
EXHIBIT 64 PART 5

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 1 of 144 PageID #: 29448Case 1:13-cv-00919—LPS Document 311-9 Filed 03/10/21 Page 1 of 144 PageID #: 29448

EXHIBIT 64 PART 5

CHAP TER 2 2

Transport Interface

Handling Requests When the Transport Is Active

While the transport is actively sending or receiving data in the background, the user
might request another send or receive operation from the In/Out Box. One way to
handle such requests is to queue them up and append them to the current communi-
cation transaction or to start another connection when the transport is finished.

You can use the transport method QueueRequest to queue up requests for
sending or receiving, if the transport already has an active communication session
in progress. Call QueueRequest from the SendRequest or ReceiveRequest
method, whichever one you receive as a result of a user request.

Depending on how you call it, you can make QueueRequest append the new
request to a request in progress or start another connection when the current
request is finished. To append the new request to one in progress, for the first
parameter, specify the request frame of a request already in progress. A request
frame is the frame passed to SendRequest or ReceiveRequest to begin the
request in progress. The second parameter is the new request frame.

The following is an example of a SendRequest method in which
QueueRequest is called to append the new request to the one in progress.

// SendRequest method

func (newRequest)

begin

if status <> 'idle then // check if I'm active

// append to current request

:QueueRequest(currentRequest, newRequest);

else

// do a normal send here

end,

When a new request is appended to an in-progress request, items from the new
request are returned from the ItemRequest method after all items from the
in-progress request are exhausted. In this way, new items are sent as part of the
current communication session.

To queue a new request so that the transport finishes its current transaction before
beginning a new one, specify a symbol for the first parameter of QueueRequest.
The symbol should be the name of a method that you want the system to call when
the transport state returns to idle. Usually this is another SendRequest or
ReceiveRequest method. The following is an example of a SendRequest
method in which QueueRequest is called to defer a new request until the
transport returns to the idle state.

22-12 Using the Transport Interface

ARENDI-DEFS00004448

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 2 of 144 PageID #: 29449

CHAP TER 2 2

Transport Interface

// SendRequest method

func (newRequest)

begin

if status <> 'idle then // check if I'm active

// wait for idle and then call SendRequest again

:QueueRequest('SendRequest, newRequest);

else

// do a normal send here

end,

Canceling an Operation

The system sends the CancelRequest message to the transport when the user
cancels the current transaction or for other reasons, such as when the system wants
to turn off. This method must be defined by all transports.

When a transport receives this message, it must terminate the communication
operation as soon as possible.

The CancelRequest method should return non-nil if it is OK to turn off power
immediately after this method returns, or n 1 if it is not OK to turn off power
immediately. In the latter case, the system waits until your transport returns to the
idle state before turning off. This allows you to send an asynchronous cancel
request to your communication endpoint, for example, and still return immediately
from the CancelRequest method. When you receive the callback message from
your endpoint cancel request confirming cancellation, use the SetstatusDialog
method to set the transport status to idle to alert the system that it is OK to turn off.

Obtaining an Item Frame

The system sends the Newltem message to the transport to obtain a new item
frame to make a new In/Out Box entry.

This method is supplied by the protoTransport, but should be overridden by
your transport to fill in extra values your transport uses. If you override this
method, you must first call the inherited Newltem method, as shown in the
example below. The item frame returned by the Newltem method should contain
default values for your transport.

The item frame returned by the default method supplied in protoTransport is
not yet a soup entry. The item. category slot is initialized to the appSymbol
slot in your transport. For more information on the item frame, see the section
"Item Frame" beginning on page 22-2.

The Newltem message is sent to your transport during both send and receive
operations. When the user sends an item, the system sends the Newltem message
to the transport to create a new In/Out Box entry before opening a routing slip

Using the Transport Interface 22-13

ARENDI-DEFS00004449

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 3 of 144 PageID #: 29450

CHAP TER 2 2

Transport Interface

for the item. This allows the transport an opportunity to add its own slots to the
item frame.

Most transports will want to add a f romRe f slot to the item frame. This slot must
contain a name reference that identifies the sender. This information is usually
extracted from the sender's current owner card, or persona. You shouldn't just use
the value of GetUserConfig (' currentPersona) because it is simply an alias
to a names file entry. Instead, construct a name reference from this value. For example:

persona GetUserConfig('currentPersona);

dataDef GetDataDefs(addressingClass);

fromRef dataDef:MakeNameRef(persona,addressingClass);

Most transports will want to extract and send only the needed information from the
f romRe f name reference. For example, an e-mail transport would typically just
extract the sender name and e-mail address from the name reference and send them
as strings. One method of name reference data definitions that you can use to
extract useful information from a name card includes GetRoutingInfo. Here is
an example of using this method:

// extract just routing info using GetRoutingInfo

routeInfo:= datadef:GetRoutingInfo(fromRef);

// returns an array like this:

[{name: "Chris Smith", email: "cbsmith@apple.test.com"}]

The GetRoutingInfo method returns an array of at least one frame that has at
least a name slot containing a string. Depending on the addressingClass slot
passed to the GetDataDef s function, the returned frame also contains other
information particular to the type of address used for the transport. In the example
above, the frame also contains an emai 1 slot with an e-mail address.

If you want to add other slots to the f romRe f frame, you can either define your
own name reference data definition and override the method
Get ItemRoutingFrame (called by GetRoutingInfo), or add the slots you
want to the f romRe f frame by extracting them from the original name reference
with the Get method. For example:

// use Get to extract info from certain slots

fromRef.myInfo := dataDef:Get(fromRef,'myInfo,nil);

Note that a sender may have multiple e-mail addresses and the transport should set
the e-mail address in the fromRef frame to the one that is appropriate to itself. For
example, for an internet e-mail transport, you would typically set the f romRe f

22-14 Using the Transport Interface

ARENDI-DEFS00004450

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 4 of 144 PageID #: 29451

CHAP TER 2 2

Transport Interface

e-mail address to the sender's internet address. Here's an example of code that sets
the appropriate e-mail address in the fromRef object:

owner:=ResolveEntryAlias(GetUserConfig('currentPersona));

if owner and GetRoot().cardfile then begin

addrs := GetRoot().cardfile:BcEmailAddress(owner,

['lstring.email.internetl]);

if addrs then

fromRef := clone(addrs[0]);

end

You can find a description of BcEmailAddress and other similar functions that
extract information from Names soup entries in "Names Functions and Methods"
(page 16-5) in Newton Programmer's Reference.

If, instead of extracting the address and sending it as a string, your transport sends
addressing information as a frame, like the beam transport, you must remove any
soup entry aliases from the name reference before it is transmitted. You can do
this by using the name reference data definition method Prepare ForRouting,
as follows:

// strip the aliases from a name ref

fromRef := datadef:PrepareForRouting(fromRef);

In general, however, you should not send all the information in a user's persona
with a message, since it can include personal or confidential information such as
credit card numbers.

For more information about name references and the methods of name reference
data definitions, see the section "Creating a Name Reference" beginning on
page 21-27, and "Name References" (page 5-1) in Newton Programmer's
Reference.

The following is an example of how to override the Newltem method during a
send operation to add a f romRe f slot:

// a sample overridden NewItem method

mytransport.NewItem := func(context) begin

// first call inherited method to get default frame

local item := inherited:NewItem(context);

// get sender info and insert fromRef slot

local persona:= GetUserConfig('currentPersona);

local dataDef := GetDataDefs(addressingClass);

Using the Transport Interface 22-15

ARENDI-DEFS00004451

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 5 of 144 PageID #: 29452

CHAP TER 2 2

Transport Interface

if dataDef then

begin

item.fromRef := dataDef:MakeNameRef(persona,

addressingClass);
add other slots or extract routing info here

end;

item;

end;

During a receive operation, the transport itself must invoke the NewFromltem
method to get a new In/Out Box item frame. This method copies most slots from
the received item to the new In/Out Box item frame. Additionally, it inserts the
destAppSymbol slot value (if included) in the received frame into the appsymbol
slot in the new frame.

Finally, the transport should call ItemCompleted to register the item in the In
Box (see the following section).

Completion and Logging

After your transport finishes processing an item (either sending or receiving, with
or without errors), you must send the transport the message ItemCompleted.
This method must be used when an item is altered in any way. It performs several
operations, including setting the state and error status of the item; sending the
ItemCompletionscript callback message to the application; handling error
conditions; and saving, logging, or deleting the item, depending on the logging
preferences.

Send the ItemCompleted message only after your transport has completely
processed an item. If you send this message before you know that the item was
delivered successfully, for example, there's a possibility that the item will be lost.

If ItemCompleted was called as the result of an error, it calls HandleError to
translate the error code and notify the user. If you want to perform your own error
notification, you can override the HandleError method.

Note that the ItemCompleted method in protoTransport sends the
ItemCompletionscript callback message to the application only if the item
contains a completionScript slot that is set to true. You must set this slot
if you want the callback message to be sent. For more information on
ItemCompletionScript see Newton Programmer's Reference (page 18-33).

To perform logging, ItemCompleted sends your transport the message
MakeLogEntry, passing a log entry to which you can add slots. The
protoTransport object includes a default MakeLogEntry method, but you
should override this method to add transport-specific slots to the log entry.

The default method simply adds a t i t 1 e slot to the log entry. The
GetItemTit1e transport method is called to get the title.

22-16 Using the Transport Interface

ARENDI-DEFS00004452

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 6 of 144 PageID #: 29453

In/Out Box
Tag picker —

CHAP TER 2 2

Transport Interface

Storing Transport Preferences and Configuration Information

Transports can store user-configurable preferences and other configuration
information. Typically, you store several chunks of data that correspond to
individual preferences or other kinds of configuration information that you want to
save for your transport. You must use the transport methods GetConf ig and
SetConf ig to retrieve and set configuration information for your transport.

Default preferences for atransport are set by the defaultConfiguration slot
in the transport object. This slot holds a frame containing values that correspond to
items in a preferences slip that lets the user set preferences for your transport. For
more information about displaying a preferences slip to the user, see the section
"Providing a Preferences Template" beginning on page 22-33.

If you don't want to use this preferences dialog or the setting of the
defaultConfiguration slot in protoTransport, override the initial
setting by creating your own default preferences frame and including it in the
defaultConf iguration slot of your transport object. Note that you can't
use a _proto slot in the default frame since the contents of the
defaultConfiguration slot are stored in a soup and _proto slots can't be
stored in soup entries.

Extending the In/Out Box Interface

Your transport can extend the In/Out Box interface if items the transport handles
can be viewed in the In/Out Box. You can add additional actions to the In/Out Box
Tag picker in the In/Out Box. The In/Out Box Tag picker is displayed when the
user taps the Tag button in the In/Out Box, as shown here:

Put Away

Log

Reply

Forward Tag button

The In/Out Box Tag picker includes only the Put Away and Log items by default.
You can add other transport-dependent items by implementing the
GetTransportscripts method. For example, the picker shown above includes
Reply and Forward items added by an e-mail transport to let the user perform those
operations on e-mail directly in the In/Out Box.

When the user taps the Tag button, the system sends your transport the
GetTransportscripts message, if you've implemented it. This method must
return an array of frames that describe new items to be added to the In/Out Box Tag
picker. The array is exactly the same as the routescripts array that adds items

Using the Transport Interface 22-17

ARENDI-DEFS00004453

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 7 of 144 PageID #: 29454

CHAP TER 2 2

Transport Interface

to the Action picker in an application. Here is an example of a return value that
adds two items to the picker:

[{title: "Reply", // name of action

icon: ROM_RouteReply, // picker icon

// called if action selected

RouteScript: func(target, targetView) begin end,

}

{title: "Forward", // name of action

icon: ROM_RouteForward, // picker icon

// called if action selected

RouteScript: func(target, targetView) begin end,

}]

The RouteScript slot contains a method that is called if the user selects that
item from the picker. Alternatively, in the RouteScript slot you can specify a
symbol identifying a transport method, and then supply your transport symbol in
another slot named appSymbol.

For more detailed information about the items in the array, see the section
"Providing Application-Specific Routing Actions" beginning on page 21-22.

For the icon slot of each frame in the array, you can specify an icon that appears
next to the name of the action in the picker. There are standard bitmaps available in
the ROM for the following actions:

■ reply, ROM_RouteReply

■ forward, ROM RouteForward

■ add sender to the Names application, ROM_RouteAddsender

■ copy text to Notes application, ROM_RoutePasteText

If you are adding one of these actions, use the indicated magic pointer constant for
the standard bitmap, to keep the interface consistent among transports.

Also, when the user taps the Tag button, the system sends your transport the
CanPutAway message, if you've implemented it. This method allows your
transport to add a put away option for the item to the Put Away picker. This hook
allows a transport to put away items that could not otherwise be put away.
Remember that applications (or transports) that need to put away items must
implement the PutAwayscript method.

Whenever an item belonging to your transport is displayed in the In/Out Box, the
In/Out Box also sends your transport the IOBoxExtensions message. This hook
lets your transport add functionality to items in the In/Out Box by adding to the list
of view definitions available for an item.

22-18 Using the Transport Interface

ARENDI-DEFS00004454

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 8 of 144 PageID #: 29455

CHAP TER 2 2

Transport Interface

Application Messages

Applications can send messages directly to a single transport or to all transports by
using the TransportNotify global function. This mechanism serves as a
general way for applications to communicate with transports. Here is an example
of using this function:

TransportNotify(' all,'AppOpened,[appSymbol])

The In/Out Box uses this mechanism to send three different messages to transports:
AppOpened, AppClosed, and AppInFront. The AppOpened message notifies
the transport that an application has opened and is interested in data from the
transport. The In/Out Box sends this message to all transports when it opens. This
method is not defined by default in protoTransport since it's transport-specific.
If you want to respond to the AppOpened message, you must define this method in
your transport.

This message is designed to support applications that might poll for data, such as a
pager. For example, when the application is open, it can notify the transport with
this message so that the transport can poll more frequently (and use more power)
than when the application is closed. Another use might be for an application to
notify a transport that automatically makes a connection whenever the application
is open.

The AppClosed message notifies the transport that an application has closed. The
In/Out Box sends this message to all transports when it closes. Again, this method
is not defined by default in protoTransport since there is no default action—
it's transport-specific. If you want to respond to the AppClosed message, you
must define this method in your transport.

Note that more than one application can be open at a time in the system. If you
want your transport to do something like disconnect when it receives this message,
keep track of how many times it's received the AppOpened message and don't
actually disconnect until it receives the same number of AppClosed messages.

The AppInFront message notifies the transport of a change in the frontmost
status of an application—either the application is no longer frontmost, or it now is.
The In/Out Box sends this message to all transports when another application is
opened in front of the In/Out Box view, or when the In/Out Box view is brought to
the front. Note that the AppInFront message is not sent when an application is
opened or closed, so you need to check for the Appopened and AppClosed
messages to catch those occurrences.

Again, this method is not defined by default in protoTransport since there is
no default action—it's transport-specific. If you want to respond to theAppinFront
message, you must define this method in your transport. Not that this method is
used only in special circumstances and is not needed by most transports.

Using the Transport Interface 22-19

ARENDI-DEFS00004455

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 9 of 144 PageID #: 29456

CHAP TER 2 2

Transport Interface

Error Handling

The default exception handling method implemented by protoTransport is
HandleThrow, which catches and handles exceptions resulting from any supplied
transport methods such as SendRequest and ReceiveRequest. You must
provide your own exception handler for any methods that you define, or you can
pass them to HandleThrow, as follows:

try begin

... // do something
Throw () ;

onException levt.exl do

:HandleThrow();

end

When handling an exception, HandleThrow first calls IgnoreError to give
your transport a chance to screen out benign errors. If IgnoreError returns
true, Handl eThrow returns nil and stops.

Assuming the error is not rejected by IgnoreError, HandleThrow next checks
to see if an item is currently being processed. If so, it sends your transport the
ItemCompleted message and returns true. Note that ItemCompleted calls
HandleError to display an error alert to the user. If no item is currently being
processed, HandleThrow sends the HandleError message itself to display an
error alert.

The HandleError method calls TranslateError to give your transport a
chance to translate an error code into an error message that can be displayed to the
user. If your transport can't translate the error (for example, because it's a
system-defined error) you should simply call the inherited TranslateError
method, which handles system-defined errors.

Power-Off Handling

The protoTransport object registers a power-off handler with the system
whenever the transport is not in the idle state. If the system is about to power off,
this power-off handler sends the transport the PowerOf f Check message.

The default PoweroffCheck method in protoTransport displays a slip
asking the user to confirm that it is OK to break the connection. Then, when the
power is about to be turned off, the system sends the transport the
CancelRequest message and waits until the transport is idle before turning the
power off.

You can override the default PowerOf (Check method if you wish.

There is also apower-on handler that sends a CancelRequest message to the
transport when the system turns on after shutting down unexpectedly while
the transport is active.

22-20 Using the Transport Interface

ARENDI-DEFS00004456

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 10 of 144 PageID #: 29457

CHAP TER 2 2

Transport Interface

Providing a Status Template

A status template for a transport is based on the proto protostatusTemplate.
The status template displays status information to the user. A transport should
generally display a status view whenever it is sent the ReceiveRequest or
SendRequest messages.

You probably won't need to create your own status template. The protoTransport
is defined with a default status template named statusTemplate (based on
protostatusTemplate), which includes six predefined subtypes, described in
Table 22-1 and shown in Figure 22-1. Each subtype consists of a set of child views
that are added to the base status view. The base status view includes a transport
icon and a close box, to which different child views are added, depending on the
specified subtype name.

Table 22-1 Status view subtypes

Subtype name

vStatus

Important values Description

statusText (top string)

vStatusTitle statusText (top string),
titleText (lower string)

vConfirm statusText (top string),
primary (lower-button text
and method: { text :
string, script:
function}), secondary
(upper-button text and
method: { text : string,
script: functionD

vProgress statusText (top string),
titleText (lower string),
progress (integer,
percentage completed)

vGauge statusText (top string),
titleText (lower string),
gauge (integer, percentage
completed)

vBarber statusText (top string),
titleText (lower string),
barber (set to true)

Using the Transport Interface

A view that incorporates a status line.
This is the default subview created by
SetStatusDialog.

A view that incorporates a status line and
a line for the item's title.

A view that has space for three lines of
text, and two buttons. This view is
suitable for situations where the user
must choose between two options.

A view that incorporates status and title
lines, as well as a dog-eared page image
that fills from top to bottom, based on the
progress of the transfer.

A view that incorporates status and title
lines, as well as a horizontal gauge that
fills from left to right, based on the
progress of the transfer.

A view that incorporates status and title
lines, as well as a horizontal barber
pole-like image that can be made to
appear to move from left to right.

22-21

ARENDI-DEFS00004457

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 11 of 144 PageID #: 29458

CHAP TER 2 2

Transport Interface

Figure 22-1 Status view subtypes

vStatus

vStatusTitle

vConfirm

a Looking for host...

Stop

a Connecting to host...

Data set 4

Stop
0

I

4~1'
go The host has a new data

set for you_ Do you want

to receive it now?

Receive Data Set

Disconnect Now

vProgress

vGauge

vBarber

mQ Sending data set___

Data set 4

Stop

I

a Sending data set...

Data set 4

Stop
9

io Sending data set...

Data set 4

Stop

Each child view included in a subtype has one important value that controls the
appearance of that child element. For example, the vProgress subtype consists of
three child views that have these important values: statusText (the string
displayed at the top of the view), t i t 1 eText (the string displayed at the bottom of
the view), and progress (an integer indicating the percentage of the page that
should be shown filled with black). The important values for each subtype appear in
Table 22-1. This information is necessary for use in the setstatusDialog method.

A transport specifies the use of a subtype in the status view by passing the subtype
name in the name parameter to the SetStatusDialog transport method.
Transports can dynamically switch from one status subtype to another without
closing the status view, and can easily update the contents of the status view as well
(for example, updating the progress indicator).

22-22 Using the Transport Interface

ARENDI-DEFS00004458

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 12 of 144 PageID #: 29459

CHAP TER 2 2

Transport Interface

Using this set of predefined status templates gives all transports a similar user
interface and matches the use of other status views throughout the system.

For more detailed information on protostatusTemplate and the predefined
subtypes, refer to Chapter 17, "Additional System Services."

Controlling the Status View

Your transport should display a status view to the user whenever it is engaged in
a lengthy activity such as sending or receiving data. In general, this means you
must display a status view as part of the processing you do whenever you receive
a SendRequest or ReceiveRequest message that results in the transmission
of data.

To display a status view, use the transport method SetstatusDialog. If the
autostatus slot of the transport preferences frame is true, the status view
opens automatically when you send the SetstatusDialog message with a
status other than ' idle as the first parameter. If the status view is already open,
SetstatusDialog updates the status view with the new status information you
pass to it. If autostatus is nil, the status view does not open because the user
has set a preference that it not be shown.

Here is an example of how to use the SetstatusDialog method:

:SetStatusDialog('Connecting, 'vStatus, "Looking for host...");

The SetstatusDialog method takes three parameters. The first is a symbol
indicating what the new transport status is. This is typically one of the slots in
the dialogStatusMsgs frame, such as ' Connecting, or ' Idle. The
second parameter is the name of the status subtype you want to use. You can
specify one of the built-in subtypes described in the previous section, or the
name of a custom subtype that you have constructed. (You specify the value of
the name slot in the subtype template.) For information on constructing
custom protoStatusTemplate view subtypes, see Chapter 17, "Additional
System Services."

The third parameter is typically a frame that contains one or more slots of values.
Each slot corresponds to a single child view within the subtype you are using, and
it sets the value of that child view. A slot name is the value of the name slot in the
child view you are setting, and the value is whatever important value that type of
view uses. The slot names and the expected values for the predefined status
subtypes are listed in the "Important values" column in Table 22-1.

The following examples show how you'd use the SetstatusDialog method to
set the different status subtypes to create the status views shown in Figure 22-1.

Using the Transport Interface 22-23

ARENDI-DEFS00004459

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 13 of 144 PageID #: 29460

CHAP TER 2 2

Transport Interface

// vStatus subtype

:SetStatusDialog('Connecting, 'vStatus, "Looking for host...");

// vStatusTitle subtype

:SetStatusDialog('Connecting, 'vStatusTitle, {statusText: "Connecting

to host...", titleText: "Data set 4 11 });

// vConfirm subtype

:SetStatusDialog('Confirming, 'vConfirm, {statusText: "The host has a

new data set for you. Do you want to receive it now?",

secondary:{text:"Receive Data Set", script: func() ... },

primary:{text:"Disconnect Now", script: func() ... }});

// vProgress subtype
:SetStatusDialog('Sending, 'vProgress, {statusText: "Sending data

set...", titleText: "Data set 4 11 , progress:40});

// vGauge subtype

:SetStatusDialog('Sending, 'vGauge, {statusText: "Sending data

set...", titleText: "Data set 4 11 , gauge:40});

// vBarber subtype

:SetStatusDialog('Sending, 'vBarber, {statusText: "Sending data

set...", titleText:"Data set 4 11 , barber:true});

Once the status view is open, each time you call SetstatusDialog, the system
closes and reopens all its child views. This is fairly fast, but if you just want to
update aprogress indicator that is already visible in the subtypes vProgress,
vGauge, or vBarber, you can use the alternate method Update Indicator.
This protoStatusTemplate method updates the progress indicator child of the
status view: the page image for the vProgress subtype, the horizontal bar for the
vGauge subtype, and animation of the barber pole for the vBarber subtype.

For example, you'd use Update Indicator to update the vGauge subtype
as follows:

statusDialog:UpdateIndicator({name:'vGauge, values:{gauge: 50,11);
Note that the frame of data you pass to Update Indicator consists of two slots,
name and values, that hold the name of the subtype and the value(s) you want to
set, respectively. The values slot is specified just like the values parameter to
SetstatusDialog.

Also, note that Update Indicator is amethod of protoStatusTemplate,
and you need to send this message to the open status view. A reference to the open
status view is stored in the statusDialog slot of the transport frame, so you can
send the message to the value of that slot, as shown above.

22-24 Using the Transport Interface

ARENDI-DEFS00004460

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 14 of 144 PageID #: 29461

CHAP TER 2 2

Transport Interface

The vBarber subtype shows a barber pole-like image, but it doesn't animate
automatically. To make it appear to move, use the Updatelndicator method in
a Viewldlescript method, as shown here:

// create the initial vBarber status view

:SetStatusDialog('Sending, 'vBarber, {statusText: "Sending data

set...", titleText:"Data set 1 11 , barber:true});

// set up the status view data frame

statusDialog.barberValueFrame:={name:'vBarber,values:{barber:true}};

set up the idle script

statusDialog.ViewIdleScript:= func()

begin

:UpdateIndicator(barberValueFrame); // spin the barber

return 500; // idle for 0.5 seconds

end;

// start the idler

statusDialog:Setupidle(500);

If the autostatus slot of the transport preferences frame is true, the status
view closes automatically when you send the SetstatusDialog message with
' idle as the first parameter.

You can force the status view to close manually by sending the transport the
message ClosestatusDialog. However, the next time you send the message
SetstatusDialog with a state other than ' idle as the first parameter, the
dialog reopens.

Providing a Routing Information Template

When viewing an item in the In/Out Box, the user can tap the transport icon to the
left of the item title to display a view that gives routing information about the item.
For example, for a fax item, the fax phone number is displayed; for a mail item, the
e-mail header is shown. Figure 22-2 (page 22-26) shows an example of a routing
information view.

You should create a template for a routing information view for your transport,
using protoTransportHeader. If you don't specify a header view, your
transport uses the default view, which displays the item title, the transport icon and
name, and the item's size in the In/Out Box soup (the first three elements in the
picture above).

Using the Transport Interface 22-25

ARENDI-DEFS00004461

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 15 of 144 PageID #: 29462

CHAP TER 2 2

Transport Interface

Figure 22-2 Routing information view

Ta p
transport
icon next to

Routing
information
view is

A Subject Ready,

Juneau Macbeth Sax 1 1 /1 1 8:38 am

Title ASubject

e eWorld

Size: 165 bytes (Internal)

To: blah@blah.com a

In your transport object, store a reference to your routing information template in
the transport InfoForm slot.

To add your own information to the routing information view, you can supply a
BuildText method. From BuildText, call the AddText method for each
additional line of text you want to add below the existing elements. Alternatively,
you can add child views to the routing information view.

If you do add additional lines or views to the routing information view that cause it
to increase in height, you must also set the addedxeight slot in the routing
information view or in your BuildText method (or anywhere before the inherited
viewSetupFormScript method is called). In this slot, specify the number of
pixels by which you are increasing the height of the view.

The header view may include editable fields. If the user changes something in an
editable field, you probably want to know about it so that you can save the new
information or perform other operations. The InfoChanged message is provided
for this purpose. This message is sent to whatever object you designate when the
header view is closed.

Providing a Routing Slip Template

A transport uses a routing slip when sending an item in order to get all the informa-
tion necessary to transmit the item. Since the user interface for the routing slip is
provided by the transport, the application does not need to know anything about
what is required to send the item.

22-26 Using the Transport Interface

ARENDI-DEFS00004462

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 16 of 144 PageID #: 29463

CHAP TER 2 2

Transport Interface

Store a reference to your routing slip template in the rout ingS 1 ip slot in your
transport object.

Use the protoFullRouteSlip template, described in the following section, to
create a routing slip.

One additional proto for use in routing slips is described in the section "Using
protoAddressPicker" (page 22-31).

Using protoFullRouteSlip

This routing slip proto already includes most of the elements required in a routing
slip. Figure 22-3 shows an example of this proto. For a complete description of the
slots and methods in this proto, see "protoFullRouteSlip" (page 19-38) in Newton
Programmer's Reference.

Figure 22-3 protoFullRouteSlip view

#ErasmusMulhony
Fax ,

home

*Format Pldifl

This is a picker if there are multiple
transports in the group

Sender pop-up

Format picker
(Appears only if there are multiple formats)

Send button

Cancel button

The transport name and stamp icon in the upper-right corner of the routing slip are
automatically supplied. They are based on the transport. actionTitle and
transport. icon slots.

The format picker child in protoFullRouteSlip provides the picker list for
choosing among multiple formats. The current format is initially displayed. The
picker provides for opening an auxiliary view if one is associated with the current
format. This child view uses the currentFormat slot in the item (the
f ields . currentFormat slot in the routing slip), a list of routing formats
compatible with the item, and the activeFormat slot in the routing slip to set up
the picker with the correct choices. These slots are set up by the system.

When the user picks another format, the activeFormat slot is updated, which
changes the format choice shown next to the label. Additionally, the
SetDefaultFormat message is sent to the application, and currentFormat in

Using the Transport Interface 22-27

ARENDI-DEFS00004463

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 17 of 144 PageID #: 29464

CHAP TER 2 2

Transport Interface

the item is updated. The format picker also sends the Setupltem message to the
format itself. If the format contains an auxForm slot, the view specified in the
auxForm slot opens when the format is selected.

The sender pop-up child view allows the sender of the item to select a different
owner persona or worksite from a picker, which might affect how the owner's name
and address appear and how the item is sent. For example, if you choose a worksite
location with a different area code from your company worksite, and send a fax to
your company, the system automatically inserts a "1" and the company area code
before the phone number, which it wouldn't do if you told the system you were at a
location in that area code.

The default owner name (or persona as it is sometimes called) shown by this picker
is the one corresponding to the last-used owner name for a routing operation. The
default worksite for the owner is the one corresponding to the last worksite used for
a routing operation, or the setting of the home location in the Time Zones
application (whichever was done last). Note that additional owner names and
worksites can be created by users in the Owner Info application.

The Send button child in protoFullRouteSlip provides the button that
actually sends the item to the Out Box, and can also activate the transport. When
tapped, the button may display a picker with the choices "Now" and "Later," or it
may immediately send the item now or later. Its operation depends on the user
preference setting of the noworLater slot in the preferences configuration frame
described in Table 19-1 (page 19-7) in Newton Programmer's Reference, and on
the return value of the transport Connect ionDetect method, which can force
the button to send now or later without displaying a picker.

The Send button also handles submitting multiple items to the Out Box when the
user has selected many entries from an overview. If the user has selected multiple
items but the transport cannot handle cursors (the al lowBodyCursors transport
slot is nil), the system sends the transport the verifyRoutingznfo method.
This method allows the transport to modify the individual items, if necessary.
When only a single item (not a multiple-item target object) is submitted to the Out
Box, verifyRoutingznfo is not called. In this case, if you need to modify the
item before it is sent, you can do this in the routing slip method PrepareToSend.

