EXHIBIT B

Case 1:16-cv-00453-RGA Document 22-2 Filed 10/04/16 Pa

GRAPH WITH

J. A. Bond

Department of Combin University of Waterloo, Ontario, Canada

AMERICAN ELSEV

@ J. A. Bondy and U. S. R. Murty 1976

All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission.

First published in Great Britain 1976 by The Macmillan Press Ltd

Reprinted 1977

First published in the U.S.A. 1976 by AMERICAN ELSEVIER PUBLISHING CO., INC. 52 Vanderbilt Avenue New York, N.Y. 10017 ISBN 0-444-19451-7 LCCCN 75-29826

Printed in Great Britain

Contents

Pre	face									•	vi	
1	GRAPHS AND SUBGRAPHS											
	1.1	Graphs and Simple Graphs	aphs								1	
	1.2	Granh Isomorphism		_							4	
	1.3	The Incidence and Adj	acen	Ev N	latric	es					7	
	1.4	Subgraphs						-			8	
	1.5	Vertex Degrees .									10	
	1.6	Paths and Connection							•	_	12	
	1.7	Cycles									14	
	•••	Applications	•	•	•				•	•	-	
	1.8	The Shortest Path Prob	olem								15	
	1.9										21	
	•,	Spormer & Lomma :	•				,		•	·		
2	TRE	FS										
~	2.1	Trees									25	
	2.2	Cut Edges and Bonds									27	
	2.3	Cut Vertices							_		31	
	2.4	Cayley's Formula									32	
		Applications		•	=	-		-	-	•		
	2.5	The Connector Problem	1	-							36	
3	CONNECTIVITY											
	3.1					_					42	
	3.2	. .									44	
	• • •	Applications	_	•	•			-				
	3.3	Construction of Reliabl	e Co	mm	unica	tion	Netw	orks			47	
4	EUL	EULER TOURS AND HAMILTON CYCLES										
	4.1	Euler Tours		-							51	
	4.2	Hamilton Cycles .									53	
		Applications										
	4.3	The Chinese Postman F									62	
	4.4	The Travelling Salesman	n Pro	oble	m						65	

Contents

• '	61.44.1	Chinos
	5.1	Matchings .
	5.2	Matchings and (
	5.3	Perfect Matchin
		Applications
	5.4	The Personnel
	5.5	The Optimal As
6	EDG	E COLOURING\$
	6.1	Edge Chromatic
	6.2	Vizing's Theore
		Applications
	6.3	The Timetabling
7	INDI	EPENDENT SETS /
•	7.1	Independent Se
	7.2	Ramsey's Theor
	7.3	Turán's Theore
	7.5	Applications
	7.4	Schur's Theore
	7.5	A Geometry Pi
	1.5	A Geometry 11
8	VER	TEX COLOURING
	8.1	Chromatic Nun
	8.2	Brooks' Theore
	8.3	Hajós' Conjecto
	8.4	Chromatic Poly
	8.5	Girth and Chro
		Applications
	8.6	A Storage Prob
9	P1. A	NAR GRAPHS
_		Plane and Plan
		Dual Graphs

Case 1:16-cv-00453-RGA Document 22-2- Filed 10/04/16

		•												
x													Co	ilenis
10	DIRECTED GRAPHS													
	10.1	Di	rected (Jraph:	s .							_	•	171
	10.2		rected F								-	Ĭ.	· ·	173
	10.3		rected C	•								•		176
	10.4		Job Seq		no Pi	roble	81.			•				179
	10.5		esigning										•	181
	10.6		aking a							:			•	182
	10.7		inking t								•	•	•	185
					т						•	•	•	
11	NETWORKS													
	11.1)WS .	•	•		-			•				191
	11.2	Cu												194
	11.3		e Max-l oplication		Min-0	Cut 1	Theor	em	٠	•		•	٠	196
	11.4	M	enger's	l'heor	ems							_		203
	11.5		asible F											206
12	THE CYCLE SPACE AND BOND SPACE													
	12.1	Cir	culation	s and	Pote	ntial	Diffe	erenc	es.					212
	12.2	Th	e Numb	er of	Span	ning	Tree	S.						218
		Ap	plication	S	•	Ū								
	12.3	Per	fect Squ	iares				•			, .			220
Anr	endix	1	Hints t	o Star	red F	· vorc	ic <i>o</i> c							227
	endix	-	Four G					of the	ir Pr	onerti	ec	٠		232
	endix		Some I					•		•		•	•	234
	endix		Unsole			•				•	•	•		246
Appendix V			Sugges							· ·	•	•	•	254
		•	SURBEN				, cu	E	•	•	•	•	•	234
Glo	ssary o	f Sy	mbols					٠						257
Inde	ex .			-										261

Graphs

1.1 GRAPHS AND SIMPLE GE

Many real-world situations diagram consisting of a set of these points. For examp joining pairs of friends; or lines representing commun mainly interested in wheth the manner in which they a tion of situations of this ty

A graph G is an ord nonempty set V(G) of ver and an incidence function unordered pair of (not nec u and v are vertices such t vertices u and v are called Two examples of graphs

where V(G E(G and ψ_G is defined by $\psi_{G}(e_{1})=\upsilon_{1}\upsilon_{2},\,\psi$ $\psi_{G}(e_{5})=v_{2}v_{4},\,\psi$ Example 2

Example 1

where

and ψ_H is defined by $\psi_{H}(a) = uv,$ $\psi_H(e) = vx$,

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

