-
nected to each other. Each of these pairs of computers breaks
the connection between them, and then each of the four
computers (iwo from each pair) connects to the seeking
computer. FIGS. 3A and 3B illustrate the process of a new
computer Z connecting to the broadcast channel. FIG. 3A
illustrates the broadcast channel before computer Z is con-
nected. The pairs of computers B and E and computers C and

20

25

40

50

55

60

6

D are the two pairs that are identified as the neighbors for the
new computer Z. The connections between cach of these
pairs is broken, and a connection between computer Z and
cach of computers B, C, D, and E is cstablished as indicated
by FIG. 3B. The process of breaking the connection between
two neighbors and reconnecting each of the former neigh-
bors to another computer is referred to as “edge pinning” as
the edge between two nodes may be considered to be
stretched and pinned to a new node.

Each computer connected to the broadcast channel allo-
cates five communications ports for communicating with
other computers. Four ol the ports are referred (o as “inter-
nal” ports because they are the ports through which the
messages of the broadcast channels are sent. The connec-
tions between internal ports of neighbors are referred to as
“internal” connections. Thus, the internal connections of the
broadcast channel form the 4-regular and 4-connected
graph. The fifth port is referred to as an “external” port
because it is used for sending non-broadcast messages
between two computers. Neighbors can send non-broadcast
mcessages cither through their internal ports of their connce-
tion or through their external ports. A secking computer uses
external ports when locating a portal computer.

In one embodiment, the broadcast technigue establishes
the computer connections using the TCP/IP communications
protocol, which is a point-lo-point protocol, as the underly-
ing network. The TCP/IP protocol provides for reliable and
ordered delivery of messages between computers. The TCP/
IP protocol provides each computer with a “port space™ that
15 shared among all the processes that may execute on-that
computer. The ports are identificd by numbers from 0 to
65,535. The first 2056 ports are reserved for specific appli-
cations (c.g., port 80 for HTTP messages). The remainder of
the ports are user ports that are available to any process. In
one embodiment, a set of port numbers can be reserved for
use by the computer connected 1o the broadeast channel. In
an alternative embodiment, the port numbers used are
dynamically identified by each computer. Each computer
dynamically identifies an available port to be used as its
call-in port. This call-in port is used to establish connections
with the external port and the internal ports. Each computer
that is connected to the broadcast channel can receive
non-broadcast messages through its external port. A secking
computer tries “dialing” the port numbers of the portal
computers until a portal computer “answers,” a call on its
call-in port. A portal computer answers when it is connected
to or attempting to connect to the broadeast channel and its
call-in port is dialed. (In this description, a lelephone mela-
phor is used to describe the connections.) When a computer
receives a call on its call-in port, it transfers the call to
another port. Thus, the seeking computer actually commu-
nicates through that transfer-to port, which is the external
port. The call is transferred so that other computers can place
calls to that computer via the call-in port. The seeking
computer then communicates via that external port to
request the portal computer to assist in connecting the
secking computer to the broadcast channel. The seeking
computer could identify the call-in port number of a portal
computer by successively dialing each port in port number
order. As discussed below in detail, the broadeast technigue
uses a hashing algorithm to select the port number order,
which may result in improved performance.

A seeking computer could connect to the broadcast chan-
nel by connecting to computers either directly connected to
the found portal computer or directly connected to one of its
neighbors. A possible problem with such a scheme for
identifying the neighbors for the seeking computer is that the

AB-AB 000822

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 161 of 190 PagelD #: 42654

US 6,732,147 B1

7

diameter of the broadcast channel may increase when each
seceking computer uses the same found portal computer and
establishes a connection to the broadcast channel directly
through that found portal computer. Conccptually, the graph
becomes elongated in the direction of where the new nodes
are added. FIGS. 4A-4C illustrate that possible problem.
FIG. 4A illustrates the broadcast channel of FIG. 1 with an
added computer. Computer J was connected to the broadcast
channel by cdge pinning cdges C-D and E-H to computer
J. The diameter of this broadcast channel is still two. FIG.
4B illustrates the broadcast channel of FIG. 4A with an
added compuier. Compuler K was connecled (o the broad-
cast channel by edge pinning edges E-J and B-C to com-
puter K. The diameter of this broadcast channel is three,
because the shortest path from computer G to computer K is
through edges G-A, A-E, and E-K. FIG. 4C also illustrates
the broadcast channel of FIG. 4A with an added computer.
Computer K was connected to the broadcast channel by edge
pinning edges D-G and E-J to computer K. The diameter of
this broadcast channel is, however, still two. Thus, the
sclection of neighbors impacts the diameter of the broadcast
channel. To help minimize the diameter, the broadcast
technique uses a random selection technique to identify the
[our neighbors of a compuier in the seeking connection stale.
The random selection technique tends to distribute the
connections to new sceking compulters throughout the com-
puters of the broadcast channel which may result in smaller
overall diameters.

Broadcasting Through the Graph

As described above, each computer that is connected to
the broadcast channel can broadcast messages onto the
broadcast channel and does receive all messages that are
broadcast on the broadcast channcl. The computer that
originates a message to be broadcast sends that message to
each of its four neighbors using the internal connections.
When a computer receives a broadcast message [rom a
neighbor, it sends the message to its three other neighbors.
Each computer on the broadcast channel, except the origi-
nating computer, will thus receive a copy of each broadcast
message from each of its four neighbors. Each computer,
however, only sends the first copy of the message that it
receives to 1its neighbors and disregards subsequently
received copies. Thus, the total number of copies of a
message that is sent between the computers is 3N+1, where
N is thc numbcr of computcers connected to the broadcast
channel. Each computer sends three copies of the message,
except for the originating computer, which sends four copies
of the message.

The redundancy of the message sending helps to ensure
the overall reliability of the broadcast channel. Since each
computer has four connections to the broadcast channel, if
one computer fails during the broadcast of a message, its
neighbors have three other connections through which they
will receive copies of the broadcast message. Also, if the
internal connection between two compulers is slow, each
computer has three other connections through which it may
receive a copy of each message sooner.

Each computer that originates a message numbers its own
messages sequentially. Because of the dynamic nature of the
broadecast channel and because there are many possible
connection paths between computers, the messages may be
received out of order. For example, the distance between an
originating computer and a certain receiving computer may
be four. After sending the first message, the originating
computer and receiving computer may become neighbors
and thus the distance between them changes to one. The first
message may have to travel a distance of four to reach the

20

25

40

50

55

60

thi

8

receiving computer. The second message only has to travel
a distancc of onc. Thus, it is possiblc for the sccond message
1o reach the receiving computer belore the first message.

When the broadcast channel is in a steady state (i.e., no
computers connecting or disconnecting from the broadcast
channel), out-of-order messages are not a problem because
each computer will eventually receive both messages and
can queue messages until all earlier ordered messages are
received. If, however, the broadcast channel is not in a
steady state, then problems can occur. In particular, a com-
puter may connect to the broadcast channel after the second
message has already been received and forwarded on by its
new neighbors. When a new neighbor eventually receives
the first message, it sends the message to the newly con-
nected computer. Thus, the newly connected computer will
receive the first message, but will not receive the second
message. If the newly connected computer needs to process
the messages in order, it would wait indefinitely for the
second message.

One solution to this problem is (o have cach compuler
queue all the messages that it receives until it can send them
in their proper order to its neighbors. This solution, however,
may tend to slow down the propagation of messages through
the computers of the broadcast channel. Another solution
thalt may have less impact on the propagation speed is 10
queue messages only at computers who are neighbors of the
newly, connected computers. Each already connected neigh-
bor would forward messages as it receives them to its other
neighbors who are not newly connected, but not to the newly
connected neighbor. The already connected neighbor would
only forward messages from each originating computer to
the newly connected computer when it can ensure that no
gaps in the messages from that originating computer will
occur. In onc embodiment, the alrcady connected ncighbor
may track the highest sequence number of the messages
already received and forwarded on from each originating
compuler. The already connected computer will send only
higher numbered messages from the originating computers
to the newly connected computer. Once all lower numbered
messages have been received from all originating
computers, then the already connected computer can treat
the newly connected computer as its other neighbors and
simply forward each message as it is received. In another
e¢mbodiment, each computer may queue messages and only
forwards to the newly connected computer those messages
as the gaps arc filled in. For cxample, a computcr might
receive messages 4 and 5 and then receive message 3. In
such a case, the already connected computer would forward
queue messages 4 and 5. When message 3 1s linally received,
the already connected computer will send messages 3, 4, and
5 to the newly connected computer. If messages 4 and 5 were
sent to the newly connected computer before message 3,
then the newly connected computer would process messages
4 and 5 and disregard message 3. Because the already
connected computer queues messages 4 and 5, the newly
connected computer will be able to process message 3. It is
possible that a newly connected computer will receive a set
of messages from an originating computer through one
neighbor and then receive another set of message from the
same originating computer through another neighbor. If the
second sel ol messages conlains a message thal is ordered
earlier than the messages of the first set received, then the
newly connected computer may ignore that earlier ordered
message if the computer already processed those later
ordered messages.