The function of the Send button is to submit the contents of the f i e 1 d s slot in the
routing slip to the Out Box. (The f i e 1 d slot holds the item being routed and
other information about it.) After the item is submitted, the Out Box sends the
transport the SendRequest message to alert it that an item is waiting to be sent. If
the cause slot in the requestargument to SendRequest is set to ' submit, this
indicates the user chose to send the item later from the Send button. If the cause
slot is ' item, this indicates the user chose to send the item immediately.
Additionally, the connect slot in the item contains a Boolean value indicating if
the user chose to send the item now (true) or later (nil).

22-28 Using the Transport Interface

ARENDI-DEFS00004464

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 18 of 144 PageID #: 29465

CHAP TER 2 2

Transport Interface

The name of the current transport appears in the upper-right corner of the
protoFullRouteSlip view. If that transport belongs to a group, the transport
name is actually a picker, from which the user can choose any of the other
transports in the group. The picker is displayed only if there is more than one
transport that belongs to the group. If the user changes the transport, the system
closes and reopens the routing slip for the current target item, since the routing slip
may be different for a different transport. Before the routing slip is closed, it is sent
the Transport Changed message. This allows the routing slip to take such
necessary action as alerting the user that addressing information might be lost as a
result of changing transports. For more information on grouped transports, see the
section "Grouping Transports" beginning on page 22-7.

Besides the supplied elements, your transport needs to add additional
transport-specific elements to the routing slip view. For example, transports are
responsible for adding the views that occupy the middle of the envelope area, to
obtain routing or addressing information for the item. And transports typically add
other elements to the area below the envelope. Figure 22-4 shows what a complete
routing slip might look like, after you add transport-specific items.

Figure 22-4 Complete routing slip

;ErasmusMulhony
Fax

home

*Name tiptoe

*Format

*Cover Page $'i' hdard
M Fine resolution ___'• Manually connect

Preview $ Assist Notes 9

protoAddressPicker

The middle of the envelope portion of a routing slip template typically includes a
view that gathers and displays recipient information for the item being sent. You'll
probably want to use the protoAddressPicker to allow the user to choose
recipients for the item. For details on how to use this proto, see the section "Using
protoAddressPicker" beginning on page 22-31.

Using the Transport Interface 22-29

ARENDI-DEFS00004465

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 19 of 144 PageID #: 29466

CHAP TER 2 2

Transport Interface

Positioning Elements in the Lower Portion of the Routing Slip

The height of the lower portion of the routing slip is controlled by the
bottomIndent slot. Placing your own user interface elements in this portion of
the routing slip is complicated by the fact that the format picker may or may not be
inserted by the system. It is included only if there is more than one format for the
item. Also, the system performs animation on the routing slip, changing the
location of the bottom bounds.

Any user interface elements you add to this portion of the routing slip must be
positioned relative to the bottom of the slip dynamically, at run time. You can
determine the position of the bottom of the slip by calling the routing slip method
BottomOf Slip. An alternative method of positioning elements dynamically is to
make them sibling bottom-relative to the last child of the routing slip proto, which
is the Send button.

Note that only the first child element you add needs to follow these rules.
Additional elements can be positioned sibling-relative to it.

Using Owner Information

The protoFullRouteSlip view sends the OwnerInfoChanged callback
method to itself if the user changes the selection of owner name or worksite
location in the sender pop-up view. The ownerinfoChanged method provides
the chance to update any information in the routing slip that depends on data in the
sender's current owner card or worksite. In addition, the f romRe f slot in the item
will probably need to be updated with new sender information. For more informa-
tion about setting the f romRe f slot, see the section "Obtaining an Item Frame"
beginning on page 22-13.

In your OwnerinfoChanged method, you can obtain any changes by checking
variables in which you are interested in the user configuration data, using the
GetUserConf ig function. For example, the area code at the user's location can
be found by using this code:

GetUserConfig('currentAreaCode);

For a list of variables in the user configuration data, see "User Configuration
Variables" (page 16-101) in Newton Programmer's Reference.

One issue to consider when saving items in the Out Box for later transmission is
when to read the sender's owner card and worksite information. In general, data
from the owner card should be obtained from the current persona at the time the
item is queued by the user. Such information might include the sender's name,
return address, credit card information, and so on.

However, if you use worksite information (for example, for addressing), you may
want to wait until the item is actually transmitted to obtain the most current
information based on the user's current worksite setting, and modify addressing

22-30 Using the Transport Interface

ARENDI-DEFS00004466

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 20 of 144 PageID #: 29467

CHAP TER 2 2

Transport Interface

information at that time. For example, if a user queued several fax items from
home but didn't send them until she got to work, the area code information for
telephone numbers might need to be changed.

Using protoAddressPicker

This proto consists of a labeled field that you can use in the routing slip to allow
the user to choose the recipient(s) of the item being sent. The first time the user
taps on the address picker, it opens a view that displays a list of names from the
Names file, from which the user can choose one or more recipients (Figure 22-5).

Figure 22-5 protoPeoplePicker view

cd of gh ij kl JW.)op qr st uv yz

Anderson, Bob (315)555-4476
Conglomerated Cr * (800)555-1000
Erica, Sarah (415)555-1222
Morrison, Christin (415)555-0987

-- Mulhony, Erasmu * (415)555-2345
Newton Cafe *(617)555-1000
Walthrop, Royce (419)555-3543

_ Selected Only cm 9

This view uses the protoPeoplePicker to provide the name picking facility. The
address picker is customizable so that you can substitute a name picking service
other than protoPeoplePicker by setting the _picker slot. For example, an
e-mail transport might use this facility to provide an alternate directory service.

When the user picks a name, the information is saved, and the next time the address
picker opens, it displays a small picker with the saved name and the choice "Other
Names." The user can choose "Other Names" to reopen the protoPeoplePicker
view and select from the comprehensive list of names. Each time a new name is
selected, it is saved and added to the initial address picker list, giving the user a
convenient way to select from recently used addresses, as shown in Figure 22-6.
The address picker remembers the last eight names selected.

Using the Transport Interface 22-31

ARENDI-DEFS00004467

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 21 of 144 PageID #: 29468

CHAP TER 2 2

Transport Interface

Figure 22-6 Address picker with remembered names

Judy Sundance

San Francisco
Fax

01

01

Royce Walthrop (Home)
Bob Jones (Fax)
Bob Zimmer (Fax)
Newton Cafe (Fax)
Judy Sundance (Fax)
Bob Anderson (Home)*Format f

♦Cover Pay

'72 Fine resolution

Preview

Other Names

Notes

Manually connect

'$Assist

The Intelligent Assistant also interacts with the address picker. If the user invokes a
routing action such as "fax Bob" with the Intelligent Assistant, the Intelligent
Assistant sets up the address picker with a list of alternatives from the Names file,
as shown in Figure 22-7.

Figure 22-7 Address picker set up by Intelligent Assistant

Judy Sundance rw 01

~
#San Francisco

Fax ~I ~

VBob Jones (Fax)

Bob Zimmer (Fax)
Bob Anderson (Fax)
Joe Bob (Fax)

Bob Anderson (Home)
/Format f

Other Names
/Cover Page birdnaCM

_j Fine resolution Manually connect

Preview Notes $Assisi

01
01

The protoAddressPickeruws name references to refer to individual names. A
name reference is a frame that contains a soup entry or an alias to a soup entry,
usually from the Names soup, hence the term name reference. The system includes
built-in data definitions that can access name references and has associated view
definitions that can display the information stored in or referenced by a name
reference. The built-in data definitions and view definitions are registered under
subclasses of the symbol I nameRef. For more information about name references,
see "Name References" (page 5-1) in Newton Programmer's Reference.

22-32 Using the Transport Interface

ARENDI-DEFS00004468

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 22 of 144 PageID #: 29469

CHAP TER 2 2

Transport Interface

Most transports can use the built-in name reference data and view definitions to
handle and display name references. For example, one place you might need to use
these is if you need to build a string representing the address or addresses chosen in
the protoAddressPicker. The selected slot of the protoAddressPicker
contains an array of name references for the names selected by the user in the picker.
You can use the name reference data definition method GetRoutingTitle to
return a string representing all the selected addresses, truncated to the length you
specify. Alternately, you can use the transport method GetNameText to do the
same thing.

Providing a Preferences Template

Transport preferences are accessed and changed from the information button in the
In/Out Box. (The information button is the small button with an "i" in it.) Each
transport with a preferences view is listed in the information picker, as shown in
Figure 22-8.

Figure 22-8 Information picker and preferences view

Help
Prefs
Modem Prefs

Print Prefs
Fax Prefs
Beam Prefs
eWorld Prefs

Information picker

Fax Preferences

Answer phone after 2 PitJgS

When faxing Sp6Cif y When

#After sending a fax

Delete

*File read faxes in

1W i led Iterns"

17 Schedule Receive Made

Preferences view

To make a preferences view for a transport, create a template with a prototype of
protoTransportPref s. In your transport object, store a reference to your
preferences view template in the preferencesForm slot. When the information
picker is displayed, it automatically includes an item for each transport that has a
preferences template registered in the transport's preferencesForm slot.

Each transport may add its own preferences view for configuring any options that
apply to that transport. Some common options include

■ enable/disable logging

■ deferred/immediate send

■ enable/disable listening

Using the Transport Interface 22-33

ARENDI-DEFS00004469

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 23 of 144 PageID #: 29470

CHAP TER 2 2

Transport Interface

■ default folders for new and read or sent items

■ show/hide status and progress dialogs

The protoTransportPref s proto provides a dialog containing the preferences
items shown in Figure 22-9.

Figure 22-9 protoTransportPrefs view

22-34

Beam Preferences

Y~ Show status dialogs

•►Vhenbeaming send now
*After beaming

Delete
♦Fle read items in

11 W i led Iterns"

Controlled by ' s i t ent Pre f s slot

Controlled by ' sendPref s slot

Controlled by ' outboxPref s slot

Controlled by ' inboxPref s slot

Controlled by ' infoPrefs slot

You can selectively remove any of the elements shown above by setting the
corresponding slot to nil in the protoTransportPrefs view. To include
additional items in your preferences view, add child views to the
protoTransportPrefs view. The default child elements positioned in the center
of the view are added from the bottom up and are justified relative to the bottom of
the preferences view or to the top of their preceding sibling view. To add other
child elements, increase the height of the view and add your elements above the
existing ones, except for the title.

The protoTransportPref s template also automatically checks your transport
and displays or hides the In/Out Box preference elements. If your transport does
not contain a SendRequest method, the Out Box preference element is not
displayed; if your transport does not contain a ReceiveRequest method, the In
Box preference element is not displayed. If the latter element is missing, the Out
Box element is automatically drawn at the bottom of the preferences view.

Using the Transport Interface

ARENDI-DEFS00004470

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 24 of 144 PageID #: 29471

CHAP TER 2 2

Transport Interface

For example, the built-in Print transport uses the protoTransportPref s proto
for its preferences view. Since the ReceiveRequest method does not exist in
the Print transport, the In Box preference element is not displayed, as shown in
Figure 22-10.

Figure 22-10 Print preferences

Print Preferences

Show status dialogs

*Whenprinting Specify When

*After printing

Delete

M 0

I

The Info button is included in the protoTransportPrefs template so you can
give the user access to About and Help views for the transport. The button is built
from the standard protolnfoButton proto. To include items on the Info picker,
you must provide handler methods in the infoPref s slot of your transport
preferences view. The protoTransportPref s template includes a handler for
the "Help" item that displays the system help book, open to the routing section.
You'll need to override this method if you want to provide your own help information.

You can add custom items to the Info picker by supplying GenlnfoAuxltems
and DoInfoAux methods in the infoPrefs frame. For more information about
these methods and how the Info button works, see "protolnfoButton" (page 6-10)
in Newton Programmer's Reference.

The defaultConfiguration slot in the protoTransport holds the initial
preferences associated with the transport. This slot is set up by default with a frame
holding an initial selection of preferences items. The child views of the
protoTransportPref s proto are designed to manipulate the slots in this frame.

If you want to override the default preferences frame, you need to construct an
identical one with different values. You can't use a _proto slot in your default
frame since the contents of the defaultConfiguration slot are stored in a
soup and _proto slots can't be stored in soup entries.

Using the Transport Interface 22-35

ARENDI-DEFS00004471

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 25 of 144 PageID #: 29472

CHAP TER 2 2

Transport Interface

Summary of the Transport Interface

Constants

ROM_RouteMailIcon // bitmap for mail group icon

ROM_RoutePrintIcon // bitmap for print group icon

ROM_RouteFaxIcon // bitmap for fax group icon

ROM_RouteBeamIcon // bitmap for beam group icon

ROM_RouteReply // bitmap for reply action icon

ROM RouteForward // bitmap for forward action icon

ROM_RouteAddSender // bitmap for add sender to Names icon

ROM RoutePasteText // bitmap for copy text to Notes icon

Protos

protoTransport

myTransport :_ {

_proto: protoTransport, // proto transport object

appSymbol: symbol, // transport symbol

title: string, // transport name

dataTypes: array, // symbols for routing types supported

actionTitle: string, // name of transport action

icon: bitmapFrame, // transport icon

group: symbol, // transport group symbol

groupTitle: string, // group name

groupIcon: bitmapFrame, // group icon

routingSlip: viewTemplate, // routing slip template

transport InfoForm: viewTemplate, // routing info template

preferencesForm: viewTemplate, // preferences template

statusTemplate: viewTemplate, // status template

statusDialog: view, // status view

modalStatus: Boolean, // modal status dialogs?

dialogStatusMsgs: frame, // status strings

status: symbol, // current status

addressingClass: symbol, // name reference symbol

addressSymbols: array, // don't translate e-mail classes

allowBodyCursors: Boolean, // allow cursors in body slot?

defaultConfiguration: frame, // user preferences defaults

AppClosed: function, // notifies transport of app closing

22-36 Summary of the Transport Interface

ARENDI-DEFS00004472

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 26 of 144 PageID #: 29473

CHAP TER 2 2

Transport Interface

AppInFront: function, // notifies transport of change in

app frontmost status

AppOpened: function, // notifies transport of app opening

CancelRequest: function, // cancels in-progress operation

CanPutAway: function, // put away hook for transport

CheckOutbox: function, // invokes SendRequest operation

CloseStatusDialog: function, // closes status dialog

ConnectionDetect: function, // force send now or later

GetConfig: function, // returns a prefs value

GetDefaultOwnerStore: function, // returns default store

GetFolderName: function, // gets folder name for item

GetFromText: function, // hook to supply item sender

GetItemInfo: function, // returns item to or from info

GetItemStateString: function, // returns item status string

GetItemTime: function, // returns item time stamp info

GetItemTitle: function, // returns item title

GetNameText: function, // returns name string from namerefs

GetStatusString: function, // returns transport status

GetTitleInfoShape: function, // returns info shape

GetToText: function, // hook to supply item recipient (s)

GetTransportScripts: function,// extends In/Out Box actions

HandleError: function, // displays error alert

HandleThrow: function, // handles exceptions

IgnoreError: function, // screens errors

InstallScript: function, // notification of installation

IOBoxExtensions: function, // extends In/Out Box view defs

IsInItem: function, // is item in the In or Out Box?

IsLogItem: function, // has item been logged?

ItemCompleted: function, // processes an item

ItemDeleted: function, // called when item is deleted

ItemDuplicated: function, // called when item is duplicated

ItemPutAway: function, // called after item is put away

ItemRequest: function, // gets next queued item

MakeLogEntry: function, // makes log entry

MissingTarget: function, // notification of missing target

NewFromItem: function, // gets item frame for received data

NewItem: function, // gets new item frame

Normal izeAddress: function, // translates e-mail address

PowerOffCheck: function, // notification of power-off

QueueRequest: function, // queues item for later handling

ReceiveRequest: function, // receives data

SendRequest: function, // sends data

SetConfig: function, // sets a prefs value

SetStatusDialog: function, // opens/updates status dialog

Summary of the Transport Interface 22-37

ARENDI-DEFS00004473

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 27 of 144 PageID #: 29474

CHAP TER 2 2

Transport Interface

TranslateError: function, // returns a string translation

VerifyRoutingInfo: function, // called on send of multiple

// item target that is being split

}

protoTransportH eader

alleader :_ {

_proto: protoTransportHeader, // proto header object

transport: frame, // transport object

target: frame, // target object

addedHeight : integer, // height you're adding to header

context: view, // view to notify with InfoChanged msg

changed: Boolean, // user changed a field?

BuildText: function, // builds additional header lines

AddText: function, // adds lines to header

InfoChanged: function, // notifies view of changed field

}

protoFullRouteSlip

a FullRoutingSlip :_ {

_proto: protoFullRouteSlip, // proto full routing slip

viewJustify: integer, // viewJustify flags

envelopeHeight: integer, // height of envelope portion

envelopeWidth: integer, // width of envelope portion

bottomIndent: integer, // height of lower portion

fields: frame, // item frame

target: frame, // target object

activeFormat: frame, // currently selected format

transport: frame, // transport object

formatPicker: frame, // the format picker child view

sendButton: frame, // the send button child view

BottomOfSlip: function, // returns bottom of slip

FormatChanged: function, // notifies slip of new format

OwnerInfoChanged: function, // notifies slip of new sender

PrepareToSend: function, // notifies slip when item is sent

ContinueSend: function, // continues send process

Transport Changed: function, // notifies of transport change

}

22-38 Summary of the Transport Interface

ARENDI-DEFS00004474

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 28 of 144 PageID #: 29475

CHAP TER 2 2

Transport Interface

protoAddressPicker

anAddressPicker := {

_proto: protoAddressPicker, // address picker

viewBounds: boundsFrame, // location and size

text: string, // picker label

otherText: string, // last item (pops up people picker)

selected: array, // name refs to be initially selected

alternatives: array, // name refs to be shown in picker

class: symbol, // name ref data def class

_picker: viewTemplate, // picker for other addresses

}

protoTransportP refs

myTransportPrefs := {

_proto: protoTransportPrefs, // transport prefs proto

viewBounds: boundsFrame, // location and size

title: string, // transport name

appSymbol: symbol, // transport appSymbol

silentPrefs: frame, // controls checkbox element in prefs

sendPrefs: frame, // controls send element in prefs

outboxPrefs: frame, // controls out box prefs element

inboxPrefs: frame, // controls in box prefs element

infoPrefs: frame, // defines more info button choices

}

Functions and Methods

Utility Functions

RegTransport (symbol, transport)

UnRegTransport (symbol)

DeleteTransport (symbol)

Get Current Format (item)

GetGroupTransport (groupSymbol)

QuietSendAll (transportSym) // platform file function

ownerApp: Refresh ()

ownerApp: RemoveTempItems (transportSym)

Summary of the Transport Interface 22-39

ARENDI-DEFS00004475

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 29 of 144 PageID #: 29476

ARENDI-DEFS00004476

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 30 of 144 PageID #: 29477Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 30 of 144 PageID #: 29477

AREN D I—DEFSOOOO4476

C H A P T E R 2 3

Endpoint Interface

This chapter describes the basic Endpoint interface in Newton system software.
The Endpoint interface allows you to perform real-time communication using any
of the communication tools available in the system. The Endpoint interface is well
suited for communication needs such as database access and terminal emulation.

You should read this chapter if your application needs to perform real-time
communications—that is, communication operations that do not use the Routing
and Transport interfaces described in the previous chapters. This chapter describes
how to

■ set options to configure the underlying communication tool

■ establish a connection

■ send and receive data

■ set up an input specification frame to control how data is received

■ cancel communication operations

This chapter describes the general approach to using the Endpoint interface, but
does not discuss details specific to using individual communication tools. For
specific details on using particular built-in communication tools, see Chapter 24,
"Built-in Communications Tools."

About the Endpoint Interface

The Endpoint interface is based on a single proto—protoBasicEndpoint—
which provides a standard interface to all communication tools (serial, modem,
infrared, AppleTalk, and so on). This proto provides methods for

■ interacting with the underlying communication tool

■ setting and getting endpoint options

■ opening and closing connections

■ sending and receiving data

About the Endpoint Interface 23-1

ARENDI-DEFS00004477

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 31 of 144 PageID #: 29478

CHAP TER 2 3

Endpoint Interface

The endpoint object created from this proto encapsulates and maintains the details
of the specific connection. It allows you to control the underlying communication
tool to perform your communication tasks.

The Endpoint interface uses an asynchronous, state-driven communications model.
In asynchronous operation, communication requests are queued, and control is
returned to your application after each request is made but before it is completed.
Many endpoint methods can also be called synchronously. In synchronous operation,
execution of your application is blocked until the request completes; that is, the
endpoint method does not return until the communication operation is finished.

The Endpoint interface supports multiple simultaneous connections. That is, you
can have more than one active endpoint at a time. Each endpoint object controls an
underlying communication tool, and these tools run as separate operating system
tasks. However, remember that the endpoint objects you create and control all
execute within the single Application task.

The number of simultaneously active endpoints you can use is limited in practice
by available system memory and processor speed. Each communi-
cation tool task requires significant memory and processor resources. Note that
memory for the communication tools that underlie endpoints is allocated from the
operating system domain, whereas memory for the endpoint objects is allocated
from the NewtonScript heap.

Asynchronous Operation

Almost all endpoint methods can be called asynchronously. This means that calling
the method queues a request for a particular operation with the underlying communi-
cation tool task, and then the method returns. When the operation completes, the
communication tool sends a callback message to notify the endpoint that the
request has been completed. The callback message is the Completionscript
message, and it is defined by your application in a frame called the callback
specification, or callback spec. (For more details, see "Callback Spec Frame"
(page 20-9) in Newton Programmer's Reference.)

You define the callback spec frame in your application and pass it as an argument
to each endpoint method you call asynchronously. The callback spec frame
contains slots that control how the endpoint method executes, and it contains a
Completionscript method that is called when the endpoint operation
completes. The Completionscript method is passed aresult code parameter
that indicates if the operation completed successfully or with an error.

A special type of callback spec, called an output spec, is used with the output
method. An output spec contains a few additional slots that allow you to pass
special protocol flags and to define how the data being sent is translated. Output
specs are described in "Output Spec Frame" (page 20-10) in Newton Programmer's
Reference.

23-2 About the Endpoint Interface

ARENDI-DEFS00004478

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 32 of 144 PageID #: 29479

CHAP TER 2 3

Endpoint Interface

This kind of asynchronous operation lends itself nicely to creating state-machine
based code, where each part of the communication process is a state that is invoked
by calling an endpoint method. The Completionscript method of each state
invokes the next state, and the state machine automatically progresses from one
state to the next in a predefined fashion.

Synchronous Operation

Many endpoint methods can be called synchronously as well as asynchronously.
Synchronous operation means that invoking a method queues a request for a
particular operation with the underlying communication tool task, and the method
does not return until the operation is completed. This means that your application is
blocked from execution until the synchronous method returns.

Only a few endpoint methods must be called synchronously. Most can be called
either asynchronously or synchronously. For methods that can be called in either
mode, it is recommended that you use the asynchronous mode whenever possible.
If you call such a method synchronously, the communication system spawns a
separate task associated with the method call, while putting your application task
on hold. This results in higher system overhead and can reduce overall system
performance if you use many synchronous method calls.

I nput

In the Endpoint interface, you receive data by defining a frame called an input
specification, or input spec, and then waiting for input. The input spec defines how
incoming data should be formatted, termination conditions that control when the
input should be stopped, data filtering options, and callback methods. The main
callback method is the Inputscript method, which is passed the received data
when the input operation terminates normally. Receiving data with the Endpoint
interface is always asynchronous.

Here is an overview of the way you can use input spec methods to obtain the
received data:

■ Let the termination conditions specified in the input spec be triggered by the
received data, thus calling your znputscript method. For example, when a
particular string is received, the znputscript method is called.

■ Periodically sample incoming data by using the input spec Partial Script
method, which is called periodically at intervals you specify in the input spec.

■ Cause the system to send the znputscript callback method by using the
Input method. This immediately returns the contents of the input buffer and
clears it.

■ Immediately return the input buffer contents without terminating the active input
spec and without clearing the buffer by using the Partial method.

About the Endpoint Interface 23-3

ARENDI-DEFS00004479

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 33 of 144 PageID #: 29480

CHAP TER 2 3

Endpoint Interface

If the input operation terminates normally—that is, the Inputscript method is
called—the system automatically reposts the input spec for you to receive
additional input. Of course, you can alter this process if you want to.

Data Forms

All NewtonScript data needs to be transformed whenever it is sent to or received
from a foreign environment. That foreign environment may be a server or host
computer at the other end of the connection, or it may even be the communication
tool that's processing the configuration options you've passed to it. Typically,
communication tools expect C-type option data.

Whether you're sending, receiving, or using data to set endpoint options, you can
tag the data with a data form. A data form is a symbol that describes the transfor-
mations that need to take place when data is exchanged with other environments.
When you send data or set endpoint options, the data form defines how to convert
the data from its NewtonScript format. When you receive data or get endpoint
options, the data form defines the type of data expected.

Data forms are used in output specs, input specs, and endpoint option frames. The
data form is defined by a slot named form in these frames. If you don't define the
data form in a particular case, a default data form is used, depending on the type of
operation and the type of data being handled.

Note that when sending data, you can take advantage of the default data forms by
not explicitly specifying a data form. Because NewtonScript objects have type
information embedded in their values, the system can select appropriate default
data forms for different kinds of data being sent. For example, if you send string
data and don't specify the data form, the ' string data form is used by default.

The symbols you use to indicate data forms are ' char, ' number, ' string,
' bytes, ' binary, ' template, and ' frame. Each is best suited to certain data
and operations.:

■ For simple scalar values, use ' char for characters and ' number for integers.

■ For semi-aggregate forms of these kinds of data, use ' string for a
concatenation of characters plus a terminating byte, and use ' bytes for an
array of bytes.

■ For binary data, use ' binary. This is the fastest option for sending and
receiving, since the data processing is minimal.

■ For more complex data, there are two aggregate data forms. You may want to
use the ' template form if you're communicating with a remote procedure call
service that expects C-type data and that follows the exact same marshalling
restrictions the Newton does. The ' f rame form is convenient if you're
exchanging frames with another Newton.

23-4 About the Endpoint Interface

ARENDI-DEFS00004480

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 34 of 144 PageID #: 29481

CHAP TER 2 3

Endpoint Interface

The different types of data forms and the defaults are described in more detail in
"Data Form Symbols" (Table 20-1 on page 20-2) in Newton Programmer's
Reference.

Only a subset of data form values is applicable for any particular operation.
Table 23-1 enumerates the data forms and their applicability to output specs, input
specs, and endpoint option frames.

Table 23-1 Data form applicability

Data form Output spec Input spec Option frame

'char default for characters OK OK

'number default for numbers OK OK

'string default for strings default OK

'bytes OK OK OK

binary default for binary objects; OK; input spec OK
output spec can include must include
optional target slot target slot

'template OK OK; input spec default
must include
target slot

'frame OK OK not applicable

Template Data Form

The ' template data form enables you to pass data as if you were passing C
structures, and is thus extremely useful in communicating with the lower level
communication tools in getting and setting endpoint options.

When you set options or send data using the ' template data form, the data is
expected to be aframe containing two slots, arglist and typelist. The
arglist slot is an array containing the data, the list of arguments. The typelist
slot is a corresponding array containing the types that describe the data.

To get endpoint options, the data in the data slot must be a frame containing the
arglist and typelist arrays. The arglist array should contain placeholder
or default values. The system supplies the actual arglist values when the option
list is returned.

In the same manner, to receive data, you must add a target slot to your input
spec containing the arglist and typelist arrays. The arglist array contains

About the Endpoint Interface 23-5

ARENDI-DEFS00004481

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 35 of 144 PageID #: 29482

CHAP TER 2 3

Endpoint Interface

placeholder or default values, which the system fills in when the data is received.
For more information, see the section "Specifying the Data Form and Target"
beginning on page 23-13.

The data types that can be used in the type 1 i s t array are identified by these
symbols: ' long, ' ulong, ' short, ' byte, ' char, ' unicodechar,
' boolean, ' struct, and ' array. They are described in detail in "Data Type
Symbols" (Table 20-2 on page 20-3) in Newton Programmer's Reference.

Note that the ' struct and ' array data types are not used alone, but in
conjunction with other elements in a typelist array. They modify how the other
elements are treated. The ' struct data type defines the array as an aggregate
structure of various data types that is padded to a long-word boundary (4 bytes in
the Newton system). Note that the whole structure is padded, not each array
element. You must specify the ' struct data type in order to include more than
one type of data in the array.

The ' array data type defines the array as an aggregate array of one or more
elements of a single data type. The ' array data type is specified as a NewtonScript
array of three items, like this:

['array, data TypeSymbol, integer]

Replace the data TypeSymbol with one of the other simple data types. And integer is
an integer specifying the number of units of that data type to convert. To convert an
entire string, including the terminator, specify zero for integer. A nonzero value
specifies the exact number of units to be converted, independent of a termination
character in the source string.

Here are some examples of how to use the ' array data type to represent C strings
and Unicode strings in NewtonScript. The first example shows how to convert
between a NewtonScript string of undefined length and a C string (translated
to/from Unicode):

['array, 'char, 01

This example shows how to convert a four-character NewtonScript string to a C string:

['array, char, 41

This example shows how to convert between a NewtonScript string and a
Unicode string:

['array, 'unicodechar, 0]

The ' template data form is intended primarily as a means of communicating
with the lower level communication tools in the Newton system. You can use this
data form to communicate with a remote system, however, you must be careful and
know exactly what you are doing to use it for this purpose. Remember that the
lengths of various data types and the byte order may be different in other systems
and may change in future releases of the Newton operating system.

23-6 About the Endpoint Interface

ARENDI-DEFS00004482

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 36 of 144 PageID #: 29483

CHAP TER 2 3

Endpoint Interface

Endpoint Options

You configure the communication tool underlying an endpoint object by setting
endpoint options. An endpoint option is specified in an endpoint option frame that
is passed in an array as an argument to one of the endpoint methods. Options select
the communication tool to use, control its configuration and operation, and return
result code information from each endpoint method call. An alternative way to set
options is to directly call the endpoint option method.

