
EXHIBIT 64 PART 2

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 1 of 201 PageID #: 28845Case 1:13-cv-00919—LPS Document 311-6 Filed 03/10/21 Page 1 of 201 PageID #: 28845

EXHIBIT 64 PART 2

ARENDI-DEFS00003848

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 2 of 201 PageID #: 28846Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 2 of 201 PageID #: 28846

AREN D I—DEFSOOOO3848

C H A P T E R 6

Pickers, Pop-up Views, and
Overviews

This chapter describes how to use pickers and pop-up views to present information
and choices to the user. You should read this chapter if you are

■ creating your own pickers and pop-up views

■ taking advantage of built-in picker and pop-up protos

■ presenting outlines and overviews of data

Before reading this chapter, you should be familiar with the information in
Chapter 3, "Views."

This chapter contains:

■ an overview of pickers and pop-up views

■ descriptions of the pickers and pop-up views used to perform specific tasks

■ a summary of picker and pop-up view reference information

About Pickers and Pop-up Views

A picker or pop-up view is a view that pops up and presents a list of items from
which the user can make selections. The view pops up in response to a user action
such as a pen tap.

The distinction between a picker and a pop-up view is not important and has not
been maintained in naming the protos, so the terms are used somewhat
interchangeably. In the discussion that follows, picker is used for both terms.

The simplest picker protos handle the triggering and closing of the picker; for these
protos, all you need to do is provide the items in the list. When the user taps a
button, a label, or a hot spot in a picture, the picker view opens automatically.
When the user makes a selection, the view closes automatically and sends a
message with the index of the chosen item. If the user taps outside the picker, the
view closes, with no selection having been made.

About Pickers and Pop-up Views 6-1

ARENDI-DEFS00003849

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 3 of 201 PageID #: 28847

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

More sophisticated picker protos allow multiple selections and use a close box to
dispatch the view.

With some picker protos, you must determine when and how the picker is displayed.
You open a picker view by sending the open message to the view, or by calling the
PopupMenu function.

Your picker views can display

■ simple text

■ bitmaps

■ icons with strings

■ separator lines

■ two-dimensional grids

The most sophisticated picker protos let you access built-in system soups as well as
your own soups. Much of the behavior of these protos is provided by data
definitions that iterate through soup entries, display a list, allow the user to see and
modify the data, and add new entries to the soup.

Pickers and Pop-up View Compatibility

The 2.0 release of Newton system software contains a number of new picker protos
and a replacement for the DoPopup global function.

New Pickers and Pop-up Views

Two new picker protos, protoPopupButton and protoPopInPlace, define
text buttons that display pickers.

A new set of map pickers allows you to display various maps from which a user
can select a location and receive information about it. The map pickers include
the following:

■ protoCountryPicker

■ protoProvincePicker

■ protoStatePicker

■ protoWorldPicker

A set of new text pickers lets you display pop-up views that show text that the
user can change by tapping the string and entering a new string. The
protoDateTextPicker, for example, lets the user change a date. The text-
picker protos include the following:

■ protoTextPicker

■ protoDateTextPicker

6-2 About Pickers and Pop-up Views

ARENDI-DEFS00003850

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 4 of 201 PageID #: 28848

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ protoDateDurationTextPicker

■ protoRepeatDateDurationTextPicker

■ protoDateNTimeTextPicker

■ protoTimeTextPicker

■ protoDurationTextPicker

■ protoTimeDelta.TimePicker

■ protoMapTextPicker

■ protoCountryTextPicker

■ protoUSstatesTextPicker

■ protoCitiesTextPicker

■ protoLongLatTextPicker

New date, time, and location pop-up views let the user specify new information in
a graphical view—changing the date on a calendar, for example. These protos
include the following:

■ protoDatePopup

■ protoDatePicker

■ protoDateNTimePopup

■ protoDateIntervalPopup

■ protoMultiDatePopup

■ protoYearPopup

■ protoTimePopup

■ protoAnalogTimePopup

■ protoTimeDelta.Popup

■ protoTimeIntervalPopup

A new number picker displays pickers from which a user can select a number. The
new number picker is

■ protoNumberPicker

A set of new overview protos allows you to create overviews of data; some of the
protos are designed to display data from the Names soup. The data picker protos
include the following:

■ protoOverview

■ protoSoupOverview

■ protoListPicker

■ protoPeoplePicker

About Pickers and Pop-up Views 6-3

ARENDI-DEFS00003851

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 5 of 201 PageID #: 28849

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ protoPeoplePopup

The following two protos are data types that support the protoListPicker:

■ protoNameRefData.Def

■ protoPeopleData.Def

Obsolete Function

The DoPopup global function used in system software version 1.x is obsolete; it is
supported in version 2.0, but support is not guaranteed in future releases. Use the
new PopupMenu function instead.

Picker Categories

The remainder of this chapter divides the pickers into a number of categories. The
protos within each category operate in a related manner. General-purpose protos
are used to create simple, general-purpose pickers and pop-up views. The remaining
protos in the list are triggered by specific user actions or by events that you define:

■ general-purpose pickers

■ map pickers

■ text pickers

■ date, time, and location pickers

■ number pickers

■ picture picker

■ overview protos

■ roll protos

There is also a section discussing the view classes used with pickers.

General-Purpose Pickers

You use the protos described in this section to create simple, general-purpose
pickers and pop-up views. Some of the following protos are triggered by specific
user actions, while others are triggered by events that you define:

■ The protoPopupButton picker is a text button that displays a picker when
tapped. The button is highlighted while the picker is open. For information
about the slots and methods for this picker, see "protoPopupButton" (page 5-4)
in Newton Programmer's Reference. Figure 6-1 shows an example of a
protoPopupButton.

6-4 General-Purpose Pickers

ARENDI-DEFS00003852

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 6 of 201 PageID #: 28850

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-1 A protoPopupButton example

1+Popup Button 1
Button

+ Popup Button one
Vtwo
three

After button is tapped, it is highlighted
and picker is shown to the right of it.

■ The protoPopinPlace picker is a text button that displays a picker when
tapped. When the user chooses an item from the picker, the text of the chosen
item appears in the button. For information about the slots and methods for this
picker, see "protoPopInPlace" (page 5-6) in Newton Programmer's Reference.
Figure 6-2 shows an example of a protoPopinPlace.

Figure 6-2 A protoPopznPlace example

+PopinPlace

Button

+PopinPlace First Item
Second Item
Third Item

After button is tapped,

*Third Item

After item is chosen from
picker is shown on top of it. picker, it is shown in button

■ The protoLabelPicker is alabel that displays apicker when tapped. The
currently selected item in the list is displayed next to the label. For information
about the slots and methods for this picker, see "protoLabelPicker" (page 5-8) in
Newton Programmer's Reference. Figure 6-3 shows an example of a
protoLabelPicker.

Figure 6-3 A protoLabelPicker example

♦ Folder or file= Q Serendipity
Current choice Menu of choices
shown next to pops up
label (optionally
includes icon, if
used in picker list)

*Folder or file: C3 Serendipity
C3 Surreptitious

Q Subterranean
Sunny

Q Surly

■ The protoPicker is apicker that displays anything from a simple text list to a
two-dimensional grid containing shapes and text. For information about the slots
and methods for this picker, see "protoPicker" (page 5-13) in Newton

General-Purpose Pickers 6-5

ARENDI-DEFS00003853

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 7 of 201 PageID #: 28851

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Programmer's Reference. Figure 6-4 shows the types of objects you can display
in a protoPicker.

Figure 6-4 A protoPicker example

tone
two

Simple string

Thin
separator line

three

I
11

Two-
dimensional grid

1

four
Y five

Thick
separator line

l
Icon with string

Bitmap

■ The protoGeneralPopup is apop-up view that has a close box. The view
cancels if the user taps outside it. This can use this proto to construct more
complex pickers. It is used, for example, as the basis for the duration
pickers. For information about the slots and methods for this proto, see
"protoGeneralPopup" (page 5-19) in Newton Programmer's Reference.
Figure 6-5 shows an example of a protoGeneralPopup.

Figure 6-5 A protoGeneralPopup example

protoGeneralPopup view

6-6 General-Purpose Pickers

ARENDI-DEFS00003854

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 8 of 201 PageID #: 28852

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoTextList picker is a scrollable list of items. The user can scroll the
list by dragging or scrolling with the optional scroll arrows and can choose one
or more items in the list by tapping them. The scrollable list can include shapes
or text. For information about the slots and methods for this picker, see
"protoTextList" (page 5-20) in Newton Programmer's Reference. Figure 6-6
shows an example of a protoTextLi st.

Figure 6-6 A protoTextList example

Calendar
Calendar Notes
Director
Inbox
Library
Names

■ The protoTable picker is a simple one-column table of text. The user can tap
any item in the list to select it. For information about the slots and methods for
this picker, see "protoTable" (page 5-24) in Newton Programmer's Reference.
Figure 6-7 shows an example of a protoTableList picker.

Figure 6-7 A protoTable example

foo
bar
bax
qux
4
S
6

You define the format of the table using a protoTableDef object; see
"protoTableDef '(page 5-27) in Newton Programmer's Reference for
information. You define the format of each row using a protoTableEntry
object; see "protoTableEntry" (page 5-29) in Newton Programmer's Reference
for information.

Using protoGeneralPopup

As with most protos, you create a protoGeneralPopup object by using the
NTK palette to draw one in your layout. After creating the object, you should
remove the context and cancelled slots. The viewBounds should be (0,
0, width, height) for the box. The New method tries to set the bounds
correctly, based on the recommended bounds passed to the call.

General-Purpose Pickers 6-7

ARENDI-DEFS00003855

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 9 of 201 PageID #: 28853

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

The protoGeneralPopup sends a pickCancelledScript to the
cal lbackContext specified in the New method. However, it does not send a
pickActionScript back; instead, it sends an Affirmative message to itself.
You supply the method and decide what call to make to the context and what
information to send back.

To put other objects in the protoGeneralPopup, just drag them out in NTK. For
example, if you want a checkbox in your pop-up view, drag out a
protoCheckbox. You can put anything in the pop-up view, including your
own protos.

Since you have to assemble the information to send on an affirmative, you will
likely end up declaring your content to the general pop-up.

The only slots you really need to set are Af f irmative and viewBounds.

Af f i rmat ive is a function. Here's an example:

func ()

begin

Notify the context that the user has accepted the

changes made in the popup
if context then

context:?pickActionScript(changeData)

end

Map Pickers

You can use the pickers described in this section to display maps and allow the user
to select countries, U.S. states, Canadian provinces, and cities. The Newton system
software provides the following map picker protos:

■ The protoCountryPicker displays a map of the world. When the user taps a
country, the PickWorld message is sent to your view. For information about
the slots and methods for this picker, see "protoCountryPicker" (page 5-30) in
Newton Programmer's Reference. Figure 6-8 shows an example of a
protoCountryPicker.

6-8 Map Pickers

ARENDI-DEFS00003856

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 10 of 201 PageID #: 28854

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-8 A protoCountryPicker example

■ The protoProvincePicker displays a map of North America. When
the user taps aprovince, the Pickworld message is sent to your view.
For information about the slots and methods for this picker, see
"protoProvincePicker" (page 5 -3 1) in Newton Programmer's Reference.
Figure 6-9 shows an example of a protoProvincePicker.

Figure 6-9 A protoProvincePicker example

y
LA
■ The protostatePicker displays a map of North America. When the user

taps a state, the Pickworld message is sent to your view. For information
about the slots and methods for this picker, see "protoStatePicker" (page 5-32)
in Newton Programmer's Reference. Figure 6-10 shows an example of a
protostatePicker.

Figure 6-10 A protostatePicker example

LA
■ The protoworldPicker displays a map of the world. When the user taps a

continent, the Pickworld message is sent to your view. For information about

Map Pickers 6-9

ARENDI-DEFS00003857

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 11 of 201 PageID #: 28855

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

the slots and methods for this picker, see "protoWorldPicker" (page 5-34) in
Newton Programmer's Reference. Figure 6-11 shows an example of a
protoWorldPicker.

Figure 6-11 A protoWorldPicker example

Text Pickers

Text picker protos allow the user to specify various kinds of information by
picking text representations. Each of these protos displays a label picker with
a string that shows the currently selected data value. For example,
protoDurationTextPicker, which lets the user set a duration, might have a
label of "When" followed by a duration in the form "8:26 A.M. — 10:36 P.M."

When the user taps a text picker, the picker displays a pop-up view in which the
user can enter new information. The Newton system software provides the
following text picker protos:

■ The protoTextPicker is a label picker with a text representation of an entry.
When the user taps the picker, a customized picker is displayed. For information
about the slots and methods for this picker, see "protoTextPicker" (page 5-35) in
Newton Programmer's Reference. Figure 6-12 shows an example of a
protoTextPicker.

Figure 6-12 A protoTextPicker example

6-10

protoTextPicker Test

* Label easier

0

Text Pickers

ARENDI-DEFS00003858

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 12 of 201 PageID #: 28856

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoDateTextPicker is a label picker with a text representation of a
date. When the user taps the picker, a protoDatePopup is displayed, which
allows the user to specify a different date. For information about the slots and
methods for this picker, see "protoDateTextPicker" (page 5-37) in Newton
Programmer's Reference. Figure 6-13 shows an example of a
protoDateTextPicker.

Figure 6-13 A protoDateTextPicker example

♦ September 1995
S m t w t f

1
s

2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 2223
24 @M 26 2728 29 30

1-919..

■ The protoDateDurationTextPicker is a label picker with a text
representation of a range of dates. When the user taps the picker, a
protoDate Interval Popup is displayed, which allows the user to
specify a different range. For information about the slots and methods for
this picker, see "protoDateDurationTextPicker" (page 5-40) in Newton
Programmer's Reference. Figure 6-14 shows an example of a
protoDateDurationTextPicker.

Text Pickers 6-11

ARENDI-DEFS00003859

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 13 of 201 PageID #: 28857

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-14 A protoDateDurationTextPicker example

• Span: 1!1!04 - ongoing

Before tap

Start date

♦ January 1904 }
s m t w t f s

M 2
3
10

4 5 6 7 8
1 1 12 13 14 15

9
16Span:

17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Stop date

♦ January 1904
s m t w t f s

Q 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

*Ongoing

After tap

■ The protoRepeatDateDurationTextPicker is a label picker
with a text representation of a range of dates. When the user taps the
picker, a protoDatelntervalPopup is displayed, which allows the
user to specify a different range. This proto differs from the
protoDateDurationTextPicker in that the
protoRepeatDateDurationDatePicker presents choices that are
appropriate for the repeatType slot, and the duration displayed when the user
taps a duration or stop date is given in units of the repeatType. Otherwise, it
looks like the protoDateDurationTextPicker and popup shown in Appendix
Figure 6-14. For information about the slots and methods for this picker,
see "protoRepeatDateDurationTextPicker" (page 5-43) in Newton Programmer's
Reference.

■ The protoDateNTimeTextPicker is a label picker with a text
representation of a date and time. When the user taps the picker, a
protoDateNTimePopup is displayed, which allows the user to specify a
different date and time. For information about the slots and methods for this
picker, see "protoDateNTimeTextPicker" (page 5-46) in Newton Programmer's
Reference. Figure 6-15 shows an example of a
protoDateNTimeTextPicker.

6-12 Text Pickers

ARENDI-DEFS00003860

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 14 of 201 PageID #: 28858

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-15 A protoDateNTimeTextPicker example

Before tap Label 9/27195 2:15 pm

After tap # September 1995
S m t w t f s

1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 M 28 29 30

•

•1. P
M
0

■ The protoTimeTextPicker is a label picker with a text representation of a
time. When the user taps the picker, a protoTimePopup is displayed, which
allows the user to specify a different time. For information about the slots and
methods for this picker, see "A protoTimeTextPicker example"
(page 6-13) in Newton Programmer's Reference. Figure 6-16 shows an example
of a protoTimeTextPicker.

Figure 6-16 A protoTimeTextPicker example

Before tap

After tap

• Time 1:40 pm

1 P
M0

■ The protoDurationTextPicker is a label picker with a text representation
of a time range. When the user taps the picker, a protoTime Interval Popup
is displayed, which allows the user to specify a different time range. For
information about the slots and methods for this picker, see
"protoDurationTextPicker" (page 5-51) in Newton Programmer's Reference.
Figure 6-17 shows an example of a protoDurationTextPicker.

Text Pickers 6-13

ARENDI-DEFS00003861

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 15 of 201 PageID #: 28859

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-17 A protoDurationTextPicker example

Before tap Hour span_ 5:42 pry - 6:42 pry

After tap

■ The protoTimeDeltaTextPicker is a label picker with a text
representation of a time delta. When the user taps the picker, a
protoTimeDe1taPopup is displayed, which allows the user to specify a
different time delta. For information about the slots and methods for this picker,
see "protoTimeDeltaTextPicker" (page 5-53) in Newton Programmer's
Reference. Figure 6-18 shows an example of a
protoTimeDeltaTextPicker.

Figure 6-18 A protoTimeDeltaTextPicker example

Before tap

After tap

*Time 1:40 pm

1 M0

■ The protoMapTextPicker is a label picker with a text representation of a
country. When the user taps the picker, a popup displays that allows the user to
select a new country from an alphabetical list. For information about the slots
and methods for this picker, see "protoMapTextPicker" (page 5-54) in Newton
Programmer's Reference. Figure 6-19 shows an example of a
protoMapTextPicker.

6-14 Text Pickers

ARENDI-DEFS00003862

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 16 of 201 PageID #: 28860

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-19 A protoMapTextPicker example

Before tap Country_ Afghanistan

After tap Country_ Afghanistan M
Albania
Algeria
Angola

de f

ghi
1k]Argentina

Armenia mno
Australia pqr
Austria
Azerbaijan

Stu

awxBahamas
Bahrain yz
Ban ladesh
Barbados
Belarus
Belgium
Belize

■ The protoCountryTextPicker is the same as protoMapTextPicker.

■ The protoUS state sTextPi cker is a label picker with a text representa-
tion of a U.S. state. When the user taps the picker, a popup displays that allows
the user to select a new state from an alphabetical list. For information about the
slots and methods for this picker, see "protoUSstatesTextPicker" (page 5-56) in
Newton Programmer's Reference. Figure 6-20 shows an example of a
protoUSstatesTextPicker.

Figure 6-20 A protoUSstatesTextPicker example

Before tap * State: Arizona

After tap * State:

Text Pickers

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
Florida
Geor is
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas

a
def

ghi
ik]

mno

pqr

tS u

aws

yZ

6-15

ARENDI-DEFS00003863

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 17 of 201 PageID #: 28861

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoCitiesTextPicker is alabel picker with a text representation of
a city. When the user taps the picker, a popup displays that allows the user to
select a new city from an alphabetical list. For information about the slots and
methods for this picker, see "protoCitiesTextPicker" (page 5-58) in Newton
Programmer's Reference. Figure 6-21 shows an example of a
protoCitiesTextPicker.

Figure 6-21 A protoCitiesTextPicker example

Before tap City: Albany

After tap • USA

Albany NY
Albuquerque NM
Altoona PA
Amarillo TX
Anchorage AK
Area 51 NV
Arlington VA
Athens GA
Atlanta GA
Austin TX
Bakersfield CA
Baltimore MD
Beaumont TX
Bethesda MD

a

def

ghi
lk
.

mno

pqr

Stu

VWH

yz

0

■ The protoLongLatTextPicker is a label picker with a text representation
of longitude and latitude values. When the user taps the picker, a
longLatPicker is displayed, which allows the user to select new longitude
and latitude values. For information about the slots and methods for this picker,
see "protoLongLatTextPicker" (page 5-61) in Newton Programmer's Reference.
Figure 6-22 shows an example of a protoLongLatTextPicker.

Figure 6-22 A protoLongLatTextPicker example

Before tap 0 Where 78 49N 118 40E

After tap

1 1 9

6-16 Text Pickers

ARENDI-DEFS00003864

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 18 of 201 PageID #: 28862

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Date, Time, and Location Pop-up Views

You can use the protos described in this section to present pop-up views to the user
for setting or choosing specific types of values. The Newton System Software
provides the following pop-up protos for date, time, and location values:

■ The protoDatePopup allows the user to choose a single date. For information
about the slots and methods for this proto, see "protoDatePopup" (page 5-63) in
Newton Programmer's Reference. Figure 6-23 shows an example of a
protoDatePopup.

Figure 6-23 A protoDatePopup example

«
s m

June 1993
t w t f s

1 2 3® 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
2021 2223 24 25 26
27 282930

19
❑x

■ The protoDatePicker allows the user to choose a single date when the date
is likely to be relatively close to the current date. Changing the year is not easily
done with this proto. For information about the slots and methods for this proto,
see "protoDatePicker" (page 5-64) in Newton Programmer's Reference.
Figure 6-24 shows an example of a protoDatePicker.

Figure 6-24 A protoDatePicker example

♦
s

January 1906

m t w t f

1 M 3 4 5
s

6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

Date, Time, and Location Pop-up Views 6-17

ARENDI-DEFS00003865

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 19 of 201 PageID #: 28863

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoDateNTimePopup allows the user to choose a single date and time.
For information about the slots and methods for this proto, see
"protoDateNTimePopup" (page 5-67) in Newton Programmer's Reference.
Figure 6-25 shows an example of a protoDateNTimePopup.

Figure 6-25 A protoDateNTimePopup example

♦ June 1993
s m t w t f s

1 2 3® 5
6 7 8 9 1011 12

1314 15 16 17 18 19
2021 22 23 24 25 26
2728 29 30

1433
0

■ The protoDate Interval Popup allows the user to choose an interval of
dates by specifying the start and stop dates. For information about the slots and
methods for this proto, see "protoDatelntervalPopup" (page 5-69) in Newton
Programmer's Reference. Figure 6-26 shows an example of a
protoDateIntervalPopup.

Figure 6-26 A protoDatelntervalpopup example

Start date

♦ June 1993
s m t

1

w

2

t f s

3M 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
2021 22 23 24 25 26
27 28 29 30

Stop date

♦ June 1993
s m t w t f s

1 2 3 4®
6 7 8 9 10 11 12

13 14 15 16 17 18 19
2021 22 23 24 25 26
27 28 29 30

• 2 days

0

6-18 Date, Time, and Location Pop-up Views

ARENDI-DEFS00003866

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 20 of 201 PageID #: 28864

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoMultiDatePopup allows the user to specify arange of dates. For
information about the slots and methods for this proto, see "protoMultiDatePopup"
(page 5-72) in Newton Programmer's Reference. Figure 6-27 shows an example
of a protoMultiDatePopup.

Figure 6-27 A protoMultiDatePopup example

♦
s m

June 1993
t w t

1 2 3
f s

4 5
6 7 8 9 1011 12

13 14 15 16 17 18 19
2021 22232425 26
2728 29 30

19
0

■ The protoYearPopup allows the user to choose a year. For information about
the slots and methods for this proto, see "protoYearPopup" (page 5-73) in
Newton Programmer's Reference. Figure 6-28 shows an example of a
protoYearPopup.

Figure 6-28 A protoYearPopup example

19220

■ The protoTimePopup allows the user to choose a time with a digital clock.
For information about the slots and methods for this proto, see
"protoTimePopup" (page 5-74) in Newton Programmer's Reference.
Figure 6-29 shows an example of a protoTimePopup.

Figure 6-29 A protoTimePopup example

10 1 P....
M ❑x1

Date, Time, and Location Pop-up Views 6-19

ARENDI-DEFS00003867

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 21 of 201 PageID #: 28865

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The protoAnalogTimePopup allows the user to choose a time with an
analog clock. For information about the slots and methods for this proto, see
"protoAnalogTimePopup" (page 5-76) in Newton Programmer's Reference.
Figure 6-30 shows an example of a protoAnalogTimePopup.