Decomposing the Graph

A connected computer disconnects from the broadcast

channel either in a planned or unplanned manner. When a

AB-AB 000823

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 162 of 190 PagelD #: 42655

US 6,732,147 B1

9

computer disconnects in a planned manner, it sends a
disconnect message to each of its four neighbors. The
disconnect message includes a list that identifies the four
neighbors of the disconnccting computer. When a neighbor
receives the disconnect message, it tries to connect to one of
the computers on the list. In one embodiment, the first
computer in the list will try to connect to the second
computer in the list, and the third computer in the list will
try to conncct to the fourth computer in the list. If a computer
cannot connect (e.g., the first and second computers are
already connected), then the computers may try connecting
in various other combinations. I[connections cannot be
established, each computer broadcasts a message that it
nceds to establish a connection with another computer.
When a computer with an available internal port receives the
message, it can then establish a connection with the com-
puter that broadcast the message. FIGS. SA-50Y illustrate the
disconnecting of a computer from the broadcast channel.
FIG. 5A illustrates the disconnecting of a computer from the
broadcast channel in a planned manner. When computer H
decidces to disconncct, it sends its list of neighbors to cach of
its neighbors (computers A, E, F and I) and then disconnects
from each of its neighbors. When computers A and I receive
the message they establish a connection between them as
indicated by the dashed line, and similarly for computers E
and F

When a computer disconnects in an unplanned manner,
such as resulting from a power failure, the neighbors con-
nected to the disconnected computer recognize the discon-

nection when each attempts to send its next message 1o the 3

now disconnected computer. Each former neighbor of the
disconnected computer recognizes that it is short one con-
ncction (i.c., it has a hole or cmpty port). When a connected
computer detects that one of its neighbors is now
disconnected, it broadcasts a port connection request on the
broadcast channel, which indicales that il has one internal
port that needs a connection. The port connection request
identifies the call-in port of the requesting computer. When
a connected computer that is also short a connection receives
the connection request, it communicates with the requesting
computer through its external port to establish a connection
between the two computers. FIG. 5B illustrates the discon-
necting of a computer from the broadcast channel in an
unplanned manner. In this illustration, computer H has
disconnccted in an unplanncd manncr. When cach of its
neighbors, computers A, E, F, and I, recognizes the
disconnection, each neighbor broadeasts a port connection
request indicating that it needs 1o (1l an emply porl. As
shown by the dashed lines, computers F and I and computers
A and E respond to cach other’s requests and establish a
connection.

It is possible that a planned or unplanned disconnection
may result in two neighbors each having an empty internal
port. In such a case, since they are neighbors, they are
already connected and cannot fill their empty ports by
connecting to each other. Such a condition is referred to as
the “neighbors with empty ports” condition. Lach neighbor
broadeasts a port connection request when it detects that it
has an empty port as described above. When a neighbor
receives Lhe port connection request [rom the other neighbor,
it will recognize the condition that its neighbor also has an
empty port. Such a condition may also occur when the
broadcast channel is in the small regime. The condition can
only be corrected when in the large regime. When in the
small regime, each computer will have less than four neigh-
bors. 'lo detect this condition in the large regime, which
would be a problem if not repaired, the first neighbor to

5

20

40

50

55

60

thi

10

receive the port connection request recognizes the condition
and sends a condition check message to the other neighbor.
The condition check message includes a list of the neighbors
of the sending computer. When the recciving computer
receives the list, it compares the list to its own list of
neighbors. It the lists are different, then this condition has
occurred in the large regime and repair is needed. To repair
this condition, the receiving computer will send a condition
repair request to one of the neighbors of the sending com-
puter which is not already a neighbor of the receiving
computer. When the computer receives the condition repair
request, it disconnects [rom one of its neighbors (other than
the neighbor that is involved with the condition) and con-
nects to the computer that sent the condition repair request.
Thus, one of the original neighbors involved in the condition
will have had a port filled. However, two computers are still
in need of a connection, the other original neighbor and the
computer that is now disconnected from the computer that
received the condition repair request. Those two computers
send out port connection requests. If those two computers
arc nol ncighbors, then they will connect to cach other when
they receive the requests. If, however, the two computers are
neighbors, then they repeat the condition repair process until
two non-neighbors are in need of connections.

It is possible that the two original neighbors with the
condition may have the same set of neighbors. When the
neighbor that receives the condition check message deter-
mines that the sets of neighbors are the same, it sends a
condition double check message to one of its neighbors
other than the neighbor who also has the condition. When
the computer receives the condition double check message,
it determines whether it has the same set of neighbors as the
sending compuler. If so, the broadcast channcl is in the small
regime and the condition is not a problem. If the set of
neighbors are different, then the computer that received the
condition double check message sends a condition check
message to the original neighbors with the condition. The
computer that receives that condition check message directs
one of it neighbors to connect to one of the original
neighbors with the condition by sending a condition repair
message. Thus, one of the original neighbors with the
condition will have its port filled.

FIG. 5C illustrates the neighbors with empty ports con-
dition. In this illustration, computer H disconnected in an
unplanned manner, but computers F and [responded to the
port connection request of the other and are now connected
together. The other former neighbors of computer H, com-
puters A and E, are already neighbors, which gives rise (o the
neighbors with empty ports condition. In this example,
computer E received the port connection request from
computer A, recognized the possible condition, and sent
(since they are neighbors via the internal connection) a
condition check message with a list of its neighbors to
computer A. When computer A received the list, it recog-
nized that computer E has a different set of neighbor (i.e., the
broadcast channel is in the large regime). Computer A
selected computer D, which is a neighbor of computer L and
sent it a condition repair request. When computer D received
the condition repair request, it disconnected from one of its
neighbors (other than computer E), which is computer G in
this example. Computer D then connected to computer A.
FIG. 5D illustrates two computers that are not neighbors
who now have empty ports. Computers E and G now have
empty ports and are not currently neighbors. Therefore,
computers E and G can connect to each other.

FIGS. 5E and SV further illustrate the neighbors with
empty ports condition. FIG. 5E illustrates the neighbors with

AB-AB 000824

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 163 of 190 PagelD #: 42656

US 6,732,147 B1

11

empty ports condition in the small regime. In this example,
if computer E disconnected in an unplanned manner, then
cach computer broadcasts a port connection request when it
detects the disconnect. When computer A reccives the port
connection request form computer B, it detects the neigh-
bors with empty ports condition and sends a condition check
message to computer B, Computer B recognizes that it has
the same set of neighbors (computer C and D) as computer
A and then sends a condition double check message to
computer C. Computer C recognizes that the broadcast
channel is in the small regime because is also has the same
set of neighbors as computers A and B, computer C may then
broadcast a message indicating that the broadcast channel is
in the small regime.

FIG. SF illustrates the situation of FIG. 5E when in the
large regime. As discussed above, computer C receives the
condition double check message from computer B. In this
case, computer C recognizes that the broadcast channel is in
the large regime because it has a set of neighbors that is
different from computer B. The edges extending up from
compuicr C and D indicatc connections to other computers.
Computer C then sends a condition check message to
computer B. When computer B receives the condition check
message, it sends a condition repair message (o one of the
neighbors of computer C. The computer that receives the
condition repair message disconnects from one of its
neighbors, other than computer C, and tries to connect to
computer B and the neighbor from which it disconnected
tries to connect to computer A.

Port Selection

As described above, the TCP/IP protocol designates ports
above number 2056 as user ports. The broadcast technique
uscs five uscr port numbers on cach computer: onc cxicrnal
port and four internal ports. Generally, user ports cannot be
statically allocated to an application program because other
applications programs execuling on the same compuler may
use conflicting port numbers. As a result, in one
embodiment, the computers connected to the broadcast
channel dynamically allocate their port numbers. Each com-
puter could simply try to locate the lowest number unused
port on that computer and use that port as the call-in port. A
seeking computer, however, does not know in advance the
call-in port number of the portal computers when the port
numbers are dynamically allocated. Thus, a seeking com-
puter needs to dial ports of a portal computer starting with
the lowest port number when locating the call-in port of a
portal computer. If the portal computer is connected to (or
allempling (o connect 10) the broadcast channel, then the
seeking computer would eventually find the call-in port. If
the portal computer is not connecled, then the secking
computer would eventually dial every user port. In addition,
if each application program on a computer tried to allocate
low-ordered port numbers, then a portal computer may end
up with a high-numbered port for its call-in port because
many of the low-ordered port numbers would be used by
other application programs. Since the dialing of a port is a
relatively slow process, it would take the seeking computer
a long time to locate the call-in port of a portal computer. To
minimize this time, the broadcast technique uses a port
ordering algorithm o identily the port-number order that a
portal computer should use when finding an available port
for its call-in port. In one embodiment, the broadcast tech-
nique uses a hashing algorithm to identify the port-order.
The algorithm preferably distributes the ordering of the port
numbers randomly through out the user port number space
and only selects each porl number once. In addition, every
time the algorithm is executed on any computer for a given

10

15

40

55

60

12

channel type and channel instance, it generates the same port
ordering. As described below, it is possible for a computer
to be connected to multiple broadcast channels that are
uniqucly identificd by channcl tvpe and channel instance.
The algorithm may be “seeded” with channel type and
channel instance in order to generate a unique ordering of
port numbers for cach broadcast channel. Thus, a secking
computer will dial the ports of a portal computer in the same
order as the portal compuicr used when allocating its call-in
port.