There are three kinds of options you can set, each identified by a unique symbol:

■ ' service options, which specify the kind of communication service, or tool,
to be controlled by the endpoint

■ option options, which control characteristics of the communication tool

■ address options, which specify address information used by the
communication tool

For details on the particular options you can use with the built-in communication
tools, see Chapter 24, ̀Built-in Communications Tools."

Compatibility

The protoBasicEndpoint and protoStreamingEndpoint objects and all
the utility functions described in this chapter are new in Newton system software
version 2.0. The protoEndpoint interface used in system software version Lx is
obsolete, but still supported for compatibility with older applications. Do not use
the protoEndpoint interface, as it will not be supported in future system
software versions.

Specific enhancements introduced by the new endpoint protos in system software
2.0 include the following:

■ Data forms. You can handle and identify many more types of data by tagging it
using data forms specified in the form slot of an option frame.

■ Asynchronous behavior and callback specs. Most endpoint methods can now
be called asynchronously.

■ Flexible input specs. Enhancements include support for time-outs and the
ability to specify multiple termination sequences.

■ Better error handling. Consistent with other system services, errors resulting
from synchronous methods are signaled by throwing an exception.

■ Binary data handling. The way binary (raw) data is handled has changed
significantly. For input, you can now target a direct data input object, which
results in significantly faster performance. For output, you can specify offsets
and lengths, which allows you to send the data in chunks.

About the Endpoint Interface 23-7

ARENDI-DEFS00004483

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 37 of 144 PageID #: 29484

CHAP TER 2 3

Endpoint Interface

■ Multiple communication sessions. The system now supports multiple
simultaneous communication sessions. In other words, you can have more than
one active endpoint at a time.

Using the Endpoint Interface

This section describes

■ setting endpoint options

■ initializing and terminating an endpoint

■ establishing a connection

■ sending data

■ receiving data

■ sending and receiving streamed data

■ working with binary data

■ canceling operations

■ handling errors

■ linking the endpoint with an application

Setting Endpoint Options

Endpoint options are specified in an endpoint option frame that is passed as an
argument to an endpoint method. Typically you specify an array of option frames,
setting several options at once. Note that you cannot nest an option array inside
another one.

You must specify a single ' service option, to select a communication tool. Then
you usually specify one or more ' option options to configure the communication
tool—for example, to set the baud rate, flow control, and parity of the serial tool.
Note that if you are using the modem communication tool, you can use the utility
function MakeModemOption to return a modem dialing option for use with the
built-in modem tool.

You may also need to specify an I address option, depending on the communi-
cation tool you are using. The only built-in tools that use an ' address option are
the modem and AppleTalk tools. Note that you should use the global functions
MakePhoneOption and MakeAppleTalkOption to construct ' address
options for the modem and AppleTalk tools.

The slots in an endpoint option frame are described in detail in "Endpoint Option
Frame" (page 20-7) in Newton Programmer's Reference.

23-8 Using the Endpoint Interface

ARENDI-DEFS00004484

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 38 of 144 PageID #: 29485

CHAP TER 2 3

Endpoint Interface

All option data you set gets packed together into one block of data. Each option
within this block must be long-word aligned for the communication tools. So,
when using the ' template data form, you need to use the ' struct type (at the
beginning of the typelist array) to guarantee that the option is long-word
aligned and padded. To set the serial input/output parameters, for instance, the
option frame might look like this:

serialIOParms := {

type: 'option,

label: kCMOSerialIOParms,

opCode: opSetNegotiate,

data: {

arglist: [

kNoParity, // parity

klStopBits, // stopBits

k8DataBits, // dataBits

k9600bps, // bps

I
typelist: [

'struct,

I uLong,

'long,

'long,

'long

}

To get the connection information, the option frame you construct might look like this:

connectInfoParms {

type: 'option,

label: kCMOSerialIOParms,

opCode: opGetCurrent,

data: {

arglist: [

0, // parity placeholder

0, // stopBits placeholder

0, // dataBits placeholder

0, // bps placeholder

I
typelist: [

'struct,

I ulong,

'long,

Using the Endpoint Interface 23-9

ARENDI-DEFS00004485

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 39 of 144 PageID #: 29486

CHAP TER 2 3

Endpoint Interface

long,

long

}

};

When you set endpoint options, the cloned option frame is returned to you so that
you can check the result codes for individual options. If you set options with an
asynchronous method call, the cloned option frame is returned as a parameter to
the CompletionScript callback method. If you set options with a synchronous
method call, the cloned option frame is returned as the value of the synchronous
method itself.

The result slot in each option frame is always set for returned options. It can be
set to any of the error codes listed in "Option Error Code Constants" (Table 20-5
on page 20-5) in Newton Programmer's Reference. If an option succeeds without
errors, the result slot is set to nil.

Exceptions are not thrown when individual options fail. This allows a request to
succeed if, for example, every specified option except one succeeds. If you need to
determine whether a particular option succeeds or fails, you must check the
result slot of the option in question.

Note that in one array of option frames, you can specify options that are of the
same type, and that seem to conflict. Since options are processed one at a time, in
order, the last option of a particular type is the one that is actually implemented by
the communication tool.

Note

When instantiating an endpoint for use with the modem tool, you
can have options specified by the options parameter to the
Instantiate method, as well as options specified by a modem
setup package (see Chapter 25, "Modem Setup Service."). Any
options from a modem setup package are appended to those set by
the Instantiate method.

For details on the specific options you can set for the built-in communication tools,
see Chapter 24, ̀Built-in Communications Tools."

I nitialization and Termination

Before using an endpoint, you must instantiate it using the Instantiate method.
This method allocates memory in the system and creates the endpoint object.
Then, you must bind the endpoint object to the communication hardware by calling
the Bind method. This allocates the communication tool resources for use by
the endpoint.

23-10 Using the Endpoint Interface

ARENDI-DEFS00004486

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 40 of 144 PageID #: 29487

CHAP TER 2 3

Endpoint Interface

When you are finished with an endpoint, you must unbind it using the UnBind
method, then dispose of it using the Dispose method.

Establishing a Connection

After instantiating and binding an endpoint, you establish a connection.

There are two ways you can create a connection. One way is to call the Connect
method. If the physical connection is serial, for instance, you don't even need to
specify an address as an option. The Connect method immediately establishes
communication with whatever is at the other end of the line.

Certain communication tools—for example, the modem and AppleTalk tools—
require you to specify an option of type ' addre s s in order to make a connection.
The modem tool requires a phone number as an ' address option. You should
use the global function MakePhoneOption to return a proper phone number
addre s s option. The AppleTalk tool requires an AppleTalk Name Binding
Protocol (NBP) I address option. You should use the global function
MakeAppleTalkOption to return a proper NBP ' address option.

To establish a connection where you expect someone else to initiate the connection,
you need to call the Listen method. Once the connection is made by using
Listen, you need to call the Accept method to accept the connection, or the
Disconnect method to reject the connection and disconnect.

Sending Data

To send data, use the output method. This method is intelligent enough to figure
out the type of data you're sending and to convert it appropriately for transmission.
This is because NewtonScript objects have type information embedded in their
values, allowing the system to select appropriate default data forms for different
kinds of data being sent.

You can specify output options and a callback method by defining an output spec,
which you pass as a parameter to the Output method.

Certain communication tools may require or support the use of special flags
indicating that particular protocols are in use. For example, the built-in infrared and
AppleTalk tools expect framed (or packetized) data, and there are special flags to
indicate that this kind of protocol is in use. If you are using such a communication
tool to send data, you need to specify the sendFlags slot in the output spec
frame. In this slot, you specify one or more flag constants added together.

To send packetized data, you set sendFlags to kPacket+kMore for each packet
of data that is not the last packet. For the last packet, set sendFlags to
kPacket+kEOP.

Using the Endpoint Interface 23-11

ARENDI-DEFS00004487

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 41 of 144 PageID #: 29488

CHAP TER 2 3

Endpoint Interface

Receiving Data Using Input Specs

The most common way to receive data is to use input specs. An input spec is a
frame that defines what kind of data you are looking for, termination conditions
that control when the input should be stopped, and callback methods to notify you
when input is stopped or other conditions occur.

An input spec consists of many pieces. It contains slots that define

■ the type of data expected (form slot)

■ the input target for template and binary data (target slot)

■ the data termination conditions (termination slot)

■ protocol flags for receiving data (rcvFlags slot)

■ an inactivity time-out (regTimeout slot)

■ the data filter options (f i 1 t e r slot)

■ the options associated with the receive request (rcvoptions slot)

■ a method to be called when the termination conditions are met
(InputScript method)

■ a method to be called periodically to check input as it accumulates
(Partialscript method, partial Frequency slot)

■ a method to be called if the input spec terminates unexpectedly
(CompletionScript method)

Table 23-2 summarizes the various input data forms and the input spec slots that
are applicable to them. Input spec slots not included in the table apply to all data
forms. For more details on the input spec frame, see "Input Spec Frame"
(page 20-11) in Newton Programmer's Reference.

After you've connected or accepted a connection, you set up your first input spec
by calling Setlnputspec. When one input spec terminates, the system
automatically posts another input spec for you when the InputScript method
defined in the previous input spec returns. This new input spec duplicates the
one that just terminated. If you don't want this to happen, you can call the
Setlnputspec method from within the InputScript method of your input
spec to change the input spec or terminate the input. Pass nil to Setlnputspec
to terminate the input.

You also use the Setlnputspec method if you need to set up an input spec at
some other point. Note that if you want to terminate a current input spec to set up a
new one, you must call the Cancel method before calling Setlnputspec with
your new spec. (This applies inside an InputScript that is called as aresult of
calling the Input method.)

23-12 Using the Endpoint Interface

ARENDI-DEFS00004488

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 42 of 144 PageID #: 29489

CHAP TER 2 3

Endpoint Interface

Table 23-2 Input spec slot applicability

termination
discard
After filter

partial
Frequency
and
partial

Data form target slot slot slot" slot Script slotst

'char na (not applicable) determined
automatically

na OK na

'number na determined
automatically

na OK na

'string na OK OK OK OK

'bytes na OK OK OK OK

'binary data and offset
slots only

all slots except
endSequence

na na na

'template typelist and
arg1ist slots only

determined
automatically

na na na

' f rame na determined
automatically

na na na

discardAfter is written as one word, broken here because of space limitations.
part ialFrequency and partialScript are written as one word, broken here because of space limitations.

The following sections describe how to set the various slots in the input spec to
accomplish specific tasks.

Specifying the Data Form and Target

You can choose how you want the received data formatted by setting the f orm
slot in the input spec. In this slot, you specify one of the standard data forms
described in "Data Form Symbols" (Table 20-1 on page 20-2) in Newton
Programmer's Reference.

In preparation for receiving data, the system creates an input buffer. The buffer's
size is based on the input spec slot termination. byteCount, on the slot
discardAf ter, or on the intrinsic size of the data. The system receives all the
data in to this buffer, then translates the data into a newly created object whose type
is specified by the input spec's form slot. It is this object that is passed back to the
InputScript method.

Using the Endpoint Interface 23-13

ARENDI-DEFS00004489

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 43 of 144 PageID #: 29490

CHAP TER 2 3

Endpoint Interface

If you specify the form ' template or ' binary, you also must specify a target
slot in the input spec. The target slot is a frame used to define additional
information pertaining to the data form.

If your input form is ' template, then you must set the arglist and typelist
slots in the target frame. The arglist array contains placeholder data, which
is filled in with actual data when it is received, and the type l i s t array contains
the template's array of types.

If your input form is ' binary, data is written directly into the binary object that
you specify in the data slot of the target frame. You can specify abinary object,
virtual binary object, or string. Note that the binary object must be the same size as
the received data; the system will not expand or shrink the object. For information
on virtual binary objects, see Chapter 11, "Data Storage and Retrieval."

The of f set slot in the target frame allows you to specify an offset in the binary
object at which to write incoming data. For instance, if you want to write the
received data in consecutive blocks in a binary object that already exists, you must
set the data slot to the binary object, and set the of f set slot to the byte offset at
which you want the new data to be written for each block.

Specifying Data Termination Conditions

For string and ' bytes data forms, you must indicate when the input
terminates by specifying a termination slot. You can terminate the input on
these conditions:

■ when a certain number of bytes has been received (set the byteCount slot)

■ when a specific set of characters in the input stream has been found (set the
endSequence slot)

■ when the communication tool returns an end-of-packet indicator (set the
useEOP slot)

Normally with the ' binary data form, the input is terminated when the target
object fills up. However, you can also use the termination slot with binary data
to specify a byte count that causes the input to terminate after a certain number of
bytes has been received. This feature is useful when you want to provide user
feedback as a large binary object is being received. Set the byteCount slot in the
termination frame, and, when the input terminates, repost the input spec with the
target. of f set slot offset by the value of the termination. byteCount slot.

If you want to receive data that ends with a particular sequence of data, define
that sequence in the endSequence slot in the termination frame. The
endSequence slot allows you to terminate input based on aparticular sequence
of incoming data called the termination sequence. You can specify a single

23-14 Using the Endpoint Interface

ARENDI-DEFS00004490

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 44 of 144 PageID #: 29491

CHAP TER 2 3

Endpoint Interface

termination sequence, or an array of items, any one of which will cause the input to
terminate. A termination sequence can be a single character, a string, a number, or
an array of bytes. If you don't want to look for a termination sequence, don't define
this slot.

For the ' binary data form, you cannot use the endsequence slot to specify a
termination condition.

Note

Note that the system executes byte-by-byte comparisons between
the termination sequence and the input stream. To facilitate this
process, the termination sequence (or elements within the
endsequence array) is converted to abyte or binary format to
speed the comparison. Internally, single characters are converted
to single bytes using the translation table specified by the
endpoint encoding slot. Numbers are converted to single bytes;
strings are converted to binary objects. An array of bytes is also
treated as a binary object. For large numbers, you must encode
your number as an array of bytes if there are significant digits
beyond the high order byte of the number.

If you want to terminate input based on a transport-level end-of-packet (EOP)
indicator, then you can set the useEOP slot in the termination frame. This slot
holds a Boolean value specifying whether or not to look for EOP indicators.
Specify this slot only if the input spec rcvFlags slot includes the kPacket flag.
Moreover, if the rcvFlags slot includes the kPacket flag and you do not specify
the termination. useEOP slot, the system effectively sets useEOP to the
default value true. For more information, see the following section, "Specifying
Flags for Receiving."

It is not appropriate to specify the termination slot for data forms other than
string, ' bytes, and ' binary. The ' char and ' number data forms

automatically terminate after 1 and 4 bytes, respectively. The ' frame data form is
terminated automatically when a complete frame has been received, and the
template data form terminates when the number of bytes received matches the
typelist specification in the target frame.

To limit the amount of accumulated data in the input buffer, you can define a
discardAfter slot in the input spec. You can do this only when you have not
specified a termination. byteCount slot for ' string and ' bytes data
forms. The discardAfter slot sets the input buffer size. If the buffer overflows,
older bytes are discarded in favor of more recently received bytes.

Using the Endpoint Interface 23-15

ARENDI-DEFS00004491

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 45 of 144 PageID #: 29492

CHAP TER 2 3

Endpoint Interface

Specifying Flags for Receiving

For certain communication tools, it may be necessary to use special protocol flags
when receiving data. You do this by specifying one or more flag constants in the
rcvFlags slot in the input spec. You can use such flags only if the communication
tool supports them.

For example, some of the built-in communication tools, such as the infrared and
AppleTalk tools, support only framed receiving (packetized data). In order to use
framed receiving, you must set the rcvFlags slot to the constant kPacket. With
the infrared tool, if you do not specify a rcvFlags value of kPacket, the tool
will behave unexpectedly.

Do not define the rcvFlags slot if the underlying communication tool does not
support EOP indicators. If you do so, your input will terminate after each physical
buffer of data is received. If you wish to terminate an input spec based on an EOP
indicator, set the useEOP slot in the termination frame to true.

Of the built-in communication tools, only the infrared, AppleTalk, and framed
asynchronous serial tools support framed packets and the kPacket flag.

If you set the kPacket flag and set the useEOP slot to true, you cannot also use
the byteCount slot in the termination frame—if you do, byteCount will be
ignored. In this case, only an EOP indicator will terminate input. If you do want to
use the byteCount slot with the kPacket flag, set the useEOP slot to nil. In
the latter case, the remote system should send an EOP indicator with every packet,
though input won't terminate until the byteCount condition is met.

Specifying an Input Time-Out

You can specify a time-out for input in the regTimeout slot of the input spec. In
this slot, you specify the time, in milliseconds, of inactivity to allow during input.
If there is no input for the specified interval, the time-out expires, the input is
terminated, and the Completionscript message is sent to the input spec frame.
In this case, the result code passed with the Completionscript message
is —16005.

Don't specify a regTimeout value less than 30 milliseconds.

Note that if a time-out expires for an asynchronous request such as receiving, that
request and all outstanding requests are canceled.

Specifying Data Filter Options

As incoming data is received in the input buffer, the data can be processed, or
filtered. This filtering can occur on all types of received data, except binary data
(defined by the ' binary data form). This filtering of data is defined by the filter

23-16 Using the Endpoint Interface

ARENDI-DEFS00004492

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 46 of 144 PageID #: 29493

CHAP TER 2 3

Endpoint Interface

slot in the input spec. The f i lter slot is a frame containing two slots, byteProxy
and sevenBit, which allow you to perform two different kinds of processing.

The byte Proxy slot allows you to identify one or more characters or bytes in the
input stream to be replaced by zero or one characters. You may, for instance,
replace null characters (Oxo o) with spaces (Ox2 0). Note that if your input data
form is set to ' string, you are encouraged to use this slot. Otherwise, null
characters embedded in your string may prematurely terminate that string.
(Remember, NewtonScript strings are null-terminated.)

The byte Proxy slot contains an array of one or more frames. Each frame must
have a byte slot, identifying the single-byte character or byte to be replaced, and a
proxy slot, identifying the single-byte character or byte to be used instead. The
proxy slot can also be nil, meaning that the original byte is to be removed
completely from the input stream.

Note

Note that the system executes byte-by-byte comparisons and
swaps between the bytes in the input stream and the replacements
in the proxy slot. To facilitate this process, the values in the
byte and proxy slots are converted to abyte format to speed the
comparison and swap. Internally, single characters are converted
to single bytes using the translation table specified in the endpoint
encoding slot. Numbers are converted to single bytes. If a
number has significant digits beyond the high-order byte, they
will be dropped during the comparison and swap.

You can also specify the sevenBit slot in the f filter frame. Set this slot to
true to specify that the high-order bit of every incoming byte be stripped ("zeroed
out"). This is a convenient feature if you plan to communicate over links
(particularly private European carriers) that spuriously set the high-order bit.

Specifying Receive Options

You can also set communication tool options associated with the receive request.
To do this, specify an option frame or an array of option frames in the rcv0ptions
slot in the input spec. The options are set when the input spec is posted by the
Setlnputspec method. The processed options are returned in the options
parameter passed to the Inputscript method.

Note that the options are used only once. If your znputscript method is called,
for example, and it returns expecting the input spec to remain active, the options
are not reposted. To explicitly reset the options in this example, you must call
Set Input Spec within your InputScript method.

Using the Endpoint Interface 23-17

ARENDI-DEFS00004493

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 47 of 144 PageID #: 29494

CHAP TER 2 3

Endpoint Interface

Handling Normal Termination of Input

The Inputscript message is sent to the input spec frame when one of the
termination conditions is met. You define the znputscript method in the input
spec frame.

The received data is passed as aparameter to the znputscript method. Another
parameter describes the specific condition that caused the input to terminate, in
case you had specified more than one in the input spec.

When the znputscript method returns, the system automatically posts another
receive request for you using the same input spec as the last one. You can prevent
this by calling SetlnputSpec within the InputScript method. In the
SetlnputSpec method, you can set a different input spec, or you can prevent a
new input spec from being posted by setting the inputSpec parameter to nil. Note
that while the input spec is nil, incoming data may be lost.

Periodically Sampling Incoming Data

You can sample the incoming data without meeting any of the termination
conditions by specifying a PartialScript method in the input spec. The system
sends the PartialScript message to the input spec frame periodically, at the
frequency you define in the partial Frequency slot in the input spec, as long as
there are one or more bytes of data in the input buffer. The system passes to the
PartialScript method all of the data currently in the input buffer, but the data
is not removed from the input buffer. If you want to remove this data from the input
buffer, you can call the FlushPartial method.

Note that the sending of PartialScript messages is controlled by system idle
events and is in no way triggered by receive request completions. The current input
spec remains in effect after the PartialScript method returns.

You typically would use a PartialScript method to detect abnormal or
out-of-band data not found by any of the usual input termination conditions.

You can specify PartialScript methods only for those input data forms that
allow termination conditions —specifically, the ' string and ' bytes data forms.

To use the PartialScript method, you must also include the
partial Frequency slot in the input spec. The partial Frequency slot
specifies the frequency, in milliseconds, at which the input data buffer should be
checked. If new data exists in the buffer, the PartialScript message is sent to
the input spec frame.

23-18 Using the Endpoint Interface

ARENDI-DEFS00004494

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 48 of 144 PageID #: 29495

CHAP TER 2 3

Endpoint Interface

Handling Unexpected Completion

The Completionscript message is sent to the input spec frame when the input
spec completes unexpectedly—for example, because of a time-out expiring or a
Cancel message.

If you do not specify a Completionscript method in your input spec frame, an
exception is forwarded to the endpoint Except ionHandler method.

Special Considerations

If you want to set up an input spec, but you never want to terminate the input, you
can set up the input form to be either I string or I bytes data, and not define
any of the data termination conditions. In this case, it is up to you to read and flush
the input. You can do this by using a Partialscript method that calls the
FlushPartial method at the appropriate times. Note that if the input exceeds
the discardAf ter size, the oldest data in the buffer is deleted to reduce the size
of the input.

Alternatively, if you omit the Inputscript method, yet define the input data
form and termination conditions, the input continues to be terminated and flushed
at the appropriate times. The only difference is that without an znputscript
method, you'll never see the complete input.

Receiving Data Using Alternative Methods

The methods described in this section allow you to receive data in ways other than
letting an input spec terminate normally. You may not need to use these methods;
they're provided for flexibility in handling special situations.

You can force the system to send a pending input spec the znputscript message
by calling the Input method. Note that this method is appropriate to use only
when receiving data of the forms ' string and ' bytes. Also, in an Inputscript
method that is called as aresult of calling Input, you cannot use Setlnputspec
to change or terminate the input spec. Instead, you must first send the Cancel
message to cancel the current input spec.

You can look at incoming data outside the scope of your Inputscript or
Partialscript method by calling the method Partial. This method returns
data from the input buffer but doesn't remove it from the buffer. You can use this
method to sample incoming data without affecting the normal operation of your
input spec and its callback methods. Note that this method is appropriate to use
only when receiving data of the forms ' string and ' bytes.

Using the Endpoint Interface 23-19

ARENDI-DEFS00004495

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 49 of 144 PageID #: 29496

CHAP TER 2 3

Endpoint Interface

IMPORTANT

Do not call the Input or Partial methods in a polling loop to
look for incoming data. The Newton communications architecture
requires a return to the main event loop in order to process
incoming data from the endpoint's underlying communication
tool. These methods are included as an alternate way of retrieving
data from the incoming data buffer, not as a way to implement
synchronous data receives. A

To flush data from the input buffer, you can use the methods F1ushlnput and
FlushPartial. The F1ushlnput method discards all data in the input buffer,
and FlushPartial discards all data read by the last call to the Partial method.

Streaming Data In and Out

Besides protoBasicEndpoint, there is another type of endpoint proto called
protoStreamingEndpoint. The purpose of this streaming endpoint is to
provide a way to send and receive large frames without having first to flatten or
unflatten them.

Flattening refers to the process of converting a frame object into a stream of bytes.
Unflattening refers to the process of converting those bytes back into a frame object.

With the streaming endpoint, frame data is flattened or unflattened in chunks as it is
sent or received. This allows large objects to be sent and received without causing
the NewtonScript heap to overflow as a result of having to convert an entire object
at once.

The protoStreamingEndpoint proto is based on protoBasicEndpoint
and includes a method, Streamin, that allows you to receive streamed data. This
method automatically unflattens received data into a frame object in memory, and
can place embedded virtual binary objects directly on a store. Another method,
Streamout, allows you to send frame data as abyte stream. Note that these two
methods are synchronous; that is, they don't return until the operation is complete.
However, they do provide progress information during the operation by means of a
periodic callback.

Working With Binary Data

For receiving binary data, the data is returned as a raw byte stream. The data is not
converted and is block-moved directly into a binary object that you have
preallocated and specified as the target for the input.

To create this target object, specify a target frame in your input spec. This frame
contains a data slot and optionally an of f set slot. The data slot contains the
preallocated binary (or virtual binary) object, while the of f set slot is the offset

23-20 Using the Endpoint Interface

ARENDI-DEFS00004496

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 50 of 144 PageID #: 29497

CHAP TER 2 3

Endpoint Interface

within the binary object at which to stream data. For more information on receiving
binary data and using the target frame, see the section "Specifying the Data
Form and Target" beginning on page 23-13.

For sending data, the data is expected to be a binary object and is interpreted as a
raw byte stream. That is, the data is not converted and is passed directly to the
communication tool. This is the default data form for sending binary objects.

If you wish to send only a portion of your binary data at once, you can specify a
target frame in the output spec. Within the target frame, the of f set slot
defines the offset from the beginning of the binary object at which to begin sending
data, and the length slot defines the length of the data to send.

These binary capabilities are very useful if you wish to send and receive flattened
frames "packetized" for a communication protocol. By using the global function
'translate, you can flatten a frame. Then you can packetize the transmission by
using the target frame in the output spec.

On the receiving end, you can preallocate a virtual binary object, and then assemble
the packets using the target frame in the input spec. Once all binary data has
been received, you can unflatten the frame using the 'translate function again.

Canceling Operations
To stop endpoint operations, you can use the endpoint method Cancel or
Disconnect. Endpoint operations can also be canceled indirectly as aresult of a
time-out expiring. Remember that you can set a time-out for a request in the
callback spec that you pass to most endpoint methods, and you can set a time-out
in an input spec.

Note that you cannot specify what is canceled. When you or the system cancel
operations, all outstanding synchronous and asynchronous requests are canceled.

The cancellation process proceeds differently depending on whether you are
canceling asynchronous or synchronous requests that you have previously queued.
Following a cancellation, it is safe to proceed with other endpoint operations at
different times, according to the following rules:

■ If you use only asynchronous calls in your application, you can safely proceed
after you receive the CompletionScript message resulting from the Cancel
call (or from the method whose time-out expired).

■ If you use only synchronous calls in your application, you can safely proceed
after the cancelled synchronous call throws an exception as a result of the
cancellation.

Mixing asynchronous and synchronous methods in your application is not
recommended. However, if you do so, you should treat the cancellation process as
if you had used all synchronous calls, and proceed only after an exception is thrown.

Using the Endpoint Interface 23-21

ARENDI-DEFS00004497

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 51 of 144 PageID #: 29498

CHAP TER 2 3

Endpoint Interface

The cancellation itself can be invoked asynchronously or synchronously, and is
handled differently in the system depending on how it's done. The details are
explained in the following subsections.

Asynchronous Cancellation

Cancellation can be invoked asynchronously in the following ways:

■ calling the Cancel method asynchronously, or calling the Disconnect
method asynchronously with the cancelPending parameter set to true

■ having a time-out expire for an asynchronous request

When cancellation is invoked asynchronously, the system first cancels all pending
asynchronous requests. This means that the Completionscript message is sent
to the callback spec for each of these requests, and the Completionscript
result parameter is set to —16005.

Note

When calling Cancel asynchronously, it is possible that
additional asynchronous requests might be queued (by a
Completionscript method) after the Cancel request is
queued but before it is executed. These additional requests will
fail with error —36003 since they will be processed after the
cancel process begins. In fact, any endpoint request that is made
while a cancel is in progress will fail with error —36003.

Next, the cancel request itself completes by sending the Completionscript
message. This message is sent to the callback spec passed to the Cancel (or
Disconnect) method. Or, if the cancellation was invoked as the result of a
time-out expiration, the Completionscript message is sent to the callback spec
of whatever method timed out (or to the input spec, if input was in progress).

Finally, any pending synchronous request is canceled by throwing an exception that
contains error code —16005.

Synchronous Cancellation

Cancellation can be invoked synchronously in the following ways:

■ calling the Cancel method synchronously, or calling the Disconnect method
synchronously with the cancelPending parameter set to true

■ having a time-out expire for a synchronous request

When cancellation is invoked synchronously, the system first cancels any pending
asynchronous requests. This means that the Completionscript message is sent
to the callback spec for each of these requests, and the Completionscript
result parameter is set to —16005.

23-22 Using the Endpoint Interface

ARENDI-DEFS00004498

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 52 of 144 PageID #: 29499

CHAP TER 2 3

Endpoint Interface

Next, the Cancel (or Disconnect) method returns, and any pending
synchronous request is canceled by throwing an exception that contains error code
—16005. Or, if the cancellation was invoked as the result of a time-out expiration,
then whatever method timed out throws an exception containing error code —16005.

Other Operations

The option method allows you to get and set options apart from the options
parameter to the Bind, Connect, Listen, Accept, and output methods.

You can check the state of a connection by calling the state method.

Custom communication tools can return special events to the endpoint object
through the Eventxandler message. This message is sent to the endpoint
whenever an event occurs that is not handled by one of the usual endpoint event
handlers. A custom communication tool and an endpoint can use this mechanism to
pass events from the communication tool up to the endpoint layer.

Error Handling

By specifying an Except ionHandler method in your endpoint, you can handle
exception conditions not caught by local try... onexception clauses, as well
as exceptions not caught by Completionscript methods.

When you call an endpoint method synchronously, and an error occurs in that
method, the system throws an exception (usually of type I evt . ex. comm 1). You
can catch these exceptions in your application by using the try . . .
onexception construct. It's a good idea to bracket every endpoint method call
with this exception catching construct.

If an error occurs as a result of an asynchronous request, no exception is thrown,
but the error is returned in the resultparameter to the Completionscript
method associated with that request. If you did not define a Completionscript
method, or if the error is unsolicited, the error is forwarded to your
Except ionHandler method. If you did not define an Except ionHandler
method, then the communication system throws an exception. This exception is
caught by the operating system, which displays a warning message to the user.