Figure 6-30 A protoAnalogTimePopup example

■ The protoTimeDeltaPopup allows the user to choose a time period (a delta).
For information about the slots and methods for this proto, see
"protoTimeDeltaPopup" (page 5-78) in Newton Programmer's Reference.
Figure 6-31 shows an example of a protoTimeDeltaPopup.

Figure 6-31 A protoTimeDeltaPopup example

❑x

■ The protoTime Interval Popup allows the user to choose a time interval by
specifying the start and stop times. For information about the slots and methods
for this proto, see "protoTimeIntervalPopup" (page 5-79) in Newton
Programmer's Reference. Figure 6-32 shows an example of a
protoTimeIntervalPopup.

Figure 6-32 A protoTimeIntervalPopup example

Start time

.13
Stop time

1...4•• 1
* 1 hour

1 minute 0

6-20 Date, Time, and Location Pop-up Views

ARENDI-DEFS00003868

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 22 of 201 PageID #: 28866

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Number Pickers

This section describes the protos available to allow users to pick numbers. The
Newton system software provides the following protos for picking numbers:

■ The protoNumberPicker displays a picker from which the user can select a
number. For information about the slots and methods for this picker, see
"protoNumberPicker" (page 5-81) in Newton Programmer's Reference.
Figure 6-33 shows an example of a protoNumberPicker.

Figure 6-33 A protoNumberPicker example

5.

Picture Picker

This section describes the proto you can use to create a picture as a picker.

■ The protoPictlndexer picker displays a horizontal array of pictures, from
which the user can choose. For information about the slots and methods for this
picker, see "protoPictlndexer" (page 5-82) in Newton Programmer's Reference.
Figure 6-34 shows an example of a protoPictlndexer.

Figure 6-34 A protoPictIndexer example

Circle

OMA

Number Pickers

J

— protoPict Indexer view

6-21

ARENDI-DEFS00003869

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 23 of 201 PageID #: 28867

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Overview Protos

You can use the protos described in this section to create overviews of data. An over-
view allows the user to see all of data in a soup or an array scrolling list. The user
can select individual items and open them to see the detail. Overview protos include:

■ The protooverview provides a framework for displaying an overview of the
data in your application. Each overview item occupies one line, and the user can
scroll the list and pick individual or multiple items. "Using protoOverview"
(page 6-24) has information on using this proto. For further information about
the slots and methods of protoOverview, see "protoOverview" (page 5-85) in
Newton Programmer's Reference. Figure 6-35 shows an example of a
protoOverview.

Figure 6-35 A protoOverview example

♦ Unfiled Nates
} the rain in Spain

Sun M 11:47 am

rl Map 2 Gerry's house... -sketch-
--=

Tue 8/8 1:52 pm

bread... Cheese ... tomatos ... Oranges
Tue 8/8 1:53 pm

Christine's Secret
Tue 8/8 1:54 pm

B -empty-
Tue 8/8 1:55 pm

■ The protosoupoverview provides a framework for displaying an overview
of soup entries in your application. For information about the slots and methods
for this proto, see "protoSoupOverview" (page 5-90) in Newton Programmer's
Reference. Figure 6-36 shows an example of a protosoupoverview.

6-22 Overview Protos

ARENDI-DEFS00003870

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 24 of 201 PageID #: 28868

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-36 A protosoupoverview example

Overview

heart, helped

rules, voice

keeping, death

joined, spend

volume, steps

visit Corp.

either Corp.

-= system corp.

together corp.

adding corp.

young Group

similar Group

getting Group

--= holding Group

wrote Group

cities, ideas

Do It 0

■ The protoListPicker provides a scrollable list of items. Items can be from a
soup, an array, or both. The user can select any number of items in the list. For
information about the slots and methods for this proto, see "protoListPicker"
(page 5-93) in Newton Programmer's Reference. "Using protoListPicker"
(page 6-26) has a more extensive example and discusses how to use this proto.
Figure 6-37 shows an example of a protoListPicker.

Overview Protos 6-23

ARENDI-DEFS00003871

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 25 of 201 PageID #: 28869

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-37 A protoListPicker example

Names ♦ All Items

fac dye f gh ij kl op qr s# yz

Untitled Owner
Answer, Until

___1 Behind, Natural
Dropped, Range
Going, Order

___1 Ideas, Night
Important, However
Instance, Least
Killed, Quality

'L __1 last, this
Least, Every
Music, Class

___1 Peace, Women
Picker 2, From
Picker 3, Test
Program, Paper
Smaller, Reason
Times, Killed

2

Selected Only cm 9

■ The protoPeoplePicker displays alist of names and associated information
from the Names application. For information about the slots and methods for
this proto, see "protoPeoplePicker" (page 5-110) in Newton Programmer's
Reference.

■ The protoPeoplePopup is similar to the protoPeoplePicker, except that
protoPeoplePopup displays the picker in apop-up view. For information
about the slots and methods for this proto, see "protoPeoplePopup" (page 5-111)
in Newton Programmer's Reference.

Using protoOverview

The protoOverview was setup primarily to be the basis
for protosoupOverview. Because of that, you need to do some extra
work to use just the protoOverview.

You need to define Abstract, Hitltem, IsSelected, Selectltem, and
viewSetupChildrenScript methods in your protoOverview. See
"protoOverview" (page 5-85) in Newton Programmer's Reference for details.

6-24 Overview Protos

ARENDI-DEFS00003872

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 26 of 201 PageID #: 28870

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

You also need to define the following slot in your protooverview:

cursor This should be a cursor-like object.

You use the object stored in this slot to encapsulate your data. The cursor-like
object must support the methods Entry, Next, Move, and Clone. An example is
given below.

In addition, you must provide a mechanism to find an actual data item given an
index of a displayed item. In general, you need some sort of saved index that
corresponds to the first displayed item. See the example code in "Hitltem"
(page 5-88) in Newton Programmer's Reference for an example of how this is used.

You also should provide a mechanism to track the currently highlighted item,
which is distinct from a selected item.

Since your data is probably in an array, you can use a "cursor" object like this:

{ items: nil,

index: 0,

Entry:func()

begin

if index < Length(items) then

items [index] ;

end,

Next: func()

if index < Length(items)-1 then

begin

index index + l;

items [index] ;

end,

Move: func(delta)

begin

index := Min(Max(index + delta, 0)

kNumItems-1)

items [index] ;

end,

Clone:func()

Clone (self) }

The methods that you need to have in the cursor-like object are:

■ Entry, which returns the item pointed to by the "cursor."

■ Next, which moves the "cursor" to the next item and returns that item or, if
there is no next item, n 1.

Overview Protos 6-25

ARENDI-DEFS00003873

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 27 of 201 PageID #: 28871

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ Move, which moves the "cursor" a given number of entries and returns that
entry or, if there is no item in that place, n 1.

■ Clone, which returns a copy of the "cursor" that is modifiable independent of
the original "cursor."

Using protoListPicker

The protoListPicker proto—documented in Newton Programmer's Reference
(page 5-93)—provides a number of controls for finding specific entries, including
folder tabs, alphabet tabs (azTabs), and scrolling arrows; any of these controls can
be suppressed.

Like protooverview, this proto manages an array of selected items. Any soup
that can be queried by a cursor can be displayed, or elements from an array can
be displayed.

Figure 6-38 shows afull-featured example of protoListPicker that displays a
two-column list. The first column is used to select or deselect members, and the
second column provides additional information that can be edited in place.

Figure 6-38 A protoListPicker example

~opcd of gh ij kl n

 qr st uv x y

ABC Plastics i 50.00
-__ Abrasives i 2.00

Aluminum, nails i 0.05
Aluminum, sheet i 100.00 'I
Anchors, masonary i 0.50
Angles, measuring i 10.0

[i2r Annode rods i 15.0
Asphalt rile i 2.00
Attu, fans i 300.00 'I
Attu, insulation i 25.00
Awnings i 150.00

_ Selected Only New 2 Selected D :. ..

The checkbox at the bottom-left of the slip is used to either show every eligible
item or to trim all unselected elements from the list. The New button at the bottom
allows the immediate creation of another entry to be displayed. See Figure 6-39.

6-26 Overview Protos

ARENDI-DEFS00003874

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 28 of 201 PageID #: 28872

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-39 Creating a new name entry

New Widget

Name:
A

,,,,,

del

rap r

shift ©© shift

option ®®

When the pen comes down in any column, the row/column cell inverts as shown in
Figure 6-40.

Figure 6-40 Highlighted row

i Unfiled Notes

Widgets i All Widgets

~ ab rd of gh ij kl n op qr st uv x y

72{ ABC Plastics
...: Abrasives
.. Aluminum, nails

A111minlim cheat

* 50.00
* 2.00
* 0.05
• i nn nn

When the pen is released, if it is within the first column, the item is either checked
to show that it is selected or unchecked to show that it is not. See Figure 6-41.

Figure 6-41 Selected row

9:50 Sun 1 115 i Unfiled Notes

Widgets *All Widgets

~rd of gh ij kl Fn)op qr st uv-.Ty

-V ABC Plastics *50.00
Abrasives *2.00

Y5 Aluminum, nails *0.05

When the pen tap is released within the second column, what happens next
depends on the underlying data. If there are many options already available, a

Overview Protos 6-27

ARENDI-DEFS00003875

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 29 of 201 PageID #: 28873

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

pop-up view is displayed to allow the user to select any option or enter a new one.
See Figure 6-42.

Figure 6-42 Pop-up view displayed over list

10:07 sun 1 1 /5 i Unfiled Notes

Widgets ♦ All Widgets

0cd of gh ij kl op qr st uv~y

_Yf ABC PI tics ♦ 50.00
_ +FS Ahras 0.00 ♦ 2.00..

Alumi Add new price *0,05

If the user selects "Add new price" (or if there were one or no options already
available to them), the user can enter a new price as shown in Figure 6-43.

Figure 6-43 Slip displayed for gathering input

1.

cap

shift

New Widget

Price: 1%50

UUEIMMMMG i ~

®®option

del

4

shift

The proto is driven by a frame contained in the pickerDef slot. This picker
definition frame may or may not come from the data definition registry. The
functionality it provides, however, is similar to that of any data definition: it offers
all the hooks the proto needs to interpret and display the data without the proto
itself knowing what the data is.

The chosen items are collected into an array, as described in "Name References"
(page 5-1) in Newton Programmer's Reference, which can be stored separately
from the original entries. Each selection is represented in the array by a name
reference that contains all information needed to display or operate on the entries.
The name reference is stored as part of the selection, along with an entry alias that
refers to the original entry, if there is an original entry. (See "Entry Aliases"
beginning on page 12-1 for basic information on these objects.)

6-28 Overview Protos

ARENDI-DEFS00003876

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 30 of 201 PageID #: 28874

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

The picker definition (described in the next section) is a data definition frame that
is provides the routines to create a name reference from an entry, an entry alias,
another name reference, a straight frame, or just to create a canonical empty name
reference (if no data is provided). It also retrieves the data from a name reference.
Finally, it provides some information about the name reference to support actions
like tapping and highlighting.

You also need to define the soup to query. Both this and the query specification can
be defined either in the data definition or in the list picker.

Using the Data Definitions Frame in a List Picker

The pickerDef slot of the list picker holds a data definition frame that determines
the overall behavior of the list picker. This frame should be based on
protoNameRefDataDef or protoPeopleDataDef, or at should least support
the required slots.

Here is an example:

pickerDef:= {

_proto:

name:

class:

entryType:

soupToQuery:"Widgets",

querySpec: {indexPath:

columns: kColumns,

};

protoNameRefDataDef,

"Widgets",

'InameRef.widgetl ,

'widget,

Specifying Columns

'name},

The columns slot hold an array that determines how the columns in the list picker
are displayed. Here's an example of column specification array:

columns:= [{

fieldPath:'name,// path for field to display in column

optional:true,// not required -- unnamed widget

{

tapWidth:1551,// width for checkbox & name combined

fieldPath:'price,// path for field to display

in column

optional:nil,// price is required

tapWidth:0}];// width -- to right end of view

Overview Protos 6-29

ARENDI-DEFS00003877

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 31 of 201 PageID #: 28875

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

See "Column Specifications" (page 5-3) in Newton Programmer's Reference for
details of the slots.

Having a Single Selection in a List Picker

The key to getting single selection is that single selection is part of the picker
definition and not an option of protoListPicker. That means the particular
class of nameRef you use must include single selection. In general, this requires
creating your own subclass of the particular name reference class.

The basic solution is to create a data definition that is a subclass of the particular
class your protoListPicker variant will view. That data definition will include
the singleselect slot. As an example, suppose you want to use a
protoPeoplePopup that just picks individual people. You could use the
following code to bring up a protoPeoplePopup that allows selecting only one
individual at a time:

// register the modified data definition

RegDataDef('lnameref.people.single:SIGI ,

{_proto: GetDataDefs('InameRef.peoplel), singleselect:

true }) ;

// then pop the thing

protoPeoplePopup:New('lnameref.people.single:SIGI ,[],self,[

1);

// sometime later

UnRegDataDef('lnameref.people.single:SIGI);

For other types of protoListPickers and classes, create the appropriate
subclass. For example, a transport that uses protoAddressPicker for e-mail
messages might create a subclass of nameRef . email I and put that subclass
symbol in the class slot of the protoAddressPicker.

Since many applications are likely to do this, you may cut down on code in your
installScript and removeScript by registering your dataDef only for the
duration of the picker. That would mean registering the class just before you pop
the picker and unregistering after the picker has closed. You can use the
pickActionScript and pickCanceledScript methods to be notified when
to unregister the dataDef.

Having Preselected Items in a List Picker

If you want to have items that are initially selected in a list picker, use the
viewsetupDonescript to set up the selected array, rather than setting up
the selected array in your viewSetupFormScript or
viewSetupChildrenscript, then send the Update message to
protoListPicker to tell it to update the display.

6-30 Overview Protos

ARENDI-DEFS00003878

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 32 of 201 PageID #: 28876

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Validation and Editing in protoListPicker

The built-in validation mechanism is not designed to deal with nested soup
information. In general, you gain more flexibility by not using a
validationFrame in your pickerDef, even if you have no nested entries.
Instead, you can provide your own validation mechanism and editors:

■ define a validate method in your picker definition

■ define an OpenEditor method in your picker definition

■ draw a layout for each editor you require

Here is how your Validate method should work. The following example
assumes that pickerDef. ValidateName and pickerDef. ValidatePager have
been implemented:

pickerDef.Validate := func(nameRef, pathArray)

begin

// keep track of any paths that fail

local failedPaths :_ [];

for each index, path in pathArray do

begin

if path = 'name then

begin

// check if name validation fails

if NOT :ValidateName(nameRef) then

// if so, add it to array of failures

AddArraySlot(failedPaths, path);

end;

else begin

if NOT :ValidatePager(nameRef) then

AddArraySlot(failedPaths, path);

end;

end;

// return failed paths or empty array

failedPaths;

end;

Here is how your OpenEditor method should work:

pickerDef.OpenEditor := func(tapInfo, context, why)

begin

local valid = :Validate(tapInfo.nameRef,

tapInfo.editPaths) ,

if (Length(valid) > 0) then

// if not valid, open the editor

Overview Protos 6-31

ARENDI-DEFS00003879

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 33 of 201 PageID #: 28877

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

// NOTE: returns the edit slip that is opened

GetLayout("editor.t"):new(tapInfo.nameRef,

tapInfo.editPaths, why, self, 'EditDone, context);

else

begin

// the item is valid, so just toggle the selection

context:Tapped('toggle);

nil; // Return <nil>.

end;..

end;

The example above assumes that the base view of the layout editor. t has a New
method that opens the editor and returns the associated view.

The editor can be designed to fit your data. However, we suggest that you use a
protoFloatNGo that is attached to the root view using BuildContext. You are
also likely to need a callback to the pickderDef so it can appropriately update
the edited or new item. Finally, your editor needs to update your data soup using an
xmi t soup method so that the list picker updates.

In the OpenEditor example above, the last three arguments are used by the editor
to send a callback to the pickerDef from the viewQuitscript. The design of
the callback function is up to you. Here is an example:

pickerDef.EditDone := func(nameRef, context)

begin

local valid = :Validate(tapInfo.nameRef, tapInfo.editPaths)

if (Length(valid) > 0) then

begin

// Something failed. Try and revert back to original

if NOT :ValidatePager(nameRef) AND

self.('[pathExpr: savedPagerValue, nameRef]) = nameRef then

nameRef.pager := savedPagerValue.pager;

context:Tapped(nil);// Remove the checkmark

end;

else

// The nameRef is valid, so select it.

context:Tapped('select);

// Clear the saved value for next time.

savedPagerValue := nil;

end;

6-32 Overview Protos

ARENDI-DEFS00003880

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 34 of 201 PageID #: 28878

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Changing the Font of protoListPicker

The mechanism described here will probably change in the future. Eventually you
may be able to set a vi ewFont slot in the list picker itself, just as you can set
viewLinespacing now. In the meantime, you need a piece of workaround code.
You must set the vi ewFont of the list picker and also include this workaround
code.

Give the list picker the following viewSetupDoneScript:

func ()

begin

if listBase then

SetValue(listBase, 'viewFont, viewFont)

inherited:?viewSetupDoneScript();

end;

This sets the vi ewFont of the 1 i stbase view to the view font of the list picker.
You cannot rely on the 1istbase view always being there (hence the test).

Using protoSoupOverview

For the most part, you use this proto like protoOverview, except that it is set up
to use a soup cursor, and, so, is easier to use. See "Using protoOverview" (page 6-24)
for information.

Determining Which protoSoupOverview Item Is Hit

There is a method of protoSoupOverview called Hit Item that is called
whenever an item is tapped. The method is defined by the overview and you should
call the inherited method. Also note that Hitltem gets called regardless of where
in the line a tap occurs. If the tap occurs in the checkbox (that is, if x is less than
se1ectIndent), you should do nothing other than calling the inherited functions,
because the inherited function will handle the tap, otherwise you should do
something appropriate.

The method is passed the index of the item that is hit. The index is relative to the
item displayed at the top of the displayed list. This item is always the current entry
of the cursor used by protoSoupOverview, so you can find the actual soup entry
by cloning the cursor and moving it.

func(itemIndex, x, y)

begin

// MUST call the inherited method for bookkeeping

inherited:HitItem(itemIndex, x, y);

Overview Protos 6-33

ARENDI-DEFS00003881

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 35 of 201 PageID #: 28879

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

if x > selectIndent then

begin

get a temporary cursor based on the cursor used

by soup overview

local tCursor := cursor:Clone();

move it to the selected item

tCursor:Move(itemIndex) ,

move the application's detail cursor to the

selected entry

myBaseApp.detailCursor:Goto(tCursor:Entry());

usually you will close the overview and switch to

some other view

self:Close();

end;

otherwise, just let them check/uncheck

which is the default behavior

end

Displaying the protoSoupOverview Vertical Divider

The mechanism for bringing up the vertical divider line was not correctly
implemented in protosoupOverview. You can draw one in as follows:

// set up a cached shape for efficiency

mySoupOverview.cachedLine := nil;

mySoupOverview.viewSetupDoneScript := func()

begin

inherited:?viewSetupDoneScript();

local bounds :_ :LocalBox();

cachedLine := MakeRect(selectIndent - 2, 0,

selectIndent - 1, bounds.bottom);

end;

mySoupOverview.viewDrawScript := func()

begin

// MUST call inherited script

inherited:?viewDrawScript();

:DrawShape(cachedLine,

{penPattern: vfNone, fillPattern: vfGray});

end;

6-34 Overview Protos

ARENDI-DEFS00003882

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 36 of 201 PageID #: 28880

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Roll Protos

You can use the protos described in this section to present roll views in your
applications. A roll view is one that contains several discrete subviews that are
arranged vertically. The roll can be viewed in overview mode, in which each
subview is represented by a one-line description. Any or all of the subviews can be
expanded to full size. The individual subviews are contained in objects based on
protoRoll Item.

The Newton system software provides the following roll protos:

■ The protoRol l provides a roll-like view that includes a series of individual
items. The user can see the items either as a collapsed list of one-line overviews
or as full-size views. When the user taps an overview line, all the full-size views
are displayed, with the tapped view shown at the top of the roll. For information
about the slots and methods for this proto, see "protoRoll' (page 5-112) in
Newton Programmer's Reference. Figure 6-44 shows an example of a
protoRoll.

Figure 6-44 A protoRoll example

+ Overview of item 1

Overview of item 2

+ Overview of item 3

Overview of item 4

+ Overview of item 5

■ The protoRollBrowser is similar to protoRoll, except that
protoRollBrowser creates a self-contained application based on the
protoApp, described in "protoApp" (page 1-2) in Newton Programmer's
Reference. See "protoRollBrowser" (page 5-116) in Newton Programmer's
Reference for information about the slots and methods for this proto.
Figure 6-45 shows an example of a protoRollBrowser:

Roll Protos 6-35

ARENDI-DEFS00003883

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 37 of 201 PageID #: 28881

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Figure 6-45 A protoRol12rowser example

Collapsed View

* Metric Conversion

Currency Exchange

* Loan Payment

* Net Present Value

Capital Asset Pricing Model

View Classes

Expanded View
Tables

—Metric Conversion

gallons/liters

inches/centimeters

feet/meters

miles/kilometers

pounds/kilograms

Fahrenheit/Celsius

Currency Exchange

Currency 1

Exchange Rate

Currency 2 •

Loan Payment

Number of Years

Interest Rate

There are two view classes that you use for pickers:

■ The c1 Out line view class displays an expandable text outline. Figure 6-46
shows an example.

Figure 6-46 Example of an expandable text outline

6-36

My First Heading

First level 2 head

Another level 2 head

Wow—a third level!

Second main heading

Third main heading

View Classes

ARENDI-DEFS00003884

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 38 of 201 PageID #: 28882

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

■ The c1 Mont hview view class displays a monthly calendar. Figure 6-47 shows
an example.

Figure 6-47 Example of a month view

S M T W T F S

Selected day~0 0 14 12
13 14 15 16 17 18 19

Current day 22 '122 23 24 2S 26
27 28 29 30 31

Specifying the List of Items for a Popup

You specify the item list for protoPicker, protoTextList,
protoPopUpButton, proptoPopupInPlace, and PopUpMenu in
an array. In the simplest case, this is an array of strings, but it can contain
different kinds of items:

simple string

bitmap

icon with string

separator line

A string. You can control the pickability of a text item or add
a mark to the display by specifying the text in a frame, as
described in Table 6-1 (page 6-38).

A bitmap frame or a NewtonScript frame, as returned from
the GetPictAsBits compile-time function. You can
control the pickability of the item or add a mark to the
display by placing the bitmap in a frame, as described in
Table 6-1 (page 6-38).

A frame that specifies both a string and an icon, as described
in Table 6-2 (page 6-38).

An instruction to display a line that runs the width of the
picker. To display a dashed gray line, specify the symbol
' pickSeparator. For a solid black line, specify the
symbol 'pickSolidSeparator.

two-dimensional grid
A frame describing the grid item, as described in Table 6-3
(page 6-39).

If all the items in the picker list cannot fit into the view, the user can scroll the list
to see more items.

Table 6-1 describes the frame used to specify simple string and bitmap items in the
picker list.