If many computers are at the same time seeking connec-
tion 1o 4 broadcast channel through a single portal compulter,
then the ports of the portal computer may be busy when
called by seeking computers. The secking computers would
typically need to keep on redialing a busy port. The process
of locating a call-in port may be significantly slowed by such
redialing. In one embodiment, each seeking computer may
each reorder the first few port numbers generated by the
hashing algorithm. For example, cach secking computer
could randomly reorder the first eight port numbers gener-
ated by the hashing algorithm. The random ordering could
also be weighted where the first port number generated by
the hashing algorithm would have a 50% chance of being
first in the reordering, the second port number would have
a 25% chance of being first in the reordering, and so on.
Because the secking computers would use different
orderings, the likelihood of finding a busy port is reduced.
For example, if the first eight port numbers are randomly
selected, then it is possible that eight seeking computers
could be simultaneously dialing ports in different sequences
which would reduce the chances of dialing a busy port.
Locating a Portal Computer

Each computer that can conncct to the broadcast channcl
has a list of one or more portal computers through which it
can connect 1o the broadcast channel. In one embodiment,
cach computer has the same sel of portal compulers, A
secking computer locates a portal computer that is connected
to the broadcast channel by successively dialing the ports of
each portal computer in the order specified by an algorithm.
A seeking computer could select the first portal computer
and then dial all its ports until a call-in port of a computer
that is fully connected to the broadcast channel is found. 1f
no call-in port is found, then the secking computer would
select the next portal computer and repeat the process until
a portal computcr with such a call-in port is found. A
problem with such a seeking technique is that all user ports
of each portal computer are dialed until a portal computer
[ully connecled o the broadeast channel is [ound. In an
alternate embodiment, the seeking computer selects a port
number according to the algorithm and then dials each portal
computer at that port number. If no acceptable call-in port to
the broadcast channel is found, then the seeking computer
selects the next port number and repeats the process. Since
the call-in ports are likely allocated at lower-ordered port
numbers, the seeking computer first dials the port numbers
that are most likely to be call-in ports of the broadcast
channel. The secking computers may have a maximum
search depth, that is the number of ports that it will dial when
seeking a portal computer that is fully connected. If the
seeking compuler exhausts its search depth, then either the
broadcast channel has not yet been established or, if the
secking computer is also a portal computer, it can then
establish the broadcast channel with itself as the first fully
connected computer.

When a seeking compuier locates a portal computer that
is itself not fully connected, the two computers do not
connect when they first locate each other because the

AB-AB 000825

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 164 of 190 PagelD #: 42657

US 6,732,147 B1

13

broadcast channel may already be established and accessible
through a higher-ordered port number on another portal
computer. If the two seeking computers were to connect to
cach other, then two disjoint broadcast channcls would be
formed. Each seeking computer can share its experience in
trying to locate a portal computer with the other secking
computer. In particular, if one secking computer has
searched all the portal computers to a depth of eight, then the
onc sccking computer can sharc that it has scarched to a
depth of eight with another seeking computer. If that other
secking computer has searched to a depth of, for example,
only [our, it can skip searching through depths five through
cight and that other seeking computer can advance its
scarching to a depth of nine.

In one embodiment, each computer may have a different
set of portal computers and a different maximum search
depth. In such a situation, it may be possible that two disjoint
broadcast channels are formed because a seeking computer
cannot locate a fully connected port computer at a higher
depth. Similarly, if the set of portal computers are disjoint,
then two scparate broadeast channels would be formed.
Identifying Neighbors for a Seeking Computer

As described above, the neighbors of a newly connecting
compuler are preferably selected randomly [rom the set of
currently connected computers. One advantage of the broad-
cast channel, however, is that no computer has global
knowledge of the broadcast channel. Rather, each computer
has local knowledge of itself and its neighbors. This limited
local knowledge has the advantage that all the connected
computers are peers (as far as the broadcasting is concerned)
and the failure of any onc computer (actually any three
computers when in the 4-regular and 4-connect form) will
not causc the broadcast channcl to fail. This local knowledge
makes it difficult for a portal computer to randomly select
four neighbors for a seeking computer.

To select the four computers, a portal compulter sends an
edge connection request message through one of its internal
connections that is randomly selected. The receiving com-
puter again sends the edge connection request message
through one of its internal connections that is randomly
selected. This sending of the message corresponds to a
random walk through the graph that represents the broadcast
channel. Eventually, a receiving computer will decide that
the message has traveled far enough to represent a randomly
sclected compuicer. That reeciving computer will offer the
internal connection upon which it received the edge con-
nection request message 1o the seeking computer for edge
pinning. Of course, il ¢ither of the computers atl the end of
the offered internal connection are already neighbors of the
seeking computer, then the seeking computer-cannot con-
nect through that internal connection. The computer that
decided that the message has traveled far enough will detect
this condition of already being a neighbor and send the
message to a randomly selected neighbor.

In one embodiment, the distance that the edge connection
request message travels is established by the portal computer
to be approximately twice the estimated diameter of the
broadcast channel. The message includes an indication of
the distance that it is to travel. Each receiving computer
decrements that distance 1o travel before sending the mes-
sage on. The computer thal receives a message with a
distance to travel that is zero is considered to be the
randomly selected computer. If that randomly selected com-
puter cannot connect to the seeking computer (e.g., because
it is already connected to it), then that randomly selected
computer forwards the edge connection request to one of its
neighbors with a new distance to travel. In one embodiment,

20

25

[
o

40

50

55

60

thi

14

the forwarding computer toggles the new distance to travel
between zero and one to help prevent two computers from
sending the message back and forth between each other.

Because of the local nature of the information maintained
by each computer connected to the broadcast channel, the
computers need not generally be aware of the diameter of the
broadcast channel. In one embodiment, cach message sent
through the broadcast channel has a distance traveled field.
Each computcr that forwards a mcssage incremcents the
distance traveled field. Each computer also maintains an
estimated diameter of the broadcast channel. When a com-
puler receives a message Lhat has traveled a distance that
indicates that the estimated diameter is too small, it updates
its estimated diameter and broadcasts an estimated diameter
message. When a computer receives an estimated diameter
message that indicates a diameter that is larger than its own
estimated diameter, it updates its own estimated diameter.
This estimated diameter is used to establish the distance that
an edge connection request message should travel.
External Data Representation

The computcers connccted to the broadeast channcl may
internally store their data in different formats. For example,
one compuler may use 32-bil integers, and another computer
may use 04-bil integers. As another example, one compuler
may use ASCII to represent text and another computer may
use Unicode. To allow communications between heteroge-
neous computers, the messages sent over the broadcast
channel may use the XDR (“eXlernal Data Representation™)
format.

‘The underlying peer-to-peer communications protocol
may send multiple messages in a single message stream. The
traditional technique for retrieving messages from a stream
has been to repeatedly invoke an operating system routine to
retrieve the next message in the stream. The retrieval of each
message may require two calls to the operating system: one
1o retrieve the size of the next message and the other o
retrieve the number of bytes indicated by the retrieved size.
Such calls to the operating system can, however, be very
slow in comparison to the invocations of local routines. To
overcome the inefficiencies of such repeated calls, the broad-
cast technique in one embhodiment, uses XDR to identify the
message boundaries in a stream of messages. The broadcast
technique may request the operating system to provide the
next, for example, 1,024 bytes from the stream. The broad-
cast technique can then repeatedly invoke the XDR routines
to retrieve the messages and use the success or failure of
each invocation to determine whether another block of 1,024
bytes needs (0 be retrieved [rom the operating system. The
invocation of XDR routines do not involve system calls and
arc thus more efficient than repeated system calls.
M-Regular.

In the embodiment described above, each fully connected
computer has four internal connections. The broadcast tech-
nique can be used with other numbers of internal connec-
tions. For example, each computer could have 0, 8, or any
even number of internal connections. As the number of
internal connections increase, the diameter of the broadcast
channel tends to decrease, and thus propagation time for a
message tends to decrease. The time that it takes to connect
a seeking compulter o the broadeast channel may, however,
increase as the number of internal connections increases.
When the number of internal connectors is even, then the
broadcast channel can be maintained as m-regular and
m-connected (in the steady state). If the number of internal
connections is odd, then when the broadcast channel has an
odd number of computers connected, one of the computers
will have less than that odd number of internal connections.

AB-AB 000826

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 165 of 190 PagelD #: 42658

US 6,732,147 B1

15

In such a situation, the broadcast network is neither
m-rcgular nor m-connccted. When the next computer con-
nects lo the broadcast channel, it can again become
m-regular and m-connected. Thus, with an odd number of
internal connections, the broadcast channel toggles between
being and not being m-regular and m-connected.
Components

F1G. 6 is a block diagram illustrating components of a
computer that is connected to a broadcast channel. The
above description generally assumed that there was only one
broadcast channel and that each computer had only one
connection 1o that broadcast channel. More generally, a
nelwork of computers may have multiple broadcast
channels, each computer may be connected to more than one
broadcast channel, and each computer can have multiple
connections to the same broadcast channel. The broadcast
channel is well suited for computer processes (e.g., appli-
cation programs) that execute collaboratively, such as net-
work meeting programs. Cach computer process can connect
to one or more broadeast channels. The broadeast channels
can be identified by channel type (e.g., application program
namc) and channel instance that represcnts scparate broad-
cast channels for that channel type. When a process attempts
to connect to a broadeast channel, it seeks a process cur-
rently connecled Lo that broadeast channel that is execuling
on a portal computer. The seeking process identifies the
broadcast channel by channel type and channel instance.