Constants for error codes generated by the Endpoint interface are defined in
"Endpoint Error Code Constants" (Table 20-4 on page 20-4) in Newton
Programmer's Reference.

When you use the option method (or any method that takes options as a
parameter), not only can the method itself fail, but a failure can occur in processing
each of the individual option requests. If the latter happens, the result slot in the
returned option frame is set to one of the option error codes listed in "Option Error
Code Constants" (Table 20-5 on page 20-5) in Newton Programmer's Reference. If

Using the Endpoint Interface 23-23

ARENDI-DEFS00004499

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 53 of 144 PageID #: 29500

CHAP TER 2 3

Endpoint Interface

an option succeeds without errors, the result slot is set to nil. For more general
information on setting options, see the section "Endpoint Options" beginning on
page 23-7.

Power-Off Handling

During send and receive operations, you may want to protect against the system
powering off so that the connection is not broken. The system can power-off
unexpectedly as a result of the user inadvertently turning off the power or as a
result of a low battery. If you want to be notified before the system powers off, you
can register a callback function that the system will call before the power is turned
off. Depending on the value you return from your callback function, you can
prevent, delay, or allow the power-off sequence to continue.

For details on registering power handling functions, see Chapter 17, "Additional
System Services."

Linking the Endpoint With an Application

If your endpoint is going to be driven by an application, you'll have a reference to
the endpoint frame in your application. Also, you'll probably want to have a
reference to your application base view in the endpoint frame, so you can handle
endpoint messages in your application through inheritance.

The easiest way to link the endpoint and application together is to create a slot in
your application base view like this:

ViewSetupFormScript: func ()

begin

self.fEndPoint: {_proto: protoBasicEndpoint,

_parent: self};

end

This creates an endpoint frame as a slot in the application base view at run time,
and makes the application base view (self here) the parent of the endpoint frame,
so it can receive endpoint messages through inheritance.

23-24 Using the Endpoint Interface

ARENDI-DEFS00004500

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 54 of 144 PageID #: 29501

CHAP TER 2 3

Endpoint Interface

Summary of the Endpoint Interface

Constants and Symbols

Data Form Symbols

'char

'number

'string

'bytes

'binary

'template

'frame

Data Type Symbols

long

ulong

short

byte

char

'unicodechar

'boolean

'struct

'array

Option Opcode Constants

opSetNegotiate 256

opSetRequired 512

opGetDefault 768

opGetCurrent 1024

Summary of the Endpoint Interface 23-25

ARENDI-DEFS00004501

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 55 of 144 PageID #: 29502

CHAP TER 2 3

Endpoint Interface

Endpoint State Constants

kUninit 0

kUnbnd 1

kIdle 2

kOutCon 3

kInCon 4

kDataXfer 5

kOutRel 6

kInRel 7

kInFlux 8

kOutLstn 9

Other Endpoint Constants

kNoTimeout 0

kEOP 0

kMore 1

kPacket 2

Data Structures

Option Frame

my0ption :_ {

type: symbol, // option type

label: string, // 4-char option identifier

opCode: integer, // an opCode constant

form: 'template, // default form for options

result: nil, // set by the system on return

data: {

arglist: [], // array of data items
typelist:[], // array of data types

23-26 Summary of the Endpoint Interface

ARENDI-DEFS00004502

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 56 of 144 PageID #: 29503

CHAP TER 2 3

Endpoint Interface

Callback Spec Frame

myCallbackSpec :_ {

async: Boolean, // asynch request?

regTimeout: integer, // time-out period, or 0

CompletionScript: // called when request is done

func (endpoint, options, result)

}

Output Spec Frame

my0utputSpec :_ {

async: Boolean, // asynch request?

regTimeout: integer, // time-out period, in milliseconds

sendFlags: integer, // flag constant (s)

form: symbol, // data form identifier

target: { // used for 'binary data forms

offset: integer, // offset to begin sending from

length: integer // number of bytes to send

}

CompletionScript: // called when request is done

func (endpoint, options, result)

}

Input Spec Frame

myInputSpec :_ {

form: symbol, // data form identifier

target: { // used with 'template and 'binary data forms

typelist: [], // array of data types

arglist: [], // array of data items

data: object, // binary object to receive data

offset: integer // offset at which to write data

}

termination: { // defines termination conditions

byteCount: integer, // number of bytes to receive

endSequence: object, // char,string,number,or byte array

useEOP: Boolean // terminate on EOP indicator?

}

discardAfter: integer, // buffer size

rcvFlags: integer, // receive flag constant (s)

regTimeout: integer, // time-out period, in milliseconds

Summary of the Endpoint Interface 23-27

ARENDI-DEFS00004503

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 57 of 144 PageID #: 29504

CHAP TER 2 3

Endpoint Interface

filter: { // used to filter incoming data

byteProxy: [{ // an array of frames
byte: char, // char or byte to replace

proxy: char // replacement char or byte, or nil

}, ...]
sevenBit: Boolean // strip high-order bit

}

rcvOptions: [], // array of options, or a single frame

partial Frequency: integer,// freq, in milliseconds, to call

// PartialScript

InputScript: // called when input is terminated

func (endpoint, data, terminator, options)

PartialScript: // called at partialFrequency interval

func (endpoint, data)

CompletionScript: // called on unexpected completion

func (endpoint, options, result)

}

Protos

protoBasicEndpoint

myEndpoint :_ {

_proto: protoBasicEndpoint, // proto endpoint

encoding: integer, //encoding table, default=kMacRomanEncoding

Instantiate: // instantiates endpoint object

func (endpoint, options)

Bind: // binds endpoint to comm tool

func (options, callbackSpec)

UnBind: // unbinds endpoint from comm tool

func (options, callbackSpec)

Dispose: // disposes endpoint object

func (options, callbackSpec)

Connect: // establishes connection

func (options, callbackSpec)

Listen: // passively listens for connection

func (options, callbackSpec)

Accept: // accepts connection

func (options, callbackSpec)

Disconnect: // disconnects

func (cancelPending, callbackSpec)

Output: // sends data

func (data, options, outputSpec)

SetInputSpec: // sets input spec

func (inputSpec)

23-28 Summary of the Endpoint Interface

ARENDI-DEFS00004504

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 58 of 144 PageID #: 29505

CHAP TER 2 3

Endpoint Interface

Input: // returns data from input buffer and clears it

func()

Partial: // returns data from input buffer

func ()

FlushInput: // flushes whole input buffer

func()

FlushPartial: // flushes input buffer previously read

func()

Cancel: // cancels operations

func (callbackSpec)

Option: // sets & gets options

func (options, callbackSpec)

ExceptionHandler: // called on exceptions

func (error)

EventHandler: // called on unhandled events

func (event)

State: // returns endpoint state

func()

}

protoStream ingEndpoint

myStreamEndpoint :_ {

_proto: protoStreamingEndpoint, // proto endpoint

StreamIn: // receives stream data

func({ form: 'frame, // required

regTimeout: integer, // time-out in ms.

rcvFlags: integer, // receive flag constant (s)

target: {

store: store}, // store for VBOs

ProgressScript: // progress callback

func (bytes, totalBytes) ...

})

StreamOut: // sends stream data

func (data,

{form: 'frame, // required

regTimeout: integer, // time-out in ms.

sendFlags: integer, // send flag constant (s)

ProgressScript: // progress callback

func (bytes, totalBytes) ...

}

Summary of the Endpoint Interface 23-29

ARENDI-DEFS00004505

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 59 of 144 PageID #: 29506

CHAP TER 2 3

Endpoint Interface

Functions and Methods

Utility Functions

MakeAppleTalkOption (NBPaddressString)
MakeModemOption()

MakePhoneOption (phoneString)

Translate (data, translator, store, progressScript)

23-30 Summary of the Endpoint Interface

ARENDI-DEFS00004506

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 60 of 144 PageID #: 29507

C H A P T E R 2 4

Built-in Communications Tools

This chapter describes the built-in communications tools provided in Newton
system software 2.0. The following tools are built into the system:

■ Serial

■ Modem

■ Infrared

■ AppleTalk

These communications tools are accessed and used through the Endpoint interface.
This chapter provides an introduction to each tool and the options that you use with
each. For detailed descriptions of the options, see "Built-in Communications Tools
Reference" (page 21-1) in Newton Programmer's Reference.

For basic information on using communications endpoints, see "Endpoint
Interface" (page 23-1).

Serial Tool

Three varieties of the serial tool are built into Newton system software:

■ a standard asynchronous serial tool

■ a standard asynchronous serial tool with Microcom Networking Protocol (MNP)
compression

■ a framed asynchronous serial tool

These serial tool varieties are described in the following three subsections.

Standard Asynchronous Serial Tool

You use the standard asynchronous serial communications tool to perform
standard, asynchronous communications, including sending and receiving data.

Serial Tool 24-1

ARENDI-DEFS00004507

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 61 of 144 PageID #: 29508

CHAP TER 2 4

Built-in Communications Tools

The following is an example of how to create an endpoint that uses the standard
asynchronous serial tool:

myAsyncEP {_proto:protoBasicEndpoint};

my0ptions [

{ label: kCMSAsyncSerial,

type: service,

opCode: opSetRequired }];

returnedOptions:= myAsyncEP:Instantiate(myAsyncEP,

my0ptions);

Table 24-1 summarizes the standard serial options. Each of these options is
described in detail in "Options for the Standard Asynchronous Serial Tool'
(page 21-2) in Newton Programmer's Referencee.

Table 24-1 Summary of serial options

Label Value

kCMOSerialHWChipLoc "schp"

kCMOSerialChipSpec losers"

kCMOSerialCircuitControl

kCMOSerialBuffers

kCMOSerialIOParms

kCMOSerialBitRate

kCM00utputFlowControlParms

Use when

Before or at
binding

Before or at
binding

"sctl" After connecting

"sbuf' Before or at
binding

"siop" Any time

"sbps " Any time

"oflc" Any time

kCMOInputFlowControlParms "iflc"

24-2 Serial Tool

Any time

Description

Sets which serial
hardware to use.

Sets which serial
hardware to use and
returns information
about the serial
hardware.

Controls usage of the
serial interface lines.

Sets the size of the
input and output
buffers.

Sets the bps rate, stop
bits, data bits, and
parity options.

Changes the bps rate.

Sets output flow
control parameters.

Sets input flow
control parameters.

continued

ARENDI-DEFS00004508

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 62 of 144 PageID #: 29509

CHAP TER 2 4

Built-in Communications Tools

Table 24-1 Summary of serial options (continued)

Label

kCMOSerialBreak

kCMOSerialDiscard

kCMOSerialEventEnables

kCMOSerialBytesAvailable

kCMOSerialIOStats

kHMOSerExtClockDivide

Value

"sbrk"

"sdsc"

"sevt"

Use when

After connecting

After connecting

Any time

"sbav" After connecting

"sios" After connecting

"cdiv" After binding

Description

Sends a break.

Discards data in input
and/or output buffer.

Configures the serial
tool to complete an
endpoint event on
particular state
changes.

Read-only option
returns the number of
bytes available in the
input buffer.

Read-only option
reports statistics from
the current serial
connection.

Used only with an
external clock to set
the clock divide factor.

You can get or set most of the standard serial options in the endpoint method that
established the state, as shown in Table 24-1. You set the endpoint options by passing
an argument to the communications tool when calling one of the endpoint methods
such as Instantiate, Bind, and Connect. For example, when you pass an
option to the Bind method, the system sets the option and then does the binding.

Many of the communications options can only be used when the communications
tool is in a certain state. For example, the first option in Table 24-1,
kCMOSerialHWChipLoc, can only be used after the endpoint has been instantiated
and before the binding is made. That means you could use it in the Instantiate
and Bind methods, but not in the Connect method.

All of these options have default values, so you may not need to use an option if
the default values provide the behavior you want. However, the default values do
not apply partially. This means that if you do use an option, you must specify a
value for each field within it.

Serial Tool 24-3

ARENDI-DEFS00004509

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 63 of 144 PageID #: 29510

CHAP TER 2 4

Built-in Communications Tools

Serial Tool with MNP Compression

The asynchronous serial communications tool with MNP compression works
just like a standard asynchronous serial endpoint, except that it uses MNP data
compression.

The following is an example that shows how to create an endpoint that uses the
serial tool with MNP compression:

myMnpEP :_ {_proto:protoBasicEndpoint};

my0ptions :_ [

{ label: kCMSMNPID,

type: service,

opCode: opSetRequired }];

returnedOptions:= myMnpEP:Instantiate(myMnpEP,

my0ptions);

The serial tool with MNP endpoint uses all of the standard serial options, as well as
two MNP options, which are summarized in Table 24-2. These options are
described in detail in "Options for the Serial Tool with MNP Compression"
(page 21-27) in Newton Programmer's Reference.

Table 24-2 Summary of serial tool with MNP options

Label Value Use when Description

kCMOMNPCompression "mnpc" Before connecting Sets the data compression type.

kCMOMNPData.Rate "eter" Any time Configures internal MNP timers.

Framed Asynchronous Serial Tool

The framed asynchronous serial communications tool is a superset of the standard
asynchronous serial communications tool. This tool supports the sending and
receiving of framed data. If you use this tool and do not specify framing for a send
or receive operation, the framed asynchronous serial tool works exactly like the
standard asynchronous serial tool.

When you use framing for input, the framed asynchronous serial tool discards
characters until a start of frame sequence is detected and terminates input with an
end-of-file (EOF) indication when the end-of-frame sequence is detected. The tool
reports an error is if a CRC error is detected.

When you use framing for output, the data is prefixed with the start-of-frame
sequence. The end-of frame-sequence and the calculated CRC are sent at the end of
the data. The escape character is used for data transparency during framed operations.

24-4 Serial Tool

ARENDI-DEFS00004510

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 64 of 144 PageID #: 29511

CHAP TER 2 4

Built-in Communications Tools

An endpoint can include kPacket, kEOP, and kMore flags to control the sending
and receiving of framed (packetized) data with the framed asynchronous serial
tool. For more information on these flags, see "Sending Data" (page 23-11).

The following is an example that shows how to create an endpoint that uses the
framed asynchronous serial tool:

myFramedEP {_proto:protoBasicEndpoint};

my0ptions := [

{ label: kCMSFramedAsyncSerial,

type: service,

opCode: opSetRequired }];

returnedOptions:= myFramedEP:Instantiate(myFramedEP,

my0ptions);

The framed asynchronous serial tool uses the standard asynchronous serial tool
options, as well as two framing options, which are summarized in Table 24-3.
These options are described in detail in "Options for the Framed Asynchronous
Serial Tool" (page 21-29) in Newton Programmer's Reference.

Table 24-3 Summary of framed serial options

Label Value Use when Description

kCMOFramingParms "fram" Any time Configures data framing parameters.

kCMOFramedAsyncStats "frst" Any time Read-only option returns the number
of bytes discarded while looking for
a valid header.

The default settings for the kCMOFramingParms option implement BSC framing,
as shown in Figure 24-1.

Figure 24-1 Default serial framing

Octet 1 2 3 N-3 N-2 N-1 N

SYN IDLE STX Message . . . IDLE ETX Frame
Flag Flag Flag Flag Flag Check
0001011 0001000 0000001 0001000 0000001 Sequence

Each packet is framed at the beginning by the 3-character SYN-DLE-STX header.
The packet data follows; if a DLE (escape character) occurs in the data stream,

Serial Tool 24-5

ARENDI-DEFS00004511

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 65 of 144 PageID #: 29512

CHAP TER 2 4

Built-in Communications Tools

both that character and an additional DLE character are sent; conversely, two
consecutive DLE characters on input are turned into a single DLE data byte. The
packet is framed at the end by the 2-character DLE-ETX trailer. Finally, a
2-character frame check sequence is appended. This frame check is initialized to
zero at the beginning, and calculated on just the data bytes and the final ETX
character, ignoring the header bytes, any inserted DLE characters, and the DLE
character in the trailer.

The frame trailer is sent when an output is done that specifies end of frame.
Conversely, on input, when a trailer is detected, the input is terminated with an
end of frame indication; if a CRC error is detected, kSerErr_CRCError is
returned instead.

Modem Tool

The modem communications tool includes built in support of V42 and V.42bis.
The alternate error-correcting protocol in V.42, also known as MNP, is supported
(LAPM is not implemented). V.42bis data compression and MNP Class 5 data
compression are supported.

The following is an example of how to create an endpoint that uses the built-in
modem communications tool:

myModemEP {_proto:protoBasicEndpoint};

my0ptions [

{ label: kCMSModemID,

type: service,

opCode: opSetRequired }];

results := myModemEP:Instantiate(myModemEP, my0ptions);

Table 24-4 summarizes the modem options you can use to configure the modem
communications tool. These options are described in detail in "Options for the
Modem Tool" (page 21-31) in Newton Programmer's Reference.

24-6 Modem Tool

ARENDI-DEFS00004512

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 66 of 144 PageID #: 29513

CHAP TER 2 4

Built-in Communications Tools

Table 24-4 Summary of modem options

Label

kCMOModemPrefs

kCMOModemProfile

kCMOModemECType

kCMOModemDialing

kCMOModemConnectType

kCMOModemConnectSpeed "mspd" After
connecting

kCMOModemFaxCapabilities "mfax" After bind,
before
connecting

kCMOModemFaxEnabledCaps "mfec" Any time

kCMOModemVoiceSupport

kCMOMNPSpeedNegotiation

kCMOMNPCompression

kCMOMNPStatistics

Modem Tool

"mvso" After bind,
before
connecting

"mnpn" Any time

"mnpc" Before
connecting

"mnps" After
connecting

Value

"mere"

Use When

Any time

Description

Configures the modem
controller.

"mpro" Any time Override modem setup
selected in preferences. Use
when instatiating.

Any time Specifies the type of error
control protocol to be used in
the modem connection.

"mecp"

"mdo" Any time Controls the parameters
associated with dialing

"mcto" Any time Configures the modem
endpoint for the type of
connection desired (voice,
fax, data, or cellular data).

Read-only option indicating
modem-to-modem raw
connection speed.

Read-only option indicating
the fax service class
capabilities and modem
modulation capabilities.

Determines or sets which
fax and modem capabilities
are enabled.

This option is available
only for System Software
version 2.1 or later.

Read-only option indicating if
the modem supports line
current sense (LCS).

Sets MNP data rate speed.

Sets the data compression
type.

Read-only option reporting
performance statistics from
the current MNP connection.

24-7

ARENDI-DEFS00004513

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 67 of 144 PageID #: 29514

CHAP TER 2 4

Built-in Communications Tools

Infrared Tool

You use the infrared (IR) communications tool to perform half-duplex infrared
communications. Since the infrared tool does not support full-duplex communica-
tions, you cannot activate an input specification and expect to output data.

The infrared tool supports packetized data, which means that an endpoint can
include kPacket, kEOP, and kMore flags to control sending and receiving framed
(packetized) data. For more information on these flags, see "Sending Data"
(page 23-11).

The following is an example of how to create an endpoint that uses the infrared
communications tool:

myIrEP := {_proto:protoBasicEndpoint};

my0ptions := [

{ label: kCMSSlowIR,

type: service,

opCode: opSetRequired }

];

returnedoptions:= myIrEP:Instantiate(myIrEP, my0ptions);

The infrared tool supports three options, which are summarized in Table 24-5.
These options are described in detail in "Options for the Infrared Tool'
(page 21-65) in Newton Programmer's Reference.

Table 24-5 Summary of Infrared Options

Label Value Use when Description

kCMOSlowlRConnect "irco" When initiating, Controls how the
connecting, or connection is made
listening

kCMOSlowIRProtocolType "irpt" After connecting Read-only option returns
or accepting the protocol and speed of

the connection

kCMOSlowlRStats "irst" After connecting Read-only option returns
or accepting statistics about the data

received and sent

24-8 Infrared Tool

ARENDI-DEFS00004514

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 68 of 144 PageID #: 29515

CHAP TER 2 4

Built-in Communications Tools

The infrared tool uses the Sharp Infrared protocol. Because of the characteristics of
this protocol, Apple recommends setting sendFlags to kPacket and to kEOP
every time you send data. For more information on sendFlags see, "Sending
Data" (page 23-11).

If you don't set sendFlags as recommended above, the tool only sends data after
it queues 512 bytes of data, which means that input scripts do not terminate as you
might expect. On the receiving side, the queuing means you terminate after every
output if you set useEOP to true. If you are using byteCount, you should set
useEOP to nil to trigger on byteCount instead of EOP. For more information on
useEOP and byteCount, see "Specifying Data Termination Conditions"
(page 23-14).

AppleTalk Tool

The AppleTalk tool enables access to the ADSP (Apple Data Stream Protocol
component of the AppleTalk protocol stack.

The following is an example of how to create an AppleTalk endpoint

myATalkEP {_proto:protoBasicEndpoint};

my0ptions [

{ label: kCMSAppleTalkID,

type: service,

opCode: opSetRequired

{ label: kCMSAppleTalkID,

type: 'option,

opCode: opSetRequired,

data: { arglist: ["adsp"],// or KCMOAppleTalkADSP

typelist:[

'struct

['array, char, 41

}

{ label: kCMOEndpointName,

type: 'option,

opCode: opSetRequired,

data: { arglist: [kADSPEndpoint],

typelist:[

'struct

['array, 'char, 0]

AppleTalk Tool 24-9

ARENDI-DEFS00004515

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 69 of 144 PageID #: 29516

CHAP TER 2 4

Built-in Communications Tools

}

} 1 ;
results := myATalkEP:Instantiate(myATalkEP, my0ptions);

The AppleTalk tool options are summarized in Table 24-6. These options are
described in detail in "Options for the AppleTalk Tool" (page 21-71) in Newton
Programmer's Reference.

Table 24-6 Summary of AppleTalk options

Label Value Use When

kCMARouteLabel "rout" When connecting
or listening

kCMOAppleTalkBuffer "bsiz" When connecting,
listening, or
accepting

kCMOSerialBytesAvailable "sbav" After connecting

kCMSAppleTalkID

kCMOEndpointName

"atlk"

"endp"

Resource Arbitration Options

For instantiation

For instantiation

Description

Sets an AppleTalk
NBP address.

Sets the size of the
send, receive, and
attention buffers.

Read-only option
returns the number of
bytes available in the
receive buffer.

Specifies AppleTalk
tool type.

Specifies AppleTalk
endpoint Must be used
as above.

24-10

You can construct a communications tool to share its resources with other
communications tools. For example, you might need to use a hardware port that
other tools want to use. This section describes how you can implement resource
sharing in your communications tool.

The communications tool base provides a default implementation of resource
arbitration that uses two options to control the release of a tool's resources:

■ The resource-passive claim option (kCMOPassiveClaim) has a Boolean
value that specifies whether or not a communications tool is claiming its
resources passively or actively. If this value is true, the communications tool is

Resource Arbitration Options

ARENDI-DEFS00004516

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 70 of 144 PageID #: 29517

CHAP TER 2 4

Built-in Communications Tools

claiming its resources passively and will allow another tool to claim it. If this
value is nil, the communications tool is claiming its resources actively and will
not allow another tool to claim it.

■ The resource-passive state option (kCMOPassiveState) has a Boolean value
that specifies whether or not the current state of the communications tool
supports releasing resources. If this value is set, and kCMOPassiveClaim is
true, your communications tool is willing to relinquish use of its passively
claimed resources. If this value is nil, the communications tool is not willing to
relinquish use of its passively claimed resources.

Table 24-7 shows the resource arbitration options. These options are described in
detail in "Options for Resource Arbitration" (page 21-82) in Newton Programmer's
Reference.

Table 24-7 Resource arbitration options

Label Value Use when Description

kCMOPassiveClaim "cpcm" Before bind Specifies whether your tool claims
resources actively or passively

kCMOPassivestate "cpst" Typically Specifies whether your tool releases
on listen resources

The following example demonstrates how to instruct a communications tool to
claim its resources passively. You must do this before binding the tool. By default
all tools are claimed actively.

{

label: kCMOPassiveClaim,

type: 'option,

opCode: opSetRequired,

data: {

arglist: [

true, // passively claim modem

}

}

I
typelist: [

kStruct,

kBoolean,

Resource Arbitration Options 24-11

ARENDI-DEFS00004517

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 71 of 144 PageID #: 29518

CHAP TER 2 4

Built-in Communications Tools

The following example shows how to instruct a communications tool to allow its
resources to be claimed by another tool. For instance, you might send this option
with an arglist value of true if you are listening for an incoming connection.
The default for all tools is to be in an active state.

{

label: kCMOPassiveState,

type: 'option,

opCode: opSetRequired,

data: {

arglist: [

true, // passively claim modem

I
typelist: [

kStruct,

kBoolean,

}

AppleTalk Functions

The Newton system software provides a number of global functions for obtaining
the addresses of other devices on the network.

If you are using an endpoint with the AppleTalk tool, the AppleTalk drivers are
opened automatically when you call the endpoint Bind method. The drivers are
closed when you call the endpoint UnBind method.

To manually open the AppleTalk drivers, you need to call the OpenAppleTalk
function. When you are done with AppleTalk, call the C1oseApp1eTalk function
to close the drivers.

Note that you call the AppleTalk zone access functions without first calling
OpenAppleTalk. Each of the AppleTalk zone access functions opens the drivers
(if necessary), performs its operations, and closes the drivers (if necessary). If you
are making multiple AppleTalk calls, it is more efficient for you to manually open
the drivers, make your calls, and then close the drivers.

Table 24-8 summarizes the AppleTalk functions. These functions are described in
detail in "AppleTalk Functions" (page 21-76) in Newton Programmer's Reference.

24-12 AppleTalk Functions

ARENDI-DEFS00004518

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 72 of 144 PageID #: 29519

CHAP TER 2 4

Built-in Communications Tools

Table 24-8 AppleTalk functions

Function Description

OpenAppleTalk Opens the AppleTalk drivers.

C1oseAppleTalk Closes the AppleTalk drivers.

AppleTalkOpenCount Returns the open count for the AppleTalk drivers.

Havezones Returns true if a connection exists and zones are
available. Returns n 1 if there are no zones.

GetMyZone Returns a string naming the current AppleTalk zone.

GetzoneList Returns an array containing strings of all the existing
zone names

GetNames Returns the name for a network address or an array
of names for an array of network addresses.

GetZoneFromName Returns the zone name for a network address.

NBPStart Begins a lookup of network entities.

NBPGetCount Returns the number of entities the currently running
NBP lookup has found.

NBPGetNames Returns an array of names found by NBPStart.

NBPStop Terminates a lookup started by NBPStart.

The Net Chooser

The Newton system provides a NetChooser as part of the root view. The Net
Chooser is similar in operation to the Mac OS Chooser. You can use the function
GetRoot O . NetChooser: OpenNetChooser to display alist of network entities
from which the user can make a selection. This function is declared as follows:

NetChooser:OpenNetChooser (zone, IookupName, startSelection,
who, connText, headerText, IookforText

The OpenNetChooser method displays the NetChooser view on the user's
screen. The following is an example that shows the use of this function:

GetRoot().NetChooser:openNetChooser(nil,"=:LaserWriter@",ni

1, self, "Use printer, sir", "Printer", "printers");

This example opens the NetChooser view and displays the IookforText string while
the search is in progress, as shown in Figure 24-2 (page 24-14).

AppleTalk Functions 24-13

ARENDI-DEFS00004519

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 73 of 144 PageID #: 29520

CHAP TER 2 4

Built-in Communications Tools

Figure 24-2 NetChooser view while searching

Select a Printer:

Looking for printers___

Use printer, sir GD

When the search has been completed, the NetChooser fills in the available choices
and allows the user to make a selection, as shown in Figure 24-3.

Figure 24-3 NetChooser view displaying printers

Select a Printer:

Bones
calvin's homework
DaVinci
Idiot Savante
Lab Rat
No Berts
Shane's Very Own

Zone: RD1JNewHaven-LocalTalk

Change Zone Use printer, sir

After the user has made a selection, the system calls a method that you provide
named NetworkChooserpone. The system fills in the parameters to this
method with the name of the selection and zone chosen by the user. The
NetworkChooserpone method must have the following format

myChooser: Ne two rkChooserpone (currentSelection, currentZone)

The two parameters, currentSelection and currentZone, are filled in by the system
after the user makes a choice.

24-14 AppleTalk Functions

ARENDI-DEFS00004520

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 74 of 144 PageID #: 29521

CHAP TER 2 4

Built-in Communications Tools

The following is an example that shows the use of this function:

ChooserSample :_ {

// open network connection

openNetworkScript: func()

begin

GetRoot().NetChooser:openNetChooser(nil,"=:LaserWriter@",ni

1, self, "Use printer, sir", "Printer", "printers");

end,

// called when the user selects an item

networkChooserpone: func(currentSelection, currentZone)

begin

Print("Current Selection && currentSelection);

Print("Current Zone =" && currentZone);

end

};

The following is an example of running this code in the inspector:

ChooserSample:OpenNetworkScript()

#lA TRUE

// select the network entity, close the Chooser

"Current Selection = Idiot Savante"

"Current Zone = RDl/NewHaven-LocalTalk"

The NetChooser methods are described in detail in "NetChooser Methods"
(page 21-81) in Newton Programmer's Reference.

