
EXHIBIT 64 PART 3

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 1 of 201 PageID #: 29046Case 1:13-cv-00919—LPS Document 311-7 Filed 03/10/21 Page 1 of 201 PageID #: 29046

EXHIBIT 64 PART 3

CHAPT ER 1 0

Recognition: Advanced Topics

The wordlnfo frame provides methods that you can use to manipulate its
contents; for more information, see "WordInfo Methods" (page 8-62) in Newton
Programmer's Reference.

The alternate interpretations of arecognized word are provided as wordInterp
frames based on the protoWordlnterp system prototype. An array of
wordInterp frames resides in the wordInfo frame's words slot.

Each wordInterp frame contains the following information:

■ a string that is one interpretation of the original input strokes.

■ a score indicating the recognizer's confidence in the accuracy of the interpretation.

■ the dictionary identifier of the recognized word (for internal use only).

■ the position occupied by this word in the original list of interpretations returned
by the recognizer.

For more information, see the descriptions of the protoCorrectlnfo,
protoWordInterp, and protoWordInfo prototypes in Newton Programmer's
Reference.

You can provide an optional ViewCorrectionPopupScript method that
modifies or replaces the picker that displays correction information when a word is
double-tapped. For a description of this method, see "Application-Defined
Recognition Methods" (page 8-66) in Newton Programmer's Reference.

Using Custom Dictionaries

In addition to the system-supplied dictionaries, your application can use custom
dictionaries to facilitate the recognition of specialized vocabulary such as medical
or legal terms. It's relatively easy to create a RAM-based enumerated dictionary at
run time; however, this approach is not recommended for dictionaries containing
more than a few words.

Note that you cannot cause the built-in applications (Names, Dates and so on) to
use custom dictionaries. The only way to enable these applications to recognize
specialized terminology is to add words to the user dictionary. However, you are
strongly discouraged from doing so, because each entry added to the user dictionary
reduces the amount of system RAM available to the user. For more information,
see "System Dictionaries" beginning on page 9-11.

Creating a Custom Enumerated Dictionary

To create a custom enumerated dictionary, you must populate a blank RAM-based
dictionary with your dictionary items. Dictionary items can come from a number of
places: they might be elements of your own array of strings stored in the application's
NTK project data; they might be represented as binary resource data in your

10-24 Using Advanced Topics in Recognition

ARENDI-DEFS00004048

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 2 of 201 PageID #: 29047

CHAPT ER 1 0

Recognition: Advanced Topics

application's NTK project; they might be supplied by the user in an input line
view; they might even arrive as serial data. Because dictionary items can originate
from a number of sources, the example here presumes that you know how to store
your word strings and pass them, one at a time, to the AddWordToDictionary
function. This function adds its argument to the specified custom dictionary.

The AddWordToDictionary function does not place any restrictions on the
strings to be entered in the dictionary; however, your intended use of the dictionary
entry may influence its content. For nonrecognition purposes, such as validating
input to a field, any string is a valid dictionary entry. For use in stroke recognition,
strings in enumerated dictionaries must not include spaces. The printed recognizer
accepts the full set of ASCII characters; the cursive recognizer does not. Digits
or non-alphabetic characters in dictionary entries used by the cursive recognizer
must appear in the input string in order to be recognized. Do not use the
AddWordToDictionary function to add items to the review dictionary; use the
appropriate reviewDict methods instead.

You can take the following steps to create a RAM-based enumerated dictionary at
run time:

1. Use the global function NewDictionary to create a new empty dictionary.

2. Use the global function AddWordToDictionary to add dictionary items to
the new dictionary.

3. Use the global function GetDictionaryData to create abinary
representation of the completed dictionary, which can then be stored in a soup.

Another way to do this is to create a new dictionary and restore its data from a soup.

The next several sections describe the numbered steps in greater detail. Following
this discussion, the section "Restoring Dictionary Data From a Soup" (page 10-28),
describes how to restore an existing dictionary from soup data.

Creating the Blank Dictionary

You can create a blank RAM-based dictionary anywhere in your application that
makes sense; a common approach is to take care of this in the
ViewsetupFormscript method of the application's base view. You must also
create a slot in which to store the RAM-based dictionary. The following code
fragment creates a dictionary in the mySpecialDictionary slot.

ViewSetupFormScript := func()

begin

mySpecialDictionary := NewDictionary('custom);

end

This code example uses the NewDictionary function to create a blank dictionary
in the mySpecialDictionary slot. The NewDictionary function accepts the

Using Advanced Topics in Recognition 10-25

ARENDI-DEFS00004049

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 3 of 201 PageID #: 29048

CHAPT ER 1 0

Recognition: Advanced Topics

symbol I custom as its argument, which specifies that the new dictionary is for
this application's use only.

Note

Although the token returned by the NewDictionary function
currently evaluates to an integer in the NTK Inspector, the type of
value returned by this function may change on future Newton
devices. Do not rely on the NewDictionary function returning
an integer.

Adding Words to RAM-Based Dictionaries

Once you have created a blank dictionary, you need to populate it with your
dictionary items. You can use the AddWordToDictionary function to add a
specified string to a specified RAM-based dictionary.

The first argument to this function is the identifier of the dictionary to which the
string is to be added; this identifier is returned by theNewDictionary function. The
previous code example stored this identifier in the myspecialDictionary slot.

The second argument to this function is the string to be added to the dictionary. If
this argument is not a string, the AddWordToDictionary function throws an
exception. If the word is added successfully, this function returns true. If the
specified word cannot be added, this function returns n 1.

The AddWordToDictionary function may return nil when the word to be
added is already present in the specified dictionary, or it may return nil because of
resource limitations. It is possible to run out of system memory for dictionaries,
with potentially serious consequences. Do not rely on a specific number of
dictionary entries as the maximum amount that may be added safely. It is strongly
recommended that you use custom dictionaries sparingly and keep them as small as
possible, taking into account the possibility that other applications may require
system memory for their own dictionaries or for other uses.

To populate the dictionary, you need to call the AddWordToDictionary
function once for each item to be added. There are many ways to call a function
iteratively; the best approach for your needs is an application-specific detail that
cannot be anticipated here. The following code example shows one way to populate
a blank dictionary.

myAdder:= func()
begin

local element;
// items slot contains an array of dictionary strings
foreach element in items do

AddWordToDictionary(myspecialDictionary, element);
end

10-26 Using Advanced Topics in Recognition

ARENDI-DEFS00004050

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 4 of 201 PageID #: 29049

CHAPT ER 1 0

Recognition: Advanced Topics

This approach works well for small dictionaries; for most large dictionaries,
however, it is far more efficient to populate the dictionary from saved soup data.
You should store custom dictionary data in a soup so that it is safely stored and
persistent across soft resets.

IMPORTANT

Do not use the AddWordToDictionary global function to add
words to the review dictionary; instead, use the appropriate review
dictionary methods. A

Removing Words From RAM-Based Dictionaries

You can use the DeleteWordFromDictionary function to remove a specified
word from a specified RAM-based dictionary. Note that this function does not
make permanent changes to soups. After calling this function you must write your
changes to the appropriate soup.

IMPORTANT

Do not use the DeleteWordFromDictionary function to
remove words from the review dictionary; instead, use the
appropriate review dictionary methods. A

Saving Dictionary Data to a Soup

Once you have added all of your dictionary entries, your RAM-based custom
dictionary is ready for use. However, it would be inefficient to build it from scratch
each time you need it, especially if it is large. Instead, you can store a binary
representation of the dictionary data in a soup and use this soup data to restore the
custom dictionary.

The NewDictionary function returns an identifier used to reference the
dictionary; in the previous example, this identifier was stored in the
myspecialDictionary slot defined in the base view of the application. You can
pass this identifier as the GetDictionaryData function's argument. This
function returns a binary representation of the dictionary data (the words or items).
You can then place this binary object in a slot in a frame and add the frame to a
soup. The following code fragment assumes that the soup ksoupName is a valid
soup created according to the Newton DTS soup-creation guidelines.

// get a soup in which to save the data

mySoup := GetUnionSoupAlways (ksoupName);

// create binary representation of dictionary data

local dict := GetRoot().appSym.mySpecialDictionary;

local theObj:= GetDictionaryData(dict);

Using Advanced Topics in Recognition 10-27

ARENDI-DEFS00004051

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 5 of 201 PageID #: 29050

CHAPT ER 1 0

Recognition: Advanced Topics

// store the dictionary data

dictData := {data:theObj};

mySoup:AddXmit(dictData, nil);

Restoring Dictionary Data From a Soup

To use the dictionary, your application needs to retrieve the dictionary data object
from the soup and use the global function SetDictionaryData to install the
data in an empty dictionary. This is typically done in the application part's
InstallScript function or in the ViewSetupFormScript method of the
view that uses the custom dictionary, as shown in the following code example:

// make new blank dictionary

mySpecialDictionary := NewDictionary('custom);

get the dictionary data from the soup

structure of query depends on how you store data

dataCursor : = dictDataSoup: Query (querySpec) ;
// how you get entry depends on how you store data

myBinaryData := dataCursor:entry();

// put data in dictionary

SetDictionaryData(mySpecialDictionary, myBinaryData);

Note that RAM-based dictionaries are lost when the system resets. However, the
system calls your application part's Instal lScript function after areset. This
function can determine whether the dictionary exists and recreate it if necessary.
Because this function is also called when a card with your application on it is
inserted, as well as when the application is installed initially, it provides an ideal
place from which to install your custom dictionary.

Using Your RAM-Based Custom Dictionary

Take the following steps to make your RAM-based dictionary available to each
view that is to use it for recognition:

1. Set the view's vCustomDictionaries flag.

2. Create a dictionaries slot. You can create this slot in the view itself or in its
recConf ig frame.

3. Place your dictionary's identifier in the dictionaries slot.

To enable the use of custom dictionaries, you must set the vCustomDictionaries
flag for the view that is to use the custom dictionary. This flag indicates that the
view has access to a slot named dictionaries that specifies dictionaries to be
used for recognition. The dictionaries specified in this slot are used in conjunction
with any other dictionaries that may be specified for this view's use.

10-28 Using Advanced Topics in Recognition

ARENDI-DEFS00004052

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 6 of 201 PageID #: 29051

CHAPT ER 1 0

Recognition: Advanced Topics

In addition to setting the view's vCustomDictionaries flag, you need to create
a dictionaries slot in either the view or its recConf ig frame. The
dictionaries slot stores a single dictionary identifier or an array of dictionary
identifiers. You need to install the custom dictionary in this slot using code similar
to the following example.

// vCustomDictionaries flag already set

dictionaries := mySpecialDictionary;

To use system-supplied dictionaries in addition to your custom dictionary, you can
enable additional view flags in the Entry Flags editor in NTK or set these
additional flags procedurally. If you prefer to set view flags procedurally, you must
use the Bor function to bitwise OR the vCustomDictionaries flag with any
bits already set in the viewFlags slot. In either case, your custom dictionary must
still be specified in the dictionaries slot.

Note that some view flags enable combinations of system dictionaries. If you want
to specify explicitly which system dictionaries the view can use, set no dictionary-
enabling flags other than the vCustomDictionaries flag and use system-
supplied dictionary ID constants to add specific dictionaries to the dictionaries
slot. For descriptions of the system-supplied dictionary ID constants, see
"System-Supplied Dictionaries" (page 8-16) in Newton Programmer's Reference.

The following code fragment shows how you can specify dictionaries explicitly
by including the appropriate constants as elements of the array in the
dictionaries slot.

dictionaries :=[mySpecialDictionary, kUserDictionary,

kCommonDictionary]

Regardless of the order of elements in the dictionaries array, the system
always searches the user dictionary first. The system then searches all of the
specified dictionaries in the order that they appear in the dictionaries array. In
general, the order in which this array's items appear is not critical, except in the
case of conflicting capitalization information for representations of the same word
in multiple dictionaries. When multiple dictionary entries match the input, the
system uses the first dictionary entry that was matched.

Note that the printed recognizer can always return words not present in
dictionaries. Only the cursive recognizer may be restricted to returning only words
present in dictionaries (and then only when letter-by-letter recognition is not
enabled). To test your dictionary settings, use the cursive recognizer while its
letter-by-letter option is disabled.

Using Advanced Topics in Recognition 10-29

ARENDI-DEFS00004053

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 7 of 201 PageID #: 29052

CHAPT ER 1 0

Recognition: Advanced Topics

Removing Your RAM-Based Custom Dictionary

It is recommended that you remove your custom dictionary when it is no longer
needed, such as when your application is removed. The DisposeDictionary
function removes a specified RAM-based dictionary.

The DisposeDictionary function accepts one argument, the dictionary identifier
returned by NewDictionary. If this identifier was stored in a slot named
mySpecialDictionary, a line of code similar to the following example would
be used to remove the custom dictionary.

DisposeDictionary(mySpecialDictionary);

Using System Dictionaries Individually

The system provides several constants that you can use to refer to system
dictionaries conveniently; see "System-Supplied Dictionaries" (page 8-16) in
Newton Programmer's Reference. You can set the vCustomDictionaries flag
and place one or more of these constants in your view's dictionaries slot to
specify explicitly the vocabulary it can recognize, such as first names only or
names of days and months only. Note that a single constant may represent multiple
dictionaries; for example, when the kCommonDictionary constant is specified,
the system may actually add several dictionaries to the set that the view uses for
recognition. The rest of this section describes the use of individual system dictionaries.

The vNumbersAl lowed flag enables both the numeric lexical dictionary and the
monetary lexical dictionary. To create a view that recognizes numeric values but
not monetary values, set the vCustomDictionaries flag and place the
kNumbersOn1yDictionary constant in the view's dictionaries slot.

Note that both the vCustomDictionaries and vC ha. r sA 11 owe d fl ag s enable
text recognition. The difference between these flags is in the set of dictionaries they
enable. The vCustomDictionaries flag enables only those dictionaries specified
by the dictionaries slot of the view performing recognition. The
vCharsAl lowed flag, on the other hand, enables several system-supplied
dictionaries. To avoid unexpected results when working with custom dictionaries,
be aware that setting other flags may enable additional dictionaries. Remember,
also, that the printed recognizer can always return words not appearing in dictionaries.

Working With the Review Dictionary

The review dictionary object provides methods for manipulating the contents of the
user dictionary (personal word list), and the expand dictionary. Although the
auto-add dictionary is also part of the review dictionary, the auto-add dictionary
has its own interface.

10-30 Using Advanced Topics in Recognition

ARENDI-DEFS00004054

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 8 of 201 PageID #: 29053

CHAPT ER 1 0

Recognition: Advanced Topics

Do not use the global functions AddWordToDictionary and
RemoveWordFromDictionary to make changes to the review dictionary;
instead, use the appropriate review dictionary methods.

The dictionaries themselves are stored as entries in the system soup. This section
describes how to manipulate these dictionaries programmatically. All of the
functions and methods named in this section are described completely in "User
Dictionary Functions and Methods" beginning on page 10-54.

Retrieving the Review Dictionary

To manipulate the contents of the user dictionary or expand dictionary, you send
messages to the reviewDict object, which resides in the root view.

To obtain a reference to the reviewDict object, you can use code similar to the
following example.

local reviewDict := GetRoot().reviewDict;

Note

Future versions of the system are not guaranteed to have the
ReviewDict slot. You must verify that the returned value is
non-nil before using it.

You usually do not need to load the review dictionary into RAM yourself—the
system does so automatically when it is reset and most flags that enable text
recognition include the user dictionary automatically in the set of dictionaries they
enable. You usually do not need to load the auto-add or expand dictionaries explicitly,
either—the user dictionary consults these additional dictionaries automatically.
However, the LoadUserDictionary, LoadExpandDictionary, and
LoadAutoAddDictionary functions are provided for your convenience.

For general information about the user dictionary, expand dictionary and auto-add
dictionary, see "System Dictionaries" beginning on page 9-11.

Displaying Review Dictionary Browsers

You can send the open message to the reviewDict object to display the Personal
Word List slip. If words have been added to the auto-add dictionary, this function
displays the Recently Written Words slip automatically as well.

To display the Recently Written Words slip alone, send the open message to
the autoAdd object residing in the system's root view, as shown in the
following example.

local auto := GetRoot().autoAdd:Open();

if auto then auto:Open();

Using Advanced Topics in Recognition 10-31

ARENDI-DEFS00004055

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 9 of 201 PageID #: 29054

CHAPT ER 1 0

Recognition: Advanced Topics

Note

Future versions of the system are not guaranteed to have the
autoAdd slot. You must verify that the returned value is non-ni 1
before using it.

Adding Words to the User Dictionary

The following code fragment uses the Addword method of the reviewDict
object to add words to the user dictionary. After adding one or more words, you
must call the SaveUserDictionary function to make your changes to the user
dictionary's system soup entry persistent.

local reviewDict := GetRoot().reviewDict;

if reviewDict then

begin

reviewDict:AddWord("myWord");

reviewDict:AddWord("myOtherWord");

SaveUserDictionary();

end;

The Addword method returns true if the word was added successfully and
returns nil if the word was not added; however, this function may also return nil
due to resource limitations.

It is possible to run out of system memory for dictionaries, with potentially serious
consequences. Do not rely on a specific number as the maximum amount of
dictionary entries that may be added safely.

If the Personal Word List slip is open when you add words to the user dictionary,
its display is updated automatically. An undo action is posted for this update.

IMPORTANT

Do not use the AddWordToDictionary global function to add
words to the review dictionary. A

Removing Words From the User Dictionary

The following code fragment uses the RemoveWord method of the reviewDict
object to remove a word from the user dictionary. After deleting the word, you
must call the SaveUserDictionary function to write the changes to the user
dictionary's system soup entry.

local reviewDict := GetRoot().ReviewDict;

if reviewDict then

begin

reviewDict:RemoveWord("myWord");

reviewDict:RemoveWord("myOtherWord");

SaveUserDictionary();

end;

10-32 Using Advanced Topics in Recognition

ARENDI-DEFS00004056

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 10 of 201 PageID #: 29055

CHAPT ER 1 0

Recognition: Advanced Topics

The Removeword method returns true if the word was removed successfully and
returns n 1 if the word was not removed. This method returns n 1 and does not
remove the specified word if there are differences in case between the word in the
dictionary and the word passed as the argument to the Removeword method. This
method also returns n 1 when the word to be removed is not present in the
review dictionary.

IMPORTANT

Do not use the RemoveWordFromDictionary global function
to make changes to the review dictionary; instead, use the
appropriate review dictionary methods. A

Adding Words to the Expand Dictionary

The expand dictionary (the dictionary that defines word expansions) is kept in RAM,
and its size is limited to 256 words. To manipulate the expand dictionary, you send
messages to the reviewDict object residing in the root view. The system provides
methods for adding words and their associated expansions to this dictionary;
retrieving the expansions associated with words; removing words and expansions
from this dictionary; and saving expansion dictionary changes to the system soup.

To add a word and its expansion to the expand dictionary, you must send the
AddExpandWord message to the reviewDict object. Words added to the
expand dictionary must first be recognized and present in the user dictionary. If
necessary, you can use the AddWord method of the reviewDict object to add
the word to the user dictionary before adding it to the expand dictionary. After
adding one or more words to the expand dictionary, you must call the
SaveExpandDictionary function to write your changes to the system soup, as
the following code fragment illustrates.

local reviewDict := GetRoot().ReviewDict;

// word must be present in user dict before adding to expand dict

if reviewDict then

begin

if not LookupWordInDictionary(reviewDict, "BTW") then

begin

reviewDict:AddWord("BTW");

SaveUserDictionary();

end;

reviewDict:AddExpandWord("BTW", "by the way");

// write changes to system soup

SaveExpandDictionary();

end;

Using Advanced Topics in Recognition 10-33

ARENDI-DEFS00004057

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 11 of 201 PageID #: 29056

CHAPT ER 1 0

Recognition: Advanced Topics

Removing Words From the Expand Dictionary

Normally, words are added to both the expand dictionary and the user dictionary
simultaneously. As a result, words removed from the expand dictionary generally
must also be removed from the user dictionary. The following code fragment uses
the Removeword method to remove a word from both the expand and the user
dictionaries. After deleting the word, you must call the SaveUserDictionary
function to write the changes to the system soup.

local reviewDict := GetRoot().ReviewDict;

if reviewDict then

begin

// remove word & expansion from dictionaries

reviewDict:RemoveWord("BTW");

SaveUserDictionary();

end;

Retrieving Word Expansions

The following code fragment uses the GetExpandedWord method of the
reviewDict object to retrieve the expansion associated with a specified word.
This method returns n 1 if the specified word is not found in the expand dictionary.

local reviewDict := GetRoot().ReviewDict;

if reviewDict then

local theExpansion := reviewDict:GetExpandedWord("BTW");

Retrieving the Auto-Add Dictionary

The auto-add dictionary (the list of new words to add to the user dictionary
automatically) resides in RAM and its size is limited to 100 words. The system
adds new words to this dictionary automatically when the cursive recognizer is
enabled and the Add New Words to Personal Word List checkbox in the Text
Editing Settings preferences slip is selected.

The Recently Added Words slip provides the NewtonScript interface to the
auto-add dictionary. You can use code similar to the following example to obtain a
reference to the RecentlyAdded Words slip.

local autoAddDict := GetRoot().AutoAdd;

Note

Future versions of the system are not guaranteed to have this
slot. You must verify that the returned value is non-ni 1 before
using it.

10-34 Using Advanced Topics in Recognition

ARENDI-DEFS00004058

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 12 of 201 PageID #: 29057

CHAPT ER 1 0

Recognition: Advanced Topics

Usually, you do not need to load the auto-add dictionary into RAM yourself—the
system does so automatically whenever the Personal Word List slip is opened or
the system is reset. However, the system provides the LoadAutoAddDictionary
function for your convenience.

Disabling the Auto-Add Mechanism

When the cursive recognizer is enabled, words not appearing in any of the
currently enabled dictionaries are added to the auto-add and user dictionaries
automatically as they are recognized or corrected. The value of the doAutoAdd
slot in the system's user configuration data controls this default behavior.

However, not all input to a view is appropriate to add to dictionaries; for example,
consider a spreadsheet that allows the user to select cells by entering row and
column numbers—you wouldn't want to add these strings to the dictionaries as
they are recognized To disable the automatic addition of new words to the user and
auto-add dictionaries, you can use either of the following techniques:

■ Set the _noautoadd slot in the view or its recConf ig frame to a
non-nil value.

■ Set the _noautoadd slot in the word's wordInfo frame to a non-nil
value. You can get a word's wordInfo frame by calling the
GetCorrectionWordlnfo function from within the view's
ViewWordScript method.

Alternatively, you can set the value of the doAutoAdd slot in the system's user
configuration data to nil and call the ReadCursiveoptions function; however,
it is not recommended that you change user configuration settings without first
obtaining confirmation from the user.

Adding Words to the Auto-Add Dictionary

The AddAutoAdd function adds a specified word to both the user and auto-add
dictionaries. This function returns the value true after adding the word
successfully. The word is not added if its unpunctuated form is present in the
standard set of dictionaries enabled by the vCharsAl lowed flag.

If the auto-add dictionary already contains its maximum of 100 words, this
function does not add the new word but displays the notify icon instead. When the
user taps the notify icon, it posts a notify action that displays the Recently Written
Words slip. The user can then edit the Recently Written Words slip before
attempting to add more words; if the user responds immediately, no new words are
lost. For more information on the notify icon and notify actions, see Chapter 17,
"Additional System Services."

Using Advanced Topics in Recognition 10-35

ARENDI-DEFS00004059

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 13 of 201 PageID #: 29058

CHAPT ER 1 0

Recognition: Advanced Topics

Removing Words From the Auto-Add Dictionary

The RemoveAutoAdd function deletes a specified word from both the user and
auto-add dictionaries. This function returns true if the word was removed and
returns n 1 if the word was not removed. This method does not remove the word if
it is not present in the auto-add dictionary or if there are case inconsistencies
between the argument to this function and the word actually found in the dictionary.

Using protoCharEdit Views

The protoCharEdit proto provides a comb-style view that facilitates the
correction of individual characters in misrecognized words. The view provided by
this proto uses an rcGridlnfo frame internally to provide a horizontal row of
single-character input areas. The system-supplied corrector available from the
picker displayed when the user taps a recognized word makes use of this view.
Figure 10-7 illustrates a typical protoCharEdit view.

Figure 10-7 Example of a protoCharEdit view

b. e S t

This section describes how to position aprotoCharEdit view, how to manipulate
the text string it displays, and how to restrict its input to a specified set of characters.

Positioning protoCharEdit Views

There are two ways to position a protoCharEdit view within its parent view.
You can set the values of its top and 1 e f t slots to values that position it at the top
left corner of the view, or you can provide a similar value for its vi ewBounds slot.

If you specify the values of the top and 1 e f t slots, then the
ViewSetupFormScript method of the protoCharEdit view supplies an
appropriate value for the vi ewBounds slot based on the values of the
cellHeight, cellWidth, and maxChars slots. On the other hand, if you
provide the values of the viewBounds and cellWidth slots, then this view
supplies appropriate values for the maxChars and cellHeight slots foryou.
This proto provides useful default values for the cellWidth and cellHeight
slots; it is recommended that you do not change these values.

The technique you use depends on how you want to set the slots that this proto
provides. For detailed information, see "protoCharEdit" (page 8-41) in Newton
Programmer's Reference.

10-36 Using Advanced Topics in Recognition

ARENDI-DEFS00004060

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 14 of 201 PageID #: 29059

CHAPT ER 1 0

Recognition: Advanced Topics

Manipulating Text in protoCharEdit Views

The default view provided by the protoCharEdit proto is an unformatted comb
view (see page 10-4). You can provide an optional template that customizes this
view's appearance and behavior. The template itself is a frame residing in the view's
template slot. This frame may provide the following slots and methods:

■ The template's f i 1 t e r slot defines a set of permissible input values. For
example, a view for correcting phone numbers might restrict the set of
permissible characters to numerals.

■ The template's format slot can specify the length of the comb view and the
editing characteristics of its entry fields. For example, the phone number
correction view might use a format template to restrict input to a fixed number
of characters and make certain entry fields non-editable. When the comb view
erases invalid characters it displays the animated cloud and plays the ROM_poof
sound that normally accompanies the scrub gesture.

■ The template's text slot supplies a string to be displayed initially when the
comb view opens. The comb view retrieves this value when its
ViewSetupFormScript is executed.

■ You can also supply optional SetupString and CleanupString functions
that manipulate the string in the text slot.

For complete descriptions of these slots, see "Template Used by ProtoCharEdit
Views"(page 8-45) and "Application-Defined protoCharEdit Template Methods"
(page 8-52) in Newton Programmer's Reference.

The system also provides several global functions that are useful for manipulating
protoCharEdit views and the strings they display.

To change the comb view's text string or template dynamically, call the
UseTextAndTemplate function after setting appropriate values for the
text or template slots. Alternatively, you can use the SetNewWord or
SetNewTemplate and UseNewWord or UseNewTemplate functions to perform
the same operations; in fact, calling these functions yourself is faster than calling
the UseTextAndTemplate function.

To get the current value of the text in the comb view, you can send the
CurrentWord message to the view. You must not use the value of the text slot
directly, because unformatted comb views may add extra spaces to the string in this
slot. To get a special version of the text that is formatted for display in a view other
than the comb view, use the GetWordForDi splay function. If you are using a
template, this function may return the string in a more standardized format,
because it calls the template's optional CleanupString function before returning
the string.

Using Advanced Topics in Recognition 10-37

ARENDI-DEFS00004061

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 15 of 201 PageID #: 29060

CHAPT ER 1 0

Recognition: Advanced Topics

You may also need to know the boundaries of the word in the text slot when
working with certain protoCharEdit methods and functions. The
protoCharEdit view's wordLeft and wordRight slots provide indexes into
the text string that you can use to determine the boundaries of a substring suitable
for external display or for use as an argument to these routines. The wordLe f t
slot contains the index of the first externally-displayed character in the text slot.
The wordRight slot contains the index of the position immediately following the
last externally-displayed character in the text slot. For example, when the text
slot holds the "one "string, 1 is the value of the wordLeft slot and 4 is the value
of the wordRight slot. The dispLeft slot contains the index of the first
character in the text slot that is displayed—this character occupies the leftmost
position in the comb view. The dispLeft slot normally has the value 0, but after
scrolling it may have values greater than 0. The di sp Indent slot is the offset
from the leftmost edge of the view to the leftmost edge of the first character displayed.

For more information, see "protoCharEdit Functions and Methods" (page 8-47) in
Newton Programmer's Reference.

Restricting Characters Returned by protoCharEdit Views

This section provides code examples illustrating the use of templates to restrict the
set of characters that may appear in a comb view. Note that templates post-process
the characters returned by the recognition system before the view displays them,
rather than limiting the set of characters that the view can recognize

The templates defined by the following code fragments are intended to serve as
examples only. The system provides templates that handle formatting conventions
for dates, times, phone numbers, and numeric values properly according to the
user's locale. For complete descriptions of these templates, see "System-Supplied
protoCharEdit Templates" (page 8-46) in Newton Programmer's Reference.

The following code example defines a template for a date field:

digits

digitsl

digits3

11 0123456789";// filters[0]

"O1"; // filters[1]

11 0123 11 ; // filters[2]

dateTemplate := {

string:" / / ",// slashes locked by 11_11 in format

format: 1110 20_00",// indexes into filters array

filters:[digits, digitsl, digits3],

};

This example template is used in a protoCharEdit view that specifies a value of
8 or more for its maxChars slot; hence, the eight-character strings in the format
and string slots.

10-38 Using Advanced Topics in Recognition

ARENDI-DEFS00004062

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 16 of 201 PageID #: 29061

CHAPT ER 1 0

Recognition: Advanced Topics

The cells in this example template use filters defined by the format and filters
slots to restrict input to valid values.

The format slot specifies the valid input for each position in the comb view. Each
character in the f o rma t string is an index into the f i 1 t e r s array. In this example,
the first position in the comb view is filtered by the element 1 of the f i lters
array, which is the digitsl template; the second position is filtered by element 0
of the filters array, which is the digits template.

You can write-protect any position in the comb view by placing an underscore (~
in the appropriate position in the format string. In this example, the string positions
that display slashes between the digits of the date field do not allow input. These
are indicated by the underscores at corresponding positions in the format string.

The text slot is not used by protoCharEdit views, but may be used as a
default value by optional SetupString and CleanupString methods that your
template supplies.

Note that the template itself does not restrict any values unnecessarily. For example,
it is not wise to restrict date values according to the value of the month, because the
user might enter the date before the month or the month value might not be
recognized correctly. Instead, you can define a CleanupString function that
examines the input string and indicates an error condition or modifies the string.

The following code fragment provides examples of typical SetupString and
CleanupString functions.

myTemplate := {

format: 11 0000001 11 ,

string:" 0
11
,

filters: [kMyDigitsOrSpace, kMyDigits],

SetupString: func(str) begin

// pad string to 5 digits

if StrLen(str) < 7 then

StrMunger(str,O,O,string,0,7-StrLen(str));

str;

end,

CleanupString: func(str) begin

// replace spaces with zeros

S t rRep l a c e (s t r , " " , " 0 " , nil) ;

// trim leading zeros

str := NumberStr(StringToNumber(str));

str;

end,

};

Using Advanced Topics in Recognition 10-39

ARENDI-DEFS00004063

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 17 of 201 PageID #: 29062

CHAPT ER 1 0

Recognition: Advanced Topics

Customized Processing of Input Strokes

Setting the vstrokesAl lowed flag provides the view with a means of intercepting
raw input data for application-specific processing. If this flag is set, strokes are
passed one at a time as the argument to the view's Viewstrokescript method.
Your Viewstrokescript method can then process the strokes in any manner
that is appropriate. The view's Viewstrokescript method is invoked when the
user lifts the pen from the screen at the end of each input stroke.

Both the vGesturesAl lowed and vStrokesAllowed flags invoke methods
that can be used to provide application-specific handling of gestures. However, the
vGesturesAl lowed flag supplies system-defined behavior for the gestures tap,
double-tap, highlight, and scrub in clEditView and clParagraphView views,
while the vstrokesAl lowed flag does not provide any behavior that you don't
implement yourself, regardless of the kind of view performing recognition.

For example, clEditView and clParagraphView views handle system-
defined gestures automatically. Thus, scrubbing in a clParagraphView view that
sets the vGesturesAl lowed flag does not invoke the ViewGestureScript
method because the view handles this gesture automatically. On the other hand, a
ciview view would need to supply a ViewGestureScript method to process
the scrub gesture because this kind of view does not provide any gesture-handling
behavior of its own. Finally, remember that any view setting thevstrokesAllowed
flag must also supply a Viewstrokescript method.

Setting these flags causes the recognition system to send messages such as
ViewClickScript or Viewstrokescript, passing a unit (an object that
describes the interaction of the pen with the tablet) as the argument to the
corresponding methods. Units are only valid when accessed from within the
methods invoked during the recognition process—you cannot save them for later
use. However, you can distribute the processing of unit data as appropriate; for
example, you might call the GetPointsArray function from within your
ViewClickScript method and use the result later in your ViewIdleScript
method.

IMPORTANT

Do not save units for later use—they are valid only during the
recognition process. After the user interaction is complete and the
various scripts utilizing a particular unit have returned, the
memory allocated for that unit is freed explicitly. Subsequent use
of the unit may produce bus errors or loss of significant data. A

10-40 Using Advanced Topics in Recognition

ARENDI-DEFS00004064

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 18 of 201 PageID #: 29063

CHAPT ER 1 0

Recognition: Advanced Topics

Customized Processing of Double Taps

To process double taps reliably, your view's ViewGesturescript method can
test for the presence of the aeDoubleTap gesture. The gesture recognizer
measures time between pen events reliably even when the main NewtonScript
thread is busy.

The recognition system considers a second tap to be part of a double tap when it
occurs within a specified amount of time and distance relative to the first tap.

The second tap must be within 6 pixels of the first to be considered part of a double
tap. Any stroke longer than 6 pixels is not recognized as a tap (or as the second
tap). Measurement of the distance between taps is based on the midpoint of the
start and end points of the stroke.

The amount of time that determines whether a second tap is considered part of a
double tap is specified by the value of the timeoutCursiveoption slot in the
system's user configuration data. This value ranges between 15 and 60 ticks, with a
default value of 45 ticks. The user sets the value of this slot by moving the
"Transform my handwriting" slider in the Fine Tuning slip. The Fine Tuning slip is
available from the picker displayed by the Options button in the Handwriting
Recognition preferences slip.

Your ViewGesturescript method is called only if the view does not handle the
gesture automatically. Your ViewGesturescript method should return the
value true to avoid passing the gesture unit to other ViewGesturescript
methods, such as those supplied by views in the _parent chain. If you do want to
pass the gesture unit to other views, your method should return the value ni 1.

Changing User Preferences for Recognition

When you must make system-wide changes in recognition behavior, you can set
the values of slots in the system's user configuration data to do so. However, in
most cases it is more appropriate to change the behavior of individual views, rather
than system-wide settings. For information on using recConf ig frames to specify
the recognition behavior of individual views, see "Using recConfig Frames"
beginning on page 10-8.

Take the following steps to change recognition settings used by all views:

1. Call the SetuserConf ig function to set the values of one or more slots in the
system's user configuration data. For a complete listing of the recognition-
related slots, see "System-Wide Settings" (page 8-2) in Newton Programmer's
Reference.

2. Call the ReadCursiveoptions function to cause the system to use the
new settings.

Using Advanced Topics in Recognition 10-41

ARENDI-DEFS00004065

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 19 of 201 PageID #: 29064

CHAPT ER 1 0

Recognition: Advanced Topics

Note

Normally, slot values in the system's user configuration
data are set by the user from various preference slips.
It is strongly recommended that you do not change any
user preferences without first obtaining confirmation from
the user.

Modifying or Replacing the Correction Picker

Views that recognize text can provide an optional ViewCorrectionPopupScript
method that modifies or replaces the picker displayed when a recognized word is
double-tapped. For more information, see "ViewCorrectionPopupScript" (page 8-75)
in Newton Programmer's Reference.

Using Stroke Bundles

The system provides functions that allow you to retrieve or manipulate stroke data,
such as the tablet points from each stroke. You can access these points in one of
two resolutions: screen resolution or tablet resolution. In screen resolution, each
coordinate value is rounded to the nearest screen pixel. In tablet resolution, each
coordinate has an additional three bits of data.

To access the ink in a view, use one of the functions documented in "Text and Ink
Input and Display Reference" (page 7-1) in Newton Programmer's Reference.
Functions that allow you to manipulate ink include the ParaContains Ink,
PolyContainsInk, and GetInkAt functions.

To perform deferred recognition on the strokes in a stroke bundle, pass the stroke
bundle to one of the Recognize, RecognizePara or RecognizePoly
functions. For more information, see "Deferred Recognition" on page 10-5.

The system software provides a number of functions for working with stroke
bundles. These functions allow you to extract information from a stroke bundle and
convert the information in stroke bundles into other forms. The stroke bundle
functions are documented in "Stroke Bundle Functions and Methods" (page 8-83)
in Newton Programmer's Reference.

Stroke Bundles Example

This section shows an example of working with stroke bundles before they are
passed to the view performing recognition. One way to do this, as shown in the
following code fragment, is to implement the ViewlnkWordscript method
of an input view. The viewlnkWordscript method is described in
"ViewlnkWordScript" (page 7-56) in Newton Programmer's Reference.

10-42 Using Advanced Topics in Recognition

ARENDI-DEFS00004066

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 20 of 201 PageID #: 29065

CHAPT ER 1 0

Recognition: Advanced Topics

GetKeyView().viewInkWordScript := func(strokeBundle) begin

// convert the stroke bundle into an ink word

local inkPoly CompressStrokes(strokeBundle);

local inkWord inkPoly.ink;

local textSlot "\uF701";

local stylesSlot := [1, inkWord];

local root := GetRoot();

// create a rich string with the ink word in it

local appendString := MakeRichString(textSlot,

stylesSlot);

append the rich string to myRichString

if root.myRichString then

root.myRichString root.myRichString && appendString;

else

root.myRichString appendString;

return nil so default handling still happens

nil;

end;

This implementation converts the stroke bundle into an ink word, creates a rich
string that includes the ink word, and appends that rich string to a rich string that is
stored in the root (myRichString). The method then returns nil, which allows
the built-in handling of the stroke bundle to occur.

Using Advanced Topics in Recognition 10-43

ARENDI-DEFS00004067

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 21 of 201 PageID #: 29066

CHAPT ER 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition

See also "Summary" beginning on page 9-31 in Chapter 9, "Recognition."

Constants

See also Chapter 9, "Recognition," which includes the following summaries: "Text
Recognition View Flags" on page 9-31; "Non-Text Recognition View Flags" on
page 9-32; and "View Flags Enabling Lexical Dictionaries" on page 9-33.

kStandardCharSetInfo // cursive recognizer

kUCBlockCharSetInfo // printed recognizer

ROM_canonicalBaseInfo // System-supplied rcBaseInfo frame

ROM canonicalCharGrid // System-supplied rcGridInfo frame

Enumerated Dictionaries

Dictionary ID Constant Value Contents

kUserDictionary 31 Words added by the user.

kCommonDictionary 0 Commonly-used words.

kCountriesDictionary 8 Names of countries.

kDaysMonthsDictionary 34 Names of days and months.

kFirstNamesDictionary 48 First names.

kLocalCitiesDictionary 41 Names of cities.

kLocalPropersDictionaryl 2 Proper names.

kLocalStatesDictionary 43 Names of states, provinces, etc.

kSharedPropersDictionary 1 Proper names, company names, state or
province names and abbreviations.

1 Locale-specific dictionary

10-44 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004068

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 22 of 201 PageID #: 29067

CHAPT ER 1 0

Recognition: Advanced Topics

Lexical Dictionaries

Dictionary ID Constant

kLocalDateDictionary

kLocalNumberDictionaryl

kLocalPhoneDictionary

kLocalTimeDictionary

kMoneyOnlyDictionaryl

kNumbersOnlyDictionaryl

kPostalCodeDictionary

1 Locale-specific dictionary

Value Contents

110 Date formats.

113 Currency and numeric formats.

112 Phone number formats.

111 Time formats.

118 Currency values and formats.

117 Numeric values and formats.

116 Postal code formats.

System-Supplied RecConfig Frames

RecConfig Constant

ROM_rcInkOrText

ROM rcPrefsConfig

ROM_rcDefaultConfig

ROM_rcSingleCharacterConfig

ROM_rcTryLettersConfig

ROM_rcRerecognizeConfig

rcBaseInfo

rcGridInfo

Data Structures

Behavior of recConfig frame

Recognize ink teat or teat.

Recognize according to user settings.

None; you supply slot values.

Recognize single characters.

Recognize letter-by-letter.

Deferred recognition.

Defines baseline.

Defines single-letter input view.

See also Chapter 9, "Recognition," which includes the following summaries:
"Recognition-Related User Configuration Slots" on page 9-33;

RecConfig Frame

See protoRecConf ig in "Recognition System Prototypes" beginning on
page 10-49.