Computer 600 includes multiple application programs
601 execuling as separale processes. Each application pro-
gram interfaces with a broadcaster component 602 for each
broadcast channel to which it 1s connected. The broadcaster
component may be implement as an object that is instanti-
ated within the process space of the application program.
Alternatively, the broadcasicr component may cxccule as a
separate process or thread from the application program. [n
one embodiment, the broadecaster component provides func-
tions (¢.g., methods ol class) that can be invoked by the
application programs. The primary functions provided may
include a connect function that an application program
invokes passing an indication of the broadcast channel to
which the application program wants to connect. The appli-
cation program may provide a callback routine that the
broadcaster component invokes to notily the application
program that the connection has been completed, that is the
process enters the fully connected state. The broadcaster
component may also provide an acquire message function
that the application program can invoke to retrieve the next
message that is broadcast on the broadcast channel.
Alternatively, the application program may provide a call-
back routine (which may be a virtual function provided by
the application program) that the broadcaster component
invokes to notify the application program that a broadcast
message has been received. Each broadcaster component
allocates a call-in port using the hashing algorithm. When
calls are answered at the call-in port, they are transferred to
other ports that serve as the external and internal ports.

The computers connecting to the broadcast channel may
include a central processing unit, memory, input devices
(e.g., keyboard and pointing device), output devices (e.g.,
display devices), and storage devices (e.g., disk drives). The
memory and storage devices are compuler-readable medium
that may contain computer instructions that implement the
broadcaster component. In addition, the data structures and
message structures may be stored or transmitted via a signal
transmitted on a computer-readable media, such as a com-
munications link.

F1G. 7 is a block diagram illustrating the sub-components
of the broadcaster component in one embodiment. The

20

40

55

60

65

16

broadcaster component includes a connect component 701,
an external dispaicher 702, an internal dispatcher 703 for
each internal connection, an acquire message component
704 and a broadcast component 712. The application pro-
gram may provide a connect callback component 710 and a
receive response component 711 that are invoked by the
broadcaster component. The application program invokes
the connect component to establish a connection to a des-
ignated broadeast channcl. The conncet component identi-
fies the external port and installs the external dispatcher for
handling messages that are received on the external port.
The connect component invokes the seek portal compuler
component 705 to identifv a portal computer that is con-
nected to the broadcast channel and invokes the connect
request component 706 1o ask the portal computer (if fully
connected) 1o select neighbor processes for the newly con-
necting process. The external dispatcher receives external
messages, identifies the type of message, and invokes the
appropriate handling routine 707. The internal dispatcher
receives the internal messages, identifies the type of
mcessage, and invokes the appropriate handling routine 708.
The received broadcast messages are stored in the broadcast
message queue 709. The acquire message component is
invoked Lo retrieve messages [rom the broadeast queue, The
broadcast component is invoked by the application program
to broadcast messages in the broadcast channel.

The following tables list messages sent by the broadcaster
companents.

EXTERNAT. MESSAGES

Message Type Description

seeking__cornection_call Indicates that a seeking process would like to
know whether the receiving process is fully
connected to the broadcast channel

Indicates that the sending process would like
the receiving process to initiate a connection
of the sending process to the bioadcast
channel

Indicates that the sending process is
proposing an edge through which the
receiving process can connect to the broad-
cast channel (i.c., edge pinning)

[ndicates that the sending process is
proposing a port through which the receiving
process can connect to the broadeast channel
[ndicates that the sending process is
connected to the broadcast channel

[ndicates that the receiving process should
disconnect from one of its neighbors and
connect to one of the processes involved in
the neighbors with empty port condition

connection__request__call

edge__proposal__call

porl_connection_call

connected__stmt

condition__repair_stm:

INTERNAL MESSAGES

Message Type Description

broadcast__stmi Indicates a message that is heing broad-
cast through the broadcast channel for
the application programs

Indicates that the designated process is
louking [or porl through which it can
connect to the broadcast channel
Indicates that the requesting process is
looking for an edge through which it
cnn connect to the broadeast

channel

connection_port_search_stmt

connection__edge_search__call

AB-AB 000827

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 166 of 190 PagelD #: 42659

US 6,732,147 B1

17

-continued

INTERNAL MESSAGES

Message Type Description

connection__edge_search_resp Indicates whether the edge between this
process and the sending neighbor has
been accepted by the requesting party
[ndicates an estimated diameter of the
sroadesst channel

Indicates to reset the estimated diameter
1o indicated diameter

Indicates that the sending neighbor is
disconnecting from the broadcast
channel

Indicates that neighbors with empty port
condition have been detected

Indicates that the neighbors with empty
ports have the same set of neighbors
Indicates that the broadcast channel is
being shutdown

diameter__estimate__stmt
diameter__reset__stmt

disconnect__stmt

condition__check__stmt
condition__double__check__stmt

shutdown__stmt

Flow Diagrams

FIGS. 8-34 are flow diagrams illustrating the processing
of the broadeaster component in onc embodiment. FIG. 8 is
a llow diagram illustrating the processing of the connect
routine in one embodiment. This routine is passed a channel
type (c.g., application name) and channel instance (e.g.,
session identifier), that identifies the broadcast channel to
which this process wants to connect. The routine is also
passed auxiliary information that includes the list of portal
computers and a connection callback routine. When the
connection is established, the connection callback routine is
invoked to notify the application program. When this pro-
cess invokes this routine, it is in the sccking conncction
state. When a portal computer is located that is connected
and this routine connects to at least one neighbor, this
process enlers the partially connected state, and when the
process eventually connects to four neighbors, it enters the
fully connected state. When in the small regime, a fully
connected process may have less than four neighbors. In
block 801, the routine opens the call-in port through which
the process is to communicate with other processes when
establishing external and internal connections. The port is
selected as the first available port using the hashing algo-
rithm described above. In block 802, the routine sets the
conncet time 1o the current time. The conneet time is used to
identify the instance of the process that is connected through
this external port. One process may connect to a broadcast
channel of & certain channel Lype and channel inslance using
one call-in port and then disconnects, and another process
may then connect to that same broadcast channel using the
same call-in port. Before the other process becomes fully
connected, another process may (ry to communicate with it
thinking it is the fully connected old process. In such a case,
the connect time can be used to identify this situation. In
block 803, the routine invokes the seek portal computer
routine passing the channel type and channel instance. The
seek portal computer routine attempts to locate a portal
computer through which this process can connect to the
broadcast channel for the passed type and instance. In
decision block 804, il the seck portal compuler rouline is
successful in locating a fully connected process on that
portal computer, then the routine continues at block 805, ¢lse
the routine returns an unsuccessful indication. In decision
block 805, if no portal computer other than the portal
compuier on which the process is executing was located,
then this is the first process to fully connect to broadcast
chanpel and the routine continues at block 806, else the

10

15

40

55

60

18

routine continues at block 808. In block 806, the routine
invokes the achieve connection routine to change the state of
this process to fully connected. In block 807, the routine
installs the cxternal dispatcher for processing messages
received through this process’ external port for the passed
channel type and channel instance. When a message is
received through that external port, the external dispatcher is
invoked. The routine then returns. In block 808, the routine
installs an cxtcrnal dispatcher. In block 809, the routine
invokes the connect request routine to initiate the process of
identifying neighbors for the seeking computer. The routine
then returns,

FIG. 9 is a flow diagram illustrating the processing of the
seck portal computer routine in one embodiment. This
routine is passed the channel type and channel instance of
the broadcast channel to which this process wishes to
connect. This routine, for each search depth (e.g., port
number), checks the portal computers at that search depth. It
a portal computer is located at that scarch depth with a
process that is fully connected to the broadcast channel, then
the routine returns an indication of success. In blocks
902-911, the routine loops selecting each search depth until
a process 1s located. In block 902, the routine selects the next
search depth using a port number ordering algorithm. In
decision block 903, if all the search depths have already
been selected during this execution of the loop, that is for the
currently selected depth, then the routine returns a failure
indication, else the routine continues at block 904, In blocks
904-911, the routine loops selecting each portal computer
and determining whether a process of that portal computer
is connected to (or attempting to connect to) the broadcast
channel with the passed channel type and channel instance.
In block 904, the routine sclects the next portal computer. In
decision block 905, if all the portal computers have already
been selected, then the routine loops to block 902 1o select
the next search depth, else the routine continues al block
906. In block 906, the routine dials the selected portal
computer through the port represented by the search depth.
In decision block 907, if the dialing was successful, then the
routine continues at block 908, else the routine loops to
block 904 to select the next portal computer. The dialing will
be successlul if the dialed port is the call-in port of the
broadcast channel of the passed channel type and channel
instance of a process executing on that portal computer. In
block 908, the routine invokes a contact process routine,
which contacts the answering process of the portal computer
through the dialed port and determines whether that process
is [ully connected to the broadcast channel. In block 909, the
routine hangs up on the selected portal computer. In decision
block 910, if the answering process is fully connected to the
broadcast channel, then the routine returns a success
indicator, else the routine continues at block 911. In block
911, the routine invokes the check for external call routine
to determine whether an external call has been made to this

routine then loops to block 904 to select the next portal
computer.