AppleTalk Functions 24-15

ARENDI-DEFS00004521

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 75 of 144 PageID #: 29522

CHAP TER 2 4

Built-in Communications Tools

Summary

Built-in Communications Tool Service Option Labels

kCMSAsyncSerial "aser"

kCMSMNPID "mnps"

kCMSModemID "mods"

kCMSSlowIR "slir"

kCMSFramedAsyncSerial "fser"

kCMSAppleTalkID "atlk"

Options

Asynchronous Serial Tool Options

kCMOSerialHWChipLoc "schp"

kCMOSerialChipSpec "sers"

kCMOSerialCircuitControl "sctl"

kCMOSerialBuffers "sbuf"

kCMOSerialIOParms "siop"

kCMOSerialBitRate "sbps "

kCM00utputFlowControlParms "oflc"

kCMOInputFlowControlParms "iflc"

kCMOSerialBreak "sbrk"

kCMOSerialDiscard "sdsc"

kCMOSerialEventEnables "sevt"

kCMOSerialBytesAvailable "sbav"

kCMOSerialIOStats "sios"

kHMOSerExtClockDivide "cdiv"

Serial with MNP Tool Options

kCMOMNPCompression

kCMOMNPDataRate

24-16 Summary

"mnpc"

"eter"

ARENDI-DEFS00004522

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 76 of 144 PageID #: 29523

CHAP TER 2 4

Built-in Communications Tools

Framed Serial Tool Options

kCMOFramingParms

kCMOFramedAsyncStats

Modem Options

"f ram"

"frst"

kCMOModemPrefs "mere"

kCMOModemProfile "mpro"

kCMOModemECType "mecp"

kCMOModemDialing "mdo"

kCMOModemConnectType "mcto"

kCMOModemConnectSpeed "mspd"

kCMOModemFaxCapabilities "mfax"

kCMOModemFaxEnabledCaps "mfec"

kCMOModemVoiceSupport "mvso"

kCMOMNPSpeedNegotiation "mnpn"

kCMOMNPCompression "mnpc"

kCMOMNPStatistics "mnps"

I nfrared Tool Options

kCMOSlowIRConnect "irco',

kCMOSlowIRProtocolType "irpt"

kCMOSlowIRStats "irst"

AppleTalk Tool Options

kCMARouteLabel "rout"

kCMOAppleTalkBuffer ,bsiz,,

kCMOSerialBytesAvailable ,sbav"

kCMSAppleTalkID "atlk"

kCMOEndpointName "endp"

Resource Arbitration Options

kCMOPassiveClaim

kCMOPassiveState

"cpcm"

"cpst"

Summary 24-17

ARENDI-DEFS00004523

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 77 of 144 PageID #: 29524

CHAP TER 2 4

Built-in Communications Tools

Constants

Serial Chip Location Option Constants

kHWLocExternalSerial "extr"

kHWLocBuiltInIR "infr"

kHWLocBuiltInModem "mdem"

kHWLocPCMCIASlotl "sltl"

kHWLocPCMCIAS1ot2 "s1t2"

Serial Chip Specification Option Constants

kSerCap Parity Space Ox00000001

kSerCap Parity Mark 0x00000002

kSerCap Parity Odd 0x00000004

kSerCap Parity Even 0x00000008

kSerCap DataBits 5 Ox00000001

kSerCap DataBits 6 0x00000002

kSerCap DataBits 7 0x00000004

kSerCap DataBits 8 0x00000008

kSerCap DataBits All Ox0000000F

kSerCap StopBits 1 Ox00000010

kSerCap StopBits 1 5 0x00000020

kSerCap StopBits 2 0x00000040

kSerCap DataBits All 0x00000070

kSerialChip8250 Ox00

kSerialChip16450 Ox01

kSerialChip16550 0x02

kSerialChip8530 0x20

kSerialChip6850 0x21

kSerialChip6402 0x22

kSerialChipUnknown Ox00

24-18 Summary

ARENDI-DEFS00004524

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 78 of 144 PageID #: 29525

CHAP TER 2 4

Built-in Communications Tools

Serial Circuit Control Option Constants

kSerOutDTR 0x01

kSerOutRTS 0x02

kSerInDSR 0x02

kSerInDCD 0x08

kSerInRI 0x10

kSerInCTS 0x20

kSerInBreak 0x80

Serial Configuration Option Constants

klStopBits 0

k1pt5StcpBits 1

k2StopBits 2

kNoParity 0

kOddParity 1

kEvenParity 2

k5DataBits 5

k6DataBits 6

k7DataBits 7

k8DataBits 8

kExternalClock 1

k300bps 300

k600bps 600

k1200bps 1200

k2400bps 2400

k4800bps 4800

k7200bps 7200

k9600bps 9600

k12000bps 12000

k14400bps 14400

k19200bps 19200

k38400bps 38400

k57600bps 57600

k115200bps 115200

k230400bps 230400

Summary 24-19

ARENDI-DEFS00004525

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 79 of 144 PageID #: 29526

24-20

CHAP TER 2 4

Built-in Communications Tools

Serial Event Configuration Option Constants

kSerialEventBreakStartedMask

kSerialEventBreakEndedMask

kSerialEventDCDNegatedMask

kSerialEventDCDAssertedMask

kSerialEventHSKiNegatedMask

kSerialEventHSKiAssertedMask

kSerialEventExtClkDetectEnableMask

Ox00000001

0x00000002

0x00000004

0x00000008

Ox00000010

0x00000020

0x00000040

Serial External Clock Divide Option Constants

kSerClk_ Default Ox00

kSerClk DivideBy1 0x80

kSerClk DivideBy 16 0x81

kSerClk DivideBy 32 0x82

kSerClk DivideBy 64 0x83

Modem Error Control Type Option Constants

kModemECProtocolNone

kModemECProtocolMNP

kModemECProtocolExternal

Ox00000001

0x00000002

0x00000008

Modem Fax Capabilities Option Constants

kModemFaxClassO

kModemFaxClassl

kModemFaxClass2

Ox00000001

0x00000002

0x00000004

kModemFaxClass2 0 0x00000008

kV21Ch2Mod Ox00000001

kV27Ter24Mod 0x00000002

kV27Ter48Mod 0x00000004

kV29_72Mod 0x00000008

kV17_72Mod Ox00000010

kV17st_72Mod 0x00000020

kV29_96Mod 0x00000040

kV17_96Mod 0x00000080

kV17st_96Mod Ox00000100

Summary

ARENDI-DEFS00004526

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 80 of 144 PageID #: 29527

CHAP TER 2 4

Built-in Communications Tools

kV17_12Mod 0x00000200

kV17st_12Mod 0x00000400

kV17_14Mod 0x00000800

kV17st_14Mod 0x00001000

MNP Compression Option Constants

kMNPCompressionNone 0x00000001

kMNPCompressionMNP5 0x00000002

kMNPCompressionV42bis 0x00000008

I nfrared Protocol Type Option Constants

kUsingNegotiateIR 0

kUsingSharpIR 1

kUsingNewtonl 2

kUsingNewton2 4

kUsing9600 1

kUsingl9200 2

kUsing38400 4

Functions and Methods

AppleTalk Driver Functions

OpenAppleTalk()

CloseAppleTalk()

AppleTalkOpenCount()

AppleTalk Zone Information Methods

HaveZones()

GetMyZone()

GetZoneList()

GetNames (from What)

GetZoneFromName (from What)

NBPStart (entity)

NBPGetCount (IookuplD)

NBPGetNames (IookuplD)

NBPStop (IookuplD)

Summary 24-21

ARENDI-DEFS00004527

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 81 of 144 PageID #: 29528

CHAP TER 2 4

Built-in Communications Tools

NetChooser Function

NetChooser:OpenNetChooser (zone, lookupName, startSelection,

who, connText, headerText, IookforText)

24-22 Summary

ARENDI-DEFS00004528

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 82 of 144 PageID #: 29529

C H A P T E R 2 5

Modem Setup Service

This chapter contains information about the modem setup capability in Newton
system software. You need to read this chapter if you want to define a modem setup
package for your application. The built-in modem communications tool uses these
packages for communicating with modems. For more information about the built-in
modem communications tool, see ̀ Built-in Communications Tools" (page 24-1).

This chapter describes:

■ The modem setup service and how it works with modem setup packages.

■ The user interface for modem setup.

■ The modem characteristics required by the Newton modem tool.

■ The constants you use in defining a modem setup. These constants are described
in detail in "Modem Setup Service Reference" (page 22-1) in Newton
Programmer's Reference.

About the Modem Setup Service

This section provides detailed conceptual information on the modem setup service.
Specifically, it covers the following:

■ a description of the modem setup user interface

■ the programmatic process by which a modem is setup

■ modem requirements

The modem setup service allows many different kinds of modems to be used with
Newton devices. Each kind of modem can have an associated modem setup
package, which can configure a modem endpoint to match the particular modem.

A modem setup package is installed on the Newton as an automatically loaded
package. This means that when the package is loaded, the modem setup
information is automatically stored in the system soup and then the package is
removed. No icon appears for the modem setup in the Extras Drawer. Instead,
modem setups are accessed through a picker in the Modem preferences view.

About the Modem Setup Service 25-1

ARENDI-DEFS00004529

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 83 of 144 PageID #: 29530

CHAP T ER 2 5

Modem Setup Service

Modem setup packages can be supplied by modem manufacturers, or can be
created by other developers.

A modem setup package can contain four parts:

■ General information. The beginning of a modem setup package specifies
general information about the modem corresponding to the package—for
example, the modem's name and version number.

■ A modem tool preferences option. The part of the package that contains
specifications that configure the modem controller. For a description of this
option, see "Modem Preferences Option" (page 21-34) in Newton Programmer's
Reference.

■ A modem tool profile option. This part of the package describes the
characteristics of the modem—for example, whether the modem supports error
correction protocols. For more information on this option, see the section
"Modem Profile Option" (page 21-38) in Newton Programmer's Reference.

■ A fax profile option. This part of the package describes the characteristics of
the fax—for example, the speed at which faxes can be sent and received. This
option is particularly useful to limit fax speeds over cellular connections.

If a modem supports both cellular and landline operations and does not
automatically configure itself, you need to create a separate modem profile or setup
for each operation. If you want to give the user the option to limit fax speeds,
which is a common practice with cellular connections, you may want a third profile
that specifies the fax profile option.

Note

The constants and code shown in this chapter apply to the
NTK project that is provided by Newton Technical Support. This
project provides an easy way to create modem setups.

The Modem Setup User Interface

The user chooses the current modem setup in the Modem preferences, as shown in
Figure 25-1 (page 25-3). The Modem Setup item is a picker, which when tapped
displays all of the modem setups installed in the system. The chosen modem setup
is the default used by all applications.

25-2 About the Modem Setup Service

ARENDI-DEFS00004530

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 84 of 144 PageID #: 29531

CHAP T ER 2 5

Modem Setup Service

Figure 25-1 Modem preferences view

Modem

Modem volume

Require dial tone

..:° Pulse Dialing

*Connect using

*Modem setup

Use Defaults

off loud

Tone Dialing

DefnuIt

NeWton Modern

The Modem Setup Process

All communication applications that use a modem endpoint make use of the
modem setup service. The current modem setup is automatically invoked when
an application calls the modem endpoint's Instantiate method.

Note

If the modem endpoint option list includes the modem profile
option (kCMOModemPro f i 1 e), the modem setup is not invoked.
This allows modem applications to override the modem setup
when configuring the modem for special purposes.

Here is what happens in the Instantiate method when the modem setup
is invoked:

1. The kCMOModemPref s option is added to the endpoint configuration options,
and the fEnablePassThru field is set to true. This enables the endpoint to
operate in pass-through mode. In this mode, the modem endpoint is functionally
equivalent to a serial endpoint for input and output.

2. The modem endpoint is instantiated and connected in pass-through mode.

3. The Newton system software sets the modem preferences (kCMOModemPrefs),
modem profile (kCMOModemPro f i 1 e), and fax profile
(kCMOModemFaxCapab i 1 i t i e s) options as defined in the modem setup.

Note

A modem setup method is executed only once—when the
endpoint is instantiated—even if the endpoint is subsequently
used for multiple connections.

About the Modem Setup Service 25-3

ARENDI-DEFS00004531

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 85 of 144 PageID #: 29532

CHAP T ER 2 5

Modem Setup Service

4. The modem endpoint is reconfigured with pass-through mode disabled, and
control is returned to the client application, which can proceed with its Bind
and Connect calls.

"Defining a Modem Setup" (page 25-5) describes how to define a modem setup.

Modem Communication Tool Requirements

The Newton modem communication tool expects certain characteristics from a
modem. These characteristics are described here.

■ The modem tool expects a PCMCIA modem to use a 16450 or 16550 UART chip.

■ The modem tool expects hardware flow control in both serial and PCMCIA
modems. In modems not supporting hardware flow control, direct connect
support is required, and the modem profile constant kDirectConnectOnly
must be set to true. This means that the modem tool and the modem must be
running at the same bit rate, allowing for no compression or error correction
protocols to be used by the modem. (When operating in direct connect mode,
the data rate of the modem tool is automatically adjusted to the data rate stated
in the "CONNECT SEXTETS" message.)

■ The modem tool expects control signals to be used as follows:

❑ The modem tool uses RTS to control data flow from the modem.

❑ The modem uses CTS to control data flow from the modem tool.

❑ Support of the DCD signal is optional. In general, the modem tool expects
DCD to reflect the actual carrier state. The usage of this signal by the modem
tool is governed by the kUseHardwareCD constant.

■ The modem tool expects non-verbose textual responses from the modem.

■ The modem tool expects no echo.

■ The modem tool currently supports the Class 1 protocol for FAX connections;
under some circumstance (see the note below), the modem tool supports the
Class 2 protocol. The configuration string defined by the constant
kConf igstrNoEC is used for sending and receiving FAX documents.
Additionally, these other requirements apply to the FAX service:

❑ Flow control is required. In modems not supporting hardware flow control
(where kDirectConnectOnly = true), XON/XOFF software flow
control must be enabled.

❑ Buffering must be enabled.

❑ The kConf igspeed constant must be set to higher than the highest connect
rate of which the modem is capable. For example, if the modem supports
14400, set kConf igspeed to 19200; if the modem supports 28800, set
kConf igspeed to 54600.

25-4 About the Modem Setup Service

ARENDI-DEFS00004532

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 86 of 144 PageID #: 29533

CHAP T ER 2 5

Modem Setup Service

Note

The modem tool has been upgraded to support the Class 2 and
Class 2.0 FAX protocols in release 2.1 of the Newton System
Software. This upgrade is also available in the German version
of release 2.0 of the Newton System Software. To enable the
use of these protocols, you must define the fax profile in your
modem setup.

Defining a Modem Setup

The parts of a modem setup are specified in a Newton Toolkit (NTK) text file,
which is provided by Newton Technical Support. The modem preferences and
profile options are specified by setting constants. The following sections describe
each part of the modem setup.

Setting Up General Information

The beginning of a modem setup contains general information about the setup and
the modem to which it corresponds. Here is an example:

constant kModemName "Speedy Fast XL";

constant kVersion l;

constant kOrganization "Speedy Computer, Inc.";

The value of kModemName appears in the Modem preferences. It is usually the
name of the modem. The constant kVersion identifies the (integer-only) version
of the modem setup package. The constant kOrganization indicates the source
of the modem setup package. For detailed descriptions of these constants, see
"Modem Setup General Information Constants" (page 22-2) in Newton
Programmer's Reference.

Setting the Modem Preferences Option

This modem option configures the modem controller. Here is an example:

constant kIdModem nil;

constant kUseHardwareCD true;

constant kUseConfigString true;

constant kUseDialOptions true;

constant kHangUpAtDisconnect true;

For detailed descriptions of these constants, see "Modem Setup Preference
Constants" (page 22-3) in Newton Programmer's Reference. For more information

Defining a Modem Setup 25-5

ARENDI-DEFS00004533

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 87 of 144 PageID #: 29534

CHAP T ER 2 5

Modem Setup Service

about the modem preferences option, see "Modem Preferences Option"
(page 21-34) in Newton Programmer's Reference.

Setting the Modem Profile Option

This modem profile option describes the modem characteristics, to be used by the
modem controller. Here is an example:

constant kSupportsEC true;

constant kSupportsLCS nil;

constant kDirectConnectOnly:= nil;

constant kConnectSpeeds 1 [300, 1200, 2400, 4800,

7200, 9600, 12000, 144001 ;

constant kConfigSpeed 38400;

constant kCommandTimeout 2000;

constant kMaxCharsPerLine 40;

constant kInterCmdDelay 25;

constant kModemIDString "unknown";

constant kConfigStrNoEC _

"ATEO&AO&Bl&Cl&Hl&MOS12=12\n";

constant kConfigStrECOnly _

"ATEO&AO&Bl&Cl&Hl&M5S12=12\n";

constant kConfigStrECAndFallbac ._

"ATEO&AO&Bl&Cl&Hl&M4S12=12\n";

constant kConfigStrDirectConnec ._

"ATEO&AO&BO&Cl&HO&MOS12=12\n";

For detailed descriptions of these constants, see "Modem Setup Profile Constants"
(page 22-4) in Newton Programmer's Reference. For more information about the
modem preferences option, see "Modem Profile Option" (page 21-38) in Newton
Programmer's Reference.

When the modem tool establishes communication with a modem through an
endpoint, the tool normally sends a configuration string to the modem (as long as
kUseConf igString is true). Several configuration strings are defined in a
typical modem profile; the one that is sent depends on the type of connection
requested and other parameters set in the modem profile. Table 25-1 summarizes
when each kind of configuration string is used:

25-6 Defining a Modem Setup

ARENDI-DEFS00004534

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 88 of 144 PageID #: 29535

CHAP T ER 2 5

Modem Setup Service

Table 25-1 Summary of configuration string usage

Configuration string

kConfigStrNoEC

kConfigStrECOnly

kConfigStrECAndFallback

kConfigStrDirectConnect

When used

The default configuration used for data
connections when kDirectConnectOnly is
n 1. Also used for FAX connections. See
"The No Error Control Configuration String"
(page 22-7) in Newton Programmer's Reference
for an example

Used for data connections that require error
correction. This configuration string is used
only if requested by an application. The
constant kSupportsEC must be true for this
configuration string to be used. See "The Error
Control Configuration String" (page 22-8) in
Newton Programmer's Reference for an example

Used for data connections that allow error
correction, but that can fall back to non-error-
corrected mode. This configuration string is
used only if requested by an application. See
"The Error Control with Fallback Configuration
String" (page 22-9) in Newton Programmer's
Reference for an example

The default configuration used for data
connections when kDirectConnectOnly is
true. See "The Direct Connect Configuration
String" (page 22-9) in Newton Programmer's
Reference for an example

Setting the Fax Profile Option

The fax profile option describes the fax characteristics to be used by the fax tool.
Here is an example:

constant kTransmitDataMod ._

kV21Ch2Mod + KV27Ter24Mod+ kV27Ter48Mod;

constant kReceiveDataMod:=

kV21Ch2Mod + KV27Ter24Mod + kV27Ter48Mod;

constant kServiceClass ._

kModemFaxClassl + kModemFaxClass2;

This example limits the faxing to 4800 bps for both send and receive messages. If
neither of these constants is defined, then the fax send and receive speeds are not
restricted.

Defining a Modem Setup 25-7

ARENDI-DEFS00004535

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 89 of 144 PageID #: 29536

CHAP T ER 2 5

Modem Setup Service

Note

You can only set the service class (use the kserviceC1ass
constant) for versions of the software that support the Class 2 fax
protocol. Newton System Software version 2.1 and the German
version of Newton System Software version 2.0 support the Class
2 fax protocol.

For detailed descriptions of these constants, see "Fax Profile Constants"
(page 22-10) in Newton Programmer's Reference.

The constants that you can use to specify speeds in defining your fax profile values
are shown in Table 22-5 (page 22-11) in Newton Programmer's Reference.

25-8 Defining a Modem Setup

ARENDI-DEFS00004536

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 90 of 144 PageID #: 29537

CHAP T ER 2 5

Modem Setup Service

Summary of the Modem Setup Service

Constants

Constants for Modem Setup General Information

kModemName

kVersion

kOrganization

Constants for Modem Setup Preferences

kIdModem

kUseHardwareCD

kUseConfigString

kUseDialOptions

kHangUpAtDisconnect

Constants for the Modem Setup Profile

kSupportsEC

kSupportsLCS

kDirectConnectOnly

kXonnectSpeeds

kXommandTimeout

kMaxCharsPerLine

kInterCmdDelay

kModemIDString

kConfigStrNoEC

kConfigStrECOnly

kConfigStrECAndFallback

kConfigStrDirectConnect

Constants for the fax profile

kTransmitDataMod

kReceiveDataMod

kServiceClass

Summary of the Modem Setup Service 25-9

ARENDI-DEFS00004537

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 91 of 144 PageID #: 29538

CHAP T ER 2 5

Modem Setup Service

Fax Speed Constants

kV21Ch2Mod

kv27Ter24Mod

kV27Ter48Mod

kV29_72Mod

kVl7_72Mod

kV17st_72Mod

kV29_96Mod

kVl7_96Mod

kV17st_96Mod

kVl7_12Mod

kV17st_12Mod

kV17st_14Mod

Fax Class Constants

kModemFaxClassO

kModemFaxClassl

kModemFaxClass2

kModemFaxClass2 0

25-10 Summary of the Modem Setup Service

ARENDI-DEFS00004538

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 92 of 144 PageID #: 29539

C H A P T E R 2 6

Utility Functions

This chapter provides a listing of a number of utility functions documented in the
"Utility Functions Reference" in the Newton Programmer's Reference. The
following groups of functions are included:

■ Object system

■ String

■ Bitwise

■ Array and sorted array

■ Integer Math

■ Floating point math

■ Control of floating point math

■ Financial

■ Exception handling

■ Message sending and deferred message sending

■ Data extraction

■ Data stuffing

■ Getting and Setting Global Variables

■ Miscellaneous

Four of the functions described in the Object system section are designed to clone,
or copy, objects. These functions each behave slightly differently. Table 26-1
summarizes their actions. The "Recurs" column indicates if references within the
object are copied. The "Follows magic pointers" column indicates if objects
referenced through magic pointers are copied. The "Ensures object is internal'
column indicates if the function ensures that all parts of the object exist in internal
RAM or ROM. The "Copies object" column indicates if the object is copied.

26-1

ARENDI-DEFS00004539

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 93 of 144 PageID #: 29540

CHAP TER 2 6

Utility Functions

Table 26-1 Summary of copying functions

Follows Ensures object Copies
Function name Recurs magic pointers is internal object

Clone yes

DeepClone yes yes yes

Ensurelnternal yes yes as needed

Total Clone yes yes yes

Compatibility

This section describes the changes to the utility functions for Newton System
Software 2.0.

New Functions

The following new functions have been added for this release.

New Object System Functions

The following new object system functions have been added.

GetFunctionArgCount

IsCharacter

IsFunction

IsInteger

IsNumber

I sReadOnly (existed in 1.0 but now documented)
IsReal

IsString

I s subclass (existed in 1.0 but now documented)
IsSymbol

MakeBinary

SetVariable

SymbolCompareLex

26-2 Compatibility

ARENDI-DEFS00004540

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 94 of 144 PageID #: 29541

CHAP TER 2 6

Utility Functions

New String Functions

The following new string functions have been added.

CharPos

LatitudeToString

LongitudeToString

StrExactCompare

StrFi1led (existed in 1.0 but now documented)
StrTokenize

StyledStrTruncate

SubstituteChars

New Array Functions

The following new array functions have been added.

ArrayInsert

InsertionSort

LFetch

LSearch

NewWeakArray

StableSort

New Sorted Array Functions

The following new functions have been added that operate on sorted arrays. These
functions are based on binary search algorithms, hence the ̀ B" prefix to the
function names.

BDelete

BDifference

BFetch

BFetchRight

BFind

BFindRight

BInsert

BInsertRight

BIntersect

BMerge

BSearchLeft

BSearchRight

Compatibility 26-3

ARENDI-DEFS00004541

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 95 of 144 PageID #: 29542

CHAP TER 2 6

Utility Functions

New Integer Math Functions

The following new functions related to integer math have been added.

GetRandomState

SetRandomState

New Financial Functions

The following new functions that perform operations related to the currency
exchange rate have been added.

GetExchangeRate

SetExchangeRate

GetUpdatedExchangeRates

New Exception Handling Functions

The following new exception handling function has been added.

RethrowWithUserMessage

New Message Sending Functions

The following new utility functions for sending immediate messages have
been added.

IsHalting

PerformIfDefined

ProtoPerform

ProtoPerformIfDefined

New Deferred Message Sending Functions

The following new utility functions for delayed and deferred actions have been added.

AddDeferredCall

AddDelayedCall

AddProcrastinatedCall
AddDeferredSend

AddDelayedSend

AddProcrastinatedSend

These new functions replace AddDelayedAction and AddDeferredAction
(although both remain in the ROM for compatibility with existing applications).
These two older functions have several problems, and you should not use them—
they will likely be removed in future versions of system software.

26-4 Compatibility

ARENDI-DEFS00004542

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 96 of 144 PageID #: 29543

CHAP TER 2 6

Utility Functions

New Data Stuffing Functions

The following new data stuffing functions have been added.

StuffCString

StuffPString

New Functions to Get and Set Globals

The following new functions that get, set, and check for the existence of global
variables and functions have been added.

GetGlobalFn

GetGlobalVar

GlobalFnExists

GlobalVarExists

DefGlobalFn

DefGlobalVar

UnDefGlobalFn

UnDefGlobalVar

New Debugging Functions

The following debugging functions have been added.

StrHexDump

TrueSize

ViewAutopsy

The following debugging functions have been changed.

StackTrace

BreakLoop

New Miscellaneous Functions

The following miscellaneous functions have been added.

AddMemoryItem

AddMemoryItemUnique

Backlight

BacklightStatus

BinEqual

Gestalt

GetAppName

GetAppPrefs

GetMemoryItems

Compatibility 26-5

ARENDI-DEFS00004543

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 97 of 144 PageID #: 29544

CHAP TER 2 6

Utility Functions

GetMemorySlot

MakePhone

MakeDisplayPhone

ParsePhone

PowerOff

Translate

Enhanced Functions

The following string function has been enhanced in Newton 2.0.

Paramstr has been enhanced to support conditional substitution.

Obsolete Functions

Some utility functions previously documented in the Newton Programmer's Guide
are obsolete, but are still supported for compatibility with older applications. Do
not use the following utility functions, as they may not be supported in future
system software versions:

AddDeferredAction (use AddDeferredCall instead)
AddDelayedAction (use AddDelayedCall instead)
AddPowerOffHandler (use RegPowerOff instead)
ArrayPos (use LSearch instead)
GetGlobals (use GetGlobalVar or GetGlobalFn instead)
RemovePowerOffHandler (use UnRegPowerOff instead)
SmartStart (use other string manipulation functions)
SmartConcat (use other string manipulation functions)
SmartStop (use other string manipulation functions)
StrTruncate (use StyledStrTruncate instead)
StrWidth (use StrFontWidth instead)

26-6 Compatibility

ARENDI-DEFS00004544

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 98 of 144 PageID #: 29545

CHAP TER 2 6

Utility Functions

Summary of Functions and Methods

Object System Functions

ClassOf (object)

Clone (object)

DeepClone (object)

EnsureInternal(obj)

GetFunctionArgCount (function)

GetSlot (frame, slotSymbol)

GetVariable (frame, slotSymbol)

HasSlot (frame, slotSymbol)

HasVariable (frame, slotSymbol)

Intern (string)

I sArray (obj)

I sBinary (obj)

IsCharacter(obj)

IsFrame (obj)

IsFunction (obj)

IsImmediate(obj)

IsInstance (obj, class)

IsInteger (obj)

IsNumber (obj)

IsReadOnly(obj)

IsReal (obj)

IsString (obj)

IsSubclass (sub, super)

IsSymbol (obj)

MakeBinary (length, class)

Map (obj, function)

PrimClassOf (obj)

RemoveSlot (obj, slot)

Replace0bject (originalObject, targetObject)

SetClass (obj, classSymbol)

SetVariable (frame, slotSymbol, value)

Symbol CompareLex (symbol], symbol2)

Total Clone (obj)

Summary of Functions and Methods 26-7

ARENDI-DEFS00004545

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 99 of 144 PageID #: 29546

CHAP TER 2 6

Utility Functions

String Functions

BeginsWith (string, substr)

Capitalize (string)

CapitalizeWords (string)

CharPos (str, char, startpos)

Downcase (string)

EndsWith (string, substr)

EvalStringer (frame, array

FindStringInArray (array,

FindStringInFrame(frame,

FormattedNumberStr(number

IsAlphaNumeric (char)

IsWhiteSpace (char)

LatitudeToString (latitude)

LongitudeToString (longitude)

NumberStr (number)

ParamStr (baseString, paramStrArray)

SPrintObj ect (obj)

StrCompare (a, b)

StrConcat (a, b)

StrEqual (a, b)

StrExactCompare(a, b)

StrFilled (string)

StrFontWidth (string, fontSpec)

Stringer (array)

StringFilter , (str, filter, instruction)

StringToNumber (string)

StrLen (string)

StrMunger (dstString, dstStart, dstCount, srcStrmg srcStart, srcCount

S t rPo s (string, substr, start)

StrReplace (string, substr, replacement, count)

StrTokenize (str, delimiters)

StyledStrTruncate (string, length, font)

SubstituteChars (targetStr, searchStr, replaceStr)

SubStr (string, start, count)

TrimString (string)

Upcase (string)

26-8 Summary of Functions and Methods

string)

stringArray, path)

formatString)

ARENDI-DEFS00004546

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 100 of 144 PageID #: 29547

CHAP TER 2 6

Utility Functions

Bitwise Functions

Band (a, b)

Bor (a, b)

Bxor (a, b)

Bnot (a)

Array Functions

AddArraySlot (array, value)

Array (size, initial Value)

ArrayInsert (array, element, position)

ArrayMunger (dstArray, dstStart, dstCount, srcArray, srcStart, srcCount)

ArrayRemove Count (array, startlndex, count

InsertionSort (array, test, key)

Length (array)

LFetch (array, item, start, test, key)

LSearch (array, item, start, test, key)

NewWeakArray (length)

SetAdd (array, value, uniqueOnly)

SetContains (array, item)

SetDifference (array], array2)

SetLength (array, length)

SetOverlaps (array], array2)

SetRemove (array, value)

SetUnion (array], array2, uniqueFlag)

Sort(array, test, key)

StableSort (array, test, key)

Sorted Array Functions

BDelete (array, item, test, key, count)

BDi f f erence (arrayl , array2, test, key)

BFetch (array, item, test, key)

BFetchRight (array, item, test, key)

BFind (array, item, test, key)

BFindRight (array, item, test, key)

Blnsert (array, element, test, key, uniqueOnly)

B Ins ertRight (array, element, test, key, uniqueOnly)

B Intersect (arrayl , array2, test, key, uniqueOnly)

Summary of Functions and Methods 26-9

ARENDI-DEFS00004547

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 101 of 144 PageID #: 29548

CHAP TER 2 6

Utility Functions

BMerge (array], array2, test, key, uniqueOnly)
BSearchLeft (array, item, test, key)
BSearchRight (array, item, test, key)

I nteger Math Functions

Abs (x)