Summary of Advanced Topics in Recognition 10-45

ARENDI-DEFS00004069

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 23 of 201 PageID #: 29068

CHAPT ER 1 0

Recognition: Advanced Topics

System-Supplied RecConfig Frames

// recognize ink or text
ROM_rcInkOrText

{

// allow user to enable text recog from recToggle

allowTextRecognition: true, // default

// return ink text when text recognizer disabled

doInkWordRecognition: true, // default

... }

// recognize according to user prefs

ROM_rcPrefsConfig

{

// allow user to enable text recog from recToggle

allowTextRecognition: true, // default

// allow user to enable shape recog from recToggle

allowShapeRecognition: true, // default

... }

// generic recConfig frame - you supply useful values

ROM_rcDefaultConfig

{

// true enables recognition of punctuation marks

punctuationCursiveOption: nil, // default

// list of dictionaries used for recognition

dictionaries: nil, // default

// true enables letter-by-letter option

rcSingleLetters: nil, // default

// Holds an rcBaseInfo frame

rcBaseInfo: nil, // default

// bitfield specifying recognition configuration

inputMask: 0x0000, // default

// use as-is to configure single-character input views

ROM rcSingleCharacterConfig :=

{

// do not change value of this slot

proto: ROM rcDefaultConfig, // default

//interpret all input strokes as a single word

letterSpaceCursiveOption: nil, // default

// enable letter-by-letter option

rcSingleLetters: true, // default

10-46 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004070

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 24 of 201 PageID #: 29069

CHAPT ER 1 0

Recognition: Advanced Topics

// use custom dictionaries only

inputMask: vCustomDictionaries, // default

// dictionaries to use for recognition

dictionaries: kSymbolsDictionary, // default

// don't enable symbols dictionary twice

inhibitSymbolsDictionary: true // default

... }

// recognize letter-by-letter instead of w/ dictionaries

ROM_rcTryLettersConfig

{

// do not change value of this slot

proto: ROM rcDefaultConfig, // default

//interpret all input strokes as a single word

letterSpaceCursiveOption: nil, // default

// recognize non-dictionary words and numbers

inputMask: vLettersAllowed+vNumbersAllowed, // default

// use as-is to implement your own form of deferred recog

ROM rcRerecognizeConfig --

I
// use value of doTextRecognition slot

allowTextRecognition: true, // default

// text recognition enabled

doTextRecognition: true, // default

// amount of time to spend analyzing input

speedCursiveOption: 2, // default

// do not segment strokes

letterSpaceCursiveOption: nil, // default

... }

Supporting Frames Used In RecConfig Frames

// specifies baseline info to recognizer
rcBaseInfo

{

y-coordinate of the view's baseline

in screen coords (global coords).

base: int,

Positive offset (in pixels) from base

to the top of a lowercase "x"

smallHeight : int,

Summary of Advanced Topics in Recognition 10-47

ARENDI-DEFS00004071

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 25 of 201 PageID #: 29070

CHAPT ER 1 0

Recognition: Advanced Topics

Positive offset (in pixels) from base

to the top of an uppercase "X"

bigHeight : int,
Positive offset (in pixels) from base

to the bottom of a lowercase "g"

descent: int,
... }

// use w/ rcBaseInfo to define grids of input cells

rcGridInfo :=

all coordinates are global (screen) coordinates

coord of left edge of upper-left box in grid

boxLeft: int,
// coord of right edge of upper-left box in grid

boxRight : int,
// distance in pixels from one boxLeft to next boxLeft

xSpace : int,
// coord of topmost edge of upper-left box in grid

boxTop: int,
// coord of bottom edge of upper-left box in grid

boxBottom: int,
// distance in pixels from one boxTop to next boxTop

ySpace : int
}

ProtoCharEdit Template

aCharEditTemplate :

{

format: string, // string array indexes or underscores
filters: [str], str2, ... strN] , // valid input values
string: string // initial string to display

optional method you supply

sets value of charEditView. text slot
SetupString: func (str) begin ... end,

optional method you supply

formats charEditView. text string for ext display
CleanupString: func (str) begin ... end

}

10-48 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004072

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 26 of 201 PageID #: 29071

CHAPT ER 1 0

Recognition: Advanced Topics

System-Supplied ProtoCharEdit Templates

GetLocale().phoneFilter // phone number template

GetLocale().dateFilter // date template

GetLocale().timeFilter // time template

ROM numberFilter // general-purpose integer template

Stroke Bundle Frame

aStrokeBundle :

{

//bounding rectangle of ink strokes

bounds: {top, left, right, bottom},
// strokes in the bundle

strokes: [binaryObjl , binaryObj2, binaryObjN]
}

Recognition System Prototypes

protoRecConfig

aRecConfigFrame := {

// enabled recognizers and dicts

inputMask: bitField,
true enables text recog if doTextRecognition

is also true

allowTextRecognition: Boolean,
true enables shape recog if doShapeRecognition

is also true

al lowShapeRecogni t ion: Boolean,
// true enables text recognition unconditionally

doTextRecognition : Boolean,
// true enables shape recognition unconditionally

doShapeRecognition : Boolean,
// true enables ink text unconditionally

do InkWordRecogni t ion: Boolean,
// amount of time to spend recognizing input

speedCursiveOption : int,
// relative amount of time between distinct strokes

timeoutCursiveOpt ion: int,
// true enables letter-by-letter option

1etterSpaceCursiveOpt ion: Boolean,

Summary of Advanced Topics in Recognition 10-49

ARENDI-DEFS00004073

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 27 of 201 PageID #: 29072

CHAPT ER 1 0

Recognition: Advanced Topics

dictionaries to use when vCustomDictionaries is set

single values need not reside in an array

dictionaries: [dictldl, dictID2, ... dictldN] ,

// optional baseline info

rcGridInfo: frame,

// optional single-letter input view info

rcSingleLetters: frame,

// true disables symbols dictionary

inhibitSymbolsDictionary: Boolean,

... }

protoRecToggle

aRecToggleView --

I
current setting of recToggle view

this slot may be provided by _parent chain

_recogSettings : systemSuppliedValue,

// order of items in recToggle picker

_recogPopup: [syml, sym2 ... symN] ,

// optional index into _recogPopup array

defaultItem: int,

... }

protoCharEdit

aCharEditView :

{

// screen coordinates of top edge of comb view

top:int, // Required when viewBounds not provided

// screen coordinates of left edge of comb view

left: int, // Required when viewBounds not provided

// dimensions & placement of comb view

viewBounds: frame, // Required when top & left not provided

// maximum number of cells in comb view; default value is 8

maxChars: int, // Required; sys provides if you provide viewBounds

// true causes comb view to display divider lines between cells

frameCells: Boolean,// Optional; default value is nil

// width of a cell in pixels; must be even number; default is 12

cellWidth: int, // system calculates from your top & left values

// pixels of blank space between cells in comb view

cellGap: int, // system-provided default value is 6

// pixels from top of viewBounds to dotted line at bottom of comb

viewLineSpacing: int, // system-provided default is 30

10-50 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004074

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 28 of 201 PageID #: 29073

CHAPT ER 1 0

Recognition: Advanced Topics

// height of cells in pixels

cellHeight: int, // system-provided default is 50

// recConfig frame specifying this view's recog behavior

recConfig: frame, // system provides default

// specifies appearance & behavior of formatted comb view

template: frame, // optional protoCharEdit template

// string displayed when view opens; arg to SetupString method

text: string, // optional

// index of leftmost non-space character in comb view

wordLeft: int, // system-provided value

// index of cell to the right of rightmost non-space character

wordRight: int, // system-provided value

// index into text slot of character occupying leftmost cell

dispLeft: int, // system-provided value; changes after scrolling

offset in pixels from leftmost edge of comb view

to leftmost edge of first cell displayed

dispIndent: int,

// return word from comb view w/out leading/trailing spaces

CurrentWord : function,

// return cleaned-up version of word suitable for ext display

GetWordForDisplay: function, // calls CleanupString if provided

// deletes specified text from comb view

DeleteText : function,

// scrolls contents of comb view left or right as specified

Scroll: function,

// makes comb view use current values of text & template slots

UseTextAndTemplate : function,

// Sets the string displayed by the comb view

SetNewWord: function,

performs internal initialization using current values of

text and template slot; call after calling SetNewWord

UeeNewWord: function,

// Returns true when template's format slot is non-nil

FixedWord: function,

// Returns number of chars residing in templates format slot

FixedWordLength: function,

optional app-defined methods

you supply optional fn to update external display

DisplayExternal: function, // message sent when comb view changes

// you supply optional fn to save your undo info

SaveUndoState: function, // message sent when comb view changes

// you supply optional fn to do app-specific tasks for undo

RestoreUndoState: function, // msg sent to undo comb view changes

Summary of Advanced Topics in Recognition 10-51

ARENDI-DEFS00004075

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 29 of 201 PageID #: 29074

CHAPT ER 1 0

Recognition: Advanced Topics

protoCharEdit Templates

ROM_numberFilter // general-purpose numeric template

GetLocale().timeFilter // time template

GetLocale().dateFilter// date template

GetLocale().phoneFilter // phone numnber template

ProtoCharEdit Functions

MapAmbiguousCharacters(str)

UnmapAmbiguousCharacters(str)

ProtoCorrectlnfo

a CorrectInfoFrame :

{

info: [frame], frame2 ... frameMax] // wordInfo frames

// maximum number of frames in info array

max: 10, // default value

// system-supplied methods

Offset: function, // move, merge or delete wordInfo

// remove view's wordInfo from correctInfo

RemoveView: function,

// return wordInfo frame at specified offset

Find: function,

return wordInfo frame at specified offset,

creating one if none found

FindNew: function,

// extract wordInfo from unit & add to correctInfo

AddUnit : function,

// add specified wordInfo to correctInfo

AddWord : function,

// delete range of wordInfo frames from correctInfo

Clear: function,

copy range of wordInfo frames from view

into a new correctInfo frame

Extract: function,

copy range of wordInfo frames from source

correctInfo frame into dest correctInfo frame

Insert: function,

10-52 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004076

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 30 of 201 PageID #: 29075

CHAPT ER 1 0

Recognition: Advanced Topics

ProtoWordlnfo

aWordInfoFrame :

{

// ID of view that owns this data; returned by GetViewID

i d : int,

// first char's offset into clParagraphView view

Start: int,

// last char's offset into clParagraphView view

Stop: int,

flags: forSystemUseOnly, // do not use this slot
unitID: forSystemUseOnly, // do not use this slot
// array of wordInterp frames; see page 10-53

words: [wordlnterpl , wordlnterp2, ... wordlnterpN]
// stroke data from original input

strokes: strokeBundleFrame, // see page 10-49
unitData: forSystemUseOnly, // do not use this slot
// sets list of words held by this wordInfo frame

SetWords : function,
// returns array of strings held by wordInterp frames

GetWords : function,
// Adds first word in this word list to auto-add and user dicts

AutoAdd : function,
// Removes first word in this list from auto-add and user dicts

AutoRemove : function,
}

protoWordlnterp

aWordInterpFrame :_

{

one interpretation of input strokes

word: string,
// recognizer's confidence in this interpretation

score: int, // 0 is good score, 1000 is bad score

// dictionary id of recognized word

label: int, // internal use only

// this word's rank in orig list of interpretations

index:int, // internal use only

}

Summary of Advanced Topics in Recognition 10-53

ARENDI-DEFS00004077

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 31 of 201 PageID #: 29076

CHAPT ER 1 0

Recognition: Advanced Topics

Additional Recognition Functions and Methods

Dictionary Functions

AddWordToDictionary(dictionary, wordString)

DeleteWordFromDictionary (dictIDword)

D i spo s eD i c t i ona ry (dictionary)

GetDictionaryData (dictionary)

GetRandomWord (minLength, maxLength)

LookupWordInDictionary (dictIDword)

NewD i c t i ona ry (dictionaryKind)

SaveUserDictionary()

SetDictionaryData (dictionary, binaryObject)

User Dictionary Functions and Methods

AddAutoAdd (word)

RemoveAutoAdd (word)

reviewDict: AddWord (word)

reviewDict: RemoveWord (word)

LoadUserDictionary()

SaveUserDictionary()

reviewDict: AddExpandWord (word, expanded Word)

reviewDict: GetExpandedWord (word)

reviewDict: Remove ExpandedWord (word)

LoadExpandDictionary()

SaveExpandDictionary()

Recognition Functions

Bui ldRecConf ig (viewRel)

GetPoint (selector, unit)

GetPointsArray (unit)

GetScoreArray (unit)

GetView= (viewRel)

GetWordArray (unit)

StrokeBounds (unit)

StrokeDone (unit)

PurgeAreaCache()

10-54 Summary of Advanced Topics in Recognition

ARENDI-DEFS00004078

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 32 of 201 PageID #: 29077

CHAPT ER 1 0

Recognition: Advanced Topics

Deferred Recognition Functions

Recognize (strokes, config, doGroup)

RecognizePara (para, start, end, hilite, config)

RecognizePoly (poly, hilite, config)

Application-Defined Methods

view: ViewClickScript (stroke)

view: ViewStrokeScript (stroke)

view: ViewGestureScript (stroke, gesture)

view: ViewWordScript (stroke)

Correctlnfo Functions

GetCorrectInfo() // return correctInfo frame

// return view identifier for use w/ correctInfo methods

GetViewID (view)

// extract wordInfo from word unit

GetCorrectionWordInfo(wordUnit) // call in ViewWordScript

Inker Functions

InkOf f (unit)

InkOf fUnHobbled (unit)

SetInkerPenSize (size)

Stroke Bundle Functions and Methods

Comp re s s S t roke s (strokeBundle)

Count Points (stroke)

Count Strokes (strokeBundle)

ExpandInk(poly, format)

ExpandUni t (unit)

GetStroke (strokeBundle, index)

GetStrokeBounds (stroke)

GetStroke Point (stroke, index, point, format)

GetStroke PointsArray(stroke, format)

InkConvert (ink, outputFormat)

MakeStrokeBundle(strokes, format)

Merge Ink (poly], poly2)

Point sArrayToStroke(pointsArray, format)

Sp 1 it I nkAt (poly, x, slop)

StrokeBundl eTo InkWord (strokeBundle)

Summary of Advanced Topics in Recognition 10-55

ARENDI-DEFS00004079

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 33 of 201 PageID #: 29078

ARENDI-DEFS00004080

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 34 of 201 PageID #: 29079Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 34 of 201 PageID #: 29079

AREN D I—DEFSOOOO4080

C H A P T E R 1 1

Data Storage and Retrieval

The Newton operating system supplies a suite of objects that interact with each
other to provide data storage and retrieval services. This chapter describes the use
of these objects—stores, soups, cursors, and entries—to save and retrieve data. If
you are developing an application that saves data, retrieves data, or provides
preexisting data, you should familiarize yourself with the contents of this chapter.

Before reading this chapter, you should understand the following sections in
Chapter 1, "Overview."

■ "Memory" on page 1-3 describes the use of random access memory (RAM) by
the operating system and applications.

■ "Packages" on page 1-4 describes the object that encapsulates code, scripts, and
resources as a Newton application.

■ "Object Storage System" on page 1-5 provides a brief introduction to the most
important data storage objects provided by the Newton operating system.

About Data Storage on Newton Devices

This section introduces Newton data storage objects and describes their interaction
and use. Additional special-purpose data storage objects are described in Chapter 12,
"Special-Purpose Objects for Data Storage and Retrieval."

About Data Storage on Newton Devices 11-1

ARENDI-DEFS00004081

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 35 of 201 PageID #: 29080

CHAP TER 1 1

Data Storage and Retrieval

I ntroduction to Data Storage Objects

Newton devices represent data as objects. The NewtonScript programming
language provides four basic object types that applications can use to
represent data:

Immediate A small, immutable object such as a character, integer or
Boolean value.

Binary Raw binary data.

Array A collection of object references accessed from a
numerical index.

Frame A collection of object references accessed by name.

Because immediates, binaries, and arrays are object representations of data types
common to many programming languages, they are not discussed further here. For
complete descriptions of these objects, see The NewtonScript Programming
Language.

The frame is of particular interest, however, as it can contain any of the other
objects and is the only NewtonScript object to which you can send messages. In
addition, the following characteristics of frames make them a particularly flexible
and efficient way to store data:

■ Frames are sized dynamically—they grow and shrink as necessary.

■ All frames support a common set of predefined NewtonScript data types that
allows them to share most data virtually transparently.

■ Dissimilar data types can be stored in a single frame.

Like a database record, a frame stores data items. An individual data item in the
frame is held in a slot, which may be thought of as a field in the database record.
Unlike database records, however, frames need not contain the same complement
of slots.

Any slot can hold any NewtonScript data type, including strings, numeric formats,
arrays, and binary objects. Note that NewtonScript does not require that slots
declare a datatype. Slots are untyped because every NewtonScript object stores
datatype information as part of the object itself. (NewtonScript variables need not
declare a type, either, for the same reason.)

Slots can also hold other frames, as well as references to frames, slots, and
NewtonScript objects. A frame's ability to reference other frames from its slots
allows it to inherit attributes and behaviors from ROM-based objects known as
system prototypes or "protos." This feature of the object system also provides
dynamic slot lookup and message-passing between frames. For detailed
descriptions of NewtonScript syntax, system-supplied data types, dynamic slot

11-2 About Data Storage on Newton Devices

ARENDI-DEFS00004082

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 36 of 201 PageID #: 29081

CHAP TER 1 1

Data Storage and Retrieval

lookup, message-passing, and inheritance in NewtonScript, see The NewtonScript
Programming Language.

Other than the requirement that data must reside in a slot, frames don't impose any
structure on their data. In practical use, though, the slots in a frame tend to be
related in some way, usually holding related data and methods which operate on
that data. In this way, the frame exemplifies the classic object-oriented
programming definition of an "object" Frames do not implement data-hiding,
however, nor do they necessarily encapsulate their data.

RAM-based frames are not persistent until they are saved in a data structure called
a soup, which is an opaque object that provides a persistent, dynamic repository
for data. Unless removed intentionally, soups remain resident on the Newton device
even when the application that owns them is removed.

The only NewtonScript object you can save in a soup is a frame; recall, however,
that any slot in the frame can hold any NewtonScript data type and multiple data
types can reside in a single frame. The object system does not impose any
limitations on the number of frames or the kinds of data that may reside in a soup.
In practical use, though, the items in a soup generally have some relationship to
one another.

Soups are made available to the system in a variety of ways. Applications may
create them on demand, they may be installed along with an application, or the user
may introduce them by inserting a storage card in the Newton device.

The soup resides on a store, which is a logical data repository on a physical storage
device. A store may be likened to a disk partition or volume on a conventional
computer system; just as a disk can be divided logically into multiple partitions, a
physical storage device can house multiple stores. The Newton platform supports a
single internal store and one or more external stores on PCMCIA devices.
Applications can use as many soups as they need, subject to the availability of
memory space on stores and in the NewtonScript heap.

Each store is identified by a name, which is not necessarily unique, though each
store has a nearly unique random number identifier called a signature. The store's
signature is assigned by the system when the store is created.

Soups can reside on internal or external stores; a special kind of object, the union
soup, represents multiple soups as a single entity, regardless of their locations on
various physical stores. For example, when a PCMCIA card is installed, application
data may be distributed between the internal and card-based soups. The union soup
object provides a way to address multiple soups having the same name as a single
"virtual" soup. Figure 11-1 illustrates the concept of a union soup graphically.

It's important to understand that there is only one kind of soup object in the
system; a union soup object simply represents the logical association of multiple
soup objects. In other words, aside from their logical association with other soups
in the union, a union soup's constituent soups (also called member soups) are no

About Data Storage on Newton Devices 11-3

ARENDI-DEFS00004083

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 37 of 201 PageID #: 29082

CHAP TER 1 1

Data Storage and Retrieval

different from soups that are not part of a union. Unless specifically noted
otherwise, anything said about soups in this text applies equally to union soups.

Figure 11-1 Stores, soups and union soups

Internal Store

aSoup
External Store

aSoup

Union Soup

{theNum:121088,

{data:

{aSlot:"some string data", ..

{myFn:<ccde block,,...)

Entries

In general, you'll want to use union soups for most purposes, especially for saving
most data the user creates with your application. Applications must allow the user
to choose whether to save new data on the internal or external store; using union
soups makes this easy to do.

An application creates a union soup by registering a soup definition frame with the
system; registering the soup definition causes the system to return a union soup
object to which the application can send messages that save and retrieve data. This
object may represent a new soup, one created previously, or no soups (if, for some
reason, all of the union's member soups are unavailable). For a detailed discussion
of soup creation, see "Soups" beginning on page 11-7.

All soups save frame data as objects called entries. An entry is a frame that has
been added to a soup by means of any of several system-supplied methods
provided for this purpose. Note that you cannot create a valid entry by simply
adding certain slots and values to a frame—the system must create the entry for
you from a frame presented as an argument to one of the entry-creation methods.

Returning to the database analogy, you can think of entries as individual records in
the database, and you can think of the soup as the database itself. Like a database, a
soup is opaque—you retrieve data by requesting it, rather than by examining its
records directly.

Your request for soup data takes the form of a Query message sent to the soup or
union soup object. The Query method accepts as its argument a frame known as

11-4 About Data Storage on Newton Devices

ARENDI-DEFS00004084

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 38 of 201 PageID #: 29083

CHAP TER 1 1

Data Storage and Retrieval

the query specification or query spec. The query spec describes the kind of
information the query returns. The order in which soups return data items is
imposed by an index you define for a specified soup.

If you've ever used an array, you are already familiar with the concept of an index.
Each element of the array is associated with a unique numeric value called a key.
These key values can be sorted, thus imposing order on their associated data items
(the elements of the array). In the case of a common array, a single numeric index
sorts the array elements in ascending key order.

Key values can also be used to reference or retrieve an indexed item. For example,
arrays allow you to reference or retrieve the data at a particular position in the array
without regard to the actual content stored at that position. Soup indexes provide
similar capabilities for soup data: they allow you to find and sort soup entries
associated with specified key values without specific knowledge of the data associated
with a particular key value.

You can index soup entries on any slot value you need to use as a key for extracting
them from the soup. For example, you could retrieve entries having a certain
creation date, or entries in which a particular string is present, and so on. Soups can
be created with a set of default indexes you specify and you can also add new
indexes to existing soups. Indexes are discussed in more detail in "Indexes"
beginning on page 11-8.

A soup responds to a query by returning a cursor object that iterates over the set of
entries meeting the criteria defined by the query spec. Cursors are updated
dynamically: if soup entries meeting the search criteria are added or deleted after
the original query is made, these changes are reflected automatically in the set of
entries that the cursor returns.

The cursor responds to messages that position it within the set of entries it
references and extract individual entries from this set. Until an entry is extracted
from the cursor, its data resides in the soup that was queried to generate the cursor.

The first time a slot in the entry is referenced—whether to read its value, set its
value, or to print its value in the Inspector—the system creates a normal frame
from it that is referenced by a special area of the NewtonScript heap known as the
entry cache. Changes to the entry's soup data are actually made in the cached
frame, not the permanent store; hence, changes to a soup entry are not persistent
until the cached frame is written back to a soup. This scheme makes it simple to
undo the changes to a soup entry—the system simply throws away the cached
frame and restores references to the original, unmodified soup entry.

Because the frame-based storage model facilitates the sharing of data, the system
provides a soup change notification mechanism that you can use to advise other
objects of changes to soups or soup data. All the methods that add, modify, or
delete soups or soup entries provide the option to execute registered callback
functions in response to changes in specified soups. Soup changes for which

About Data Storage on Newton Devices 11-5

ARENDI-DEFS00004085

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 39 of 201 PageID #: 29084

CHAP TER 1 1

Data Storage and Retrieval

applications might require notification include creating soups; deleting soups; and
adding, removing, or changing individual soup entries. The soup change
notification mechanism is discussed in more detail in "Using Soup Change
Notification" beginning on page 11-63.

In summary, most applications that work with dynamic data perform the following
operations, which are described in this chapter:

■ creating and using frames

■ storing frames as soup entries

■ querying soups to retrieve sets of entries

■ using cursor objects to work with sets of soup entries

■ extracting individual entries from cursor objects

■ manipulating individual soup entries as frame objects

■ returning modified entries to the soup from which they came

■ notifying other applications of changes to soups

Where to Go From Here

You should now have a general understanding of how stores, soups, queries,
cursors, and entries interact. It is strongly recommended that you read the remainder
of this section now—it provides important details you'll need to know in order to
work with the Newton data storage system. However, if you are anxious to begin
experimenting with Newton data storage objects, you can skip ahead to
"Programmer's Overview" on page 11-25 and read the remainder of this section at
another time.

Stores

Although soups and packages reside on stores, the occasions on which you'll need
to interact with stores directly are rare—the system manages hardware interaction
for you, creates union soups automatically as needed, and provides a programming
interface that allows you to perform most union soup operations without
manipulating the stores on which individual member soups reside. Occasionally,
you may need to message a store directly in order to create or retrieve a soup that is
not part of a union, or you may need to pass a store object as an argument to certain
methods; otherwise, most applications' direct interaction with stores is limited.

In general, only specialized applications that back up and restore soup data need to
manipulate stores directly. However, the system provides a complete developer
interface to stores, as documented in "Data Storage and Retrieval Reference"
(page 9-1) in Newton Programmer's Reference.

11-6 About Data Storage on Newton Devices

ARENDI-DEFS00004086

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 40 of 201 PageID #: 29085

CHAP TER 1 1

Data Storage and Retrieval

For information on using store objects, see "Using Stores" beginning on page 11-29.

Packages

A package is the basic unit of downloadable Newton software: it provides a means
of loading code, resources, objects, and scripts into a Newton device. Most Newton
applications are shipped as packages that can be installed on a Newton device by
applications such as Newton Package Installer or Newton Backup Utility.

Packages can be read from a data stream or directly from memory. For example,
Newton Connection Utility uses a data stream protocol to load a package into the
Newton system from a MacOS or Windows computer. However, it is much more
common to use packages directly from memory, as the user does after the package
has been installed on the Newton device.

For a more detailed discussion of packages, see "Parts" on page 12-3 in
Chapter 12, "Special-Purpose Objects for Data Storage and Retrieval."

Soups

This section provides important background information about soup objects. Topics
discussed here include

■ soups vs. union soups

■ related data structures such as soup definitions, indexes, index specification
frames, and tags

■ automatic creation of soups

■ saving user preferences in the system soup

Applications using soup-based data storage must respect the user's default store
preferences for writing soup entries and create soups only as necessary. The use of
union soups makes it easy to observe these requirements. Union soups provide
methods that respect the user's default store preferences automatically when adding
new entries. These ROM-based methods are also much faster than equivalent
NewtonScript code. Union soups also provide methods you can use on those
occasions when you must specify the store on which to save soup entries.

Another good reason to use union soups is that applications almost never need to
create them explicitly. Once a soup definition is registered with the system, individual
members of the union soup it defines are created automatically as needed.

A soup definition is a frame that provides information about a particular union
soup. The soup definition supplies descriptive information about the union soup
and information required to create its member soups.

About Data Storage on Newton Devices 11-7

ARENDI-DEFS00004087

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 41 of 201 PageID #: 29086

CHAP TER 1 1

Data Storage and Retrieval

The soup definition frame specifies a name that identifies the soup to the system, a
user-visible name for the soup, a symbol identifying the application that "owns"
the soup, a user-visible string that describes the soup, and an array of index
specification frames defining the default set of indexes with which the soup is
created. For a complete description of the slots in the soup definition frame, see the
section "Soup Definition Frame" (page 9-2) in Newton Programmer's Reference.

Methods that add an entry to a union soup use the information in its soup definition
to create a member soup to hold the new entry if the member soup is not present on
the appropriate store at the time the entry is added. If a member of the union is
present on the specified store, the new entry is added to the existing member soup
and a new soup is not created. In most cases, the store in question is specified by
the user's preferences for the default storage of new data items; if necessary,
however, you can specify by store the member soup in which the new entry is to
reside. Note also that you can create union soup members explicitly, if necessary.

If no frames have ever been added to a particular union soup, the union's member
soups may not exist at all. You can add entries to a union soup in this state
(member soups are created automatically), but you cannot query a union soup that
has no members.

Member soups may be unavailable for other reasons, as well. For example, the
user might have removed a member soup temporarily by ejecting the card on
which it resides or might have removed the soup permanently by scrubbing it in
the Extras Drawer.

The descriptive information in a soup definition frame can be used to supply
information about a soup for use by the system, applications, or the user. For
example, this information can be used to make the user aware of a particular soup's
owner and function before allowing the user to delete the soup.

To make a soup definition available for use, you must first register it with the
system. For information on registering and unregistering soup definitions, see the
section "Registering and Unregistering Soup Definitions" beginning on page 11-33.

NewtApp applications also make use of soup definitions; for more information, see
Chapter 4, "NewtApp Applications."

Indexes

An index is a data structure that provides random access to the entries in a soup as
well as a means of ordering those entries. A designated value extracted from each
soup entry is stored separately in the soup's index as the index key for that entry.
Because the system can retrieve and sort index key values without reading their
associated soup entries into memory, indexes provide a fast and efficient means of
finding soup entries.

The system maintains all indexes automatically as soup entries are added, deleted,
or changed. Thus, index data is always up-to-date and readily available.

11-8 About Data Storage on Newton Devices

ARENDI-DEFS00004088

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 42 of 201 PageID #: 29087

CHAP TER 1 1

Data Storage and Retrieval

You can create your own specialized indexes for any soup. You need to create an
index for each slot or set of slots on which the soup will be searched frequently. It
is preferable to define your indexes in the appropriate soup definition, but you can
add indexes to an existing soup if necessary.

An index generated against a single key value is called a single-slot index. A
single-slot index selects and sorts soup entries according to the value of a single
slot specified when the index is created. An index generated against multiple key
values is called a multiple-slot index. A multiple-slot index can select and sort
soup entries according to the values of multiple slots. A multiple-slot index can
associate up to a total of six key values with each entry it indexes. You can create
multiple indexes for any soup.

The characteristics of an index are specified by an index specification frame or
index spec. The values in the index spec frame indicate the kind of index to build,
which slot values to use as index data, and the kind of data stored in the indexed
slots. The precise format of the index spec frame varies according to whether it
defines a single-slot index or a multiple-slot index. For complete descriptions of
index specs, see "Single-Slot Index Specification Frame" on page 9-5 and
"Multiple-Slot Index Specification Frame" (page 9-6) in Newton Programmer's
Reference.

A tag is an optional developer-defined symbol used to mark one or more soup
entries. Tags reside in a developer-specified slot that can be indexed, with the
results stored in a special index called the tags index.

The tags index is used to select soup entries according to their associated symbolic
values without reading the entries into memory; for example, one could select the
subset of entries tagged ' business from the ROM CardFileSoupName soup
used by the built-in Names application. In fact, "filing" Newton data items in
"folders" is a user-interface illusion—the data really resides in soup entries and its
display is filtered for the user according to the tags associated with each soup entry.

Note that the system allows only one tags index per soup. Each soup can contain a
maximum of 624 tags. The system treats missing tags as nil values. For more
information, see "Tag-based Queries" on page 11-14.

A tags index specification frame, or tags index spec, defines the characteristics of
a soup's tags index. Like an index spec, a tags index spec can be used to create a
default tags index on a new soup or add a tags index to an existing soup. For a
complete description of the slots in a tags index spec frame, see the section "Tags
Index Specification Frame" (page 9-8) in Newton Programmer's Reference.

To better support the use of languages other than English, soup indexes and queries
can be made sensitive to case and diacritical marks in string values. (Normally,
string comparison in NewtonScript is insensitive to case and diacritics.) This
behavior is intended to allow applications to support the introduction of non-
English data easily; for example, the user might insert a PCMCIA card containing

About Data Storage on Newton Devices 11-9

ARENDI-DEFS00004089

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 43 of 201 PageID #: 29088

CHAP TER 1 1

Data Storage and Retrieval

data from a different locale. To take advantage of this behavior, the application
must create an internationalized index for the soup and the query must request the
alternate sorting behavior explicitly in its query spec. For more information, see
"Internationalized Sorting Order for Text Queries" on page 11-45.

Saving User Preference Data in the System Soup

Most of the time you'll want to store data in union soups, but one task for which
union soups are not suitable is the storage of your application's user preferences
data. There are several good reasons for always saving user preferences data on the
internal store:

■ If your application is on a card that is moved from one Newton device to another,
it acts the way the users of the respective Newton devices think it should.

■ It rarely makes sense to distribute preferences data among several storage cards.

■ It's difficult to guarantee that your application will always have access to any
particular card.

■ If your application is on the internal store and it simply adds preference data to
the default store, the preference data could be saved on an external store that
becomes unavailable to the application when a card is ejected.

Hence, the built-in ROM_SystemsoupName soup on the internal store is usually
the ideal place to keep your application's preference data. The GetAppPref s
function allows you to get and set your application's preferences frame in this
soup. For more information, see the description of this function in Chapter 26,
"Utility Functions." For more information about the ROM_SystemSoupName soup
itself, see Chapter 19, ̀Built-in Applications and System Data."

Queries
To retrieve entries from a soup or union soup, you perform a query by sending the
Query message to the soup or union soup. The Query method accepts as its
argument a frame known as a query specification or query spec. The query spec
defines criteria for the inclusion of entries in the query result. You can think of the
query spec as a filter that the Query method uses to select a subset of the soup's
data. Queries can test index key values or string values and perform customized
tests that you define.

A single query spec can specify multiple criteria that entries must meet in order to
be included in the result of the query. For example, you can specify that your query
return all entries created after a certain date that are tagged ' business but do not
contain the " pa. id° string. For instructional purposes, this chapter discusses
separately each test that a query spec may include.

11-10 About Data Storage on Newton Devices

ARENDI-DEFS00004090

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 44 of 201 PageID #: 29089

CHAP TER 1 1

Data Storage and Retrieval

Querying for Indexed Values

Queries can retrieve items according to the presence of one or more index keys and
can test key values as well. A query that tests for the presence or value of an index
key is called an index query.

Soups that have single-slot indexes allow queries to use a single index key to select
soup entries. Detailed information is provided in "Querying on Single-Slot
Indexes" beginning on page 11-39.

Soups that have multiple-slot indexes allow queries to use multiple index keys to
select soup entries. Detailed information is provided in "Querying on Multiple-Slot
Indexes" beginning on page 11-47.

Index queries can be based only on slot names for which an index has been generated.
For example, to select entries according to the presence of the foo slot, the soup
that receives the Query message must be indexed on the foo slot. Entries not
having a foo slot are not included in the set of entries referenced by the foo index.

Although the entries in the soup are not actually in any particular order themselves,
the index keys associated with them can be sorted in a specific order that is defined
for each NewtonScript data type. Thus, you can envision the contents of an index
as a sequence of entries arranged in key order, as shown in Figure 11-2.

Figure 11-2 An index provides random access and imposes order

Store
l

Soup

{foo: 2,...1

{bar: 6, ...}
{foo: 4,...}

If 00: 5,

{foo: 3, ...}

...}

{bar: , ...}

Index on foo slot

Ascending key order

2 3 4 5

Descending key order

The asoup soup shown in Figure 11-2 is indexed on the foo slot, which means
that the value of each entry's f oo slot is used as its index key. Only those entries
containing a foo slot are included in this index. By sorting key values, the index
imposes order on their corresponding soup entries, which are otherwise unordered.

About Data Storage on Newton Devices 11-11

ARENDI-DEFS00004091

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 45 of 201 PageID #: 29090

CHAP TER 1 1

Data Storage and Retrieval

Indexes sort key values in ascending order unless the index spec frame used to
create a particular index specifies descending order.

Begin Keys and End Keys

Because index keys are sorted by value, you can improve the speed of an index
query significantly by limiting the range of index key values it tests. One way to do
this is to eliminate from the search any index key values that fall outside specified
minimum or maximum values. For example, you can specify a minimum index key
value used to select the first entry to be tested, causing the query to "skip over" all
lesser-valued index keys. A minimum value used in this way is defined in the query
spec as a beginKey value.

Similarly, you can specify a maximum index key value to be used in selecting the
last entry to be tested, causing the query to ignore entries having index keys of
greater value. A maximum value used in this way is defined in the query spec as an
endKey value.

You can use these optional beginKey and endKey values together to specify a
subrange of index key values, as shown in Figure 11-3. Note that if an endrange
value is not specified, it is unbounded; for example, if you don't specify an endKey
value the query result potentially includes all entries through the end of the index.

Figure 11-3 Using beginKey and endKeyvalues to specify an index subrange

Ascending key order

subrange of index key values

3 4 5 1 6

beginKey endKey

Descending key order

You can also define a special kind of key that is itself excluded from the valid
subrange of index values. These keys are defined as beginExcl Key and
endExclKey values in the query spec. Figure 11-4 depicts the use of
beginExclKey and endExclKey values to define the same index subrange
shown in Figure 11-3. Note that you cannot specify both the inclusive and

11-12 About Data Storage on Newton Devices

ARENDI-DEFS00004092

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 46 of 201 PageID #: 29091

CHAP TER 1 1

Data Storage and Retrieval

exclusive forms of the same endrange selector; for example, a single query spec
cannot specify both a beginKey value and a beginExclKey value.

Another important point to understand is that there is only one beginKey or
beginExclKey value, and only one endKey or endExclKey value associated
with any query and the cursor it returns.

Figure 11-4 Using beginExclKey and endExclKey values to specify
a subrange

I
beginExclKey

Ascending key order

subrange of index key values

3 4 5

Descending key order

6

endExclKey

Each beginKey, beginExclKey, endKey, or endExclKey specification
evaluates to a single value that has a unique position in the sorted index key data.
This position marks one end of the range over which the cursor iterates. The cursor
never moves to a position outside the range specified by these keys.

If any endrange selectors are defined for a query, the relationship of the cursor's
entries to the endrange selectors may be summarized as follows:

entry > beginExclKey

entry >_ beginKey

entry < endKey

entry < endExclKey

You can think of these values as being used by the system in an inequality
expression to specify the range of the cursor; for example,

beginKey >_ entry < endExclKey

Note that if a valid entry is not found at the key value specified for an endrange
selector, the cursor is positioned on the nearest entry in index key order that falls
within the range specified by the endrange selectors. For example, if a valid entry is
not found at the key value specified for a beginKey or beginExclKey value, the

About Data Storage on Newton Devices 11-13

ARENDI-DEFS00004093

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 47 of 201 PageID #: 29092

CHAP TER 1 1

Data Storage and Retrieval

cursor is positioned on the next valid entry in index key order. Similarly, if a valid
entry is not found at the key value specified for an endxey or endExc1Key value,
the cursor is positioned on the previous valid entry in index key order. (The cursor
is never positioned beyond the endxey value or before the beginxey value.)

For information on using index queries, see "Querying on Single-Slot Indexes"
beginning on page 11-39 and "Querying on Multiple-Slot Indexes" beginning on
page 11-47.

Tag-based Queries

Index queries can also include or exclude entries according to the presence of one
or more tags. A tag is an optional developer-defined symbol that resides in a
specified slot in the soup entry.

The symbols used as tags are stored as the key values in the soup's tags index. As
with any other index, the system maintains the tags index automatically and queries
can test values in this index without reading soup entries into memory. Thus, tag-
based queries are quick and efficient.

Unlike other indexes, the tags index alone cannot be used as the basis of an index
query—it does not sort entries (as other indexes do), it only selects or eliminates
entries according to their associated tag values. However, you need not specify an
additional index in order to query on tag values; when a separate index is not
specified, queries on tags test all entries in the soup.

The tags for which the query tests are specified by a tags query specification
frame or tags query spec supplied as part of the query spec. The tags query spec
can specify set operators such as not, any, equal, and all to create complex
filters based on tag values. For example, you could use these operators to query for
entries having the 'USA or 'west tags that do not have the ' California tag.

The set operators used by tags query specs are described in greater detail in "Tag-
based Queries" beginning on page 11-14 of this book and "Tags Query
Specification Frame" (page 9-13) in Newton Programmer's Reference.

Customized Tests

The use of indexes, begin keys, end keys, and tags provides sufficient control over
query results for most uses; however, you can specify additional customized tests
when necessary. These tests take the form of an indexvalidTest or
validTest function that you define in the query spec.

The indexvalidTest function tests the index key values associated with each
entry in the range of values over which the cursor iterates. This function returns
n 1 for an entry that is to be rejected, and returns any non-ni 1 value for an entry
that is to be included in the results of the query. Like all tests that manipulate index

11-14 About Data Storage on Newton Devices

ARENDI-DEFS00004094

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 48 of 201 PageID #: 29093

CHAP TER 1 1

Data Storage and Retrieval

key values, indexvalidTest functions are fast and efficient because index key
values are always kept in memory.

Another kind of customized test, the validTest function, works like the
indexval idlest function but tests the soup entry itself rather than its associated
index key value. To perform this test, the query must actually read the soup entry
into the NewtonScript heap, which takes more time and uses more memory than
tests which operate on index key values only. Thus, for performance reasons,
validTest functions should be used only when absolutely necessary. It is
strongly suggested that you use index-based approaches to limit the range of
entries passed to the validTest function.

For information on using indexVa1idTest and validTest functions, see
"Querying on Single-Slot Indexes" beginning on page 11-39.

Text Queries

Queries can also select entries according to the presence of one or more specified
strings. For instructional purposes, this section describes separately each of the text
searches that queries can perform—remember, though, that a single query spec can
specify multiple tests for the query to perform on each soup entry it examines.

A words query tests all strings in each soup entry for a word beginning or for an
entire word. A text query is similar to a words query but its test is not limited to
word boundaries.

The default behavior for a words query is to test for word beginnings. For example,
a words query on the string "smith" would find the words "smithe" and
"smithereens". The word "blacksmith" would not be included in the results
of the search because the string " smi th" is not at a word beginning. Because
words queries are not case sensitive, the word "Smithsonian" would also be
found by this query.

If you specify that the words query match only entire words, it returns only entries
containing the entire word "smith" or "Smith" and does not return any other
variations. You can also specify explicitly that the query be sensitive to case and
diacritics, causing it to return only the "smith" entry.

A words query is slower than a similar index query because it takes some time to
test all the string values in a soup entry. For information about performing words
queries, see "Querying for Text" beginning on page 11-43.

A text query is similar to a words query but its test is not limited to word
boundaries; that is, it tests all strings in each soup entry for one or more specified
strings, regardless of where they appear in the word. For example, a words query
on the string "smith" would find the words "smithe" and "smithereens" as
well as the word "blacksmith". Because text queries are not case sensitive

About Data Storage on Newton Devices 11-15

ARENDI-DEFS00004095

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 49 of 201 PageID #: 29094

CHAP TER 1 1

Data Storage and Retrieval

unless this behavior is requested explicitly, the words "blacksmith" and
"Smithsonian" would also be found by this query.