FIG. 10 is a flow diagram illustrating the processing of the
contact process routine in one embodiment. This routine
determines whether the process of the selected portal com-
puter that answered the call-in to the selected port is fully
connected to the broadcast channel. In block 1001, the
routine sends an external message (i.e., seeking _
connection_ call) to the answering process indicating that a
seeking process wanis to know whether the answering
process is fully connected to the broadcast channel. In block
1002, the routine receives the external response message

AB-AB 000828

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 167 of 190 PagelD #: 42660

US 6,732,147 B1

19

from the answering process. In decision block 1003, if the
external response message is successfully received (ic.,
seeking_connection_resp), then the routine continues at
block 1004, clsc the routine returns. Wherever the broadcast
component requests to receive an external message, it seis a
time out period. If the external message is not received
within that time out period, the broadcaster component
checks its own call-in port to see if another process is calling
it. In particular, the dialed process may be calling the dialing
process, which may result in a deadlock situation. The
broadcaster component may repeat the receive request sev-
cral times. If the expected message is not received, then the
broadcaster component handles the error as appropriate. In
decision block 1004, if the answering process indicates in its
response message that it is fully connected to the broadcast
channel, then the routine continues at block 1005, else the
routine continues at block 1006. In block 1003, the routine
adds the selected portal computer to a list of connected
portal computers and then returns. In block 1006, the routine
adds the answering process to a list of fellow seeking
processes and then returns.

FIG. 11 is a flow diagram illustrating the processing of the
connect request routine in one embodiment. This routine
requests a process of a porlal computer that was identified as
being fully connected to the broadcast channel to initiate the
connection of this process to the broadcast channel. In
decision block 1101, if at least one process of a portal
computer was located that is fully connected to the broadcast
channel, then the routine continues at block 1103, else the
routine continues at block 1102. A process of the portal
computer may no longer be in the list if it recently discon-
nected from the broadcast channel. In one embodiment, a
sceking computer may always scarch its centire scarch depth
and find multiple portal computers through which it can
connect to the broadcast channel. In block 1102, the routine
restarts (he process of connecting 1o the broadeast channel
and returns. In block 1103, the routine dials the process of
one of the found portal computers through the call-in port.
In decision block 1104, if the dialing is successful, then the
routine continues at block 1105, else the routine continues at
block 1113. The dialing may be unsuccessful if, for example,
the dialed process recently disconnected from the broadcast
channel. In block 1105, the routine sends an external mes-
sage to the dialed process requesting a connection to the
broadcast channcl (i.c., conncction__request__call). In block
1106, the routine receives the response message (ie.,
connection_request_resp). In decision block 1107, if the
response message is successlully received, then the routing
contiues at block 1108, else the routine continues at block
1113. In block 1108, the routine sets the expected number of
holes (i.e., empty internal connections) for this process
based on the received response. When in the large regime,
the expected number of holes is zero. When in the small
regime, the expected number of holes varies from one to
three. In block 1109, the routine sets the estimated diameter
of the broadcast channel based on the received response. In
decision block 1111, if the dialed process is ready to connect
to this process as indicated by the response message, then
the routine continues at block 1112, else the routine contin-
ues al block 1113, In block 1112, the routine invokes the add
neighbor routine to add the answering process as a neighbor
to this process. This adding of the answering process typi-
cally occurs when the broadcast channel is in the small
regime. When in the large regime, the random walk search
for a neighbor is performed. Tn block 1113, the routine hangs
up the external connection with the answering process
computer and then returns.

20

25

40

50

55

60

thi

20

FIG. 12 is a flow diagram of the processing of the check
for external call routine in one embodiment. This routine is
invoked to identify whether a fellow seeking process is
attcmpting to cstablish a conncction to the broadeast channcl
through this process. In block 1201, the routine attempts to
answer a call on the call-in port. In decision block 1202, it
the answer is successful, then the routine continues at block
1203, else the routine returns. In block 1203, the routine
rcecives the cxternal message from the cxternal port. In
decision block 1204, if the type of the message indicates that
a seeking process is calling (i.¢., secking__connection__call),
then the routine continues at block 1205, ¢lse the routine
returns. In block 1205, the routine sends an external message
(i.c., sccking connection resp) to the other secking pro-
cess indicating that this process is also is seeking a connec-
tion. In decision block 1206, if the sending of the external
message is successful, then the routine continues at block
1207, else the routine returns. In block 1207, the routine
adds the other seeking process 1o a list of fellow secking
processes and then returns. This list may be used if this
process can find no process that is fully connccted to the
broadcast channel. In which case, this process may check to
see if any fellow seeking process were successful in con-
necting 10 the broadcast channel. For example, a [ellow
secking process may become the first process fully con-
nected to the broadcast channel.

FIG. 13 is a flow diagram of the processing of the achieve
connection routine in one embodiment. This routine sets the
state of this process to fully connected to the broadcast
channel and invokes a callback routine to notify the appli-
cation program that the process is now fully connected to the
requested broadcast channel. In block 1301, the routine sets
the conncction state of this process to fully connccted. In
block 1302, the routine notifies fellow seeking processes
that it is fully connected by sending a connected external
message 10 them (Le., connected__stmt). In block 1303, the
routine invokes the connect callback routine to notify the
application program and then returns.

FIG. 14 is a flow diagram illustrating the processing of the
external dispatcher routine in one embodiment. This routine
is invoked when the external port receives a message. This
routine retrieves the message, identifies the external mes-
sage type, and invokes the appropriate routine to handle that
message. This routine loops processing each message until
all the reecived messages have been handled. In block 1401,
the routine answers (e.g., picks up) the external port and
retrieves an external message. In decision block 1402, if a
message was retrieved, then the routine conlinues at block
1403, else the routine hangs up on the external port in block
1415 and returns. In decision block 1403, if the message
type is for a process seeking a connection (i.e., seeking
connection__call), then the routine invokes the handle seek-
ing connection call routine in block 1404, else the routine
continues at block 1405. In decision block 1405, if the
message type is for a connection request call (ie.,
connection_request__call), then the routine invokes the
handle connection request call routine in block 1406, else
the routine continues at block 1407. In decision block 1407,
if the message type is edge proposal call (i.e., edge
proposal__call), then the routine invokes the handle edge
proposal call routine in block 1408, else the routine contin-
ues at block 1409. In decision block 1409, if the message
type is port connect call (i.e., port__connect_ call), then the
routine invokes the handle port connection call routine in
block 1410, else the routine continues at block 1411. In
decision block 1411, if the message tvpe is a connected
statement (i.e., connected stmt), the routine invokes the

AB-AB 000829

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 168 of 190 PagelD #: 42661

US 6,732,147 B1

21

handle connected statement in block 1112, else the routine
continues at block 1212. In decision block 1412, if the
message type is a condition repair statement (i.e.,
condition repair_stmt), then the routine invokes the handle
condition repair routine in block 1413, else the routine loops
to block 1414 to process the next message. After each
handling routine is invoked, the routine loops to block 1414.
In block 1414, the routine hangs up on the external port and
continucs at block 1401 to reccive the next message.

FIG. 15 is a flow diagram illustrating the processing of the
handle seeking connection call routine in one embodiment.
This routine is invoked when a seeking process is calling 1o
identify a portal computer through which it can connect to
the broadcast channel. In decision block 1501, if this process
is currently fully connected to the broadcast channel iden-
tified in the message, then the routine continues at block
1502, else the routine continues at block 1503. In block
1502, the routine sets a message to indicate that this process
is fully connected to the broadcast channel and continues at
block 1505. In block 1503, the routine sets a message to
indicate that this process is not fully connected. In block
1504, the routine adds the identification of the seeking
process to a list of fellow seeking processes. If this process
is not fully connected, then it is atiempting (o connect (o the
broadcast channel. In block 1505, the routine sends the
external message response (i.¢., seeking__connection__resp)
to the seeking process and then returns.