Ceiling (x)

Floor (x)

GetRandomState()

Max(a, b)

Min (a, b)
Real (x)

Random (low, high)
SetRandomSeed (seedNumber)
SetRandomState (randomState)

Floating Point Math Functions

Acos (x)

Acosh (x)

Asin (x)

Asinh (x)

Atan (x)

Atan2 (x, y)

Atanh (x)

CopySign (x, y)

Cos (x)

Cosh (x)

Erf (x)

Erfc (x)

Exp (x)

Expml (x)

Fabs (x)

FDim (x, y)

FMax (x, y)

FMin (x, y)

Fmod (x, y)

Gamma (x)

Hypo (x, y)

26-10 Summary of Functions and Methods

ARENDI-DEFS00004548

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 102 of 144 PageID #: 29549

CHAP TER 2 6

Utility Functions

IsFinite (x)

IsNaN (x)

IsNormal (x)

LessEqualOrGreater(x,

LessOrGreater (x, y)

LGamma (x)

Log (x)

Logb (x)

Loglp (x)

Log10 (x)

NearbyInt (x)

NextAfterD (x, y)

Pow (x, y)

RandomX (x)

Remainder (x, y)

RemQuo (x, y)

Rint (x)

RintToL (x)

Round (x)

Scalb (x, k)

SignBit (x)

Signum (x)

Sin (x)

Sinh (x)

Sqrt (x)

Tan (x)

Tanh (x)

Trunc (x)

Unordered (x, y)

UnorderedGreaterOrEqual(x,

UnorderedLessOrEqual(x, y)

UnorderedOrEqual (x, y)

UnorderedOrGreater(x, y)

UnorderedOrLess(x, y)

FeClearExcept (excepts)

FeGetEnv()

FeGetExcept (excepts)

FeHoldExcept()

FeRaiseExcept (excepts)

FeSetEnv (envObj)

FeSetExcept (flagObj, excepts)

Y)

Y)

Summary of Functions and Methods 26-11

ARENDI-DEFS00004549

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 103 of 144 PageID #: 29550

CHAP TER 2 6

Utility Functions

FeTestExcept (excepts)
FeUpdateEnv (envObj)

Financial Functions

Annuity (r, n)

Compound (r, n)
GetExchangeRate (country], country2)
SetExchangeRate (country], country2, rate)
GetUpdatedExchangeRates()

Exception Functions

Throw (name, data)
Rethrow()

CurrentException()

RethrowWithUserMessage (userTide, userMessage, override)

Message Sending Functions

Apply (function, parameterArray)

IsHalting (funcdonObject, args)
Perform (frame, message, parameterArray)
PerformIfDefined (receiver, message, paramArray)
ProtoPerform (receiver, message, paramArray)
P ro t o P e r f o rm I f D e f i n e d (receiver, message, paramArray)

Deferred Message Sending Functions

AddDeferredCal1 (functionObject, paramArray)
AddDelayedCall (functionObject, paramArray, delay)
AddDeferredSend (receiver, message, paramArray)
AddDelayedSend (receiver, message, paramArray, delay)
Add ProcrastinatedCall (funcSymbol, function Object, paramArray, delay)
AddProcrastinatedSend (msgSymbol, receiver, message, paramArray, delay)

26-12 Summary of Functions and Methods

ARENDI-DEFS00004550

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 104 of 144 PageID #: 29551

CHAP TER 2 6

Utility Functions

Data Extraction Functions

ExtractByte (data, offset)

ExtractBytes (data, offset, length, class)

ExtractChar (data, offset)

ExtractLong (data, offset)

ExtractXLong (data, offset)

ExtractWord (data, offset)

ExtractCString (data, offset)

ExtractPString (data, offset)

ExtractUniChar (data, offset)

Data Stuffing Functions

StuffByte (obj, offset, tolnsert)

StuffChar (obj, offset, tolnsert)

StuffCString (obj, offset, aRrIng)

StuffLong (obj, offset, tolnsert)

StuffPString (obj, offset, aString)

StuffUniChar (obj, offset, tolnsert)

StuffWord (obj, offset, tolnsert)

Getting and Setting Global Variables and Functions

GetGlobalFn (symbol)

GetGlobalVar (symbol)

GlobalFnExists (symbol)

GlobalVarExists (symbol)

Def Global Fn (symbol, function)

DefGlobalVar (symbol, value)

UnDefGlobalFn (symbol)

UnDefGlobalVar (symbol)

Debugging Functions

BreakLoop()

DV (view)

GCO

ExitBreakLoop()

StackTrace()

Summary of Functions and Methods 26-13

ARENDI-DEFS00004551

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 105 of 144 PageID #: 29552

CHAP TER 2 6

Utility Functions

Stats()

StrHexDump (object, spacelnterval)
TrueSize (object, filter)

ViewAutopsy (functionSpec)

Miscellaneous Functions

AddMemoryItem (memSymbol, value)

AddMemoryItemUnique (memorySlot, value, testFunc)

Backlight()

BacklightStatus (state)

BinEqual (a, b)
BinaryMunger (dst, dstStart, dstCount, src, srcStart, srcCount

Chr (integer)

Compile (string)

Gestalt (selector)
GetAppName (appSymbol)

GetAppParams()

GetAppPrefs (appSymbol, defaultFrame)
GetMemoryItems(memSymbol)

GetMemorySlot (memorySlot, op)

Get Print erName (printerFrame) //platform file function
MakePhone (phoneFrame)

MakeDisplayPhone (phoneStr)
rootView:MungePhone (inNum, country)
ParsePhone (phoneStr)
PowerOff (reason)
Ord (char)
RegEmai1 System (classSymbol, name, internet)

RegPagerType (classSymbol, name)
RegPhoneType with (classSymbol, name, number)
ShowManual()

Sleep (ticks)

rootView: SysBeep ()

Translate (data, translator, store, callback)

UnRegEma i 1 Sys t em (classSymbol)

UnregPagerType (classSymbol)

UnregPhoneTypeFunc (classSymbol)

26-14 Summary of Functions and Methods

ARENDI-DEFS00004552

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 106 of 144 PageID #: 29553

A P P E N D I X

The Inside Story on Declare

This appendix describes the technical details of the declare mechanism. Knowing
these technical details is not necessary to understanding what declaring a view
means; they are provided primarily for completeness and to help you when you are
debugging. You shouldn't write code that depends on these details.

For abasic discussion of the declare mechanism, see the section "View Instantiation"
beginning on page 3-26. You should be familiar with that material before reading
this appendix.

To serve as an example here, imagine a calculator application whose base view is
named "Calculator." It has (among others) a child view named "Display." The
Display view is declared in the Calculator view. See Figure A-1 for an illustration
of this example.

In the following sections, we'll explain what happens at compile time and at run
time as a result of the declare operation. A number of slots are created, which
you may see in the Newton Toolkit (NTK) Inspector if you are examining the
view templates.

Compile-Time Results

As a result of the declare operation, at compile time, NTK creates a slot in the place
where the view is declared—that is, in the Calculator template. The name of the slot
is the name of the declared view, Display. This slot's value is initially set to nil.

Another slot, called stepAllocateContext, is also created in the Calculator
template. This slot holds an array of values (two for each view declared there). The
first value in each pair is a symbol used by the system at run time to identify the
name of the slot in the Calculator view that holds a reference to the declared view.
This symbol is simply the name of the declared view, Display.

The second value in each pair is a reference to the template for the declared view.
At run time, the system will preallocate a view memory object for the declared
view from this template.

Compile-Time Results A-1

ARENDI-DEFS00004553

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 107 of 144 PageID #: 29554

APPENDIX

Note
Protos built into the system use an analogous slot called
allocateContext, that holds the same thing as
stepAllocateContext. The allocateContext slot is for
declared children from the viewChi1dren array and the
stepAllocateContext slot is for declared children from the
stepchildren array.

Also, as a result of the declare operation, NTK creates a slot in the Display template
called preal locatedContext. This slot holds a symbol that is the name of the
template, in this case ' Di splay. This symbol will be used by the system when the
view is instantiated to find the preallocated view memory object for the Display view.

Run-Time Results

When the Calculator view is opened (even before its viewsetupFormscript
method is executed), a view memory object is preallocated for each view declared
in Calculator. (The information required to do this is obtained from the
allocateContext and stepAllocateContext slots.) In our example, a view
memory object is created for the Display view.

The Di splay slot in the Calculator view is updated so that it points to the newly
allocated Display view object.

Later in the instantiation process for the Calculator view, its child views are created
and shown, including the Display view. At this time, the view system looks at the
template for the Display view, sees the preallocatedContext slot, and knows
that a view memory object has been preallocated for this view. Using this slot, the
system can find the preallocated view.

The value of the preal locatedContext slot is the name of another slot in the
Calculator view. The system locates this slot in the Calculator view, and finds there
a reference to the preallocated view object. Instead of creating a new view object
for the Display view, the system uses the preallocated view.

A-2 Run-Time Results

ARENDI-DEFS00004554

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 108 of 144 PageID #: 29555

APPENDIX

Figure A-1 Declare example

Templates (compile time)

Calculator

Display: nil

stepAllocateContext:

['Display, Display]

As a result of the declare, two
slots are added to the Calculator
template. The Display slot will
eventually hold the address of the
Display view.

Display

preallocatedContext:

'Display

}

Also as a result of the declare,
one slot is added to the Display
template. It holds the name of the
slot in the Calculator template
where its view address will be
stored.

Run-Time Results

Views (run time)

Calculator

_proto:

Display: Display

}

In the Calculator view, the
address of the newly created
Display view is stored in the
slot whose name matches the
first entry in the
stepAllocateContext
array in the Calculator
template.

Display

{

proto:

}

When the
Calculator view
is opened, this
Display view is
preallocated.

Later, when the Display view is to
be shown, the system finds the
preallocated view by using the
preallocatedContext slot
(in the template) and looking for a
slot with that name in the Calculator
view. That slot holds the address of
the preallocated Display view.

A-3

ARENDI-DEFS00004555

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 109 of 144 PageID #: 29556

ARENDI-DEFS00004556

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 110 of 144 PageID #: 29557Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 110 of 144 PageID #: 29557

AREN D I—DEFSOOOO4556

Glossary

Action button The small envelope button used
in applications to invoke routing functions.
When tapped, it displays a picker listing routing
actions available for the current item.

alias An object that consists of a reference to
another object. An alias saves space, since the
alias object is small, and can be used to
reference very large objects. Resolving an alias
refers to retrieving the object that the alias
references. See also entry alias.

application base view The topmost parent
view in an application. The application base view
typically encloses all other views that make up
the application.

arc A portion of the circumference of an oval
bounded by a pair of radii joining at the oval's
center. Contrast a wedge, which includes part of
the oval's interior. Arcs and wedges are defined
by the bounding rectangle that encloses the oval,
along with a pair of angles marking the
positions of the bounding radii.

array A sequence of numerically indexed
slots (also known as the array elements) that
contain objects. The first element is indexed by
zero. Like other nonimmediate objects, an array
can have a user-specified class, and can have its
length changed dynamically.

away city The emporium that's displayed as a
counterpoint to your home city. It defines such
information as dialing area, time zone, and so
on. Sometimes it is called the "I'm here" city.

binary object A sequence of bytes that can
represent any kind of data, can be adjusted
dynamically in size, and can have a user-

specified class. Examples of binary objects
include strings, real numbers, sounds, and
bitmaps.

Boolean A special kind of immediate value. In
NewtonScript, there is only one Boolean, called
true. Functions and control structures use nil
to represent false. When testing for a true/false
value, n 1 represents false, and any other value
is equivalent to true.

button host An application that receives
buttons from other applications (button
providers).

button provider An application that adds a
button to another application (the button host).

callback spec A frame passed as an argument
to an endpoint method. The callback spec frame
contains slots that control how the endpoint
method executes, along with a completion
method that is called when the endpoint
operation completes. See also
output spec.

card Short for a PCMCIA card. Also, a view
of information about an entry in the Names
soup, formatted as a business card.

child A frame that references another
frame (its parent) from a parent slot. With
regard to views, a child view is enclosed by
its parent view.

class A symbol that describes the data
referenced by an object. Arrays, frames, and
binary objects can have user-defined classes.

constant A value that does not change. In
NewtonScript the value of the constant is
substituted wherever the constant is used in code.

GL-1

ARENDI-DEFS00004557

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 111 of 144 PageID #: 29558

GLOSSARY

cursor An object returned by the Query
method. The cursor contains methods that iterate
over a set of soup entries meeting the criteria
specified in the query. The addition or deletion
of entries matching the query specification is
automatically reflected in the set of entries
referenced by the cursor, even if the changes
occur after the original query was made.

data definition A frame containing slots that
define a particular type of data and the methods
that operate on it. The entries defined are used
by an application and stored in its soup. A data
definition is registered with the system. The
shortened term dataDef is sometimes used. See
also view definition.

data form A symbol that describes the
transformations that must occur when data is
exchanged with other environments. When you
send data or set endpoint options, the data form
defines how to convert the data from its
NewtonScript format When you receive data or
get endpoint options, the data form defines the
type of data expected.

declaring a template Registering a template
in another view (usually its parent) so that the
template's view is preallocated when the other
view is opened. This allows access to methods
and slots in the declared view.

deferred recognition The process of
recognizing an ink word that was drawn by the
user at an earlier time. Deferred recognition is
usually initiated when the user double-taps on
an ink word. See also ink and ink word.

desktop computer Either a Mac OS or
Windows-based computer. Sometimes called
simply "desktop"

emporium The permanent internal
descriptions of places the user works with the
Newton PDA. (Home and Office are obvious
examples, but so might be "Tokyo Office" if the
user travels a lot.) Choosing an emporium sets

GL-2

up information such as local area code, dialing
prefixes, time zone, and so on. This term is
sometimes called "locale" The plural
is "emporia."

endpoint An object created from
protoBasicEndpoint, or one of its
derivative protos, that controls a real-time
communication session. This object
encapsulates and maintains the details of the
specific connection, and allows you to control
the underlying communication tool.

endpoint option An endpoint option is
specified in a frame passed in an array as an
argument to one of the endpoint methods.
Endpoint options select the communication tool
to use, control its configuration and operation,
and return result code information from each
endpoint method call.

entry A frame stored in a soup and accessed
through a cursor. An entry frame contains
special slots that identify it as belonging to a
soup.

entry alias An object that provides a standard
way to save a reference to a soup entry. Entry
aliases themselves may be stored in soups.

enumerated dictionary A list of words that
can be recognized when this dictionary is
enabled. See also lexical dictionary.

EOP End of packet indicator.

evaluate slot A slot that's evaluated when
NTK (Newton Toolkit) compiles the application.

event An entry in the Dates application for a
day, but not a particular time during that day.

field An area in a view where a user can write
information.

finder A frame containing methods and/or
objects that enumerate data items found to
match criteria specified via the Find slip.

ARENDI-DEFS00004558

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 112 of 144 PageID #: 29559

GLOSSARY

Hag A value that is set either on or off to
enable a feature. Typically, flag values are single
bits, though they can be groups of bits or a
whole byte.

font spec A structure used to store information
about a font, including the font family, style, and
point size.

frame An unordered collection of slots, each
of which consists of a name and value pair. The
value of a slot can be any type of object, and
slots can be added or removed from frames
dynamically. A frame can have a user-specified
class. Frames can be used like records in Pascal
and structs in C, and also as objects that respond
to messages.

free-form entry field A field of a
protoCharEdit view that accepts any
characters as user input.

function object A frame containing
executable code. Function objects are created by
the function constructor:

func (args) funcBody

An executable function object includes values
for its lexical and message environment, as well
as code. This information is captured when the
function constructor is evaluated at run time.

gesture A handwritten mark that is recog-
nized as having a special meaning in the Newton
system, such as tap, scrub, caret, and so on.

global A variable or function that is accessible
from any NewtonScript code.

grammar A set of rules defining the format of
an entity to be recognized, such as a date, time,
phone number, or currency value. Lexical
dictionaries are composed of sets of grammars
See also lexical dictionary.

home city The emporium the system uses to
modify dialing information, time zone, and so
on. It is usually the user's home, but the user
may set it to another city when traveling.

immediate A value that is stored directly
rather than through an indirect reference to a
heap object Immediates are characters, integers,
or Booleans. See also reference.

implementor The frame in which a method is
defined. See also receiver.

In/Out Box The application that serves as a
central repository for all incoming and outgoing
data handled by the Routing and Transport
interfaces.

inheritance The mechanism by which
attributes (slots or data) and behaviors (methods)
are made available to objects. Parent inheritance
allows views of dissimilar types to share slots
containing data or methods. Prototype inheritance
allows a template to base its definition on that of
another template or prototype.

ink The raw data for input drawn by the user
with the stylus. Also known as raw ink or
sketch ink.

ink word The grouping of ink data created by
the recognition system, based on the timing and
spacing of the user's handwriting. Ink words are
created when the user has selected "Ink Text" in
the Recognition Preferences slip. Ink words can
subsequently be recognized with deferred
recognition.

input spec A frame used in receiving endpoint
data that defines how incoming data should be
formatted; termination conditions that control
when the input should be stopped; data filtering
options; and callback methods.

instantiate To make a run-time object in the
NewtonScript heap from a template. Usually
this term refers to the process of creating a view
from a template.

GL-3

ARENDI-DEFS00004559

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 113 of 144 PageID #: 29560

GLOSSARY

item frame The frame that encapsulates a
routed (sent or received) object and that is stored
in the In/Out Box soup.

lexical dictionary A list of valid grammars,
each specifying the format of an entity to be
recognized, such as a date, time, phone number
or currency value. See also enumerated
dictionary and grammar.

line A shape defined by two points: the current
x and y location of the graphics pen and the x
and y location of its destination.

local A variable whose scope is the function
within which it is defined. You use the local
keyword to explicitly create a local variable
within a function.

magic pointer A constant that represents a
special kind of reference to an object in the
Newton ROM. Magic pointer references are
resolved at run time by the operating system,
which substitutes the actual address of the ROM
object for the magic pointer reference.

meeting An entry in the Dates application for
a specific time during the day. People can be
invited and the meeting can be scheduled for a
particular location.

message A symbol with a set of arguments. A
message is sent using the message send syntax
frame: messageName () , where the message
messageName is sent to the
receiver frame.

method A function object in a frame slot that
is invoked in response to a message.

name reference A frame that contains a soup
entry or an alias to a soup entry, often, though
not necessarily, from the Names soup. The
frame may also contain some of the individual
slots from the soup entry.

GL-4

NewtonScript heap An area of RAM used by
the system for dynamically allocated objects,
including NewtonScript objects.

nil A value that indicates nothing, none, no,
or anything negative or empty. It is similar to
(void*) 0 in C. The value nil represents
"false" in Boolean expressions; any other value
represents "true"

object A typed piece of data that can be an
immediate, array, frame, or binary object. In
NewtonScript, only frame objects can hold
methods and receive messages.

option frame A frame passed as a parameter
to an endpoint method that selects the
communication tool to use; controls its
configuration and operation; and returns result
code information from the endpoint method.

origin The coordinates of the top-left corner
of a view, usually (0, 0). The origin can be
shifted, for example, to scroll the contents of
a view.

output spec A special type of callback spec
used with an endpoint method. An output spec
contains a few additional slots that allow you to
pass special protocol flags and to define how the
data being sent is translated.

oval A circular or elliptical shape defined by
the bounding rectangle that encloses it.

package The unit in which software can be
installed on and removed from the Newton.
A package consists of a header containing the
package name and other information, and one or
more parts containing the software.

package file A file that contains downloadable
Newton software.

package store See store part.

parent A frame referenced through the
_parent slot of another frame. With regard to
views, a parent view encloses its child views.

ARENDI-DEFS00004560

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 114 of 144 PageID #: 29561

GLOSSARY

part A unit of software—either code or data—
held in a part frame. The format of the part is
identified by a four-character identifier called its
type or its part code.

part frame The top-level frame that holds an
application, book, or auto part.

PCMCIA Personal Computer Memory Card
International Association. This acronym is used
to describe the memory cards used by the
Newton PDA. Newton memory cards follow the
PCMCIA standards

persona The permanent internal description of
an individual person that uses a particular
Newton PDA, or a particular public image of the
Newton owner. The owner is the obvious
example, but there can be many others.
Choosing a persona sets up information such as
name, title, birthday, phone numbers, e-mail
addresses, and so on. The plural is "personae"

picker A type of Newton view that pops up
and contains a list of items. The user can select
an item by tapping it. This type of view closes
when the user taps an item or taps outside the
list without making a selection.

picture A saved sequence of drawing
operations that can be played back later.

polygon A shape defined by a sequence of
points representing the polygon's vertices,
connected by straight lines from one point to
the next.

pop-up See picker.

project The collected files and specifications
that NTK uses to build a package that can be
downloaded and executed on
the Newton.

proto A frame referenced through another
frame's _proto slot. With regard to views, a
proto is not intended to be directly instantiated—
you reference the proto from a template. The

system supplies several view protos, which an
application can use to implement user interface
elements such as buttons, input fields, and so on.

protocol An agreed-upon set of conventions
for communications between two computers,
such as the protocol used to communicate
between a desktop computer and a Newton device.

raw ink See ink.

receiver The frame that was sent a message.
The receiver for the invocation of a function
object is accessible through the pseudo-variable
self. See also implementor.

recognized text Ink words processed by the
recognition system. Ink drawn by the user is
converted into recognized text when the user has
selected "Text'' in the Recognition Preferences
slip or after deferred recognition takes place.
See also ink word.

rectangle A shape defined by two points—its
top-left and its bottom-right corners—or by four
boundaries—its upper, left, bottom, and right
sides.

reference A value that indirectly refers to an
array, frame, or binary object. See also
immediate.

region An arbitrary area or set of areas on the
coordinate plane. The outline of a region should
be one or more closed loops.

resource Raw data—usually bitmaps or
sounds—stored on the development system and
incorporated into a Newton application during
the project build.

restore To replace all the information in
a Newton with information from a file on
the desktop.

restricted entry field A field of a
protoCharEdit view that accepts as user
input only the values specified in the view's

GL-5

ARENDI-DEFS00004561

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 115 of 144 PageID #: 29562

GLOSSARY

template slot. For example, a field for entering
phone numbers might restrict acceptable user
input to numerals.

rich string A string object that contains
imbedded ink words. Rich strings create a
compact representation for strings that contain
ink words and can be used with most of the
string-processing functions provided in the
system software. See also rich string format.

rich string format The internal representation
used for rich strings. Each ink word is
represented by a special placeholder character
(klnkChar) in the string. The data for each ink
word is stored after the string terminator
character. The final 32 bits in a rich string
encode information about the rich string.

root view The topmost parent view in the
view hierarchy. All other views descend from
the root view.

rounded rectangle A rectangle with rounded
corners. The shape is defined by the rectangle
itself, along with the diameter of the circles
forming the corners (called the diameter of
curvature).

routing format A frame that describes how to
format an object that is to be sent (routed).
Examples include print routing formats, which
describe how to visually format data, and frame
routing formats, which describe the internal
structure of a frame.

routing slip A view that looks like an
envelope. The transport displays this view after
the user selects a transport-based action from the
Action picker. This view is used by a transport
to collect information needed to send the item.

script icon An icon that executes a function
object when tapped.

self A pseudo-variable that is set to the current
receiver.

GL-6

shape A data structure used by the drawing
system to draw an image on the screen.

siblings Child frames that have the same
parent frame.

sketch ink See ink.

slot An element of a frame or array that can
hold an immediate or reference.

soup A persistently stored object that contains
a series of frames called entries. Like a database,
a soup has indexes you can use to access entries
in a sorted order.

soupervisor mechanism The system service
that presents the user with information about a
soup when the user taps its icon in the Extras
Drawer. It allows for filing or moving all soup
entries.

soup icon An icon that represents one or more
soups, usually in the Storage folder of the Extras
Drawer.

stationery Refers to the capability of having
different kinds of data within a single
application (such as plain notes and outlines in
the Notepad) and/or to the capability of having
different ways of viewing the same data (such as
the Card and All Info views in the Names file).
Implementing stationery involves writing data
definitions and view definitions. See also data
definition and view definition.

store A physical repository that can contain
soups and packages. A store is like a volume on
a disk on a personal computer.

store part A part that encapsulates a read-only
store. This store may contain one or more soup
objects. Store parts permit soup-like access to
read-only data residing in a package. Store parts
are sometimes referred to as package stores.

ARENDI-DEFS00004562

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 116 of 144 PageID #: 29563

GLOSSARY

target The object being acted upon.
Sometimes the target consists of multiple items,
for example, when multiple items are selected
from an overview for sending.

template A frame that contains the data
description of an object (usually a view). A
template is intended to be instantiated at run
time. See also proto.

text run A sequence of characters that are all
displayed with the same font specification. Text
is represented in paragraph views as a series of
text runs with corresponding style (font spec)
information. See also font spec.

tick A sixtieth of a second.

transport A NewtonScript object that
provides a communication service to the
Newton In/Out Box. It interfaces between the In/
Out Box and an endpoint. Examples include the
print, fax, beam, and mail transports. See also
endpoint.

transport A special type of Newton
application used to send and/or receive data.
Transports communicate with the In/Out Box on
one end and typically to an endpoint object on
the other end. Examples include the built-in
transports such as print, fax, and beam. See also
endpoint.

user proto A proto defined by an application
developer, not supplied by the system.

view The object instantiated at run time from a
template. A view is a frame that represents a
visual object on the screen. The proto slot of
a view references its template, which defines its
characteristics.

view class A primitive building block on
which a view is based. All view protos are based
directly or indirectly (through another proto) on
a view class. The view class of a view is
specified in the viewC1ass slot of its template
or proto.

view definition A view template that defines
how to display data from a particular data
definition. A view definition is registered with
the system under the name of the data definition
to which it applies. The shortened term viewDef
is sometimes used. See also data definition.

wedge A pie-shaped segment of an oval,
bounded by a pair of radii joining at the oval's
center. Contrast with arc.