Specifying the List of Items for a Popup 6-37

ARENDI-DEFS00003885

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 39 of 201 PageID #: 28883

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Table 6-1 Item frame for strings and bitmaps

Slot name Description

item The item string or bitmap reference.

pickable A flag that determines whether the item is pickable.
Specify non-ni 1 if you want the item to be pickable, or
n 1 if you don't want the item pickable. Not-pickable
items appear in the list but are not highlighted and can't be
selected.

mark A character displayed next to an item when it's chosen.
Specify a dollar sign followed by the character you want to
use to mark this item if it is chosen. For example,

$\uFCOB

specifies the check mark symbol. (You can use the constant
kCheckMarkChar to specify the check mark character.)

f ixedxe fight When you give a bitmap, you can give this slot for the first
item in order to force all items to be the same size. If you
use bitmaps in a list that can become large enough to
scroll, you should specify the f ixedxeight slot for
every item. You can also use slot this for any item to
specify a height different from other items.

Table 6-2 describes the frame used to specify a string with an icon in the picker list.

Table 6-2 Item frame for string with icon

Slot name Description

item The item string.

icon A bitmap frame, as returned from the compile-time function
GetPictAsBits. The bitmap is displayed to the left of the
text, and the text is drawn flush against it, unless the
indent slot is specified.

6-38 Specifying the List of Items for a Popup

continued

ARENDI-DEFS00003886

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 40 of 201 PageID #: 28884

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Table 6-2 Item frame for string with icon (continued)

Slot name Description

indent An integer that defines a text indent to use for this item and
subsequent icon/string items. This integer specifies the
number of pixels to indent the text from the left side of the
picker view. You can use it to line up a number of text items
that may have icons of varying width. Specify —1 to cancel
the indent effect for the current and subsequent text items.
The icon is always centered within the indent width.

f ixedHe fight You can give this slot for the first item in order to force all
items to be the same size. If you use icons in a list that can
become large enough to scroll, you should specify the
f ixedxeight slot for every item. You can also use this
slot for any item to specify a height different from other
items. (When you use PopupMenu, you must specify a
f ixedHeight slot for the first item, because PopupMenu
ignores the height of the icon.)

Table 6-3 describes the frame required to specify a two-dimensional grid item in
the picker list.

Table 6-3 Item frame for two-dimensional grid

Slot Name Description

bits A binary object representing the bitmap of the grid item. A
bitmap is returned in the bits slot in the frame returned by
the compile-time function GetPictAsBits.

The bitmap is a complete picture of the grid item, including
the lines between cells and the border around the outside of the
cells. There must be no extra white space outside the border.
Each cell must be the same size and must be symmetrical.

bounds The bitmap bounds frame, from the bounds slot in the frame
returned by GetPictAsBits.

width The number of columns in the grid (must be non-zero).

height The number of rows in the grid (must be non-zero).

continued

Specifying the List of Items for a Popup 6-39

ARENDI-DEFS00003887

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 41 of 201 PageID #: 28885

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Table 6-3 Item frame for two-dimensional grid (continued)

Slot Name Description

cellFrame Optional. The width of the separator line between cells, used
for highlighting purposes. If you don't specify this slot, the
default is 1 pixel.

outerFrame Optional. The width of the border line around the cells, used
for highlighting purposes. If you don't specify this slot, the
default is 2 pixels.

mask Optional. A binary object representing the bits for a bitmap
mask. This mask is used to restrict highlighting, or for special
hit-testing. The mask must be exactly the same size as the
bitmap. Cells in the grid are highlighted only if the position
tapped is "black" in the mask.

Note

Picker items can include Lx bitmaps but not 2.0 shapes.

When a cell is highlighted in a two-dimensional picker item, only the part of the
cell inside the cell frame lines is inverted. You can vary the highlighting effect by
changing the values of the cellFrame and outerFrame slots, which control
how much unhighlighted space to leave for the cell frame lines. An example of how
these values affect cell highlighting is shown in Figure 6-48.

Figure 6-48 Cell highlighting example for protoPicker

Delete
Insert

cellFrame=l
outerFrame=2

11

Delete
Insert

cellFrame=3
outerFrame=3

6-40 Specifying the List of Items for a Popup

J
®„
J * F
Delete
Insert

cellFrame=0
outerFrame=0

ARENDI-DEFS00003888

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 42 of 201 PageID #: 28886

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

The following sections summarize the reference information in this chapter.

General Picker Protos

protoPopupButton

a ProtoPopupButton

_proto:

viewFlags:

viewBounds:

viewJustify:

text:

popup:

ButtonClickScript:

PickActionScript:

PickCancelledScript:

}

protoPopinPlace

{

protoPopupButton,

flags,

boundsFrame ,

justificationFlags,

string, // text inside button

array,

function,

function,

function,

items in list

called on button tap

returns item selected

user cancelled

a ProtoPopInPlace

_proto:

viewBounds:

viewFlags:

viewJustify:

text:

popup:

PickActionScript:

PickCancelledScript:

}

protoLabelPicker

{

protoPopInPlace,

boundsFrame ,

constant,

justificationFlags,

string, // text

array,

function,

function,

inside button

items in list

returns selected item

user cancelled

a ProtoLabelPicker :_ {

_proto:

viewBounds:

viewFont:

Summary

protoLabelPicker,

boundsFrame ,

fontSpec,

6-41

ARENDI-DEFS00003889

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 43 of 201 PageID #: 28887

6-42

CHAP T ER 6

Pickers, Pop-up Views, and

iconSetup:

labelCommands:

iconBounds:

iconIndent:

checkCurrentItem:

indent:

textIndent:

LabelActionScript

TextSetup:

TextChanged:

UpdateText:

PickerSetup:

Popit:

}

protoPicker

Overviews

icon frame,

array,

boundsFrame,

integer,

Boolean,

integer,

integer,

function,

function,

function,

function,

function,

function,

items in list

// bounds of largest icon

indent of text from icon

true to check selected item

indent of picker from label

indent of text

returns selected item

gets initial item

called upon item value change

call to change selected item

called when user taps label

call to programmatically

pop up picker

aProtoPicker

_proto:

bounds:

viewBounds:

viewFlags:

viewFormat:

viewJustify:

viewFont:

viewEffect:

pickItems:

{

protoPicker,

boundsFrame,

boundsFrame, // ignored

constant,

formatFlags,

justificationFlags,

fontSpec,

effectFlag,

array, // items

pickTextItemHeight:integer, // height reserved for items
pickLeftMargin: integer, // margin of view

pickRightMargin: integer, // margin from right of view

pickTopMargin: integer, // margin above each item in

// list

pickAutoClose: Boolean, // true to

pickItemsMarkable:Boolean, // true to

check mark

pickMarkWidth: integer, // space to reserve for marks

callbackContext: view, // view with pick scripts

PickActionScript: function, // returns selected item

PickCancelledScript:funcdon, // user cancelled

SetItemMark: function, // sets char for check marks

GetItemMark: function, // gets char for check marks

}

Summary

in list

from left

close list after pick

reserve space for

before item

ARENDI-DEFS00003890

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 44 of 201 PageID #: 28888

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoGeneralPopup

a ProtoGeneralPopup :_ {

_proto: protoGeneralPopup,

viewBounds : boundsFrame,

viewFlags:

cancelled:

context:

New:

Affirmative:

constant,

Boolean,

view,

function,

PickCance11edScript : function,

}

protoTextList

true if

POP-UP
// view

open pop-up view

user taps pop-up

called in pop-up

cancelled

user cancelled

view

with pick scripts

view

view

aProtoTextList

_proto:

viewBounds:

viewFont:

viewFormat:

viewLines:

{

protoTextList,

boundsFrame ,

fontSpec,

formatFlags,

integer, // number of lines to show

selection: integer,

selectedltems : arrary,

listltems: array,

lineHeight: array,

isShapeList: Boolean,

useMultipleSelections:

Boolean ,

useScroller: Boolean,

scrollAmounts : array,

DoScrollScript:

ViewSetupFormScript:

ButtonClickScript:

}

protoTable

index of selected item

items in list

strings or shapes in list

height of lines in list

true if picts instead of text

true for multiple select

true to include scrollers

units to scroll

function,

function,

function,

scrolls list by offset

set up list

returns selected item

aProtoTable :_ {

_proto: protoTable,

viewBounds : boundsFrame,

Summary 6-43

ARENDI-DEFS00003891

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 45 of 201 PageID #: 28889

6-44

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

viewFormat:

def :

scrollAmount:

currentSelection:

selectedCells:

declareSelf:

ViewSetupFormScript:

SelectThisCell:

selected

}

protoTableDef

formatFlags,

frame,

integer,

string,

array,

symbol,

function,

function,

protoTableDef table

definition frame

number of rows to scroll

text of selected item

selected cell indexes

'tabbase; do not change

set up table

called when cell is

aProtoTableDef := {

proto: protoTableDef,

tabAcross:

tabDown:

tabWidths:

tabHeight:

tabProtos:

tabValues:

integer,

integer,

integer,

integer,

frame,

integer/array,

tabValueSlot: symbol,

tabUniqueSelection : Boolean,

indentX : integer,

TabSetUp: function,

}

protoTableEntry

number of columns - must be 1

number of rows in table

width of table

height of rows

references to row templates

value/array of values for

rows

slot to store tabValues in

// true for single selection

do not change: used internally

called before each row set up

a ProtoTableEntry

_proto:

viewClass:

viewFlags:

viewJustify:

{

protoTableEntry,

clTextView,

flags,

justificationFlags,

viewTransferMode: modeOr,

text: string, // text inside table

ViewClickScript: function, // sets current selection

ViewHiliteScript: function, // highlights selection

}

Summary

ARENDI-DEFS00003892

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 46 of 201 PageID #: 28890

_proto:

viewBounds:

autoClose:

listLimit:

PickWorld:

}

Summary

C HAP T ER 6

Pickers, Pop-up Views, and Overviews

Map Pickers

protoCountryPicker

a ProtoCountryPicker :_ {

_proto: protoCountryPicker,

viewBounds : boundsFrame,

autoClose: Boolean,

listLimit: integer,

PickWorld: function,

}

protoProvincePicker

true to close picker on selection

maximum items listed

called when selection is made

a ProtoProvincePicker :_ {

_proto:

viewFlags:

autoClose:

listLimit:

PickWorld:

}

protoProvincePicker,

constant,

Boolean,

integer,

function,

protoStatePicker

true to close picker on selection

maximum items listed

called when selection is made

a ProtoStatePicker :_ {

_proto: protoStatePicker,

viewFlags : constant,

autoClose: Boolean, // true to close picker on selection

PickWorld: function, // called when selection is made

listLimit: integer, // maximum items listed

}

protoWorldPicker

a ProtoWorldPicker :_ {

protoWorldPicker,

boundsFrame ,

Boolean, // true to close picker on selection

integer, // maximum items listed

function, // called when selection is made

6-45

ARENDI-DEFS00003893

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 47 of 201 PageID #: 28891

6-46

_proto:

label:

labelFont:

entryFont:

startTime:

stopTime:

longFormat:

shortFormat:

Summary

C HAP T ER 6

Pickers, Pop-up Views, and Overviews

Text Picker Protos

protoTextPicker

a ProtoTextPicker {

_proto: protoTextPicker,

label:

indent:

labelFont:

entryFont:

string,

integer,

fontSpec,

fontSpec,

//

//

//

//

picker label

indent

font for label

font for picker line

Popit: function, // user tapped picker

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

TextSetup: function, // returns text string

}

protoDateTextPicker

a ProtoDateTextPicker :_ {

_proto:

label:

date:

longFormat:

shortFormat:

protoDa

string,

integer,

symbol,

symbol,

PickActionScript : function,

PickCancelledScript : function,

}

proto Date DurationTextPicker

teTextPicker,

// picker label

initial and currently

selected date

format to display date

format to display date

returns selected item

user cancelled picker

a ProtoDateDurationTextPicker :_ {

protoDateDurationTextPicker,

string,

fontSpec,

fontSpec,

integer,

integer,

symbol,

symbol,

picker label

display font

picked entry font

initial start date

initial end date

format to display date

format to display date

ARENDI-DEFS00003894

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 48 of 201 PageID #: 28892

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

protoRepeatDateDurationTextPicker

a ProtoRepeatDateDurationTextPicker :_ {

_proto: protoRepeatDateDurationTextPicker,

label: string, // picker label

startTime: integer, // initial start date

stopTime: integer, // initial end date

longFormat: symbol, // format to display date

shortFormat: symbol, // format to display date

repeatType: constant, // how often meeting meets

mtgInfo: constant, // repeating meetings

PickActionScript: function, // returns selected item

PickCancelledScript:funcdon, // user cancelled picker

}

proto Date NTimeTextPicker

a ProtoDateNTimeTextPicker :_ {

_proto: protoDateNTimeTextPicker,

label: string, // picker label

date: integer, // initial date/time

format: symbol, // format to display time

longFormat: symbol, // format to display date

shortFormat: symbol, // format to display date

increment: integer // amount to change time

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

protoTimeTextPicker

a ProtoTimeTextPicker :_ {

_proto: protoTimeTextPicker,

label: string, // picker label

labelFont: fontSpec, // label display font

entryFont: fontSpec, // picked entry font

indent: integer, // amount to indent text

Summary 6-47

ARENDI-DEFS00003895

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 49 of 201 PageID #: 28893

6-48

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

time:

format:

increment:

integer,

symbol,

integer,

PickActionScript : function,

PickCancelledScript : function,

}

protoDurationTextP icker

initial start time

format to display time

increment to change

time for taps

returns selected item

user cancelled picker

a ProtoDurationTextPicker :_ {

_proto: protoDurationTextPicker,

label: string,

startTime : integer,

stopTime : integer,

format: symbol,

increment: integer,

PickActionScript : function,

PickCancelledScript : function,

}

protoTimeDeltaTextPicker

picker label

initial start time

initial end time

format to display time

increment to change

time for taps

returns selected item

user cancelled picker

a ProtoTimeDeltaTextPicker :_ {

_proto:

label:

time:

labelFont:

entryFont:

indent:

increment:

minValue:

PickActionScript:

PickCancelledScript:

}

Summary

protoTimeDeltaTextPicker,

string,

integer,

fontSpec,

fontSpec,

integer,

integer,

integer,

function,

function,

picker label

initial time

label display font

picked entry font

//amount to indent text

increment to change

time for taps

minimum delta value

returns selected item

user cancelled picker

ARENDI-DEFS00003896

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 50 of 201 PageID #: 28894

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoMapTextPicker

a ProtoMapTextPicker

_proto:

label:

labelFont:

entryFont:

indent:

params:

{

protoMapTextPicker,

string,

fontSpec,

fontSpec,

integer,

frame,

PickActionScript: function,

PickCancelledScript: function,

}

protoCountryTextP icker

picker label

label display font

picked entry font

amount to indent text

returns selected item

user cancelled picker

a ProtoCountryTextPicker :_ {

_proto:

label:

labelFont:

entryFont:

indent:

params:

PickActionScript:

PickCancelledScript:

}

protoCountryTextPicker,

string,

fontSpec,

fontSpec,

integer,

frame,

function,

function,

p roto U S state sText P i cke r

picker label

label display font

picked entry font

amount to indent text

returns selected item

user cancelled picker

a ProtoUSstatesTextPicker :_ {

_proto: protoUSstatesTextPicker,

label: string,

labelFont: fontSpec,

entryFont: fontSpec,

indent: integer,

params:

PickActionScript:

PickCancelledScript:

}

Summary

frame,

function,

function,

picker label

label display font

picked entry font

amount to indent text

returns selected item

user cancelled picker

6-49

ARENDI-DEFS00003897

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 51 of 201 PageID #: 28895

6-50

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoC itiesTextP icker

a ProtoCitiesTextPicker :_ {

_proto: protoCitiesTextPicker,

label: string, // picker label

labelFont: fontSpec, // label display font

entryFont: fontSpec, // picked entry font

indent: integer, // amount to indent text

params : frame,

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

proto Long LatTextP icker

a ProtoLongLatTextPicker :_ {

_proto:

label:

latitude:

longitude:

labelFont:

entryFont:

indent:

PickActionScript:

PickCancelledScript:

worldClock:

}

protoLongLatTextPicker,

string,

integer,

integer,

fontSpec,

fontSpec,

integer,

function,

function,

boolean

// picker label

initial latitude

initial longitude

label display font

picked entry font

amount to indent text

returns selected item

user cancelled picker

do not change

Date, Time, and Location Pop-up Views

protoDatePopup

aProtoDatePopup {

_proto:

New:

PickActionScript:

PickCancelledScript:

}

Summary

protoDatePopup,

creates pop-up view

returns selected item

user cancelled picker

function,

function,

function,

ARENDI-DEFS00003898

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 52 of 201 PageID #: 28896

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoDatePicker

a ProtoDatePicker :_ {

_proto: protoDatePicker,

selectedDates: array, // selected date

DateChanged: function, // called when date is selected

Refresh: function, // update view with new dates

}

protoDateNTimePopup

protoDateNTimePopup :_ {

_proto: protoDateNTimePopup,

New: function, // creates pop-up view

NewTime: function, // called when time changes

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

protoDateIntervalPopup

protoDateIntervalPopup :_ {

_proto: protoDateIntervalPopup,

New: function, // creates pop-up view

NewTime: function, // called when time changes

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

protoMultiDatePopup

protoMultiDatePopup :_ {

_proto: protoMultiDatePopup,

New: function, // creates pop-up view

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

Summary 6-51

ARENDI-DEFS00003899

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 53 of 201 PageID #: 28897

6-52

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoYearPopup

protoYearPopup

_proto:

New:

NewYear:

DoneYear:

PickCancelledScript:

}

protoTimePopup

._ {
protoYearPopup,

function,

function,

function,

function,

creates pop-up view

called when year changes

called on close box tap

user cancelled picker

protoTimePopup

_proto: protoTimePopup,

New: function,

NewTime: function,

PickActionScript: function,

PickCancelledScript: function,

}

._ {

protoAnalogTimePopup

creates pop-up view

called when time changes

returns selected item

user cancelled picker

protoAnalogTimePopup :_

_proto:

New:

NewTime:

PickActionScript:

PickCancelledScript:

}

protoTimeDeltaPopup

{

protoAnalogTimePopup,

function,

function,

function,

function,

creates pop-up view

called when time changes

returns selected item

user cancelled picker

protoTimeDeltaPopup :_ {

_proto: protoTimeDeltaPopup,

New: function, // creates pop-up view

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

Summary

ARENDI-DEFS00003900

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 54 of 201 PageID #: 28898

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoTimeIntervalPopup

protoTimeIntervalPopup :_ {

_proto: protoTimeIntervalPopup,

New: function, // creates pop-up view

PickActionScript: function, // returns selected item

PickCancelledScript: function, // user cancelled picker

}

Number Pickers

protoNumberPicker

aProtoNumberPicker

_proto:

:_ {

protoNumberPicker,

minValue:

maxValue:

value:

showLeadingZeros:

prepareForClick:

integer,

integer,

integer,

Boolean,

function,

//

//

//

//

//

minimum value in list

maximum value in list

currently selected value

true to show leading zeros

called after click is

processed

ClickDone: function, // called after click is

processed

}

Picture Picker

protoPictindexer

aProtoPictIndexer :_ {

_proto: protoPictIndexer,

viewBounds boundsFrame,

viewiustify: justificationFlags,

viewFormat formatFlags,

icon: bitmap, // bitmap with objects

arranged vertically

iconBBox: boundsFrame, // bitmap bounds within view

numIndices : integer, // # of objects in bitmap
curIndex: integer, // index of current item

IndexClickScript: function, // user taps bitmap

}

Summary 6-53

ARENDI-DEFS00003901

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 55 of 201 PageID #: 28899

6-54

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Overview Protos

protoOverview

aProto0verview

_proto:

viewBounds .

viewFlags .

viewFont .

lineHeight:

selectIndent:

nothingCheckable:

SelectItem:

SetupAbstracts:

Abstract:

HitItem:

IsSelected:

{

proto0verview,

boundsFrame,

constant,

fontSpec,

integer,

integer,

Boolean,

function,

function,

function,

function,

function

cursor: cursor,

CheckState : function,

Scroller: function,

SelectItem: function,

viewSetupChildrenScript:

}

protoSoupOverview

height of items in pixels

specifies left margin

true for no checkboxes

to record selected items

set up entry

return shape given entry

called when item is tapped

Return true if the item is

selected

cursor for the items

determines if selectable

implement scrolling here

records selected items

function, // Calls SetupAbstracts

a ProtoSoupOverview :_ {

_proto: protoSoupOverview,

autoDeselect: Boolean,

cursor:

Scroller:

SelectItem:

Abstract:

IsSelected:

ForEachSelected:

}

Summary

cursor,

function,

function,

function,

function,

function,

whether to deselect when

the pen leaves an item

cursor for the entries

implement scrolling here

records selected items

return shape given entry

returns true if selected

called for each selected

item

ARENDI-DEFS00003902

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 56 of 201 PageID #: 28900

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoListPicker

a ProtoListPicker := {

_proto: protoListPicker,

declareSelf : symbol, // Set to 'pickBase

defaultiustification :constant,

viewFlags constant,

viewBounds boundsFrame,

lineHeight: integer, // height of items in pixels

listFormat: formatFlags,

pickerDef: frame, // defines list behavior

selected: array, // references to selected items

soupToQuery: string, // union soup to query

querySpec: frame, // query to use

selected: array, // modified as user selects

and deselects item

singleSelect: Boolean, // single selection if non-nil

suppressNew: Boolean, // suppress New button if non-nil

suppressScrollers:Boolean, // suppress scroller if

non-nil

suppressAZTabs: Boolean, // suppress tabs if non-nil

suppressFolderTabs:Boolean, // suppress if non-nil

suppressSelOnlyCheckbox:Boolean,// suppress if non-nil

suppressCloseBox: Boolean, // suppress if non-nil

suppressCounter: Boolean, // suppress if non-nil

reviewSelections: Boolean, // Selected Only if non-nil

readOnly: Boolean, // items are read-only if

non-nil

dontPurge: Boolean, // keep unselected refs if

non-nil

soupChangeSymbol: symbol, // for RegSoupChange method

SoupEnters: function, // syncs up changed soup

SoupLeaves: function, // syncs up changed soup

SetNowShowing: function, // set Selected Only

AddFakeItem: function, // add item to array; update

screen

GetSelected: function, // returns clone of selected

array

}

Summary 6-55

ARENDI-DEFS00003903

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 57 of 201 PageID #: 28901

6-56

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

protoNameRefDataDef

a ProtoNameRefDataDef := {

_proto: protoNameRefDataDef,

name: string,

class: symbol,

entryType: symbol,

columns: array,

singleSelect: Boolean,

soupToQuery: string, // union soup to query

querySpec: frame, // query to use

validationFrame:frame, // checks validity of entry

MakeCanonicalNameRef :function, // make blank name ref

MakeNameRef:

Get:

function,

function,

GetPrimaryValue : function,

HitItem: function,

MakePopup : function,

Tapped: function,

New: function,

name to identify picker in

top left corner

specify class for new name

references

class for new soup entries

column specifications

single selection if non-nil

make name reference

returns data from specified

object

retrieves data from object

called when item tapped

called before making pop-up

view

called when tap has been

handled

called when tap on New button

DefaultOpenEditor:funcdon, // open an edit view

OpenEditor: function, // open an custom edit view

NewEntry: function, // returns a new soup entry

ModifyEntry: function, // returns a modified soup entry

Validate: function, // validates paths

}

proto People Data Def

a ProtoPeopleDataDef := {

_proto:

entryType : symbol,

soupToQuery: string,

primaryPath: symbol,

primaryPathMapper : frame,

Equivalent: function,

Summary

protoPeopleDataDef,

class for new soup entries

union soup to query

the primary path column

maps entry class to data

compares two name refs

ARENDI-DEFS00003904

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 58 of 201 PageID #: 28902

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

Validate: function,

ModifyEntryPath: function,

GetRoutingInfo: function,

Get I temRoutingFrame: function,

GetRoutingTitle: function,

PrepareForRouting:function,

}

protoPeoplePicker

returns array of invalid

refs

entry modification of Names

retrieves routing info

converts routing info

creates target string

strips extra info

a ProtoPeoplePicker :_ {

_proto:

class:

selected:

}

protoPeoplePicker,

symbol,

array,

protoPeoplePopup

type of data to display

references to selected items

a ProtoPeoplePicker :_ {

_proto:

class:

selected:

context:

options:

protoPeoplePicker,

symbol,

array,

symbol,

array,

PickActionScript : function,

}

Roll Protos

type of data to display

references to selected items

view with PickActionScript

method

options for protoListPicker

called when pop-up is closed

protoRoll

aProtoRoll

_proto:

viewFlags:

viewBounds:

items:

Summary

{

protoRoll,

constant,

boundsFrame ,

array, // templates for roll items

6-57

ARENDI-DEFS00003905

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 59 of 201 PageID #: 28903

6-58

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

allCollapsed:

index:

Boolean ,

integer,

declareSelf : symbol,

}

protoRollBrowser

roll collapsed if non-nil

index of item to start

display at

'roll — do not change

a ProtoRollBrowser := {

_proto:

viewBounds:

viewJustify:

viewFormat:

title:

rollItems:

rollCollapsed:

rollIndex:

declareSelf:

}

protoRollltem

protoRollBrowser,

boundsFrame,

justificationFlags,

formatFlags,

string, // text for title at top of roll

array,

Boolean ,

integer,

symbol,

templates for roll items

roll collapsed if non-nil

index of item to start

display at

'base — do not change

aProtoRollItem

_proto:

viewBounds:

viewJustify:

viewFormat:

overview:

height:

stepchildren:

}

View Classes

{

protoRollItem,

boundsFrame,

justificationFlags,

formatFlags,

string,

integer,

Boolean,

text for one-line overview

height of the view in pixels

child views for this roll item

cl0utlineView

myOutline:= I...
viewClass: clOutline,

viewBounds: boundsFrame,

Summary

ARENDI-DEFS00003906

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 60 of 201 PageID #: 28904

CHAP T ER 6

Pickers, Pop-up Views, and Overviews

browsers: array, // frame with array of outline

items

viewFont : fontSpec,

viewFlags constant,

viewFormat : formatFlags,

clickSound: frame, // sound frame for taps

OutlineClickScript:funcdon, //called when user taps item

}

clMonthView

theMonth := I...
viewclass: clMonthView,

viewBounds : boundsFrame,

viewflags: constant,

labelFont : fontSpec,

dateFont : fontSpec,

selectedDates : array,

viewSetupFormScript : function,

}

Functions

PopupMenu (list, options)

IsNameRef (item)

AliasFromObj (item)

EntryFromObj (item)

Ob j Ent ryC 1 a s s (item)

Summary 6-59

ARENDI-DEFS00003907

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 61 of 201 PageID #: 28905

ARENDI-DEFS00003908

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 62 of 201 PageID #: 28906Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 62 of 201 PageID #: 28906

AREN D I—DEFSOOOO3908

C H A P T E R 7

Controls and Other Protos

Controls are software objects that provide various user interface capabilities,
including scrolling, selection buttons, and sliders. You use the controls and other
protos described in this chapter to add these features to your NewtonScript
applications.