FIG. 16 is a flow diagram illustrating processing of the
handle connection request call routine in one emhodiment.
‘This routine is invoked when the calling process wants this
process 1o initiate the connection of the process to the
broadcast channel. This routine either allows the calling
process Lo ¢stablish an internal conncction with this process
(e.g., if in the small regime) or starts the process of identi-
fying a process to which the calling process can connect. In
decision block 1601, il this process is currently fully con-
nected to the broadcast channel, then the routine continues
at block 1603, ¢lse the routine hangs up on the external port
in block 1602 and returns. In block 1603, the routine sets the
number of holes that the calling process should expect in the
response message. In bhlock 1604, the routine sets the
estimated diameter in the response message. In block 1605,
the routine indicates whether this process is ready to connect
to the calling process. This process is ready to connect when
the number of its holes is greater than zero and the calling
process is not a neighbor of this process. In block 1606, the
routine sends to the calling process an external message that
s responsive 1o the connection request call (i.e.,
connection__request__resp). In block 1607, the routine notes
the number of holes that the calling process needs to fill as
indicated in the request message. In decision block 1608, if
this process is ready 1o connect to the calling process, then
the routine continues at block 1609, else the routine contin-
ues at block 1611. In block 1609, the routine invokes the add
neighbor routine to add the calling process as a neighbor. In
block 1610, the routine decrements the number of holes that
the calling process needs to fill and continues at block 1611.
In block 1611, the routine hangs up on the external port. In
decision block 1612, if this process has no holes or the
eslimaled diameler is greater than one (Le., in the large
regime), then the routine continues at block 1613, else the
routine continues at block 1616. In blocks 1613-1615, the
routine loops forwarding a request for an edge through
which to connect to the calling process to the broadcast
channel. One request is forwarded for each pair of holes of
the calling process that needs to be filled. In decision block
1613, if the number of holes of the calling process to be

20

25

40

50

55

60

65

22

filled is greater than or equal to two, then the routine
continues at block 1614, else the routine continues at block
1616. In block 1614, the routine invokes the forward con-
ncction cdge scarch routine. The invoked routine is passed
to an indication of the calling process and the random walk
distance. In one embodiment, the distance is twice in the
estimated diameter of the broadcast channel. In block 1614,
the routine decrements the holes left to fill by two and loops
to block 1613. In decision block 1616, if there is still a hole
to fill, then the routine continues at block 1617, else the
routine returns. In block 1617, the routine invokes the fill
hole routine passing the identification ol the calling process.
The fill hole routine broadcasts a connection port search
statement (i.c., connection port secarch stmt) for a hole of
a connected process through which the calling process can
connect to the broadcast channel. The routine then returns.

FIG. 17 is a flow diagram illustrating the processing of the
add neighbor routine in one embodiment. This routine adds
the process calling on the external port as a neighbor to this
process. In block 1701, the routine identifies the calling
process on the external port. In block 1702, the routine scis
a flag to indicate that the neighbor has not vet received the
broadcast messages from this process. This flag is used to
ensure thal there are no gaps in the messages initially sent o
the new neighbor. The external port becomes the internal
port for this connection. In decision block 1703, if this
process is in the seeking connection state, then this process
is connecting 1o its first neighbor and the routine continues
at block 1704, else the routine continues at block 1705. In
block 1704, the routine sets the connection state of this
process 1o partially connected. In block 1705, the routine
adds the calling process to the list of neighbors of this
process. In block 1706, the routine installs an intcrnal
dispatcher for the new neighbor. The internal dispatcher is
invoked when a message is received from that new neighbor
through the internal port ol that new neighbor. In decision
block 1707, if this process buffered up messages while not
fully connected, then the routine continues at block 1708,
else the routine continues at block 1709. In one embodiment,
a process that is partially connected may buffer the messages
that it receives is through an internal connection so that it
can send these messages as it connects to new neighbors. In
block 1708, the routine sends the buffered messages to the
new neighbor through the internal port. In decision block
1709, if thc number of holes of this process cquals the
expected number of holes, then this process is fully con-
nected and the routine continues at block 1710, else the
routine continues at block 1711. In block 1710, the rouline
invokes the achieve connected routine to indicate that this
process is fully connected. In decision block 1711, if the
number of holes for this process is zero, then the routine
continues at block 1712, else the routine returns. In block
1712, the routine deletes any pending edges and then
returns. A pending edge is an edge that has been proposed to
this process for edge pinning, which in this case is no longer
needed.

I'T1G. 18 is a flow diagram illustrating the processing of the
forward connection edge search routine in one embodiment.
This routine is responsible for passing along a request to
connecl a requesting process (0 a randomly selected neigh-
bor of this process through the internal port of the selected
neighbor, that is part of the random walk. In decision block
1801, if the forwarding distance remaining is greater than
zero, then the routine continues at block 1804, else the
routine continues at block 1802. In decision block 1802, if
the number of neighbors of this process is greater than one,
then the routine continues at block 1804, else this broadcast

AB-AB 000830

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 169 of 190 PagelD #: 42662

US 6,732,147 B1

23

channel is in the small regime and the routine continues at
block 1803. In decision block 1803, if the requesting process
is a neighbor of this process, then the routine returns, else the
routine continucs at block 1804. In blocks 1804-1807, the
routine loops attempting to send a connection edge search
call internal message (i.c., connection__edge_ search__call)
to a randomly sclected neighbor. In block 1804, the routine
randomly selects a neighbor of this process. In decision
block 1805, if all the ncighbors of this process have alrcady
been selected, then the routine cannot forward the message
and the routine returns, else the routine continues at block
1806. In block 1806, (he routine sends a connection edge
search call internal message to the selected neighbor. In
decision block 1807, if the sending of the message is
successful, then the routine continues at block 1808, else the
routine loops to block 1804 to select the next neighbor.
When the sending of an internal message is unsuccessful,
then the neighbor may have disconnected from the broadcast
channel in an unplanned manner. Whenever such a situation
is detected by the broadcaster component, it attempts to find
another ncighbor by invoking the fill holes routine to fill a
single hole or the forward connecting edge search routine to
fill two holes. In is block 1808, the routine notes that the
recently sent connection edge search call has not yet been
acknowledged and indicates that the edge to this neighbor is
reserved if the remaining forwarding distance is less than or
equal to one. It is reserved because the selected neighbor
may offer this edge to the requesting process for edge
pinning. The routine then returns.

F1G. 19 1s a flow diagram illustrating the processing of the
handle edge proposal call routine. This routine is invoked
when a message is received from a proposing process that
proposcs Lo connccet an cdge between the proposing process
and one of its neighbors to this process for edge pinning. In
decision block 1901, if the number of holes of this process
minus (he number ol pending edges is greater than or equal
to one, then this process still has holes to be filled and the
routine continues at block 1902, ¢lse the routine continues at
block 1911. In decision block 1902, if the proposing process
or its neighbor is a neighbor of this process, then the routine
continues at hlock 1911, else the routine continues at block
1903. In block 1903, the routine indicates that the edge is
pending between this process and the proposing process. In
decision block 1904, if a proposed neighbor is already
pending as a proposcd ncighbor, then the routine continucs
at block 1911, else the routine continues at black 1907. In
block 1907, the routine sends an edge proposal response as
an exlernal message (o the proposing process (Le., edge_
proposal_resp) indicating that the proposed edge is
accepted. In decision block 1908, if the sending of the
message was successful, then the routine continues at block
1909, else the routine returns. In block 1909, the routine
adds the edge as a pending edge. In block 1910, the routine
invokes the add neighbor routine to add the proposing
process on the external port as a neighbor. The routine then
returns. [n block 1911, the routine sends an external message
(ie., edge proposal resp) indicating that this proposed
edge is not accepted. In decision block 1912, if the number
of holes is odd, then the routine continues at block 1913, else
the routine returns. In block 1913, the routing invokes the [ill
hole routine and then returns.

FIG. 20 1s a flow diagram illustrating the processing of the
handle port connection call routine in one embodiment. This
routine is invoked when an external message is received
then indicates that the sending process wants to connect to
one hole of this process. In decision block 2001, if the
number of holes of this process is greater than zero, then the

10

15

40

55

60

24

routine continues at block 2002, else the routine continues at
block 2003. In decision block 2002, if the sending process
is not a neighbor, then the routine continues at block 2004,
clsc the routine continucs to block 2003. In block 2003, the
routine sends a port connection response external message
(i.e., port_connection_resp) to the sending process that
inclicates that it is not okay to connect to this process. The
routine then returns. In block 2004, the routine sends a port
conncetion responsc external message to the sending process
that indicates that is okay to connect this process. In decision
block 2005, if the sending of the message was successful,
then the routine conlinues al block 2006, clse the routine
continues at block 2007. In block 2006, the routine invokes
the add neighbor routine to add the sending process as a
neighbor of this process and then returns. In block 2007, the
routine hangs up the external connection. In block 2008, the
routine invokes the connect request routine to request that a
process connect to one of the holes of this process. The
routing then returns,

FIG. 21 is a flow diagram illustrating the processing of the
fill holc routine in onc¢ cmbodiment. This routine is passcd
an indication of the requesting process. If this process is
requesting to fill a hole, then this routine sends an internal
message 10 other processes, I another process is requesting
to fill a hole, then this routine invokes the routine to handle
a connection port search request. In block 2101, the routine
initializes a connection port search statement internal, mes-
sage (i.e., connection_ port_search_stmt). In decision
block 2102, if this process is the requesting process, then the
routine continues at block 2103, else the routine continues at
block 2104. In block 2103, the routine distributes the
message to the neighbors of this process through the internal
ports and then returns. In block 2104, the routine invokes the
handle connection port search routine and then returns.