A text query is slower than its words query counterpart. Text queries do not require
significantly more heap space than other kinds of queries.

For more information about performing text queries, see "Querying for Text"
beginning on page 11-43.

Cursors

The Query method returns a cursor, which is an object that iterates over the set of
entries satisfying the query spec and returns entries in response to the messages it
receives. Cursors return entries in index key order. As entries in the soup are added,
deleted, and changed, the set of entries the cursor references is updated
dynamically, even after the original query has been performed.

Recall that after selecting a subrange of all entries in the soup, a query can use
various tests to eliminate certain entries within that range. If viewed within the
context of the entire soup index, the final set of valid entries is discontiguous—that
is, it includes gaps occupied by entries that did not meet the criteria established by
the query spec. However, the cursor presents this subset as a continuous range of
entries, as depicted in Figure 11-5.

Initially, the cursor points to the first entry in index order that satisfies the query.
The cursor supplies methods that allow you to determine its current position, retrieve
the entry referenced by its current position, or specify a new position. The cursor
may be moved incrementally, moved to the position occupied by a specified entry
or key, or reset to an initial position that is not necessarily the first entry in the valid
set. Note that it is possible to move the cursor incrementally to a position outside
the valid range of entries, in which case the cursor returns nil instead of an entry.

For information about using cursors, see "Using Cursors" beginning on page 11-53.

11-16 About Data Storage on Newton Devices

ARENDI-DEFS00004096

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 50 of 201 PageID #: 29095

CHAP TER 1 1

Data Storage and Retrieval

Figure 11-5 Cursor presents discontiguous index key values contiguously

Indexed entries

Select subrange
of valid entries

Eliminate more
entries

Valid entries
in black

Valid entries as
presented by
cursor

Entries

1 2 3 4 5 6 7 8 9

S
subrange of index key values

2 3 4 5 6 7 8

beginKey endExclKey

indexValidTest: func (key)

begin

(key MOD 2 = 0)

end

2 3 4 5 6 77

s

2 4 6

An entry is a special kind of frame that resides in a soup. Valid entries can be
created only by system-supplied methods provided for this purpose—you cannot
create an entry by creating a frame having certain slots and values. The entry that
these methods create consists of the frame presented to the entry-creation method,
along with copies of any data structures the frame references, as well as copies of
any data structures those structures reference, and so on. An exception to this rule
is that _proto slots are not saved in soup entries. Circular references within an
entry are allowed.

About Data Storage on Newton Devices 11-17

ARENDI-DEFS00004097

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 51 of 201 PageID #: 29096

CHAP TER 1 1

Data Storage and Retrieval

All frames are compressed automatically when they are stored as soup entries and
all soup entries are decompressed when they are referenced. The automatic
compression and decompression of soup data reduces the amount of storage space
and run-time memory required by Newton applications.

If you add a frame that references another entry, the referenced entry is copied as a
frame into the new soup entry that is created. Similarly, if you move that entry to
another store, any data it references is moved to the new store as well.

The only way to retrieve an entry is to send the Query message to the soup or
union soup in which the entry resides. This method returns a cursor, which is an
object that returns entries in response to messages it receives.

As first returned by the cursor, the entry is a frame that holds references to the
entry's data. Soup data referenced by this frame is not decompressed until it is
referenced—for example, to get or set the value of one of the entry's slots. When a
slot in the entry is referenced, the system constructs the entire entry frame in the
NewtonScript heap.

Decompressed entries are cached in RAM until they are written back to the soup.
Applications can modify these cached entry frames directly. The system supplies
functions for modifying entries, writing them back to the soup, and manipulating
them in other ways.

For information about using entries, see the section "Using Entries" beginning on
page 11-57.

Alternatives to Soup-Based Storage

Although soup-based data storage offers many advantages, you may improve
your application's performance or reduce its RAM requirements by storing data
in other formats.

There are a wide variety of trade-offs to consider when choosing a structure to
represent your application data. You are strongly advised to conduct realistic tests
with the actual data set your application uses before committing to the use of a
particular data structure. It's also recommended that you design your application in
a way that allows you to experiment with the use of various data structures at any
point in its development.

When choosing schemes for storing your application's data, you need to consider
factors such as:

■ the kind of data to be saved

■ the quantity of data to be saved

■ how the application accesses the data

11-18 About Data Storage on Newton Devices

ARENDI-DEFS00004098

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 52 of 201 PageID #: 29097

CHAP TER 1 1

Data Storage and Retrieval

The most important factor to consider with respect to the kind of data is whether
the data is static or dynamic. You must use soups to store dynamic data, but a
number of options are available for storing static data. You will probably find that
certain structures lend themselves more naturally than others to working with your
particular data set.

Especially for large data sets, space-efficiency may influence your choice of one
data structure over another. In some cases, you may need to consider trade-offs
between space requirements and speed or ease of access.

Data access issues include questions such as whether the data structure under
consideration facilitates searching or sorting the data. For example, soups provide
powerful and flexible mechanisms for searching and sorting soup entry data.

Dynamic Data

Data your application gathers from the user must be stored in soups. Within
individual soup entries, you are free to store data in whatever manner best suits
your application's needs.

Because each entry in a soup is a frame, the price you pay for using soup-based
storage can be measured in terms of

■ the time required to find slots at run time

■ the memory space required to expand soup entries

■ the memory space required to store the expanded entry frames on the
NewtonScript heap

For many uses, the benefits offered by soups outweigh these costs; however, other
approaches may be more suitable for certain data sets, especially large sets of read-
only data.

For example, a large, read-only list of provinces and postal codes is saved most
compactly as a single array, frame, or binary object residing in a slot in the
application base view's template or in the application package itself. Information
stored in this way is compressed along with your application package and is not
brought into the NewtonScript heap when it is accessed. The primary disadvantages
of this scheme are that the data set is read-only and the conveniences provided by
soup queries are not available.

Static Data

Read-only or static data can be stored in packages held in protected memory on the
Newton. There are a variety of reasons you might store data in a package rather
than in a soup:

■ Storing static data in a compressed package rather than in a soup helps to
conserve store space and NewtonScript heap space.

About Data Storage on Newton Devices 11-19

ARENDI-DEFS00004099

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 53 of 201 PageID #: 29098

CHAP TER 1 1

Data Storage and Retrieval

■ Although the user might enter data dynamically, there might be a large initial set
of data your application needs to provide. Again, it's more efficient to supply
this as package data rather than as soup data.

■ You can supply multiple static data sets as separate packages to allow the user to
load some subset of that data. For example, a travel guide application might
keep data for individual countries in separate packages.

If your application makes use of a large initial data set to which the user can make
additions, you might consider a hybrid approach: keep the initial data set in your
base view's template and use a soup only for the user's additions.

A special-purpose object called a store part allows you to provide read-only soups
as package data; however, a soup residing on a store part cannot participate in a
union. For information about store parts, see Chapter 12, "Special-Purpose Objects
for Data Storage and Retrieval."

If you decide not to store your data in a soup, consider the following points:

■ Don't be too quick to discount frames as your data structure of choice—slot
lookup is very fast.

■ Storing data as a binary object can help you avoid some of the overhead associated
with array and frame data structures. In general, binary objects may let you store
your data more compactly, but make it more difficult to access: you'll need to
use the various ExtractDataType functions to retrieve items. Note that the
ExtractCString and ExtractPString functions create a string object in
the NewtonScript heap for each string extracted from a binary object.

■ Consider storing symbols for repeated strings rather than storing the strings
themselves. When you define a symbol for an object (such as a string or frame),
only one instance of the object is stored in the application package, and all the
symbols reference that instance. Remember that symbols are limited to 7-bit
ASCII values. Symbols (slot names) can include nonalphanumeric ASCII
characters if the name is enclosed by vertical bars; for example, the space in the
symbol Chicken Little I would normally be illegal syntax, but the
vertical bars suppress the usual evaluation of all characters they enclose.

Compatibility Information

This section provides version 2.0 compatibility information for applications that
use earlier versions of the data storage and retrieval interface.

Obsolete Store Functions and Methods

The following store methods and functions are obsolete:

store: Create Soup (soupName, indexArray) // use CreateSoupFromSoupDef
Remove Package (pkgFrmOrID) // use SafeRemovePackage instead
store: Restore Package (packageObject) // use SuckPackageFromBinary instead

11-20 About Data Storage on Newton Devices

ARENDI-DEFS00004100

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 54 of 201 PageID #: 29099

CHAP TER 1 1

Data Storage and Retrieval

Soup Compatibility Information

This section contains compatibility information regarding

■ the new soup format introduced with version 2.0 of the Newton operating system

■ obsolete soup functions and methods

■ the new soup change notification mechanism introduced in version 2.0 of the
Newton operating system

■ soup information frame changes

■ null union soups on Newton 1.xdevices

New Soup Format

Because 2.0 soup formats are incompatible with earlier versions of the Newton
data storage model, the system implements the following soup-conversion strategy:

■ When a Lx data set is introduced to a Newton 2.0 system, the system allows the
user to choose read-only access or permanent conversion of the Lx soup data to
the Newton 2.0 format.

■ Older systems display a slip that says "This card is too new. Do you want to
erase it?" when a Newton 2.0 soup is introduced to the system.

Obsolete Soup Methods and Functions

The system's approach to creating soups automatically has changed with version
2.0 of Newton system software. In previous versions of the system, any soup
registered by the RegCardsoups method was created automatically on any
PCMCIA card lacking that soup, even when the user specified that new items be
written by default to the internal store. The result was a proliferation of unused,
"empty" soups on any PCMCIA card introduced to the system.

Version 2.0 of Newton system software creates the members of union soups
automatically only when they are actually needed to store data. Thus, the
RegCardsoups,SetupCardSoups,RegisterCardSoup,and
UnRegisterCardsoup functions have been made obsolete by the
RegUnionSoup and UnRegUnionSoup functions. Similarly, the CreateSoup
store method has been made obsolete by the RegUnionSoup function. For more
information, see "Soups" beginning on page 11-7.

About Data Storage on Newton Devices 11-21

ARENDI-DEFS00004101

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 55 of 201 PageID #: 29100

CHAP TER 1 1

Data Storage and Retrieval

The following soup methods and functions are obsolete:

SetupCardSoups() // use RegUnionSoup instead

RegisterCardSoup (soupName, indexArray,
appSymbol, appObject) // useRegUnionSoup instead

UnRegisterCardSoup(soupName)// use UnRegUnionSoup instead

BroadcastSoupChange (soupNameString) // use -xmit methods or
XmitSoupChange fn instead

UnionSoupIsNull(umionSoup)// no null uSoups from GetUnionSoupAlways

GetUnionSoup(soupNameString)// use GetUnionSoupAlways instead

soup:Add(frame) // use -xmit version instead

soup: Add Index (indexSpec) // use -xmit version instead
soupOrUSoup:AddTags (tagsToAdd) // use -xmit version instead

unionSoup: AddToDe f aul t Store (frame) // use -xmit version instead

soup: AddWithUniqueId(frame)// use -xmit version instead

sourceSoup: CopyEntries (destSoup) // use -xmit version instead
soup: RemoveAllEntries() // use -xmit version instead

soup: Remove FromStore() // use -xmit version instead

soup: Remove Index(indexPatb) // use -xmit version instead

soupOrUSoup: Remove Tags (tagsToRemove) // use -xmit version instead

soup: Set Info (slotSymbol) // use -xmit version instead

New Soup Change Notification Mechanism

Applications no longer modify system data structures directly to register and
unregister with the soup change notification mechanism. Instead, they use the
RegSoupChange and UnRegSoupChange global functions provided for
this purpose.

In addition to the new registration and unregistration functions, the soup change
mechanism provides additional information about the nature of the change and
allows applications to register callback functions to be executed whenever a particular
soup changes. Consequently, the global function BroadcastSoupChange
is obsolete.

For more details, see the section "Using Soup Change Notification" beginning on
page 11-63.

Soup Information Frame

Soups created from a soup definition frame carry a default soup information frame
that holds a copy of the soup definition frame. Soups created by the obsolete global
function RegisterCardSoup have a default soup information frame that
contains only the slots applications and itemNames.

Soups created by the obsolete store method Createsoup do not contain a default
soup information frame.

11-22 About Data Storage on Newton Devices

ARENDI-DEFS00004102

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 56 of 201 PageID #: 29101

CHAP TER 1 1

Data Storage and Retrieval

Null Union Soups

Under unusual circumstances a 1.x application may encounter a union soup that
doesn't contain any member soups. A soup in this state is referred to as a null
union soup. Queries on a null union soup fail. Attempts to add entries to a missing
member soup also fail if a soup definition for that soup has not been registered.
Null union soups should not normally occur with 1.x applications and cannot occur
with applications that use the 2.0 union soup interface correctly.

Null union soups are most often found in the aftermath of a debugging session—
for example, if in the NTK Inspector you have deleted various soups (to test the
cases in which your application needs to create its own soups) and neglected to
restore things to their normal state.

Null union soups can also occur as a result of the application soup not being
created properly. Normally, when a card is ejected, the internal store member of a
union soup is left behind or a soup definition for creating that soup is available.
When this is not the case, the union soup reference to the internal store member is
null when the card is ejected. If you follow the guidelines outlined in "Registering
and Unregistering Soup Definitions" on page 11-33 this problem does not occur.

Null union soups can also occur when another application deletes one or more
soups that your application uses. Any application that deletes soups should at least
transmit a soup change notification, thereby allowing your application to deal with
the change appropriately.

When your application is running on a I.xunit or when no soup definition exists
for a union soup, it is appropriate to test for a constituent soup's validity before
trying to add an entry to it. Simply loop through the array of stores returned by the
Getstores function, sending the Isvalid message to each of the constituent
soups in the union.

Query Compatibility Information

Version 2.0 of Newton system software provides a more powerful query mechanism
while at the same time simplifying the syntax of queries. Although old-style query
syntax is still supported, you'll probably want to revise your application code to
take advantage of the features new-style queries provide. The following list
summarizes changes to queries. The remainder of this section explores query
compatibility issues in more detail.

Query (soupOrUSoup, querySpec) // use soupOrUSoup: Query (querySpec) instead

querySpec :_ {type : symbol, // obsolete, do not use
startKey: keyValue, // use beginKey or beginExclKey
endTest: keyValue, // endKey or endExclKey instead

About Data Storage on Newton Devices 11-23

ARENDI-DEFS00004103

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 57 of 201 PageID #: 29102

CHAP TER 1 1

Data Storage and Retrieval

Query Global Function Is Obsolete

Queries are now performed by the Query method of soups or union soups;
however, the Query global function still exists for compatibility with applications
using version Lx of the Newton application programming interface. The Query
method accepts the same query specification frame argument that the Query
global function did; however, version 2.0 query specs provide additional features
that Lx queries do not. For examples of the use of the Query method, see "Using
Queries" beginning on page 11-38. For a complete description of the query spec
frame and its slots, see "Query Specification Frame" (page 9-9) in Newton
Programmer's Reference.

Query Types Obsolete

Query specs no longer require a type slot; if this slot is present, it is ignored.

StartKey and EndTest Obsolete

Because the order in which the cursor returns entries is determined entirely by
index values, specifying key values is sufficient to determine a range. Hence, the
use of an endTest function in a query spec is always unnecessary. Instead, your
query spec should specify an endKey or endExc1Key value.

The endTest function was sometimes used for other purposes, such as stopping
the cursor after the visible portion of a list had been filled; however, this sort of test
is best performed outside the cursor to optimize performance. The caller of the
cursor's Next method should be able to determine when to stop retrieving soup
entries without resorting to the use of an endTest function.

When a cursor is generated initially and when it is reset, it references the entry
having the lowest index value in the set of entries in the selected subset. Thus, it is
usually unnecessary to use a start key, although this operation still works as in
earlier versions of system software. For those occasions when it is necessary to
start the cursor somewhere in the middle of the range, the use of a start key can be
simulated easily by invoking the cursor's Gotoxey method immediately after
generating or resetting the cursor.

Queries on Nil-Value Slots Unsupported

In Newton system software prior to version 1.05, storing a value of ni 1 in the
indexed slot of an entry returns ni 1 to the query for that entry; that is, the query
fails to find the entry. To work around this problem in older Newton systems, make
sure your indexed slots store appropriate values.

In Newton system software version 2.0, the behavior of queries on ni 1-value slots
is unspecified. For best performance, make sure your indexed slots store
appropriate values.

11-24 About Data Storage on Newton Devices

ARENDI-DEFS00004104

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 58 of 201 PageID #: 29103

CHAP TER 1 1

Data Storage and Retrieval

Heap Space Requirements of Words and Text Queries

On systems prior to version 2.0, words and text queries generally require more
memory than index queries, because each entry to be tested must first be read into
the NewtonScript heap. System software version 2.0 uses virtual binary objects to
reduce the memory requirements of words and text queries significantly; however,
you need not be familiar with these objects yourself in order to query on string
values. Virtual binary objects are described in Chapter 12, "Special-Purpose
Objects for Data Storage and Retrieval."

Obsolete Entry Functions

The following entry functions are obsolete:

EntryChange (entry) // use -xmit version instead
Ent ryCopy (entry, newSoup) // use -xmit version instead
Ent ryMove (entry, newSoup) // use -xmit version instead
Ent ryRemove FromSoup (entry)// use -xmit version instead
EntryReplace (oldEntry, newEntry) // use -xmit version instead
Ent ryUndo Changes (entry)// use -xmit version instead

Obsolete Data Backup and Restore Functions

The utility functions and methods in the following list are obsolete. Note that these
functions and methods are intended for use only by utility programs that back up
and restore Newton data.

soup:AddWithUniqueId (entry) // use -xmit version instead
soup:SetAllInfo (frame)// use -xmit version instead
Ent ryChangeWi thModTime (entry)// use -xmit version instead
Ent ryRep1aceWithModTime (original, replacement) // use -xmit version

Using Newton Data Storage Objects

This section describes how to use the most common Newton data storage objects
and methods. It presumes knowledge of the material in preceding sections. This
section begins with a programmer's overview, which is followed by sections
providing detailed explanations of the use of stores, soups, queries, cursors,
and entries.

Programmer's Overview

This section provides a code-level overview of common objects, methods, and
functions that provide data storage and retrieval services to Newton applications.

Using Newton Data Storage Objects 11-25

ARENDI-DEFS00004105

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 59 of 201 PageID #: 29104

CHAP TER 1 1

Data Storage and Retrieval

This section presumes understanding of the material in "About Data Storage on
Newton Devices" beginning on page 11-1.

Most applications store data as frames that reside in soup entries. You can create a
frame by simply defining it and saving it in a variable, a constant, or a slot in
another frame. For example, the following code fragment defines a frame
containing the aSlot and otherSlot slots. The frame itself is stored in the
myFrame variable. For all practical purposes you can treat variables that hold
NewtonScript objects as the objects themselves; hence, the following discussion
refers to the frame saved in the myFrame variable as the myFrame frame.

myFrame :_ {aslot: "some string data", otherSlot: 92581;

The myFrame frame contains two slots: the a S 1 o t slot stores the "some
string data" string and the otherSlot slot stores the 9258 integer value.
Because every NewtonScript object encapsulates its own class data, you need not
declare types for NewtonScript data structures, including slots.

Frames are not persistent unless stored as soup entries. To add the myFrame frame
to a soup, you must send a message to the appropriate soup object. You can obtain
a soup or union soup object by creating a new one or by retrieving a reference to
one that is already present.

To create a new union soup, use the RegUnionsoup function to register its soup
definition with the system. The system uses this definition to create the union's
member soups as needed to store soup entries.

The following code fragment saves the union soup object RegUnionsoup returns
in the myusoup local variable. You might place code like this example in your
application (form) part's Instal lScript function or your application base
view's ViewSetupFormScript method:

local aSlotIndexSpec :_ {structure: slot, path: 'aSlot,

type: 'string};

local otherSlotIndexSpec :_ {structure: slot, path: 'otherSlot,

type: lint};

local mySoupDef :_ {name: "mySoup:mySig",

userName: "My Soup",

ownerApp: 'lMyApp:MySigl ,

ownerAppName : "My Application",

userDescr: "This is the My Application soup.

indexes: [aSlotIndexSpec,otherSlotIndexSpec]

};

local myusoup := RegUnionSoup('lMyApp:MySigl ,mySoupDef);

Note the use of the mysig developer signature as a suffix to ensure the uniqueness
of the values of the name and ownerApp slots. For more information regarding
developer signatures, see Chapter 2, "Getting Started."

11-26 Using Newton Data Storage Objects

ARENDI-DEFS00004106

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 60 of 201 PageID #: 29105

CHAP TER 1 1

Data Storage and Retrieval

When creating soups from within your application (form) part's Install Script
function, remember that this function calls the Ensure Internal function on
all values it uses. Thus, instead of passing references such as
partFrame . theForm. myMainSoupDef to the RegUnionSoup function, paste
a local copy of your soup definition into your application part's Instal lScript
function for its use.

The RegUnionSoup function uses the value of your soup definition's name slot to
determine whether a particular soup definition has already been registered. You
need not be concerned with registering a soup definition twice as long as you don't
register different soup definitions that have the same name. An application that
registers a soup definition when it opens can always use the union soup object
returned by the RegUnionSoup function—if the union soup named by the soup
definition exists, this function returns it; otherwise, this function uses the specified
soup definition to create and return a new union soup.

The next code fragment uses the AddToDefaultstorexmit function to add the
myFrame frame to the myUSoup union soup. This function creates a new member
soup to hold the entry if necessary. The soup is created on the store indicated by the
user preference specifying where new items are kept.

myUSoup:AddToDefaultStoreXmit(myFrame, ' JMyApp:MySigJ);

At this point, we have created a soup on the store specified by the user and added
an entry to that soup without ever manipulating the store directly.

Because you'll often need to notify other applications—or even your own
application—when you make changes to soups, all the methods that modify
soups or soup entries are capable of broadcasting an appropriate soup change
notification message automatically. In the preceding example, the
AddToDefaultstorexmit method notifies applications registered for changes
to the myUSoup union soup that the ' I MyApp : Mysig I application added an
entry to this union soup. For more information, see "Callback Functions for Soup
Change Notification" (page 9-14) in Newton Programmer's Reference.

Most of the time, your application needs to work with existing soups rather than
create new ones. You can use the GetUnionSoupAlways function to retrieve an
existing soup by name.

Once you have a valid soup object, you can send the Query message to it to
retrieve soup entries. The Query method accepts a query specification frame as its
argument. This frame defines the criteria soup entries must meet in order to be
retrieved by this query. Although you can pass ni 1 as the query spec in order to
retrieve all the entries in a soup, usually you'll want to retrieve some useful subset
of all entries. For example, the following code fragment retrieves from myUSoup
all entries having an a S 1 o t slot. For an overview of the use of query specifications,
see "Using Queries" beginning on page 11-38.

Using Newton Data Storage Objects 11-27

ARENDI-DEFS00004107

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 61 of 201 PageID #: 29106

CHAP TER 1 1

Data Storage and Retrieval

// get from myUSoup all entries having an aSlot slot

local myCursor := myUSoup:Query({indexPath: 'aSlot});

The Query method returns a cursor object that iterates over the set of soup entries
satisfying the query specification passed as its argument. You can send messages to
the cursor to change its position and to retrieve specified entries, as shown in the
following example. For an overview of cursor-manipulation functions, see
"Moving the Cursor" beginning on page 11-55.

// move the cursor two positions ahead in index order

myCursor:Move(2);

// retrieve the entry at the cursor's current position

local myEntry := myCursor:Entry();

For the purposes of discussion, assume that the cursor returned the entry holding
the myFrame frame. When accessing this frame, use the NewtonScript dot
operator (.) to dereference any of its slots. In the current example, the expression
myEntry. aSlot evaluates to the "some string data" value and the
expression myEntry. otherSlot evaluates to the 9258 value.

As soon as any slot in the entry is referenced, the system reads entry data into a
cache in memory and sets the myEntry variable to reference the cache, rather than
the soup entry. This is important to understand for the following reasons:

■ Referencing a single slot in an entry costs you time and memory space, even if
you only examine or print the slot's value without modifying it.

■ Changing the value of a slot in the entry really changes the cached entry frame,
not the original soup entry; changes to the soup entry are not persistent until the
cached entry frame is written back to the soup, where it takes the place of the
original entry.

You can treat the cached entry frame as the myFrame frame and assign a new
value to the a S 1 o t slot directly, as shown in the following code fragment:

myEntry.aSlot :_ "new and improved string data";

To make the changes permanent, you must use EntryChangeXmit or a similar
function to write the cached entry frame back to the soup, as in the following example:

EntryChangeXmit(myEntry, I lMyApp:MySigl);

Like the other functions and methods that make changes to soups, the
EntryChangeXmit function transmits an appropriate soup change notification
message after writing the entry back to its soup; in this case, the notification
specifies that the ' I MyApp : MySig I application made an I entryChanged

change to the soup. (All entries store a reference to the soup in which they reside,
which is how the EntryChangeXmit method determines which soup changed.)

11-28 Using Newton Data Storage Objects

ARENDI-DEFS00004108

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 62 of 201 PageID #: 29107

CHAP TER 1 1

Data Storage and Retrieval

You can use the Ent ryUndoChangesXmit function to undo the changes to the
soup entry if you have not yet written the cached entry back to the soup. Because
this function throws away the contents of the entry cache, referencing a slot in the
entry after calling the Ent ryUndoChangesXmit function causes entry data to be
read into the cache again.

Most applications unregister their soup definitions when they are closed or
removed. To facilitate the automatic creation of soups when the user files or moves
soup entries in the Extras drawer, you may want your soup definition to remain
registered while your application is closed—to unregister only when your
application is removed, call the UnRegunionsoup function from your application
(form) part's DeletionScript function.

The following code example uses the UnRegunionsoup function to unregister a
soup definition. Because a single application can create multiple soups and soup
definitions, soup definitions are unregistered by name and application symbol:

// usually in your app part's DeletionScript fn

UnRegunionsoup("mySoup:mySig",'lMyApp:MySigl);

Using Stores

Because the system manages stores automatically, most NewtonScript applications'
direct interaction with store objects is limited. This section describes the use of
system-supplied functions and methods for

■ getting store objects

■ retrieving packages from stores

■ testing stores for write protection

■ getting and setting store information

Procedures for manipulating other objects that reside on stores (such as soups,
store parts and virtual binary objects) are described in "Using" sections for each of
these objects; for detailed information, see "Using Soups" on page 11-32; "Using
Virtual Binary Objects" on page 12-8; and "Using Store Parts" on page 12-12.

Store Object Size Limits

The system imposes a hard upper limit of 64 KB on store object sizes for any kind
of store. SRAM-based stores impose a further limitation of 32 KB on block size.
Trying to create an entry larger than 32 KB causes the system to throw
evt . ex. f r. store I exceptions. These limits apply to the encoded form the

data takes when written to a soup, which varies from the object's size in the
NewtonScript heap.

Using Newton Data Storage Objects 11-29

ARENDI-DEFS00004109

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 63 of 201 PageID #: 29108

CHAP TER 1 1

Data Storage and Retrieval

Referencing Stores

The Getstores global function returns an array of references to all currently
available stores. You can send the messages described in this section to any of the
store objects in this array.

local allStores := Getstores();

WARNING

Do not modify the array that the Getstores
function returns. A

You can reference individual stores in the array by appending an array index value
to the Getstores call, as in the following code example:

local internalStore := GetStores()[0];

The first element of the array returned by the Getstores function is always the
internal store; however, the ordering of subsequent elements in this array cannot be
relied upon, as it may vary on different Newton devices.

IMPORTANT

Don't call the Getstores function from your application's
Removescript method, or you may find yourself looking at the
"Newton needs the card..." slip. You can avoid this situation by
using the I seal id store method to test the validity of a store
object before sending messages to it. A

Retrieving Packages From Stores

The GetPackages global function returns an array of packages currently available
to the system; this array contains packages that reside on any currently available store.

To determine the store on which a specified package resides, test the value of the
store slot in the package reference information frame associated with the
package. This frame is returned by the GetPkgRef Info function.

To load a package procedurally, use either of the store methods
SuckPackageFromBinary or SuckPackageFromEndpoint. For more
information, see the descriptions of these methods in "Data Storage and Retrieval
Reference" (page 9-1) in Newton Programmer's Reference.

Testing Stores for Write-Protection

The store methods CheckWriteProtect and IsReadOnly determine whether a
store is write-protected. The former throws an exception when it is passed a
reference to a write-protected store, while the latter simply returns the value n 1

11-30 Using Newton Data Storage Objects

ARENDI-DEFS00004110

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 64 of 201 PageID #: 29109

CHAP TER 1 1

Data Storage and Retrieval

for such stores. Do not use the global function I sReadonly to test store objects;
use only the I sReadonly store method for this purpose.

Getting or Setting the Default Store

The default store is that store designated by the user as the one on which new data
items are created. Normally, applications using union soups do not need to get or
set the default store. The system-supplied functions that accept union-soup
arguments handle the details of saving and retrieving soup data according to
preferences specified by the user.

If for some reason you need to get or set the default store yourself, you can utilize
the GetDefaultStore and SetDefaultStore global functions.

Note

Do not change the default store without
first notifying the user.

Getting and Setting the Store Name

Normal NewtonScript applications rarely need to get or set store names. A store's
name is the string that identifies the store in slips displayed to the user. The default
name for the internal store is "Internal" and a PCMCIA store is named "Card" by
default. The store methods GetName and SetName are used to get and set the
names of stores.

The following example uses the GetName method to obtain a string that is the
name of the internal store:

//returns the string "Internal"

GetStores() [0]:GetName();

Before attempting to set the store's name or write any other data to it, you can use
the store methods IsReadonly or CheckWriteProtect to determine whether
the store can be written.

WARNING

Renaming a store renders invalid all aliases to entries residing on
that store. See "Using Entry Aliases" on page 12-7. A

Accessing the Store Information Frame

Each store may hold an optional information frame that applications can use to
save information associated with the store itself. Note that unless an application
stores data in this frame, it may not exist on every store.

The Get lnfo and Set lnfo store methods are intended for use by backup/restore
applications only; most applications need not use them at all. The Get lnfo store

Using Newton Data Storage Objects 11-31

ARENDI-DEFS00004111

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 65 of 201 PageID #: 29110

CHAP TER 1 1

Data Storage and Retrieval

method retrieves the value of a specified slot in the store information frame. Its
corollary, the Set Info store method, writes the value of a specified slot in this frame.

Using Soups

This section discusses the functions and methods used to work with soup objects.
Individual entries in soups and union soups are manipulated by means of queries,
cursors, and entry functions, as described in subsequent sections of this chapter.
This section describes procedures for

■ creating soups and indexes

■ retrieving existing soups

■ indexing existing soups

■ reading and writing soup data

■ accessing information about the soup itself and the store on which it resides

■ removing soups

Naming Soups

When creating soups, you need to follow certain naming conventions in order to
avoid name collisions with other applications' soups. Following these conventions
also makes your own soups more easily identifiable.

If your application creates only one soup, you can use your package name as the
name of its soup. Your package name is created by using a colon (:) to append
your package's Extras Drawer name to your unique developer signature. For
example, if your developer signature is ° myCompany" and you are creating a
package that appears in the Extras Drawer with the name ° f oo 11, concatenating
these two values produces the ° f oo : myCompany ° package name.

If your application creates multiple soups, use another colon, followed by your
package name, as a suffix to a descriptive soup name. For example,
"soupl : foo : myCompany" and 11soup2 : foo : myCompany" would be
acceptable soup names unlikely to duplicate those used by other applications.

Normally, each soup appears under its own icon in the Extras Drawer. If your
application creates multiple soups, it is recommended that you group them under a
single Extras Drawer icon. For more information, see "About Icons and the Extras
Drawer" on page 19-38 in Chapter 19, ̀Built-in Applications and System Data."

For additional information regarding naming conventions for your developer
signature and other items, see "Developer Signature Guidelines" on page 2-9 in
Chapter 2, "Getting Started."

11-32 Using Newton Data Storage Objects

ARENDI-DEFS00004112

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 66 of 201 PageID #: 29111

CHAP TER 1 1

Data Storage and Retrieval

Registering and Unregistering Soup Definitions

The RegUnionSoup global function registers a soup definition with the system
and returns a union soup object to which you can send messages. Once the soup
definition is registered, various union soup methods create the union's member
soups as needed to save entries. A corollary function, UnRegUnionsoup,
unregisters a specified soup definition.

You can register a soup definition with the system any time before your application
needs to access the soup it defines. If your application is the only one using your
soup, you need only ensure that its definition is registered while the application is
actually open. Normally, code that registers soup definitions is provided by your
application part's Instal lScript function or your application base view's
viewsetupFormscript method. You need not be concerned with registering a
soup definition twice as long as you don't register different soup definitions that
have the same name.

Code to unregister soup definitions is usually provided either by your application
base view's viewQuitscript method (to unregister when the application closes)
or your application part's DeletionScript function (to unregister only when the
application is removed.) An application that allows the user to file or move data
items from the Extras Drawer should allow its soup definitions to remain registered
while the application is closed, unregistering them only when the application is
removed. For more information on manipulating soup entries from the Extras
Drawer, see "About Icons and the Extras Drawer" on page 19-38 in Chapter 19,
"Built-in Applications and System Data."

Your application can also call the Regunionsoup function to retrieve its own
union soups that already exist. If you call RegUnionSoup on a soup definition
that is already registered, this function replaces the currently registered soup
definition with the new one and returns the union soup named by the soup
definition passed as its argument; if that union soup does not exist, this method
uses the soup definition passed as its argument to create a new union soup that it
returns. Alternatively, you can call the GetunionsoupAlways global function to
retrieve any extant union soup, not just those your application registers. For more
information, see "Retrieving Existing Soups" beginning on page 11-34.

To use the Regunionsoup function, you might put code like the following
example in the viewsetupFormscript method of your application's base view:

local mySoupDef := {name: "mySoup:mySig",

userName: "My Soup",

ownerApp: 'lMyApp:MySigl ,

ownerAppName : "My Application",

userDescr: "This is the My Application soup.",

Using Newton Data Storage Objects 11-33

ARENDI-DEFS00004113

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 67 of 201 PageID #: 29112

CHAP TER 1 1

Data Storage and Retrieval

indexes: [{structure: 'slot, path: 'aSlot,

type: 'string}]

};

register soup or retrieve already-registered soup

local myUsoup := RegUnionSoup(' JmyApp:mySigJ , mySoupDef);

You can unregister a soup definition whenever you no longer need to create the
soup it defines. If your application is the only one that uses your soup, you need
only ensure that its definition is registered while the application is actually open. If
other applications use your soup, you may wish to leave its definition registered
even after your application is closed or removed; however, most applications
unregister their soup definitions at one of these times, if only to make that much
more memory available to other applications.

The following code fragment illustrates the use of the UnRegunionsoup function:

unregister my soup def

UnRegUnionSoup (mySoupDef.Name, 'lmyApp:mySigl);

don't forget to set all unused references to nil

myUsoup := nil;

Retrieving Existing Soups

To retrieve your own union soups, you can use the RegUnionSoup function as
described in "Registering and Unregistering Soup Definitions" beginning on
page 11-33. Alternatively, you can call the GetUnionsoupAlways global
function to retrieve any union soup by name.

Use of the GetUnionsoupAlways global function is straightforward, as the
following example shows. Note that you can pass system-supplied constants to this
function to retrieve soups used by the system and the built-in applications. For
more information, see Chapter 19, ̀Built-in Applications and System Data."

// retrieve "mySoup:mySig" union soup by name
local myUsoup := GetUnionSoupAlways("mySoup:mySig");

// retrieve soup used by built-in Names application

local names := GetunionSoupAlways(ROM CardFileSoupName);

Note that you can use the IsInstance utility function to determine whether a
specified soup is a union soup. Pass either of the symbols ' Plainsoup or
' Unionsoup as the value of the class parameter to this function, as shown in the
following code fragment.

IsInstance(mySoup, 'Unionsoup);

11-34 Using Newton Data Storage Objects

ARENDI-DEFS00004114

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 68 of 201 PageID #: 29113

CHAP TER 1 1

Data Storage and Retrieval

Adding Entries to Soups

This section describes how to add a frame to a union soup or a specified member
soup in a union. For information on creating union soups, see "Registering and
Unregistering Soup Definitions" on page 11-33. For information on retrieving
union soups, see "Retrieving Existing Soups" on page 11-34.

You can use either of the AddToDefaultStoreXmit or AddToStoreXmit
methods to save frames as soup entries. Both of these methods create a single soup
in which to save the new entry when the appropriate member of the union is not
already present on the store. The AddToDefaultStoreXmit method adds its
entry to the member soup on the store specified by the user as the destination for
new entries. The AddToStoreXmit method allows you to specify according to
store the member soup to which it adds the new entry.

Methods that create soup entries—such as the AddToDefaultStoreXmit,
AddToStoreXmit, and Addxmit methods—destructively modify the frame
presented as their argument to transform it into a soup entry. Thus, any frame
passed to these methods must allow write access. If the original frame must remain
unmodified, pass a copy of it to these methods.

The following code fragment saves a frame in the default store member of the
myUsoup union by sending the AddToDefaultStoreXmit message to the
union soup object that the RegUnionSoup function returns:

register soup def'n or get reference to already registered soup

local myUsoup := RegUnionSoup(' JmyApp:mySigJ , mySoupDef);

add the entry and transmit notification

local myEntry := myUSoup:AddToDefaultStoreXmit(

{allot:"my data"}, // frame to add to soup

'lmyApp:mySigl); // app that changed soup

The following code fragment saves a frame in the internal store member of the
myUsoup union by sending the AddToStoreXmit message to the union soup
object that the GetUnionSoupAlways function returns:

get pre-existing uSoup by name

local myUsoup := GetUnionSoupAlways("mySoup:mySig");

add entry to member on internal store and transmit notification

local myEntry := myUSoup:AddToStoreXmit(

{allot:"my data"}, // frame to add to soup

(GetStores()[0]), // add to member on internal store

'lmyApp:mySigl); // app that changed soup

Using Newton Data Storage Objects 11-35

ARENDI-DEFS00004115

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 69 of 201 PageID #: 29114

CHAP TER 1 1

Data Storage and Retrieval

After creating the new soup entry, these methods transmit a soup change
notification message. To suppress the soup change notification message that -Xmit
functions and methods transmit, pass nil as the value of their cbangeSym
argument. For more information, see "Using Soup Change Notification" beginning
on page 11-63; also see the descriptions of the AddToDefaultstorexmit and
AddTostorexmit methods in "Soup Functions and Methods" (page 9-35) in
Newton Programmer's Reference.

Normally the member soups in a union are created automatically by the system as
needed to save frames as soup entries. If you need to force the creation of a union
soup member on a specified store without adding an entry to the new member soup,
use the GetMember union soup method to do so. For more information, see the
description of this method in "Soup Functions and Methods" (page 9-35) in
Newton Programmer's Reference.

Adding an Index to an Existing Soup

Normally, applications create an index for each slot or set of slots on which a soup
may be searched frequently. Although the soup's indexes are usually created along
with the soup itself, you may occasionally need to use the AddlndexXmit method
to add an index to an already existing soup and transmit a soup change notification
message. Indexes must be added individually—you can't pass arrays of index specs
to the AddlndexXmit method.

WARNING

You cannot query a union soup on an index that is not present in
all its member soups. Sending the AddlndexXmit message to a
union soup adds the specified index to all soups currently
available to the union; however, any soup introduced to the union
subsequently has only its original complement of indexes, which
may not include the index this method added. Similarly, any
member soup created by the system has only the indexes specified
by its soup definition, which may not include the index this
method added. A

The following code fragment adds an index to the "mySoup : myApp ° union soup,
enabling queries to search for integer data in that soup's mySlot slot:

get my union soup

local myUSoup := GetUnionSoupAlways("mySoup:mySig");

add a new single-slot index on the'mySlot slot

local myISpec :_ {structure:'slot, path:'mySlot, type:'int};

local myUSoup:AddlndexXmit(myISpec,'lmyApp:mySigl);

11-36 Using Newton Data Storage Objects

ARENDI-DEFS00004116

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 70 of 201 PageID #: 29115

CHAP TER 1 1

Data Storage and Retrieval

WARNING

Each soup has only one tags index; if you add a tags index to a
soup that already has one, it replaces the original tags index. For
more information, see the description of the Addlndexxmit
method (page 9-42) in Newton Programmer's Reference. A

Removing Soups

When the user scrubs your application's icon in the Extras Drawer, the system
sends a DeletionScript message to your application. The DeletionScript
function is an optional function that you supply in your application's f orm part.
This function accepts no arguments. You can remove your application's soups from
within this function by invoking the Remove FromStoreXmit soup method. The
Remove Fromstorexmit method is defined only for single soups; in other words,
you must remove each member of a union soup separately.

For more information on the DeletionScript method, see the Newton Toolkit
User's Guide. See also "RemoveFromStoreXmit" (page 9-47) in Newton
Programmer's Reference.

Do not delete soups from within your application's viewQuitScript method—
user data needs to be preserved until the next time the application is run. For
similar reasons, do not remove soups from within your application's
Removescript method. This method does not distinguish between removing
software permanently (scrubbing its icon in the Extras Drawer) and removing
software temporarily (ejecting the PCMCIA card.)

Using Built-in Soups

The soup-based data storage model makes it easy for applications to reuse existing
system-supplied soups for their own needs and to share their own soups with other
applications. Refer to Chapter 19, ̀Built-in Applications and System Data," to see
descriptions of the soups used by the applications built into the Newton ROM. You
can also use these descriptions as a model for documenting the structure of your
application's shared soups.