GL-7

ARENDI-DEFS00004563

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 117 of 144 PageID #: 29564

ARENDI-DEFS00004564

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 118 of 144 PageID #: 29565Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 118 of 144 PageID #: 29565

AREN D I—DEFSOOOO4564

Index

A

accessing query results 11-16
accessing tasks in the To Do List application 19-24
Action button 21-3

accessing routing actions from 21-3
adding to user interface 21-4
minimum actions for including 21-9
placement of 21-4

action button GL-1
action frames 18-5
Action picker

choosing a transport from 21-6
including a separator line in 21-23
types of routing actions 21-4

action template 18-5
AddAction 17-16
AddAlarm 17-11
AddAlarmInSeconds 17-11
AddAppointment, Dates method 19-11
AddArraySlot function 16-21
AddCard, Names method 19-6
AddCardData, Names method 19-6
AddEvent, Dates method 19-11
AddExtraIcon, Extras Drawer method 19-40, 19-42
adding a filing button 15-14
adding a new city to Time Zones 19-29
adding meetings or events to the Dates

application 19-11
adding views dynamically 3-33
AddLayout, Names method 19-6
address

converting e-mail to internet 22-9
address, user configuration variable 19-47
address class 22-6
AddStepView 3-35
AddUndoAction 17-8
AddUndoCall 17-8
AddUndoSend 17-8
alarm keys 17-11

retrieving 17-12

alarms
common problems 17-13
compatibility 17-5
creating 17-11
obtaining information about 17-12
periodic 17-4,17-14
removing 17-13

AlarmsEnabled 17-14
alerting user 17-3, 17-11
alias GL-1
aliases
advanced usage of 21-36
for routing target 21-13

allDataDefs slot 4-20
allLayouts 4-15
allViewDefs slot 4-20
alphaKeyboard 8-26
animating views 3-23
annotations in Dates application 19-10
appAll slot 15-10

creating 15-12
appearance of view

viewFormat slot 3-20, 3-48
AppFindTargets method 16-20
AppInstalled 21-32
AppleTalk functions
NetChooser function 24-22

AppleTalk functions and methods 24-12
AppleTalk tool 24-9
application
asynchronous operation of 23-2
base view 3-5
DeletionScript function 2-6
DoNotInstallScript function 2-5
InstallScript function 2-5
linking endpoint with 23-24
name 2-10
RemoveScript function 2-6
structure 2-1
symbol 2-11
synchronous operation of 23-3

application base view GL-1

IN-1

ARENDI-DEFS00004565

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 119 of 144 PageID #: 29566

I N D E X

application components
overview 1-15

application data class registry 21-33
application-defined routing actions 21-23
application extensions 5-1
application name

in appName slot 15-4
user-visible 15-4

application soup 16-10
appName slot 15-4, 15-10, 16-10
creating 15-11, 16-11

appObjectFileThisIn slot 15-4, 15-5, 15-10
creating 15-12

appObjectFileThisOn slot 15-4, 15-10
creating 15-12

appObjectUnfiled slot 15-10
creating 15-12

are 13-4, GL-1
arglist array in endpoint options 23-5
array GL-1
assistant 18-9
architectural overview 18-5
entries slot 18-11
input strings 18-2
input to 18-1
intelligent 18-1
introduction to 18-1
matching entire words 18-8
multiple verbs 18-2
ordering of words in 18-2
overview 1-8
phrases slot 18-11
system-supplied templates 18-11

assist slip 18-6
asynchronous cancellation in endpoints 23-21
asynchronous serial tool 24-1
asynchronous sound 14-7
automatic busy cursor 17-15
auto part 2-4
AutoPutAway 21-32
auxForm slot 21-15
auxiliary buttons 19-36
compatibility information 19-36
list of functions and methods 19-57
using 19-37

auxiliary view
displaying 21-15
instantiating with BuildContext 21-15

IN-2

Away City 19-27
away city GL-1

B

base view 3-5, GL-1
basic endpoint 23-1, 23-8
BatteryCount 17-26
battery information 17-26
BatteryStatus 17-26
BcCreditCards, Names method 19-7
BcCustomFields, Names method 19-7
BcEmailAddress, Names method 19-7
BcEmailNetwork, Names method 19-7
BcPhoneNumber, Names method 19-7
behavior of view 3-9, 3-47
binary object GL-1
bitmaps 13-17
capturing portions of a view into 13-18
flipping 13-19
rotating 13-19
storing compressed 13-18

Book Maker
overview 1-10

Book Reader
overview 1-10

books
advantages and disadvantages 2-3

Boolean GL-1
bounds

finding and setting 3-39
screen-relative 3-12

BuildContext 3-36
built-in applications
application program interfaces 19-1

built-in fonts 8-19
built-in keyboards 8-26
built-in tasks 18-3
button host 19-37, GL-1
button protos 7-6
button provider 19-37, GL-1
buttons

in Find slip 16-2

ARENDI-DEFS00004566

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 120 of 144 PageID #: 29567

I N D E X

C

calendar
versus the term Dates 19-9

Calendar Notes soup 19-22
Calendar soup 19-22
callback functions 15-3

registering 15-11
registering for folder changes 15-8

callback spec GL-1
defining 23-2

calling 18-3
Call transport
opening routing slip for 21-29

cancelling endpoint requests 23-21
asynchronously 23-21
synchronously 23-22

cancelling task slip 18-4
CancelRequest 22-13
CanPutAway 22-18
card GL-1
card-based application 4-6
cardfile

versus the term Names 19-2
caret insertion writing mode 8-3, 8-38

disabling 8-3
enabling 8-3

caret pop-up menu 8-38
case sensitivity 18-8
change notifications 17-2, 17-10
checking-off tasks in the To Do List application 19-25
checklist in Find slip 16-3
checklists
Notes stationery 19-30, 19-33

CheckOutbox 22-9
child GL-1
child template 3-2, 3-3
child views

closing obsolete 3-43
laying out 3-43

chooser function 24-22
cities
adding to Time Zones application 19-29
obtaining information about in Time Zones

application 19-28
cityZip, user configuration variable 19-47
class GL-1

view 3-9, 3-47, GL-7

C1assAppByClass 21-33
class constants

clEditView 3-47
clGaugeView 3-47
clKeyboardView 3-47
clMonthView 3-47
clOutlineView 3-47
clParagraphView 3-47
clPickView 3-47
clPictureView 3-47
clPolygonView 3-47
clRemoteView 3-47
clView 3-47

C1earUndoStacks 17-9
clEditView 8-4, 8-6, 8-8, 13-15
clEditView class
ViewAddChildScript method 9-25

clipping
clipping of view 3-12
clipping region 13-12
controlling 13-12

clKeyboardView 8-4, 8-28
cloning sound frames 14-5
closing a view 3-29
clParagraphView 8-4, 8-10
clPictureView 13-15
clPolygonView
features 13-14

clRemoteView 13-15
clView 2-2
communications architecture 1-11
communication tools

built-in 24-1
serial 24-1

company, user configuration variable 19-47
compatibility information
auxiliary buttons 19-36
Dates application 19-9
Endpoint interface 23-7
Extras Drawer 19-39
Filing service 15-9
Find service 16-6
Formulas roll 19-36
Names application 19-3
Notes application 19-31
Prefs roll 19-36
routing 21-8
Time Zones application 19-27
To Do List application 19-23

IN-3

ARENDI-DEFS00004567

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 121 of 144 PageID #: 29568

I N D E X

completion
CompletionScript 23-18
handling unexpected in endpoints 23-18

compressed images
storing 13-18

configuration string usage 25-7
confirm 18-4
confirming task slip 18-4
conflict-resolution mechanism 18-16
constant GL-1
controlling clipping 13-12
controlling recognition in views 9-8
controls
compatibility 7-1
protos 7-2 to 7-15

coordinate system 3-6
copying functions

summary of 26-2
correcting intelligent assistant input 18-4
countries
obtaining information about a city or country 19-28

country, user configuration variable 19-47
countrySlot, user configuration variable 19-47
CreateTODOItem, To Do List method 19-24
CreateTODOItemAll, To Do List method 19-24
creating 19-42
creating and removing tasks in the To Do List

application 19-24
creating a shape object 13-9
creating a view 3-28
creating new meeting types in the Dates

application 19-17
creating notes in Notes application 19-32
creating sound frames 14-5
currentAreaCode, user configuration variable 19-47
currentCountry, user configuration variable 19-48
currentEmporium, user configuration variable 19-48
current format 21-8
currentPersona, user configuration variable 19-48
currentPrinter, user configuration variable 19-48
cursor 11-5, GL-2

part cursor 19-40
custom fill 3-21
CustomFind method 16-11, 16-24, 16-28
customizing folder tab views 15-15
custom sound frames
creating 14-4
using 14-4

custom view frame pattern 3-21

IN-4

D

dataDef 5-2
allSoups slot 5-6
creating 5-8
MakeNewEntry example 5-9
StringExtract example 5-10
TextScript example 5-11
using FillNewEntry 5-6
using MakeNewEntry 5-9
using StringExtract 5-9
using TextScript 5-9

data definition GL-2
dataDefs

registering in a NewtApp application 4-20
data form GL-2
data forms in endpoints 23-4

binary data 23-20
tagging data with 23-4
template 23-5
uses of 23-5

data in endpoints
filter options 23-16
formatting 23-13
sampling incoming 23-18
sending 23-11
streaming 23-20
use of PartialScript with 23-18

dataRect 7-4
data shapes

translating 13-16
data storage system
overview 1-5

data termination in endpoints
conditions for 23-14
ending with particular data 23-14
sequence for 23-15
use of termination slot with 23-14
use of useEOP slot with 23-15

data types for routing 21-7
dataTypes slot 21-5
date find 16-7
DateFind method 16-7, 16-10, 16-28

example 16-18
implementing 16-18
returning results 16-21

date find mode 16-6
DateF ind Targeted method 16-20

ARENDI-DEFS00004568

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 122 of 144 PageID #: 29569

I N D E X

dateKeyboard 8-27
Dates

compatibility information 19-9
versus the term calendar 19-9

Dates application 19-8
adding meetings or events 19-11
controlling display features 19-21
creating new meeting types 19-17
deleting meetings or events 19-12
finding meetings or events 19-13
getting and setting information for meetings or

events 19-15
getting a reference to 19-10
list of methods 19-54
moving meetings or events 19-14
soup format 19-52
soups 19-22

date search
description 16-2

declareSelf slot 3-24
declaring a template GL-2
declaring a view 3-27
DecodeRichString 8-24
deferred reception of data 22-10
deferred recognition 8-2, GL-2
defining keys in a keyboard view 8-30
defining tabbing order 8-36
DeleteAppointment, Dates method 19-12
DeleteEvent, Dates method 19-12
DeleteRepeatingEntry, Dates method 19-12
DeleteTransport 22-6
deleting a sound channel 14-6
deleting meetings or events from the Dates

application 19-12
DeletionScript function 2-6
dependent views 3-43
desktop GL-2
developer-defined methods
for Find overview support 16-21

developer signature 2-9
dialingPrefix, user configuration variable 19-48
dialog view
creating 3-38

dial tones
generating 14-8

digital books
advantages and disadvantages 2-3

dirtying views 3-33

DisplayDate, Dates method 19-20
displaying graphics shapes 13-14
displaying scaled images 13-15
displaying text and ink 8-14
displaying views 3-33
doAutoAdd, user configuration variable 19-48
do button 18-3
doCardRouting slot 15-4, 15-5, 15-11
creating 15-18

doInkWordRecognition, user configuration
variable 19-48

DoNotInstall Script function 2-5
dontStartWithFolder slot 15-5, 15-11
DoProgress 17-16

cancelling 17-18
vs. protoStatus Template 17-18

doShapeRecognition, user configuration
variable 19-48

doTextRecognition, user configuration variable 19-48
drawing

how to 13-9
non-default fonts 13-20
optimizing performance 13-22

drawing views 3-44
dynamically adding views 3-33

E

e-mail address
converting to internet 22-9

emailPassword, user configuration variable 19-48
emporium GL-2
emporium popup proto 19-8
endpoint GL-2
about 23-1
binary data 23-20
canceling requests 23-21
compatibility 23-7
constants 23-25
data filter options 23-16
data forms 23-4
data structures 23-26
data termination conditions 23-14
description of 23-1
error handling 23-23
functions and methods 23-30

IN-5

ARENDI-DEFS00004569

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 123 of 144 PageID #: 29570

I N D E X

endpoint (continued)
input form 23-13
input spec 23-12
input target 23-13
input time-out 23-16
instantiating 23-10
linking to application 23-24
protoBasicEndpoint 23-1
protos 23-28
protoStreamingEndpoint 23-20
rcvOptions slot 23-17
setting options 23-8
summary of 23-25
terminating 23-10
using 23-8

endpoint interface
overview 1-14

endpoint option GL-2
endpoint options

setting 23-10
specifying 23-8

EnsureVisibleTopic, To Do List method 19-26
entries 11-4
entries slot 18-11
entry GL-2
entry alias GL-2
enumerated dictionary GL-2
EOP GL-2
error handling

in transports 22-20
establishing an endpoint connection
with Connect 23-11
with Listen 23-11

evaluate slot GL-2
event GL-2
event-related sounds

how to play 14-3
slots for 14-2

events
in Dates application 19-8

Everywhere buttton 16-2
exceptions

handling in endpoints 23-23
extending an application with stationery 5-7
extending the intelligent assistant 18-1
extending the Names application 19-2
ExtractRangeAsRichString 8-24

IN-6

Extras Drawer 19-38
compatibility information 19-39
getting a reference to 19-39
list of methods 19-58
part cursors 19-40

F

faxing 18-3, 21-19
preparation for 21-9
sequence of events for 21-19

faxPhone, user configuration variable 19-48
fax profile option 25-2
fax soup entries 19-34
field GL-2
fields slot 21-15
file button 15-6
FileThis method 15-9, 15-11

implementing 15-15
filing 15-1

implementing 15-10
overview 1-11, 15-5
target 15-1
user interface illustrated 15-3

filing button 15-2, 15-11
adding 15-14

FilingChanged method 15-9
filing compatibility information 15-9
filing filter 15-7
filing functions
RegFolderChanged 15-3
UnRegFolderChanged 15-3

filing functions and methods 15-22
developer-supplied 15-22

filing protos 15-21
filing received items 21-34
filing services 15-1
filing slip

buttons in 15-3
filing categories in 15-3
illustrated 15-5
routing from 15-18

filing target 15-10
filterChanged method 15-9

ARENDI-DEFS00004570

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 124 of 144 PageID #: 29571

I N D E X

filter options 23-16
use of byteProxy slot with 23-16
use of filter slot with 23-16

Find
global 16-3
local 16-3
overview 1-10

Find, targeted 16-19
FindAppointment, Dates method 19-13
finder GL-2
finder frame 16-11
finder proto

choosing 16-11
ROM CompatibleFinder 16-7
soupFinder 16-7

FindExactlyOneAppointment, Dates method 19-13
finding 18-3
finding meetings or events in the Dates

application 19-13
Find method 16-7,16-10,16-28

returning results 16-21
Find overview

filing, deleting, moving items from 16-9
illustrated 16-4

Find service
compatibility information 16-6
date find 16-6
DateFind method 16-18
introduction to 16-1
overview list 16-4
registering 16-3, 16-25
reporting progress in 16-4
result frame 16-12
ROM CompatibleFinder proto 16-12
ROM SoupFinder proto 16-7,16-12
search method 16-6, 16-14
search mode 16-6
soups and 16-10
text find 16-6
title slot 16-7
unregistering 16-25

Find slip
and foremost application 16-4
checklist in 16-3
Everywhere button in 16-2
Find button in 16-9
kind of search in 16-2
Look For menu in 16-5

radio button 16-11
replacing 16-4,16-11, 16-24
Selected button in 16-2, 16-3
status message in 16-5
system-supplied 16-2

FindSoupExcerpt method 16-7, 16-10, 16-21, 16-28
example 16-22
implementing 16-21

Find status message
illustrated 16-5

FindTargeted method 16-20
firstDayOfWeek, Dates variable 19-21, 19-46
flag GL-3
flags

vApplication 3-47
vCalculateBounds 3-47
vClickable 3-47
vClipping 3-47
vFloating 3-47
vNoFlags 3-47
vNoScripts 3-47
vReadOnly 3-47
vVisible 3-47
vWriteProtected 3-47

folder change
registering callback functions 15-8

folderChanged 15-9
folder-change notification service 15-11

using 15-18
folder change registry 15-9
folders

global 15-19
local 15-19

folder tab 15-7
folder tab popup list 15-8
folder tab views 15-11

adding 15-14
customizing 15-15

fonts
built-in 8-19
constraining style of 8-17
drawing non-default 13-20
family symbols 8-18
font frame 8-18
for text and ink display 8-3
packed integer specification 8-19
packing constants 8-21
specifying 8-17

IN-7

ARENDI-DEFS00004571

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 125 of 144 PageID #: 29572

I N D E X

fonts (continued)

specifying for a view 3-24

style numbers 8-18

font spec 8-3, GL-3

font specification 8-17
packed integer format 8-19

font styles 8-18, 8-25

constraining in view 8-17

forceNewEntry slot 4-16

format picker

in routing slip 22-27
formatting endpoint data 23-13

Formulas roll 19-35,19-57

compatibility information 19-36

frame 3-2,11-2, GL-2, GL-3

framed asynchronous serial tool 24-4

frame functions and methods 26-7
frame routing format

creating 21-21

frame types 18-16

free-form entry field GL-3

fromRef slot
setting in item frame 22-14

function object GL-3

functions and methods

AddAction 17-16

AddAlarm 17-11

AddAlarmInSeconds 17-11
AddAppointment, Dates method 19-11

AddCard, Names method 19-6

AddCardData, Names method 19-6

AddEvent, Dates method 19-11

AddExtraIcon, Extras Drawer method 19-40, 19-42

AddLayout, Names method 19-6
AddStepView 3-35

AddUndoAction 17-8

AddUndoCall 17-8

AddUndoSend 17-8

AlarmsEnabled 17-14

AppInstalled 21-32
AutoPutAway 21-32

BatteryCount 17-26

BatteryStatus 17-26

BcCreditCards, Names method 19-7

BcCustomFields, Names method 19-7
BcEmailAddress, Names method 19-7

BcEmailNetwork, Names method 19-7

BcPhoneNumber, Names method 19-7

IN-8

BuildContext 3-36

CancelRequest 22-13

CanPutAway 22-18
CheckOutbox 22-9

C1assAppByClass 21-33

C1earUndoStack 17-9

CreateToDoItem, To Do List method 19-24

Create TODOItemA11, To Do List method 19-24

DecodeRichString 8-24
DeleteAppointment, Dates method 19-12

DeleteEvent, Dates method 19-12

DeleteRepeatingEntry, Dates method 19-12

DeleteTransport 22-6

DisplayDate, Dates method 19-20

DoProgress 17-16
EnsureVisibleTopic, To Do List method 19-26

ExtractRangeAsRichString 8-24

FindAppointment, Dates method 19-13

FindExactlyOneAppointment, Dates method 19-13

GetActiveView 21-30
GetAlarm 17-12

GetAppAlarmKeys 17-12

GetAppPrefs 19-45

GetCityEntry 19-28

GetCountryEntry 19-28

GetDefaultFormat 21-11
GetExtraIcons, Extras Drawer method 19-41

GetMeetingIconType, Dates method 19-16

GetMeetingInvitees, Dates method 19-15

GetMeetingLocation, Dates method 19-15

GetMeetingNotes, Dates method 19-15

GetPartCursor, Extras Drawer method 19-40
GetPartEntryData, Extras Drawer method 19-40

GetRichString 8-24

GetRouteScripts 21-23

GetSelectedDates, Dates method 19-20

GetTargetCursor 21-24
GetTargetInfo 21-10

GetTaskShapes, To Do List method 19-26

GetToDoEntry, To Do List method 19-24

GetToDoItemsForRange, To Do List method 19-24

GetTODOItemSFOrThisDate, To Do List

method 19-24
GetToDoShapes, To Do List method 19-26

GetTransportScripts 22-17

GetUserConfig 19-45

InstallScript 22-5

IsRichString 8-24

ARENDI-DEFS00004572

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 126 of 144 PageID #: 29573

I N D E X

functions and methods (continued)

ItemCompleted 22-16

KillAction 17-16

LastVisibleTopic, To Do List method 19-26

LaunchPartEntry, Extras Drawer method 19-40
LocObj 20-1 to 20-5

MakeRichString 8-24

MakeTextNote, Notes method 19-32

MeasureString 20-6

NewCity, Time Zones method 19-29

Newltem 22-13
NewNote, Notes method 19-32

NextToDoDate, To Do List method 19-25

Normal izeAddress 22-9

Notify 17-3,17-11

OpenKeyPadFor 8-36

OpenMeetingSlip, Dates method 19-21
OpenTo, Names method 19-6

PeriodicAlarm 17-15

PointToCharOffset 8-38

PointToWord 8-38

PutAwayScript 21-33
QueueRequest 22-12

QuietSendAll 22-9

ReceiveRequest 22-9

RegAppClasses 21-33

RegAuxButton 19-37

ReglnboxApp 21-34
RegInfoItem, Dates method 19-21

RegisterOpenKeyboard 8-36

RegLogin 17-25

RegMeetingType, Dates method 19-17

RegNamesRoute Script, Names method 19-6

RegPowerOff 17-25
RegPowerOn 17-24

RegPrefs 19-36

RegTransport 22-5

RegUserConfigChange 19-45

RemoveAlarm 17-13

RemoveAppAlarms 17-13
RemoveExtraIcon, Extras Drawer method 19-41,

19-43

RemoveOldTODoltems, To Do List method 19-24

ReplaceInkData, Names method 19-6

RouteScript 21-24
SafeRemoveLayout, Names method 19-6

Send 21-26

SendRequest 22-8

SetDefaultFormat 21-11

SetDone, To Do List method 19-25

SetEntryAlarm, Dates method 19-15
SetExtrasInfo, Extras Drawer method 19-40

SetLocalizationFrame 20-4

SetLocation, Time Zones method 19-30

SetMeetingIconType, Dates method 19-16

SetMeetingInvitees, Dates method 19-15

SetMeetingLocation, Dates method 19-15
SetMeetingNotes, Dates method 19-15

SetPriority, To Do List method 19-26

SetRepeatingEntryStopDate, Dates method 19-15

SetStatusDialog 22-23

SetUpldle 17-9

SetupItem 21-12
SetValue 8-14

ShowBusyBox 17-15

ShowFoundltem, Names method 19-6

Stripink 8-24

TargetIsCursor 21-24
TransportChanged 22-7

TransportNotify 22-19

UnRegAppClasses 21-31

UnRegAuxButton 19-37

UnRegFormulas 19-36

UnReglnboxApp 21-34
UnRegInfoItem, Dates method 19-21

UnregisterOpenKeyboard 8-36

UnRegLogin 17-25

UnRegPowerOff 17-26

UnRegPowerOn 17-24

UnRegTheseAppClasses 21-33
UnRegTransport 22-6

UnRegUserConfigChange 19-45

VerifyRoutingInfo 21-10

ViewldleScript 17-9

ViewSetupChildrenScript 8-7

G

generating dial tones 14-8

gesture GL-3

GetActiveView 21-30

GetAlarm 17-12
GetAppAlarmKeys 17-12

GetAppPrefs 19-45

IN-9

ARENDI-DEFS00004573

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 127 of 144 PageID #: 29574

I N D E X

GetCityEntry 19-28

GetCountryEntry 19-28

GetDefaultFormat 21-11

GetDefs 5-8

GetExtraIcons, Extras Drawer method 19-41
GetMeetingIconType, Dates method 19-16

GetMeetingInvitees, Dates method 19-15

GetMeetingLocation, Dates method 19-15

GetMeetingNotes, Dates method 19-15

GetPartCursor, Extras Drawer method 19-40

GetPartEntryData, Extras Drawer method 19-40
GetRichString 8-24

GetRouteScripts 21-23

GetSelectedDates, Dates method 19-20

GetTargetCursor 21-24

GetTargetlnfo 18-20, 21-10

GetTargetInfo method 15-6, 15-10
default behavior 15-2

overriding 15-13

GetTaskShapes, To Do List method 19-26

getting and setting information for meetings or events

in the Dates application 19-15
GetToDoEntry, To Do List method 19-24

GetToDoltemsForRange, To Do List method 19-24

GetTODOltemSFOrThisDate, To Do List method 19-24

GetToDoShapes, To Do List method 19-26

GetTransportScripts 22-17

GetUserConfig 19-45
global GL-3

global finds 16-3,16-9

'globalFind symbol 16-10

global folders 15-9,15-11, 15-19

globalFoldersOnly slot 15-4,15-19

glossary GL-1
grammar GL-3

graphics

shape-based 13-2

graphic shapes

displaying 13-14

grouping transports 22-7

H

handling input events 8-38
heap

NewtonScript 1-3

IN-10

help book 18-19

hidden view

showing 3-34

hideSound 14-2

hiding views 3-33
Highlighting 3-42

HitShape

using 13-16

Home City 19-27

setting 19-30

home city GL-3
homePhone, user configuration variable 19-48

how to draw 13-9

I, J

idler object 17-2, 17-9

imaging system

overview 1-9

immediate value GL-3
implementor GL-3

importing PICT resources 13-20

in box 21-1

application data class registry 21-33

application registry 21-31, 21-34

receiving items 21-31
routing 21-3

sorting items 21-2

storing incoming data 21-2

viewing items 21-34

infrared tool 24-8

inheritance GL-3
inheritance links

_parent slot 3-24

_proto slot 3-24

stepchildren slot 3-24

viewChildren slot 3-24
ink 8-1, GL-3

displaying 8-14

in views 8-14, 8-15

ink text

ViewAddC hild Script method 9-25

ink word GL-3
ink words 8-2

scaling 8-16

styling 8-16

ARENDI-DEFS00004574

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 128 of 144 PageID #: 29575

I N D E X

In/Out Box 1-13, GL-3
extending the user interface 22-17

input
termination of in endpoints 23-17
use of InputScript message for 23-17

input buffer for endpoints
removing data from 23-18

input data forms for endpoints 23-12
input events

handling 8-38
input line protos 8-4, 8-12
input spec 23-12, GL-3

components of 23-12
data filter 23-16
data termination 23-14
flushing input 23-18
input form 23-13
input target 23-13
input time-out 23-16
receive options 23-17
setting up 23-18
slot applicability 23-12, 23-13
uses for 23-3

input string 18-3, 18-4
multiple matches in 18-8
multiple verbs 18-2
no word matches 18-8
partial matches in 18-8
unmatched words in 18-8

input to assistant
correcting 18-4
missing information 18-4

input views
tabbing order for 8-36

insertion caret 8-38
InstallScript function 2-5, 18-19
InstallScript transport method 22-5
instantiate GL-3
instantiation

view 3-26
intelligent assistant 18-1
about matching 18-8
action frames 18-5
action template 18-5
ambiguous or missing information 18-4
canceling the task 18-4
matching process 18-8
multiple verbs 18-2

overview 1-8
preconditions slot 18-10
primary action 18-18
signature 18-10
supporting 21-30
target frames 18-5
target template 18-5
task template 18-5
use of GetActiveView with 21-30
words that match multiple templates 18-8

IR Tool 24-8
IsRichString 8-24
ItemCompleted 22-16
item frame GL-4
item frame for routing 22-2

creating 22-13

K

key
alarm 17-11

keyboard
context sensitive 8-36
double-tap 8-36

keyboard protos 8-28
keyboard registry 8-5

using 8-36
keyboard views 8-4, 8-26
alphaKeyboard 8-26
built-in types 8-26
dateKeyboard 8-27
defining keys in 8-30
key definitions array 8-31
key descriptor 8-34
key dimensions 8-35
key legend for 8-32
key result 8-33
numericKeyboard 8-27
phoneKeyboard 8-27

key definitions array 8-31
key descriptor 8-34
key dimensions 8-35
key legend 8-32
keypad proto 8-29
key result 8-33

IN-11

ARENDI-DEFS00004575

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 129 of 144 PageID #: 29576

I N D E X

keys
alarm 17-12

KillAction 17-16

L

labelsChanged parameter 15-16
labels filter 15-8
labelsFilter slot 15-8, 15-10
creating 15-14

labels slot 15-1, 15-6, 15-10
creating 15-11

lastFormats slot 21-12
LastVisibleTopic, To Do List method 19-26
latitude values 19-30
LaunchPartEntry, Extras Drawer method 19-40
laying out multiple child views 3-43
learningEnabledOption, user configuration

variable 19-48
leftHanded, user configuration variable 19-48
letterInFieldsOption, user configuration

variable 19-48
lettersCursiveOption, user configuration

variable 19-48
letterSetSelection, user configuration variable 19-48
letterSpaceCursiveOption, user configuration

variable 19-48
lexical dictionaries 18-2
lexical dictionary GL-4
lightweight paragraph views 8-4, 8-11
line 13-2, GL-4
lined paper effect 8-8
line patterns

defining 8-9
list of functions 19-57
local finds 16-3,16-25
'localFind symbol 16-10
local folders 15-19
localFoldersOnly slot 15-4, 15-19
localization 15-10
local variable GL-4
location, user configuration variable 19-48
LocObj function 20-4 to 20-5
logging

in transports 22-16
login screen functions 17-25

IN-12

longitude values 19-30
Look For popup menu 16-5

M

magic pointer 1-17, GL-4
mailAccount, user configuration variable 19-48
mailing 18-3
mailNetwork, user configuration variable 19-48
mailPhone, user configuration variable 19-48
MakeNewEntry 5-9
MakeRichString 8-24
MakeTextNote, Notes method 19-32
manipulating sample data 14-10
manipulating shapes 13-7
margins slot 21-18
masterSoupSlot 4-19
MeasureString function 20-6
meeting 18-3, GL-4

in Dates application 19-8
meetings 18-3
meeting types in Dates application 19-17
memory
affected by system resets 2-7
conserving use of 2-8
system overview 1-3
usage by views 3-45

menuLeftButtons 4-18
menuRightButtons 4-19
message GL-4
method 3-2, GL-4
MinimalBounds 5-14
MNP compression

serial tool 24-4
modal views 3-38
creating 3-39
opening 3-39

modem setup
configuration string usage 25-7
definition 25-5
general information 25-5
general information constants 25-9
operation 25-3
package 25-1
preferences constants 25-9
preferences option 25-5

ARENDI-DEFS00004576

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 130 of 144 PageID #: 29577

I N D E X

modem setup (continued)
process 25-3
profile constants 25-9
profile option 25-6, 25-7
user interface 25-2

modem setup package 25-1
modem setup service 25-1
about 25-1
required modem characteristics 25-1
user interface 25-1

modem tool
preferences option 25-2
profile option 25-2
requirements 25-4

moving meetings or events in the Dates
application 19-14

N

name, user configuration variable 19-48
name reference 22-4, GL-4
creating 21-27
example of 21-28

Names
compatibility information 19-3
versus the term cardfile 19-2

Names application 19-2
adding auxiliary buttons to 19-37
adding card layout style 19-5
adding dataDefs 19-4
adding layouts to 19-6
adding new data item 19-4
adding new type of card 19-4
adding viewDefs 19-4
getting a reference to 19-6
list of methods 19-53
Names soup 19-7
soup format 19-49

names card layouts 19-46
nested arrays

transform slot 13-11
NetChooser function 24-22
New button, definition of 5-2
NewCity, Time Zones method 19-29
NewFilingFilter method 15-8,15-9,15-11

implementing 15-8,15-16

NewItem 22-13
overriding to add slots 22-15

NewNote, Notes method 19-32
NewtApp
advantages and disadvantages 2-2
allDataDefs slot 4-20
allSoups slot 4-16
allViewDefs slot 4-20
Default Layout 4-19
Entry Views 4-19
forceNewEntry slot 4-16
InstallScript 4-21
layout protos, using 4-16
layouts, controlling menu buttons 4-18
masterSoupSlot 4-19
menuRightButtons 4-19
newtFalseEntryView 4-22
RemoveScript 4-21

NewtApp application
constructing 4-12

NewtApp application framework 4-12
NewtApp entry view protos 4-8
NewtApp framework 4-1
NewtApp layout protos 4-5
newtApplication 4-4, 4-14
allSoups slot 5-6

NewtApp protos 4-2
NewtApp slot views 4-9
newtFalseEntryView 4-22
Newton 2.0
overview of changes 1-18

NewtonScript
heap 1-3, GL-4
language overview 1-18

newtOverLayout 4-17
newtSoup 4-5
NextToDoDate, To Do List method 19-25
nil GL-4
noise words in assistant 18-9
no match in input string 18-8
Normal izeAddress 22-9
notes
Notes stationery 19-30, 19-33

Notes application 19-30
adding auxiliary buttons to 19-37
adding stationery 19-33
compatibility information 19-31
creating new notes 19-32

IN-13

ARENDI-DEFS00004577

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 131 of 144 PageID #: 29578

I N D E X

Notes application (continued)
list of methods 19-57
soup 19-33
soup format 19-53
versus term paperroll 19-31

Notes stationery 19-30, 19-33
notifications 17-2, 17-10
Notify 17-3,17-11
notify icon
adding action to 17-16

numericKeyboard 8-27

0

object GL-4
object storage system
overview 1-5

object system functions and methods 26-7
obtaining information about a city or country

Zones application 19-28
online help 17-10, 18-3
'onlyCardRouting symbol 15-5
OpenKeyPadFor 8-36
OpenMeetingSlip, Dates method 19-21
OpenTo, Names method 19-6
operating system
overview 1-1

option frame GL-4
option frame for endpoints

example of 23-9
result slot 23-10

options
resource arbitration 24-10

options for endpoints
setting 23-7
specifying 23-8

ordering of words in assistant 18-2
orientation slot 21-18
origin GL-4
out box 21-1

receiving items 21-31
routing actions 21-3
sorting items 21-2
transmitting data 21-3
viewing items in 21-34

outlines 19-30, 19-33

IN-14

n Time

output spec 23-2, GL-4
oval 13-4, GL-4
overviews 6-1

routing from 21-14
owner information
using in routing slip 22-30

owner slot 16-8

P

package 1-4, GL-4
activation 2-5
deactivation 2-6
loading 2-5
name 2-11

package file GL-4
package store GL-4
package store. See store part
packed integer font specification 8-19
page-based application 4-6
page layout in print formats
controlling orientation of 21-18
layout of multiple items 21-19
margins slot 21-18

paperroll
versus the term Notes 19-31

paper roll-style application 4-6
paperSize, user configuration variable 19-48
paperSizes, user configuration variable 19-48
paragraph views 8-10
parent 3-2, GL-4
parent slot 3-4, 3-25
parent template 3-2, 3-3
ParseUtter function 18-8
ParseUtter result

phrases slot 18-11
part GL-5
part cursors 19-40
part frame GL-5
partially-matched phrases 18-8
parts

soup 12-4
store 12-4

PCMCIA GL-5
performance optimization 3-44
PeriodicAlarm 17-15

ARENDI-DEFS00004578

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 132 of 144 PageID #: 29579

I N D E X

periodic alarms 17-4, 17-14
persistent storage 1-3
persona GL-5
persona popup proto 19-7
phone, user configuration variable 19-48
phoneKeyboard 8-27
phrases slot 18-11
picker GL-5
pickers 6-1
about 6-1
compatibility 6-2
date 6-17
location 6-17
map 6-8
number 6-21
time 6-17