FIG. 22 is a flow diagram illustrating the processing of the
internal dispatcher routine in one embodiment. This rouline
is passed an indication of the neighbor who sent the internal
message. In block 2201, the routine receives the internal
message. This routine identifies the message type and
invokes the appropriate routine to handle the message. In
block 2202, the routine assesses whether to change the
estimated diameter of the broadcast channel based on the
information in the received message. In decision block 2203,
if this process is the originating process of the message or
the message has alrcady been reccived (i.c., a duplicatc),
then the routine ignores the message and continues at block
2208, else the routine continues at block 2203A. In decision
block 2203A, il the process is partially connected, then the
routine continues at block 2203B, else the routine continues
at block 2204. In block 2203B, the routine adds the message
to the pending connection buffer and continues at block
2204. In decision blocks 2204-2207, the routine decodes the
message type and invokes the appropriate routine to handle
the message. For example, in decision block 2204, if the
type of the message is broadcast statement (i.¢., broadcast
stmt), then the routine invokes the handle broadcast message
routine in block 2205. After invoking the appropriate han-
dling routine, the routine continues at block 2208. In deci-
sion block 2208, if the partially connected buffer is full, then
the routine continues at block 2209, ¢lse the routine contin-
ues at block 2210. The broadcaster component collects all its
internal messages in a buffer while partially connected so
that it can forward the messages as it connects 1o new
neighbors. If, however, that buffer becomes full, then the
process assumes that it is now fully connected and that the
expected number of connections was too high, because the
broadcast channel is now in the small regime. In block 2209,

AB-AB 000831

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 170 of 190 PagelD #: 42663

US 6,732,147 B1

25

the routine invokes the achieve connection routine and then
continues in block 2210. In decision block 2210, if the
application program message queue is emply, then the
routine returns, clsc the routine continucs at block 2212, In
block 2212, the routine invokes the receive response routine
passing the acquired message and then returns. The received
response routine is a callback routine of the application
program.

FIG. 23 is a flow diagram illustrating thc processing of the
handle broadcast message routine in one embodiment. This
routine is passed an indication of the originating process, an
indication of the neighbor who sent the broadcast message,
and the broadcast message itself. In block 2301, the routine
performs the out of order processing for this message. The
broadcaster component queues messages from cach origi-
nating process uniil it can send them in sequence number
order to the application program. In block 2302, the routine
invokes the distribute broadcast message routine to forward
the message to the neighbors of this process. In decision
block 2303, if a newly connected neighbor is waiting to
receive messages, then the routine continues at block 2304,
else the routine returns. In block 2304, the routine sends the
messages in the correct order if possible for each originating
process and then returns.

FIG. 24 is a flow diagram illustrating the processing of the
distribute broadcasl message routine in one embodiment.
This routine sends the broadcast message to each of the
neighbors of this process, except for the neighbor who sent
the message to this process. In block 2401, the routine
selects the next neighbor other than the neighbor who sent
the message. In decision block 2402, if all such neighbors
have already been selected, then the routine returns. In block
2403, the routine scnds the message to the sclected neighbor
and then loops to block 2401 to select the next neighbor.

FIG. 26 is a flow diagram illustrating the processing of the
handle connection porl search stalement rouline in one
embodiment. ‘This routine is passed an indication of the
neighbor that sent the message and the message itself. In
block 2601, the routine invokes the distribute internal mes-
sage which sends the message to each of ils neighbors other
than the sending neighbor. In decision block 2602, if the
number of holes of this process is greater than zero, then the
routine continues at block 2603, else the routine returns. In
decision block 2603, if the requesting process is a neighbor,
then the routine continucs at block 2605 clsc the routine
continues at block 2604, In block 2604, the routine invokes
the court neighbor routine and then returns. The court
neighbor routing connects this process o the requesting
process if possible. In block 2605, if this process has one
hole, then the neighbors with empty ports condition exists
and the routine continues at block 2606, else the routine
returns. In block 2606, the routine generates a condition
check message (i.e., condition__check) that includes a list of
this process” neighbors. In block 2607, the routine sends the
message to the requesting neighbor.

FIG. 27 is a flow diagram illustrating the processing of the
court neighbor routine in one embodiment. This routine is
passed an indication of the prospective neighbor for this
process. If this process can connect to the prospective
neighbor, then it sends a port connection call external
message to the prospective neighbor and adds the prospec-
tive neighbor as a neighbor. In decision block 2701, if the
prospective neighbor is already a neighbor, then the routine
returns, else the routine continues at block 2702. In block
2702, the routine dials the prospective neighbor. In decision
block 2703, if the number of holes of this process is greater
than zero, then the routine continues at block 2704, else the

20

25

40

50

55

60

thi

26

routine continues at block 2706. In block 2704, the routine
sends a port connection call external message (i.e., port
connection__call) to the prospective neighbor and receives
its responsc (i.c., porl_conncction_resp). Assuming thc
response is successfully received, in block 2705, the routine
adds the prospective neighbor as a neighbor of this process
by invoking the add neighbor routine. In block 2706, the
routine hangs up with the prospect and then returns.

FIG. 28 is a flow diagram illustrating the processing of the
handle connection edge search call routine in one embodi-
ment. This routine is passed a indication of the neighbor who
sent (the message and the message itsell, This routine either
forwards the message to a neighbor or proposes the edge
between this process and the sending neighbor to the
requesting process for edge pinning. In decision block 2801,
if this process is not the requesting process or the number of
holes of the requesting process is still greater than or equal
to two, then the routine continues at block 2802, else the
routine continues at block 2813. In decision block 2802, if
the forwarding distance is greater than zero, then the random
walk is not complete and the routine continucs at block
2803, else the routine continues at block 2804. In block
2803, the routine invokes the forward connection edge
search routine passing the identification of the requesting
process and the decremented forwarding distance. The rou-
tine then continues at block 2815. In decision block 2804, if
the requesting process is a neighbor or the edge between this
process and the sending neighbor is reserved because it has
already been offered to a process, then the routine continues
at block 2805, else the routine continues at block 2806. In
block 2805, the routine invokes the forward connection edge
search routine passing an indication of the requesting party
and a toggle indicator that alternatively indicates to continuc
the random walk for one or two more computers. The routine
then continues at block 2815. In block 2806, the routine dials
the requesting process via the call-in port. In block 2807, the
routine sends an edge proposal call external message (i.e.,
edge__proposal__call) and receives the response (i.e., edge
proposal__resp). Assuming that the response is successfully
received, the routine continues at block 2808. In decision
block 2808, if the response indicates that the edge is
acceptable to the requesting process, then the routine con-
tinues at block 2809, ¢lse the routine continues at block
2812. In block 2809, the routine reserves the edge between
this process and the sending ncighbor. In block 2810, the
routine adds the requesting process as a neighbor by invok-
ing the add neighbor routine. In block 2811, the routine
removes the sending neighbor as a neighbor. In block 2812,
the routine hangs up the external port and continues at block
2815. In decision block 2813, if this process is the requesting
process and the number of holes of this process equals one,
then the routine continues at block 2814, else the routine
continues at block 2815. In block 2814, the routine invokes
the fill hole routine. In block 2815, the routine sends an
connection edge search response message (i.€., connection
edge_ search_response) to the sending neighbor indicating
acknowledgement and then returns. The graphs are sensitive
to parity. That is, all possible paths starting from a node and
ending at that node will have an even length unless the graph
has a cycle whose length is odd. The broadeaster component
uses a toggle indicator to vary the random walk distance
between even and odd distances.

FIG. 29 is a flow diagram illustrating the processing of the
handle connection edge search response routine in one
embodiment. This routine is passed as indication of the
requesting process, the sending neighbor, and the message.
In block 2901, the routine notes that the connection edge

AB-AB 000832

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 171 of 190 PagelD #: 42664

US 6,732,147 B1

27

search response (i.e., connection__edge_ search_ resp) has
been received and if the forwarding distance is less than or
equal to one unreserves the edge between this process and
the sending neighbor. In decision block 2902, if the request-
ing process indicates that the edge is acceptable as indicated
in the message, then the routine continues at block 2903, ¢lse
the routine returns. In block 2903, the routine reserves the
edge between this process and the sending neighbor. In
block 2904, the routine removes the sending neighbor as a
neighbor. In block 2905, the routine invokes the court
neighbor routine to connect to the requesting process. In
decision block 2906, il the invoked rouline was
unsuccessful, then the routine continues at block 2907, else
the routine returns. In decision block 2907, if the number of
holes of this process is greater than zero, then the routine
continues at block 2908, else the routine returns. In block
2908, the routine invokes the fill hole routine and then
returns.

FIG. 30 is a flow diagram illustrating the processing of the
broadcast routine in one embodiment. This routine is
invoked by the application program to broadcast a message
on the broadcast channel. This routine is passed the message
to be broadcast. In decision block 3001, if this process has
al least one neighbor, then the routine continues at block
3002, clse the routine returns since it is the only process
connected to be broadcast channel. In block 3002, the
routine generates an internal message of the broadcast
statement type (i.e., broadcast_stmt). In block 3003, the
routine sets the sequence number of the message. In block
3004, the routine invokes the distribute internal message
routine 1o broadcast the message on the broadcast channel.
The routine returns.

FIG. 31 is a flow diagram illustrating the processing of the
acquire message routine in one embodiment. The acquire
message routine may be invoked by the application program
or by a callback routine provided by the application pro-
gram. ‘Lhis routine returns a message. In block 3101, the
routine pops the message from the message queue of the
broadcast channel. In decision block 3102, if a message was
retrieved, then the routine returns an indication of success,
else the routine returns indication of failure.

