Exhibit 1

(12) United States Patent Leedy

(10) Patent No.: US 7,193,239 B2 (45) Date of Patent: Mar. 20, 2007

(54) THREE DIMENSIONAL STRUCTURE INTEGRATED CIRCUIT

- (75) Inventor: Glenn J Leedy, Saline, MI (US)
- (73) Assignee: Elm Technology Corporation, Saline,

MI (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 10/614,067
- (22) Filed: Jul. 3, 2003

(65) **Prior Publication Data**

US 2004/0097008 A1 May 20, 2004

Related U.S. Application Data

- (60) Division of application No. 09/607,363, filed on Jun. 30, 2000, now Pat. No. 6,632,706, which is a continuation of application No. 08/971,565, filed on Nov. 17, 1997, now Pat. No. 6,133,640, which is a division of application No. 08/835,190, filed on Apr. 4, 1997, now Pat. No. 5,915,167.
- (51) **Int. Cl. H01L 29/04** (2006.01) **H01L 23/02** (2006.01)
- (52) **U.S. Cl.** **257/74**; 257/686; 257/724

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2,915,722 A 12/1959 Foster 336/115

(Continued)

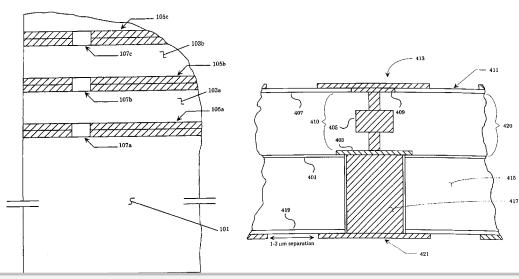
FOREIGN PATENT DOCUMENTS

DE 32 33 195 3/1983

(Continued)

OTHER PUBLICATIONS

Aboaf, J.A., "Stresses in SiO₂ Films Obtained from the Thermal Decomposition of Tetraethylorthosilicate—Effect of Heat Treatment and Humidity," J. Electrochem. Soc.: Solid State Science; 116(12): 1732-1736 (Dec. 1969).


(Continued)

Primary Examiner—Zandra V. Smith Assistant Examiner—Pamela E Perkins (74) Attorney, Agent, or Firm—Fish & Neave IP Group of Ropes & Gray LLP; Robert W. Morris; Jeffrey D. Mullen

(57) ABSTRACT

A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 µm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.