This chapter gives a general description of the controls and related protos provided
in Newton System Software. For a detailed description of these protos, including
the slots that you use to set to implement each, see "Controls Reference"
(page 6-1) in Newton Programmer's Reference.

This chapter provides information about the following controls and protos:

■ horizontal and vertical scrollers

■ boxes and buttons

■ alphabetical selection tabs

■ gauges and sliders

■ time-setting displays

■ special views

■ view appearance enhancements

■ status bars

Controls Compatibility

The 2.0 release of Newton System Software includes a number of new protos,
including:

■ four new scroller protos: protoHorizontal2DScroller,
protoLef tRightScroller, protoUpDownScroller, and
protoHorizontalUpDownScroller

■ two new buttons: protoInfoButton and protoOrientation

■ two selection tab protos: proto=abs and protoAZVertTabs

7-1

ARENDI-DEFS00003909

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 63 of 201 PageID #: 28907

CHAP T ER 7

Controls and Other Protos

■ four new date and time protos: protoDigitalClock, protoSetClock,
protoNewSetClock, and protoAMPMCluster

■ two special view protos: protoDragger and protoDragNGo

Scroller Protos

Scrollers allow the user to move vertically or horizontally through a display that is
bigger than the view. The Newton System Software provides a number of scrollers
to allow users to scroll their views.

All scroller protos are implemented in the same way; that is, they use the same
methods and slots. These scrollers are not linked or related to the scroll arrows on
the built-in button bar. For individual descriptions of the scroller protos, see
"Scroller Protos" (page 7-2) in Newton Programmer's Reference. This section
describes how to implement scrollers in your applications.

The scroller protos do not perform the actual scrolling of data in a view; they
simply display and maintain the arrows as the user taps them. To scroll data in a
view, you can use the following protos in your applications:

■ The protoHorizontal2DScroller is centered at the bottom of a view and
provides both horizontal and vertical scroll arrows. For more information about
the slots and methods for this scroller, see "protoHorizontal2DScroller"
(page 6-2) in Newton Programmer's Reference. Figure 7-1 shows an example
of a protoHorizontal2DScroller view.

Figure 7-1 A protoHorizontal2DScroller view

■ The protoLeftRightscroller is centered at the bottom of aview and
provides horizontal scroll arrows. For more information about the slots and
methods for this scroller, see "protoLeftRightScroller" (page 6-5) in Newton
Programmer's Reference. Figure 7-2 shows an example of a
protoLeftRightscroller view.

Figure 7-2 A protoLeftRightScroller view

M3

7-2 Scroller Protos

ARENDI-DEFS00003910

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 64 of 201 PageID #: 28908

CHAP T ER 7

Controls and Other Protos

■ The protoUpDownScroller is centered on the right side of a view and
provides vertical scroll arrows. For more information about the slots and
methods for this scroller, see "protoUpDownScroller" (page 6-5) in Newton
Programmer's Reference. Figure 7-3 shows an example of a
protoHorizonta12DScroller view.

Figure 7-3 A protoUpDownScroller view

0
■ The protoHorizontalUpDownScroller is centered at the bottom of a

view and provides vertical scroll arrows. For more information about the slots
and methods for this scroller, see "protoHorizontalUpDownScroller" (page 6-6)
in Newton Programmer's Reference. Figure 7-4 shows an example of a
protoHorizontalUpDownScroller view.

Figure 7-4 A protoHorizontalUpDownScroller view

GKI

Implementing a Minimal Scroller

To implement a minimal scroller, all that you have to define is a
Viewscrol12DScript method in your scroller template. This method is
called whenever the user taps one of the scroll arrows in the scroller view. Your
ViewScro112DScript method must perform the actual scrolling of the contents
of some other view, which you usually do by calling the setorigin method.

For more information on the ViewScro112DScript method, see
"ViewScroll2DScript" (page 6-3) in Newton Programmer's Reference. For
more information on the Setorigin method, see "SetOrigin" (page 2-48) in
Newton Programmer's Reference.

Automatic Arrow Feedback

All of the scroller protos can provide visual feedback to the user indicating that
there is more information to see. This feedback is handled automatically for your if
you provide three additional slots in your scroller template: scro11Rect,

Scroller Protos 7-3

ARENDI-DEFS00003911

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 65 of 201 PageID #: 28909

CHAP T ER 7

Controls and Other Protos

viewRect, and dataRect. Each of these slots is abounds frame with the
following form:

{left: 0, top: 0, right: 10, bottom: 101

You usually create these bounds frame slots with the utility function SetBounds,
which is described in "SetBounds" (page 2-34) in Newton Programmer's Reference.

When you use these slots, the scroller protos highlight the scrolling arrows
automatically to indicate to the user that more data can be viewed by tapping on the
highlighted arrows.

Each of the bounds frame slots serves a specific purpose in the scroller, as shown in
Table 7-1. The next section provides several examples of setting the values of these
slots for different scrolling effects.

Table 7-1 Scroller bounds frame slots

Slot name Description

scrollRect Specifies the scrollable area, which is the total area that the
user can see, or scroll over, with the scroller.

viewRect Specifies the part of the scrollable area that the user can
see at any one time. This is usually smaller than the area
specified by scrollRect.

dataRect Specifies the portion of the scrollRect that contains
data. In simple cases, this is the same as scrollRect.

Scrolling Examples

This section presents several simple examples of setting the bounds frame slots in
your scroller to allow scrolling.

Scrolling Lines of Text

To scroll lines of text, you set the values of the three scroller bounds frames as
required for your application. For example, if you have 20 text items in a vertical
list and you want to show 6 of the items at a time, you need to set the slot values
as follows:

scrollRect: SetBounds(0, 0, 0, 20) // 20 possible lines

viewRect: SetBounds(0, 0, 0, 6) // show 6 at a time

dataRect: SetBounds(0, 0, 0, 20)

7-4 Scroller Protos

ARENDI-DEFS00003912

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 66 of 201 PageID #: 28910

CHAP T ER 7

Controls and Other Protos

Scrolling in the Dates Application

Scrolling in the Dates application allows the user to see the 24 hours in a day, 7
hours at a time. When there is only interesting data in a certain range of the day,
the application sets the dataRect for that time frame. This tells the scroller to
blacken a scroll arrow when the data time frame is not displayed in the viewRect,
providing additional visual feedback to the user.

scrollRect: SetBounds(0, 0, 0, 24) // 24 hours per day
viewRect: SetBounds(0, 0, 0, 7) // show 7 at a time
dataRect: SetBounds(0, 0, 0, 10) // meeting from 9-10

Scrolling In a Graphics Application

A final example shows scrolling in a graphics application. This example shows a
total scrollable area of 200 pixels by 200 pixels, of which a 50 pixel by 50 pixel
area is shown at any one time. In this example, an object of interest (data) is
located at (100,100).

// total area is 200 by 200
scrollRect: SetBounds(0, 0, 200, 200)

// show a 50 by 50 area at a time
viewRect: SetBounds(0, 0, 50, 50)

// there's something at location (100,100)
dataRect: SetBounds(100, 100, 110, 110)

Scroll Amounts

Whenever the viewscroll2DScript method is called, the scroller proto
increments the viewRect by 1. For example, in the Dates application example,
each time the user taps an arrow, the viewRect is moved up or down by 1 hour.

In the graphics application example, each time the user taps an arrow, theviewRect
is moved up or down by 1 pixel. Since scrolling by 1 pixel at a time is too slow,
you need to be able to adjust the scrolling amount for certain applications. To do
so, you change the value of the s c ro 1 lAmount s slot, which is an array of three
values. The default value of this slot is:

[1, 1, 1]

The first value in the s c ro 1 lAmount s array specifies the amount to scroll for a
single tap. The second value specifies the amount to scroll when the user holds
down on the arrow (accelerated scrolling), and the third value specifies the amount
to scroll for a double tap. For a typical graphics application, you can use values like
the following:

[10, 50, 501

Scroller Protos 7-5

ARENDI-DEFS00003913

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 67 of 201 PageID #: 28911

CHAP T ER 7

Controls and Other Protos

Keep in mind that if you set s c ro 1 lAmount s to values other than the default,
your method must check the value passed to it and scroll that amount.

Note

In general, you should discourage double-tapping, since
inadvertently tapping twice can cause a double-tap action
to occur.

Advanced Usage

If you want more control over the arrow feedback, don't use the scro11Rect,
viewRect, or dataRect slots at all; instead, use the SetArrow and GetArrow
methods.

For more information about the SetArrow method, see "SetArrow" (page 6-4) in
Newton Programmer's Reference, for more on the GetArrow method, see
"GetArrow" (page 6-4) in Newton Programmer's Reference.

Button and Box Protos

You use the protos described in this section to display text and picture buttons,
checkboxes, and radio buttons. The Newton System Software provides a variety of
button and box types for use in your applications.

Each of these protos uses specific methods to control its behavior. For many of the
protos, the Newton System Software calls the ButtonClickscript when the
button is tapped. You can define or redefine this method to generate the actions that
you want associated with the button.

The Newton System Software calls certain methods for each of the protos described
here. For information about which methods you need to define for each proto, see
"Button and Box Protos" (page 6-6) in Newton Programmer's Reference.

For information about sizing and placement recommendations for your button and
box protos, see Newton 2.0 User Interface Guidelines.

The following are the button and box protos that you can use in your applications:

■ The protoTextButton creates a rounded text button with text centered
vertically and horizontally inside it. For more information about the slots and
methods for this button, see "protoTextButton" (page 6-7) in Newton Programmer's
Reference. Figure 7-5 shows an example of a protoTextButton view.

Figure 7-5 A protoTextButton view

My Button

7-6 Button and Box Protos

ARENDI-DEFS00003914

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 68 of 201 PageID #: 28912

CHAP T ER 7

Controls and Other Protos

■ The protoPictureButton creates a picture that is abutton. For more
information about the slots and methods for this button, see "protoPictureButton"
(page 6-9) in Newton Programmer's Reference. Figure 7-6 shows an example of
a protoPictureButton view.

Figure 7-6 A protoPictureButton view

()11:00 am Sun

Picture Buttons /
I3

■ The protoInfoButton includes an information button in a view. When the
user taps this button, a picker containing information items appears. The picker
includes the About, Help, and Prefs items. For more information about the slots
and methods for this button, see "protolnfoButton" (page 6-10) in Newton
Programmer's Reference. Figure 7-7 shows an example of a
protoInfoButton view.

Figure 7-7 A protoInfoButton view

U

About
Help
Prefs

Information Picker disp ayed when
Button button is tapped

■ The protoorientation is a text button that changes the screen orientation so
that data on the screen can be displayed facing different directions. This proto is
available only on Newton platforms that support changing the screen
orientation. For more information about the slots and methods for this button,
see "protoOrientation" (page 6-13) in Newton Programmer's Reference.
Figure 7-8 shows an example of a protoorientation view.

Figure 7-8 A protoorientation view

Rotate

■ The protoRadioCluster groups a series of radio buttons into a cluster in
which only one can be "on" at a time. For more information about the slots and
methods for this proto, see "protoRadioCluster" (page 6-14) in Newton
Programmer's Reference. This proto has no visual representation.

Button and Box Protos 7-7

ARENDI-DEFS00003915

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 69 of 201 PageID #: 28913

CHAP T ER 7

Controls and Other Protos

■ The protoRadioButton creates aradio button child view of aradio button
cluster (based on protoRadioCluster). Each radio button is a small oval
bitmap that is labeled with text. For more information about the slots and
methods for this button, see "protoPictRadioButton" (page 6-18) in Newton
Programmer's Reference. Figure 7-9 shows an example of several radio buttons
in a cluster.

Figure 7-9 A cluster of protoRadioButtons

..': 9 p#

...': 10 Pt

12 pi

014pt

■ The protoPictRadioButton creates a child view of aradio button cluster
(based on protoRadioCluster). For more information about the slots
and methods for this button, see "protoPictureButton" (page 6-9) in Newton
Programmer's Reference. Figure 7-10 shows a cluster of
protoPictRadioButtons.

Figure 7-10 A cluster of protoPictRadioButtons

0
0
0

■ The protoCloseBox allows the user to close the view. For more information
about the slots and methods for this box, see "protoCloseBox" (page 6-20) in
Newton Programmer's Reference. Figure 7-11 shows an example of a
protoCloseBox view.

Figure 7-11 A protoCloseBox view

0

7-8 Button and Box Protos

ARENDI-DEFS00003916

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 70 of 201 PageID #: 28914

CHAP T ER 7

Controls and Other Protos

■ The protoLargeCloseBox creates a picture button with an "X" icon that is
used to close the view. For more information about the slots and methods for
this box, see "protoLargeCloseBox" (page 6-22) in Newton Programmer's
Reference. Figure 7-12 shows an example of a protoLargeCloseBox view.

Figure 7-12 A protoLargeCloseBox view

Large Close Box

Note

See Newton 2.0 User Interface Guidelines for information about
when to use protoCloseBox and when to use
protoLargeCloseBox.

■ The protoCheckBox creates a labeled checkbox with the label text to the right
of the box. When the user taps the checkbox, a checkmark is drawn in it. For
more information about the slots and methods for this box, see
"protoCheckbox" (page 6-24) in Newton Programmer's Reference. Figure 7-13
shows an example of a protoCheckBox view.

Figure 7-13 A protoCheckBox view

Use System Volume

■ The protoRCheckBox creates a labeled checkbox with the text to the left of
the checkbox. When the user taps the checkbox, a checkmark is drawn in it. For
more information about the slots and methods for this box, see "protoRCheckbox"
(page 6-26) in Newton Programmer's Reference. Figure 7-14 shows an example
of a protoRCheckBox view.

Figure 7-14 A protoRCheckBox view

Require dial tone

Button and Box Protos 7-9

ARENDI-DEFS00003917

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 71 of 201 PageID #: 28915

CHAP T ER 7

Controls and Other Protos

I mplementing a Simple Button

To provide a simple button in your application, pick a button proto to use, set the
appropriate slots in the button object, and (in most cases) define one or more
scripts for the button.

The following is an example of a template that includes protoTextButton:

aButton := {...
_proto: protoTextButton,

viewFont: ROM_ fontSysteml2Bold,

text: "My Button",

ButtonClickScript: func()

Print("ouch!");

// a handy way to fit a button around a string

ViewSetupFormScript: func()

viewbounds := RelBounds(10, 60,

StdButtonWidth(self.text), 13);

...}

The above example creates the following button on the Newton screen:

My Button

When the user taps this button in the Inspector, "ouch" is printed to the Inspector.

You implement a picture button with a similar template, as shown in the
following example:

pictButton := {...
proto: protoPictureButton,

icon: namesBitmap,

viewBounds: SetBounds(2, 8, 34, 40),

ButtonClickScript: func()

cardfile:Toggle()

For more information on implementing specific button and box protos, see ̀ Button
and Box Protos" (page 7-6) in Newton Programmer's Reference.

7-10 Button and Box Protos

ARENDI-DEFS00003918

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 72 of 201 PageID #: 28916

CHAP T ER 7

Controls and Other Protos

Selection Tab Protos

You can use the protos described in this section to display alphabetic selection tabs
on the screen. There are two tab protos that you can use:

■ The proto=abs displays alphabetical tabs arranged horizontally in a view.
For more information about the slots and methods for this proto, see
"protoAZTabs" (page 6-28) in Newton Programmer's Reference. Figure 7-15
shows an example of a proto=abs view.

Figure 7-15 A proto=abs view

ab cd of gN ij kl Rap qr st uvW.)yz

■ The protoAzvertTabs displays alphabetical tabs arranged vertically in a
view. For more information about the slots and methods for this proto, see
"protoAZVertTabs" (page 6-29) in Newton Programmer's Reference.
Figure 7-16 shows an example of a protoAzvertTabs view.

Figure 7-16 A protoAzvertTabs view

abc

def

ghi

lki

mna

pqr

Stu

vwx

FZ

When the user taps in either of the tab protos, the proto calls the
PickLetterscript method, passing in the letter that was tapped. The tabs
protos and the PickLetterscript method are described in "Selection Tab
Protos" (page 6-28) in Newton Programmer's Reference.

Selection Tab Protos 7-11

ARENDI-DEFS00003919

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 73 of 201 PageID #: 28917

CHAP T ER 7

Controls and Other Protos

Gauge and Slider Protos

You can use the gauge and slider protos described in this section to display gauges.
Each slider presents a gauge view that indicates the current progress in relation to
the entire operation. There are three protos and one view class available for
defining sliders:

■ The protoSlider creates a user-settable gauge view, which looks like an
analog bar gauge with a draggable diamond-shaped knob. For more information
about the slots and methods for this proto, see "protoSlider" (page 6-33) in
Newton Programmer's Reference. Figure 7-17 shows an example of a
protoSlider view.

Figure 7-17 A protoSlider view

Large Close Box

■ The protoGauge creates a read-only gauge view. For more information about
the slots and methods for this proto, see "protoGauge" (page 6-35) in Newton
Programmer's Reference. Figure 7-18 shows an example of a protoGauge
view.

Figure 7-18 A protoGauge view

■ The protoLabeledBatteryGauge creates aread-only gauge view that
periodically samples the system battery and graphically shows the amount of
power left. For more information about the slots and methods for this proto, see
"protoLabeledBatteryGauge" (page 6-37) in Newton Programmer's Reference.
Figure 7-19 shows an example of a protoLabeledBatteryGauge view.

Figure 7-19 A protoLabeledBatteryGauge view

Battery gauge

Battery

7-12 Gauge and Slider Protos

Battery charging

Charging

ARENDI-DEFS00003920

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 74 of 201 PageID #: 28918

CHAP T ER 7

Controls and Other Protos

■ The clGaugeview class is used to display objects that look like analog bar
gauges. Although the clGaugeview class is available, you should use the
protoGauge to display bar gauges. purpose as is the protoGauge proto. For
more information about the slots and methods for the protoGauge proto, see
"protoGauge" (page 6-35) in Newton Programmer's Reference.

Figure 7-20 A clGaugeview view

I
Knob

I mplementing a Simple Slider

The clGaugeview class and the slider protos all have several slots to define the
appearance and range of the slider:

■ The viewBounds slot specifies the size and location of the slider.

■ The viewvalue slot specifies the current value of the slider.

■ The minvalue slot specifies the minimum value of the slider, with a default
value of 0.

■ The maxvalue slot specifies the maximum value of the slider, with a default
value of 10 0.

You can specify the initial value of a slider in the viewvalue slot. However, you
often need to look up the initial value; when this is the case, set the initial value of
the slider in the ViewSetupFormScript method.

To implement a slider, define your template with the proto that you want to use,
specify the appearance and range slots, and (optionally) assign an initial value in
the ViewSetupFormScript method of the proto. For some protos, you need to
define additional methods that respond to the user modifying the slider.

The following example is a template that uses protoSlider to allow adjustment
of the current system volume:

SoundSetter :_ I...
_proto: protoSlider,

viewBounds: RelBounds(12, -21, 65, 9),

viewiustify: vjParentBottomV,

maxValue: 4,

ViewSetupFormScript: func()

self.viewValue := GetUserConfig('soundVolume);

Gauge and Slider Protos 7-13

ARENDI-DEFS00003921

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 75 of 201 PageID #: 28919

CHAP T ER 7

Controls and Other Protos

ChangedSlider: func()

begin

SetVolume(viewValue);

:SysBeep();

end,

...}

The example above initializes the slider gauge to indicate the current system
volume, which it retrieves from the user configuration that is maintained by the
Newton System Software. The range of allowable volume values is from o
(the default for minvalue) to 4.

Whenever the user moves the slider and lifts the pen, the viewvalue slot is
updated and the ChangedSlider method is called. In the example, the
ChangedSlider method resets the system volume to the new value chosen by
the user and sounds a beep to provide the user with audible feedback.

For more information on the protoSlider and the ChangedSlider method,
see "protoSlider" (page 6-33) in Newton Programmer's Reference.

Time Protos

You can use the time protos to allow the user to set time and date values. There are
four time protos:

■ The protoDigitalClock time proto displays a digital clock with which the
user can set a time value. For more information about the slots and methods for
this proto, see "protoDigitalClock" (page 6-38) in Newton Programmer's
Reference. Figure 7-21 shows an example of a protoDigitalClock view.

Figure 7-21 A protoDigitalClock view

P
M

■ The protoNewSetClock time proto displays an analog clock with which the
user can set a time value. For more information about the slots and methods for
this proto, see "protoNewSetClock" (page 6-40) in Newton Programmer's
Reference. Figure 7-22 shows an example of a protoNewSetClock view.