FI1GS. 32-34 are flow diagrams illustrating the processing
of messages associated with the neighbors with empty ports
condition. FI1G. 32 is a flow diagram illustrating processing
of the handle condition check message in one cmbodiment.
This message is sent by a neighbor process that has one hole
and has received a request to connect to a hole of this
process. In decision block 3201, il the number ol holes of
this process is equal to one, then the routine continues at
block 3202, else the neighbors with empty ports condition
does not exist any more and the routine returns. In decision
block 3202, if the sending neighbor and this process have the
same set of neighbors, the routine continues at hlock 3203,
else the routine continues at block 3205. In block 3203, the
routine initializes a condition double check message (i.c.,
condition__double__check) with the list of neighbors of this
process. In block 3204, the routine sends the message
internally to a neighbor other than sending neighbor. The
routine then returns. In block 3205, the routine selects a
neighbor ol the sending process thal is not also a neighbor
of this process. In block 3206, the routine sends a condition
repair message (i.e., condition_ repair _stmt) externally to
the selected process. In block 3207, the routine invokes the
add neighbor routine to add the selected neighbor as a
neighbor of this process and then returns.

F1G. 33 is a flow diagram illustrating processing of the
handle condition repair statement routine in one embodi-

20

25

40

50

55

60

65

28

ment. This routine removes an existing neighbor and con-
nccts to the process that scnt the message. In decision block
3301, il this process has no holes, then the routine continues
at block 3302, else the routine continues at block 3304. In
block 3302, the routine selects a neighbor that is not
involved in the neighbors with empty ports condition. In
block 3303, the routine removes the selected neighbor as a
neighbor of this process. Thus, this process that is executing
the routine now has at least one hole. In block 3304, the
routine invokes the add ncighbor routine to add the process
that sent the message as a neighbor of this process. The
routine then returns.

FIG. 34 is a flow diagram illustrating the processing of the
handle condition double check routine. This routine deter-
mines whether the neighbors with empty ports condition
really is a problem or whether the broadcast channel is in the
small regime. In decision block 3401, if this process has one
hole, then the routine conlinues at block 3402, else the
routine continues at block 3403, 1f this process does not have
one hole, then the set of neighbors of this process is not the
same as the set of neighbors of the sending process. In
decision block 3402, if this process and the sending process
have the same set of neighhors, then the broadcast channel
is not in the small regime and the routine continues at block
3403, else the routine continues at block 3406. In decision
block 3403, if this process has no holes, then the routine
returns, clsc the routine continucs at block 3404. In block
3404, the routine sets the estimated diameter for this process
to one. In block 3405, the routine broadcasts a diameter reset
internal message (ie., diameler_reset) indicaling that the
estimated diameter 1s one and then returns. In block 3406,
the routine creates a list of neighbors of this process. In
block 3407, the routine sends the condition check message
(i.e., condition__check__stmt) with the list of neighbors to
the neighbor who sent the condition double check message
and then returns.

From the above description, it will be appreciated that
although specific embodiments of the technology have been
described, various modifications may be made without devi-
ating from the spirit and scope of the invention. For
example, the communications on the broadcast channel may
be encrypled. Also, the channel instance or session identifier
may be a very large number (e.g., 128 bits) to help prevent
an unauthorized user to maliciously tap into a broadcast
channel. The portal computer may also enforce security and
not allow an unauthorized user to connect to the broadcast
channel.

Accordingly, the invention is not limited except by the
claims.

We claim:

1. A method of disconnecting a first computer from a
second computer, the first computer and the second com-
puter being connected to a broadcast channel, said broadcast
channel forming an m-regular graph where m is at least 3,
the method comprising:

when the first computer decides to disconnect from the

second compulter, the first computer sends a disconnect
message to the second computer, said disconnect mes-
sage including a list of neighbors of the first computer;
and

when the second computer receives the disconnect mes-

sage from the first computer, the second computer
broadcasts a connection port search message on the
broadcast channel to find a third computer to which it
can connect in order to maintain an m-regular graph,
said third computer being one of the neighbors on said
list of neighbors.

AB-AB 000833

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 172 of 190 PagelD #: 42665

US 6,732,147 B1

29

2. The method of claim 1 wherein the second computer
receives a port connection message indicating that the third
computer is proposing that the third computer and the
sccond computer connect.

3. The method of claim 1 wherein the first computer
disconnects from the second computer after sending the
disconnect message.

4. The method of claim 1 wherein the broadcast channel
is implemented using the Internct.

5. The method of claim 1 wherein the first computer and
second computer are connected via a TCP/IP connection.

6. A method for healing a disconnection of a first com-
puter from a second computer, the computers being con-
nected to a broadcast channel, said broadcast channel being
an m-regular graph where m is at least 3, the method
comprising;

attempting to send a message from the first computer to

the second compuler; and
when the attempt to send the message is unsuccessful,
broadcasting from the first computer a connection port
scarch message indicating that the first computer nceds
a connection; and

having a third compuler not already connected Lo said first
computer respond to said connection port search mes-
sage in a manner as to maintain an m-regular graph.

7. The method of claim 6 including:

when a third computer receives the connection port search
message and the third computer also needs a
connection, sending 4 message [rom the third compulter
to the first computer proposing that the first computer
and third computer connect.
8. The method of claim 7 including:
when the first computer receives the message proposing
that the first computer and third computer connect,
sending [rom (he first compuler (o the third compuler a
message indicating that the first computer accepts the
proposal to connect the first computer to the third
computer.
9. The method of claim 6 wherein each computer con-
nected to the broadcast channel is connected to at least three
other computers.

10

15

40

30

10. The method of claim 6 wherein the broadcasting
includes scnding the message 1o cach computer to which the
[irst computer is connected.

11. A computer-readable medium containing instructions
for controlling disconnecting of a computer from another
computer, the computer and the other computer being con-
nected to a broadeast channel, said broadcast channel being
an m-regular graph where m is at least 3, comprising:

a component that, when the computer decides o discon-
nect from the other computer, the computer sends a
disconnect message to the other computer, said discon-
nect message including a list of neighbors of the
computer; and

a component that, when the computer receives a discon-
nect message from another computer, the computer
broadcasts a connection port search message on the
broadcast channel to find a computer to which it can
connect in order (o maintain an m-regular graph, said
computer to which it can connect being one of the
neighbors on said list of neighbors.

12. The computer-readable medium of claim 11 including;:

a component that, when the compulter receives a connec-
tion port search message and the computer needs to
connect to another computer, sends to the computer that
sent the connection port search message a port connec-
tion message indicating that the computer is proposing
that the compuler thal sent the connection porl scarch
message connect to the computer.

13. The computer-readable medium of claim 12 includ-

ing:

a component that, when the computer receives a port
connection message, connecting to the computer that
sent the port conncction message.

14. The computer-readable medium of claim 11 wherein

the computers are connected via a TCP/IP connection.

15. The computer-readable medium of claim 11 wherein
the computers that are connected to the broadcast channel
are peers.

16. The computer-readable medium of claim 11 wherein
the broadcast channel is implemented using the Internet.

AB-AB 000834

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 173 of 190 PagelD #: 42666

PATENT NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

16,732,147 Bl
: May 4, 2004
: Fred B. Holt

Page 1 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 5,
Line 9, “a-broadcast” should be -- a broadcast --;

Column 6,
Line 30, “on-that” should be -- on that --;

Column &,
Line 26, delete comma between “newly”;

Column 11,
Line 60, “port-number” should be -- port number --;
Line 63, “port-order” should be -- port order --;

Column 13,
Line 50, “computer-cannot” should be -- computer cannot --;

Column 14,
Line 51, delete period after “Regular”;

Column 22,
Line 41, delete “is” between “receives” and “through”;

Column 23,
Line 23, delete “is” between “In” and “block™;

Column 25,
Line 435, insert comma between “2605” and “else™;

AB-AB 000835

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 174 of 190 PagelD #: 42667

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,732,147 Bl Page 2 of 2
DATED : May 4, 2004
INVENTOR(S) : Fred B. Holt

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 25 (cont’d),
Line 46, delete comma between “2604” and “In”;

Signed and Sealed this

Twenty-seventh Day of July, 2004

L

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

AB-AB 000836

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 175 of 190 PagelD #: 42668

EXHIBIT 66

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 176 of 190 PagelD #: 42669

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 177 of 190 PagelD #: 42670

EXHIBIT 67

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 178 of 190 PagelD #: 42671

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 179 of 190 PagelD #: 42672

EXHIBIT 68

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 180 of 190 PagelD #: 42673

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 181 of 190 PagelD #: 42674

EXHIBIT 69

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 182 of 190 PagelD #: 42675

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 183 of 190 PagelD #: 42676

EXHIBIT 70

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 184 of 190 PagelD #: 42677

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 185 of 190 PagelD #: 42678

EXHIBIT 71

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 186 of 190 PagelD #: 42679

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 187 of 190 PagelD #: 42680

EXHIBIT 72

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 188 of 190 PagelD #: 42681

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 189 of 190 PagelD #: 42682

EXHIBIT 73

Case 1:16-cv-00453-RGA Document 492-1 Filed 03/07/18 Page 190 of 190 PagelD #: 42683

THIS EXHIBIT HAS BEEN
REDACTEDIN ITS ENTIRETY