Making Changes to Other Applications' Soups

You should avoid changing other applications' soups if at all possible. If you must
make changes to another application's soup, be sure to respect the format of that
soup as documented by its creator. When possible, confine your changes to a single
slot that you create in any soup entry you modify.

When naming slots you add to other applications' soups, exercise the same caution
you would in naming soups themselves—use your application name and developer
signature in the slot name to avoid name-space conflicts.

Using Newton Data Storage Objects 11-37

ARENDI-DEFS00004117

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 71 of 201 PageID #: 29116

CHAP TER 1 1

Data Storage and Retrieval

This approach provides the following benefits:

■ It prevents your application from inadvertently damaging another
application's data.

■ It helps your application avoid name conflicts with other applications' slots.

■ It prevents soups from becoming cluttered with excessive numbers of entries.

■ It facilitates removal of your application's data.

Note that when you makes changes to other applications' soups you should
transmit notification of the changes by means of the mechanism described in
"Using Soup Change Notification" beginning on page 11-63.

Adding Tags to an Existing Soup

You can add tags only to a soup that has a tags index. To add new tags to a soup
that already has a tags index, simply add to the soup an entry that uses the new
tags—the tags index is updated automatically to include the new tags.

Adding a tags index to an existing soup is like adding any other kind of index:
simply pass the appropriate index spec to the soup's Addlndexxmit method.
Remember, however, that the system allows only one tags index per soup. If you try
to add another tags index to that soup, you'll replace the original tags index. It's
quite easy to add new tags to a soup that already has a tags index, so you'll rarely
need to replace a soup's tags index.

Using Queries

To retrieve soup entries, you need to query a soup or union soup object by sending
the Query message to it. The Query method accepts a query specification frame,
or query spec, as its argument. The query spec specifies the characteristics that
soup entries must have in order to be included in the query result.

Note

For instructional purposes, this section describes each item that
may appear in a query specification separately. Normally, a single
query spec defines multiple criteria that soup entries must meet to
be included in the results of the query; for example, you can
create a single query spec that specifies tests of index key values,
string values, and tags.

This section describes how to perform various queries to retrieve soup data. It
includes examples of

■ simple queries on index values, tags, or text

■ the use of ascending and descending indexes

11-38 Using Newton Data Storage Objects

ARENDI-DEFS00004118

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 72 of 201 PageID #: 29117

CHAP TER 1 1

Data Storage and Retrieval

■ the use of internationalized sorting order

■ queries on multiple-slot indexes

Querying Multiple Soups

Soups having the same name can be associated logically by a union soup object. To
retrieve entries from all the available soups in a union, just send the Query
message to the union soup object.

You must query differently named soups separately, however. For example, before
scheduling a meeting, you might send the Query message to the
ROM _Cardf i leSoup soup for information regarding its participants, and send
another Query message to the ROM CalendarSoupName soup to determine
whether you have conflicting appointments at the proposed meeting time.

Entry aliases provide a handy way to save references to soup entries. You can use
entry aliases to reference entries from different soups more easily. For more
information, see "Using Entry Aliases" on page 12-7.

Querying on Single-Slot Indexes

This section provides code examples illustrating a variety of queries on single-slot
indexes. For more information on indexes, see "Introduction to Data Storage
Objects" on page 11-2 and "Indexes" on page I1-8.

The following code fragment presents an example of the simplest kind of index
query—it returns all entries in the soup:

local myUSoup := GetUnionSoupAlways("mySoup:mySig");

local allEntriesCursor := myUSoup:Query(nil);

When nil is passed as the query spec, as in the example above, the query result
potentially includes all entries in the soup. The cursor generated by such a query
returns entries in roughly the same order that they were added to the soup;
however, this sorting order is not guaranteed because the system recycles the values
it uses to identify entries internally. The only way to guarantee that entries are
sorted in the order they were added to a soup is to index them on your own time
stamp slot.

Most situations will require that you query for a subset of a soup's entries, rather
than for all of its entries. That is, you'll want to include or exclude entries
according to criteria you define. For example, you might want to find only entries
that have a certain slot, or entries in which the value of a specified slot falls within
a certain range. The next several examples illustrate the use of single-slot index
queries for these kinds of operations.

To find all entries that have a particular slot, specify a path to that slot as the query
spec's indexPath value. Note that in order to query on the presence of a

Using Newton Data Storage Objects 11-39

ARENDI-DEFS00004119

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 73 of 201 PageID #: 29118

CHAP TER 1 1

Data Storage and Retrieval

particular slot, the soup must be indexed on that slot. For example, the following
example of a query returns a cursor to all soup entries that have a name slot. The
cursor sorts the entries according to the value of this slot. As first returned by the
query, the cursor points to the first entry in index order.

// mySoup is a valid soup indexed on the 'name slot
nameCursor:= mySoup:Query({indexPath:'name});

You can also use the cursor method GoToxey to go directly to the first entry
holding a specified name or value in an indexed slot. For examples of the use of
this method, see "Moving the Cursor" beginning on page 11-55.

Using beginKey and endKey values to limit your search can improve query
performance significantly. The following example is an index query that uses
a beginKey value and an endKey value to return entries for which
(11 >_ entry.number < 27).

// mySoup is indexed on the 'number slot
local numCursor := mySoup:Query({indexPath: 'number,

beginKey: 11,
endKey: 27});

The index on the number slot potentially includes all entries that have a number
slot. The index sorts entries on their index key values; unless otherwise specified,
the default index order is ascending. Thus, the query can use a beginKey value of
11 to skip over entries holding a value less than 11 in the number slot. The test
can be concluded quickly by specifying a maximum value beyond which the cursor
generated by this query does not proceed. In this case, the endKey value specifies
that the query result does not include entries having values greater than 2 7 in the
number slot. When multiple entries hold a specified endrange value, all of them
are included in the result of a query that specifies that endrange value; for example,
if multiple entries in the mySoup soup hold the value 27 in their number slot, the
previous example includes all of these entries in its result.

The beginKey specification evaluates to a value that occupies a unique position in
the sorted index data for the soup. If no entry is associated with this value, the
cursor is positioned at the next valid entry in index order. For example, if themysoup
soup in the previous code fragment does not contain an entry having a number slot
that holds the value 11, the next valid entry in index order is the first entry in the
range over which the cursor iterates.

Similarly, the endKey specification evaluates to a value that occupies a unique
position in the sorted index data for the soup. If no entry is associated with this
value, the cursor stops on the first valid entry in index order before the endKey
value. For example, if the mySoup soup in the previous code fragment does not
contain an entry having a number slot that holds the value 2 7, the last valid entry

11-40 Using Newton Data Storage Objects

ARENDI-DEFS00004120

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 74 of 201 PageID #: 29119

CHAP TER 1 1

Data Storage and Retrieval

at or before the position that would be occupied by 2 7 in the index is the last entry
in the range over which the cursor iterates.

To conduct the same query while excluding the endrange values, specify a
beginExclKey value instead of abeginKey value, and specify an endExclKey
value instead of an endxey value, as shown in the following code fragment:

mySoup is indexed on the 'number slot
return entries for which (11 > entry.number < 27

local numCursor := mySoup:Query({indexPath: number
beginExclKey: 11,
endExclKey: 27});

Note that a query spec cannot include both the inclusive and exclusive forms of the
same endrange selector; for example, you cannot specify beginKey and a
beginExcl Key values in the same query spec. However, you can specify, for
example, a beginKey value and an endExclKey value in the same query spec.

Because the index sorts entries according to key values, a beginKey on a soup
indexed in descending key order may appear to act like an endxey on a soup
indexed in ascending order, and vice versa. For more information, see "Queries on
Descending Indexes" beginning on page 11-46.

Another way to find all entries having a particular value in a specified slot is to use
an indexvalidTest method, which can test any index key value without reading
its corresponding entry into the NewtonScript heap. The system passes index key
values to this function as the cursor moves. Your indexvalidTest must return a
non-ni 1 value if the entry associated with the key value should be included in the
query result. For example, you could use an indexvalidTest method to select
entries that hold even-number values in a specified slot, as shown in the following
code fragment:

mySoup indexed on 'number slot
select entries having a 'number slot that holds
an even value between 19 and 58

local myCursor :=
mySoup:Query({ beginKey: 19, endExclKey: 58,

indexValidTest: func (key)
(key MOD 2 = 0)1);

A less-preferred way to test entries is to provide a validTest function to test
entries individually. The use of a validTest increases the memory requirements
of the search because the system must read soup entries into the NewtonScript heap
in order to pass them to the validTest function. Whenever possible, you should
avoid using validTest methods in favor of using indexvalidTest methods.
Generally, you need not use a validTest method unless you must read the
entry's data to determine whether to include it in the query result.

Using Newton Data Storage Objects 11-41

ARENDI-DEFS00004121

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 75 of 201 PageID #: 29120

CHAP TER 1 1

Data Storage and Retrieval

The query passes the entire entry to the validTest method, rather than just the
value of the indexed slot. The next code example reads the entry's a S 1 o t and
otherSlot slots in order to compare their values:

// select entries for which aSlot > otherSlot

local myCursor --

mysoup: Query (JendKey: aKeyValue,
validTest: func (entry)

begin
entry.a.Slot > entry.otherSlot

end }) ;

Querying for Tags

In order to select soup entries according to their associated tag values, you need to
include a tags query spec frame in the tagspec slot of the query specification
frame passed to the Query method. In addition to specifying one or more tags used
to select entries, the tags query spec can specify set operators such as not, any,
equal, and all to create complex filters based on tag values. For a complete
description of the tags query spec frame, see "Tags Query Specification Frame"
(page 9-13) in Newton Programmer's Reference.

You cannot query for tags on a soup that does not have a tags index. This index is
usually specified by your soup definition and created along with the soup, but it can
be added to an existing soup if necessary. Note that each soup or union soup has
only one tags index; if you add a tags index to a soup that already has one, it
replaces the original tags index. For more information, see "Tags Index
Specification Frame" (page 9-8) in Newton Programmer's Reference.

The next several examples presume that the mysoup soup has a tags index on the
labels slot. Note that queries need not specify the path to the slot from which tag
values are extracted—in this case, the labels slot—because each soup has only
one tags index and its index path is specified when the tags index is created.
However, because a soup or union soup is allowed to have multiple soup indexes,
queries must specify a path to the indexed slot; hence, these examples also presume
that the mysoup soup has a soup index on the name slot.

The presence of any tag specified by the any set operator is sufficient to include its
entry in the results of the query that uses this operator. For example, the following
query selects entries having either the symbol I flower or I tall in the labels
slot. Entries not marked with at least one of these symbols are not included in the
query result.

local myCurs := mySoup:Query({indexPath:'name,

tagspec: {any:['tall, 'flower]}});

The equal set operator specifies a set of tags an entry must match exactly to be
included in the query result. The query in the following example uses the equal

11-42 Using Newton Data Storage Objects

ARENDI-DEFS00004122

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 76 of 201 PageID #: 29121

CHAP TER 1 1

Data Storage and Retrieval

set operator to select entries marked with only the ' f lower and ' tall tags; this
query does not select entries missing either tag, nor does it select entries marked
with additional tags:

local myCurs := mySoup:Query({indexPath:'name,

tagSpec: {equal: ['tall, 'flower]}});

Like the equal set operator, the all set operator specifies a set of tags that entries
must have to be selected; however, the all set operator does not exclude entries
marked with additional tags. For example, the query in the following example uses
the all set operator to select entries marked with both the ' f lower and ' tall
tags. This query excludes entries missing either of these tags but includes entries
marked with a superset of the ' f lower and ' tall tags:

local myCurs := mySoup:Query({indexPath:'name,

tagSpec: {all: ['tall, 'flower]}});

The presence of any tag specified by the none set operator is sufficient to exclude
that entry from the query result. For example, the following query matches entries
having both of the tags ' f lower and ' tall but excludes any entry marked with
the ' thorns tag:

local myCurs := mySoup:Query({indexPath:'name,

tagSpec: {all:['flower, tall],

none : [' thorns] } }) ;

The following exceptions may be thrown when attempting to query using a tag
spec. If the soup does not have a tags index, a "no tags" exception
l evt . ex . f r . store 1 -48027 is thrown. If the tag spec passed as an argument to
the Query method has none of the slots equal, any, all, or none, an "invalid
tag spec" exception levt . ex. fr. store) -48028 is thrown.

Querying for Text

This section describes how to select entries according to the presence of one or
more strings in any slot. The current system allows you to search entries for string
beginnings, entire strings, or substrings of larger strings.

To select entries according to the presence of one or more specified string
beginnings, add to your query spec a words slot containing an array of string
beginnings to be matched. For example, the following code fragment illustrates a
query that returns entries having strings beginning with "bob":

// find words beginning with "bob"

local myCurs := mySoup:Query({words: ["bob"]});

Using Newton Data Storage Objects 11-43

ARENDI-DEFS00004123

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 77 of 201 PageID #: 29122

CHAP TER 1 1

Data Storage and Retrieval

This query finds entries containing the words "Bob", "Bobby", and so forth, but
not words such as "JoeBob". Text queries are not case sensitive—even though the
original query spec is all lower case, this query finds entries such as "Bob" or "BOB

Because the words slot contains an array, it can be used to search for multiple
string beginnings. For example, the following code fragment returns entries that
contain both of the string beginnings "Bob" and "Apple". Thus, an entry
containing the strings "Bobby" and "Applegate" would be included in the
results of the search, but an entry missing either of the word beginnings "Bob" or
"Apple" is not included.

find entries holding "bob" and "apple" word beginnings

won't find entries having only one of these beginnings

local myCurs := mySoup:Query({words: ["bob", "apple"]});

Because each element in the array is a string, each "word" to be matched can
actually contain multiple words and punctuation. For example, the following code
fragment returns entries that contain both of the string beginnings "Bob" and
"Apple Computer, Inc.":

// find word beginnings "bob" and "Apple Computer, Inc."

local myCursor := mySoup:Query({words: ["bob",

"Apple Computer, Inc."]});

Note

The more unique the search string is, the more quickly a words
search proceeds. Thus, words queries are slow for search words
that have only one or two characters in them.

To search for entire strings, rather than string beginnings, the query spec must
include an entireWords slot that holds the value true, as shown in the
following code fragment:

return entries holding entire words "bob" and "Apple Computer"

local myCursor := mySoup:Query({words: ["bob", "Apple Computer"],

entireWords: true });

This query returns entries that contain both of the strings "Bob" and "Apple
Computer". Because the entireWords slot holds the value true, this query
does not match strings such as "Apple Computer, Inc. " or "Bobby".
Entries containing only one of the specified words are not included in the results of
the search.

To conduct a text search that is not constrained by word boundaries, add to your
query spec a text slot containing a single string to be matched. For example, the

11-44 Using Newton Data Storage Objects

ARENDI-DEFS00004124

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 78 of 201 PageID #: 29123

CHAP TER 1 1

Data Storage and Retrieval

following code fragment illustrates a query that returns entries having strings that
contain the substring "Bob":

// find strings containing the substring "Bob"

local myCursor := mySoup:Query({text: "bob"});

This query finds entries containing words such as "JoeBob", as well as those
containing words such as "bob" and "Bobby".

I nternationalized Sorting Order for Text Queries

Indexes are not normally sensitive to case, diacritical marks, or ligatures in string
values; however, index and query specifications can request this behavior
specifically. When internationalized index ordering is used, uppercase letters sort
first, followed by lowercase letters, diacritical marks, and ligatures. Thus, the letter
A sorts before the letter a, which sorts before the letter a, which sorts before the
letter d, which sorts before the ligature aE.

To index string values in internationalized order, include an optional sort ID slot
holding the value 1 in the index specification frame used to build a soup's index. A
cursor subsequently generated against that soup returns entries holding the
following strings in the order listed here:

"AA", "aa", "aa", "EE", "EE", flee"

This internationalized indexing order is available only for indexes on string values.
When the sort ID slot is missing from the index spec or this slot's value is nil,
the index generated is not sensitive to case, diacritics, or ligatures; in other words,
the index may not necessarily sort "AA" before "aa", and so on.

If an index has internationalized ordering, find operations performed by cursors
generated against that index can be made sensitive to case and diacritics. To request
this behavior, include a non-nil secorder slot in the query spec passed to the
Query method of an internationally-indexed soup.

The value of the secorder slot affects the use of the beginKey, beginExclKey,
endKey, and endExc1Key slots, as well as the GoToKey cursor method. For
example, sending the GoToKey ("aa") message to the cursor generated by this
query returns the first entry found at or after the "aa" index value but does not
return entries holding values that vary in case, diacritics, and so on.

When the secorder slot is missing or holds the value nil, find operations
carried out by cursor methods such as GoToKey ignore case and diacritics; that is,
they may return entries holding case and diacritic variations on the requested value.
For example, sending the myCursor : GoToKey ("aa") message returns the first
entry found that holds any of the "AA", "aa", or "aa" values. However, the
cursor generated by this query still uses the sorting order provided by the

Using Newton Data Storage Objects 11-45

ARENDI-DEFS00004125

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 79 of 201 PageID #: 29124

CHAP TER 1 1

Data Storage and Retrieval

internationalized index: cursor methods such as Next and Prev return entries in
the internationally-indexed order.

Queries on Descending Indexes

Even though queries and cursors based on descending order indexes work just like
normal queries and cursors, their behavior can seem confusing if you forget that it
is a function of index order. It is always helpful to remember the following points
when working with queries and cursors—especially when using descending indexes:

■ The "beginning" and "end" of a range of index values is a function of index
key order.

■ The cursor navigates entries in index key order.

This section provides examples of the behavior of cursors that use descending
indexes. These examples are based on a soup containing the entries shown in the
following code fragment; although this example uses string values, any kind of
index key value may be sorted in descending order.

{data: "able", ...I;
{data: "axe", ...I;
{ data : "name", ...I;
{ data : "noun", ... } ;

Soup indexes normally sort string data in ascending alphabetical order; for example,
"able", "axe", "name", "noun". A descending index sorts the same data in
reverse alphabetical order; for example, "noun", "name", "axe", "able".

Figure 11-6 depicts the reversed ordering that a descending index provides, with
examples of cursor behavior that is a function of index ordering.

Figure 11-6 Cursor operations on descending index

Descending key order

11

Valid subrange

"noun" "name" oo

M

oo "axe" "able" Q

i

cursor:Reset(); cursor:GoToKey('az"); cursor:GoToKey("a");

11-46 Using Newton Data Storage Objects

ARENDI-DEFS00004126

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 80 of 201 PageID #: 29125

CHAP TER 1 1

Data Storage and Retrieval

Sending the Reset message to the cursor positions it at the first valid entry in
index order. In this case, the first entry is "noun" because the entries are sorted in
descending alphabetical order.

The GoToKey cursor method steps through the set of valid entries in index order
until it finds the first entry having a specified key value. If the specified key value is
not found, this method returns the next valid entry found after the specified index
position. Thus, sending the Gotoxey ("az") message to this cursor returns the
value "axe" because it's the first valid entry that appears in the index after the
unoccupied "az" position.

Sending the Gotoxey ("a") message to this cursor returns the value ni1 because
this message positions the cursor beyond the end of the range of valid entries
defined by the query that generated the cursor.

Figure 11-7 illustrates that specifying a beginExclKey value of "b" excludes
from consideration every entry beginning with a letter that comes after "b" in the
reverse alphabet; that is, this beginExcl Key value causes the valid range of
entries to include only entries beginning with "a". As aresult, sending the
GotoKey ("n") message causes this cursor to return the value "axe" because it
is the first valid entry appearing in the index after the ° In ,, position.

Note

The sort order for symbol-based indexes is the ASCII order of the
symbol's lexical form. This sorting behavior is made available in
NewtonScript by the Symbol CompareLex global function.

Figure 11-7 Specifying ends of a descending index

Descending key order

Z "noun" "name" H D

I

Valid subrange

"axe" "able"

beginExclKey cursor:GoToKey("n");

Querying on Multiple-Slot Indexes

A

Before reading this section, you should understand the contents of "Querying on
Single-Slot Indexes" beginning on page 11-39.

Using Newton Data Storage Objects 11-47

ARENDI-DEFS00004127

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 81 of 201 PageID #: 29126

CHAP TER 1 1

Data Storage and Retrieval

A multiple-slot query can be performed only on a soup that has a multiple-slot
index generated against the same set of keys in the same order as the query spec.
For information on creating an index, see "Registering and Unregistering Soup
Definitions" beginning on page 11-33 and "Adding an Index to an Existing Soup"
beginning on page 11-36. For a description of the data structure that defines a
multiple-slot index, see "Multiple-Slot Index Specification Frame" (page 9-6) in
Newton Programmer's Reference.

In a general sense, queries on multiple-slot indexes are specified like queries on
single-slot indexes and behave the same way. The "differences" you'll encounter
are usually the result of misunderstanding how multiple index keys are used to sort
and select indexed entries.

For purposes of discussion, assume that you have a soup containing the entries in
the following code fragment, and that you want to sort these entries alphabetically
by last name and then by first name:

// entries used for all examples in this section

{last: "Perry", first: "Bruce", num: 11
{last: "Perry", first: "Ralph", num: 21
{last: "Perry", first: "Barbara", num: 31
{last: "Perry", first: "John", num: 41
{last: "Bates", first: "Carol", num: 51
{last: "Perry", first: "Daphne", num: 71

A single-slot index sorts entries according to the value held in a single slot that you
specify when the index is created. In contrast, a multiple-slot index may consider
the values of multiple slots when sorting entries. It's important to understand that
either kind of index imposes only one sort order on the indexed data, regardless of
the number of slots examined to arrive at that order. A query on index values
evaluates its associated entries in this order, and the cursor generated by this query
iterates over its entries in this order, as well.

The first example illustrates how the entries in the example data could be sorted by
a single-slot index. For purposes of discussion, assume that these entries are
indexed on the value that each holds in its last slot, as specified by the single-slot
index spec in the following code fragment:

// single-slot index on string data from 'last slot

{structure:'slot, path: 'last, type:'string}

Sorting the entries according to the value each holds in its last slot isn't very
useful because all of the entries except one hold an identical value in this slot.
Unfortunately, sorting the entries on the value of another slot does not produce a
useful ordering, either: an index on any other single slot sorts the "Bates" entry
in the midst of all the "Perry" entries.

11-48 Using Newton Data Storage Objects

ARENDI-DEFS00004128

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 82 of 201 PageID #: 29127

CHAP TER 1 1

Data Storage and Retrieval

A multiple-slot index solves this problem by sorting entries according to multiple
key values. The key values are extracted from up to six index paths specified by the
path array of the index specification frame. For example, the following code
fragment specifies a multiple-slot index that sorts entries according to the values
each holds in its ' 1 a s t, ' f i r s t, and ' num slots:

// multiple-slot index on data from three slots

myMultiSlotSpec :_

{structure:'multislot,

path: ['last,'first,'num],

type: ['string, string, lint }

The first key in the path array is called the primary key; subsequent lower-order
keys, if they are present, are the secondary key, tertiary key, and so on, up to a total
of six keys per array.

The primary key specifies a minimum criterion for inclusion in the index and
provides a value used to sort the indexed entries initially. In the example, only
entries having a last slot are indexed, and the value of the last slot is used to
impose an initial ordering on the indexed entries. Thus, the multiple-slot index in
the previous example sorts the "Bates" entry before all of the "Perry" entries.

The secondary key, if it is present, is used to sort entries having identical primary
keys. In the previous example, the multiple-slot index imposes a secondary
ordering on all "Perry" entries, according to the value each holds in its f irst
slot. Similarly, the tertiary key, if present, is used to sort further any entries having
identical secondary key values. Because none of the entries in the example have
identical secondary key values (none of the f irst slots hold identical values), the
value of each entry's num slot has no effect on how the index sorts the entries.

Thus, the multiple-slot index shown previously sorts the set of sample entries in the
following order:

{last: "Bates", first: "Carol", num: 51
{last: "Perry", first: "Barbara", num: 31
{last: "Perry", first: "Bruce", num: 11
{last: "Perry", first: "Daphne", num: 71
{last: "Perry", first: "John", num: 41
{last: "Perry", first: "Ralph", num: 21

Now that you're familiar with the manner in which multiple-slot indexes sort entries,
let's look at the way the Query method uses a multiple-slot index to select entries.

Missing slots in a multiple-slot query spec are treated as nil values, just as they
are when querying on single-slot indexes. For example, if the query spec is missing
an endxey slot, the upper end of the range of entries examined by the query is
unbounded, just as it would be for a query on a single-slot index.

Using Newton Data Storage Objects 11-49

ARENDI-DEFS00004129

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 83 of 201 PageID #: 29128

CHAP TER 1 1

Data Storage and Retrieval

Instead of using single values for the indexPath, beginKey, beginExcl Key,
endKey, and endExcl Key slots in the query spec, the Query method accepts
arrays of keys or values as these arguments when it works with a soup having a
multiple-slot index. The first key in the array is the primary key; subsequent lower-
order keys, if they are present, are the secondary key, tertiary key, and so on, up to
a total of six keys per array.

To get a better idea of how queries evaluate multiple-slot key selectors, consider
how the beginKey value in the following code fragment would work with the
example data:

myQSpec :_ {indexPath: ['last,'first,'num],

beginKey:["Perry","Bruce",51 1

Querying the example data using this specification returns a cursor that initially
references the following entry:

{last: "Perry", first: "Daphne", num: 71

First, the query finds the primary key value of "Perry" in the index, skipping
over the "Bates" entry in the process of doing so. Next, the query searches for an
index value identical to the secondary key "Bruce", skipping over the
"Barbara" entry in the process of doing so. Finally, the query searches for an
index value identical to the tertiary key value 5. Because an entry having this value
is not found, the cursor is positioned on the next valid entry in index order, which
has the tertiary key value 7.

When specifying strings as bounding values for queries, don't forget that the
beginKey, beginExclKey, endKey, and endExclKey slots in a query spec
specify identical matches only. For example, the key value "P" is not identical to
the key value "Perry".

When an identical index value cannot be found for a key specification, subordinate
key values have no effect. For example, if the primary key value is not matched, the
secondary and tertiary key values have no effect.

To demonstrate these points, imagine that you wrote the query spec in the previous
example a bit differently. Instead of specifying a value of "Perry" for the primary
element in the beginKey array, assume you specified a value of "P". This change
would make the query spec look like the following code fragment:

myQSpec :_ {indexPath: ['last,'first,'num],

beginKey: ["P" , "Bruce" , 5] }

Querying our example data using this specification returns a cursor that initially
references the following entry:

{last: "Perry", first: "Barbara", num: 31

11-50 Using Newton Data Storage Objects

ARENDI-DEFS00004130

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 84 of 201 PageID #: 29129

CHAP TER 1 1

Data Storage and Retrieval

This time around, the query again skips over the "Bates" entry in the process of
positioning the cursor at index value "P". However, because no entry holds a
primary index key value of "P", the cursor stops at the next valid entry in index
order. Further, because an identical index value was not found for the primary key
specification, the secondary and tertiary key selectors have no effect at all. Thus
the cursor stops on the first index value found after the position that
["P" , "Bruce" , 5] would occupy if it were present in the index data.

When an element of an array in a query spec is missing or nil, the Query method
does not test subordinate key values specified by the array. For example, the
presence of the ni 1 value in the endKey specification { endKey : ["bob
ni 1, 5 5] } makes it equivalent to the { endKey : [° bob"] } specification.

One result of this behavior is that it is impossible to make a query ignore higher-
order sort keys while still testing on lower-order keys. For example, it is meaningless
to specify avalue such as [nil, validKey, ...] for the beginKey, beginExclKey,
endKey, or endExc1Key slot in a query spec—the nil-value primary element
specifies that the query is to ignore subsequent elements of the array.

If you want to be able to ignore key specifiers in a query spec selectively, you need
to define for your entries a default "ni 1-equivalent" value that does have a position
in index order. For example, you could use the empty string (" ") for string key
values, either of the values o or MININT for integer key values, and the null
symbol (' I I) for symbolic key values.
Further, the presence of a nil-value index key in an entry suppresses the
evaluation of lower-order keys in that entry for sorting in the multiple-slot index.
For example, the entries in the following code fragment sort to the same position in
the multiple-slot index because as soon as the system encounters the ni 1 key value
in each entry's secondary slot, it does not attempt to sort that entry any further:

{primary: "foo", secondary: nil, tertiary: "bar"}
{primary: "foo", secondary: nil, tertiary: "qux"}

Querying explicitly for nil key values (nil-value slots) is not supported. Your
entries' indexed slots must hold non-ni 1 values to participate in queries.

For cursors generated against multiple-slot indexes, the cursor method GoToxey
accepts arrays of keys as its argument. You can use this method to experiment with
multiple-slot key specifications.

Similarly, for queries on multiple-slot indexes, the input passed to the
indexvalidTest function is an array of key values, with the first key in the
array being the primary key, followed by any subordinate key values held by the
entry being tested.

Using Newton Data Storage Objects 11-51

ARENDI-DEFS00004131

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 85 of 201 PageID #: 29130

CHAP TER 1 1

Data Storage and Retrieval

WARNING

Index keys are limited to a total of 39 unicode characters (80
bytes, 2 of which are used internally) per soup entry. Keys that
exceed this limit may be truncated when passed to an
indexvalidTest function. This 80-byte limit applies to the
entire key space allocated for an entry, not for individual keys. As
a result, subordinate keys in multiple-slot indexes may be
truncated or missing when the total key size for the entry is
greater than 80 bytes. For more information, see the description of
the indexvalidTest function in "Query Specification Frame"
(page 9-9) in Newton Programmer's Reference. See also the
description of the MakeKey method (page 9-45) in Newton
Programmer's Reference. A

Limitations of Index Keys

Under the following conditions, a string may not match its index key exactly:

■ Keys of type 'string are truncated after 39 unicode characters.

■ Ink data is stripped from 'string keys.

■ Subkeys in multiple-slot indexes may be truncated or missing when the total key
size is greater than 80 bytes.

You can use the MakeKey function to determine precisely the index key that the
system generates for a particular string. The interface to this function looks like the
following code fragment:

soup: MakeKey (string, indexPath)

The following examples presume that mySoup is a valid soup (not a union soup)
having the multiple-slot index specified by the following code fragment:

myMultiSlotIndexSpec :_ {structure: ' multislot,

path: ['name.first,

'cardType,

'name.last],

type : ['string, lint, 'string]};

Each of the soup's entries has a name slot and a cardType slot. The name slot
holds aframe containing the slots first and last, which contain string data. The
cardType slot holds integer data.

The first example illustrates the truncation of string keys longer than 39 characters.
Evaluating the following code fragment in the Inspector

11-52 Using Newton Data Storage Objects

ARENDI-DEFS00004132

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 86 of 201 PageID #: 29131

CHAP TER 1 1

Data Storage and Retrieval

mySoup: Make Key([11 12345678901234567890 11 , 3,

"ABCDEFGHIJKLMNOPQRSTDVWXYZ"],

['name.first, 'cardType, 'name.last])

returns the key value

[11 12345678901234567890", 3, "ABCDEFGHIJKLMNO"]

The next example illustrates the truncation of subkeys when the total key size is
greater than 80 bytes. In this example, the first string in the string array is so long
that it uses up the entire 80 bytes allocated for the key, with the result that the first
string is truncated and the remaining key values are nil. Evaluating the following
code fragment in the Inspector

mySoup: Make Key(["12345678901234567890abcdefghijjlmnopgrstuvwxyz",
3, "ABCDEFGHIJKLMNOPQRSTDVWXYZ12345678901234567890 11 1 ,

['name.first, 'cardType, 'name.last])

returns the key value

["12345678901234567890abcdefghijjlmnopgr", NIL, NIL]

Missing elements in the string array are treated as nil values. For example, the
following code fragment is missing the second two elements of the string array:

mySoup: Make Key(["12345678901234567890],
['name.first, 'cardType, 'name.last])

Evaluating this code fragment in the Inspector returns the key value

["12345678901234567890", NIL, NIL]

On the other hand, missing index paths cause this method to throw an exception. If
one of the index paths in a multiple-slot index is missing from the array passed as
the value of the indexPatb parameter, the Make Key method throws a "soup index
does not exist" evt . ex. f r . store -48013 exception.

Using Cursors

This section discusses the functions and methods used to work with cursor objects
returned by the Query method of soups or union soups. Individual entries in soups
and union soups are manipulated by the entry functions described in the section
"Using Entries," later in this chapter. This section describes

■ getting the cursor

■ testing validity of the cursor

■ getting the currently referenced soup entry from the cursor

■ moving the cursor

Using Newton Data Storage Objects 11-53

ARENDI-DEFS00004133

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 87 of 201 PageID #: 29132

CHAP TER 1 1

Data Storage and Retrieval

■ getting the number of entries in cursor data

■ getting an index key from the cursor

■ copying the cursor

Getting a Cursor

Cursor objects are returned by the Query method. For more information, see
"Using Queries" beginning on page 11-38.

Testing Validity of the Cursor

When a storage card is inserted or a soup is created, union soups include new soups
in the union automatically as is appropriate. A cursor on a union soup may not be
able to include a new soup when the new soup's indexes do not match those present
for the other soups in the union. In particular, this situation can occur when

■ The new soup does not have the index specified in the indexPath of the query
spec used to generate the cursor.

■ The query spec used to generate the cursor included a tagspec and the new
soup does not have the correct tags index.

In such cases, the cursor becomes invalid. An invalid cursor returns nil when sent
messages such as Next, Prev, Entry, and so on. Note that a valid cursor returns
nil when it receives a message that positions it outside of the range of valid
entries. (For an example, see the text accompanying Figure 11-6 on page 11-46.)

You can test the cursor's validity by invoking the Status cursor method. This
method returns the 'valid symbol for cursors that are valid and returns the
missinglndex symbol when a soup referenced by the cursor is missing an

index. Your application needs to call this method when it receives either of the
' soupEnters or I soupCreated soup change notification messages. If the
Status method does not return the 'valid symbol, the application must correct
the situation and recreate the cursor.

For a detailed description of the Status cursor method, see the section "Query
and Cursor Methods" (page 9-60) in Newton Programmer's Reference. For a
discussion of soup change notification messages, see the section "Callback
Functions for Soup Change Notification" (page 9-14) in Newton Programmer's
Reference.

Getting the Entry Currently Referenced by the Cursor

To obtain the entry currently referenced by the cursor, send the Entry message to
the cursor, as shown in the following code fragment:

// assume myCursor is valid cursor returned from a query

local theEntry := myCursor:Entry();

11-54 Using Newton Data Storage Objects

ARENDI-DEFS00004134

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 88 of 201 PageID #: 29133

CHAP TER 1 1

Data Storage and Retrieval

Moving the Cursor

This section describes various ways to position the cursor within the range of
entries it references.

Sometimes the following discussion refers to the "first" entry in a cursor. As you
know, the order imposed on cursor data is defined by the soup index used by the
query that generated the cursor. When you see mentions of the "first" entry in a
cursor, be aware that this phrasing really means "the first entry as defined by index
order (ascending or descending order)."

When first returned by a query, the cursor points to the first entry in the data set
that satisfies the query. Thus, to obtain the first entry in the data set referenced by a
newly created cursor, just send the Entry message to the cursor.

You can also position the cursor on the first entry in its data set by sending the
Reset message. The Reset method moves the cursor to the first valid entry in the
query result and returns that entry. For example:

local cursor := mySoup:Query(nil);

// move the cursor ahead a bit

local anEntry := cursor:Move(3);

// go back to first entry

local firstEntry := cursor:Reset();

Note that if the query spec includes a beginxey value, the Reset method returns
the first valid entry at or after the beginxey value in index order.

To obtain the last entry in the set of entries referenced by the cursor, send the
ResetToEnd cursor message, as shown in the following example:

local cursor := mySoup: Query({indexPath: 'name,

endKey: 11ZZ 11 });

local lastCursorEntry := cursor:ResetToEnd();

Note that if the query spec includes an endKey value, the ResetToEnd method
positions the cursor on the last valid entry in index order at or before the specified
endKey value. For example, if you specify an endKey value of ° z " but the last
valid entry previous to that in index order has the key value "gardenia 11, the
entry associated with the "gardenia ° key value is returned.

The cursor can be advanced to the next entry in index order or moved back to the
previous entry by the Next and Prev methods, respectively. After these methods
move the cursor, they return the current entry. If sending either of these messages
positions the cursor outside of the range of valid entries, it returns nil.

Using Newton Data Storage Objects 11-55

ARENDI-DEFS00004135

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 89 of 201 PageID #: 29134

CHAP TER 1 1

Data Storage and Retrieval

You can use the Move method to move the cursor multiple positions. For example,
instead of coding incremental cursor movement as in the following example,

for i := 1 to 5 do myCursor:Next();

you can obtain faster results by using the Move method. The following code
fragment depicts a typical call to this method. After positioning the cursor, the
Move method returns the current entry.

// skip next four entries and return the fifth one or nil

local theEntry := myCursor:Move(5);

To move the cursor in large increments, it's faster to use the GoTo and GoToxey
methods to position the cursor directly. You can use the GoToxey method to go
directly to the first indexed slot that has a particular value and return the entry
containing that slot, as shown in the following example:

// index spec for soup that generated myCursor

indxSpec: {structure: slot, path: 'name, type: 'string};

go to the first entry that has

the value "Nigel' in the name slot

local theEntry := myCursor:GotoKey("Nige");

If the argument to the GoToxey method is not of the type specified by the soup's
index spec, this method throws an exception. For example, the index spec in the
previous example specifies that the name slot holds string data. If you pass a
symbol to the GoToxey method, it signals an error because this soup's index holds
string data:

// throws exception - arg doesn't match index data type

myCursor:GotoKey('name);

Counting the Number of Entries in Cursor Data

Because the user can add or delete entries at any time, it's difficult to determine
with absolute certainty the number of entries referenced by a cursor. With that in
mind, you can use the CountEntries cursor method to discover the number of
entries present in the set referenced by the cursor at the time the CountEntries
method executes.

To discover the number of entries in the entire soup, you can execute a very broad
query that includes all soup entries in the set referenced by the cursor and then
send a CountEntries message to that cursor. For example:

local allEntriesCursor := mySoup:Query(nil);

local numEntries := allEntriesCursor:CountEntries();

11-56 Using Newton Data Storage Objects

ARENDI-DEFS00004136

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 90 of 201 PageID #: 29135

CHAP TER 1 1

Data Storage and Retrieval

Note that if the query used to generate the cursor specifies a beginxey value, the
CountEntries method starts counting at the first valid entry having an index key
value equal to or greater than the beginxey value. Similarly, if the query that
generated the cursor used an endxey value, the CountEntries method stops
counting at the last valid entry having an index key value equal to or less than the
endKey value.

Note that the use of the CountEntries method is somewhat time-consuming and
may increase your application's heap space requirements; for performance reasons,
use this method only when necessary.

Getting the Current Entry's Index Key

The Entryxey cursor method returns the index key data associated with the
current cursor entry without reading the entry into the NewtonScript heap. Note,
however, that under certain circumstances the value returned by this method does
not match the entry's index key data exactly. For more information, see "Limitations
of Index Keys" on page 11-52.

Copying Cursors

You can clone a cursor to use for browsing soup entries without disturbing the
original cursor. Do not use the global functions Clone or DeepClone to clone
cursors. Instead, use the Clone method of the cursor to be copied, as shown in the
following code fragment:

local namesUSoup:= GetUnionSoupAlways(ROM_CardFileSoupName);

local namesCursor := namesUSoup:Query(nil);

local cursorCopy:= namesCursor:Clone();

Using Entries

This section discusses the functions and methods that work with soup entry objects
returned by cursors. This section describes

■ adding entries to soups

■ removing entries from soups

■ saving references to entries

■ modifying entries

■ replacing entries

■ sharing entry data

■ copying entry data

■ using the entry cache effectively

Using Newton Data Storage Objects 11-57

ARENDI-DEFS00004137

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 91 of 201 PageID #: 29136

CHAP TER 1 1

Data Storage and Retrieval

Saving Frames as Soup Entries

To save a frame as a soup entry, pass the frame to either of the union soup methods
AddToDefaultStoreXmit or AddToStoreXmit, or pass it to the AddXmit
soup method. Each of these methods transforms the frame presented as its
argument into a soup entry, returns the entry, and transmits a change notification
message. The following code example illustrates the use of the
AddToDefaultStoreXmit method:

local myFrame := {text: "Some info", color: 'blue};

// assume mySoupDef is a valid soup definition

local myUSoup := RegUnionSoup(mySoupDef)

myUSoup:AddToDefaultStoreXmit(myFrame, I lMyApp:MySigl);

The new soup entry that these methods create consists of the frame presented to the
entry-creation method, along with copies of any data structures the frame
references, as well as copies of any data structures those structures reference, and
so on. Thus, you must be very cautious about making soup entries out of frames
that include references to other data structures. In general, this practice is to be
avoided—it can result in the creation of extremely large entries or entries missing
slots that were present in the original frame.

For example, the presence of a _parent slot in the frame presented as an
argument to these methods causes the whole _parent frame (and its parent, and
so on) to be stored in the resulting entry, potentially making it extremely large. An
alternative approach is to store a key symbol in the data and find the parent object
in a frame of templates at run time.

Do not include _proto slots in frames presented to methods that create soup
entries. These slots are not written to the soup entry and are missing when the entry
is read from the soup.

Do not save magic pointers in soup entries. Because the objects they reference are
always available in ROM, saving magic pointers is unnecessary and may cause the
entries to exceed the maximum permissible size.

Circular pointers within an entry are supported, and an entry can refer to another
by using an entry alias.

The size of an individual entry is not limited by the NewtonScript language; however,
due to various practical limitations, entries larger than about 16 KB can impact
application performance significantly. For best performance, it is recommended
that you limit the size of individual entries to 8 KB or less. Note that this total does
not include data held by virtual binary objects that the entry references; virtual
binary objects save their data separately on a store specified when the virtual binary
object is created. For more information, see "Virtual Binary Objects" on page 12-2
in Chapter 12, "Special-Purpose Objects for Data Storage and Retrieval."