79 Claims, 9 Drawing Sheets

US 7,193,239 B2

Page 2

IIS PATENT	DOCUMENTS	5,070,026 A	12/1991	Greenwald et al 437/3
0.5.17112111	DOCOMENTS	5,071,510 A		Findler et al 156/647
	Emmasingel	5,098,865 A	3/1992	Machado et al 438/788
3,615,901 A 10/1971	Medicus 148/11.5 R Groschwitz	5,103,557 A		Leedy
· · · · · · · · · · · · · · · · · · ·	Napoli et al 156/17	5,110,373 A		Mauger 148/33.2
	Krishna et al 257/578	5,110,712 A		Kessler et al.
	Kuipers 324/207.26	5,111,278 A 5,116,777 A		Eichelberger
	Yerman 357/26	5,117,282 A	5/1992	
· · · · · · · · · · · · · · · · · · ·	Goodman	5,119,164 A		Sliwa et al.
	Wanlass 156/3	5,130,894 A	7/1992	Miller 361/393
	Eisenberger	5,132,244 A		Roy 438/477
4,070,230 A 1/1978 4,131,985 A 1/1979	Stein	5,144,142 A		Fueki et al.
	Hauser, Jr. et al 438/792	5,151,775 A 5,156,909 A		Hadwin
	Hoeberechts 29/580	5,166,962 A		Murooka et al.
4,262,631 A 4/1981	Kubacki 118/723 MP	5,169,805 A		Mok et al.
	Greschner et al.	5,188,706 A		Hori et al.
4,394,401 A 7/1983	,	5,203,731 A	4/1993	Zimmerman 445/24
	Trenkler et al 340/870.32	5,225,771 A		Leedy 324/158
4,416,054 A 11/1983 4,500,905 A 2/1985	Thomas et al	5,236,118 A		Bower et al 228/193
	Kurosawa et al.	5,240,458 A		Linglain et al
	Takagi et al 156/614	5,245,227 A 5,259,247 A		Furtek et al. Bantien 73/718
	Takatsu et al.	5,262,341 A		Fueki et al.
4,585,991 A 4/1986	Reid et al 324/158 P	5,262,351 A		Bureau et al 437/183
	Sobczak	5,270,261 A	12/1993	Bertin et al 437/209
	Yasumoto et al 156/633	5,273,940 A	12/1993	
	Belanger et al 264/40.1 Shimizu et al 156/628	5,274,270 A	12/1993	Tuckerman
	Schmitz 250/228	5,279,865 A		Chebi et al
	Tanimoto et al.	5,283,107 A 5,284,796 A		Bayer et al. Nakanishi et al 437/183
	Christensen 313/336	5,284,804 A		Moslehi
4,684,436 A 8/1987	Burns et al 216/65	5,293,457 A		Arima et al.
	Hatada 156/151	5,323,035 A	6/1994	Leedy 257/48
4,702,336 A 10/1987		5,324,687 A *		Wojnarowski 438/107
	Maeda et al	5,354,695 A		Leedy 438/411
4,706,166 A 11/1987 4,721,938 A 1/1988		5,358,909 A		Hashiguchi et al.
	Lischke	5,363,021 A 5,385,632 A	11/1994	MacDonald
, ,	Reid 357/68	5,385,909 A		Nelson et al
4,784,721 A 11/1988	Holmen et al 156/647	5,399,505 A		Dasse et al.
	Freeman 438/386	RE34,893 E		Fujii et al 257/419
	Yokomatsu et al.	5,420,458 A	5/1995	Shimoji 257/622
	Mattox et al	5,424,920 A		Miyake 361/735
	Bergmans et al. Butt et al.	5,426,072 A		Finnila
	Tam et al 438/619	5,426,363 A		Akagi et al
	Wang et al 427/579	5,432,444 A 5,432,729 A		Carson et al 365/63
	Clements	5,432,999 A		Capps et al.
	Mauger et al.	5,434,500 A		Hauck et al 324/67
	Leedy 438/6	5,450,603 A	9/1995	Davies
	Williamson	5,451,489 A		Leedy 430/313
4,934,799 A 6/1990 4,939,568 A 7/1990		5,453,404 A		Leedy
4,940,916 A 7/1990	Kato et al	5,457,879 A		Gurtler et al
	Vranish et al 324/207.23	5,470,693 A 5,476,813 A		Sachdev et al. Naruse
	Lee et al 428/220	5,480,842 A *		Clifton et al
4,954,865 A 9/1990	Rokos 257/378	5,489,554 A		Gates
4,957,882 A 9/1990		5,502,667 A		Bertin et al 365/51
	Young et al 200/83 N	5,512,397 A	4/1996	Leedy 430/30
	Mauger	5,514,628 A		Enomoto et al.
4,983,251 A 1/1991 4,990,462 A 2/1991	Haisma et al. Sliwa	5,517,457 A		Sakui et al.
	Benecke et al.	5,527,645 A		Pati et al
	Leedy	5,529,829 A 5,534,465 A		Frye et al 437/209
	Wang et al 118/723	5,555,212 A		Toshiaki et al 365/200
	Keogh et al 324/207.17	5,563,084 A *	10/1996	Ramm et al 438/15
	Allen et al	4,940,916 A		Borel et al 315/306
	Leedy	5,571,741 A		Leedy 437/51
5,034,685 A 7/1991	Leedy 324/158 F	5,572,689 A	11/1996	Gallup et al.