PickItems array
specifying 6-37

PICT
swapping during run-time 13-21

picture GL-5
pictures 13-6

setting a default 13-21
storing compressed 13-18

pitch shifting 14-9
pixel 3-6
playing event related sounds 14-3
playing sound
global sound functions 14-5
sound channel 14-5

please menu
built-in tasks 18-3

please slip 18-3
pop-up menu in 18-3

PointToCharOffset 8-38
PointToWord 8-38
polygon 13-5, GL-5
pop-up GL-5
pop-up menu

in Find slip 16-2
popups 6-1
about 6-1
compatibility 6-2

pop-up views 3-37
PostParse method 18-6, 18-17
power information 17-26
power-off functions 17-25
power-off handling for endpoints 23-23

power-on functions 17-24
power registry 17-7,17-24

login screen functions 17-25
power-off functions 17-25
power-on functions 17-24

preconditions array
relationship to signature array 18-10

preconditions slot in intelligent assistant 18-10
preferences
for transports 22-17
storing application preferences in system

soup 19-45
preferences template for transports 22-33
Prefs roll 19-35

adding and removing items 19-36
compatibility information 19-36
list of functions 19-57

primary_act slot 18-6
primary action 18-18
printer

slot in item frame 21-28
specifying for routing 21-28

printing 18-3, 21-19
overview 1-9
preparation for 21-9
sequence of events for 21-19

progress
reporting to the user 16-24

progress indicators 17-15, 17-16
progress slip 16-4
creating 17-18
illustrated 16-4

project GL-5
protection slot 21-35
proto 3-4, GL-5
protoActionButton 21-4
protoAddressPicker 22-31
protoAlphaKeyboard 8-28, 8-30
protoBasicEndpoint 23-8
features of 23-1

protoClockFolderTab 15-6, 15-9
illustrated 15-3
TitleClickScript method of 15-7

protocol GL-5
protoDateKeyboard 8-28, 8-30
protoEmporiumPopup 19-8
protoFilingButton proto 15-9
protoFilingButton view 15-14

IN-15

ARENDI-DEFS00004579

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 133 of 144 PageID #: 29580

I N D E X

protoFolderTab proto 15-9

protoFrameFormat 21-21

protoFullRouteSlip 22-27

protoInputLine 8-12, 8-13, 8-14

protoKeyboard 8-28
protoKeyboardButton 8-28, 8-29

protoKeypad 8-28, 8-29

protoLabelInputLine 8-13

protoListPicker

using 6-26

protoNewFolderTab 15-6,15-9
protoNewFolderTab view 15-11

protoNumericKeyboard 8-28, 8-30

protoPeriodicAlarmEditor 17-4,17-14

protoPersonaPopup 19-7

protoPhoneKeyboard 8-28, 8-30

protoPrinterChooserButton 21-29
protoPrintFormat 21-18

protoRoutingFormat 21-22

proto slot 3-4, 3-24

protoSmallKeyboardButton 8-28, 8-30

protoStaticText 8-13
proto Status Template 17-18, 22-21

vs. DoProgress 17-18

protoStreamingEndpoint 23-20

proto templates

buttons and boxes 7-6

for keyboards 8-28
for text 8-4

input line 8-4, 8-12

protoActionButton 21-4

protoAddressPicker 22-31

protoAlphaKeyboard 8-28, 8-30

protoBasicEndpoint 23-8
protoDateKeyboard 8-28, 8-30

protoFrameFormat 21-21

protoFullRouteSlip 22-27

protoInputLine 8-12, 8-13, 8-14

protoKeyboard 8-28

protoKeyboardButton 8-28, 8-29
protoKeypad 8-28, 8-29

protoLabelInputLine 8-13

protoNumericKeyboard 8-28, 8-30

protoPeriodicAlarmEditor 17-14

protoPhoneKeyboard 8-28, 8-30
protoPrinterChooserButton 21-29

protoPrintFormat 21-18

protoRoutingFormat 21-22

IN-16

protoSmallKeyboardButton 8-28, 8-30

protoStaticText 8-13

proto Status Template 17-18, 22-21
protoStreamingEndpoint 23-20

protoTransport 22-5

protoTransportHeader 22-25

protoTransportPrefs 22-33

scrollers 7-2 to 7-6

protoTransport 22-5
protoTransportHeader 22-25

protoTransportPrefs 22-33

punctuation pop-up 8-5

PutAwayScript 19-34, 21-33

putting away received items

automatically 21-31
filing items 21-34

manually 21-33

Q

queries

accessing results 11-16

QueueRequest 22-12
QuietSendAll 22-9

R

raw ink 8-2, GL-5

rcBaseInfo frame, example 10-15
rcGridInfo frame, example 10-15

recConfig frame, example 10-15

receiver GL-5

ReceiveRequest 22-9

receiving data

appSymbol slot 21-32
AutoPutAway method 21-32

foreign data 21-34

PutAwayScript method 21-33

receiving endpoint data

alternative methods of 23-19

flushing data 23-19
looking at incoming data 23-19

preparing for 23-13

specifying flags for 23-15

with Input 23-19

ARENDI-DEFS00004580

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 134 of 144 PageID #: 29581

I N D E X

receiving large objects 23-20

recognition flags

vAddressField 9-31

vAnythingAllowed 9-32

vCapsRequired 9-31
vClickable 9-32

vCustomDictionaries 9-31

vDateField 9-33

vGesturesAll owed 9-32

vLettersAllowed 9-31

vNameField 9-31
vNoSpaces 9-32

vNothingAllowed 9-32

vNumbersAllowed 9-31, 9-33

vPhoneField 9-33

vPunctuationA 11 owed 9-31

vShapesAllowed 9-32
vSingleUnit 9-32

vStrokesAllowed 9-32

vTimeField 9-33

recognition functions 10-54

recognition menu 8-14
recognition system

overview 1-7

recognized text 8-1, GL-5

rectangle 13-3, GL-5

redrawing views 3-44,13-10

reference GL-5
RegAppClasses 21-33

RegAuxButton 19-37

RegFindApps function 16-25, 16-28

RegFolderChanged function 15-3, 15-8, 15-10, 15-18

RegInboxApp 21-34

RegInfoItem, Dates method 19-21
region 13-6, GL-5

registering the task template 18-19

registering with Find service 16-3

RegisterOpenKeyboard 8-36

RegLogin 17-25

RegMeetingType, Dates method 19-17
RegNamesRouteScript, Names method 19-6

RegPowerOff 17-25

RegPowerOn 17-24

RegPrefs 19-36

RegTaskTemplate function 18-19
RegTransport 22-5

RegUserConfigChange 19-45

remembering 18-3

remote transport items 22-10

RemoveAlarm 17-13

RemoveAppAlarms 17-13
RemoveExtraIcon, Extras Drawer method 19-41,

19-43

RemoveOldTODOItems, To Do List method 19-24

RemoveScript function 2-6

Repeat Notes soup 19-22

ReplaceInkData, Names method 19-6
replacing the system-supplied Find slip 16-4, 16-11

reset, system 2-7

resource GL-5

resource arbitration options 24-10

restore GL-5

restricted entry field GL-5
result frame 16-12

results array 16-8, 16-21

Find service 16-7

result slot in endpoint option frame 23-10

rich string GL-6
rich string format 8-2, 8-23, GL-6

rich strings 8-2, 8-22

conversion of 8-23

format of 8-2, 8-23

functions for 8-24

usage considerations 8-23
rollScrolling slot 21-36

ROM CalendarNotesName 19-22

ROM_ CalendarSoupName 19-22

ROM_ CompatibleFinder proto 16-8,16-12

and routing 16-9, 16-10

example of use 16-17
ShowFakeEntry 16-23

ShowFoundItem 16-23

vs. ROM SoupFinder 16-10

ROM_ rcSingleCharacterConfig frame, example 10-15

ROM_ RepeatMeetingName 19-22
ROM_ RepeatNotesName 19-22

ROM SoupFinder proto 16-7,16-10,16-12,16-21,

16-26, 16-27

example of use 16-16

ShowFoundItem method 16-22

using 16-18
vs. ROM_ CompatibleFinder 16-10

root view 3-6, GL-6

rotating a bitmap 13-19

rounded rectangle 13-5, GL-6

routeFormats slot 21-9

IN-17

ARENDI-DEFS00004581

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 135 of 144 PageID #: 29582

I N D E X

RouteScript 21-24

example of 21-25

routeScripts slot 21-22, 21-23, 21-24

defining a method identified by 21-24

routing
about 21-1

application-specific 21-22

compatibility 21-8

current format 21-8

data types 21-7

dataTypes slot 21-5
formats 21-5

handling multiple items 21-14, 21-24

in box 21-1

lastFormats slot 21-12

out box 21-1, 21-3

programmatic sending 21-26
protoActionButton 21-4

protoFrameFormat 21-21

protoPrinterChooserButton 21-29

protoPrintFormat 21-18

protoRoutingFormat 21-22
providing transport-based actions 21-9

receiving data 21-31

routeFormats slot 21-9

routeScripts slot 21-22

sending items programmatically 21-26

transport-related 21-9
using 21-8

using aliases 21-13, 21-36

view definition registration 21-16

view definitions 21-34

viewing items in In/Out box 21-34

routing actions
application-specific 21-22

building 21-4

disabling application-specific 21-25

performing 21-24

routing format GL-6

routing formats
creating new 21-22

example of 21-16

functions to use 21-17

registering 21-7, 21-16, 21-17

use of built in 21-7
routing functions and methods

AppInstalled 21-32

AutoPutAway 21-32

IN-18

C1assAppByClass 21-33

GetActiveView 21-30

GetDefaultFormat 21-11
GetRouteScripts 21-23

GetTargetCursor 21-24

GetTargetInfo 21-10

PutAwayScript 21-33

RegAppClasses 21-33

RegInboxApp 21-34
RouteScript 21-24

Send 21-26

SetDefaultFormat 21-11

SetupItem 21-12

TargetIsCursor 21-24

UnRegAppClasses 21-31
UnReglnboxApp 21-34

UnRegTheseAppClasses 21-33

VerifyRoutingInfo 21-10

routing interface

overview 1-13
routing slip 18-3, 22-26, GL-6

opening programmatically 21-29

picking address in 22-31

positioning child views in 22-30

using owner information in 22-30

S

SafeRemoveLayout, Names method 19-6

sample action template 18-16

sample data

manipulating 14-10
sample target template 18-16

scaled images

displaying 13-15

use of clRemoteView 13-15

scheduling 18-3

scope parameter 16-10
script icon GL-6

script icons 19-38, 19-42

scrollAmounts 7-5

scrollDownSound 14-2

scrollers 7-2 to 7-6

advancing 7-5
scroller slots 7-3, 7-4, 7-5

ARENDI-DEFS00004582

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 136 of 144 PageID #: 29583

I N D E X

scrolling
controlling in In/Out Box view def 21-36
speeding up 3-46

scrollRect 7-3
scrollUpSound 14-2
search method 16-7
search methods 16-6, 16-10

examples 16-16
implementing 16-15
returning results of 16-21
scope parameter to 16-10
StandardFind 16-15

Selected button 16-2, 16-3
selected Finds 16-9

targeted find 16-19
selection hits

testing for 8-38
self GL-6
Send 21-26
send button

in routing slip 22-28
sending data with endpoints 23-11
sending large objects 23-20
SendRequest 22-8
serial options 24-2, 24-5
serial tool 24-1
framed asynchronous 24-4
MNP compression 24-4
standard asynchronous 24-1
summary of serial options 24-2, 24-5

SetDefaultFormat 21-11
SetDone, To Do List method 19-25
SetEntryAlarm, Dates method 19-15
SetExtrasInfo, Extras Drawer method 19-40
SetLocalizationFrame 20-4
SetLocation, Time Zones method 19-30
SetMeetingIconType, Dates method 19-16
SetMeetingInvitees, Dates method 19-15
SetMeetingLocation, Dates method 19-15
SetMeetingNotes, Dates method 19-15
SetMessage method 16-24,16-28
SetPriority, To Do List method 19-26
SetRepeatingEntryStopDate, Dates method 19-15
SetStatusDialog 22-23
setting target

in GetTargetInfo method 15-2
setting target view

in GetTargetInfo method 15-2

setting up the application soup for
newtApplication 4-15

SetUpIdle 17-9
SetupItem 21-12
SetUserConfig 19-45
SetValue 8-14
shape GL-6

finding points within 13-16
manipulating 13-7
nested arrays of 13-10
structure 13-2
transforming 13-13

shape-based graphics 13-2
shape objects 13-2

are 13-4
creating 13-9
line 13-2
oval 13-4
polygon 13-5
rectangle 13-3
rounded rectangle 13-5

shape recognition
ViewAddChildScript method 9-25

ShowBusyBox 17-15
Show button, definition of 5-3
ShowFakeEntry 16-10,16-23
ShowFoundItem 16-8,16-10,16-21,16-23,16-28

example 16-22
ShowFoundItem, Names method 19-6
showing a hidden view 3-34
showSound 14-2
siblings GL-6
sibling views 3-13
signature 18-10
signature, user configuration variable 19-48
signature guidelines 2-9
signature slot

relationship to preconditions array 18-10
sketch ink 8-2, GL-6
slot GL-6
global GL-3

sound
asynchronous 14-7
overview 1-9
pitch shifting 14-9
playing 14-5
playing on demand 14-6
responding to user input 14-7

IN-19

ARENDI-DEFS00004583

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 137 of 144 PageID #: 29584

I N D E X

sound (continued)
synchronous 14-7
waiting for completion 14-7

sound channel
characteristics of 14-2
creating for playback 14-6
deleting 14-6
using 14-5

sound chip 14-8
sound frame
cloning 14-5
creating 14-5
setting sampling rate 14-9

sounds
event related 14-2
for predefined events 14-2
in ROM 14-2

sound slots
hideSound 14-2
scrollDownSound 14-2
scrollUpSound 14-2
showSound 14-2

sound structures
sound frame 14-3
sound result frame 14-3

sound techniques
advanced 14-8

soup 11-3, GL-6
affected by system resets 2-7
Dates 19-22
Names 19-7
Notes application 19-33
system 19-44

storing application preferences in 19-45
To Do List 19-26
union soup 11-3

soup change notification 16-9
soupervisor mechanism 19-39, GL-6
using 19-43

soupervisor slot 19-44
soup icon 19-38, GL-6
soupicons

adding 19-40
removing 19-41

special-format objects for assistant 18-12
specifying the target for filing 15-13
speedCursiveOption, user configuration

variable 19-48

IN-20

StandardFind method 16-15, 16-28
stationery 1-8, GL-6

buttons 5-2
definition 5-1
implemented in an auto part 5-13
InstallScript 5-13
registration 5-4
RemoveScript 5-13

status slips 17-6, 17-16
cancelling 17-24
defining component views 17-19
opening 17-23
reporting progress 17-23
using 17-18

statusTemplate for transports 22-21
statusTemplate subviews

vBarber 22-21
vConfirm 22-21
vGauge 22-21
vProgress 22-21
vStatus 22-21
vStatusTitle 22-21

stepChildren array 3-25
adding to at run time 3-34

storage
persistent 1-3

storage system
overview 1-5

store 11-3, GL-6
storeChanged parameter of FileThis method 15-16
store part 12-4, GL-6
stores

package stores 12-4
stores filter 15-8
storesFilter slot 15-8, 15-11
creating 15-14

storing compressed images 13-18
streaming endpoint 23-20
StringExtract 5-9
Stripink 8-24
stroke data 8-2
style frame 13-7
superSymbol slot
using GetDefs to determine it 5-7

synchronization
view 3-43

synchronous cancellation in endpoints 23-22
synchronous sound 14-7

ARENDI-DEFS00004584

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 138 of 144 PageID #: 29585

I N D E X

synonyms 18-3
system data 19-44

list of functions 19-58
system messages

in automatic views 8-8
system resets 2-7
system services 16-1, 17-1

alarms 17-3
automatic busy cursor 17-5
filing 15-1
idling 17-2,17-9
notify icon 17-5
online help 17-3
power registry 17-7
status slips 17-6
undo 17-1, 17-8
user alerts 17-3

system soup
storing application preferences 19-45

T

tabbing order 8-36
tags 15-1
target GL-7

getting and verifying for routing 21-10
offiling 15-1
of routing 21-3
specifying for filing 15-13

target frames 18-5
target information frame 15-20
TargetIsCursor 21-24
target slot 15-10

creating 15-13
target templates 18-5

system-supplied 18-11
target view 15-2
overview as 15-5
setting in GetTargetInfo method 15-2

targetView slot 15-10
creating 15-13

task frame 18-6
task slip 18-4
task template 18-5, 18-18, 18-22

primary_act slot 18-6
registering 18-19
registering with assistant 18-5

unregistering 18-5, 18-19
template 3-2, GL-7

child 3-2
declaring GL-2
parent 3-2
proto 3-4

template data form for endpoints 23-5
arglist array 23-5
setting options 23-7
typelist array 23-5

template-matching conflicts in assistant 18-13
text

displaying 8-14
in views 8-15, 8-25
keyboard input 8-4
styles 8-25
views 8-14

text find 16-7
text find mode 16-6
text functions and methods
DecodeRichString 8-24
ExtractRangeAsRichString 8-24
GetRichString 8-24
IsRichString 8-24
MakeRichString 8-24
OpenKeyPadFor 8-36
PointToCharOffset 8-38
PointToWord 8-38
RegisterOpenKeyboard 8-36
SetValue 8-14
StripInk 8-24
UnregisterOpenKeyboard 8-36
ViewSetupChildrenScript 8-7

text input and display
views and protos for 8-6

text run 8-25, GL-7
TextScript 5-9
text searches 16-2
text views
and lined paper effect 8-8

text views and protos 8-4
tick GL-7
time 18-3
timeoutCursiveOption, user configuration

variable 19-48
timeStamp slot

setting for received items 22-11

IN-21

ARENDI-DEFS00004585

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 139 of 144 PageID #: 29586

I N D E X

Time Zones application 19-27
adding a city 19-29
compatibility information 19-27
getting a refernce to 19-28
list of functions and methods 19-57
obtaining information about a city or country

TitleClickScript method 15-7
defining 15-15

title slot 16-7, 16-10
and Find overview 16-7
creating 16-11

todo items 18-3
To Do List application 19-22
accessing tasks 19-24
checking-off tasks 19-25
compatibility information 19-23
creating and removing tasks 19-24
getting a reference to 19-23
list of methods 19-56
soup format 19-53

To Do List soup 19-26
transfer mode 3-22, 3-49
transfer modes
at print time 13-12
default 13-12
problems with 13-12

transforming a shape 13-13
translating data shapes 13-16
transport 21-2, 22-1, GL-7

canceling an operation 22-13
communication with applications 22-19
deferring reception of data 22-10
displaying status to user 22-21
error handling 22-20
grouping 22-7
group picker 22-29
installing 22-5
parts 22-2
power-off handling 22-20
preferences template 22-33
queueing a new request 22-12
receiving data 22-9
remote items 22-10
routing information template 22-25
routing slip template 22-26
sending data 22-8
status template 22-21
storing preferences 22-17

IN-22

uninstalling 22-6
TransportChanged 22-7
transport functions and methods
CancelRequest 22-13
CanPutAway 22-18

19-28 CheckOutbox 22-9
DeleteTransport 22-6
GetTransportScripts 22-17
InstallScript 22-5
ItemCompleted 22-16
Newltem 22-13
Normal izeAddress 22-9
QueueRequest 22-12
QuietSendAll 22-9
ReceiveRequest 22-9
RegTransport 22-5
SendRequest 22-8
SetStatusDialog 22-23
TransportChanged 22-7
TransportNotify 22-19
UnRegTransport 22-6

transport interface overview 1-14
TransportNotify 22-19
transport object 22-5
transport protos

protoAddressPicker 22-31
protoFullRouteSlip 22-27
protoStatusTemplate 22-21
protoTransport 22-5
protoTransportHeader 22-25
protoTransportPrefs 22-33

transport templates
preferences 22-33
routing information 22-25
routing slip 22-26
status 22-21

typelist array in endpoint options 23-5

U

undo capability 17-1, 17-8
union soup 11-3
unmatched words in input to assistant 18-8, 18-9
UnRegAppClasses 21-31
UnRegAuxButton 19-37
UnRegFindApps function 16-25, 16-28

ARENDI-DEFS00004586

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 140 of 144 PageID #: 29587

I N D E X

UnRegFolderChanged function 15-3, 15-10, 15-18

UnRegFormulas 19-36

UnRegInboxApp 21-34

UnRegInfoItem, Dates method 19-21

unregistering the task template 18-19
UnregisterOpenKeyboard 8-36

UnRegLogin 17-25

UnRegPowerOff 17-26

UnRegPowerOn 17-24

UnRegTheseAppClasses 21-33

UnRegTransport 22-6
UnRegUserConfigChange 19-45

user alert 17-3, 17-11

user configuration data 19-45

user configuration variables

address 19-47

cityZip 19-47
company 19-47

country 19-47

countrySlot 19-47

currentAreaCode 19-47

currentCountry 19-48
currentEmporium 19-48

currentPersona 19-48

currentPrinter 19-48

dialingPrefix 19-48

doAutoAdd 19-48

doInkWordRecognition 19-48
doShapeRecognition 19-48

doTextRecognition 19-48

emailPassword 19-48

faxPhone 19-48

homePhone 19-48

learningEnabledOption 19-48
leftHanded 19-48

letterInFieldsOption 19-48

lettersCursiveOption 19-48

letterSetSelection 19-48

letterSpaceCursiveOption 19-48

location 19-48
mailAccount 19-48

mailNetwork 19-48

mailPhone 19-48

name 19-48

paperSize 19-48
paperSizes 19-48

phone 19-48

signature 19-48

speedCursiveOption 19-48

timeoutCursiveOption 19-48

userFont 19-48
userFont, user configuration variable 19-48

user proto GL-7

user-visible application name 15-4, 16-11

user-visible folder names 15-19

useWeekNumber, Dates variable 19-21, 19-46

utility functions 26-1

V

vAddressField 9-31

value
immediate GL-3

reference GL-5

vAnythingAllowed 9-32

vApplication flag 3-47

variables

global GL-3
local GL-4

vBarber 22-21

vCalculateBounds flag 3-47

vCapsRequired 9-31

vCharsAllowed 9-31

vClickable 3-47, 9-32
vClipping flag 3-47

vConfirm 22-21

vCustomDictionaries 9-31

vDateField 9-33

VerifyRoutingInfo 21-10

vFixedInkTextStyle flag 8-17
vFixedTextStyle flag 8-17

vFloating flag 3-47

vGauge 22-21

vGesturesAll owed 9-32

view 3-4, GL-7
adding dynamically 3-33

alignment 3-13

animating 3-23

base 3-5

behavior 3-9, 3-47

capturing 13-18
closing 3-29

controlling recognition in 9-29

coordinate system 3-6

IN-23

ARENDI-DEFS00004587

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 141 of 144 PageID #: 29588

I N D E X

view (continued)
creating 3-28
custom fill pattern 3-21
custom frame pattern 3-21
declareSelf slot 3-24
declaring 3-27
defining characteristics of 3-8
dependencies between 3-43
dirtying 3-33
displaying 3-33
finding bounds 3-39
hiding 3-33
highlighting 3-42
idler for 17-2,17-9
laying out multiple children 3-43
limiting text in 3-17
memory usage 3-45
modal 3-38
optimizing performance 3-44
origin offset 3-20
pop-up views 3-37
redrawing 3-44,13-10
root 3-6, GL-6
screen-relative bounds 3-12
showing hidden 3-34
sibling views 3-13
size relative to parent 3-12
speeding up scrolling 3-46
synchronization 3-43
viewClass slot 3-9
viewFlags slot 3-9
viewFont slot 3-24
viewOriginX slot 3-20
viewOriginY slot 3-20
viewTransferMode slot 3-22, 3-49

ViewAddChildScript method 9-25
view alignment 3-10, 3-13
view bounds

finding 3-39
setting 3-39

viewChildren slot 3-25
view class 3-9, 3-47, GL-7
view classes
clEditView 8-4, 8-6, 8-8, 13-15
clKeyboardView 8-4, 8-28
clParagraphView 8-4, 8-10
clPictureView 13-15
clPolygonView 13-14

IN-24

clRemoteView 13-15
clView 2-2

viewClass slot 3-9
viewDef 5-2
creating 5-11
MinimalBounds example 5-14
registering in a NewtApp application 4-20

view definition GL-7
for viewing items in In/Out box 21-34
hiding from In/Out Box 21-35
protection slot 21-35
registering formats as 21-16

viewEffect constants
fxBarnDoorCloseEffect 3-50
fxBarnDoorEffect 3-50
fxCheckerboardEffect 3-50
fxColAltHPhase 3-49
fxColAltVPhase 3-49
fxColumns 3-49
fxDown 3-49
fxDrawerEffect 3-49
fxFromEdge 3-50
fxHStartPhase 3-49
fxIrisCloseEffect 3-50
fxIrisOpenEffect 3-50
fxLeft 3-49
fxMoveH 3-49
fxMoveV 3-49
fxPopDownEffect 3-50
fxRevealLine 3-50
fxRight 3-49
fxRowAltHPhase 3-49
fxRowAltVPhase 3-49
fxRows 3-49
fxSteps 3-50
fxStepTime 3-50
fxUp 3-49
fxVenetianBlindEffect 3-49
fxVStartPhase 3-49
fxWipe 3-50
fxZoomCloseEffect 3-50
fxZoomOpenEffect 3-50
fxZoomVerticalEffect 3-50

view effects 3-23
viewEffect slot 3-23
viewFlags

vAddressField 9-31
vAnythingAllowed 9-32

ARENDI-DEFS00004588

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 142 of 144 PageID #: 29589

I N D E X

viewFlags (continued)

vApplication 3-47

vCalculateBounds 3-47

vCapsRequired 9-31

vClickable 3-47, 9-32
vClipping 3-47

vCustomDictionaries 9-31

vDateField 9-33

vFixedInkTextStyle 8-17

vFixedTextStyle 8-17

vFloating 3-47
vGesturesAll owed 9-32

vLettersAllowed 9-31

vNameField 9-31

vNoFlags 3-47

vNoScripts 3-47

vNoSpaces 9-32
vNothingAllowed 9-32

vNumbersAllowed 9-31, 9-33

vPhoneField 9-33

vPunctuationA 11 owed 9-31

vReadOnly 3-47
vShapesAllowed 9-32

vSingleUnit 9-32

vStrokesAllowed 9-32

vTimeField 9-33

vVisible 3-47

vWriteProtected 3-47
viewFlags slot 3-9, 9-29

viewFont slot 3-24

viewFormat 3-20

view frame 3-21

viewFramePattern 3-21

view functions and methods
AddStepView 3-35

BuildContext 3-36

viewHelpTopic slot 18-19

ViewIdleScript 17-9

view instantiation

description 3-26
view location 3-10

viewOriginX slot 3-20

viewOriginY slot 3-20

viewRect 7-4

views
about 3-1

and system messages 8-8

displaying text and ink in 8-14

for text 8-4

lined paper effect in 8-8

mixing text and ink in 8-15
paragraph 8-10

view system overview 1-6

views and protos for text 8-4

ViewSetupChildrenScript 8-7

view size 3-10

viewTransferMode constants
modeBic 3-49

modeCopy 3-49

modeMask 3-49

modeNotBic 3-49

modeNotCopy 3-49

modeNotOr 3-49
modeNotXor 3-49

modeOr 3-49

modeXor 3-49

viewTransferMode slot 3-22, 3-49

vLettersAllowed 9-31
vNameField 9-31

vNoFlags flag 3-47

vNoScripts flag 3-47

vNoSpaces 9-28, 9-29, 9-32

vNothingAllowed 9-32

vNumbersAllowed 9-31, 9-33
vPhoneField 9-33

vProgress 22-21

vPunctuationA 11 owed 9-31

vReadOnly flag 3-47

vShapesAllowed 9-32

vSingleUnit 9-32
vStatus 22-21

vStatusTitle 22-21

vStrokesAllowed 9-32

vTimeField 9-33

vVisible flag 3-29, 3-47
vWriteProtected flag 3-47

W, X, Y, Z

wedge GL-7

who obj 18-11

written input formats 8-2

IN-25

ARENDI-DEFS00004589

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 143 of 144 PageID #: 29590

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and
composed on a desktop publishing system

using Apple Macintosh computers and

FrameMaker software. Proof pages were

created on an Apple LaserWriter Pro 630

printer. Final page negatives were output

directly from the text and graphics files. Line
art was created using Adobe

TM
 Illustrator.

PostScriptTM, the page-description language

for the LaserWriter, was developed by Adobe

Systems Incorporated.

Text type is Palatino® and display type is

Helvetica®. Bullets are ITC Zapf Dingbats®.

LEAD WRITER
Christopher Bey

WRITERS
Bob Anders, Christopher Bey,

Cheryl Chambers, Gary Hillerson,
John Perry, Jonathan Simonoff,

Yvonne Tornatta, Dirk van Nouhuys,

Adrian Yacub

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITORS
Linda Ackerman, David Schneider,

Anne Szabla

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to J. Christopher Bell,

Gregory Christie, Bob Ebert, Mike Engber,
Dan Peterson, Maurice Sharp, and Fred Tou.

NEWTON PROGRAMMER'S REFERENCE
CD TEAM
Gary Hillerson, Gerry Kane, Christopher Bey

ARENDI-DEFS00004590

Case 1:13-cv-00919-LPS Document 311-9 Filed 03/10/21 Page 144 of 144 PageID #: 29591