11-58 Using Newton Data Storage Objects

ARENDI-DEFS00004138

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 92 of 201 PageID #: 29137

CHAP TER 1 1

Data Storage and Retrieval

No more than 32 KB of text (total of all strings, keeping in mind that one character
is 2 bytes) can reside in any soup entry. Another practical limitation is that there
must be space in the NewtonScript heap to hold the entire soup entry. You should
also be aware that Newton Backup Utility and Newton Connection Kit do not
support entries larger than 32K.

Keeping these limitations in mind, you can put any slots you need into your soup
entries. Entries within the same soup need not have the same set of slots. The only
slots to which you must pay special attention are those that are indexed. When you
create a soup, you specify which of its entries' slots to index. Indexed slots must
contain data of the type specified by the index. For example, if you specify that an
index is to be built on slot f oo and that f oo contains a text string, it's important
that every f oo slot in every entry in the indexed soup contains a text string or n 1.

Entries that do not have a f oo slot will not be found in queries on the f oo index.
Entries having a foo slot that contains data of some type other than text cause
various exceptions. For example, if you should try to add this kind of frame to an
indexed soup, the method that attempts to add the frame throws an exception; if
you try to add a new index on a slot that varies in data type from entry to entry, the
Addlndex method throws an exception, and so on. Soup entries can contain nil-
value slots, but querying for such slots is not supported; that is, you can query only
for slots that hold non-ni 1 values.

Removing Entries From Soups

To remove an entry, pass it to the Ent ryRemoveFromSoupXmit function, as
shown in the following code fragment. If you try to remove an invalid entry, this
function throws an exception. An entry can become invalid when, for example, the
user ejects the storage card on which it resides.

local myCursor Query(nil);

local theEntry myCursor:Entry();

if theEntry then

EntryRemoveFromSoup(theEntry, 'lMyApp:MySigl);

Modifying Entries

Only one instance of a particular entry exists at any time, regardless of how the
entry was obtained. That is, if two cursors from two different queries on a
particular soup happen to be pointing at identical entries, they are actually both
pointing at the same entry.

When first retrieved from a soup, an entry is just an identifier. When the entry is
accessed as a frame (by getting or setting one of its slots), the complete entry frame
is constructed in the NewtonScript heap. The frame is marked to identify it as a
member of the soup from which it came.

Using Newton Data Storage Objects 11-59

ARENDI-DEFS00004139

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 93 of 201 PageID #: 29138

CHAP TER 1 1

Data Storage and Retrieval

When the frame is constructed from the entry, it is cached in memory. At this point,
you can add, modify, and delete slots just as you would in any other frame;
however, the changes do not persist until the Ent ryChangexmit function is
called for that particular entry. The Ent ryChangexmit function writes the cached
entry frame back to the soup, replacing the original entry with the changed one.

If the Ent ryUndo Change sXmi t function is called, the changes are thrown out
and the entry is restored to its original state. This function disposes of the cached
entry frame and restores the reference to the original uncached entry, just as if the
original entry was never referenced. Note that you can use the FrameDirty
function to determine whether a cached entry has been modified since it was read
into the NewtonScript heap; however, this function does not detect changes to
individual characters in a string (a common operation for clParagraphview
views). For more information, see "FrameDirty" (page 9-69) in Newton
Programmer's Reference.

The following code example gets an entry from the name sUSoup union soup,
changes it, and writes the changed entry back to the soup:

local namesUSoup GetUnionSoupAlways(ROM_CardFileSoupName);

local namesCursor namesUSoup:Query(nil);

local theEntry := namesCursor:Entry();

if theEntry then

begin

theEntry.cardType := 4;

EntryChangeXmit(theEntry, I lMyApp:MySigl);

end;

It's not always easy to determine the best time to write a cached entry back to its
soup. For example, it would be inappropriate to call a function like
EntryChangeXmit from the ViewChangedScript method of a
protoLabel InputLine view. When the user enters data on the input line with
the keyboard, the ViewChangedScript is called after every key press. Calling
the Ent ryChangexmit function for every key press would be noticeably slow.

In some situations, the appropriate time to call Ent ryChangeXmit is more
obvious. For example, a natural time to call Ent ryChangexmit would be when
the user dismisses an input slip.

Moving Entries

You can use the MoveTarget method of the root view to move (not copy) an
entry into the same-named soup on another store. For example, you would use
this method to move entries from one union soup member to another. For more
information, see "System-Supplied Filing Methods" (page 12-11) in Newton
Programmer's Reference.

11-60 Using Newton Data Storage Objects

ARENDI-DEFS00004140

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 94 of 201 PageID #: 29139

CHAP TER 1 1

Data Storage and Retrieval

Copying Entries

The EntryCopyXmit global function and the CopyEntriesXmit soup method
enable you to copy entries from one soup to another and transmit appropriate
change notifications.

The following code fragment uses the CopyEntriesXmit soup method to copy
all the entries from a specified source soup into a specified destination soup. Note
that this method is defined only for soups, not for union soups. The following code
fragment uses the GetMember union soup method to retrieve the plain soup
constituent of a union soup from a specified store. The GetMember method never
returns nil; instead, it creates an empty member soup on the specified store if one
does not already exist:

// myUsoup member on internal store is the source soup

local myUSoup := GetUnionSoupAlways("myUSoup:mySig");

local sourceSoup := myUSoup:GetMember(GetStoreS()[0])

// myUsoup member on another store is the destination soup

local destSoup := myUSoup:GetMember(GetStoreS()[1]);

// copy all entries from source soup to dest soup

local cursor := sourceSoup:Query(nil);

if (cursor:CountEntries() <> 0) then

sourceSoup:CopyEntriesXmit(destSoup, 'lMyApp:MySigl);

You can use the Ent ryCopyXmi t function to copy an entry from a specified
source soup to a specified destination soup and transmit a soup change notification
message. Note that this function is defined only for soups, not for union soups. The
following code fragment uses the Getsoup store method to retrieve a specified
soup from its store. Because the Getsoup method returns nil when the soup to
be retrieved is not available, you must at least ensure that this result is non-ni 1
before using it. The following code fragment actually goes one step further and
uses the Isvalid soup method to test the validity of the destSoup soup in
additional ways:

local myUSoup := GetUnionSoupAlways("myUSoup:mySig");

// get all entries having 'hot in 'temperature slot

local cursor := myUSoup:Query({indexPath: 'temperature,

beginKey: 'hot

endKey: 'hot});

local destSoup := GetStores()[0]:GetSoup("mySoup:mySig");

// make sure we actually got a valid soup

if destSoup:IsValid() then

begin

// xmit a single notification after all changes are made

while e := cursor:Entry() do EntryCopyXmit(e,destSoup,nil);

XmitSoupChange(destSoup, 'lMyApp:MySigl , 'whatThe, nil);

end;

Using Newton Data Storage Objects 11-61

ARENDI-DEFS00004141

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 95 of 201 PageID #: 29140

CHAP TER 1 1

Data Storage and Retrieval

Note

The EntryCopyxmit method copies the cached entry—not the
original soup entry—into the destination soup.

Sharing Entry Data

Shared soups and shared entries need to be in a well-documented format to allow
other applications to use them. For an example of how to document the structure of
your soup entries, refer to Chapter 19, ̀Built-in Applications and System Data."
There you will see descriptions of the soups used by the built-in applications on
Newton devices produced by Apple Computer, Inc.

Using the Entry Cache Efficiently

Whenever you access a slot in a soup entry, the system reads the entire entry into
the NewtonScript heap if it is not already present. That is, simply testing or
printing the value of a single slot causes the entire soup entry in which it resides to
be read into the entry cache. For best performance, avoid creating cached entries
when you don't need them, and flush the entry cache as soon as is appropriate. This
section describes how you can avoid unnecessary caching and how you can reclaim
cache memory explicitly. Table 11-1 on page 11-63 summarizes the use of the
entry cache by the functions and methods described in this discussion.

Reading a soup entry into memory requires more heap space than testing tag or
index values does. Whenever possible, work with index keys and tags rather than
the contents of soup entries. Some suggested techniques for doing so include
the following:

■ Avoid using validTest functions in favor of using indexValidTest
functions in your queries, as the latter can be performed without reading soup
entries into memory.

■ Query on index key values or tag values rather than on values that require
reading soup entries into the NewtonScript heap.

■ Use the cursor method Entryxey to retrieve an entry's key value without
reading the entry into the NewtonScript heap.

Normally, adding or changing a soup entry creates a cached entry. If you do not
plan on working further with an entry's data after you've added or modified it, you
can reclaim heap space by releasing the memory used by the entry cache. You can
use the AddFlushedxmit soup method to add a soup entry without creating a
cached entry at all; in addition to saving heap space, this method saves you the time
normally required to create the cached entry. When working with a cached entry,
you can use the EntryFlushxmit function to write it back to its soup and clear
the entry cache.

11-62 Using Newton Data Storage Objects

ARENDI-DEFS00004142

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 96 of 201 PageID #: 29141

CHAP TER 1 1

Data Storage and Retrieval

In contrast, the Ent ryUndoChange s function clears the entry cache without writing
the cached entry to the soup. This function makes references to the entry point to
the original, unmodified entry residing in the soup, instead of the cached entry.

Note that reading, printing, or modifying any slot in the entry after calling
EntryFlushXmit, Ent ryUndoChanges, or AddFlushedXmit causes the
entire entry to be read back into the NewtonScript heap; thus, use these functions
only when you're sure you won't need to access the entry in the near future.

If you do need to work with the entry data after you've written it to the soup, you'll
want to use functions and methods that don't clear the entry cache after writing the
soup entry. The AddToDefaultStoreXmit and AddToStoreXmit union soup
methods save frames as soup entries without clearing the entry cache afterward.
When adding frames to single soups, you can use the Addxmit soup method for
the same purpose. The EntryChangexmit function also writes the cached entry
back to its soup without flushing the cache afterward. Contrast this function with
the EntryFlushXmit function, which clears the entry cache after writing the
cached entry back to its soup. Table 11-1 summarizes the caching behavior of all
methods that write entries to soups or union soups.

Table 11-1 Effect of functions and methods on entry cache

Function or method

uSoup:AddToDefaultStoreXmit (frame, changeSym)

uSoup:AddToStoreXmit (frame, changeSym)

soup: AddXmit (frame, changeSym)

soup: AddFlushedXmit (frame, changeSym)

EntryFlushXmit (entry)

EntryChangeXmit (entry)

Ent ryUndoChanges (entry)

Using Soup Change Notification

Cached entry

Creates and returns

Creates and returns

Creates and returns

Does not create or return

Returns existing

Returns existing

Throws away existing

When your application changes an entry in a shared soup, the system executes
callback functions registered by applications using that soup, allowing them to take
action in response to the change. The system-supplied soup change notification
service allows applications to

■ notify each other when they make changes to soup entries

■ respond to notifications precisely

Using Newton Data Storage Objects 11-63

ARENDI-DEFS00004143

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 97 of 201 PageID #: 29142

CHAP TER 1 1

Data Storage and Retrieval

■ control how and when notifications are sent

The first part of this section describes how to register and unregister a callback
function for execution in response to changes in a particular soup. The next part
describes the various notifications that may be sent. The last part of this section
describes how applications send soup change notifications.

Registering Your Application for Change Notification

The RegSoupChange global function registers a callback function for execution
in response to changes in a particular soup. Note that this callback function must
not call either of the RegSoupChange or UnRegSoupChange functions.

If your application needs to respond to changes in more than one soup, you'll need
to call the RegSoupChange function once on each soup for which your
application requires change notification. This approach is valid for any system-
supplied soup except that used by the built-in Preferences application. For
notification of changes to user preferences, you must call the
RegUserConfigChange function.

You can call the RegSoupChange function at any time that makes sense for your
application. For example, you might do so from within your base view's
viewsetupDonescript method; however, this is only a suggested guideline. In
order to conserve available memory, your application should minimize the amount
of time callback functions remain registered.

The following code example shows how to register your application for notification
of changes to the soup used by the built-in Names application:

local myFn := func (soupName, appSym, changeType, changeData)

begin

if (changeType) then

begin

if (changeType <> 'whatThe) then

print (changeType && "in the" && soupName &&

"soup by the" && GetAppName(appSym) &&

"application.");

else

print ("Unspecified changes occurred in the" &&

soupName && "soup.");

end;

end;

register for changes to soup used by built-in "Names" app

RegSoupChange(ROM_CardFileSoupName, 'lmyFnl:MyApp:MySigl , myFn);

11-64 Using Newton Data Storage Objects

ARENDI-DEFS00004144

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 98 of 201 PageID #: 29143

CHAP TER 1 1

Data Storage and Retrieval

WARNING

Any callback function registered by the RegsoupChange
function must not call either of the RegsoupChange or
UnRegSoupChange functions. A

The second argument to the RegsoupChange function can be any unique symbol
that identifies the callback to be registered. If your application registers only one
callback function, you can just use your application symbol as the callback
identifier (ID). A callback ID need only be unique within the registry that uses it.
For example, no two power registry callback functions can share the same callback
ID; on the other hand, your application's power registry callback can use the same
ID as your application's login screen callback Thus, if your application only
registers one callback function with each of the various registries, all of your
callback functions can use your application symbol (with developer signature) as
their callback ID.

To generate unique identifiers for multiple callbacks within the same registry, you
can prefix an additional identifier to your application symbol. For example, the
symbol I I myFnl : MyApp : Mysig I could be used to identify one of several
callback functions registered by the MyApp : Mysig application.

Unregistering Your Application for Change Notification

When your application no longer needs to be notified of changes to a particular
soup, it needs to call the UnRegSoupChange function to unregister its callback
function for that soup.

unregister my app's Names soup callback

UnRegSoupChange(ROM_CardFileSoupName, 'ImyFnl:MyApp:MySigl);

Normally, you can unregister your soup change callbacks in the viewQuitscript
method of your application's base view.

Responding to Notifications

When a soup changes in some way, the system executes the callback functions
registered for that soup. Note that the system does not consider the soup to have
changed until an entry is written to the soup. Thus, changing a cached entry is not
considered a change to the soup until the Ent ryChangexmit function writes the
cached entry back to the soup.

Note

The system-supplied Preferences application sends
soup change notifications only if your application
uses the RegUserConf igChange function to register
for such notifications.

Using Newton Data Storage Objects 11-65

ARENDI-DEFS00004145

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 99 of 201 PageID #: 29144

CHAP TER 1 1

Data Storage and Retrieval

Your callback function must take any action that is appropriate to respond to the
change. Most applications have no need to respond to soup changes unless they are
open, which is why it is recommended that you register your callbacks when your
application opens and unregister them when it closes.

The arguments passed to your callback function include the name of the soup that
changed, the symbol identifying the callback function to execute, the kind of
change that occurred, and optional data such as changed soup entries. For a simple
code example, see "Registering Your Application for Change Notification"
beginning on page 11-64. For a complete description of the callback function and
its parameters, see the section "Callback Functions for Soup Change Notification"
(page 9-14) in Newton Programmer's Reference.

WARNING

The ' soupEnters and ' soupLeaves messages are guaranteed
to be sent only when a reference to the changed soup exists. These
messages may not be sent for soups that are not in use. For
example, if no cursor object references the soup, this message
may not be sent. A

Sending Notifications

When your application alters a soup, it may need to notify other applications that
the soup has changed. The best means of doing so depends on the exact nature
of the change.

The system provides functions and methods that transmit change notification
messages automatically after altering soups, union soups, or entries. The names of
these auto-transmit routines end with the -Xmit suffix. They are described
throughout this chapter in sections pertaining to the main behaviors they provide,
such as adding frames to soups as entries, changing entries, and so on.

The auto-transmit (1hOrMetbodNameXmit) routines provide the easiest and best
way to send notifications when making a limited number of changes to a soup. For
example, to save a frame in a union soup and transmit an appropriate notification
message, use the AddToDefaultstorexmit method as shown in the following
code fragment:

// get soup in which to save the new entry

local myUSoup := GetUnionSoupAlways("myUSoup:mySig");

// frame to add as new entry

local myFrame := {name: Daphne, color: tabby};

// add the entry and transmit change notification

local ent := myUSoup:AddToDefaultStoreXmit(myFrame,'lMyApp:MySigl);

The auto-transmit methods and functions accept a cbangeSym parameter identifying
the application that changed the soup. If you pass nil for the value of the

11-66 Using Newton Data Storage Objects

ARENDI-DEFS00004146

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 100 of 201 PageID #: 29145

CHAP TER 1 1

Data Storage and Retrieval

changeSym parameter, the change notification is not sent, but the function or
method does everything else its description specifies.

Sometimes it may not be not desirable to send notifications immediately after
making each change to a soup; for example, when changing a large number of soup
entries, you might want to wait until after you've finished making all the changes to
transmit notification messages. You can use the xmitsoupChange global function
to send soup change notifications explicitly, as shown in the following code example:

assume cursor and destSoup are valid

xmit a single notification after all changes are made

while e := cursor:Entry() do EntryCopyXmit(e,destSoup,nil);

XmitSoupChange("mySoup:mySig", 'lMyApp:MySigl , 'whatThe, nil);

The first argument to the xmitsoupChange function specifies the name of the
soup that has changed and the second argument specifies the application making
the change. The third argument is a predefined symbol specifying the kind of
change that was made, such as whether an entry was added, deleted, or changed.
Where appropriate, the final argument is change data, such as the new version of
the entry that was changed. Because this particular example makes multiple
changes to the destSoup soup, it passes the ' whatThe symbol to indicate
unspecified changes, and passes nil as the change data. For a more detailed
discussion of change type and change data, see the section "Callback Functions for
Soup Change Notification" (page 9-14) in Newton Programmer's Reference.

Soup change notification messages are sent on a deferred basis. In most situations,
this implementation detail has no practical impact; however, you should be aware
that soup change messages are not sent until after the method that sends them
returns. For example, if your ButtonClickscript method causes a soup
change, the change notification message is not sent until after the
ButtonClickscript method returns.

Using Newton Data Storage Objects 11-67

ARENDI-DEFS00004147

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 101 of 201 PageID #: 29146

CHAP TER 1 1

Data Storage and Retrieval

Summary of Data Storage

This section summarizes data structures, functions, objects and methods used for
data storage on Newton devices.

Data Structures

Soup Definition Frame

mySoupDef :_

{ // string that identifies this soup to the system

name: "appName: appSym" ,

// string that is user visible name

userName: "My Application soup",

// application symbol

ownerApp: 'lmyApp:mySigl ,

// user-visible name of app that owns this soup

ownerAppName: "My Application",

// user-visible string describing soup

userDescr: "This soup is used by

My Application.",

array of indexSpecs - default indexes

indexes: [anlndexSpec, anotberindexSpec]

// optional function used to initialize the soup

initHook: symbo1OrCa11BackFn

}

Single-Slot Index Specification Frame

{

// must use this value - index keys are slot values

structure:'slot,

// entries indexed on this slot

path: patbExpr,

// data type found in the indexed slot

type: symbol,

// optional. ascending or 'descending

order: symbol,

// optional. pass 1 to use alternate sort table

sortID: nil

}

11-68 Summary of Data Storage

ARENDI-DEFS00004148

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 102 of 201 PageID #: 29147

CHAP TER 1 1

Data Storage and Retrieval

Multiple-Slot Index Specification Frame

{

// index keys may be multiple slot values

structure: 'multiSlot, // must use this value

// up to six path expressions specifying indexed slots

path: [pathExprl , pathExpr2, ... , pathExpr6] ,
// data type found in each indexed slot

type: [syml , sym2, ... sym6]
// optional. ascending or 'descending

order: [syml , sym2, ... sym6
// optional. pass 1 to use alternate sort table

sortID: nil

}

Tags Index Specification Frame

{

// must use this value - tags are slot values

structure:'slot,

// index values (tags) extracted from this slot

path: ' slot]Vame,
// must use this value

type:'tags,

}

Query Specification Frame

pass nil instead of a query spec frame

to retrieve all entries in the soup

this frame used for queries on single-slot indexes

see next example for multiple-slot query spec frame

{

use the specified single-slot index for this query

required when querying for index values

indexPath ' pathExpr,
minimum index key value examined by this query

for all entries, (beginKey < entry.indexPath)

beginKey : keyValue, // optional
excluded lower boundary of key range examined by query

for all entries, (beginExclKey < entry.indexPath)

beginExclKey : keyValue, // optional

Summary of Data Storage 11-69

ARENDI-DEFS00004149

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 103 of 201 PageID #: 29148

CHAP TER 1 1

Data Storage and Retrieval

maximum index key value examined by this query

for all entries, (entry.indexPath < endKey)

endKey: keyValue, // optional
excluded upper boundary of key range examined by query

for all entries, (beginExclKey < entry.indexPath)

endExclKey : keyValue, // optional
// returns non-nil to include entry in result

indexValidTest: func (keyValue) begin ... end;, // optional

// returns non-nil to include entry in result

validTest: func (entry) begin ... end; // optional

// optional tags query spec frame; see page 11-71

tagSpec: {equal: [t], t2, ...tN] , all: [t], t2, ...tN] ,
any: [t], t2, ...tN1 , none: [t], t2, ...tN1 } ,

when non-nil, match entire string in 'words slot

entireWords: Boolean, // optional
// string(s) to match w/ word beginnings in entries

words: string) [strl, str2, ... , strN] , // optional
// string to match w/ any substring in entries

text: string, // optional
}

this frame used for queries on multiple-slot indexes

see previous example for single-slot query spec frame

{

// use the specified multiple-slot index for this query

indexPath [' pathExprl, ' pathExpr2, ...' pathExpr6] , // required
minimum index key value examined by this query

for all entries, (beginKey < entry.indexPath)

beginKey : [keyValuel,keyValue2 ... keyValue6] , // optional
excluded lower boundary of key range examined by query

for all entries, (beginExclKey < entry.indexPath)

beginExclKey : [keyValuel,keyValue2 ... keyValue6] , // optional
maximum index key value examined by this query

for all entries, (entry.indexPath < endKey)

endKey: [keyValuel,keyValue2 ... keyValue6] , // optional
excluded upper boundary of key range examined by query

for all entries, (beginExclKey < entry.indexPath)

endExclKey : [keyValuel,keyValue2 ... keyValue6] , // optional
// optional; returns non-nil to include entry in result

indexValidTest : func ([keyValuel,keyValue2 ... keyValue6])
begin ... end;,

optional; returns non-nil to include entry in result

validTest: func (entry) begin ... end;

11-70 Summary of Data Storage

ARENDI-DEFS00004150

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 104 of 201 PageID #: 29149

CHAP TER 1 1

Data Storage and Retrieval

// optional tags query spec frame; see page 11-71

tagSpec: {equal: [t], t2, ...tlV , all: [t], t2, ...tlV ,
any: [t], t2, ... HVI , none : [t], t2, ... HVI } ,

when non-nil, match entire string in 'words slot

entireWords: Boolean, // optional
// string(s) to match w/ word beginnings in entries

words: string) [strl, str2, ... , strN] , // optional
// string to match w/ any substring in entries

text: string, // optional
}

Tags Query Specification Frame

this frame resides in tagSpec slot of query spec frame

at least one of these slots must appear

select only entries having identical set of tags

{equal: [t], t2, ...HVI ,
// select only entries having identical tags or superset

all: [t], t2, ...tlV ,
// select entries having any of these tags

any: [t], t2, ... tlV ,
// select entries having none of these tags

none: [t], t2, ... tlV }

Callback Functions for Soup Change Notification

func (soupNameString, appSymbol, changeTypeSymbol, changeData) ;

Data Storage Functions and Methods

Stores

store: AtomicAction (function)
store: BusyAction (appSymbol,
store: CheckWriteProtect ()
GetDefaultStore()

store: Get Info (slotSymbol)
store: GetName ()
store: Get Soup (soupNameString)
store: GetSoupNames ()
GetStores()

store: Has Soup (soupName)
store: IsReadOnly ()

appName, action)

Summary of Data Storage 11-71

ARENDI-DEFS00004151

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 105 of 201 PageID #: 29150

CHAP TER 1 1

Data Storage and Retrieval

store: IsVa1id ()
SetDefaultStore (newDefaultStore)
store: Set Info (slotSymbol, value)
store: TotalSize ()
store: UsedSize ()

Soups

These functions and methods allow you to work with soup-level data such as
frames, soup indexes, soup information frames, and soup signatures.

Creating Soups
RegunionSoup (appSymbol, soupDel) ;
UnRegUnionSoup (name, appSymbol) ;
store: CreateSoupXmit (soupName, indexArray, changeSym)
CreateSoupFromSoupDef , (soupDef, store, changeSym)
uSoup: GetMember (store)

Adding and Copying Entries
uSoup:AddToDefaultStoreXmit (frame, changeSym)
uSoup:AddToStoreXmit (frame, store, changeSym)
soupOrUsoup:AddFlushedXmit (frameOrEntry, changeSym)
soup: AddXmit (frame, changeSym)
soup: CopyEntriesXmit(destSoup, changeSym)

Retrieving Entries
soupOrUSoup: Query (querySpec)

Change Notification
RegSoupChange (soupName, callbackID, callBackFn)
UnRegSoupChange (soupName, callbackID)

XmitSoupChange (soupName, appSymbol, changeType, changeData)

Manipulating Tags
soup: Has Tags ()
soup: GetTags ()

soupOrUsoup:ModifyTagXmit (oldTag, newTag, changeSym)
soupOrUsoup: Remove Tag sXmi t (tags, changeSym)
soupOrUsoup:AddTagsXmit (tags, changeSym)

Additional Functions and Methods
soupOrUsoup: Add IndexXmi t (indexSpec, changeSym)
soup: Get Indexes ()

soup: Get Info (slotSymbol)
soupOrUsoup: GetName ()

soup: GetSignature ()

11-72 Summary of Data Storage

ARENDI-DEFS00004152

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 106 of 201 PageID #: 29151

CHAP TER 1 1

Data Storage and Retrieval

soupOrUsoup : Ge t S i z e()

uSoup: GetSoupList ()

soup: GetStore ()

GetUnionSoupAlways (soupNameString)
soup: Make Key (string, indexPath)
I s S oupEnt ry (object)
soup: IsVa1id ()

soup: RemoveAllEntriesXmit (changeSym)
soup: Remove FromStoreXmit (changeSym)
soupOrUsoup: Remove IndexXmit (indexPath, changeSym)
soup: Set lnfoXmit (slotSymbol, value, changeSym)
soup: SetName (soupNameString)

Cursors

These functions and methods work with the cursor object returned by the
Query method.

Cursor Validity
cursor: Status ()

Retrieving Entries and Manipulating the Cursor
cursor: Entry ()

cursor: Next ()

cursor: Prev ()

cursor: Move (n)
cursor: EntryKey ()

cursor: GoToKey (key)
cursor: GoTo (entry)
cursor: Reset ()

cursor: ResetToEnd ()

cursor: WhichEnd ()

Additional Functions and Methods
MapCursor (cursor, function)
cursor: CountEntries ()

cursor: Clone ()

Entries

These functions allow you to work with individual soup entries returned by the
cursor object.

EntryChangeXmit (entry, changeSym)
EntryCopyXmit (entry, newSoup, changeSym)
EntryFlushXmit (entry, changeSym)

Summary of Data Storage 11-73

ARENDI-DEFS00004153

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 107 of 201 PageID #: 29152

CHAP TER 1 1

Data Storage and Retrieval

EntryIsResident (entry)
EntryModTime (entry)
EntryMoveXmit (entry, newSoup, changeSym)
Ent ryRemoveFromSoupXmit (entry, changeSym)
EntryReplaceXmit (original, replacement, changeSym)
Ent rySize (entry)
EntrySoup (entry)
EntryStore (entry)
EntryTextSize (entry)
Ent ryUndo Change sXmi t (entry, changeSym)
EntryUniqueId (entry)
FrameDirty (frame)
I sSameEnt ry (entryOraliasl , entry0ralias2)

Data Backup and Restore Functions

These functions are intended for use by special-purpose data backup and
restoration programs only. Many of them intentionally defeat the error-
checking features upon which the system relies to maintain values that identify
entries to the system and specify when they were last modified.

store: Erase ()
store: GetAll Info ()
store: GetSignature ()
store: S e tName (storeNameString)

soup:AddWithUniqueIdXmit (entry, changeSym)
soup: GetAll Info ()

soup: GetIndexesModTime()

soup: Get InfoModTime ()

soup: GetNextUid ()

soup: SetSignature (signature)
soup: SetAllInfoXmit (frame, changeSym)
Ent ryChangeWithModTimeXmit (entry, changeSym)
EntryReplaceWithModTimeXmit (original, replacement, changeSym)

11-74 Summary of Data Storage

ARENDI-DEFS00004154

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 108 of 201 PageID #: 29153

C H A P T E R 1 2

Special-Purpose Objects for Data
Storage and Retrieval

This chapter describes the use of special-purpose objects to augment or replace
the behavior of the system-supplied store, soup, cursor, and entry objects. This
chapter describes

■ the use of entry alias objects to save references to soup entries

■ the use of virtual binary objects to store large amounts of binary data

■ the use of store parts to build read-only soup data into packages

■ the use of mock entry objects to implement your own suite of objects that
provide access to nonsoup data in the same manner as the system-provided
store, soup, cursor, and entry objects.

Before reading this chapter, you should understand the contents of Chapter 11,
"Data Storage and Retrieval," which provides an overview of the Newton data
storage system and describes how to use stores, soups, queries, cursors, and entries
to meet most applications' data storage needs.

About Special-Purpose Storage Objects

The special-purpose data storage objects described here can be used to augment or
replace the behavior of stores, soups, cursors, and entries.

Entry Aliases

An entry alias is an object that provides a standard way to save a reference to a
soup entry. Unless it uses an entry alias to do so, a soup entry cannot save a
reference to an entry in another soup—the referenced entry is copied into the host
entry when the host entry is written back to its soup. However, entry aliases may be
saved in soup entries without causing this problem.

Entry aliases are also useful for providing convenient access to entries from
multiple soups. For example, the built-in Find service uses entry aliases to present
entries from multiple soups in a single overview view.

About Special-Purpose Storage Objects 12-1

ARENDI-DEFS00004155

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 109 of 201 PageID #: 29154

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Virtual Binary Objects

The size of any NewtonScript object is limited by the amount of memory available
in the NewtonScript heap. As a result, you cannot create binary objects larger than
the amount of available NewtonScript heap space. For similar reasons, the amount
of data that can be stored in a single soup entry is limited as well. (See "Saving
Frames as Soup Entries" beginning on page 11-58 for details.) You can use virtual
binary objects to work around these restrictions.

A virtual binary object or VBO is a special kind of object that is useful for
holding binary data larger than the available space in the NewtonScript heap. VBOs
can be used to store large amounts of raw binary data, such as large bitmaps, the
samples of large digitized sounds, fax data, packages, or application-specific binary
data. A package is actually a special kind of virtual binary object; however, a package
is read-only and is created in a slightly different manner than a normal VBO.

In the following ways, VBOs are like normal NewtonScript binary objects:

■ The VBO is not persistent until it is written to a soup. As with any soup entry data,
if a VBO in a soup entry is modified, the changes are not persistent until the
cached entry frame is written back to the soup. If a soup entry containing a VBO
is moved to another store, the binary data associated with the VBO is moved to
that store as well. For a discussion of the soup entry cache, see "Entries" on
page 11-17.

■ The space used by the VBO is made available for garbage collection when there
are no more references to the VBO.

■ Binary data—including VBO data—is not shared between soup entries, even
when their respective soups reside on the same store. As a result, you may need
to consider space issues when moving or duplicating entries that hold VBO data.

VBOs are different from normal NewtonScript binary objects in the following ways:

■ VBO data does not reside in the NewtonScript heap—it resides in store memory.

■ Store memory for VBO data is not allocated until it is needed to write data. "Using
Virtual Binary Objects" on page 12-8 discusses this important point in detail.

■ You cannot use a value stored in a virtual binary object as a soup index key.

■ VBOs can be created in compressed or uncompressed form. If the VBO is
compressed, the system compresses and decompresses its associated binary data
on demand. The fact that a VBO is compressed is normally transparent to your
code; however, the time required to compress and uncompress VBO data may
affect performance.

■ When passed a reference to a VBO residing on a store that is unavailable,
methods that write VBO data throw exceptions rather than displaying the
"Newton still needs the card" alert.

12-2 About Special-Purpose Storage Objects

ARENDI-DEFS00004156

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 110 of 201 PageID #: 29155

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Normal binary objects encapsulate their data and reside entirely in the NewtonScript
heap; thus, creating one of these objects or reading any of its data requires an
amount of heap space sufficient to hold all its data. Therefore, the size of a normal
binary object is limited by the amount of NewtonScript heap space available at the
time it is created. For example, a binary object encapsulating 5 KB of data requires
5 KB of NewtonScript heap space. If sufficient heap space is not available, the
binary object cannot be created.

In contrast, VBO data resides on a store specified when the VBO is created. The
system manages VBO data automatically, providing NewtonScript objects with
transparent access to it on demand. A VBO can hold more data than a normal
binary object because it is not limited by the amount of free space available in the
NewtonScript heap. Contrasting the previous example, a VBO holding 5 KB of
data requires a negligible amount of heap space, because its data resides in store
memory, rather than in the NewtonScript heap.

Note

The system does not allocate store memory for VBO data until it
is needed to write data to the store. Testing the amount of store
memory available when the VBO is created does not guarantee
the future availability of this memory. Thus, it is possible to fail
due to lack of store space when writing to a VBO, even though the
VBO was created successfully. The only practical solution to this
problem is to enclose in a try block any code that writes VBO
data.

Parts

Recall that a package is the basic unit of downloadable Newton software: it
provides a means of loading code, resources, objects, and scripts into a Newton
device. A package consists of one or more constituent units called parts.

The format of a part is identified by a four-character identifier called its type or
its part code. Table 12-1 on page 12-4 lists the various kinds of parts and their
associated
type identifiers.

Some of the parts described in Table 12-1 may already be familiar to you. Form
parts are the Newton application packages you create with Newton Toolkit. Book
parts are the interactive digital books described in the Newton Book Maker User's
Guide. Store parts (parts of type soup) are useful for the storage of read-only data
and are discussed later in this chapter. Dictionary parts (parts of type dict)
supplement the built-in word lists used by the recognition subsystem. Font parts
are used to add new typefaces to Newton devices; for more information about these
parts, contact Newton Developer Technical Support. Auto parts are described in
the Newton Toolkit User's Guide.

About Special-Purpose Storage Objects 12-3

ARENDI-DEFS00004157

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 111 of 201 PageID #: 29156

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Table 12-1 Parts and type identifiers

Part Type Description

Application form Application.

Book book Book created by Newton Book Maker or Newton Press.

Auto part auto Background application/extension.

Store part soup Read-only soup.

Dictionary dict Custom dictionary for Newton recognition subsystem.

Font f ont Additional font.

Except for soup parts, all the parts listed in Table 12-1 are called frame parts
because they include a part frame which holds the items comprising the frame part.
Such items may include icons, scripts, other parts, binary data and so on. A soup
part, on the other hand, does not have a part frame and is composed of soup data only.

When a frame part is loaded, the system disperses the contents of its part frame to
the appropriate subsystems. For example, in addition to the application itself,
which is a form part used by the Extras Drawer, the part frame in an application
package might include a custom icon used by the Extras Drawer, a custom dictionary
used by the recognition subsystem, a soup part that provides application data, and
an Instal lScript function that performs application-specific setup tasks.

Store Parts

A store part is a part that encapsulates a read-only store. Because you can build
store parts into application packages, the store part is sometimes referred to as a
package store.

Soups can reside on package stores, just as they do on normal stores; however,
because package stores are read-only, soups residing on package stores must also
be read-only. Store parts can be used to provide soup-like access to read-only data
residing in an application package.

For more information about the characteristics of soups, see "Soups" on page 11-7
and "Using Soups" on page 11-32.

Mock Entries

A mock entry is a NewtonScript object that mimics the behavior of a soup entry.
The mock entry is a foundation object you can use to build up a suite of objects
that acts like the system-supplied store, soup, cursor, and entry objects. For
example, you could create a mock entry object that uses a serial communications
link to retrieve a record from a remote database; additional objects could implement
methods to provide cursor-like access to these mock entries, just as if they resided

12-4 About Special-Purpose Storage Objects

ARENDI-DEFS00004158

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 112 of 201 PageID #: 29157

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

in a local soup. Your mock entry could reside in a mock soup, which, in turn, could
reside on a mock store.

The mock entry counterparts to the system-supplied EntryXxx functions are
implemented as the methods of a NewtonScript frame known as the mock entry's
handler. You supply this frame, which implements these methods as well as any it
requires for its own purposes. The handler may also hold information local to a
specific mock entry or information required to retrieve the mock entry's data.

Like a normal soup entry, the mock entry caches its data in the NewtonScript heap
when the entry is accessed; thus, the data associated with a mock entry is called its
cached frame. As with normal soup entries, the cached frame appears to be the
mock entry itself when accessed by other NewtonScript objects. Your handler
provides an EntryAccess method that creates this frame in response to messages
from the system.

The cached frame must be self-contained, just as a normal soup entry is. Therefore,
the cached frame must not use proto and parent inheritance.

To create a mock entry, you call the NewMockEntry global function. Depending
on your needs, you can create the mock entry with or without its associated cached
frame. Either way, the mock entry object returned by this function manages other
objects' access to its cached frame.

When the mock entry's cached frame is present, the system forwards entry
accesses to it transparently. When the cached frame is not present, the system calls
the handler's EntryAccess method to generate a cached frame before forwarding
the access. You must supply this method, which creates and installs the cached
frame in the mock entry.

The handler's EntryAccess method is called only when a slot in the mock entry
is accessed. Simply referencing the mock entry does not cause the cached entry to
be created. For example, in the following code fragment, assigning m to x does not
create a cached entry—it just creates another reference to the mock entry. However,
accessing the mock entry's f oo slot from either of the variables m or x may cause
the EntryAccess method of myHandler to be invoked.

local myHandler := {

object: {foo: 'bar},

EntryAccess: func (mockEntry)

begin

// install cached obj & notify system

EntrySetCachedObject(mockEntry, object);

// return cached obj

object;

end,

your additional slots and methods here

... }

About Special-Purpose Storage Objects 12-5

ARENDI-DEFS00004159

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 113 of 201 PageID #: 29158

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

// create new mock entry w/ no cached frame

local m := NewMockEntry(myHandler, nil);

// referencing m doesn't create cached frame

local x := m;

// either statement could invoke myHandler:EntryAccess()

local a x.foo;

local b m.foo;

To almost all of the system, the mock entry appears to be a normal soup entry;
for example:

■ m. foo evaluates to ' bar

■ Class0f (m) is , frame

■ m. baz : = 42 adds a slot to the handler. obj ect frame and this modified
frame is returned the next time the mock entry is accessed.

Only the z sMockEntry global function can determine that m is a mock entry,
rather than a soup entry. Note that the z ssoupEntry function returns true for
both mock entries and normal soup entries.

Mock Stores, Mock Soups, and Mock Cursors

The current implementation of the Newton object system provides only mock
entries; you must implement appropriate mock cursors, mock soups, and mock
stores as required.

The mock store is a frame you supply which responds appropriately to all the
messages that might normally be sent to a store object. For example, when the
mock store's Get Soup method is invoked, it should return a mock soup.

The mock soup is a frame you supply which responds appropriately to all the
messages that might normally be sent to a soup object. For example, when the
mock soup's Query method is called, the mock soup should return a mock cursor.
Mock soups cannot participate in union soups; however, you can implement your
own mock union soup objects that manage the interaction of your mock soups with
normal soups or union soups.

A mock cursor is a frame you supply that can respond appropriately to all the
messages that might normally be sent to a cursor object. For example, when the
mock cursor's Entry method is invoked, it should return a mock entry.

12-6 About Special-Purpose Storage Objects

ARENDI-DEFS00004160

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 114 of 201 PageID #: 29159

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects

This section describes how to use entry aliases, virtual binary objects (VBOs),
store parts, and mock entries. This section presumes understanding of the
conceptual material presented in preceding sections.

Using Entry Aliases

This section describes how to create entry aliases, how to save them, and how to
resolve them.

Aliases can be created for any entry that resides in a soup or union soup. Aliases
cannot be created for mock entry objects.

You must not assume that an entry alias is valid. When the entry to which it refers
is deleted or is moved to another store, an entry alias becomes invalid. Renaming a
store renders invalid all aliases to entries residing on that store.

The MakeEntryAlias function returns an alias to a soup entry, as shown in the
following code fragment:

// return entries that contain "bob" and "Apple"

local myCurs:= namesSoup:Query({ entireWords: true,

words : ["Bob" , "Apple"] }) ;

keep an alias to bob around

local bobAlias := MakeEntryAlias(myCurs:Entry());

// but get rid of the cursor

myCurs := nil;

To save an entry alias, simply save it in a soup entry.

You can use the ResolveEntryAlias function to obtain the entry to which the
alias refers, as shown in the following code fragment:

// continued from previous example

local bobEntry := ResolveEntryAlias(bobAlias);

Note that the ResolveEntryAlias function returns nil if the original store,
soup, or entry to which the alias refers is unavailable.