US 7,193,239 B2

Page 3

5 504 400 ·	10/1005	T. 1.1				= (2.0.0.4		
5,581,498 A		Ludwig et al		6,765,279		7/2004	•	
5,582,939 A 5,583,688 A		Pierrat		6,838,896 6,891,387		1/2005 5/2005	.*	
5,592,007 A		Leedy		6,894,392			Gudesen et al.	
5,592,018 A		Leedy	2003	3/0218182		11/2003		
5,595,933 A		Heijboer 439/20		3/0223535		12/2003	•	
5,606,186 A	2/1997	Noda 257/226	200:	5/0023656	A1	2/2005	Leedy	
5,615,163 A	3/1997	Sakui et al.						
5,620,915 A		Chen et al.		FO	REIG	N PATE	NT DOCUMENTS	
5,627,112 A		Tennant et al 438/113	EP		0 189	976	8/1986	
5,629,137 A		Leedy	EP		0 201		12/1986	
5,633,209 A 5,637,536 A		Val	EP		0 224	418	6/1987	
5,637,907 A	6/1997		\mathbf{EP}		0 314	437	5/1989	
5,654,127 A		Leedy 430/315	EP		0 419		4/1991	
5,654,220 A	8/1997	Leedy 438/25	EP		0 455		11/1991	
5,656,552 A	8/1997	Hudak et al 438/15	EP EP		0 487 0 503		5/1992 9/1992	
5,675,185 A		Chen et al 257/774	EP		0 518		12/1992	
5,694,588 A		Ohara et al	EP		0 518		12/1992	
5,725,995 A		Leedy	EP		0 526		2/1993	
5,733,814 A * 5,745,673 A		Flesher et al 438/460 Di Zenzo et al.	EP		0 554	063	8/1993	
5,750,211 A		Weise et al	EP		0 555		8/1993	
5,760,478 A		Bozso et al 257/777	EP		0 731		9/1996	
5,773,152 A	6/1998	Okonogi 428/446	FR			1129	12/1988	
5,786,116 A		Rolfson 430/5	GB GB			5168 5168	2/1984 9/1989	
5,786,629 A	7/1998		JР		60-74		4/1985	
5,787,445 A		Daberko	JP	S	60-120		7/1985	
5,793,115 A 5,818,748 A		Zavracky et al 257/777 Bertin et al.	JP		63-076		4/1988	
5,831,280 A		Ray 257/48	JP	S	63-229	9862	9/1988	
5,834,334 A		Leedy 438/107	JP		01-199		8/1989	
5,840,593 A		Leedy 438/6	JP			7600 A	1/1990	
5,856,695 A	1/1999	Ito et al	JP JP		02-03′ 02 - 08′		2/1990 3/1990	
5,868,949 A		Sotokawa et al 216/18	JP		02 - 08. 03-12′		5/1991	
5,869,354 A		Leedy	JР		03-174		7/1991	
5,870,176 A 5,880,010 A		Sweatt et al	JP		03-28		12/1991	
5,882,532 A		Field et al	JP		04-07	5946	3/1992	
5,902,118 A		Hübner 438/106	JP		04-083		3/1992	
5,915,167 A	6/1999	Leedy 438/108	JP		04-10		4/1992	
5,946,559 A		Leedy 438/157	JP WO		04-190 89/-10		7/1992 11/1989	
5,985,693 A		Leedy	WO		90/ 09		8/1990	
5,998,069 A		Cutter et al	WO		92/0:		3/1992	
6,008,126 A 6,017,658 A		Leedy 438/667 Rhee et al.	WO	WO	92/ 1′	7901	10/1992	
6,020,257 A		Leedy 438/626	WO	WC	98/19	9337	5/1998	
6,045,625 A		Houston 148/33.3	WO		01/0:		1/2001	
6,084,284 A	7/2000	Adamic, Jr 257/506	WO	WO	03/07	8305	9/2003	
6,087,284 A		Brix et al 501/69			О.Т.	TIED DIE	DI IGATIONS	
6,092,174 A		Roussakov			OT.	HER PU	BLICATIONS	
6,097,096 A		Gardner et al	Scheu	ierman, R.,	J "Fa	brication of	of Thin Dielectric Films with Low	
6,133,640 A 6,154,809 A		Ikenaga et al.	Internal Stresses," J. Vac. Sci. and Tech., 7(1): 143-146 (1970).					
6,194,245 B1	2/2001	Tayanaka	Bailey, R., "Glass for Solid-State Devices: Glass film has low					
6,197,456 B1	3/2001	Aleshin et al 430/5	intrinsic compressive stress for isolating active layers of magnetic-					
6,208,545 B1		Leedy 365/51	bubble and other solid-state devices," NASA Tech Brief (1982).					
6,230,233 B1		Lofgren et al.	"Partitioning Function and Packaging of Integrated Circuits for					
6,236,602 B1		Patti 365/201	Physical Security of Data," IBM Technical Disclosure Bulletin, IBM Corp.; 32(1): 46-49 (Jun. 1989).					
6,261,728 B1 6,288,561 B1		Lin	Hsieh, et al., "Directional Deposition of Dielectric Silicon Oxide by					
6,294,909 B1		Leedy	Plasma Enhanced TEOS Process," 1989 Proceedings, Sixth Inter-					
6,300,935 B1		Sobel et al.	national IEEE VLSI Multilevel Interconnection Conference, pp.					
6,301,653 B1		Mohamed et al.	411-415 (1989).					
6,320,593 B1		Sobel et al.	Tessier, et al., "An Overview of Dielectric Materials for Multichip					
6,355,976 B1	3/2002		Modules," SPE, Electrical & Electronic Div.; (6): 260-269 (1991).					
RE37,637 E *		Clifton et al	Treichel, et al., "Planarized Low-Stress Oxide/Nitride Passivation					
6,445,006 B1		Brandes et al. Momohara	for ULSI Devices," J. Phys IV, Colloq. (France), 1 (C2): 839-846					
6,518,073 B2 6,563,224 B2	5/2003		(1991). Krishnamoorthy, et al., "3-D Integration of MQW Modulators Over					
5,500,004 D2	1,2003		111011	y	, ~	, 5.22 11110	Similar of 1112 it modulators Over	