7-14 Time Protos

ARENDI-DEFS00003922

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 76 of 201 PageID #: 28920

CHAP T ER 7

Controls and Other Protos

Figure 7-22 A protoNewsetClock view

■ The protosetClock time proto also displays an analog clock with which the
user can set a time value. Although this proto is still available for use, it has
been updated to the protoNewsetClock, which you should use instead.

■ The protoAMPMCluster time proto displays A.M. and P.M. radio buttons in a
protoNewsetClock view. For more information about the slots and methods
for this proto, see "protoAMPMCluster" (page 6-44) in Newton Programmer's
Reference. Figure 7-23 shows an example of a protoAMPMCluster view.

Figure 7-23 A protoAMPMCluster view

am 0 Pm

I mplementing a Simple Time Setter

To implement a time setter, define your template with the proto that you want
to use, specify the initial time value to show in the clock, and define the
TimeChanged method. You might also need to define additional slots or messages,
as described in "Time Protos" (page 6-38) in Newton Programmer's Reference.

The following example is a template that uses protoDigitalClock to allow the
user to specify a time:

clock :_ I...
_proto: protoDigitalClock,

time: 0,

TimeChanged: func()

begin

// add your code to respond to time change

print (time)

end,

Time Protos 7-15

ARENDI-DEFS00003923

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 77 of 201 PageID #: 28921

CHAP T ER 7

Controls and Other Protos

// initialize with current time

ViewSetupFormScript: func()

begin

time time();

end,

...};

Special View Protos

You can use the protos described in this section to provide special-purpose views in
your applications. There are seven special view protos:

■ The protoDragger creates a view that can be dragged around the screen with
the pen. For more information about the slots and methods for this proto, see
"protoDragger" (page 6-45) in Newton Programmer's Reference. Figure 7-22
shows an example of a protoDragger view.

Figure 7-24 A protoDragger view

Drag me

■ The protoDragNGo creates a view that can be dragged around the screen with
the pen. This is identical to protoDragger, except that protoDragNGo
includes a close box in the lower-right corner of the view. For more information
about the slots and methods for this proto, see "protoDragNGo" (page 6-47) in
Newton Programmer's Reference. Figure 7-25 shows an example of a
protoDragNGo view.

Figure 7-25 A protoDragNGo view

protoDragNGo

0

7-16 Special View Protos

ARENDI-DEFS00003924

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 78 of 201 PageID #: 28922

CHAP T ER 7

Controls and Other Protos

■ The protoDrawer creates a view that looks and acts like the base view of the
Extras Drawer. For more information about the slots and methods for this proto,
see "protoDrawer" (page 6-49) in Newton Programmer's Reference.

■ The protoFloater creates a draggable view that is horizontally centered
within its parent view and floats above all other nonfloating sibling views within
an application. For more information about the slots and methods for this proto,
see "protoFloater" (page 6-49) in Newton Programmer's Reference.

■ The protoFloatNGo creates a draggable view that is horizontally centered
within its parent view and floats above all other nonfloating sibling views
within an application. This is identical to protoFloater, except that
protoFloatNGo includes a close box in the lower-right corner of the view. For
more information about the slots and methods for this proto, see
"protoFloatNGo" (page 6-51) in Newton Programmer's Reference.

■ The protoGlance creates a text view that automatically closes itself after
displaying for a brief period. For more information about the slots and methods
for this proto, see "protoGlance" (page 6-52) in Newton Programmer's
Reference. Figure 7-26 shows an example of a protoGlance view.

Figure 7-26 A protoGlance view

8/1/93 11:00 am 46 bytes

■ The protos tat icText creates a one-line paragraph view that is read-only
and left justified. For more information about the slots and methods for this, see
"protoStaticText" (page 6-54) in Newton Programmer's Reference. Figure 7-22
shows an example of a protostaticText view.

Figure 7-27 A protostaticText view

Static text File this note in___

• None (Unfiled)

Business

..: Important

.. Miscellaneous

Personal

Edit Folders

Special View Protos 7-17

ARENDI-DEFS00003925

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 79 of 201 PageID #: 28923

CHAP T ER 7

Controls and Other Protos

View Appearance Protos

You can use the protos described in this section to add to the appearance of your
views in certain ways. There are three view appearance protos:

■ The protoBorder is a view filled with black. You can use this proto as a
border, a line, or a black rectangle. For more information about the slots and
methods for this proto, see "protoBorder" (page 6-56) in Newton Programmer's
Reference. Figure 7-28 shows an example of a protoBorder view.

Figure 7-28 A protoBorder view

■ The protoDivider creates a divider bar that extends the whole width of
its parent view. This proto also includes a text label. For more information
about the slots and methods for this proto, see "protoDivider" (page 6-56) in
Newton Programmer's Reference. Figure 7-29 shows an example of a
protoDivider view.

Figure 7-29 A protoDivider view

Your Title Here

■ The protoTitle creates a title centered above a heavy black line at the top of
a view. You can optionally include an icon that appears to the left of the title
text. For more information about the slots and methods for this proto, see
"protoTitle" (page 6-58) in Newton Programmer's Reference. Figure 7-30
shows an example of a protoTitle view.

Figure 7-30 A protoTitle view

Icon 0 My Application

7-18 View Appearance Protos

11
 Title

ARENDI-DEFS00003926

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 80 of 201 PageID #: 28924

CHAP T ER 7

Controls and Other Protos

Status Bar Protos

You can use the protos described in this section to display a status bar at the bottom
of a view. There are two status bar protos:

■ The protostatus creates a status bar, which includes a close button and an
analog clock, at the bottom of a view. For more information about the slots and
methods for this proto, see "protoStatus" (page 6-59) in Newton Programmer's
Reference. Figure 7-31 shows an example of a protostatus view.

Figure 7-31 A protostatus view

■ The protostatusBar creates a status bar, which includes an analog clock,
at the bottom of a view. This is identical to protostatus, except that
protostatusBar does not include a close button. For more information about
the slots and methods for this proto, see "protoStatusBar" (page 6-60) in Newton
Programmer's Reference. Figure 7-32 shows an example of a
protostatusBar view.

Figure 7-32 A protostatusBar view

XD

Note

The new status bar protos newtstatusBarNoClose and
newtstatusBar, are the preferred way to add a status bar to
your applications. These protos, which are described in
"NewtApp Applications" (page 4-1), simplify adding buttons and
automate hiding the close box when your application is moved
into the background.

Status Bar Protos 7-19

ARENDI-DEFS00003927

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 81 of 201 PageID #: 28925

CHAP T ER 7

Controls and Other Protos

Summary

Scroller Protos

protoLeftRightScroI ler

aProtoLeftRightScroller :_ {

_proto: protoLeftRightScroller,

scrollView: viewTemplate,

scrollRect: boundsFrame,

dataRect: boundsFrame,

viewRect: boundsFrame,

xPos: integer, // initial x-coord in scrollRect

ypos: integer, // initial y-coord in scrollRect

scrollAmounts: array, // line, page, dbl-click values

pageThreshhold:integer, // lines before page scrolling

ViewScroll2DScript: function, // called when arrows tapped

ViewScrollDoneScript:funcdon, // called when scroll done

SetArrow: function, // set scroll direction

GetArrow: function, // returns scroll direction

}

protoUpDownScroller

// extent of scrollable area

// extent of data in the view

// extent of visible area

aProtoUpDownScroller :_ {

_proto: protoUpDownScroller,

scrollView: viewTemplate,

scrollRect: boundsFrame,// extent of scrollable area

dataRect: boundsFrame, // extent of data in the view

viewRect: boundsFrame, // extent of visible area

xPos: integer, // initial x-coord in scrollRect

ypos: integer, // initial y-coord in scrollRect

scrollAmounts: array, // line, page, dbl-click values

pageThreshhold:integer, // lines before page scrolling

ViewScroll2DScript: function, // called when arrows tapped

ViewScrollDoneScript:funcdon, // called when scroll done

SetArrow: function, // set scroll direction

GetArrow: function, // returns scroll direction

}

7-20 Summary

ARENDI-DEFS00003928

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 82 of 201 PageID #: 28926

CHAP T ER 7

Controls and Other Protos

protoHorizontal2DScroller

a ProtoHorizontal2DScroller :_ {

proto: protoHorizontal2DScroller,

scrollView:

scrollRect:

dataRect:

viewRect:

xPos:

ypos:

scrollAmounts:

viewTemplate,

boundsFrame, // extent

boundsFrame, // extent

boundsFrame, // extent

integer, // initial

integer, // initial

of scrollable area

of data in the view

of visible area

x-coord in scrollRect

y-coord in scrollRect

array, // line, page, dbl-click values

pageThreshhold:integer, // lines before page scrolling

ViewScroll2DScript : function,

ViewScrollDoneScript : function,

SetArrow:

GetArrow:

}

function,

function,

protoHorizontalUpDownScroller

called when arrows tapped

called when scroll done

set scroll direction

returns scroll direction

a ProtoHorizontalUpDownScroller :_ {

_proto: protoHorizontalUpDownScroller,

scrollView: viewTemplate,

scrollRect: boundsFrame,// extent of scrollable area

dataRect: boundsFrame, // extent of data in the view

viewRect: boundsFrame, // extent of visible area

xPos: integer, // initial x-coord in scrollRect

ypos: integer, // initial y-coord in scrollRect

scrollAmounts: array, // line, page, dbl-click values

pageThreshhold:integer, // lines before page scrolling

ViewScroll2DScript : function,

ViewScrollDoneScript : function,

SetArrow : function,

GetArrow : function,

}

Summary

called when arrows tapped

called when scroll done

set scroll direction

returns scroll direction

7-21

ARENDI-DEFS00003929

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 83 of 201 PageID #: 28927

CHAP T ER 7

Controls and Other Protos

Button and Box Protos

protoTextButton

aProtoTextButton :_ {

_proto: protoTextButton,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

text: string, // text inside the button

viewFont : fontRags,
viewFormat : formatFlags,
viewJustify: justificationFlags,
viewTransferMode: integer, // view transfer constants

ButtonClickScript: function, // when button is tapped

ButtonPressedScript: function, // while button is pressed

}

protoPictureButton

aProtoTextButton :_ {

_proto: protoPictureButton,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

icon: bitmap, // bitmap to use for button

viewFormat : formatFlags,
viewJustify: justificationFlags,
ButtonClickScript: function, // when button is tapped

ButtonPressedScript: function, // while button is pressed

}

protolnfoButton

aProtoInfoButton :_ {

_proto: protoInfoButton,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,
viewJustify: justificationFlags,

}

7-22 Summary

ARENDI-DEFS00003930

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 84 of 201 PageID #: 28928

CHAP T ER 7

Controls and Other Protos

protoOrientation

aProtoOrientation := {

_proto: protoOrientation,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,

viewJustify: justificationFlags,

}

protoRadioC luster

aProtoRadioCluster := {

_proto: protoRadioCluster,

viewBounds : boundsFrame,

clusterValue: integer, // value of selected button

InitClusterValue: function, // initialize cluster

ViewSetupFormScript: function, // set initial button

ClusterChanged: function, // called upon value change

SetClusterValue: function, // change selected button

}

protoRadioButton

aProtoRadioButton := {

_proto: protoRadioButton,

viewBounds : boundsFrame,

viewFormat : formatFlags,

text: string, // radio button text label

buttonValue: integer, // identifies button

viewValue: integer, // current value of radio button

}

protoPictRadioButton

aProtoPictRadioButton := {

_proto: protoPictRadioButton,

viewBounds : boundsFrame,

viewFormat : formatFlags,

viewJustify: justificationFlags,

icon: bitmap, // bitmap for picture button

buttonValue: integer, // identifies button

Summary 7-23

ARENDI-DEFS00003931

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 85 of 201 PageID #: 28929

7-24

CHAP T ER 7

Controls and Other Protos

viewValue : integer,

ViewDrawScript : function,

}

protoCloseBox

current value of radio button

to highlight button

aProtoCloseBox :_ {

_proto: protoCloseBox,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,

viewJustify: justificationFlags,

viewFormat : formatFlags,

ButtonClickScript:function, // called before closing

}

protoLargeC lose Box

a ProtoLargeCloseBox :_ {

_proto: protoLargeCloseBox,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,

viewJustify: justificationFlags,

viewFormat : formatFlags,

ButtonClickScript:function, // called before closing

}

protoCheckbox

aProtoCheckbox :_ {

_proto: protoCheckbox,

viewBounds : boundsFrame,

viewFormat:

viewFont:

text:

buttonValue:

viewValue:

ValueChanged:

ToggleCheck:

}

Summary

formatFlags,

fontFlags,

string,

value,

value,

function,

function,

font for text label

the checkbox label

value when box is checked

current value (nil=unchecked)

checkbox value changed

toggles checkbox state

ARENDI-DEFS00003932

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 86 of 201 PageID #: 28930

CHAP T ER 7

Controls and Other Protos

protoRCheckbox

aProtoRCheckbox :_ {

_proto: protoRCheckbox,

viewBounds : boundsFrame,

viewFormat : formatFlags,

viewFont: fontFlags,

text:

indent:

buttonValue:

viewValue:

ValueChanged:

ToggleCheck:

}

string,

integer,

value,

value,

function,

function,

Selection Tab Protos

font for text label

the checkbox label

pixels to indent box

value when box is checked

current value (nil=unchecked)

checkbox value changed

toggles checkbox state

protoAZTabs

aProtoAZTabs :_ {

_proto: protoAZTabs,

PickLetterScript : function,

SetLetter: function,

}

protoAZVertTabs

tab is tapped

sets tab letter

a ProtoAZVertTabs :_ {

_proto: protoAZVertTabs,

PickLetterScript : function,

SetLetter: function,

}

Gauges and Slider Protos

tab is tapped

sets tab letter

protoSlider

aProtoSlider :_ {

_proto: protoSlider,

viewBounds:

Summary

boundsFrame ,

7-25

ARENDI-DEFS00003933

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 87 of 201 PageID #: 28931

7-26

CHAP T ER 7

Controls and Other Protos

viewValue:

minValue:

maxValue:

ViewSetupFormScript:

ChangedSlider:

TrackSlider:

}

protoGauge

integer,

integer,

integer,

function,

function,

function,

gauge value

minimum gauge value

maximum gauge value

set initial gauge value

slider moved

viewValue changed

aProtoGauge :_ {

_proto: protoGauge,

viewBounds:

viewValue:

minValue:

maxValue:

gaugeDrawLimits:

ViewSetupFormScript:

}

boundsFrame,

integer, // gauge value

integer,

integer,

Boolean,

function,

proto Labeled BatteryGauge

minimum gauge value

maximum gauge value

non-nil for gray bg

set initial gauge value

a ProtoLabeledBatteryGauge:= {

_proto: protoLabeledBatteryGauge,

viewBounds: boundsFrame,

}

clGaugeView

aClGaugeView:=

viewBounds:

viewFlags:

viewValue:

viewFlags:

viewFormat:

minValue:

maxValue:

gaugeDrawLimits:

ViewChangedScript:

ViewFinalChangeScript

}

Summary

{

boundsFrame,

clGaugeView,

integer,

integer,

formatFlags,

integer,

integer,

Boolean,

function,

function,

value of gauge

viewFlags constants

min value of gauge

max value of gauge

non-nil for gray bg

gauge dragged

gauge changed

ARENDI-DEFS00003934

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 88 of 201 PageID #: 28932

CHAP T ER 7

Controls and Other Protos

Time Protos

protoDigitalClock

a ProtoDigitalClock :_ {

_proto: protoDigitalClock,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,

viewJustify: justificationFlags,

increment:

time:

wrapping:

midnite:

Refresh:

TimeChanged:

}

protoSetClock

integer,

integer,

Boolean ,

Boolean ,

function,

function,

minutes to change on tap

initial or current time

non-nil to wrap around day

boundaries

non-nil if 0 means midnight

tomorrow

update clock

called when time is changed

aProtoSetClock :_ {

_proto: protoSetClock,

viewBounds : boundsFrame,

viewFlags: integer, // viewFlags constants

viewFormat : formatFlags,

hours: integer,

minutes: integer,

TimeChanged: function,

}

protoNewSetC lock

value set by hour hand

value set by minute hand

called when time is changed

a ProtoNewSetClock :_ {

_proto: protoNewSetClock,

viewBounds : boundsFrame,

viewJustify: justificationFlags,

time: integer, // initial or current time

annotations: array,

supre s sAnnotat ions: Boolean,

exactHour: Boolean,

Summary

four strings to annotate

the clock face

if slot exists, suppress

adjust hour markers

7-27

ARENDI-DEFS00003935

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 89 of 201 PageID #: 28933

CHAP T ER 7

Controls and Other Protos

Refresh: function, // update clock

TimeChanged: function, // called when time is changed

}

protoAMPMCluster

aProtoAMPMCluster :_ {

_proto: protoAMPMCluster,

viewBounds : boundsFrame,
viewJustify: justificationFlags,
time: integer, // specify time--required

}

Special View Protos

protoDragger

aProtoDragger :_ {

_proto: protoDragger,

viewBounds boundsFrame,
viewFlags: integer, // viewFlags constants

viewFormat : formatFlags,
noScroll: string, // msg to display if no scrolling

noOverview: string, // msg to display if no overview

}

protoDragNGo

aProtoDragNGo :_ {

_proto: protoDragNGo,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

viewJustify: justificationFlags,
viewFormat : formatFlags,
noScroll: string, // msg to display if no scrolling

noOverview: string, // msg to display if no overview

}

7-28 Summary

ARENDI-DEFS00003936

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 90 of 201 PageID #: 28934

CHAP T ER 7

Controls and Other Protos

protoDrawer

aProtoDrawer :_ {

proto: protoDrawer,

viewFlags:

viewBounds:

viewFormat:

viewEffect:

showSound:

hideSound:

}

protoFloater

integer, // viewFlags constants
boundsFrame ,
formatFlags,
effectFlags,
soundFrame, // sound when drawer opens
soundFrame, // sound when drawer closes

aProtoFloater :_ {

_proto: protoFloater,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

vi ewJu s t i f y: justificationFlags,
viewFormat: formatFlags,
viewEffect: effectFlags,
noScroll: string, // msg to

noOverview: string, // msg to

}

protoFloatNGo

display if no scrolling

display if no overview

aProtoFloatNGo :_ {

_proto: protoFloatNGo,

viewFlags: integer, // viewFlags constants

viewBounds : boundsFrame,
viewJustify:

viewFormat:

viewEffect:

noScroll:

noOverview:

}

Summary

justificationFlags,
formatFlags,
effectFlags,
string, / / msg
string, / / msg

to display if no scrolling

to display if no overview

7-29

ARENDI-DEFS00003937

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 91 of 201 PageID #: 28935

CHAP T ER 7

Controls and Other Protos

protoGlance

aProtoGlance :_ {

_proto: protoGlance,

viewBounds : boundsFrame,
viewJustify: justificationFlags,
viewFormat : formatFlags,
viewFont: fontFlags, // font for text

vi ewE f f e c t: effectFlags,
viewIdleFrequency: integer, // time view to remain open

text: string, // text to appear in view

}

protoStaticText

aProtoStaticText:= {

_proto: protoStaticText,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

text: string, // text to display

viewFont : fontFlags,
viewJustify: justificationFlags,
viewFormat : formatFlags,
viewTransferMode: integer, // view transfer constants

tabs: array, // up to eight tab-stop positions
styles: array, // font information

}

View Appearance Protos

protoBorder

aProtoBorder :_ {

_proto: protoBorder,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

viewFormat : formatFlags,

}

7-30 Summary

ARENDI-DEFS00003938

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 92 of 201 PageID #: 28936

CHAP T ER 7

Controls and Other Protos

protoDivider

aProtoDivider:= {

_proto: protoDivider,

viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants

viewFont: fontFlags, // font for text

viewJustify: justificationFlags,
viewFormat : formatFlags,
title: string, // text on divider bar

titleHeight: integer, // height of divider

}

protoTitle

aProtoTitle :_ {

_proto: protoTitle,

viewJustify: justificationFlags,
viewFormat : formatFlags,
viewFont : fontFlags,
title: string, // text of title

title Icon: bitMapFrame,
titleHeight: integer, // height of title

viewTransferMode: integer, // view transfer constants

}

Status Bar Protos

protoStatus

aProtoStatus :_ {

proto: protoStatus,

}

protoStatusBar

aProtoStatusBar :_ {

proto: protoStatusBar,

}

Summary 7-31

ARENDI-DEFS00003939

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 93 of 201 PageID #: 28937

ARENDI-DEFS00003940

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 94 of 201 PageID #: 28938Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 94 of 201 PageID #: 28938

AREN D I—DEFSOOOO3940

C H A P T E R 8

Text and Ink Input and Display

This chapter describes how the Newton system handles text and presents interfaces
you can use to work with text in NewtonScript applications.

The material covers the following components of Newton text handling:

■ handwritten text input

■ keyboard text input

■ views for text display

■ fonts for text display

The first section of this chapter, "About Text," describes the basic terms and
concepts needed to understand text processing on the Newton.

The second section, "Using Text," describes how to use the various input and
display components to handle text in your applications.

For comprehensive reference information about the text-related constants, data
structures, views, methods, and functions, see "Text and Ink Input and Display
Reference" (page 7-1) in Newton Programmer's Reference.

About Text

This section describes the basic concepts, terms, and processes you need to
understand to work with text in your applications.

About Text and Ink

The Newton allows you to process two forms of text input: ink text and
recognized text. This section describes both forms of text input.

About Text 8-1

ARENDI-DEFS00003941

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 95 of 201 PageID #: 28939

CHAP T ER 8

Text and Ink Input and Display

When the user writes a line of text on the Newton screen, the Newton system
software performs a series of operations, as follows:

■ The raw data for the input is captured as ink, which is also known as sketch ink
or raw ink.

■ Raw ink is stored as a sequence of strokes or stroke data.

■ If the view in which the ink was drawn is configured for ink text, the recognition
system groups the stroke data into a series of ink words, based on the timing
and spacing of the user's handwriting. A user can insert, delete, and move ink
words in the same way as recognized text. Ink words can be scaled to various
sizes for display and printing. They can also be recognized at a later time, by a
process known as deferred recognition.

■ If the view in which the ink was drawn supports or is configured for text
recognition, the ink words are processed by the recognition system into
recognized text and displayed in a typeface.

The data describing the handwriting strokes of the ink word are stored as compressed
data in a binary object. This stroke data can be accessed programmatically, using
the stroke bundle methods described in "Recognition" (page 9-1) in Newton
Programmer's Guide.

The recognition system and deferred recognition are described in "Recognition"
(page 9-1).

Note

To provide maximum user flexibility for your applications, you
are encouraged to allow ink text in all of your input views.

Written Input Formats

Ink words can be intermixed with recognized text. This data, normally represented
as rich strings, can be used anywhere that you might expect a standard string.
Each ink word is encoded as a single character in a rich string, as described in
"Rich Strings" (page 8-22).

You should use the rich string format to store data in a soup, because of its
compact representation. You can safely use rich strings with all functions, including
the string functions, which are documented in "Utility Functions" (page 26-1).
Another data format, described in "Text and Styles" (page 8-25), pairs text strings
with style data for viewing in text views.

8-2 About Text

ARENDI-DEFS00003942

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 96 of 201 PageID #: 28940

CHAP T ER 8

Text and Ink Input and Display

Caret Insertion Writing Mode

Caret insertion writing mode is a text input mode that the user can enable or
disable. When caret insertion mode is disabled, handwritten text is inserted into the
view at the location where it is written. When caret insertion writing mode is
enabled, handwritten text is inserted at the location indicated by the insertion caret,
regardless of where on the screen it is drawn. Caret insertion writing mode is used
automatically for keyboard text entry.