Using Special-Purpose Data Storage Objects 12-7

ARENDI-DEFS00004161

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 115 of 201 PageID #: 29160

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

You can use the IssameEntry function to compare entries and aliases to each
other; this function returns true for any two aliases or references to the same
entry. For example:

// return entries that contain "bob" and "Apple"

local myCurs:= namesSoup:Query({ entireWords: true,

words : ["Bob" , "Apple"] }) ;

local aBob:= myCurs:Entry();

// keep an alias to bob around

local bobAlias := MakeEntryAlias(a.Bob);

// the following comparison returns true

IsSameEntry(aBob, bobAlias)

The IsEntryAlias function returns true if its argument is an entry alias, as
shown in the following example:

// return entries that contain "bob" and "Apple"

local myCurs:= namesSoup:Query({ entireWords: true,

words : ["Bob" , "Apple"] }) ;

// keep an alias to bob around

local bobAlias := MakeEntryAlias(myCurs:Entry());

// the following test returns true

IsEntryAlias(bobAlias);

Using Virtual Binary Objects

This section describes how to use a virtual binary object to store binary data that is
too large to fit into the NewtonScript heap. Topics discussed include:

■ creating compressed or uncompressed VBOs

■ saving VBOs in soup entries

■ adding data to VBOs

■ undoing changes to VBO data

In addition to the subjects discussed here, see "VBO Functions and Methods"
(page 9-74) in Newton Programmer's Reference for descriptions of VBO utility
functions.

Creating Virtual Binary Objects

When you create a VBO, you specify whether its associated binary data is to be
stored in compressed or uncompressed format Whether you create compressed or
uncompressed VBO objects is a question of space versus speed: uncompressed
data provides faster access, but requires more store space than the equivalent
compressed data.

12-8 Using Special-Purpose Data Storage Objects

ARENDI-DEFS00004162

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 116 of 201 PageID #: 29161

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

The NewVBo and NewCompressedVBO store methods create virtual binary
objects. Both methods require that you specify the class of the binary object to be
created, as well as the store on which VBO data is to reside.

The following code fragment uses the store method NewVBo to create a new,
uncompressed, "blank" virtual binary object on the default store:

create new uncompressed VBO of size 5 KB and class 'samples

local binData := GetDefaultStore():NewVBO('samples,5000);

Another way to create an uncompressed VBO is to pass nil as the
values of the companderName and companderData parameters to the
NewCompressedVBO method, as the following code fragment shows:

create new uncompressed VBO of size 5 KB and class 'samples

local binData := GetDefaultStore():NewCompressedVBO('samples, 5000,

nil, nil);

When you create a compressed VBO, you need to specify how the system is to
expand and compress data moved to and from the store associated with the VBO.
The system provides two compressor-expanders (also known as companders),
which compress and expand raw binary data on demand. The companderName
parameter to the NewCompressedVBO method indicates the compander to be used
for that particular VBO's data.

The Lempel-Ziv compander is a suitable for most data types; its use is specified by
passing the string "TLZStoreCompander" as the value of the companderName
parameter to the NewCompressedVBO method. The pixel map compander is
specialized for use with pixel map data; its use is specified by passing the string
"TPixelMapCompander" as the value of the companderName parameter to the
NewCompressedVBO method.

WARNING

The pixel map compander makes certain assumptions about the
data passed to it; do not use it for any kind of data other than pixel
maps. For more information, see the description of the
NewCompressedVBO method (page 9-75) in Newton
Programmer's Reference. A

Because both of the companders provided by the current implementation of the
system initialize themselves automatically, you must always pass nil as the value
of the companderArgs parameter to the NewCompressedVBO method.

To create a new compressed VBO, specify a compander and a store in the arguments
to the NewCompressedVBO method, as shown in the following example:

create new compressed VBO of size 5 KB and class 'pixMap

local binData := GetDefaultStore():NewCompressedVBO('pixMap,

5000,"TPixelMapCompander", nil);

Using Special-Purpose Data Storage Objects 12-9

ARENDI-DEFS00004163

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 117 of 201 PageID #: 29162

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

A VBO becomes permanent only when it is written to a soup entry, and its associated
binary data always resides on the same store as the entry. Thus, when creating a
VBO, it's usually best to specify that it use the same store as the soup entry into
which you'll save the VBO. If you try to put the same VBO in two different soup
entries, a duplicate VBO is created, even if both entries reside on the same store.

It is recommended that you enclose in a try block any code that writes VBO data.
Store memory for VBO data is not allocated when the VBO is created; rather, it is
allocated as needed to write VBO data. Thus, when writing an entry containing a
VBO back to its soup, it is possible to fail due to lack of store space for new or
changed VBO data, even though the VBO was created successfully.

Because the system manages store-backed VBO data transparently, calling a
function such as StuffByte on aVBO does not necessarily cause the system to
write new VBO data to the store. For similar reasons, VBOs may raise exceptions
at seemingly unusual times, as the system moves VBO data to and from store
memory as required to accommodate various objects' needs.

Finally, you may need to consider store space requirements when copying soup
entries that hold VBOs. When moving or copying a soup entry containing a VBO,
another copy of the VBO data is made by the destination soup's Add method
because VBO data is not shared between entries.

For a short code example that creates a VBO, saves data in it, and writes the VBO
to a soup, see the conclusion of the "Modifying VBO Data" section, immediately
following.

Modifying VBO Data

Recall that examining or modifying any slot in a soup entry causes the entire entry
to be read into the entry cache. When an entry containing a VBO is read into the
entry cache, the VBO data is not read into the entry cache, but made available to
the entry transparently.

Subsequently modifying the entry changes the cached data while leaving the
original soup entry untouched. The changes to the entry (and any VBOs residing in
it) are not saved until the entry is written back to the soup; for example, as the
result of an EntryChangedXmit call.

Note

Because store space for VBO data is not allocated until the data is
actually written, it's recommended that you enclose VBO write
operations in exception handling code.

To undo changes to binary data associated with a VBO that resides in a cached
soup entry, call the Ent ryUndoChanges function. This function disposes of the
cached soup entry and restores references to the original, untouched soup entry; it
also undoes changes to VBO data referenced by the entry.

12-10 Using Special-Purpose Data Storage Objects

ARENDI-DEFS00004164

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 118 of 201 PageID #: 29163

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

The following code fragment adds sound sample data to an empty VBO and
demonstrates the use of the Ent ryUndoChanges function to undo those changes:

create a temporary soup

mySoup := RegUnionSoup('lfoo:myApp:mySigi ,

{name: "foo:myApp:mySig", indexes: [] I)

// get a soup entry that is a sound
anEntry := mySoup:AddToDefaultStoreXmit('{sndFrameType: nil,

samples:nil,

samplingRate:nil,

dataType:nil,

compressionType: nil,

userName: nil}, nil)

// make a VBO to use for the samples

myVBO := GetDefaultStore():NewCompressedVBO('samples,5000,nil, nil);

// grab some samples from ROM and fill in most of sound frame

romSound := Clone(ROM_FunBeep)

anEntry.sndFrameType = romSound.sndFrameType ;

anEntry.samplingRate romSound.samplingRate ;

anEntry.dataType := romSound.dataType ;

anEntry.compressionType romSound.compressionType

anEntry.samples := myVBO

// put the samples in the VBO

BinaryMunger(myVBO, 0, nil, romSound.samples, 0, nil)

// write the VBO to the soup

try

EntryChangeXmit(anEntry, nil);

onException levt.ex.fr.storel do

:Notify(kNotifyAlert, "My App", "Sorry, can't save changes.");

// listen to the sound to verify change
PlaySound(anEntry);

// change the sound

BinaryMunger(anEntry.samples,0, nil, ROM PlinkBeep.samples, 0, nil);

PlaySound(anEntry) ;

Using Special-Purpose Data Storage Objects 12-11

ARENDI-DEFS00004165

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 119 of 201 PageID #: 29164

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

// decide to go back to the original

EntryUndoChanges(anEntry);

PlaySound(anEntry);

// clean up

foreach store in GetStores() do

begin

mySoup := store:GetSoup("foo:myApp:mySig")

if mySoup then

mySoup:RemoveFromStoreXmit(nil);

end ;

UnregUnionSoup("foo:myApp:mySig", ' Jfoo:myApp:mySigJ);

VBOs and String Data

In most cases, you should avoid using the & and && string-concatenation operators
with V130-based strings. These operators work by allocating a new string in the
NewtonScript heap and copying data from its arguments into the new object. You
can run out of heap space easily when attempting this operation with large strings.

Instead, use the strMunger global function to concatenate two strings. The
following code fragment appends the str2 string to the strl string, increasing
the size of strl as necessary, regardless of whether strl is VBO data or resident
in the NewtonScript heap.

StrMunger(strl, MAXINT, nil, str2, 0, nil);

The value of MAXINT is 1<<29-1 or 536870911; however, any number larger
than StrLen (strl) works adequately.

Using Store Parts

This section describes how to create a store part and add soup data to it. This
discussion is followed by a description of how to access the store part's soups
from your application.

Note that other representations may provide better space efficiency or faster access
to data. Store parts are useful when you wish to avoid recoding soup data in a more
efficient representation, or when you need multiple indexes or some other
convenience that soup-based queries provide.

12-12 Using Special-Purpose Data Storage Objects

ARENDI-DEFS00004166

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 120 of 201 PageID #: 29165

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Creating a Store Part

To create a store part, take the following steps using Newton Toolkit version 1.5
or greater:

■ Create a new project.

■ Select the Store Part radio button in the Output Settings dialog box. NTK disables
all other settings in this dialog box when the Store Part option is selected.

■ Configure the Package Settings dialog box as you normally would. The name
specified in this dialog box identifies the store part to the system in much the
same way that a package name identifies a package; thus, you need to ensure the
uniqueness of this identifier by basing it on your developer signature in some way.

■ Add a new text file to the project. You'll add to this document the NewtonScript
code that creates one or more soups to reside on the store part.

At compile time, NTK provides a global variable named theStore, which
represents the store part (package store) you are building. Any changes made to
this variable are reflected in the store part that is produced as the output of the build
cycle. Thus, to create your read-only soup, you can add to the text file some
NewtonScript code similar to the following example:

// some useful consts; note use of developer signature

constant kStoreName "MyStore:MYSIG" ;

constant kSoupName "MySoup:MYSIG" ;

constant kSoupIndices := I [] ,

// theStore is a global var provided by NTK

theStore:SetName(kStoreName) ,

// create the soup but don't xmit at build time

local soup:=theStore:CreateSoupXmit(kSoupName,

kSoupIndices, nil);

// add a couple entries

soup:Add({anInteger: 1}) ,

soup:Add({anInteger: 2}) ,

When the package is built, NTK incorporates the store part in it.

Using Special-Purpose Data Storage Objects 12-13

ARENDI-DEFS00004167

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 121 of 201 PageID #: 29166

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Getting the Store Part

Store parts (also known as package stores) are made available by the
GetPackageStore function. Package stores do not appear in the GetStores
result array, which is reserved for normal store objects.

The GetPackageStore function retrieves the store by name, so each package
store must be given a unique name when it is built. Generally, this is ensured by
including the unique package symbol in the store name.

Accessing Data in Store Parts

Although store parts support most of the messages that normal soups do, remember
that store parts are read-only. Sending to a store part those messages that would
normally change a soup or its store (such as CreateSoupXmit, SetName and so
on) throws an exception.

Another thing to keep in mind is that soups on store parts do not participate in
union soups. You need to check explicitly for the presence of your store and soup.

The GetPackageStore and GetPackageStores functions provide two
different ways to find a store part. Usually, you use the global function
GetPackageStore and pass the name of the store part you created as its
argument. Assuming the example code shown in "Creating a Store Part" on
page 12-13 was used to create the store part, you could use code similar to the
following example to check for the existence of the read-only soup residing on the
store part:

local pStore := GetPackageStore(kStoreName)

if pStore then

local pSoup := pStore:GetSoup(kSoupName)

Using Mock Entries

A mock entry has two parts: one is a cached frame, which the NewtonScript
interpreter treats as the entry when doing assignment, slot lookup, and so on; the
other is the handler frame that retrieves the actual entry data and implements a
suite of methods that manipulate it.

Topics discussed in this section include

■ implementing the EntryAccess method

■ creating a mock entry

■ testing the validity of a mock entry

■ getting entry cache data

■ getting and setting mock entry handlers

■ implementing additional handler methods

12-14 Using Special-Purpose Data Storage Objects

ARENDI-DEFS00004168

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 122 of 201 PageID #: 29167

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

I mplementing the EntryAccess Method

Each of your mock entry handler frames must supply an EntryAccess method
that creates a cached frame containing the mock entry's data, installs the cached
frame in the mock entry, and returns the cached frame. This method is called when
the system attempts to access a cached frame that is not present.

The system passes the mock entry to your EntryAccess method when it is
invoked. This method calls the EntrySetCachedObj ect function to install the
cached frame in the mock entry and then returns the cached frame.

The following code fragment provides a simple example of an
EntryAccess method:

myHandler := {

object: {foo: 'bar},

EntryAccess: func (mockEntry)

begin

// install cached frame

EntrySetCachedObject(mockEntry, object);

// return cached frame

object;

end,

your additional slots and methods here

Creating a New Mock Entry

The NewMockEntry global function creates a new mock entry object having a
specified handler and cached frame. Your application can use this method to create
a new mock entry; for example, in response to a mockSoup: Add O message.

The handler frame you pass to the NewMockEntry function must define an
EntryAccess method, as described in "Implementing the EntryAccess Method"
on page 12-15. The handler may also contain supporting methods or data used by
the mock entry; for example, it might hold information local to a specific mock
entry or information required to retrieve the mock entry's data.

Depending on your needs, you can create new mock entries with or without their
corresponding cached frames. To create a mock entry with its cached frame already
installed, pass both the handler and the cached frame to this function.

To create a mock entry without a cached frame, pass nil as the value of the
cacbedObjectparameter to the NewMockEntry function. When a slot in the
returned mock entry is accessed, the handler's EntryAccess method is invoked
to create the cached entry if it is not present.

Using Special-Purpose Data Storage Objects 12-15

ARENDI-DEFS00004169

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 123 of 201 PageID #: 29168

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Testing the Validity of a Mock Entry

The z sMockEntry global function returns the value true for objects that are valid
mock entries. You can use this function to distinguish between mock entry objects
and other objects such as cache frames or soup entries. Note that the z ssoupEntry
function returns true for both mock entries and normal soup entries.

Getting Mock Entry Data

The EntryCachedObj ect global function returns the cached frame associated
with a specified mock entry. You can call this function to retrieve the cached frame
associated with a specified mock entry. For example, your handler frame's
EntryChange method must retrieve the cached frame in order to write it back to
a mock soup.

Changing the Mock Entry's Handler

The Entrysetxandler function is a special-purpose function that you can use to
replace a mock entry's handler. For example, you can use this function to install a
handler that implements debug versions of methods present in the mock entry's
original handler frame. Such methods might include breakpoints and print
statements that would not be present in the commercial version of an application.

Getting the Mock Entry's Handler

The system supplies the Entryxandler function for debugging purposes. The
Entryxandler function returns a reference to the handler frame associated with
the mock entry specified by the value of the mockEntry parameter.

I mplementing Additional Handler Methods

Your handler needs to provide additional methods that are the mock entry counter-
parts to system-supplied entry functions, such as Ent ryUndoChangesxmit, and
others. For a list of suggested methods that your handler may implement, see
"Application-Defined Mock Entry Handler Methods" on page 12-19.

12-16 Using Special-Purpose Data Storage Objects

ARENDI-DEFS00004170

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 124 of 201 PageID #: 29169

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Summary of Special-Purpose Data Storage Objects

This section summarizes data structures, objects, methods and global functions
used by Newton devices for specialized data storage purposes.

Data Structures

Package Reference Information Frame

{

size: nBytes, // pkg's uncompressed size in bytes
store: aStore, // store on which pkg resides
title: string,// user-visible package name string
version: int, // version number
timeStamp: int,// date and time pkg was loaded
creationDate: int, // date pkg created
copyProtection: value, Non-nil means protected.
dispatchOnly: value, // Non-nil means dispatch-only pkg.
copyright: string, // copyright information string
compressed: value, // Non-nil value means pkg is compressed
cmprsdSz: int,// compressed size of pkg in bytes
numParts: int, // number of parts in pkg
parts: [p], p2, ... pN] , // parts comprising this package.

partTypes: [syml, sym2, ... symN] // parallel to parts array.

Functions and Methods

Packages

GetPackageNames (store)
GetPackages()

GetPkgRef (name, store)
GetPkgRef Info (pkgRel)

IsVa1id (obj)
IsPackage (obj)
IsPackageActive (pkgRel)

MarkPackageBusy (pkgRef, appName, reason)
MarkPackageNotBusy(pkgRel)

ObjectPkgRef (obj)

Summary of Special-Purpose Data Storage Objects 12-17

ARENDI-DEFS00004171

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 125 of 201 PageID #: 29170

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

SafeFreezePackage (pkgRef)

SafeMovePackage (pkgRef, destStore)

SafeRemovePackage (pkgRef)
store: SuckPackageFromBinary (binary, paramFrame)
store: SuckPackageFromEndpoint (endPoint, paramFrame)
ThawPackage (pkgRef)

Store Parts (Package Stores)

GetPackageStore(name)

GetPackageStores()

Entry Aliases

IsEntryAlias (object)
MakeEntryAlias (entry)
ResolveEntryAlias (alias)

I sSameEnt ry (entryOraliasl , entry0ralias2)

Virtual Binary Objects (VBOs)

store: NewVBO (class, size)
store: NewCompressedVBO (class,
IsVBO (vbo)

GetVBOStore (vbo)

GetVBOStoredSize(vbo)

GetVBOCompander(vbo)

Mock Entries

size, companderName, companderArgs)

EntryCachedObj ect (mockEntry)
EntryHandler (mockEntry)

EntrySetCachedObj ect (mockEntry, newCachedObj)

EntrySetHandler (mockEntry, newHandler)

I sMockEntry (object)

NewMockEntry (handler, cachedObj)

NewWeakArray (length)

12-18 Summary of Special-Purpose Data Storage Objects

ARENDI-DEFS00004172

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 126 of 201 PageID #: 29171

CHAP T ER 12

Special-Purpose Objects for Data Storage and Retrieval

Application-Defined Mock Entry Handler Methods

handler: Ent ryAccess (mockEntry)
handler: EntryChange (mockEntry)

handler: Ent ryChangeWithModTime (mockEntry)

handler: Ent ryCopy (mockEntry, newSoup)

handler: EntryModTime (mockEntry)

handler: EntryMove (mockEntry, newSoup)

handler: EntryRemoveFromSoup (mockEntry)

handler: Ent ryRep1ace (original, replacement)

handler: Ent ryRep1aceWithModTime (original, replacement)

handler: Ent rySize (mockEntry)

handler: EntrySoup (mockEntry)
handler: EntryStore (mockEntry)

handler: Ent ryTextSize (mockEntry)

handler: Ent ryUndoChanges (mockEntry)

handler: EntryUniqueID (mockEntry)

handler: Ent ryValid (mockEntry)

Summary of Special-Purpose Data Storage Objects 12-19

ARENDI-DEFS00004173

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 127 of 201 PageID #: 29172

ARENDI-DEFS00004174

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 128 of 201 PageID #: 29173Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 128 of 201 PageID #: 29173

ARENDI—DEFSOOOO4174

C H A P T E R 1 3

Drawing and Graphics

This chapter describes how to draw graphical objects such as lines and rectangles
in Newton applications.

You should read this chapter if you are attempting to draw complex or primitive
graphical objects in a view. Before reading this chapter, you should be familiar
with the information in Chapter 3, "Views."

This chapter describes:

■ the types of graphical objects supported and how to draw them

■ drawing methods and functions used to perform specific tasks

■ drawing classes and protos that operate on graphics and drawing methods
and functions

About Drawing

The drawing interface provides a number of functions, methods, and protos that
allow you to create graphic objects in Newton applications. Objects can be shapes,
pictures, or rendered bitmaps. Additional functions and methods provide ways to
scale, transform, or rotate the images. All objects are drawn into views. See "View
Instantiation" (page 3-26) for complete details.

This section provides detailed conceptual information on drawing functions and
methods. Specifically, it covers the following:

■ supported shape objects

■ the style frame

■ new functions, methods, and messages added for Newton OS 2.0, as well as
modifications to existing pieces of the drawing code

About Drawing 13-1

ARENDI-DEFS00004175

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 129 of 201 PageID #: 29174

CHAP T ER 13

Drawing and Graphics

Note that for all of the functions described in this chapter:

■ The coordinates you specify are interpreted as local to the view in which the
object is drawn.

■ The origin of the coordinate plane (0,0) is the upper-left corner of the view in
which the object is drawn.

■ Positive values are towards the right or the bottom of the screen from the origin.
For additional information on the Newton coordinate system see "Coordinate
System" (page 3-6).

Shape-Based Graphics

Newton system software provides functions for drawing primitive graphic objects
in a view. These drawing functions return a data structure called a shape that is
used by the drawing system to draw an image on the screen. The drawing system
supports the following shape objects:

■ lines

■ rectangles

■ rounded rectangles

■ ovals (including circles)

■ polygons

■ wedges and arcs

■ regions

■ text

■ pictures

■ bitmaps

Complex graphics can be drawn by passing arrays of shapes to the various drawing
functions. Primitive shapes can be combined procedurally by collecting them into a
shape called a picture. The appearance will be the same except that, when drawn,
the picture will not be affected by any style specifications. The styles are recorded
into the picture when you make it with Make P i c t—with the exception of any
transform or clipping slot. See "Controlling Clipping" (page 13-12) and
"Transforming a Shape" (page 13-13) for more information.

Each type of shape is described in the following pages.

A line is defined by two points: the current x and y location of the graphics pen and
the x and y location of its destination. The pen hangs below the right of the defining
points, as shown in Figure 13-1, where two lines are drawn with two different
pen sizes.

13-2 About Drawing

ARENDI-DEFS00004176

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 130 of 201 PageID #: 29175

CHAP T ER 13

Drawing and Graphics

Figure 13-1 A line drawn with different bit patterns and pen sizes

. W ~.

A rectangle can be defined by two points—its top-left and bottom-right corners, as
shown in Figure 13-2, or by four boundaries—its upper, left, bottom, and right
sides. Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
graphics operations.

Figure 13-2 A rectangle

Top

Left

W

Right

Bottom

About Drawing 13-3

ARENDI-DEFS00004177

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 131 of 201 PageID #: 29176

CHAP T ER 13

Drawing and Graphics

Drawing also provides functions that allow you to perform a variety of mathematical
calculations on rectangles—changing their sizes, shifting them around, and so on.

An oval is a circular or elliptical shape defined by the bounding rectangle that
encloses it. If the bounding rectangle is a square (that is, has equal width and
height), the oval is a circle, as shown in Figure 13-3.

Figure 13-3 An oval

I Oval

~ Bounding
rectangle

I
L J

An arc is a portion of the circumference of an oval bounded by a pair of radii
joining at the oval's center; a wedge includes part of the oval's interior. Arcs and
wedges are defined by the bounding rectangle that encloses the oval, along with a
pair of angles marking the positions of the bounding radii, as shown in Figure 13-4.

Figure 13-4 An arc and a wedge

r J

(Bounding
rectangle

13-4 About Drawing

An arc ! ! A wedge

Bounding I I Bounding

radius I ! radius

I r

(Bounding

J

rectangle

ARENDI-DEFS00004178

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 132 of 201 PageID #: 29177

CHAP T ER 13

Drawing and Graphics

A rounded rectangle is a rectangle with rounded corners. The figure is defined by
the rectangle itself, along with the width and height of the ovals forming the
corners (called the diameters of curvature), as shown in Figure 13-5. The corner
width and corner height are limited to the width and height of the rectangle itself, if
they are larger, the rounded rectangle becomes an oval.

Figure 13-5 A rounded rectangle

Rounded
rectangle

Bounding
rectangle

Diameter
of curvature

Diameter
of curvature

A polygon is defined by a sequence of points representing the polygon's vertices,
connected by straight lines from one point to the next. You define a polygon by
specifying an array of x and ylocations in which to draw lines and passing it as a
parameter to MakePolygon. Figure 13-6 shows an example of a polygon.

About Drawing 13-5

ARENDI-DEFS00004179

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 133 of 201 PageID #: 29178

CHAP T ER 13

Drawing and Graphics

Figure 13-6 A polygon

A region is an arbitrary area or set of areas, the outline of which is one or more
closed loops. One of drawing's most powerful capabilities is the ability to work
with regions of arbitrary size, shape, and complexity. You define a region by
drawing its boundary with drawing functions. The boundary can be any set of lines
and shapes (even including other regions) forming one or more closed loops. A
region can be concave or convex, can consist of one connected area or many
separate areas. In Figure 13-7, the region consists of two unconnected areas.

Figure 13-7 A region

Your application can record a sequence of drawing operations in a picture and play
its image back later. Pictures provide a form of graphic data exchange: one program

13-6 About Drawing

ARENDI-DEFS00004180

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 134 of 201 PageID #: 29179

CHAP T ER 13

Drawing and Graphics

can draw something that was defined in another program, with great flexibility and
without having to know any details about what's being drawn. Figure 13-8 shows
an example of a picture containing a rectangle, an oval, and a triangle.

Figure 13-8 A simple picture

Manipulating Shapes

In addition to drawing shapes, you can perform operations on them. You can

■ offset shapes; that is, change the location of the origin of the shape's coordinate
plane, causing the shape to be drawn in a different location on the screen. Note
that offsetting a shape modifies it; for example, the offset shape will have
different viewBounds values than the original shape.

■ scale shapes; that is, draw the shape to fill a destination rectangle of a specified
size. The destination rectangle can be larger, smaller, or the same size as the
original shape. Note that scaling a shape modifies it; for example, the scaled
shape has different viewBounds values than the original shape.

■ hit-test shapes to determine whether a pen event occurred within the boundaries
of the shape. This operation is useful for implementing button-like behavior in
any shape.

The Style Frame

Any shape can optionally specify characteristics that affect the way it is imaged,
such as the size of the pen or the fill pattern to be used. These characteristics are
specified by the values of slots in a style frame associated with the shape. If the
value of the style frame is n 1, the view system draws the shape using default
values for these drawing characteristics. See "Style Frame" (page 10-1) in the
Newton Programmer's Reference for complete details.

About Drawing 13-7

ARENDI-DEFS00004181

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 135 of 201 PageID #: 29180

CHAP T ER 13

Drawing and Graphics

Drawing Compatibility

The following new functionality has been added for Newton OS 2.0. For complete
details on the new drawing functions, see the "Drawing and Graphics Reference"
in the Newton Programmer's Reference.

New Functions

The following functions have been added:

■ Getshapeznfo—returns a frame containing slots of interest for the shape.

■ DrawlntoBitmap—draws shapes into a bitmap in the same way that the
Drawshape method draws shapes into a view.

■ Make B i tmap—returns a blank (white) bitmap shape of the specified size.

■ MungeBitmap—performs various destructive bitmap operations such as
rotating or flipping the bitmap.

■ ViewzntoBitmap—provides a screen-capture capability, writing aportion of
the specified view into the specified bitmap.

New Style Attribute Slots

Version 2.0 of Newton system software supports two new slots in the style frame:
clipping and the transform.

Changes to Bitmaps

Previous versions of Newton system software treated bitmaps statically. They were
created only from compile-time data, and the operations one could perform on
them were limited to drawing them.

Version 2.0 of Newton system software provides a more dynamic treatment of
bitmaps. You can dynamically create and destroy them, draw into them, and
perform such operations as rotating and flipping them. This more flexible treatment
of bitmaps allows you to use them as offscreen buffers as well as for storage of
documents such as fax pages.

Changes to the HitShape Method

Previous versions of HitShape returned a non-nil value if a specified point lies
within the boundaries of one or more shapes passed to it. Version 2.0 of the
HitShape function now returns additional information.

13-8 About Drawing

ARENDI-DEFS00004182

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 136 of 201 PageID #: 29181

CHAP T ER 13

Drawing and Graphics

Changes to View Classes

The icon slot of aview of the clPictureview class can now contain agraphic
shape, in addition to bitmap or picture objects.

Using the Drawing Interface

This section describes how to use the drawing interface to perform specific tasks.
See "Drawing and Graphics Reference" (page 10-1) in the Newton Programmer's
Reference for descriptions of the functions and methods discussed in this section.

How to Draw

Drawing on the Newton screen is a two-part process. You first create a shape object
by calling one or more graphics functions, such as MakeRect, MakeLine, and so
on. You then draw the shape object by passing any of the shapes returned by the
shape-creation functions, or an array of such shapes optionally intermixed with
style frames to the Drawshape method. If a style frame is included in the shape
array, it applies to all subsequent shapes in the array, until overridden by another
style frame.

In addition to the shape object, the Drawshape method accepts a style frame
parameter. The style frame specifies certain characteristics to use when drawing the
shape, such as pen size, pen pattern, fill pattern, transfer mode, and so on.

This system is versatile because it separates the shapes from the styles with which
they are drawn. You can create a single shape and then easily draw it using different
styles at different times.

Drawshape can also accept as its argument an array of shapes instead of just a
single shape. Therefore, you can create a series of shapes and draw them all at once
with a single call to the Drawshape method. Additional style frames can be
included in the shape array to change the drawing style for the shapes that follow
them. "Using Nested Arrays of Shapes" (page 13-10), discusses the use of arrays of
shapes in more detail.

Responding to the ViewDrawScript Message

When the system draws a view, it sends a ViewDrawscript message to the view.
To perform your own drawing operations at this time, you must provide a
ViewDrawscript method that calls the appropriate drawing functions.

The system also sends the ViewDrawscript message to the view whenever it is
redrawn. Views may be redrawn as the result of a system notification or a user action.

Using the Drawing Interface 13-9

ARENDI-DEFS00004183

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 137 of 201 PageID #: 29182

CHAP T ER 13

Drawing and Graphics

If you want to redraw a view explicitly at any particular time, you need to send it
the Dirty message. This message causes the system to add that view to the area of
the screen that it updates in the next event loop cycle. To make the update area
redraw before the next event loop cycle, you must call the Refreshviews
function after sending the Dirty message.

Drawing Immediately

If you want to draw in a view at times other than when the view is being opened
or redrawn automatically, you can execute drawing code outside of the
ViewDrawScript method by using DoDrawing. For example, you might need
to perform your own drawing operations immediately when the user taps in the view.

You can use the DoDrawing method for this purpose. The DoDrawing method
calls another drawing method that you supply as one of its arguments.

WARNING

Do not directly use Drawshape to draw shapes outside
of your ViewDrawScript. Standard drawing in
ViewDrawScript and DoDrawing automatically set
up the drawing environment. If you use DrawShape without
setting up the drawing environment, your application could
accidentally draw on top of other applications, keyboards,
or floaters. A

Using Nested Arrays of Shapes

The Drawshape method can draw multiple shapes when passed an array of shapes
as its argument. Style frames may be included in the shape array to change the
drawing style used to image subsequent elements of the array. Each element of
the array can itself be an array as well; this section refers to such an array as a
nested array.

Styles are maintained on a per-array basis in nested arrays, and the startStyle
parameter of Drawshape is always treated as though it were the first array
element of the topmost array. Therefore, compound shapes and multiple styles
remain intact when nested arrays are combined into larger groupings.

When the Drawshape method processes a nested array, the shapes are drawn in
ascending element order and drawing begins with the style of the parent array.
Although the drawing style may change while processing the elements of an
individual array, that style applies only to the elements of that particular array.
Therefore, if an array happens to be an element of another array—that is, a nested
array—style changes in the nested array affect the processing of its subsequent
elements but the drawing style of the parent array is restored after the last element
of the nested array is processed.

13-10 Using the Drawing Interface

ARENDI-DEFS00004184

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 138 of 201 PageID #: 29183

CHAP T ER 13

Drawing and Graphics

For example, you might nest arrays to create the hierarchy of shapes and styles
depicted in Figure 13-9.

Figure 13-9 Example of nested shape arrays

Start Style Shape 1

If the nested shape array depicted in Figure 13-9 were passed to the Drawshape
function, the results summarized in Table 13-1 would occur.

Table 13-1 Summary of drawing results

Shape Style

2a 2

2b 2

3a startStyle

3b 3

1 startStyle

The Transform Slot in Nested Shape Arrays

Within a single shape array, the transform slot is treated like a style frame: only
one transform is active per array; if another transform is specified within the array,
the previous transform is overridden. Within nested arrays, however, the transform
slot is treated a little differently than most style slots. As the Drawshape method
descends into nested arrays of shapes, changes to the transform slot are
cumulative; the resulting transform is the net sum of all the transforms in the
hierarchy. For example, if in Figure 13-9 startStyle has a transform of 10,10 and
Style 3 has a transform 50,0 then shapes 2a, 2b, 1, 3a would be drawn offset by
10,10 but Shape 3b would be drawn offset by 60, 10.

Using the Drawing Interface 13-11

ARENDI-DEFS00004185

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 139 of 201 PageID #: 29184

CHAP T ER 13

Drawing and Graphics

Default Transfer Mode

The default transfer mode is actually a split state: bitmaps and text are drawn with
a modeOR transfer mode, but other items (geometric shapes, pens, and fill patterns)
are drawn with a modeCOPY transfer mode. However, when you actually specify a
transfer mode (with a non-nil value in the transferMode slot of the style
frame), all drawing uses the specified mode.

Transfer Modes at Print Time

Only a few transfer modes are supported for printing. Only modeCOPY, modeOR,
and modeBIC may be used; other modes may produce
unexpected results.

Note

Most problems occur when using PostScript
printers, so you should test your code on
LaserWriters as well as StyleWriters.

Controlling Clipping

When the system draws a shape in a view for which the vCl ipping flag is set, it
draws only the part that fits inside the view in which drawing takes place. Any parts
of the shape that fall outside the boundaries of that view are not drawn, as if they
have been cut off or clipped. The term clipping refers to this view system behavior;
in common usage, the shape is said to have been "clipped to the destination view."

Note

Although the view system allows drawing outside the boundaries
of a view for which the vCl ipping flag is not set, it does not
guarantee that drawing outside the boundaries of the view will
occur reliably. You need to make your destination view large
enough to completely enclose the shapes you want to draw. You
could also set the destination view's vCl ipping flag to clip
drawing to the bounds of the destination view. Note also that an
application base view that is a child of the root view always clips
drawing to its boundaries.

When no other clipping region is specified and vCl ipping is set, the boundaries
of the destination view define the region outside of which drawing does not occur.
This area is known as the clipping region. If you want to specify different clipping
regions, you can use the style frame's clipping slot to do so. Because drawing is
always clipped to the boundaries of the destination view, regardless of any other
clipping region you specify, you cannot use the clipping slot to force drawing
outside the boundaries of a view.

13-12 Using the Drawing Interface

ARENDI-DEFS00004186

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 140 of 201 PageID #: 29185

CHAP T ER 13

Drawing and Graphics

If the style frame includes a clipping slot, the drawing of all shapes affected by
this style frame is clipped according to the value of the clipping slot. If the
value of the clipping slot is nil or if the clipping slot is not supplied, the
clipping behavior of the destination view is used.

If the clipping slot contains a region shape, that region is used as the clipping
boundary for drawing operations affected by this style frame. If the clipping slot
contains an array of shapes or regions, the system passes the contents of the
clipping slot to the MakeRegion function to automatically create a new
clipping region from the contents of this slot.

Note

Although putting an array of shapes in the clipping slot may
seem convenient, it significantly increases the time required to
process the style frame. For best performance from the view
system, do not use this shortcut in style frames that are used
repeatedly.

Transforming a Shape

The transform slot changes the size or location of a shape without altering the
shape itself. It accepts an array specifying an x, y coordinate pair or a pair of
rectangles. The x, y coordinate arguments relocate a shape by specifying an offset
from the origin of the destination view's coordinate plane. The rectangle arguments
specify a mapping of the source and destination views that alters both the size and
location (offset) of the source view when it is drawn in the destination view.

The rectangle arguments work the same way as the parameters to the
ScaleShape function (although transforms won't accept nil for the boundaries
of the source rectangle): the size of the shape is changed proportionately according
to the dimensions of the destination rectangle, and the coordinates of the
destination rectangle can also be used to draw the shape in a new location.

The following code fragments demonstrate the use of offset coordinates and
mapping rectangles as the value of the transform slot:

transform: [30,50],// offset shapes by 30 h and 50 v

or
transform:

[SetBounds(0,0,100,100),SetBounds(25,25,75,75)],

half width and height, centered in relation to

the original object(not the view) assuming that

the first rect actually specified correct bounds

Using the Drawing Interface 13-13

ARENDI-DEFS00004187

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 141 of 201 PageID #: 29186

CHAP T ER 13

Drawing and Graphics

Using Drawing View Classes and Protos

Four view classes and three protos, which you can use to create your own templates,
are built into the system. The view classes include:

■ clPolygonview —displays polygons or ink, or accepts graphic or ink input.

■ clPictureview—displays abitmap or picture object shape.

■ clEditview—edits views that can accept both text and graphic user input.

■ c1 Remo teview—displays a scaled image of another view.

The protos include:

■ protolmageview—provides a view in which you can display, magnify, scroll,
and annotate images.

■ protoThumbnail—is used in conjunction with a protoImageView. It
displays a small copy of the image with a rectangle representing the location and
panel in the image.

■ protoThumbnailFloater—provides away to use athumbnail, but also
adjusts the thumbnail's size to reflect the aspect ratio of the image that it contains.

Displaying Graphics Shapes and Ink

Use the clPolygonview class to display polygons and ink, or to accept graphic
or ink input. The clPolygonview class includes these features:

■ Shape recognition and editing, such as stretching of shapes from their vertices,
view resizing, scrubbing, selection, copying to clipboard, duplicating, and other
gestures, as controlled by the setting of the viewFlags slot.

■ Snapping of new line endpoints to nearby vertices and midpoints of existing shapes.

■ Automatic resizing to accommodate enlarged shapes (when the view is enclosed
in a clEditview). This feature is controlled by the vCalculateBounds flag
in the viewFlags slot.

Views of the clPolygonview class are supported only as children of views of the
clEditview class. In other words, you can put a clPolygonview only inside a
clEditView.

You don't need to create polygon views yourself if you are accepting user input
inside a clEditview. You simply provide a clEditview and when the user
draws in it, the view automatically creates polygon views to hold shapes.

13-14 Using the Drawing Interface

ARENDI-DEFS00004188

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 142 of 201 PageID #: 29187

CHAP T ER 13

Drawing and Graphics

Displaying Bitmaps, Pictures, and Graphics Shapes

You can use aview of the clPictureview class to display abitmap, picture, or
graphic shape (polygon). The icon slot in this view can contain a bitmap, a picture
object, or a graphic shape.

Displaying Pictures in a clEditView

Use the clEditView view class to display and accept text and graphic data in a
view. Views of the clEditView class contain no data directly; instead, they have
child views that contain the individual data items. Pictures are contained in child
views of the class clPictureview. For details on displaying text, see "Using
Views and Protos for Text Input and Display" (page 8-6).

To add apicture to a clEditview, you need to create an appropriate template of
the clPictureview class, add the template to the viewChildren array, and
then open the view or call RedoChildren. You can also use the Addview
method to add the picture to an existing view, and then mark the view as dirty so
that it will be redrawn.

The template holding the PICT items must contain the following slots:

■ viewStationery—which must have the symbol ' pict

■ viewBounds—which is abounds frame; for example,

RelBounds(0,0,40,40)

■ icon—which is a bitmap frame, a picture object, or a graphic shape

Displaying Scaled Images of Other Views

Use the clRemoteview view class to display a scaled image of another view.
This class can be used to show a page preview of a full-page view in a smaller
window, for example.

The view that you want to display inside the remote view should be specified as the
single child of the remote view. This child is always hidden, and is used internally
by the remote view to construct the scaled image.

A clRemoteview should never have more than one view, the scaled view,
otherwise the results are undefined and subject to change.

Here is an example of a view definition of the clRemoteview class:

myRemoteView := {...
viewclass: clRemoteview,
viewBounds: {left: 75, top: 203, right: 178,

bottom: 3221,
viewFlags: vVisible+vReadOnly,

Using the Drawing Interface 13-15

ARENDI-DEFS00004189

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 143 of 201 PageID #: 29188

CHAP T ER 13

Drawing and Graphics

viewFormat: nil,
ViewSetupFormScript: func()

begin
// aView is the view to be scaled
self.stepchildren := [aView];
end,

Translating Data Shapes

You can use the global functions PointsToArray and ArrayToPoints to
translate points data between apolygon shape (' polygonShape) and a
NewtonScript array.

Finding Points Within a Shape

Use the Hitshape function to determine whether apen event occurred within the
boundaries of the shape. This operation is useful for implementing button-like
behavior in any shape. Possible results returned by theHitShape function include:

nil // nothing hit
true // the primitive shape passed was hit
[2,5] // X marks the shape hit in the following array

shape := [s, s, [s, s, s, s, s, X, s] , s, s]

You can retrieve the shape by using the value returned by the Hits hap e method
as a path expression, as in the following code fragment:

result := HitShape(shape,x,y);
if result then // make sure non-nil

begin
if IsArray(result) then // its an array path

thingHit shape.(result);
else

thingHit shape;// its a simple shape
end

Although the expression shape. (result) may look unusual, it is perfectly
legitimate NewtonScript For further explanation of this syntax, see the "Array
Accessor" discussion in The NewtonScript Programming Language.

13-16 Using the Drawing Interface

ARENDI-DEFS00004190

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 144 of 201 PageID #: 29189

CHAP T ER 13

Drawing and Graphics

Using Bitmaps

You can dynamically create and destroy bitmaps, draw into them, and perform
operations on them such as rotating, flipping, and sizing. This flexible treatment of
bitmaps allows you to use them as offscreen buffers and for storage of documents
such as fax pages.

You can create and use bitmap images with the drawing bitmap functions. To create
a bitmap you first allocate a bitmap that will contain the drawing with the
MakeBitmap function. Then create a shape with the MakeShape function.
DrawlntoBitmap takes the drawing and draws it into the bitmap. The final step
is to draw the bitmap on the Newton screen with the Drawshape function.