6,682,981 B2 1/2004 Leedy

Active Submicron CMOS Circuits: 375 Mb/s Transimpedance

US 7,193,239 B2

Page 4

Tielert, et al., "Benefits of Vertically Stacked Integrated Circuits for Sequential Logic," IEEE, XP-000704550, 121-124 (Dec. 5, 1996). "Miniature Electron Microscopes Without Vacuum Pumps, Self-Contained, Microfabricated Devices with Short Working Distances, Enable Operation in Air," NASA Tech Briefs, 39-40 (1998). Partial European Search Report for Application No. EP 02009643

Partial European Search Report for Application No. EP 02009643 (Oct. 8, 2002).

"IC Tower Patent: Simple Technology Receives Patent on the IC Tower, a Stacked Memory Technology," http://www.simpletech.com/whatsnew/memory/@60824.htm (1998).

Alloert, K., et al., "A Comparison Between Silicon Nitride Films Made by PCVD of N₂-SiH₄ /Ar and N₂-SiH₄/He," *Journal of the Electrochemical Society*, vol. 132, No. 7, pp. 1763-1766, (Jul. 1985).

Hendricks, et al., "Polyquinoline Coatings and Films: Improved Organic Dielectrics for IC's and MCM's," *Eleventh IEEE/CHMT International Electronics Manufacturing Technology Symposium*, pp. 361-265 (1991).

Knolle, W.R., et al., "Characterization of Oxygen-Doped, Plasma-Deposited Silicon Nitride," *Journal of the Electrochemical Society*, vol. 135, No. 5, pp. 1211-1217, (May 1988).

Nguyen, S.V., Plasma Assisted Chemical Vapor Deposited Thin Films for Microelectronic Applications, *J. Vac. Sci. Technol.* vol. B4, No. 5, pp. 1159-1167, (Sep./Oct. 1986).

Olmer, et al., "Intermetal Dielectric Deposition by Plasma Enhanced Chemical Vapor Deposition," Fifth IEEE/CHMT International Electronic Manufacturing Technology Symposium—Design-to-Manufacturing Transfer Cycle, pp. 98-99 (1988).

Runyan, W.R., "Deposition of Inorganic Thin Films," Semiconductor Integrated Circuit Processing Technology, p. 142 (1990).

Sze, S.M., "Surface Micromachining," Semiconductor Sensors, pp. 58-63 (1994).

Vossen, John L., "Plasma-Enhanced Chemical Vapor Deposition," *Thin Film Processes II*, pp. 536-541 (1991).

Wolf, Stanley, "Basics of Thin Films," Silicon Processing for the VLSI Era, pp. 115, 192, 193, and 199 (1986).

"Christensens Physics of Diagnostic Radiology," Curry et al., pp. 29-33, 1990.

Sung, et al., "Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition," Applied Physics Letters, vol. 74, No. 2, 197, 1999, Jan. 11, 1990

Phys. Rev., B., Condens, Matter Mater. Phys. (USA), Physical Review B (Condensed Matter and Materials Physics), Mar. 15, 2003, APS through AIP, USA.