To enable or disable caret insertion writing mode, the user selects or deselects the
"Insert new words at caret" option from the Text Editing Settings slip. You can
display this slip by tapping the Options button in the Recognition Preferences slip.

Applications do not normally need to be aware of whether caret insertion writing
mode is enabled or disabled. The one exception to this is at application startup
time, when you might want to set the initial location of the insertion point. This is
described in "Setting the Caret Insertion Point" (page 8-26).

There are a few caret insertion writing mode routines you can use to implement
your own version of this mode. They are described in "Caret Insertion Writing
Mode Functions and Methods" (page 7-47) in Newton Programmer's Reference.

Fonts for Text and Ink Display

The Newton system software allows you to specify the font characteristics for
displaying text and ink in a paragraph view on the screen. The font information is
stored in a font specification structure known as a font spec. The font specification
for built-in ROM fonts can also be represented in a frame as a packed integer. Both
of these representations are described in "Using Fonts for Text and Ink Display"
(page 8-17).

The system provides a number of functions you can use to access and modify font
attributes. These are described in "Text and Styles" (page 8-25).

About Text Views and Protos

There are a number of views and protos to use for displaying text and for receiving
text input. For basic information about views, see "Views" (page 3-1).

About Text 8-3

ARENDI-DEFS00003943

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 97 of 201 PageID #: 28941

CHAP T ER 8

Text and Ink Input and Display

The views and protos that you use for text are listed in Table 8-1.

Table 8-1 Views and protos for text input and display

View or Proto Description

edit view Use the clEditview class for basic text input and display.
Objects of this class can display and/or accept text and
graphic data. The clEditview automatically creates child
clParagraphView views for text input and display and
c1Polygonview views for graphic input and display. You
can also include c1Pictureview views in your
clEditViews.

For more information about this class, see "General Input
Views" (page 8-6).

paragraph views Use the clParagraphView class to display text or to accept
text input.

For more information about this class, see "Paragraph Views"
(page 8-10).

lightweight If your paragraph view template meets certain criteria, the
paragraph views Newton system automatically creates a lightweight paragraph

view for you. Lightweight paragraph views are read-only
and use only one font, although they can contain ink. These
views require significantly less memory than do standard
paragraph views.

For more information about lightweight paragraph views, see
"Lightweight Paragraph Views" (page 8-11).

input line protos You can use one of the input line protos to allow the user to
enter a single line of text, as described in "Using Input Line
Protos" (page 8-12).

About Keyboard Text Input

Your application can provide keyboards and keypads for user text input by creating
an object from one of the keyboard view classes or protos:

■ The clKeyboardview class provides akeyboard-like array of buttons that the
user can tap with the pen to perform an action. This class is described in
"Keyboard Views" (page 8-26).

8-4 About Text

ARENDI-DEFS00003944

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 98 of 201 PageID #: 28942

CHAP T ER 8

Text and Ink Input and Display

■ Use one of the keyboard protos to create keyboard views in your applications.
These protos include the protoxeyboard, which creates a keyboard view that
floats above all other views. The keyboard protos are also described in
"Keyboard Views."

The Keyboard Registry

You need to register any custom keyboards or keypads that you create with the
Newton system's keyboard registry. Caret insertion writing mode is used whenever
the user enters text from a keyboard or keypad. When a registered keyboard or keypad
is opened, the system knows to display the insertion caret at the proper location.

The Newton system also allows you to customize the behavior of the insertion
caret and key presses by calling your application-defined methods whenever an
action occurs in a registered keyboard or keypad.

For more information about the keyboard registry, see "Using the Keyboard
Registry" (page 8-36).

The Punctuation Pop-up Menu

The user can tap the insertion caret to display a Punctuation pop-up menu. This
menu, shown in Figure 8-1, provides an easy way to add punctuation when writing
with the stylus.

Figure 8-1 The Punctuation pop-up menu

00
MR
FIN
nn

MW
Fig]
00
nn

a

Choosing any item on the Punctuation pop-up menu inserts the appropriate
character into the text, at the insertion caret. The bent arrow, at the top left, is a
carriage return, and the blank box at the bottom indicates a space.

You can override this menu with your own caret pop-up menu, as described in
"The Caret Pop-up Menu" (page 8-38).

About Text 8-5

ARENDI-DEFS00003945

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 99 of 201 PageID #: 28943

CHAP T ER 8

Text and Ink Input and Display

Compatibility

One of the significant advances in software functionality in the Newton 2.0 system
is the capacity to process ink in most views, which includes deferred recognition
and the ability to mix text and ink together in rich string. This expands the behavior
provided by Newton Lx machines, which generally process written input
immediately for recognition and display the resulting word in a typeface.

These additional capabilities made it necessary to extend the Recognition menu.
The Newton 2.0 Recognition menu adds more input options and replaces the
toggling Recognizer buttons of the Newton Lx status bar.

The Newton 2.0 system also behaves slightly differently when merging text into
paragraph views. When caret insertion writing mode is disabled, paragraphs no
longer automatically insert carriage returns or tabs. This is true regardless of
whether the user is entering text or ink words.

With Newton System 2.0, you can include images in your edit views. Edit views
(clEditView) can now contain picture views (c1Pictureview) as child views

Any ink written on a Lx machine can be dragged into a Newton System 2.0
paragraph and automatically converted into an ink word.

Notes, text, or ink moved from a Newton Lx to a Newton with the 2.0 system
works correctly without any intervention. However, the reverse is not true: you
cannot insert a a card with 2.0 or later data into a Lx machine.

The expando protos have become obsolete. These are protoExpandoshe11,
protoDateExpando, protoPhoneExpando, and protoTextExpando.
These protos are still supported for Lx application compatibility, but should not be
used in new applications.

Using Text

This section describes how to use various features of text input and display on the
Newton and provides examples of some of these features.

Using Views and Protos for Text Input and Display

This section describes the different views and protos to use in your applications for
text input and display.

General Input Views

The clEditView view class is used for a view that can display and/or accept text
and graphic data. Views of the clEditView class contain no data directly;

8-6 Using Text

ARENDI-DEFS00003946

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 100 of 201 PageID #: 28944

CHAP T ER 8

Text and Ink Input and Display

instead, they have child views that contain the individual data items. Text items
are contained in child views of the class clParagraphView and graphics are
contained in child views of the class clPolygonview.

A view of the clEditview class includes the following features:

■ Automatic creation of clParagraphView or clPolygonview children as
the user writes or draws in the view. These child views hold the data the user writes.

■ Support for inclusion of c1Pictureview views, which are used for images.

■ Text and shape recognition, selection, and gestures such as scrubbing, copying
to clipboard, pasting from clipboard, duplicating, and others, as controlled by
the setting of the viewFlags slot. The initial recognition is handled by the
clEditview. A child clParagraphView or clPolygonview is created
and that child view handles subsequent editing of the data.

■ Drag and drop handling. A child view can be dragged (moved or copied) out of
the clEditview and dropped into another clEditview, whose child it then
becomes. Other views can be configured to handle data dragged from a
clEditview, as described in "Views" (page 3-1).

■ Clipboard support. A clParagraphView or clPolygonview child view can
be dragged (moved or copied) to the clipboard, from which it can be pasted into
another clEditview or clview, whose child it becomes.

■ Automatic resizing of clParagraphView child views to accommodate added
input. This feature is controlled by the vCalculateBounds flag in the
viewFlags slot of those child views.

■ Automatic addition of new words to existing paragraphs when caret insertion
writing mode is disabled.

Views of the class clEditview are intended for user input of text, shape, image,
and ink data. Consequently, views of this class expect that any child views have
been defined and created at run time, not predefined by templates created in NTK.

If you need to include predefined child views in a clEditview, use the
ViewSetupChildrenScript method of the clEditview to define the child
views and set up the stepChildren array. You might need to do this, for
example, if you store the data for child views in a soup, and you need to retrieve
the data and rebuild the child views at run time. For more information, see
"Including Editable Child Views in an Input View" (page 8-9).

The default font for a clParagraphView created by a clEditview is the font
selected by the user on the Styles palette in the system.

The default pen width for a clPolygonview created by a clEditview is the
width set by the user on the Styles palette.

The slots of clEditview are described in "General Input View (clEditView)"
(page 7-12) in Newton Programmer's Reference.

Using Text 8-7

ARENDI-DEFS00003947

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 101 of 201 PageID #: 28945

CHAP T ER 8

Text and Ink Input and Display

Here is an example of a template defining a view of the clEditview class:

editor :_ {...
viewFlags: clEditView,
viewBounds: {left:0, top:0, right:200, bottom:2001,
viewFlags: vVisible+vAnythingAllowed,
viewFormat: vfFillWhite+vfFrameBlack+vfPen(1)+

vfLinesLtGray,
viewLineSpacing: 20,
// methods and other view-specific slots
viewSetupFormScript: func()...

...}

System Messages in Automatically Created Views

When a child view is automatically created by a clEditview, the vNoscripts
flag is set in the viewFlags slot of the child view. This flag prevents system
messages from being sent to a view.

This behavior is normally desirable for automatically created views, because they
have no system message-handling methods and the system saves time by not
sending the messages to them.

If you want to use one of these views in a manner that requires it to receive system
messages, you need to remove the vNoscripts flag from the viewFlags slot of
the view.

Creating the Lined Paper Effect in a Text View

A view of the clEditview class can appear simply as ablank area in which the
user writes information. However, this type of view usually contains a series of
horizontal dotted lines, like lined writing paper. The lines indicate to the user that
the view accepts input. To create the lined paper effect, you must set the following
slots appropriately:

viewFormat Must include one of the vfLines...flags. This activates the
line display.

viewLineSpacing

viewLinePattern

8-8 Using Text

Sets the spacing between the lines, in pixels.

Optional. Sets a custom pattern that is used to draw the lines
in the view. In the viewFormat slot editor in NTK, you
must also set the Lines item to Custom to signal that
you are using a custom pattern. (This sets the
vfCustom<<vfLinesShift flag in the viewFormat
slot.)

Patterns are binary data structures, which are described in the
next section.

ARENDI-DEFS00003948

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 102 of 201 PageID #: 28946

CHAP T ER 8

Text and Ink Input and Display

Defining a Line Pattern

You can define a custom line pattern for drawing the horizontal lines in a paragraph
view. A line pattern is an eight-byte binary data structure with the class ' pattern.

To create a binary pattern data structure on the fly, use the following
NewtonScript trick:

myPattern := SetClass(Clone("\u "),
'Pattern);

This code clones a string, which is already a binary object, and changes its class to
' pattern. The string is specified with hex character codes whose binary represen-
tation creates the pattern. Each two-digit hex code creates one byte of the pattern.

Including Editable Child Views in an Input View

For a child view of a clEditView to be editable, you need to follow certain rules:

■ The child view must reside in the viewChildren slot of the clEditview.
You cannot store a child view's template in the stepchildren slot, as NTK
normally does.

■ The child view must contain a viewstationery slot with an appropriate
value, depending on the view class and data type. The acceptable values are
shown in Table 8-2:

Table 8-2 viewstationery slot value for clEditview children

View class

clParagraphView

clPolygonView

clPolygonView

clPictureView

Value of
View data type viewstationery slot

text ' para.

recognized
graphics

'poly

ink ' ink

bitmap or
picture object

'pict

■ Add the child view templates to the viewChildren array of the edit view and
open the view or send it the RedoChildren message. Alternatively, you can
add the child view with the Addview method and then send the Dirty message
to the edit view.

Using Text 8-9

ARENDI-DEFS00003949

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 103 of 201 PageID #: 28947

CHAP T ER 8

Text and Ink Input and Display

IMPORTANT

You store view templates (not view objects) in the
viewChildren array of an edit view. A

Paragraph Views

The clParagraphview class displays text or accepts text input. It includes the
following features:

■ Text recognition

■ Text correction

■ Text editing, including scrubbing, selection, copying to the clipboard, pasting
from the clipboard, and other gestures, including duplicating, as controlled by
the setting of the viewFlags slot.

■ Automatic word-wrapping.

■ Support for the caret gesture, which adds a space or splits a word.

■ Clipping of text that won't fit in the view. (An ellipsis is shown to indicate text
beyond what is visible.)

■ Use of ink and different text fonts (styles) within the same paragraph.

■ Tab-stop alignment of text.

■ Automatic resizing to accommodate added text (when this view is enclosed in a
clEditview). This feature is controlled by the vCalculateBounds flag in
the viewFlags slot.

■ Automatic addition of new words written near the view when this view is
enclosed in a clEditview and caret insertion writing mode is disabled.

The slots of clParagraphview are described in "Paragraph View
(clParagraphView)" (page 7-15) in Newton Programmer's Reference.

Note that you don't need to create paragraph views yourself if you are accepting
user input inside a clEditview. Just provide a clEditview and when the user
writes in it, the view automatically creates paragraph views to hold text.

The following is an example of a template defining a view of the
clParagraphview class:

dateSample := I...
viewFlags: clParagraphview,

viewBounds: {left:50, top:50, right:200, bottom:701,

viewFlags: vVisible+vReadOnly,

viewFormat: vfFillWhite,

viewJustify: oneLineOnly,

text: "January 24, 1994 11 ,

8-10 Using Text

ARENDI-DEFS00003950

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 104 of 201 PageID #: 28948

CHAP T ER 8

Text and Ink Input and Display

8 chars of one font, 3 chars of another, 5 chars

of another

styles: [8, 18434, 3, 12290, 5, 1060865],

Paragraph views are normally lined to convey to the user that the view accepts text
input. To add the lined paper effect to paragraph views, see "Creating the Lined
Paper Effect in a Text View" (page 8-8).

Lightweight Paragraph Views

When you create a template using the c 1 Paragraphvi ew class, and that
template is instantiated into a view at run time, the system may create a specialized
kind of paragraph view object, called a lightweight paragraph view. Lightweight
paragraph views have the advantage of requiring much less memory than do
standard paragraph views.

The system automatically creates a lightweight paragraph view instead of a
standard paragraph view if your template meets the following conditions:

■ The view must be read-only, which means that its viewFlags slot contains the
vReadOnly flag.

■ The view must not include any tabs, which means that the template does not
contain the tabs slot.

■ The view must not include multiple font styles, which means that the template
does not contain the styles slot; however, the view can contain a rich string in
its text slot. For information about rich strings, see "Rich Strings" (page 8-22).

■ The viewFlags slot of the view must not contain the following flags:
vGesturesAllowed,vCalculateBounds.

Note

Lightweight paragraph views can contain ink.

Most paragraph views look the same after they are instantiated; that is, there is
not normally a way to tell whether a particular paragraph view is a standard or a
lightweight view. However, ink displayed in a lightweight paragraph view is
displayed in a fixed font size.

Note

When laying out text in a lightweight paragraph view, the
viewLineSpacing value is ignored. This is not generally a
problem, since the line spacing dotted lines are normally used to
indicate that the text can be edited, and text in a lightweight
paragraph cannot be edited.

Using Text 8-11

ARENDI-DEFS00003951

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 105 of 201 PageID #: 28949

CHAP T ER 8

Text and Ink Input and Display

Once a lightweight paragraph view has been instantiated, you cannot dynamically
change the view flags to make it an editable view, or add multistyled text by
providing a styles slot, since this type of view object doesn't support these
features. If you need this functionality for an existing lightweight paragraph view,
you'll have to copy the text out of it into an editable paragraph view.

Using Input Line Protos

Input line protos provide the user with single lines in which to enter data. There are
four input line protos available:

■ protoInputLine is a one-line input field that defines a simple paragraph
view in which the text input is left justified.

■ protoRichInputLine is the text and ink equivalent of protoInputLine.

■ protoLabel InputLine is a one-line input field that includes a text label and
can optionally include a pop-up menu known as a picker.

■ protoRichLabel InputLine is the text and ink equivalent of
protoLabel InputLine.

protoinputLine

This proto defines a view that accepts any kind of text input and is left justified.
Below is an example of a what a protoInputLine looks like on the
Newton screen:

The protoInputLine is based on a view of the clParagraphView class. It
has no child views.

The following is an example of atemplate using protoInputLine:

myInput :_ I...
_proto: protoInputLine,

viewJustify: vjParentRightH+vjParentBottomV,

viewLineSpacing: 24,

viewBounds: SetBounds(-55, -33, -3, -3),

...}

The slots of the protoInputLine are described in "protoinputLine" (page 7-17)
in Newton Programmer's Reference.

protoRichinputLine

This proto works exactly like protoInputLine. The only difference is that
protoRichInputLine allows mixed ink and text input, as determined by the
current user recognition preferences.

8-12 Using Text

ARENDI-DEFS00003952

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 106 of 201 PageID #: 28950

CHAP T ER 8

Text and Ink Input and Display

The slots of protoRichlnputLine are described in "protoRichInputLine"
(page 7-19) in Newton Programmer's Reference.

protoLabellnputLine

This proto defines a view that features a label, accepts any kind of input, and is
left justified. The protoLabel InputLine can optionally include apicker.

When the protoLabel InputLine does include apicker, the user selects a
choice from the picker. That choice is entered as the text in the input line, and is
marked with a check mark in the picker.

Figure 8-2 shows an example of a protoLabel InputLine with and without the
picker option:

Figure 8-2 An example of a protoLabellnputLine

Simple protLablelnputLine (no picker option)
Office

Picker •option
indicated by
diamond

Who

gam VMe
You
Us

Example of a picker displayed after lable is tapped.
Check mark indicates the currently selected choice.

Them
No one

The protoLabel InputLine is based on a view of the clParagraphView
class. It has two child views:

■ The labelLine child view uses the protoStaticText proto to create the
static text label and to activate the picker if the proto includes one.

■ The entryLine child view uses the protolnputLine proto to create the
input field into which the user writes text. The text value entered into this field is
stored in the text slot of this view.

You can have your label input line protos remember a list of recent items. To do
this, assign a symbol that incorporates your developer signature to the ' memory
slot of your prototype. The system automatically maintains the list of recent
items for your input line. To access the list, use the same symbol with the
AddMemoryItem,AddMemoryItemUnique,GetMemoryItems,and
GetMemorySlot functions, which are described in "Utility Functions" (page 26-1).

Using Text 8-13

ARENDI-DEFS00003953

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 107 of 201 PageID #: 28951

CHAP T ER 8

Text and Ink Input and Display

IMPORTANT

You can programmatically access the value of the text slot for
the protoLabel InputLine with the expression
entryLine . text. If you update the text slot programmati-
cally, you need to call the Setvalue function to ensure that the
view is updated. Below is an example:

SetValue(entryLine, 'text, "new text")]

A

The following is an example of atemplate using protoLabellnputLine:

labelLine :_ I...
_proto: protoLabel InputLine,

viewBounds: {top: 90, left: 42, right: 194, bottom: 1141,

label: "Who",

labelCommands: ["Me", "You", "Us", 'pickseparator,

"Them", "No one

curLabelCommand: 0,

...}

The slots of the protoLabel InputLine are described in "protoLabellnputLine"
(page 7-19) in Newton Programmer's Reference.

protoRichLabellnputLine

This proto works exactly like protoLabel InputLine . The only difference is
that protoRichLabel InputLine allows mixed ink and text input, as
determined by the current user recognition preferences.

The slots of the protoRichLabellnputLine are described in
"protoRichLabelInputLine" (page 7-22) in Newton Programmer's Reference.

Displaying Text and Ink

In addition to knowing about the views and protos that you can use for displaying
text and ink, you should understand how text and ink are displayed. This involves
the use of fonts, text styles, and rich strings. This section describes these objects
and how you can use them in your applications to control the display of text and ink.

Text and Ink in Views

When the user draws with the pen on the Newton screen, pen input data is captured
as ink, which is also known as sketch ink or raw ink.

What happens with the raw ink depends upon the configuration of the view in
which the input action was performed and the choices that the user made in the

8-14 Using Text

ARENDI-DEFS00003954

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 108 of 201 PageID #: 28952

CHAP T ER 8

Text and Ink Input and Display

Recognition menu. The view configuration is defined by the view flags and the
(optional) recognition configuration (recConf ig) frame of the view. The
Recognition menu is shown in Figure 8-3.

Figure 8-3 The Recognition menu

A Ti q
et F•k Tem

dq 'I~%-
Ar sk4o t+

Q Pmr~

When the viewFlags input flags and the recConf ig frame of the view are set to
accept both text and ink, the Recognition menu choices control what kind of data is
inserted into the paragraph view.

Note that you can limit the choices that are available in the Recognition menu of
your application, though this is rarely necessary or advisable.

The Recognition menu, recognition view flags, and the recognition configuration
frame are described in "Recognition" (page 9-1).

Mixing Text and Ink in Views

Some views require textual input and cannot accept ink words. The recognition
controls are not used by these text-only views, in which writing is always
recognized and inserted as text. If the user drops an ink word into a text-only field,
the ink word is automatically recognized before control returns to the user.

Edit views can handle both ink words and sketch ink. If an edit view receives an
ink word, it either merges that word into an existing paragraph view or creates a
new view for the ink word. If an edit view receives sketch ink, it creates a polygon
view for the ink drawing.

You can also create fields that accepts only ink words. However, if the user types or
drops recognized text into such a field, the recognized text remains recognized text.

You can set a paragraph view to accept either text or ink input with the
following settings:

viewFlags: clParagraphView,

viewFlags: vVisible + vClipping + vClickable +

vGesturesAllowed + vCharsAllowed +

vNumbersAllowed,

recConfig: rcInkOrText

Using Text 8-15

ARENDI-DEFS00003955

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 109 of 201 PageID #: 28953

CHAP T ER 8

Text and Ink Input and Display

Note
The view flags are described in "Views" (page 3-1). The
recognition view flags are described in "Recognition"
(page 9-1).

Although raw ink is intended mostly for drawing, the user can still write with raw
ink by choosing "Sketches" from the Recognition menu. The recognizer
automatically segments raw ink into ink words. The raw ink can subsequently be
recognized, using deferred recognition. Unlike ink text, raw ink is not moved or
resized after it is written.

When raw ink from a Lx system is dragged into a paragraph view, each piece of
ink is automatically converted into an ink word. This conversion is not reversible.

Note
You can use one of two representations for text and ink that are
mixed together. The first and more common representation is as a
rich string, as described in "Rich Strings" (page 8-22). The second
representation, used in paragraph views, is as a text string with a
corresponding series of matching style runs. This representation,
which is used for editing operations in paragraph views, is
described in "Text and Styles" (page 8-25).

Ink Word Scaling and Styling

Ink words are drawn using the pen thickness that the user specifies in the Styles
menu. After the ink words are drawn, they are scaled by the system software. The
scaling value is specified in the Text Editing Settings menu, which the user can
access by choosing Preferences from the Recognition menu.

The standard values for scaling ink words are 50 percent, 75 percent, and 100 percent.
After the system performs scaling, it assigns a font style and size to the ink word.
The initial style is plain. The initial size is proportional to the x-height of the ink
word, as estimated by the recognizer. This size is defined so that an ink word of a
certain size will be roughly the same size as a text word displayed in a font of that
size. For example, an ink word of size 12 is drawn at roughly the same size as a
text word in a typical 12-point font, as shown in Figure 8-4. The ink words in
Figure 8-4 were first scaled to 50 percent of their written size.

Figure 8-4 Resized and recognized ink

8115 I.~ Ir twelve point

8-16 Using Text

ARENDI-DEFS00003956

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 110 of 201 PageID #: 28954

CHAP T ER 8

Text and Ink Input and Display

You can modify the size at which ink words are displayed in two ways: by
changing the scaling percentage or the font size. For example, suppose that you
draw an ink word and the system calculates its font size, as written, at 36 point. If
your ink text scaling is set to 50 percent, the ink word is displayed at half of the
written size, which makes its font size 18 point. If you subsequently change the
scaling of that ink word to 100 percent, its font size changes to 36 point.