The following example shows how to draw a bitmap. It creates a bitmap by drawing
a shape and draws it onto the screen. This example then rotates the shape, scales it,
and redraws it on the Newton:

bitmapWidth 90;

bitmapHeight 120;

vfBlack := 5;

// allocate a new bitmap

bitmap := MakeBitmap(bitmapWidth, bitmapHeight, nil);

// make a shape and draw it into the bitmap

shapes := MakeOval(0, 0, 50, 75);

DrawIntoBitmap(shapes, {fillPattern: vfBlack}, bitmap);

// draw the bitmap

GetRoot():DrawShape(bitmap, {transform: [100, 1001 1);

Rotation is a destructive operation: it replaces the

old bitmap with the new rotated bitmap.

MungeBitmap(bitmap, 'rotateRight, nil);

// translate and scale the bitmap

fromRect SetBounds(0, 0, bitmapWidth, bitmapHeight);

toRight 100 + floor(bitmapWidth * 1.25);

toBottom 200 + floor(bitmapHeight * 1.25);

toRight 100 + bitmapWidth * 5 div 4;

toBottom 200 + bitmapHeight * 5 div 4;

toRect := SetBounds(100, 200, toRight, toBottom);

// draw the bitmap again

GetRoot():DrawShape(bitmap, {transform: [fromRect,

toRect] }) ;

Using the Drawing Interface 13-17

ARENDI-DEFS00004191

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 145 of 201 PageID #: 29190

CHAP T ER 13

Drawing and Graphics

Making CopyBits Scale Its Output Bitmap

CopyBits uses the bounds of the bitmap passed to it to scale the bitmap that it
draws; so, by changing the bounds of the bitmap passed to CopyBits, you can
make this method scale the bitmap it draws. If you want to scale the output bitmap
without changing the bounds of the original, call Sca1es hap e on a clone of the
original bitmap and pass the modified clone bitmap to the CopyBits method.

Storing Compressed Pictures and Bitmaps

NTK supports limited compression of pictures and bitmaps. If you store your
package compressed (using the "optimize for space" setting), all items in your
package are compressed in small (approximately I KB) pages, rather than object
by object.

You can use the NTK compile-time function GetNamedRe source to get a
Macintosh PICT resource that can be drawn on the Newton in a view of the
c1Pictureview class. PICT resources are generally smaller than bitmap
frames because each bitmap within the PICT resource contains compressed
bitmap data.

Note

This information applies to the Mac OS version of NTK; the
Windows version differs. See the Newton Toolkit User's Guide
for details.

Capturing a Portion of a View Into a Bitmap

Use the viewlntoBitmap method to capture aportion of a specified view into a
specified bitmap. This function does not provide scaling capability, although
scaling can be accomplished by passing the destBitmap bitmap returned by this
method to the DrawlntoBitmap function as the value of its shape parameter.
Figure 13-10 shows the relationships between the view to be captured, the source
rectangle, the destination bitmap, and the destination rectangle.

13-18 Using the Drawing Interface

ARENDI-DEFS00004192

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 146 of 201 PageID #: 29191

CHAP T ER 13

Drawing and Graphics

Figure 13-10 Example OfviewlntoBitmap method

(0,0)

(10, 10)

srcRect

view to capture —

(0,0) —

(50, 100)

destBitmap
I

destRect

Rotating or Flipping a Bitmap

Use the MungeBitmap function (page 10-22) to perform various bitmap operations
such as rotating or flipping the bitmap. These operations are destructive to the bitmap
passed as an argument to this function; the bitmap is modified in place and the
modified bitmap shape is returned. Figure 13-11 illustrates how the MungeBi tmap
function works. See "Using Bitmaps" (page 13-17) for a code example.

Figure 13-11 Example of MungeBitmap method

(15,10)

myBitmap

(15, 10)1

(315,110)

myBitmap
after calling
MungeBitmap (myBitmap, I rotateLeft) ;

(115, 310)

Using the Drawing Interface 13-19

ARENDI-DEFS00004193

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 147 of 201 PageID #: 29192

CHAP T ER 13

Drawing and Graphics

I mporting Macintosh PICT Resources

The following information applies to the Mac OS version of NTK; the Windows
version differs. See the Newton Toolkit User's Guide for details.

A Macintosh PICT resource can be imported into the Newton in two ways: as a
bitmap or as a picture object. A Macintosh PICT resource is stored much more
compactly on the Newton as a picture object; however, it may be slower to draw
than a bitmap. The same Macintosh PICT resource may occupy much more space
when imported as a bitmap, but may draw significantly faster. The method you
should use depends on whether you want to optimize for space or speed.

A Macintosh PICT resource is imported as a bitmap by using the slot editor for the
icon slot (an editor of the picture type). Alternatively, the resource can be
imported as a picture object by using the GetResource or GetNamedRe source
compile-time functions available in NTK In this case, you must use an
Afterscript slot to set the value of the icon slot to the picture object obtained
by one of these resource functions.

Note

The constant c l z convi ew can also be used to indicate a
view of the clPictureview class. These two constants
have identical values.

Here is an example of a template defining a view of the clPictureview class:

aPicture {...
viewClass: clPictureView,

viewBounds: {left:0, top:75, right:150, bottom:1751,

viewFlags: vVisible+vClickable,

icon: myPicture,

}

Drawing Non-Default Fonts

You can draw a font other than the default font by putting the font specifier style
frame close to the text shape so that another style frame won't override it. Use
either DrawShape or MakePict.

There are several places where it might seem reasonable to put the style frame with
the font specifier. DrawShape takes a style argument, so you could place it there:

:DrawShape(myText, {font: '{family: someFont,

face: 0, size: 9 11);
You can embed a style frame in an array of shapes:

:DrawShape ([{font:

13-20 Using the Drawing Interface

... }, myText, shape], nil);

ARENDI-DEFS00004194

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 148 of 201 PageID #: 29193

CHAP T ER 13

Drawing and Graphics

You can also use MakePict:

myText := MakePict([{penpattern: 0, font: ...1, rect,
{font: ...1, txtshape], {font: ...1);

You can set the font in locations with Make Pict. In this case the font gets
"encapsulated" into the PICT.

If the { penpattern } frame was not present in the picture shape, any of the above
places should suffice to set the font.

PICT Swapping During Run-Time Operations

To set a default picture for a clPictureview, use NTK's picture slot editor to set
the icon slot of the clPictureview. You may select a PICT resource from any
resource file that has been added to your project. The picture will be converted on
the Macintosh from a type 1 or 2 PICT into a bitmap, and stored in your package at
compile time. To change this picture at run time, you need to keep a reference to
each alternate picture or bitmap. This is done using DefConst at compile time in
a text file as follows:

OpenResFile(HOME & "Photos Of Ralph.rsrc");

Here we convert a PICT 1 or PICT 2 into a BitMap.

This is what NTK's picture slot editor does.

DefConst('kPictureAsBitMap,

GetPictAsBits("Ralph", nil));

Here the picture is assumed to be in PICT 1 format.

If it is not, the picture will not draw and you may

throw exceptions when attempting to draw the object.

DefConst('kPictureAsPict,

GetNamedResource("PICT", "Ralph", 'picture));

// Verify this is a Format 1 PICT object!

if EXtractWord('kPictureASPict, 10) <> 0x1101 then

print("WARNING: Ralph is not a Format 1 PICT

resource!");

This is one way to get the picture's bounds

information. You can also extract it from the

picture's own bounds rectangle at either compile time

or run time, by using ExtractWord to construct each

slot of a bounds frame.

DefConst('kPictureAsPictBounds,

PictBounds("Ralph", 0, 0));

CloseResFile();

Using the Drawing Interface 13-21

ARENDI-DEFS00004195

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 149 of 201 PageID #: 29194

CHAP T ER 13

Drawing and Graphics

Notice that there are two types of pictures: bitmaps (a frame with bits, a
bounds, and mask slots) and Format 1 PICTS (binary objects of class picture).
clPictureview can draw both of these types of objects,
so you just need to choose a format and use Setvalue on the icon slot,
as follows:

or

SetValue(myView, 'icon, kPictureAsBitMap);

SetValue(myView, 'icon, kPictureAsPict);

Optimizing Drawing Performance

You can use several methods to make drawing functions execute faster.

If you have a fairly static background picture, you can use a predefined PICT
resource. Create the PICT in your favorite drawing program, and use the PICT as
the background (cllconview). The graphics system also has apicture-making
function that enables you to create pictures that you can draw over and over again.

If you want to improve hit-testing of objects, use a larger view in combination with
a ViewDrawScript or a ViewClickscript rather than using smaller views
with an individual ViewClickscript. This is especially true of aview that
consists of regular smaller views.

13-22 Using the Drawing Interface

ARENDI-DEFS00004196

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 150 of 201 PageID #: 29195

CHAP T ER 13

Drawing and Graphics

Summary of Drawing

Data Structure

Style Frame

aStyle := {

transferMode : constant,// transfer mode for the pen

penSize : integer,// size of the pen in pixels

penPattern constant, // the pen pattern

fillPattern constant, // the fill pattern

font : string, // font to use for drawing text

justification : symbol,// alignment of text

clipping shape, region, or array of shapes,// specifies clipping

transform array,// offsets or scales the shape

View Classes

clPolygonView

clPolygonView := {

viewbounds : int,// size of view and location

points : struct, // binary data structure containing

polygon data

ink : struct, // binary data structure containing ink data

viewFlags const, // controls the recognition behavior of

the view

viewFormat const, // controls appearance of the view

clPictureView

clPictureView := {

icon : bitmap, graphic shape, picture,// icon to display

viewBounds: int, // size and location of the view

viewFlags const, // controls the recognition behavior of

the view

viewFormat const, // controls appearance of the view

Summary of Drawing 13-23

ARENDI-DEFS00004197

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 151 of 201 PageID #: 29196

CHAP T ER 13

Drawing and Graphics

clRemoteView

clRemoteView := {

stepchildren : int,// specifies a single view

viewBounds: int, // size and location of the view

viewFlags const, // controls the recognition behavior of

the view

viewFormat const, // controls appearance of the view

Protos

protolmageView

aProtoImageView := {

_proto: ProtoImageView,

Image : shape,

Annotations array,

scalingInfo frame,

viewBounds boundsFrame,

viewJustify: justificationFlags,

viewFormat formatFlags,

zoomStops array,

dragCorridor : integer,

grabbyHand : shape,

mylmageView:penDown : function, // drags image

mylmageView:ScalingInfoChanged function, // called when

scaling changes

mylmageView:Setup : function, // initializes the image

mylmageView:open Image : function, // opens image

mylmageView:ToggleImage : function, // closes image

mylmageView:Get Scaling Info function, // returns scaling

information

mylmageView:HasAnnotations function, // returns annotation

information

mylmageView:GetAnnotations function, // returns an array of

views

mylmageView:SetAnnotationMode function, // sets display

behavior

mylmageView:GetAnnotationMode function, // returns a symbol

mylmageView:TargetChanged : function, // called when

annotation is changed

mylmageView:CanScroll function, // returns scrolling

information

mylmageView:ScrollTo function, // scrolls an image

13-24 Summary of Drawing

ARENDI-DEFS00004198

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 152 of 201 PageID #: 29197

CHAP T ER 13

Drawing and Graphics

mylmageView:ScrollBy : function, // scrolls an image
mylmageView:ZoomBy function, // makes an image larger

or smaller
mylmageView:ZoomTo function, // changes the size of

the image
mylmageView:CanZoomBy function, // changes the size of

the image
mylmageView:ZoomToBox function, // resizes the image

}

protoThumbnail

protoThumbnail : _ {

_proto: protoThumbnail,
ImageTarget view,
Image : shape or bitmap,
viewBounds boundsFrame,
viewiustify justificationFlags,
trackWhileScrolling : integer, // tracks the grey box
myThumbnail:Setup : function, // prepares thumbnail
myThumbnail:OpenThumbnail : function, // opens thumbnail
myThumbnail:ToggleThumbnail function, // opens or closes

thumbnail
myThumbnail:Update : function, // renders thumbnail view
myThumbnail:Get Scaling Info function, // returns scaling

information
myThumbnail:PrepareToScroll function, // prepares for

scrolling
myThumbnail:ScrollTo : function, // scrolls a view
myThumbnail.DoneScrolling : function, // cleans up a scroll
operation

}

protoThumbnailPointer

protoThumbnailPointer : _ {

_proto: protoThumbnailPointer,
ImageTarget : view,
Image : shape,
viewBounds boundsFrame,
viewiustify justificationFlags,

Summary of Drawing 13-25

ARENDI-DEFS00004199

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 153 of 201 PageID #: 29198

CHAP T ER 13

Drawing and Graphics

trackWhileScrolling : integer, // tracks the grey box

}

Functions and Methods

Bitmap Functions

MakeBitmap (widthlnPixels, heightlnPixels, optionsFrame)

DrawIntoBitmap (shape, styleFrame, destBitmap)

MungeBitmap (bitmap, operator, options)

view: ViewIntoBitmap (view, srcRect, destRect, destBitmap)

Hit-Testing Functions

HitS hap e (shape, x, y)

PtInPicture (x, y, bitmap)

Shape-Creation Functions

MakeLine (xl, yl, x2, y2)

MakeRect (left, top, right, bottom)

MakeRoundRect (left, top, right, bottom, diameter)

Make0val (left, top, right, bottom)

MakeWedge (left, top, right, bottom, startAngle, arcAngle)

MakePolygon (pointArray)

MakeShape (object)

MakeRegion (shapeArray)

MakePict (shapeArray, styleFrame)

MakeText (string, left, top, right, bottom)

MakeTextLines (string, bounds, lineheight, font)

TextBox (text, fontFrame, bounds)

Shape Operation Functions and Methods

GetShape Info (shape)

view.'DrawShape (shape, styleFrame)

OffsetShape (shape, deltaH, delta V)

ScaleShape (shape, srcRect, dstRect)

ShapeBounds (shape)

InvertRect (left, top, right, bottom)

InsetRect (rect, deltax, deltay)

13-26 Summary of Drawing

ARENDI-DEFS00004200

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 154 of 201 PageID #: 29199

CHAP T ER 13

Drawing and Graphics

ISPtInRect (x, y, bounds)

FitToBox (sourceBox, boundingBox, justify)

OffsetRect (rect, deltaX, delta Y)

SectRect (rectl, rect2)

UnionRect (rectl, rect2)

RectsOverlap (rectl, rect2)

Utility Functions

view.'DoDrawing (drawMethodSym, parameters)

view.'CopyBits (picture, x, y, mode)

DrawXBitmap (bounds, picture, index, mode)

view.'LockScreen (lock)

IsPrimShape (shape)

PointsToArray (polygonShape)

ArrayToPoints (pointsArray)

Summary of Drawing 13-27

ARENDI-DEFS00004201

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 155 of 201 PageID #: 29200

ARENDI-DEFS00004202

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 156 of 201 PageID #: 29201Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 156 of 201 PageID #: 29201

AREN D I—DEFSOOOO4202

C H A P T E R 1 4

Sound

This chapter describes how to use sound in your application and how to manipulate
Newton sound frames to produce pitch shifting and other effects.

You should read this chapter if you are attempting to use sound in an application.

This chapter provides an introduction to sound, describing:

■ sounds, sound channels, and sound frames

■ specific tasks such as creating a sound frame, playing a sound, and manipulating
sound frames

■ methods, functions, and protos that operate on sound

About Newton Sound

This section provides detailed conceptual information on sound functions and
methods. Specifically, it covers the following:

■ overview of sound and the sound channel

■ sounds related to user events

■ a brief description of the sound frame

■ new functions, methods, and messages added for NPG System Software 2.0, as
well as extensions to sound code

Newton devices play only sampled sounds; sound synthesis is not supported.
However, a number of built-in sounds are supplied in the Newton ROM that you
can use in your application. See "Sound Resources" (page 11-10) in the Newton
Programmer's Reference for complete details. You can also use the Newton Toolkit
(NTK) to create custom sounds on desktop computers.

A Newton sound is represented as a sound frame. You can easily associate any
sound with a certain events or play sound frames programmatically. The system
allows you to play sound frames synchronously or asynchronously.

About Newton Sound 14-1

ARENDI-DEFS00004203

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 157 of 201 PageID #: 29202

CHAP T ER 14

Sound

All operations on sound frames are created by sending messages to a sound
channel that encapsulates the sound frame and the methods that operate on it.
Sound channels can play sampled sounds starting from any point within the data.
For more advanced uses of sound you can open a sound channel which allows
multiple channels to play simultaneously, or multiple sounds to be queued in a
single channel. You use a sound channel by sending messages to a sound channel
frame. Additionally, playback can be paused at any point in the sample data and
later resumed from that point.

Sound channels have the following characteristics:

■ There is no visual representation of a sound to the user.

■ Sound channels must explicitly be created and destroyed.

The creation and disposal of sound channels follow this model:

■ To create a sound channel, you send the Open message to a sound channel frame.

■ To dispose of the sound channel, you send the Close message to it.

Event-related Sounds

Views can play sounds to accompany various events. For example, the system
plays certain sounds to accompany user actions such as opening the Extras Drawer,
scrolling the Notepad, and so forth.

Sounds in ROM

The system provides a number of sounds in ROM that are played to accompany
various events. See "Sound Resources" (page 11-10) in the Newton Programmer's
Reference for complete details.

Sounds for Predefined Events

All views recognize a set of predefined slot names that specify sounds to
accompany certain system events. To add a ROM-based sound to one of these
events, store the name of the ROM-based sound in the appropriate view slot.

The following predefined slots can be included in views to play event-related sounds:

showsound The sound is played when the view is shown.

hidesound The sound is played when the view is hidden.

scrollUpsound The sound is played when the view receives a
ViewScrollUpScript message.

scrollDownSound

The sound is played when the view receives a
ViewScrollDownScript message.

14-2 About Newton Sound

ARENDI-DEFS00004204

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 158 of 201 PageID #: 29203

CHAP T ER 14

Sound

For example, to play a sound in ROM when the view opens, place its name in the
view's showSound slot.

In fact, all ROM_soundName constants are pointers to Newton sound frames stored
in ROM. Instead of using one of these constants; however, you can store a Newton
sound frame in a slot, causing the sound stored in that frame to play in
accompaniment to the event associated with that slot. The next section describes
the format of a Newton sound frame.

Sound Data Structures

Three data structures are related to sounds: a sound frame, a sound result frame,
and a protoSoundChannel.

A sound frame stores sound sample data and additional information used internally
by the system. A sound result frame returns information to the sound frame when
the sound channel stops or pauses. Like any other frame, a sound frame and sound
result frame cannot be greater than 32 KB in size. See "Sound Data Structures"
(page 11-1) in the Newton Programmer's Reference, for a complete list of slots
required by for both types of frames.

The protoSoundChannel provides methods that implement pause and playback
of sounds and completion callbacks. It also provides query methods that return
whether the sound is running or paused.

If you are providing custom sounds, you can store them as virtual binary objects.
An example of storing a sound as a VBO is given in Chapter 11, "Data Storage and
Retrieval.".

Compatibility

Sound frames have been extended so that those in version l.x can be played
without modification by devices based on version 2.0 of the Newton ROM. Not all
Newton 2.0 sound frames can be played by older Newton devices.

Two new functions have been added: PlaysoundAtvolume and
PlaySoundIrregardless. PlaySoundAtVolume plays a sound specified by
the sound frame at a specific volume level. PlaySoundIrregardless plays a
sound no matter what the user's settings are.

About Newton Sound 14-3

ARENDI-DEFS00004205

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 159 of 201 PageID #: 29204

CHAP T ER 14

Sound

Using Sound

This section describes how to use sound to perform specific tasks. See Newton
Toolkit User's Guide for descriptions of the functions and methods discussed in
this section.

Creating and Using Custom Sound Frames

The following information applies to the Mac OS version of NTK. The Windows
version differs; see the Newton Toolkit User's Guide for details.

The compile-time functions Getsound and GetSoundll allow you to use the
Newton Toolkit to create Newton sound frames from Mac OS ' snd I resource
data. This section summarizes the main steps required to create custom sound
frames from Mac OS' snd I resources in NTK; for a complete discussion of this
material, see the Newton Toolkit User's Guide.

Follow these steps to add a custom sound to your application:

1. Include the sound resource file in your application's NTK project.

2. In your application, create an evaluate slot to reference the sound frame through
a compile-time variable.

3. In your Project Data file

❑ Open the sound resource file with OpenResFile or OpenResFileX.

❑ If using OpenResFileX, store the file reference it returns.

❑ Use the functions GetSoundll or Getsound to obtain the sound frame.

❑ Use a compile-time variable to store the sound frame returned by Getsound
or GetSoundll.

❑ Use the function CloseResFile or CloseResFileX, as appropriate, to
close the sound resource file. If you use the CloseResFileX function, you
need to pass as its argument the saved file reference originally returned by
OpenResFileX.

4. In your application

❑ Set the value of the evaluate slot to the name of the compile-time variable
that stores the sound frame.

❑ Pass the name of the evaluate slot as the argument to the Playsoundsync
function. These run-time functions play sound from anywhere in your code.

14-4 Using Sound

ARENDI-DEFS00004206

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 160 of 201 PageID #: 29205

CHAP T ER 14

Sound

Creating Sound Frames Procedurally

To create a sound frame, you usually need to create a copy of the sound frame you
wish to modify. Because you cannot modify sound frames in ROM, you must copy
the sound frame in order to modify the binary
sample data.

Cloning the original version of a sound frame you want to modify also allows you
to reset values to their original state and provides a means of recovering the original
sound frame easily if an operation fails.

Cloning Sound Frames

You can use the clone function to make a modifiable copy of the sound frame by
passing the frame or its reference to Clone and saving the result in a variable, as in
the following example:

clonedSound := clone(ROM simpleBeep);

This technique is an extremely efficient means of creating a modifiable sound
frame, because the copy created is a shallow clone; that is, the cloned frame
clonedSound does not actually store a copy of the ROM_simpleBeep binary
data. Instead, the clonedSound frame stores apointer to the ROM data in its
samples slot. Thus, the clonedSound frame is fairly lightweight in terms of
overhead in the NewtonScript heap.

Playing Sound

Newton system software plays sound in two ways. The first is to use the global
sound functions PlaySoundAtVolume or PlaySoundIrregardless. The
other way is to instantiate a sound playback channel and send messages to it. Each
approach has benefits and drawbacks. Using the global functions is the simplest
and most efficient approach, but it offers less control than sending messages to a
sound channel.

Sound channels are appropriate for applications that require greater control over
playback, such as one that allows pausing playback and sound completion. Sound
channels are also useful for games, which might require having many sounds
available on short notice or playing multiple sounds at the same time.

Using a Sound Channel to Play Sound

Using a sound channel to play a sound is accomplished by creating a sound
channel and sending the Start message to it.

Using Sound 14-5

ARENDI-DEFS00004207

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 161 of 201 PageID #: 29206

CHAP T ER 14

Sound

Creating a Sound Channel for Playback

You create a sound channel by sending it the open function.

The code that creates a sound channel for playback might look like the
following example:

mySndChn := {_proto:protosoundChannel};

mySndChn:Open();

Playing Sounds

Once you create the sound channel, you can use any of the following methods to
control the sound.

schedule—queues the sound for play.

Start—starts playing the sounds in the order that they were scheduled.

stop—stops all scheduled sounds including currently playing sounds, if any.

Pause—temporarily stops the current playback process in the specified
sound channel.

IsPaused—checks to see if the sound channel is paused.

IsActive—checks to see if the sound channel is playing.

Deleting the Sound Channel

When finished with the sound channel, you need to dispose of it by sending the
Close message to it. Most applications can dispose of the sound channel as soon
as playback is completed; the callback function associated with a sound frame is an
appropriate way to send the Close message to the channel.

Note

The system sound channel is never automatically disposed of even
if the sound channel frame is garbage collected. You must send
the Close message to the channel to dispose of the system
sound channel.

Playing Sound Programmatically

You can use any of the global functions to play sound programmatically. For
example, you might want to play a sound when the user taps a button, or when
a lengthy operation is complete. Sounds can be played synchronously or
asynchronously, as described in the following section.

14-6 Using Sound

ARENDI-DEFS00004208

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 162 of 201 PageID #: 29207

CHAP T ER 14

Sound

Synchronous and Asynchronous Sound

When a sound is played asynchronously, the playback can be intermixed with other
tasks because the system does not wait for the sound to finish before beginning
another task (such as updating the user interface, allowing user feedback; for
example with buttons, or playing a subsequent sound).

When playback must be allowed to complete, use the Playsoundsync ,
PlaySoundAtVolume, or PlaySoundIrregardless to guarantee
uninterrupted playback. Synchronous playback is generally preferred unless the
sound is so long as to be tedious or the application requires a high degree of
responsiveness to the user. The NewtonScript interpreter can do nothing else until
it completes synchronous playback.

Both approaches have benefits and drawbacks: synchronous playback can block
other NewtonScript code from running when it's inconvenient to do so; on the
other hand, asynchronous playback is never guaranteed to complete. Your use of
synchronous or asynchronous sound playback depends on your application's needs.

Differences Between Synchronous Asynchronous Playback

The following code example demonstrates the difference between asynchronous
playback and synchronous playback. To hear the demonstration of the two types
of sound playback, type following code example into the Inspector as it is shown
here, select all of these lines, and press Enter:

print ("Synchronous sound demo");

call func()

begin

for i := 0 to 20 do

PlaySoundSync(ROM_simplebeep);

end with();

print ("Async sound demo");

call func()

begin

for i := 0 to 20 do

PlaySoundSync(ROM_simplebeep);

end with();

The synchronous sound playback example plays the ROM_simplebeep sound
twenty times; the sound plays its entire length each time. Twenty repetitions may
seem a bit laborious until you hear how quickly the same calls are made in
asynchronous mode.

Note that the asynchronous version can call the sound chip so fast that the sound
does not have enough time to finish playing; as a result, part of the playback is

Using Sound 14-7

ARENDI-DEFS00004209

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 163 of 201 PageID #: 29208

CHAP T ER 14

Sound

clipped off with each new call to the Playsoundsync function. In fact, it's likely
that you won't hear twenty sounds in the asynchronous playback demo; the calls
occur faster than the Newton sound chip can respond.

About the Sound Chip

The Newton sound chip requires about 50 milliseconds to load a sound and begin
playing it. It also requires about 50 milliseconds to clear its registers and ready
itself for the next call after playback completes. Although most applications are not
affected by this timing information, it is included for interested developers, along
with the caveat not to rely on the ramp-up and ramp-down times specified here
because they may change in future Newton devices.

Generating Telephone Dialing Tones

Applications can use the Dial view method and the RawDial global function to
generate telephone dialing tones from NewtonScript. It is strongly recommended
that you use these functions rather than attempt to generate dialing tones yourself.
These functions produce dialing tones that meet the standards for all countries in
which Newton devices are available, sparing the application developer the effort of
dealing with widely varying telephone standards.

If you need to perform other actions while generating dialing tones, such as posting
status messages as various parts of the phone number are dialed, you can use the
global function RawDial to dial asynchronously. The RawDial function accepts
the same arguments as the Dial method; however, it dials asynchronously.

Note that both dialing functions map alphanumeric characters to the dialing tones
that a standard telephone keypad produces for these characters. Standard telephone
keypads do not implement the letters Q and Z; the Dial method and RawDial
function map these letters to the tone for the digit 1. Pound (#) and asterisk (*)
characters are mapped to the same tones that a standard telephone keypad provides
for these characters.

Certain phone systems, such as those used for PBX and military applications, also
generate special tones (DTMF dialing tones) for the letters A—D. Because the
Newton ROM does not generate these special tones, its dialing functions map the
characters A, B, C, and D to the tones they generate on a standard telephone keypad.

Advanced Sound Techniques

This section describes advanced techniques for manipulating the sound frame or its
playback. The topics discussed include pitch shifting and manipulating sample data
to produce altered sounds.

14-8 Using Sound

ARENDI-DEFS00004210

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 164 of 201 PageID #: 29209

CHAP T ER 14

Sound

Pitch Shifting

In general, you can set the value of a sound frame's samplingRate slot to any
float value less than that specified by the kFloat22kRate constant. However, this
usually results in poor sound quality. What generally works best is to take an 11
kHz sound and play it at some higher rate. Of course, 22 kHz sound resources
cannot be played at any higher sampling rate.

You can experiment with pitch shifting by playing sounds in the Inspector using
the PlaySoundSync function. You can use any of the ROM sounds or your own
custom sounds. The following example shows how to shift a sound's pitch by
altering the value of the sound frame's samplingRate slot. Remember when
setting this slot that s amp 1 ingRate must be a value of type f 1oat.

// keep a

origSound

// make

copy of original for future use

clone(ROM simpleBeep);

a copy to modify

mySound := Clone(origSound);

// play the original sound

PlaySoundSync(mySound);

// play at half original pitch

mySound.samplingRate := origSound.samplingRate/2;

PlaySoundSync(mySound);

// note how easily we can return to normal pitch

mySound.samplingRate := origSound.samplingRate;

// play at twice speed

mySound.samplingRate := origSound.samplingRate*2;

PlaySoundSync(mySound);

By using the output from a control view to alter the value of the sound frame's
samplingRate slot, you can allow the user to interactively modify the pitch of
playback. The following example code changes the value of the samplingRate
slot according to the setting of a protoSlider view:

theSlider.changedSlider := func()begin

if viewValue = maxValue then

mySound.samplingRate := originalRate

else mySound.samplingRate := (viewValue*1.01);

PlaySoundSync(mySound);

end

Using Sound 14-9

ARENDI-DEFS00004211

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 165 of 201 PageID #: 29210

CHAP T ER 14

Sound

For an example that uses output from a view based on the protoxeypad
prototype, see the Newton DTS sample code on this topic.

Manipulating Sample Data

This section describes how to use the utility functions ExtractByte and
Stuf (Byte to manipulate individual bytes in sound sample data. Because of
performance considerations, you'll want to manipulate sample data on the Newton
only when it's absolutely necessary. Even simple operations, like the example here,
can take a long time to perform on a relatively small sound sample.

The following example, extracts bytes from the end of the sample data and adds
them to its beginning, thus reassembling the samples in reverse order to create a
"backwards" sound.

backwardSound is a slot in the app's base view

if it's nil then create the backward sound

if (not backwardSound) then

begin

get a frame to work with

backwardSound := deepclone(ROM_funbeep);

a var to store the modified sample data

local sampleHolder := Clone(backwardSound.samples);

local theSize := Length(sampleHolder) -1 ;

Copy bytes from one end of the binary object

to the other.

for i := 0 to theSize do

StuffByte(backwardSound.samples,i,

ExtractByte(sampleHolder,theSize-i));

end;

A better solution is to provide the backwards sound as a resource that can be
played just like any other sound; a number of sound editors are available to create
such a resource on a desktop computer.

14-10 Using Sound

ARENDI-DEFS00004212

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 166 of 201 PageID #: 29211

CHAP T ER 14

Sound

Summary of Sound

Data Structures

SndFrame Structure

mySndFrame := {

_proto: mySndFrame,

sndFrameType : symbol,// specifies format

samples : frame,// contains sampled binary data

samplingRate : integer /floating point,// specifies playback rate

compressionType : integer, // indicates no compression

dataType : integer, // indicates size of sample in bits

start integer, // index of first sample to play

count integer, // number of samples to play

loops integer, // time to repeat sound

Callback : function, // indicates the state of the sound

SndResult Structure

mySndResult := {

_proto: mySndResult,

sound integer, // reference to soundFrame that was paused

index function,// index of sample that was paused/stopped

Protos

protoSoundChannel

aProtoSoundChannel := {

_proto: protoSoundChannel,

Open function, // opens sound channel

Close function, // closes sound channel
Schedule : function, // queues sound for play

Start function, // starts sound channel

Stop function, // stops sound channel

Pause function, // pauses playback

IsPaused function, // checks if sound channel is paused

IsActive function, // checks if sound channel is active

}

Summary of Sound 14-11

ARENDI-DEFS00004213

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 167 of 201 PageID #: 29212

CHAP T ER 14

Sound

Functions and Methods

view: Dia1 (numberString, where)

GetVolume()

PlaySoundSync (soundFrameRel)

RawDial (number, where)

SetVolume (volume)

PlaySoundAtVolume (soundFrameRef, volume)

PlaySoundIrregardless (soundFrameRel)

PlaySoundIrregardlessAtVolume (soundFrameRef, volume)

PlaySoundEffect (soundFrameRef, volume, type)

Clicker()

Sound Resources

ROM_alarmWakeup // alarm sound

ROM—click // click sound

ROM—crumple // paper crumpling sound

ROM_drawerClose // drawer closing sound

ROM_drawerOpen // drawer opening sound

ROM—flip // page flipping sound

ROM_funBeep // trill sound

ROM_hiliteSound // squeek sound

ROM_plinkBeep // xylo sound

ROM_simpleBeep // bell sound

ROM_wakeupBeep // power on sound

ROM—plunk // paper hitting trash sound

ROM poof // puff of air sound

14-12 Summary of Sound

ARENDI-DEFS00004214

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 168 of 201 PageID #: 29213

C H A P T E R 1 5

Filing

This chapter describes how your application can support the Filing service. This
service allows the user to

■ associate data items with folders displayed by the user interface

■ create, edit, or delete folders at will

■ specify the store on which a soup entry is to reside when it is filed

Before reading this chapter, you should understand the use of views to image data,
as explained in Chapter 3, "Views." You should also understand the contents of
Chapter 11, "Data Storage and Retrieval," which describes the soup-based storage
model on which the Filing service is based. If your application does not save data
as soup entries, you need to implement mock entries and related objects to provide
soup-like access to your data, as described in Chapter 12, "Special-Purpose Objects
for Data Storage and Retrieval."

A related service called the Soupervisor allows the user to file or move all entries
in a specified soup at once. For more information, see the description of this
service in Chapter 19, ̀Built-in Applications and System Data."

About Filing

The Filing service enables the user to associate data items with tags that represent
folders in the user interface. In most cases, the filed items are soup entries that
reside in their respective soups, rather than in any sort of directory structure. Filing
an item displayed on the screen simply associates its corresponding soup entry
with the tag that represents a particular folder. Soup entries hold this tag in their
labels slot. The Filing service also allows the user to move entries to a specified
store when they are filed.

The currently displayed application data to be filed is referred to as the target of
the filing action. The target may consist of multiple data items; for example, most
applications provide an overview view from which the user can file and move
multiple items simultaneously.

About Filing 15-1

ARENDI-DEFS00004215

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 169 of 201 PageID #: 29214

CHAP T ER 15

Filing

Your application must provide a target view that can manipulate the target. The
target view is usually the same view that images the target data. Although the
application base view is often an appropriate target view, it may not be under all
circumstances. For example, each of these common situations has specialized
targeting needs:

■ Most applications allow the user to file and move multiple data items from
within an overview view. In this situation, the target may consist of multiple
items, and the overview view is usually the appropriate target view.

■ Applications that display more than one data item at a time, such as the built-in
Notes application, may need to specify which of several equal child views is
actually the target.

■ You might want the target view to be a floating window when one is present,
and the application's base view at all other times.

You can override the system-supplied GetTargetlnfo method to vary the target
and target view according to circumstances.

Applications with less-elaborate targeting needs can use the default
GetTargetlnfo method supplied by the system. To use the
default GetTargetlnfo method, your application base view must supply
target and targetview slots. You are responsible for updating the values
of these slots whenever the target changes; that is, whenever the data item on
display changes.

To file the target, the user taps a file folder button you provide. This view, which is
based on the protoFilingButton system prototype, looks like abutton with a
picture of a paper file folder on it. Figure 15-1 provides two examples of views
based on the protoFilingButton system prototype.

Figure 15-1 Two examples of filing button views

Q Wed I I/I

15-2 About Filing

o E211 \

~0E3

— protoFilingButton
views

ARENDI-DEFS00004216

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 170 of 201 PageID #: 29215

CHAP T ER 15

Filing

When the user taps the protoFilingButton view, it displays the Filing slip
shown in Figure 15-2.

Figure 15-2 Filing slip

Filing slip

stores

File this Note on

..:' Internal 0 Card

And file in

0 None {Unfiled}
..:' Business

New lEditFolder,
...............

..:' Miscellaneous

..:' Personal

appObj ectFileThison string

filing categories

— close box closes slip without
making changes

File button sends FileThis message and closes slip

Edit Folder button allows user to edit or delete filing categories

New button allows user to create new filing categories (folders)

The Filing slip displays a set of categories in which the target can be filed. These
filing categories include all folders available to the application that displayed the
Filing slip, as well as the Unfiled category. This slip also provides a close box that
dismisses it without making any changes.

The user can create new folders and edit the names of existing ones by means of
buttons the Filing slip provides for this purpose. When a new folder is created, it
may be designated as visible only from within a specified application; such a folder
is said to be a local folder belonging to the application that created it. Any folder
not created as a local folder is visible from all applications, and is called a global
folder. The system permits the creation of a maximum of twelve local folders per
application and twelve global folders system-wide. The system does not permit the
creation of local and global folders having the same name.

Most applications allow the user to create and view any combination of local and
global folders; however, you can suppress the display of either kind of folder if
necessary. For example, the Extras Drawer displays only its own filing categories
because those created by other applications are not likely to be useful for
organizing the display of application packages, soups, and so on.

When the user adds, removes, or edits filing categories, the folder change
notification service executes your previously registered callback function to
respond appropriately to these changes. You use the RegFolderChanged global
function to register a callback function with this service. The companion function
UnRegFolderChanged unregisters a specified callback function.

About Filing 15-3

ARENDI-DEFS00004217

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 171 of 201 PageID #: 29216

CHAP T ER 15

Filing

Filing and other system services display user messages containing a string that is
the user-visible name of your application. For example, this string is used to complete
the text displayed when the user creates a local folder. You need to create in your
application's base view an appName slot that holds this string. Figure 15-3 depicts
the text displayed when the user creates a folder that is local to the Notepad
application.

Figure 15-3 Creating a local folder

Name Chernl$try Notes

_j Show only in Notepad

LJDelete

"Notepad" string is from appName slot

The system determines whether to display global or local folders by testing the
values of optional slots you can supply in the application's base view. You can set
the value of the local FoldersOnly slot to true to cause the Filing slip and
folder tab views to display only the current application's local folders. You can set
the value of the global FoldersOnly slot to true to cause the Filing slip and
folder tab views to display only global folders. When these slots are both nil or
missing, the Filing slip and folder tab display global folders and the current
application's local folders.

WARNING

The local FoldersOnly and global FoldersOnly must not
both hold non-nil values at the same time. A

Your target view can provide an optional doCardRouting slot to control the
display of the buttons that specify the store on which to file the target. When an
external store is available and the value of the doCardRouting slot is true, the
Filing slip includes buttons that represent available stores.

You must supply the full text of the string that labels this group of store buttons.
This string is held in an appOb j e c t F i 1 e Thi s On slot that you provide. Similarly,
you must supply the full text of the string labelling the group of buttons that
represent filing categories. This string is held in an appObj ectFileThisln slot
that you provide. Figure 15-2 shows where the Filing slip displays these strings.

15-4 About Filing

ARENDI-DEFS00004218

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 172 of 201 PageID #: 29217

CHAP T ER 15

Filing

When no external store is available or the value of the doCardRouting slot
is n 1, the system displays the simplified version of the Filing slip shown in
Figure 15-4.

Figure 15-4 Filing slip without external store

File this Note in

...~ None(Unfiled) Miscellaneous

Business Personal

GM Edit Folder M3

appObj ectFileThisln string

This simplified version of the Filing slip does not include the buttons that allow
the user to choose a store. Note that the string labelling the group of buttons
representing filing categories differs slightly in this version of the Filing slip. This
string is provided by an appObj ectFileThisln slot that your application's base
view supplies.

Regardless of other options you may have implemented, the Filing slip always
opens with the current filing category selected; for example, the ' business
folder is selected in Figure 15-4. If you include a non-nil
dontStartWithFolder slot in your target view, the Filing slip opens with no
default folder selected. This feature is intended for use when you cannot
necessarily determine a useful default filing category, such as when the target view
is an overview that displays the contents of multiple folders.

When the value of the doCardRouting slot is the ' onlyCardRouting symbol,
the Filing slip does not include the filing category buttons but allows the user to
move the target between available stores without changing its filing category.
Figure 15-5 shows the Filing slip when an external store is available and the value
of the target view's doCardRouting slot is the ' onlyCardRouting symbol.

Figure 15-5 Filing slip for ' onlyCardRouting

File this Note on

... Internal 0 Card

M34=J

appObjectFileThisOn

About Filing 15-5

ARENDI-DEFS00004219

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 173 of 201 PageID #: 29218

CHAP T ER 15

Filing

When the user taps the File button, the system

■ invokes the GetTargetlnfo method to discover the target and the target view

■ sends the FileThis message to the target view

Your target view must supply a FileThis method that performs any tasks
necessary to file the target, such as the following:

■ moving its soup entry to a different store

■ redrawing the current view

■ setting the target's labels slot to its new value

■ performing any additional tasks that are appropriate

Your application must provide a folder tab view that

■ indicates the filing category of currently displayed data.

■ allows the user to choose a new filing category to display

The system provides protoNewFolderTab and protoClockFolderTab

system prototypes you can use to create your folder tab view. Views based on either
proto can display a title text string in the area to the left of the folder tab. The
protoNewFolderTab view displays a text string that you may supply optionally,
as shown in Figure 15-6.

Figure 15-6 A protoNewFolderTab view

title child view sends protoNewFolderTab view sends
TitleClickScript NewFilingFilter
message when folder user taps here message when folder tab changes

optional ~*All Notes appAl l string displayed by folder tab view
title. text QWed11/1 0
string

always breathe
continuouslyA

15-6 About Filing

protoFilingButton view

data item to file

ARENDI-DEFS00004220

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 174 of 201 PageID #: 29219

CHAP T ER 15

Filing

The protoClockFolderTab is a variation on protoNewFolderTab
that displays the current time as its title text. Do not attempt to replace this
text; if you want to display your own title text in a folder tab view, use a
protoNewFolderTab view rather than a protoClockFolderTab view.
Figure 15-7 depicts a typical protoClockFolderTab view.