Jones, R.E., Jr. "An evaluation of methods for passivating silicon integrated circuits", Apr. 1972; pp. 23-28.

Svechnikov, S.V.; Kobylyatskaya, M.F.; Kimarskii, V.I.; Kaufman, A.P.; Kuzovlev, Yu. I.; Cherepov, Ye. I.; Fomin, B.I.; "A switching plate with aluminum membrane crossings of conductors"; 1972. Sun, R.C.; Tisone, T.C.; Cruzan, P.D.; "Internal stresses and resistivity of low-voltage sputtered tungsten films (microelectronic cct. conductor)"; Mar. 1973; pp. 1009-1016.

Wade, T.E.; "Low temperature double-exposed polyimide/oxide dielectric for VLSI multilevel metal interconnection"; 1982; pp. 516-519.

Boyer, P.K.; Collins, G.J.; Moore, C.A.; Ritchie, W.K.; Roche, G. A.; Solanski, R. (A); Tang, C.C.; "Microelectronic thin film deposition by ultraviolet laser photolysis Monograph Title—Laser processing of semiconductor devices"; 1983; pp. 120-126.

Boyer, P.K.; Moore, C.A.; Solanki, R.; Ritchie, W.K.; Roche, G.A.; Collins, G.J.; "Laser photolytic deposition of thin films"; 1983; pp. 119-127.

Chen, Y.S.; Faterni, H.; "Stress measurements on multilevel thin film dielectric layers used in Si integrated circuits"; May-Jun. 1986; pp. 645-649.

Salazar, M.; Wilkins, C.W., Jr.; Ryan, V.W.; Wang, T.T.; "Low stress films of cyclized polybutadiene dielectrics by vacuum annealing"; Oct. 21-22, 1986; pp. 96-102.

Townsend, P.H.; Huggins, R.A.; "Stresses in borophosphosilicate glass films during thermal cycling"; Oct. 21-22, 1986; pp. 134-141. Wolf, Stanl Y and Richard N. Tauber; Silicon Processing For the VLSI Era, vol. 1: Process Technology; Sunset Beach, CA: Lattice Press, 1986, pp. 191-194.

Pai, Pei-Lin; "Multilevel Interconnection Technologies—A Framework And Examples"; 1987; pp. 1871.

Pei-lin Pai; Chetty, A.; Roat, R.; Cox, N.; Chiu Ting; "Material characteristics of spin-on glasses for interlayer dielectric applications"; Nov. 1987, pp. 2829-2834.

Riley, P.E.; Shelley, A.; "Characterization of a spin-applied dielectric for use in multilevel metallization"; May 1988; pp. 1207-1210. Tamura, H.; Nishikawa, T.; Wakino, K.; Sudo, T.; "Metalized MIC substrates using high K dielectric resonator materials"; Oct. 1988; pp. 117-126.

Allen, Mark G.,; Senturia, Stephen D.; "Measurement of polyimide interlayer adhesion using microfabricated structures"; 1988; pp. 352-356

Chang, E.Y.; Cibuzar, G.T.; Pande, K.P.; "Passivation of GaAs FET's with PECVD silicon nitride films of different stress states"; Sep. 1988; pp. 1412-1418.

Kochugova, I.V.; Nikolaeva, L.V.; Vakser, N.M., (M.I. Kalinin Leningrad Polytechnic Institute (USSR); "Electrophysical investigation of thin-layered inorganic coatings"; 1989; pp. 826-828.

Reche, J.J. H.; "Control of thin film materials properties used in high density multichip interconnect"; Apr. 24-28, 1989; p. 494. Maw, T.; Hopla, R.E.; "Properties of a photoimageable thin polyimide film"; Nov. 26-29-, 1990; pp. 71-76.

Guckel, H.; "Surface micromachined pressure transducers"; 1991; pp. 133-146.

Draper, B. L.; Hill, T.A.; "Stress and stress relaxation in integrated circuit metals and dielectrics"; Jul.-Aug. 1991; pp. 1956-1962.

Garino, T.J.; Harrington, H. M.; Residual stress in PZT thin films and its effect on ferroelectric properties; 1992; pp. 341-347.

S. Wolf, Silicon Processing For the VLSI Era, 1990, Lattice Press, vol. 2, p. 191.

* cited by examiner

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