If the user applies deferred recognition to the ink words, the recognized text is
displayed in the current font family, size, and style, as specified in the Styles menu.

Note

There is a maximum ink word size. Ink words are scaled to the
smaller of what would be produced by the selected scaling
percentage or the maximum size.

Constraining Font Style in Views

You can override the use of styles in a paragraph view so that all of the text in the
paragraph is displayed with a certain font specification. To do this, use the
vi ewFont slot of the paragraph view along with two of the text view flags.

If you include vFixedTextstyle in the text flags for a paragraph view, all
recognized text in the view is displayed using the font family, point size, and
character style specified for vi ewFont. This is the normal behavior for input fields.

If you include vFixedlnkTextstyle in the text flags for a paragraph view, all
ink words in the view are displayed using the point size and character style
specified for vi ewFont. Note that the font family does not affect the display of
ink words.

Note

Using the vFixedTextstyle or vFixedInkTextStyle flags
does not modify the ' styles slot of the view. However, if you
use either of these flags, the system does not allow the user to
change the text style for your paragraph view.

The text view flags are described in "Text Flags" (page 7-2) in Newton
Programmer's Reference.

Using Fonts for Text and Ink Display

Whenever recognized text is drawn on the Newton screen, the system software
examines the font specification associated with the text to determine how to draw
the text. The font specification includes the font family name, the font style, and
the point size for the text. You can specify a font with a font frame or with a packed
integer; both of these formats are described in this section.

Using Text 8-17

ARENDI-DEFS00003957

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 111 of 201 PageID #: 28955

8-18

CHAP T ER 8

Text and Ink Input and Display

The constants you can use in font specifications are shown in "Font Constants for
Packed Font Integer Specifications" (page 7-4) in Newton Programmer's Reference.

The Font Frame

A font frame has the following format:

{family: familyName, face: faceNumber, size: pointSize}

For familyName, you can specify a symbol corresponding to one of the available
built-in fonts, which are shown in Table 8-3.

Table 8-3 Font family symbols

Symbol

'espy

'geneva

'newYork

'handwriting

Font Family

Espy (system) font

Geneva font

New York font

Casual (handwriting) font

For faceNumber, you can specify a combination of the values shown in Table 8-4:

Table 8-4 Font style (face) values

Constant

kFaceNormal

kFaceBold

kFaceItalic

kFaceUnderline

kFaceOutline

kFaceSuperScript

kFaceSubscript

Using Text

Value

0x000

0x001

0x002

0x004

0x008

0x080

0x100

Fontface

Normal font

Bold font

Italic font

Underline font

Outline font

Superscript font

Subscript font

ARENDI-DEFS00003958

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 112 of 201 PageID #: 28956

CHAP T ER 8

Text and Ink Input and Display

Note

Apple recommending using the normal, bold, and underline font
styles. The other styles do not necessarily display well on
Newton screens.

For pomtSize, use an integer that specifies the point size value.

The Packed Integer Font Specification

You can specify a font in one 30-bit integer. A packed integer font specification
uses the lower 10 bits for the font family, the middle 10 bits for the font size, and
the upper 10 bits for the font style. Since only the ROM fonts have predefined font
family number constants, you can only specify ROM fonts in a packed value.

Using the Built-in Fonts

The system provides several constants you can use to specify one of the built-in fonts.
These constants are listed in Table 8-5. The fonts shown in the table can be specified
by the constant (usable at compile time only), by their font frame, or by an integer
value that packs all of the font information into an integer (sometimes this is what
you see at run time if you examine a vi ewFont slot in the NTK Inspector).

Table 8-5 Built-in font constants

Constant Font frame Integer value

ROM_fontsystem9 {family:'espy, 9216
face:0, size:91

ROM_fontsystem9bold {family: 'espy, 1057792
face:l, size:91

ROM_fontsystem9underline {family: 'espy, 4203520
face:4, size:91

ROM_fontsysteml0 {family:'espy, 10240
face:0, size:101

ROM_fontsysteml0bold {family:'espy, 1058816
face:l, size:101

ROM_fontsystemlOunderline {family:'espy, 4204544
face:4, size:101

ROM_fontsysteml2 {family:'espy, 12288
face:0, size:121

ROM_fontsysteml2bold {family:'espy, 1060864
face:l, size:121

continued

Using Text 8-19

ARENDI-DEFS00003959

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 113 of 201 PageID #: 28957

CHAP T ER 8

Text and Ink Input and Display

Table 8-5 Built-in font constants (continued)

Constant Font frame Integer value

ROM_fontsysteml2underline {family:'espy, 4206592
face:4, size:121

ROM_fontsysteml4 {family:'espy, 14336
face:0, size:141

ROM_fontsysteml4bold {family:'espy, 1062912
face:l, size:141

ROM_fontsysteml4underline {family: 'espy, 4208640
face:4, size:141

ROM_fontsysteml8 {family:'espy, 18432
face:0, size:181

ROM_fontsysteml8bold {family:'espy, 1067008
face:l, size:181

ROM_fontsysteml8underline {family: 'espy, 4212736
face:4, size:181

simpleFont9 {family:'geneva, 9218
face:0, size:91

simpleFontlO {family:'geneva, 10242
face:0, size:101

simpleFont12 {family:'geneva, 12290
face:0, size:121

simpleFont18 {family:'geneva, 18434
face:0, size:181

fancyFont9 or {family:'newYork, 9217
userFont9 face:0, size:91

fancyFontlO or {family:'newYork, 10241
userFontlO face:0, size:101

fancyFont12 or {family:'newYork, 12289
userFont12 face:0, size:121

fancyFont18 or {family:'newYork, 18433
userFont18 face:0, size:181

8-20 Using Text

continued

ARENDI-DEFS00003960

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 114 of 201 PageID #: 28958

CHAP T ER 8

Text and Ink Input and Display

Table 8-5 Built-in font constants (continued)

Constant Font frame Integer value

editFontlO {family:'handwriting, 10243
face:0, size:101

editFont12 {family:'handwriting, 12291
face:0, size:121

editFont18 {family:'handwriting, 18435
face:0, size:181

The integers in Table 8-5 are derived by packing font family, face, and size
information into a single integer value. Each NewtonScript integer is 30 bits in
length. In packed font specifications, the lower 10 bits hold the font family, the
middle 10 bits hold the font size, and the upper 10 bits hold the font style.

These three parts added together specify a single font in one integer value. You can
use the constants listed in Table 8-6 at compile time to specify all of the needed infor-
mation. To do this, add one constant from each category together to yield a complete
font specification. At run time, of course, you'll need to use the integer values.

Table 8-6 Font packing constants

Constant Value Description

Font Family

(none defined) 0 Identifies the System font (Espy)

tsFancy 1 Identifies the New York font

t s S i mp l e 2 Identifies the Geneva font

tsHWFont 3 Identifies the Casual (Handwriting)
font

Font Size

t s S i z e (pointSize)

Font Face

tsPlain

tsBold

pointSize << 10 Specify the point size of the font in
pointSize

0

1048576

Normal font

Bold font

continued

Using Text 8-21

ARENDI-DEFS00003961

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 115 of 201 PageID #: 28959

CHAP T ER 8

Text and Ink Input and Display

Table 8-6 Font packing constants (continued)

Constant Value Description

tsltalic 2097152 Italic font

tsUnderline 4194304 Underlined normal font

tsoutline 8388608 Outline font

tsSuperScript 134217728 Superscript font

tssubscript 268435456 Subscript font

Note that the "Casual' font uses the symbol I handwriting for its font family.

You can use the MakeCompactFont function at runtime to create apacked
integer value from a specification of the font family, font size, and font face. You
can only specify ROM fonts with the packed integer format. Here is an example:

fontValue := MakeCompactFont('tsSimple, 12, tsItalic)

If the font specified by the three parameters does not belong to a ROM font family,
MakeCompactFont returns a font frame instead.

The MakeCompactFont function is described in "MakeCompactFont"
(page 7-28) in Newton Programmer's Reference.

Rich Strings

Rich strings store text strings and ink in a single string. If you application supports
user-input text or ink, you can use rich strings to represent all user data. You can
convert between the text and styles pairs in paragraph views and rich strings. Text
and styles pair are described in "Text and Styles" (page 8-25).

Rich strings are especially useful for storing text with embedded ink in a soup. You
can use the rich string functions, described in "Rich String Functions" (page 8-24),
to work with rich strings.

The system software automatically handles rich strings properly, including their
use in performing the following operations:

■ screen display

■ sorting and indexing

■ concatenation with standard functions such as StrConcat and ParamStr,
described in "Utility Functions" (page 26-1)

■ measuring

8-22 Using Text

ARENDI-DEFS00003962

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 116 of 201 PageID #: 28960

CHAP T ER 8

Text and Ink Input and Display

Important Rich String Considerations

Although the Newton system software allows you to use rich strings anywhere that
plain strings are used, there are certain considerations to be aware of when using
rich strings. These include:

■ Do not use functions that are not rich-string-aware. These include the Length,
SetLength, BinaryMunger, and StuffXXX functions.

■ Use the StrLen function to find the length of a string.

■ Use the strMunger function to perform operations that modify the length of a
string, such as appending or deleting characters.

■ Do not assume that the rich string terminator character is the last character in a
rich string object.

■ Do not truncate a rich string by inserting a string terminator character into
the string.

■ Do not assign characters into a rich string, due to the presence of ink place-
holder characters. Use the setChar function instead of direct assignment.

■ Do not use undocumented string functions, which are not guaranteed to work
with rich strings.

Using the Rich String Storage Format

Ink data is embedded in rich strings by inserting a placeholder character in the
string for each ink word. Data for each ink word is stored following the string
terminator character.

Each ink word is represented in the text portion of the rich string by the special
character klnkChar (OxF7 0 0), which is a reserved Unicode character value.

The ink data for all ink words in the string follows the string terminator character.
The final 32 bits in a rich string encode information about the rich string.

Note

The string in the ' text slot of a paragraph view uses the
kParalnkChar (OxF701) character as aplaceholder character
instead of the klnkChar code. The ' text slot string is not a
rich string but might contain ink word placeholders. See "Text and
Styles" (page 8-25) for more information.

Automatic Conversion of Rich Strings

Text is automatically converted from the rich string format to a text/styles pair when-
ever aparagraph is opened and the setvalue function is called with a rich string.

When a paragraph view is opened, the ' text slot is first examined to determine
whether or not the text contains any embedded ink. If so, new versions of the

Using Text 8-23

ARENDI-DEFS00003963

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 117 of 201 PageID #: 28961

CHAP T ER 8

Text and Ink Input and Display

view's ' text and ' styles slots are generated and placed in the context frame of
the view.

When Setvalue is called with a string parameter that is a rich string, it is
automatically decoded into a text and style pair. The result is stored in the view
frame of the paragraph view.

Rich String Functions

You can use the rich string functions to convert and work with rich strings. Each of
these functions, shown in Table 8-7, is described in "Rich String Functions and
Methods" (page 7-31) in Newton Programmer's Reference.

Table 8-7 Rich string functions

Function or method name Description

MakeRichString Converts the data from two slots into a rich
string. MakeRichString uses the text
from the 'text slot of the view and the
styles array from the 'styles slot of the
view.

DecodeRichString Converts arich string into aframe containing
a ' text slot and a ' styles slot. These
slots can be placed in a paragraph view for
editing or viewing.

ExtractRangeAsRichString Returns a rich string for a range of text
from a paragraph view.

IsRichstring Determines if a string is arich string
(i.e., contains ink).

view: GetRichstring Returns the text from aparagraph view as a
rich string or plain string, depending on
whether the paragraph view contains
any ink.

Stripink Strips any ink from arich string. Either
removes the ink words or replaces each
with a specified replacement character
or string.

8-24 Using Text

ARENDI-DEFS00003964

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 118 of 201 PageID #: 28962

CHAP T ER 8

Text and Ink Input and Display

Text and Styles

Within a paragraph view, text is represented in two slots: the ' text slot and the
' styles slot. The ' text slot contains the sequence of text characters in the
paragraph, including an instance of the kParalnkChar placeholder character
(0xF701) for each ink word.

The ' styles slot specifies how each text run is displayed in the paragraph. A
text run is a sequence of characters that are all displayed with the same font
specification. The ' styles slot consists of an array of alternating length and style
information: one length value and one style specification for each text run. For ink
words, the length value is always 1, and the style specification is a binary object
that contains the ink data.

For example, consider the paragraph text shown in Figure 8-5.

Figure 8-5 A paragraph view containing an ink word and text

Try -+IS one

In the paragraph view shown in Figure 8-5, the ' text slot contains the following
sequence of Unicode characters:

'T' 'r' 'y' ' ' OxF701 'o' 'n' 'e'

The ' styles slot for this paragraph consists of the following array:

styles: [4, 12289, 1, <inkData, length 42>, 4, 122891

The first pair of values in the array, (4, 12289), covers the word "Try" and the
space that follows it. The length value, 4, specifies that the text run consists of four
characters. The packed integer font specification value 12 2 8 9 specifies plain,
12-point, New York.

The second pair of values in the array, (1, inkData), covers the ink word. The
length value is 1, which is always the case for ink words. The value inkData is a
binary object that contains the compressed data for the handwritten "this" that is
part of the text in the paragraph view. The data is automatically extracted from the
tablet data as part of a preliminary recognition process that precedes word recognition.

The third and final pair of values in the ' s t yl e s slot array, (4, 12 2 8 9) , covers
the word "one" and the space that precedes it. This text run is 4 characters long and
is displayed 12 points high in the plain version of the New York font family.

Note

The packed integer font specification values
are shown in Table 8-6 (page 8-21).

Using Text 8-25

ARENDI-DEFS00003965

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 119 of 201 PageID #: 28963

CHAP T ER 8

Text and Ink Input and Display

Setting the Caret Insertion Point

When you application starts up, you might want to establish the insertion point for
keyboard entry in caret insertion writing mode. There are three functions that you
can use for this purpose:

■ to establish the insertion point in an input field, use the Setxeyview function,
which is described in "SetKeyView" (page 7-43) in Newton Programmer's
Reference.

■ to establish the insertion point in an edit view, use the PositionCaret
function, which is described in "PositionCaret" (page 7-49) in Newton
Programmer's Reference.

■ to establish the insertion point in an edit view or paragraph, you can use the
SetCaretlnfo function, which is described in "SetCaretlnfo" (page 7-50) in
Newton Programmer's Reference.

Using Keyboards

You can provide the user with on-screen keyboard input in your applications using
the built-in keyboard views. You can also define new keyboard views and register
them with the system, which will activate caret input when these views are opened.

Keyboard Views

There are four different floating keyboards built into the system root view. Each of
the built-in keyboards can be accessed as a child of the root with a symbol.

To use the full alphanumeric keyboard, which is shown in Figure 8-6, use the
symbol ' alphaKeyboard.

Figure 8-6 The built-in alphanumeric keyboard

8-26 Using Text

ARENDI-DEFS00003966

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 120 of 201 PageID #: 28964

CHAP T ER 8

Text and Ink Input and Display

To use the numeric keyboard, which is shown in Figure 8-7, use the symbol
'numericKeyboard.

Figure 8-7 The built-in numeric keyboard

To use the phone keyboard, which is shown in Figure 8-8, use the symbol
'phoneKeyboard.

Figure 8-8 The built-in phone keyboard

To use the time and date keyboard, which is shown in Figure 8-9, use the symbol
'dateKeyboard.

Figure 8-9 The built-in time and date keyboard

An on-screen keyboard can be opened by the user with a double tap on an input
field. The kind of keyboard displayed is determined by what type of input field is
recognized For example, a field in which only numbers are recognized would use
the numeric keyboard. The user can also open a keyboard from the corrector
pop-up list, which appears when you correct a recognized word.

Using Text 8-27

ARENDI-DEFS00003967

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 121 of 201 PageID #: 28965

CHAP T ER 8

Text and Ink Input and Display

If you want to open one of these keyboards programmatically, use code like the
following to send it the open message:

Getroot().alphaKeyboard:Open()

The keystrokes entered by the user are sent to the current key receiver view.
There can be only one key receiver at a time, and only views of the classes
clParagraphView and clEditView can be key receiver views. When a
keyboard is open, a caret is shown in the key receiver view at the location where
characters will be inserted.

The keyboard views are based on clKeyboardview, which is described in
"Keyboard View (clKeyboardView)" (page 7-35) in Newton Programmer's
Reference.

Using Keyboard Protos

The keyboard protos to provide users of your applications with on-screen
keyboards with which to enter text. The following keyboard protos are available:

■ protoKeyboard provides a standard keyboard view that floats above all
other views.

■ protoxeypad allows you to define a customized floating keyboard.

■ protoxeyboardButton includes a keyboard button in a view.

■ protoSmallKeyboardButton includes a small keyboard button
in a view.

■ protoAlphaxeyboard provides an alphanumeric keyboard that you can
include in a view.

■ protoNumericKeyboard provides a numeric keyboard that you can include
in a view.

■ protoPhone Keyboard provides a phone keyboard that you can include in
a view.

■ protoDatexeyboardButton provides a time and date keyboard that you can
include in a view.

protoKeyboard

This proto creates a keyboard view that floats above all other views. It is centered
within its parent view and appears in a location that won't obscure the
key-receiving view (normally, the view to which the keystrokes from the keyboard
are to be sent). The user can drag the keyboard view by its drag-dot to a different
location, if desired. Figure 8-10 shows an example of what a protoKeyboard
looks like on the screen.

8-28 Using Text

ARENDI-DEFS00003968

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 122 of 201 PageID #: 28966

CHAP T ER 8

Text and Ink Input and Display

Figure 8-10 An example of a protoxeyboard

0

6B8.9-0

°.p ERM
d 13

b

....~
option

del

0

This proto enables the caret (if it is not already visible) in the key-receiving view
while the keyboard is displayed. Characters corresponding to tapped keys are
inserted in the key-receiving view at the insertion bar location. The caret is disabled
when the keyboard view is closed.

This proto is used in conjunction with protoxeypad to implement a floating
keyboard. The protoxeyboard proto defines the parent view, and
protoxeypad is a child view that defines the key characteristics.

protoKeypad

This proto defines key characteristics for akeyboard view (clKeyboardview
class). It also contains functionality that automatically registers an open keyboard
view with the system. If you want to get this behavior in your custom keyboard,
use protoKeypad.

You use this proto along with protoxeyboard to implement a floating keyboard.
The view using the protoxeypad proto should be a child of the view using the
protoxeyboard proto.

proto Keyboard B utto n

This proto is used to include the keyboard button in a view. This is the same keyboard
button shown on the status bar in the notepad. Tapping the button causes the on-
screen keyboard to appear. If the keyboard is already displayed, a picker listing
available keyboard types is displayed. The user can tap one to open that keyboard.

Figure 8-11 shows an example of the keyboard button.

Figure 8-11 The keyboard button

Using Text 8-29

ARENDI-DEFS00003969

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 123 of 201 PageID #: 28967

CHAP T ER 8

Text and Ink Input and Display

protoSmallKeyboardButton

This proto is used to include a small keyboard button in a view. Tapping the button
causes the on-screen keyboard to appear. If the keyboard is already displayed, a
picker listing available keyboard types is displayed. The user can tap one to open
that keyboard.

Figure 8-12 shows an example of the small keyboard button.

Figure 8-12 The small keyboard button

9)
protoAlphaKeyboard

This proto is used to include an alphanumeric keyboard in a view. This is the same
as the ' alphaxeyboard keyboard view provided in the root view, as described in
"Keyboard Views" (page 8-26). An example of protoAlphaKeyboard is shown
in Figure 8-6 (page 8-26).

protoNumericKeyboard

This proto is used to include a numeric keyboard in a view. This is the same as the
numericKeyboard keyboard view provided in the root view, as described in
"Keyboard Views" (page 8-26). An example of protoNumericKeyboard is
shown in Figure 8-7 (page 8-27).

proto Phone Keyboard

This proto is used to include a phone keyboard in a view. This is the same as the
phonexeyboard keyboard view provided in the root view, as described in
"Keyboard Views" (page 8-26). An example of protoPhone Keyboard is shown
in Figure 8-8 (page 8-27).

proto Date Keyboard

This proto is used to include a time and date keyboard in a view. This is the same
as the ' datexeyboard keyboard view provided in the root view, as described in
"Keyboard Views" (page 8-26). An example of protoDateKeyboard is shown
in Figure 8-9 (page 8-27).

Defining Keys in a Keyboard View

When you define a keyboard view, you need to specify the appearance and behavior
of each key in the keyboard. This section presents the definition of an example
keyboard view, which is shown in Figure 8-13 (page 8-31).

8-30 Using Text

ARENDI-DEFS00003970

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 124 of 201 PageID #: 28968

CHAP T ER 8

Text and Ink Input and Display

The Key Definitions Array

Each keyboard view contains a key definitions array, which determines the layout
of the individual keys in the keyboard. The key definitions array is an array of rows.
Each row is an array of values that looks like this:

row0 .= [rowHeight, rowMaxKeyHeight,
keyOLegend,
keylLegend,
key2Legend,

keylresult,
keylresult,
key2result,

keyODescriptor,
keyl Descriptor,
key2Descriptor,

The first two elements describe the height to allot for the row (rowHeight) and the
height of the tallest key in the row (rowMaxKeyHeight), in key units. These two
measurements are often the same, but they may differ. Key units are described in
"Key Dimensions" (page 8-35).

Next in the row array is a series of three elements for each key in the row:

■ keyLegend

■ keyResult

■ keyDescriptor

These values are described in the following sections.

Figure 8-13 shows the example keyboard view that is used to explain key definition
in this section.

Figure 8-13 A generic keyboard view

row0 ._

"2" 2

"3",3,

I 2 3

4 S 6

7 8 9

0

The following is the view definition of the keyboard shown in Figure 8-13. The
values in the row arrays are explained in the remainder of this section.

[keyVUnit, keyVUnit,

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

Using Text 8-31

ARENDI-DEFS00003971

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 125 of 201 PageID #: 28969

CHAP T ER 8

Text and Ink Input and Display

rowl := [keyVUnit, keyVUnit,

114 11 ,4, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

11 5 11 ,5, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

116 11 ,6, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

row2 :=

11 7 11 ,7,

118 11 ,8,

"9",9,

[keyVUnit, keyVUnit,

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

row3 [keyVUnit, keyVUnit,

"*",$*, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

11 0 11 ,0, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,

"#",$#, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

keypad := I...
viewClass: clKeyboardView,

viewBounds: {left:65, top:65, right:153, bottom:1451,

viewFlags: vVisible+vClickable+vFloating,

viewFormat: vfFrameBlack+vfFillWhite+vfPen(1),

keyDefinitions: [row0, rowl, row2, row3], // defined above

keyPressScript: func (key)

begin

Print("You pressed " & key);

end,

The Key Legend

The key legend specifies what appears on the keycap. It can be one of the following
types of data:

■ n 1, in which case the key result is used as the legend.

■ A string, which is displayed centered in the keycap.

■ A character constant, which is displayed centered in the keycap.

■ A bitmap object, which is displayed centered in the keycap.

■ An integer. The number is displayed centered in the keycap and is used directly
as the key result, unless the keyResultsAreKeycodes slot is set to true, as
described in the next section.

■ A method. The method is evaluated and its result is treated as if it had been
specified as the legend.

8-32 Using Text

ARENDI-DEFS00003972

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 126 of 201 PageID #: 28970

CHAP T ER 8

Text and Ink Input and Display

■ An array. An element of the array is selected and treated as one of the above
data types. The index of the array element is determined by the value of the
keyArrayzndex slot (which can be changed dynamically). Note that arrays of
arrays are not allowed here, but an array can include any combination of other
data types.