Figure 15-7 A protoClockFolderTab view

#Unfiled Items

Either kind of folder tab view sends a TitleClickscript message to your
application when the user taps its title text. The protoClockFolderTab view's
default TitleClickscript method opens the built-in Clock application. The
protoNewFolderTab view provides no default TitleClickscript method.
Your folder tab view can provide its own TitleClickscript method to
customize the action it takes in response to a tap on its title text. Your
titleClickscript method accepts no arguments.

Both kinds of folder tab views rely on an appObj ectUnf i led slot that you
provide in your application's base view. This slot contains the full text of the string
"Unfiled items", in which items is the plural form of the target your application
manipulates; for example, "Unfiled Notes." This string appears in the folder tab
view when the application displays data items not associated with any filing
category. This string is also displayed in the picker that opens when the user taps
the filing tab.

Both kinds of folder tab views also rely on the use of an appAl l slot that you
provide in your application's base view. This slot contains the full text of the string
"All items" in which items is the plural form of the target your application mani-
pulates; for example, "All Notes." This string appears in the folder tab view when
the application displays all its data items (including those that are not filed). This
string is also displayed in the picker that opens when the user taps the folder tab.

Tapping the folder tab displays a picker from which the user can choose a filing
category. Your application must filter the display of filed items according to the
category selected in this list; hence, the value retrieved from this list is referred to
as the filing filter. A check mark appears next to the currently selected filing filter;
the user can tap an item in the list to select a new filing filter. In addition to
selecting a filing filter in this picker, the user can specify whether to display items

About Filing 15-7

ARENDI-DEFS00004221

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 175 of 201 PageID #: 29220

CHAP T ER 15

Filing

on the internal store, the external store or both; that is, the user can specify a stores
filter in addition to a labels filter. Figure 15-8 shows the folder tab picker in a view
based on the protoClockFolderTab proto.

Figure 15-8 Choosing a filing filter

5:05 Fri 9/22 Unfiled Notes

Business
Miscellaneous
Personal

VAII Notes
Internal
Card

-/All Stares

To display items according to the user's choice of store, your target view must
supply a storesFilter slot. When the target view has a storesFilter slot
and more than one store is available, the folder tab views allow the user to specify a
store in addition to a folder from which data items are retrieved for display. For
example, the user might choose to display only entries in the ' business folder
on the internal store.

When the user chooses any filter from this picker, the system updates the
storesFilter or labelsFilter slot and sends the target view a
NewFilingFilter message. The argument passed to this method by the system
tells you what changed—the stores filter or the labels filter—but not its new value.

You must supply a NewFilingFilter method that examines the
storesFilter or labelsFilter slot and queries your application's soups
appropriately. If the value of the 1 ab e 1 s F i 1 t e r slot is n i 1, your
NewFilingFilter method must display all target items. Similarly, if
the value of the target view's storesFilter slot is nil, your
NewFilingFilter method must display items on all available stores.

Your NewFilingFilter method must also perform any other actions
necessary to display the appropriate data, such as redrawing views affected by
the new filter value.

You can use the RegFolderChanged function to register your own callback
function to be executed when the user adds, deletes, or edits folder names. You
cannot respond adequately to these kinds of changes from within your
NewFilingFilter or FileThis methods alone.

15-8 About Filing

ARENDI-DEFS00004222

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 176 of 201 PageID #: 29221

CHAP T ER 15

Filing

Filing Compatibility Information

Version 2.0 of the Newton operating system supports earlier versions of the Filing
interface completely—no code modifications are required for older filing code to
continue working under the version 2.0 operating system. However, it is strongly
suggested that you update your application to the version 2.0 Filing interface to
take advantage of new features and to remain compatible with future versions of
the Newton operating system. This section provides version 2.0 compatibility
information for applications that use earlier versions of the Filing interface.

Users can now create folders visible only to a specified application; the folders are
said to be local to that application. Folders created using previous versions of the
Filing interface are visible to all applications when first read on a 2.0-based system.
Applications can now filter the display of items according to the store on which
they reside and according to whether they are filed in local or global folders.

The symbols that represent folders are no longer tied to the strings that represent
them to the user, as they were in previous versions of the Newton operating system.
This new scheme allows you to use the same folder symbol everywhere for a
particular concept, such as a business, while varying the user-visible string
representing that folder; for example the user-visible string could be localized for
various languages.

Applications can now route items directly to a specified store from the Filing slip.
In addition, registration for notification of changes to folder names has been
simplified.

The protoFolderTab proto is replaced by the protoNewFolderTab and
protoClockFolderTab protos.

The protoFilingButton proto now supplies its own borders. You do not need
to enclose the filing button in another view to produce a border around the button.

The FolderChanged and FilingChanged methods are obsolete. They are
replaced by the FileThis method and the folder change notification mechanism.
If your application supplies a F i 1 eThi s method, the system does not send
FolderChanged and FilingChanged messages to your application. Instead of
supplying a FolderChanged method, your application should register a callback
function with the folder change notification mechanism to perform tasks when the
user adds, deletes, or edits folders.

The FilterChanged method is obsolete; your application should supply a
NewFilingFilter method instead. Your NewFilingFilter method must
update the query that retrieves items matching the current filing category and
perform any other actions that are appropriate, such as redrawing views affected by
the change of filing filter. If your application supplies a NewFilingFilter
method, the system does not send FilterChanged messages to your application.

About Filing 15-9

ARENDI-DEFS00004223

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 177 of 201 PageID #: 29222

CHAP T ER 15

Filing

The new slots appObj ectFileThisIn and appObj ectFileThisOn support
localization of your application's Filing messages into languages having masculine
and feminine nouns.

The DefaultFolderChanged function is obsolete. Do not use this function.

The target and targetview slots are superseded by your override of the
GetTargetlnfo method. However, if you do not override the system-supplied
GetTargetlnfo method, you must include these slots in your application's
base view.

Registration for notification of changes to folder names has been simplified. Use
the new functions RegFolderChanged and UnRegFolderChanged to register
for folder change notification.

Using the Filing Service

To support the Filing service, your application must

■ provide three views (a folder tab view, a filing button view, and a view that
images the filing target)

■ respond to two messages (FileThis and NewFilingFilter)

■ register a callback function with the folder change notification service

Additionally, you can

■ support the use of multiple target items

■ customize the Filing slip and folder set that your application uses

The remainder of this section describes these tasks in detail.

Overview of Filing Support

You need to take the following steps to support the Filing service:

■ Add a labels slot to your application's soup entries.

■ Create in your application's base view the slots appName, appAl1,
appObj ectFi leThi s In, appObj ectFi leThi sOn, and
appObjectUnfiled.

■ Supply afiling target. It is recommended that you override the GetTargetlnfo
method; if you do not, your application base view must supply target and
targetview slots for use by the default method. You are responsible for
keeping the values of these slots current.

■ Create a label s F i l t e r slot in your application's target view.

15-10 Using the Filing Service

ARENDI-DEFS00004224

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 178 of 201 PageID #: 29223

CHAP T ER 15

Filing

■ Create a store s F i 1 ter slot in your application's target view

■ Implement the FileThisand NewFi1ingFi1ter methods.

■ Add a filing button view and a folder tab view to your application.

■ Register a callback function with the folder change notification mechanism.

Optionally, you can

■ create a doCardRouting slot in your application's base view

■ create a dontStartWithFolder slot in your target view

■ implement support for local or global folders only

■ customize the title text in your protoNewFolderTab view

■ provide a TitleClickscript method to customize the action your folder tab
view takes when the user taps its title text

The sections immediately following describe these tasks in detail.

Creating the Labels Slot

Each of your application's soup entries must contain a lab 1 s slot. It is
recommended that you make this slot part of a default soup entry created by a
frame-constructor function you supply. (For information on the use of frame-
constructor functions, see "Programmer's Overview" on page 11-25 in Chapter 11,
"Data Storage and Retrieval.")

When the user files a soup entry, the system stores a value in its label s slot.
Setting the value of the lab 1 s slot is really the only "filing" that is done—the
entry still resides in the soup, but your FileThis and NewFi1ingFilter
methods provide the user-interface illusion that the data has been put in a folder.

The labels slot can store either a symbol or the value nil. If the value stored in
this slot is ni 1, your Fi 1 eThi s method must treat the item as unfiled. If a symbol
is stored in this slot, your Fi 1 eThi s method must test the value of this slot to
determine whether the entry should be displayed and then redraw the display
appropriately. Similarly, your NewFilingFilter method tests the value of this
slot to determine whether to display the item when the filing filter changes.

Creating the appName Slot

You must create in your application's base view an appName slot containing a
string that is the user-visible name of your application.

Using the Filing Service 15-11

ARENDI-DEFS00004225

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 179 of 201 PageID #: 29224

CHAP T ER 15

Filing

Creating the appAll Slot

You must create in your application's base view an appAl l slot containing a string
of the form

"All Items"

where Items is the plural for the items to be filed, such as cards, notes, and so on.
For example, when the user taps the folder tab view in the built-in Notes
application, the last item in the picker is "All Notes."

The following code fragment defines a typical appAl l slot:

myAppBase := I... appAll : "All Notes", ...}

Creating the appObjectFileThisln Slot

You must define the appObj ectFi1eThisIn slot in your application's base
view. This slot holds the full text of the message to be displayed to the user when
filing a single item; for example,

"File this widget in"

This string is shown at the top of the Filing slip pictured in Figure 15-2 (page 15-3).

Creating the appObjectFileThisOn Slot

You must define the appObj ectFileThisOn slot in your application's base
view. This slot holds the full text of the string labelling the group of buttons that
represent stores in the Filing slip; for example,

"File this item on"

where item is the singular case of the target your application files, such as a card, a
note, and so on.

For an example of this string, see Figure 15-5 (page 15-5).

Creating the appObjectUnfiled Slot

You must define an appObj ectUnf i led slot in your application's base view.
This slot holds a string of the form

"Unfiled Items"

where Items is the plural case of the items to be filed, such as cards, notes, and so
on. For example, if the user taps the folder tab view in the built-in Notes application,
the first item in the picker is "Unfiled Notes."

The following code fragment defines atypical appObj ectUnf fled slot:

myAppBase := I... appObjectUnfiled: "Unfiled Notes", ...}

15-12 Using the Filing Service

ARENDI-DEFS00004226

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 180 of 201 PageID #: 29225

CHAP T ER 15

Filing

Specifying the Target

The GetTargetlnfo method identifies the current target and target view to the
system. Depending on your needs, you can use the default version of this method
or override it.

If you use the default version, your application's base view must supply target
and targetview slots that you update whenever the target or target view
changes. If you override this method, you provide these slots in the result frame
that it returns, rather than in your application's base view. These slots provide the
same information regardless of whether they reside in the GetTargetlnfo
method's result frame or in the application's base view.

Creating the Target Slot

The target slot contains the data item with which the user is working, such as the
soup entry that represents the currently displayed note to file. If there is no active
item, this slot must have the value n 1.

Your application must update the value of the target slot every time the user
views a new item. Because the selection of a new item is an application-specific
detail, it is difficult to recommend a means of updating this slot that is appropriate
for every application; however, it is common to update the value of this slot from
the viewClickscript method of the active view.

Creating the TargetView Slot

The targetview slot contains the view that receives messages from the Filing
service and can manipulate the target. The application's base view is usually an
appropriate value for this slot.

Overriding the GetTargetlnfo Method

You can implement your own GetTargetlnfo method if the default version
supplied by the system is not suitable for your application's needs. For example, if
your application images data items in floating windows or displays more than one
data item at a time, you probably need to supply a GetTarget Info method that
can return an appropriate target and target view in those situations.

You must override the GetTargetlnfo method in order to move an item to
another store when it is filed. The result frame returned by your GetTargetlnfo
override can include an optional targetstore slot that specifies the store on
which an item is to reside when it is filed.

To override this method, create in your application base view a slot named
GetTargetlnfo and implement this method as specified in the description of
the GetTarget Info method (page 12-11) in Newton Programmer's
Reference.

Using the Filing Service 15-13

ARENDI-DEFS00004227

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 181 of 201 PageID #: 29226

CHAP T ER 15

Filing

Creating the IabelsFilter slot

Your application's target view must supply a labels Filter slot. This slot holds
a value indicating the current filing filter selected by the user in the picker displayed
by the folder tab view. This slot can store either a symbol indicating the currently
displayed filing category or the value ni 1 (which specifies that the Unfiled category
is currently displayed).

The system sets the value of the 1 ab e 1 s F i 1 ter slot for you. Your
NewFilingFilter method must update the display of your application's
data according to the value of this slot.

To display a predetermined filing category when your application opens, you can
set an initial value for the 1 ab e 1 s F i 1 ter slot from within the application base
view's ViewSetupFormScript method.

Creating the storesFilter slot

Your application's target view must supply a s t o re s F i 1 t e r slot. This slot stores
a value indicating the current store filter selected by the user from the picker
displayed by the folder tab view. This slot can store either a symbol or the value ni 1.

The system sets the value of the s t o re s F i 1 t e r slot for you. Your
NewFilingFilter method must update the display of your application's
data according to the value of this slot.

To display items on a particular store when your application opens, you can set an
initial value for the s t o re s F i 1 t e r slot from within the application base view's
ViewSetupFormScript method.

Adding the Filing Button

You need to take the following steps to add the protoFilingButton view to
your application:

■ In NTK, sketch the filing button using the protoFi 1 ingBut ton proto and
declare it to the application's base view.

■ Set appropriate values for the button's viewBounds slot.

Adding the Folder Tab View

Your application's base view must provide a view that displays the currently
selected filing category and allows the user to select a new filing category. This
view is based on either the protoNewFolderTab or protoClockFolderTab
system proto.

Adding the folder tab view to your application is easy. In NTK, sketch the folder
tab in your application's base view using the protoNewFolderTab proto and

15-14 Using the Filing Service

ARENDI-DEFS00004228

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 182 of 201 PageID #: 29227

CHAP T ER 15

Filing

declare your folder tab view to the application's base view. The system sets the
folder tab view's bounds for you at run time, positioning the folder tab relative to
its parent, near the top of the screen.

Customizing Folder Tab Views

The protoNewFolderTab proto supplies a child view named title that images
a string that you may supply optionally. To display your own string as the title text
in a protoNewFolderTab view, use the global function SetValue to set the
value of the t ext slot in the t i t 1 e view child of your folder tab view.

For example,

SetValue(myNewFolderTab.title, text, " My text");

WARNING

Do not create a t i t 1 e slot in any folder tab view. Do not replace
the title text in a protoClockFolderTab view. A

Defining a TitleClickScript Method

The folder tab view's TitleClickScript method is invoked when the user taps
the title text in a protoNewFolderTab view or the time displayed as title text in
a protoClockFolderTab view. The default TitleClickScript method
provided for protoNewFolderTab views does nothing. The default
TitleClickScript method provided by the protoClockFolderTab view
displays the built-in Clock application.

You can provide your own TitleClickScript method to customize the action
your folder tab views take when the user taps them.

I mplementing the FileThis Method

When the user taps the File button in the Filing slip, the system sends the
FileThis message to the target view. Your FileThis method must perform any
actions necessary to file the target and redraw the current display appropriately.

For example, if your application is displaying an overview list of unfiled items
when it receives this message, your FileThis method needs to redraw the list
without the newly filed item in it, providing the user-interface illusion that the item
has been moved.

Your FileThis method must also handle the case in which the user re-files an
item in the category under which it already resides. In this case, the appropriate
response is to do nothing; unnecessarily redrawing views that have not changed
makes the screen appear to flicker or flash. Because the value of the target's
labels slot does not change unless you change it, you can test this slot's current
value to determine whether the new value is different.

Using the Filing Service 15-15

ARENDI-DEFS00004229

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 183 of 201 PageID #: 29228

CHAP T ER 15

Filing

The arguments to the FileThis method supply all the information necessary to file
a soup entry, including the item to file (the target), the category under which to file
it (the value to which you set the target's Labe 1 s slot), and the store on which to
file it.

If the value of the labelsChanged parameter to the FileThis method is true,
your FileThis method must use the value of the newLabels parameter to
update the value of the target's lab 1 s slot. However, if the value of the
labelsChanged parameter is nil, the value of the newLabels parameter is
undefined—don't use it!

Similarly, if the value of the storesChanged parameter is true, your
FileThis method must move the target to the new store. However, if the value of
the storesChanged parameter is nil, the value of the destStore parameter
is undefined.

The following code example shows the implementation of a typical FileThis
method. Remember to call Ent ryChangexmit from this method so your changes
to filed entries are saved!

FileThis: // example code - your mileage may vary

func(target, labelsChanged, newLabels, storesChanged, destStore)

begin

if labelsChanged AND target.labels <> newLabels then

begin

target.labels := newLabels;

EntryChangeXmit(target, kAppSymbol);

end // labelsChanged

if storesChanged and (EntryStore(target)

not destStore:IsReadOnly() then

begin

move the entry to the new store

make

destStore)

Sc xmit

sure you handle locked stores too

if EntryStore(target):IsReadOnly() then

EntryCopyXmit(target, destStore,

else

EntryMoveXmit(target, destStore,

end; //storesChanged

end; // FileThis

15-16

Implementing the NewFilingFilter Method

change

kAppSymbol);

kAppSymbol);

and

When the user changes the current filing filter in the folder tab view, the system
calls your application's NewFilingFilter method. You need to define this
method in your application's base view. Your NewFilingFilter method must
update the query that retrieves items matching the current filing category and

Using the Filing Service

ARENDI-DEFS00004230

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 184 of 201 PageID #: 29229

CHAP T ER 15

Filing

perform any other actions that are appropriate, such as redrawing views affected by
the change in filing filter.

The symbol passed as the sole argument to your NewFilingFilter method
specifies which of the storesFilter or labelsFilter slots changed in value.
This argument does not specify the slot's new value, however. Your
NewFilingFilter method must use the current value of the specified slot to
retrieve those soup entries that fall into the new filing category.

The following code example shows the implementation of a typical
NewFilingFilter method, which queries the application soup for the entries
that match the current filing category and then redraws views affected by the
change in filing category.

NewFilingFilter: func(newFilterPath)

begin

first figure out if query should be done on

a union soup or on a specific store soup

this is to make filter by store more efficient

local querySoup := GetUnionSoupAlways(kSoupName)

if storesFilter and storesFilter:IsValid() then

querySoup := querySoup:GetMember(storesFilter)

now construct the query based on the labelsFilter

and set my application cursor (called myCursor)

to the new query

the default is to show all items, i.e.,

labelsFilter is '_all

local theQuery := nil ;

if NOT labelsFilter then

labelsFilter is NIL, so show only those entries

that do not have a valid tag in the labels

slot

theQuery :_ {none: GetFolderList(appSymbol, nil)};

else if labelsFilter <> '_all then

// labelsFilter is some specific folder

theQuery :_ {all: labelsFilter} ;

myCursor := querySoup:Query(theQuery)

Using the Filing Service 15-17

ARENDI-DEFS00004231

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 185 of 201 PageID #: 29230

CHAP T ER 15

Filing

now redraw views affected by the change

NOTE: You could keep track of the original

labelsFilter and storesFilter to see

whether you need to actually do work.

end

Using the Folder Change Notification Service

You can use the RegFolderChanged global function to register callback
functions that are executed when the user adds, removes, or edits folders. Most
applications register these functions only while the application is actually open, so
the application base view's viewsetupFormscript is an ideal place from which
to call the RegFolderChanged function. For example,

myCallbackl : = func (oldFolder, newFolder)

begin

// retag entries

end;

myAppBase.viewSetupFormScript := func ()begin

RegFolderChanged('lmyFnIdl:myApp:mySigl , myCallbackl);

end;

The UnRegFolderChanged function removes a specified callback from use by
the folder change mechanism. Most applications unregister their folder change
callback functions when they close, making the application base view's
viewQuitscript method an appropriate place to unregister folder change
callback functions. For example,

myAppBase.viewQuitScript := func ()begin

UnRegFolderChanged('lmyFnIdl:myApp:mySigl);

end;

Creating the doCardRouting slot

If you want to move items between stores from within the Filing slip, you need to
create a doCardRouting slot in your application's base view. When an external
store is available and the value of this slot is non-ni 1, the Filing slip displays
buttons allowing the user to route the target to a specified destination store. If this
slot has a non-ni 1 value but no external store is available, these "card-routing"
buttons are not displayed.

15-18 Using the Filing Service

ARENDI-DEFS00004232

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 186 of 201 PageID #: 29231

CHAP T ER 15

Filing

Using Local or Global Folders Only

To suppress the display of either local or global folders in the Filing slip and the
folder tab views, you can set the values of optional localFoldersonly and
global FoldersOnly slots that you supply in your application's base view. Note
that the use of local or global folders only is intended to be an application design
decision that is made once, rather than a user preference that can change.

When the local Foldersonly slot holds the value true, the Filing slip and
folder tab views do not display the names of global folders. When the
global FoldersOnly slot holds the value true, the Filing slip and folder tab
views do not display the names of local folders.

WARNING

The local Foldersonly and global FoldersOnly must not
both hold non-nil values at the same time. A

Adding and Removing Filing Categories Programmatically

You can use the AddFolder and RemoveFolder global functions to modify the
set of folders (filing categories) available to your application. Note that the
RemoveFolder function does not remove any folder that is also used by other
applications. For more information, see the descriptions of these methods in the
Newton Programmer's Reference.

I nterface to User-Visible Folder Names

Symbols that represent folders are not tied to the strings that represent those folders
to the user. As a result, you can use the same folder symbol everywhere for a
particular concept, such as a business, while varying the user-visible string
representing that folder; for example the user-visible string could be localized for
various languages.

You can use the GetFolderstr function to retrieve the user-visible string
associated with a folder symbol.

Using the Filing Service 15-19

ARENDI-DEFS00004233

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 187 of 201 PageID #: 29232

CHAP T ER 15

Filing

Summary

This section summarizes the data structures, protos, functions, and methods used
by the Filing service.

Data Structures for Filing

Application Base View Slots

myAppBaseView :_

{_parent: {...},// root view

_proto: {// myAppBaseviewTemplate

_proto: I ... }, // protoApp,
// slots you supply in myAppBaseViewTemplate

appObjectUnfiled: "Unfiled Items",

appAll: "All Items",

appObjectFileThisOn: "File this item on",

storesFilter: NIL,

doCardRouting: 1,

GetTargetInfo: <function, 1 arg(s) #6000F951>,

labelsFilter: NIL,

appObjectFileThisIn: "File this item in",

appSymbol: ImyApp:mySigl ,

... } ,

// my filing button template, defined in app base view

myfilingButton: {_parent: <2> // myAppBaseView,

_proto: protoFilingButton, ...},

my new folder tab template, defined in app base view

myNewFolderTab: I...1, // see summary on page 15-21

Target Information Frame

// returned by the GetTargetInfo method

{target: item,// the item to file or route

targetview: view, // filing messages are sent to this view

targetStore: store, // store on which target resides

// this frame may also include your own slots

15-20 Summary

ARENDI-DEFS00004234

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 188 of 201 PageID #: 29233

CHAP T ER 15

Filing

Filing Protos

protoFilingButton

myFilingButtonView :=

do not override ViewClickScript; use ButtonClickScript instead

{ _parent:{ // MyAppBaseView

_parent: {...}, // root view
_proto: {...}, // myAppBaseViewTemplate

... } ,

_proto: {// myFilingButtonTemplate

set your own viewBounds in NTK view editor

viewBounds: {left: 10, top: 250,

right: 27, bottom: 2631,

_proto: {// protoFilingButton

_proto: { ... }, // protoPictureButton
// your ButtonClickScript must call inherited

ButtonClickScript:<function, 0 arg(s) ...>,

// your Update must call inherited

Update: <function, 0 arg(s) ...>,

// your viewSetupFormScript must call inherited

viewSetupFormScript:<function, 0 arg(s) ... >

}

protoNewFolderTab

myNewFolderTabView := {

{_parent: myAppBaseview, // see summary on page 15-20

_proto: { protoNewFolderTab,

your folder tab's viewSetupFormScript must

call this inherited method using conditional send

viewSetupFormScript: <function, 0 arg(s) ...>,

... } ,

do not alter this slot; set only the text slot

title: {_parent: <2> // myNewFolderTabView,

}

proto: {viewClass: clTextView, ... } ,

// string displayed at left of newFolderTab view

text: "My Text",

... } ,

Summary 15-21

ARENDI-DEFS00004235

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 189 of 201 PageID #: 29234

CHAP T ER 15

Filing

protoClockFolderTab

myClockFolderTabView := {

{_parent: myAppBaseview, // see page 15-20

_proto: { protoClockFolderTab,

your folder tab's viewSetupFormScript must

call inherited:?viewSetupFormScript()

viewSetupFormScript: <function, 0 arg(s) ...>,

do not attempt to alter the time display text

Filing Functions and Methods

... }

view: GetTargetInfo (reason) // override for multiple targets

view:MoveTarget (target, destStore) // move target between stores
RegFolderChanged (callbackID, callBackFn) // register folder change callback
UnRegFolderChanged(callbackID) // unregister folder change callback

AddFolder , (newFolderStr, appSymbol) // add local folder
Remove Fo1der (folderSym, appSymbol) // remove local folder

GetFolderStr(folderSym) // get user-visible folder name from app sym

RemoveAppFolders(appSym) // remove specified app's local folders

GetFolderl,ist (appSymbol, IocalOnly) // list the app's local folders

Application-Defined Filing Functions and Methods

// Optional. Specify filing target, target view, target store
GetTarget Info (reason)

// Required. Respond to changes in filing filter or store filter

targetView: NewFi 1 ingFi 1 ter (newFilter)
// Required. File the item as specified

targetView: FileThis (target, labelsChanged, newLabels, storesChanged, newStore)

15-22 Summary

ARENDI-DEFS00004236

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 190 of 201 PageID #: 29235

C H A P T E R 1 6

Find

This chapter describes how your application can support finding text, dates, or your
own data types in its data. If you want users to be able to use the system's Find
service to locate data in your application, you should be familiar with the material
discussed in this chapter.

Before reading this chapter, you should understand the concept of the target of an
action, explained in Chapter 15, "Filing." Familiarity with using views to image
data, covered in Chapter 3, "Views," is also helpful. If your application stores data
as soup entries, you should understand the contents of Chapter 11, "Data Storage
and Retrieval."

This chapter is divided into two main parts:

■ "About the Find Service" describes the core user interface to the Find service,
along with variations and optional features. A compatibility section covers
differences between the current version of the Find service and previous ones.

■ "Using the Find Service" provides a technical overview of Find operations, with
code examples to show how to implement support for this service in your
application.

In addition, the "Find Reference" (page 13-1) in Newton Programmer's Reference
provides complete descriptions of all Find service data structures, functions,
and methods.

About the Find Service

The Find service searches for occurrences of data items the user specifies on a Find
slip. The Find slip may be supplied by the system or by the developer. Figure 16-1
illustrates the system-supplied Find slip.

About the Find Service 16-1

ARENDI-DEFS00004237

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 191 of 201 PageID #: 29236

CHAP T ER 16

Find

Figure 16-1 The system-supplied Find slip

♦Lookfor time zvlhe
A

Where ID Everywhere C := Selected

Find

The system-supplied Find slip contains an input line that specifies a search string,
several buttons indicate the scope of the search, and a Look For picker (pop-up
menu) that specifies the kind of search to perform. By choosing from the Look For
picker (pop-up menu) you may specify whether the search string is a text item or a
date, as shown in Figure 16-2.

Figure 16-2 Specifying text or date searches in the Find slip

• oo or

Where

-Ortext

dates before
dates on
dates after

lected

Find

Text searches are case insensitive and find only string beginnings. That is, a search
for the string "smith" may return the items "Smith" and "smithers," but not
"blacksmith." Date searches find items dated before, after, or on the date specified
by the search string.

From the application developer's perspective, text finds and date finds are nearly
identical. The only significant difference between them is the test an item must
pass to be included in the result of the search.

The system-supplied Find slip always contains an Everywhere button and Selected
button. If the current application supports the Find service, a button with the
application's name appears in this slip as well.

16-2 About the Find Service

ARENDI-DEFS00004238

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 192 of 201 PageID #: 29237

CHAP T ER 16

Find

Searching for data in the current application only is called a Local find operation.
Figure 16-3 depicts a Local find in the Notepad application.

Figure 16-3 A local Find operation

*Lookfor NeWtOh
A

Where Everywhere "'., Selected

0 Notepad Find

The Everywhere and Selected buttons specify that the system perform searches in
applications other than the currently active one. Applications must register with the
Find service to participate in such searches.

Tapping the Everywhere button tells the system to conduct searches in all currently
available applications registered with the Find service. This kind of search is called
a Global find. Applications need not be open to participate in a Global find.

A Global find is similar to a series of Local find operations initiated by the system.
When the user requests a Global find, the system executes a Local find in each
application registered with the Find service.

Tapping the Selected button causes a checklist to appear at the top of the Find slip.
The list includes all currently available applications registered with the Find
service. Tapping items in the list places a check mark next to applications in which
the system should conduct a Local find. This kind of search is called a Selected
find. The slip in Figure 16-4 depicts a search for the string "Daphne" in the Notes
and Dates applications.

Figure 16-4 Searching selected applications

Ej2'~Notepad_
__'• Names
;Y-,~Dates

Calls
I/O Box

2

♦Lookfor DaPl7he
A

Where Everywhere 0 Selected

Dates Find

About the Find Service 16-3

ARENDI-DEFS00004239

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 193 of 201 PageID #: 29238

CHAP T ER 16

Find

In addition, an application can support searches of multiple data sets. For example,
a personal finance program might allow you to search the check ledger, the account
list, and the credit charges list as separate searches, even though all the data resides
in a single application. For more information on how to implement this in your
application see "Adding Application Data Sets to Selected Finds" beginning on
page 16-19.

In addition, you can replace the Find slip in the currently active application.
Typically, you would do this to provide a customized user interface for specialized
searches. For more information, see "Replacing the Built-in Find Slip" beginning
on page 16-24.

After setting the parameters of the search with the Find slip, the user initiates the
search by tapping the Find button. Alternatively, the user can cancel the search by
tapping the close box to dismiss the Find slip.

While the search executes, the system provides user feedback through a Progress
slip. This slip provides a Stop button that allows the user to cancel a search in
progress. Figure 16-5 shows a typical Progress slip.

Figure 16-5 Progress slip

10 Find

eZZZZZZZZZZZZ

Searching in GoodForm.,,

Stop

I

When the search is completed, the Find service displays an overview list of items
that match the search criteria. Figure 16-6 shows the Find overview as it might
appear after searching all applications for the string "Daphne ° .

16-4 About the Find Service

ARENDI-DEFS00004240

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 194 of 201 PageID #: 29239

CHAP T ER 16

Find

Figure 16-6 The Find overview

Find "Daphne"

Notepad

_ __J Card for Daphne

Names

_ __ Perry, Daphne

Dates

_ ___ Mon VU96 Bday: Daphne Perry

9 91 E3

The user can tap items in the Find overview to display them. As items are displayed,
a status message at the top of the Find slip indicates which item is displayed and
whether there are more results to display. Figure 16-7 depicts this status message.

Figure 16-7 Find status message

This is item 4- There are more items_

*Lookfor NeWtOh

Where 0 Everywhere C., Selected
Time Zones Find

I

When more than one item is found, the status message indicates that there are more
items to display.

Between uses, the Find service stores the setting of the Look For picker. The next
time this service is used, it reopens in the most recently set find mode. Note that in
order to conserve memory, the list of found items is not saved between finds.

About the Find Service 16-5

ARENDI-DEFS00004241

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 195 of 201 PageID #: 29240

CHAP T ER 16

Find

Compatibility Information

The current version of the Find service opens in the text or date find mode last
used. The Find slip in versions of Newton System Software prior to 2.0 always
opened in text find mode, regardless of the mode last used.

Find now performs "date equal" finds, and returns control to the user more quickly
than previous versions did. The Find slip no longer displays the total number of
items in the search result; that is, instead of displaying user feedback such as "This
is item 24. There are 36 items" the Find slip displays "This is item 24. There are
(no) more items."

The Find service now offers routines that allow you to include multiple data sets
from a single application in Selected find operations. Three new methods
support this functionality: AppFindTargets, FindTargeted, and
DateFindTargeted. You use the AppFindTargets method to add identifying
strings for the data sets to the Selected picker. The two new Find methods with
which you implement targeted finds are FindTargeted and
DateFindTargeted. They are identical to their nontargeted counterparts, except
the last parameter, indexPa th, is a path to a data set within an application.

Do not modify any system data structures directly to register or unregister an
application with the Find service. Instead, use the RegFindApps and
UnRegFindApps functions provided for this purpose. Applications running
on older Newton devices can use the kRegFindAppsFunc and
kUnregFindAppsFunc functions provided by NTK for this purpose.

The ShowFoundztem method now has two parameters, a data item and afinder
frame. However, the old ShowFoundztem method, with one parameter (i Lem) is
still supported.

The SetStatus method is obsolete; use the SetMessage method instead. In
addition, the FileAs and MoveTo methods are also obsolete; you should use
FileAndMove instead.

Using the Find Service

This section includes a technical overview of Find operations and describes how to
implement Find support in your application.

Technical Overview

When the user taps the Find button, the system invokes your application's search
method. This can be a date find method (DateFind) or a text find method (Find).

16-6 Using the Find Service

ARENDI-DEFS00004242

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 196 of 201 PageID #: 29241

CHAP T ER 16

Find

The only significant difference between a date find and a text find is that a different
search method locates the items that are returned. To support text searches, you
must supply a Find method. To support searching by date, you must supply a
DateFind method.

You can support any of these search methods independently of one another; for
example, you can implement the Find method without implementing the
DateFind method.

You may also customize searches by adding a subset of data items from one
application to the Selected picker menu in the Find slip. Items added here may be,
for instance, a checkbook and ledger from a personal finance program.

A finder is a frame that enumerates items resulting from a Find operation. The
general characteristics of your finder are defined by the proto it's based on. The
system supplies two protos on which to base your finder: the ROM_SoupFinder
or the ROM_CompatibleFinder.

The ROM_SoupFinder proto supports searching soup data. The
ROM CompatibleFinder proto provides a framework, which you should
override, that supports searching data that is not soup based. When a finder based
on the ROM_SoupFinder proto completes a search, it returns with a cursor which
is used to retrieve the found items from the application soup. When a finder based
on the ROM_CompatibleFinder proto completes a search, it returns with the
actual found items in an array (the items array).

If you store data in soups, there are standard find methods defined for the
ROM_SoupFinder proto that you can use. When you devise a different scheme,
you must use the ROM_CompatibleFinder proto and define versions of the
finder methods that are tailored to your type of data storage.

After a search method scans your application's data and returns a finder frame, you
must append it to the system-supplied results array. Global and Selected finds
usually append more than one frame to this array, as multiple applications
complete their searches.

While a search continues, the system automatically provides user feedback on its
progress. When the search method completes, the system displays an overview list
of the items that were found.

For Global or Selected finds, each application (or data set, for a targeted data set
find) in which items were found is identified by a heading, with the found items
listed under it. The application name that appears in this heading is supplied by the
t i t 1 e slot each application provides in its base view.

The system sends a FindsoupExcerpt message to your application, which must
have a FindsoupExcerpt method to respond to it. This method must extract and
return a string for the Find overview to display. If no items are found, the
FindsoupExcerpt message is not sent. If you are using the

Using the Find Service 16-7

ARENDI-DEFS00004243

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 197 of 201 PageID #: 29242

CHAP T ER 16

Find

ROM_CompatibleFinder proto, the string to display for each found item is
contained in the t i t 1 e slot of each of the items in the i t ems array in your finder.

When the user taps scroll buttons to scroll through this list of found items, the
system keeps track of the user's place in the array of found items. Figure 16-8
depicts the strings from both the title slot and the FindsoupExcerpt method
as they are used in a typical Find overview.

Figure 16-8 Strings used in a Find overview

Find "Daphne"

Notepad
_ __? Card for Daphne

Names
_ __'• Perry, Daphne

Dates
_ ___ Mon 4!8196 Bday: Daphne Perry

text from title slot

text returned by FindsoupExcerpt

When the user taps an item in the overview, the system sends a ShowFoundztem
message to the view specified by the owner slot in your finder frame (which you
appended to the system's results array). In the template of the specified owner
view, you define a ShowFoundztem method that must locate the found item in
your application's data and perform any actions necessary to display it, including
scrolling or highlighting the item as appropriate. Although the interface to the
ShowFoundztem method varies according to the finder proto your finder is based
on, you can often use the same method to display the results of both text and date
searches. If you are using a finder based on ROM_ CompatibleFinder, you must
override its ShowFakeEntry method to call your ShowFoundztem method.

16-8 Using the Find Service

ARENDI-DEFS00004244

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 198 of 201 PageID #: 29243

CHAP T ER 16

Find

Figure 16-9 The ShowFoundItem method displays the view of an overview item

..
Find "Daphne"

Notepad

_ __' Card for Daphne

Names

_
__,

Perry, Daphne

Dates
; Mon 4f8J96 Bday: Daphne Perry

oaa

3=47 Wed 1 118 • Unfiled Notes

QMon 10/16

shawF autvd I t em
~► Card for Daphne

E]Wed 11/1

U 0

M 0

;Notepad
j Names
YfDates

Calls
"'•I10 Sox

9

One item was found_

*Lookfor Daphne
A

Where Everywhere 0 Selected

Notepad Find0

The Find overview provides Routing and Filing buttons. If you are using the
ROM _SoupFinder the system will file, move, and delete your entries in
the overview of found items. In such an occurrence, the soup-change notification
mechanism notifies your application. (The soup-change notification mechanism is
described in Chapter 11, "Data Storage and Retrieval.")

If you are using the ROM_CompatibleFinder you may either not allow your
found item to be routed or override the relevant methods.

Note that if the system routes your soup-based data, your application is notified via
the soup-change notification mechanism. For a complete description of this
mechanism, see Chapter 11, "Data Storage and Retrieval."

Global and Selected Finds

When the user taps the Find button, the system invokes find methods in the
appropriate applications. For a Local find, only the currently active application is
sent a message. For a Global find, all applications registered with the Find service
are sent messages. Selected finds send messages to a user-specified subset of all
applications registered for Global finds. In terms of the messages sent, Global finds
and Selected finds are similar to Local finds; however, there are some differences in
these operations that your application needs to address.

Using the Find Service 16-9

ARENDI-DEFS00004245

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 199 of 201 PageID #: 29244

CHAP T ER 16

Find

The most important difference between Local finds and other kinds of find
operations is that when the system invokes your search method as part of a Global
or Selected find, your application may not be open. Therefore, you must test to see
that the application soup is available before searching it.

The system informs your search method of the scope of the search through the
scope parameter. You can choose to ignore it or you can modify your application's
actions based on whether the value of this parameter is ' localFind or
global Find. The system passes the ' global Find symbol when it invokes

your search method for a Global or Selected find. The ' localFind symbol is
passed for Local find operations.

Checklist for Adding Find Support

To add application support for the Find service, you need to do the following:

■ Create a t i t 1 e slot, in the view referenced by the owne r slot of your finder
frame, that contains the user-visible name of the application.

■ Create the appName slot in your application's base view that contains the user-
visible name of the application.

■ Choose a finder proto on which to base your application's frame. You should
use ROM_SoupFinder if your data is stored in a single soup, and
ROM CompatibleFinder otherwise.

■ Supply at least one search method (Find, DateFind).

■ Append the resultant finder frame to the system-supplied results array at the
end of your search method(s).

■ Supply a FindsoupExcerpt method that extracts strings from soup entries for
display in the Find overview. This method is required only if you use the
ROM_SoupFinder proto. If you use the ROM_CompatibleFinder proto you
must add a t i t 1 e slot with a string defining each found item to the frame
representing the item.

■ Supply a ShowFoundztem method that displays an individual entry from the
found items.

■ When using a ROM_CompatibleFinder proto, write a ShowFakeEntry
method to call your ShowFoundztem method.

■ When using the ROM_CompatibleFinder, you should either not allow
your found items to be selected (and thus not routed), or override the relevant
routing methods.

Optionally, you may also do the following:

■ Register and unregister for participation in Global and Selected finds.

16-10 Using the Find Service

ARENDI-DEFS00004246

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 200 of 201 PageID #: 29245

CHAP T ER 16

Find

■ Employ multiple data sets from one application in a Selected find by adding
the method AppFindTargets, and one or both of the search methods
FindTargeted and DateFindTargeted.

■ Replace the system-supplied Find slip with one of your own by supplying a
CustomFind method in your application's base view. This method will be
called when the user taps Find and your application is frontmost.

The sections immediately following describe these tasks in detail.

Creating the title Slot

A string that is your application's user-visible name must be available in a text slot
called title. You need to create this slot in the view referenced by the owner slot
of the finder frame returned by your search method. Commonly, the owner slot
references the application's base view and the t i t 1 e slot resides in this view.

The Find service uses this string in the list of application names displayed for
Selected finds as well as in the overview of found items.

Creating the appName Slot

Your application's base view must contain an appName text slot. This slot holds a
string that is your application's user-visible name. The value of this slot is used to
name the Find slip button that represents your application when it is the current
application. It is also employed by other system services to obtain a user-visible
name for your application.

Using the Finder Protos

You use a finder proto as the basis from which to construct the finder frame
returned by your search method. The two system-supplied finder protos are
employed according to the data type you use for your application's data storage.
You can create your own customizations at compile time by creating an item like
the following example:

kMySoupFinder:= {

proto: ROM SoupFinder,

Delete: func()

begin

print("About to delete " &

Length(selected) && "items");

inherited:Delete();

end

}

Using the Find Service 16-11

ARENDI-DEFS00004247

Case 1:13-cv-00919-LPS Document 311-7 Filed 03/10/21 Page 201 of 201 PageID #: 29246