The Key Result

The key result is the value returned when the key is pressed. This value is passed as
aparameter to the keyPressscript method. If this method doesn't exist, the
result is converted (if possible) into a sequence of characters that are posted as key
events to the key receiver view.

The key result element can be one of the following types of data:

■ A string, character constant, or bitmap object, which is simply returned.

■ An integer, which is returned. Alternately, if the keyResultsAreKeycodes
slot is set to true, the integer is treated as a key code. In this case, the character
corresponding to the specified key code is returned. If you are using keycodes,
make sure to register your keyboard by including the kxbdUsesxeycodes
view flag.

See Figure 8-14 (page 8-34) for the numeric key codes returned by each of the
keys on a keyboard.

■ A method. The method is evaluated and its result is treated as if it had been
specified as the result.

■ An array. An element of the array is selected and treated as one of the above
data types. The index of the array element is determined by the value of the
keyArrayzndex slot (which can be changed dynamically). Note that arrays of
arrays are not allowed, but an array can include any combination of other
data types.

Using Text 8-33

ARENDI-DEFS00003973

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 127 of 201 PageID #: 28971

CHAP T ER 8

Text and Ink Input and Display

Figure 8-14 Keyboard codes

Flop
An

"32 112
1

@13
1

#14
3

$15 X17
5

16 &1A
1

C X19
8

)1D
0 - da

-

1((21

33'
ala

30 OC OD
W

OE
E

OF
P

11
T

10
Y

20
U

22
I 0 P

1--

oPk

1 F 23 11E 1 2A
ad

39 AO0
B
01 U O2 FO3 GO5 HO4 326 X28 X 25 2 24

alum

a38 Z 061X 07 UO8 VO9JBOBJN2DJM2Ef2Bj>2F11

2CI

Snl+ 38

3B
aoYral

ad 3A
IPYiv ~

37
~

31
~~

37
O go,

d 3A
~oaoYral

3Bi

iii ~

.. m*A.4.1
72 73 744
neip nam

J75 77 79
page

(~ end dmvo

[7D

E

7B 7C '

0 0 0
V ¢ps wolf
ma ma ma

51

5B
8

4B'

5C
9

l

43

4E

57
5

54 55 4C
1 3

52 41
Oar

6
45

The Key Descriptor

The appearance of each key in a keyboard is determined by its key descriptor. The
key descriptor is a 30-bit value that determines the key size, framing, and other
characteristics. The descriptor is specified by combining any of the constants
shown in Table 8-8.

Table 8-8 Key descriptor constants

keyspacer Nothing is drawn in this space; it is a spacer, not a key.

keyAutoHi 1 i t e Highlight this key when it is pressed.

keylnsetUnit Inset this key's frame a certain number of pixels within its
space. Multiply this constant by the number of pixels you
want to inset, from 0-7 (for example, key I n s e tUn i t * 3).

8-34 Using Text

continued

58

ARENDI-DEFS00003974

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 128 of 201 PageID #: 28972

CHAP T ER 8

Text and Ink Input and Display

Table 8-8 Key descriptor constants (continued)

keyFramed Specify the thickness of the frame around the key. Multiply
this constant by the number of pixels that you want to use
for the frame thickness, from 0-3.

keyRoundingUnit Specify the roundedness of the frame corners. Multiply this
constant by the number of pixels that you want to use for
the corner radius, from 0-15, zero being square.

keyLe f tOpen No frame line is drawn along the left side of this key.

keyTopOpen No frame line is drawn along the top side of this key.

keyRightOpen No frame line is drawn along the right side of this key.

keyBottom0pen No frame line is drawn along the bottom side of this key.

keyHUnit A combination of these four constants specifies the
keyHHal f horizontal dimension of the key in units. For details,
keyHQuarter see the next section.
keyHEighth

keyVUnit A combination of these four constants specifies the
keyVHal f vertical dimension of the key in units. For details, see
keyVQuarter the next section.
keyVEighth

Key Dimensions

The width and height of keys are specified in units, not pixels. A key unit is not a
fixed size, but is used to specify the size of a key relative to other keys. The width
of a unit depends on the total width of all keys in the view and on the width of the
view itself. Key widths and heights can be specified in whole units, half units,
quarter units, and eighth units.

When it is displayed, the whole keyboard is scaled to fit entirely within whatever
size view bounds you specify for it.

To fit the whole keyboard within the width of a view, the total unit widths are
summed for each row, and the scaling is determined based on the widest row. This
row is scaled to fit within the view width, giving an equal pixel width to each
whole key unit. A similar process is used to scale keys vertically to fit within the
height of a view.

Fractional key units (half, quarter, eighth), when scaled, must be rounded to an
integer number of pixels, and thus may not be exactly the indicated fraction of a
whole key unit. For example, if the keys are scaled to fit in the view bounds,
a whole key unit ends up to be 13 pixels wide. This means that a key specified to
have a width of 13/8 units (keyHUnit+keyHEighth*3) is rounded to 13 + 5, or
18 pixels, which is not exactly 13/8 * 13.

Using Text 8-35

ARENDI-DEFS00003975

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 129 of 201 PageID #: 28973

CHAP T ER 8

Text and Ink Input and Display

Key dimensions are specified by summing a combination of horizontal and vertical
key unit constants within the keyDescriptor. For example, to specify a key that
is 2 3/4 units wide by 1 1/2 units high, specify these constants for
keyDescriptor:

keyHUnit*2 + keyHQuarter*3 + keyVUnit + keyVHalf

Using the Keyboard Registry

If your application includes its own keyboard, you need to register it with the system
keyboard registry. This makes it possible for the system to call any keyboard-related
functions that you have defined and to handle the insertion caret properly.

The RegisterOpenKeyboard method of a view is for registering a keyboard for
use with that view.

Use the UnregisterOpenKeyboard method of aview to remove the keyboard
view from the registry. If the insertion caret is visible, calling this method hides it.

Note

The system automatically unregisters the keyboard when the
registered view is hidden or closed. The protokeypad proto
also automatically handles registration for you in its
viewSetupDonescript. You do not need to call the
UnregisterOpenKeyboard method in these cases.

You can use the openxeypadFor function to open a context-sensitive keyboard
for a view. This function first attempts to open the keyboard defined in the view's
_keyboard slot. If the view does not define a keyboard in that slot,
OpenKeypadFor determines if the view allows only a single type of input, such
as date, time, phone number, or numbers. If so, OpenKeypadFor opens the
appropriate built-in keyboard for that input type. If none of these other conditions
is met, OpenKeypadFor opens the alphaKeyboard keyboard for the view.

Note

The Newton System Software uses the openxeypadFor
function to open a context-sensitive keyboard when the user
double-taps on a view in which a _keyboard slot is defined.

Theses methods and functions, as well as several others you can use with the
keyboard registry in your applications, are described in "Keyboard Registry
Functions and Methods" (page 7-44) in Newton Programmer's Reference.

Defining Tabbing Orders

You can define the tabbing order for an input view with the _tabChi ldren slot,
which contains an array of view paths.

8-36 Using Text

ARENDI-DEFS00003976

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 130 of 201 PageID #: 28974

CHAP T ER 8

Text and Ink Input and Display

Each view path must specify the actual view that accepts the input. An example of
a suitable path is shown here:

'myInputLine, 'myLabelInputLine.entryLine

When the user tabs through this list, it loops from end to beginning and, with
reverse-tabbing, from beginning to end.

You can use the _tabParent slot to inform the system that you want tabbing in a
view restricted to that view. Each view in which _tabParent is non-ni 1 defines a
tabbing context. This makes it possible to have several views on the screen at once
with independent tabbing within each view. In this case, the user must tap in
another view to access the tabbing order in that view.

For example, in Figure 8-15, there are two independent tabbing orders. The first
consists of the input lines that contain the text "One," "Two," "Three," and "Four".
The second tabbing order consists of the input lines that contain the text "Five"
and "Six."

Figure 8-15 Independent tabbing orders within a parent view

T

The user taps in any of the top four slots; thereafter, pressing the tab key on a keypad
or external keyboard moves among the four slots in that tabbing order. If the user
taps one of the bottom two slots, the tab key jumps between those two slots.

The slots tabParent and tabChi ldren can coexist in a view, but the
_tabChi ldren slot takes precedence in specifying the next key view. If the
current view does not define the _tabParent slot, the search moves upward from
the current view until one of the following conditions is met:

■ a view descended from protolnputLine with a tabParent slot is found.

■ a protof loater view is found

Using Text 8-37

ARENDI-DEFS00003977

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 131 of 201 PageID #: 28975

CHAP T ER 8

Text and Ink Input and Display

■ a view descended from protolnputLine with the vApplication flag set in
the viewFlags slot

The Caret Pop-up Menu

Normally, when the user taps the insertion caret, the system-provided Punctuation
pop-up Menu opens. However, you can override this with a pop-up menu of your
own creation.

When the user taps the insertion caret, the system starts searching for a slot named
_caretPopup. The search begins in the view owning the caret, and follows both
the proto and parent inheritance paths. The default Punctuation pop-up is stored in
the root view.

The _caretPopup slot must hold a frame containing two slots. The first slot,
pop, defines a list of pop-up items suitable for passing to DoPopup. The second
slot must contain a pickActionScript. If not, control passes to the punctuation
pop-up, which has its own version of the pickActionScript. This routine then
inserts a string, corresponding to the selected character at the caret, by using the
function PostKeyString.

Handling Input Events

You sometimes need to respond to input events that occur in text views. This
section describes how to test for a selection hit and respond to keystrokes and
insertion events.

Testing for a Selection Hit

After the user taps the screen, you can determine if the point "hits" a specific
character or word in a paragraph view.

The view: PointTOCharOf f set method returns the offset within the paragraph
that is closest to the point (x, y). This method is described in "PointToCharOffset"
(page 7-51) in Newton Programmer's Reference.

The view: PointToWord method returns a frame that indicates the position of
the word within the paragraph that is closest to the point (x, y). This method is
described in "PointToWord" (page 7-52) in Newton Programmer's Reference.

Note

Both of these functions return n 1 if the view is not a paragraph
view. Also, the point you are testing must correspond to a visible
position within the paragraph view; you cannot hit-test on
off-screen portions of a view.

8-38 Using Text

ARENDI-DEFS00003978

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 132 of 201 PageID #: 28976

CHAP T ER 8

Text and Ink Input and Display

Summary of Text

Text Constants and Data Structures

Text Flags

vWidthIsParentWidth (1 << 0)

vNoSpaces (1 << 1)

vWidthGrowsWithText (1 << 2)

vFixedTextStyle (1 << 3)

vFixedInkTextSTyle (1 << 4)

vExpectingNumbers (1 << 9)

Font Family Constants for Use in Frames

'espy

'geneva

'newYork

'handwriting

Font Face Constants for Use in Frames

kFaceNormal 0x000

kFaceBold 0x001

kFaceItalic 0x002

kFaceUnderline 0x004

kFaceOutline 0x008

kFaceSuperScript 0x0080

kFaceSubScript 0x100

Built-in Font Constants

ROM fontsystem9 9216

ROM fontsystem9bold 1057792

ROM fontsystem9underline 4203520

ROM fontsysteml0 10240

ROM fontsysteml0bold 1058816

Summary of Text 8-39

ARENDI-DEFS00003979

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 133 of 201 PageID #: 28977

CHAP T ER 8

Text and Ink Input and Display

ROM fontsystemlOunderline 4204544

ROM fontsysteml2 12288

ROM fontsysteml2bold 1060864

ROM fontsysteml2underline 4206592

ROM fontsysteml4 14336

ROM fontsysteml4bold 1062912

ROM fontsysteml4underline 4208640

ROM fontsysteml8 18432

ROM fontsysteml8bold 1067008

ROM fontsysteml8underline 4212736

simpleFont9 9218

simpleFontlO 10242

simpleFont12 12290

simpleFont18

fancyFont9 or

userFont9

fancyFontlO or

userFontlO

fancyFont12 or

userFont12

fancyFont18 or

userFont18

18434

9217

10241

12289

18433

editFontlO 10243

editFont12 12291

editFont18 18435

Font Family Constants for Packed Integer Font Specifications

tsFancy 1

tsSimple 2

tsHWFont 3

8-40 Summary of Text

ARENDI-DEFS00003980

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 134 of 201 PageID #: 28978

CHAP T ER 8

Text and Ink Input and Display

Font Face Constants for Packed Integer Font Specifications

tsPlain 0

tsBold 1048576

tsItalic 2097152

tsUnderline 4194304

tsOutline 8388608

tsSuperScript 134217728

tsSubScript 268435456

Keyboard Registration Constants

kKbdUsesKeyCodes 1

kKbdTracksCaret 2

kKbdforInput 4

Key Descriptor Constants

keySpacer (1 << 29)

keyAutoHilite (1 << 28)

keyInsetUnit (1 << 25)

keyFramed (1 << 23)

keyRoundingUnit (1 << 20)

keyLeftOpen (1 << 19)

keyTopOpen (1 << 18)

keyRightOpen (1 << 17)

keyBottom0pen (1 << 16)

keyHUnit (1 << 11)

keyHHalf (1 << 10)

keyHQuarter (1 << 9)

keyHEighth (1 << 8)

keyVUnit (1 << 3)

keyVHalf (1 << 2)

keyVQuarter (1 << 1)

keyVEighth (1 << 0)

Summary of Text 8-41

ARENDI-DEFS00003981

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 135 of 201 PageID #: 28979

CHAP T ER 8

Text and Ink Input and Display

Keyboard Modifier Keys

kIsSoftKeyboard (1 << 24)

kCommandModifier (1 << 25)

kShiftModifier (1 << 26)

kCapsLockModifier (1 << 27)

kOptionsModifier (1 << 28)

kControlModifier (1 << 29)

Views

clEditView

aClEditView:= {

viewBounds : boundsFrame,

viewFlags : constant,

viewFormat : formatFlags,

viewLineSpacing: integer,

viewLinePattern: integer,

view.'EditAddWordScript (form, bounds)

NotesText (childArray)

}

clParagraphView

aClEditView:= {

viewBounds : boundsFrame,

viewFont : fontFrame,

text: string,

viewFlags : constant,

viewFormat : formatFlags,

vi ewJu s t i f y: constant,

tabs: array,

styles: array,

textFlags : constant,

copyProtection : constant,

}

8-42 Summary of Text

tab stops

style runs

ARENDI-DEFS00003982

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 136 of 201 PageID #: 28980

CHAP T ER 8

Text and Ink Input and Display

dKeyboardView

aClEditView:= {

_noRepeat:

viewBounds:

keyDefinitions:

viewFlags:

viewFormat:

keyArrayIndex:

keyHighlightKeys:

keyResultsAreKeycodes:

keyReceiverView:

keySound:

keyPressScript:

}

Protos

constant,
boundsFrame ,
array,
constant,
constant,
array,
array,
Boolean ,
view,
soundFrame ,
function

defines key layout

key legends

keys to highlight

view for keystrokes

protolnputLine

aprotoInputLine:= {

_proto : protoInputLine,

viewBounds : boundsFrame,
viewFlags:

text:

viewFont:

viewJustify:

viewFormat:

viewTransferMode:

viewLineSpacing:

viewLinePattern:

memory:

constant,
string,
constant,
constant,
constant,
constant,
integer,
binary, // 8-byte pattern
symbol,

viewChangedScript : function.

}

protoRichlnputLine

aprotoRichInputLine:= {

_proto : protoRichInputLine,

viewBounds : boundsFrame,
viewFlags: constant,

Summary of Text 8-43

ARENDI-DEFS00003983

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 137 of 201 PageID #: 28981

CHAP T ER 8

Text and Ink Input and Display

text: string,

viewFont : constant,

vi ewJu s t i f y: constant,

viewFormat : constant,

viewTransferMode: constant,

viewLineSpacing: integer,

viewLinePattern: binary, // 8-byte pattern

memory: symbol,

viewChangedScript : function,

}

protoLabellnputLine

aprotoLabelInputLine:= {

_proto : protoLabelInputLine,

viewBounds : boundsFrame,

entryFlags : constant,

label: string,

labelFont : constant,

labelCommands: array, // strings for list

curLabelCommand: integer,

indent: integer,

viewLineSpacing: integer,

viewLinePattern: binary, // 8-byte pattern

textSetup : function,

updateText : function,

textChanged : function,

setLabelText : function,

setLabelCommands : function,

labelClick: function,

labelActionScript : function,

}

protoRich Label InputLine

aprotoRichLabelInputLine:= {

_proto : protoRichLabel InputLine,

viewBounds : boundsFrame,

entryFlags : constant,

label: string,

8-44 Summary of Text

ARENDI-DEFS00003984

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 138 of 201 PageID #: 28982

CHAP T ER 8

Text and Ink Input and Display

labelFont : constant,

labelCommands: array, // strings for list

curLabelCommand: integer,

indent: integer,

viewLineSpacing: integer,

viewLinePattern: binary, // 8-byte pattern

textSetup : function,

updateText : function,

textChanged : function,

setLabelText : function,

setLabelCommands : function,

labelClick: function,

labelActionScript : function,

}

protoKeyboard

aprotoKeyboard:= {

_proto : protoKeyboard,

saveBounds : boundsFrame,

freeze: Boolean,

}

protoKeypad

aprotoKeypad:= {

_proto : protoKeypad,

keyDefinitions: array, // defines key layout

viewFont : constant,

viewFormat : constant,

keyArrayIndex : integer,

keyHighlightKeys: Boolean,

keyResultsAreKeycodes : Boolean,

keyReceiverView: constant,

keySound : constant,

keyPressScript : function,

}

Summary of Text 8-45

ARENDI-DEFS00003985

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 139 of 201 PageID #: 28983

CHAP T ER 8

Text and Ink Input and Display

proto Keyboard Button

aprotoKeyboardButton:= {

_proto : protoKeyboardButton,

viewFlags : constant,

viewBounds : boundsFrame,

vi ewJu s t i f y: constant,

defaultKeyboard symbol,

}

protoSmall Keyboard Button

aprotoSmallKeyboardButton:= {

_proto : protoSmallKeyboardButton,

viewFlags : constant,

viewBounds : boundsFrame,

vi ewJu s t i f y: constant,

current: symbol,

}

protoAlphaKeyboard

aprotoAlphaKeyboard:= {

_proto : protoAlphaKeyboard,

viewBounds : boundsFrame,

vi ewJu s t i f y: constant,

}

protoNumericKeyboard

aprotoNumericKeyboard:= {

_proto : protoNumericKeyboard,

viewBounds : boundsFrame,

vi ewJu s t i f y: constant,

}

8-46 Summary of Text

ARENDI-DEFS00003986

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 140 of 201 PageID #: 28984

CHAP T ER 8

Text and Ink Input and Display

protoPhoneKeyboard

aprotoPhoneKeyboard:= {

_proto : protoPhoneKeyboard,

viewBounds : boundsFrame,

vi ewJu s t i f y: constant,

}

proto Date Keyboard

aprotoDateKeyboard:= {

_proto : protoDateKeyboard,

viewBounds : boundsFrame,
vi ewJu s t i f y: constant,

}

Text and Ink Display Functions and Methods

This section summarizes the functions and methods you can use to work with text
and ink in your applications.

Functions and Methods for Edit Views

view:EditAddWordScript (form, bounds)

NotesText (childArray)

Functions and Methods for Measuring Text Views

TextBounds (rStr, fontSpec, viewBounds)

TotalTextBounds (paraSpec, editSpec)

Functions and Methods for Determining View Ink Types

AddInk (edit, poly)

ViewAllowsInk(view)

ViewAllowsInkWords(view)

Summary of Text 8-47

ARENDI-DEFS00003987

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 141 of 201 PageID #: 28985

CHAP T ER 8

Text and Ink Input and Display

Font Attribute Functions and Methods

FontAscent (fontSpec)

FontDescent (fontSpec)

FontHeight (fontSpec)

FontLeading (fontSpec)

GetFontFace (fontSpec)

Get Font Fami l yNum (fontSpec

Get Font Fami l ySym (fontSpec

GetFontSize (fontSpec)

MakeCompactFont (family, size, face)

SetFontFace (fontSpec, newFace)

SetFontFamily(fontSpec, newFamily)

SetFontParms (fontSpec, whichParms)

SetFontSize(fontSpec, newSize)

Rich String Functions and Methods

DecodeRichSt ring (richStrmg defaultFontSpec

view.'Ext rac tRangeAsRi chS t ring (offset, length)

view.'GetRichString ()

I sRichString (testString)

MakeRi chS t ring (text, styleArray)

StripInk(richStrmg, replaceStrmg)

Functions and Methods for Accessing Ink in Views

Get InkAt (Para, index)

Next Ink Index (Para, index)

ParaContains Ink (para)

PolyContains Ink (poly)

8-48 Summary of Text

ARENDI-DEFS00003988

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 142 of 201 PageID #: 28986

CHAP T ER 8

Text and Ink Input and Display

Keyboard Functions and Methods

This section summarizes the functions and methods that you can use to work with
keyboards in your applications.

General Keyboard Functions and Methods

GetCaretBOX()

view:KeyboardInput()

KeyIn (keyCode, down)

PostKeyString (view, keyString)

SetKeyView (view, offset)

Keyboard Registry Functions and Methods

KeyboardConnected()

OpenKeyPadFor(view)

RegGlobal Keyboard (kbdSymbol, kbdTemplate)

view: RegisterOpenKeyboard (flags)

UnRegGlobal Keyboard (kbdSymbol)

view:UnregisterOpenKeyboard()

Caret Insertion Writing Mode Functions and Methods

GetRemoteWriting()

SetRemoteWriting(newSetting)

I nsertion Caret Functions and Methods

GetCaretInfo()

GetKeyView()

view.'PositionCaret(x, y, playSound)

SetCaret Info (view, info)

Application-Defined Methods for Keyboards

ViewCaretChangedScript(view, offset, length)

Summary of Text 8-49

ARENDI-DEFS00003989

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 143 of 201 PageID #: 28987

CHAP T ER 8

Text and Ink Input and Display

I nput Event Functions and Methods

This section summarizes the functions and methods that you can use to work with
input events in your applications.

Functions and Methods for Hit-Testing

view.'PointToCharOf f set (xy)

view.'PointToWord (xy)

Functions and Methods for Handling Insertions

view.'Handle Insert Items (insertSpec)

Insert I temsAtCaret (insertSpec)

Functions and Methods for Handling Ink Words

Get InkWordInfo (ink Word)
view.'Handl e InkWord (strokeBundle)

view.'Handl eRawInk (strokeBundle)

Application-Defined Methods for Handling Ink in a View

view.'ViewInkWordScript (strokeBundle)

view.'ViewRawInkScript (strokeBundle)

8-50 Summary of Text

ARENDI-DEFS00003990

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 144 of 201 PageID #: 28988

C H A P T E R 9

Recognition

This chapter and Chapter 10, "Recognition: Advanced Topics," describe the use of
the Newton recognition system. The recognition system accepts written input from
views and returns text, ink text, graphical objects, or sketch ink to them.

This chapter describes how to use view flags to enable the recognition of text,
shapes and gestures in views. If you are developing an application that must derive
text or graphical data from pen input, you should become familiar with the contents
of this chapter. Before reading this chapter, you should be familiar with NewtonScript
message passing among views and the use of view flags to specify the characteristics
of views, as described in Chapter 3, "Views."

You need not read Chapter 10, "Recognition: Advanced Topics," unless you need to
provide unusual input views or specialized recognition behavior. (See that chapter's
first page for a complete list of its topics.)

About the Recognition System

The Newton recognition system enables views to convert handwritten input into
text or graphical shapes, and to take action in response to system-defined gestures
such as taps and scrubs.

Any type of view can accept pen input, and different types of views provide
different amounts of system-supplied behavior. Views based on the system-supplied
clEditView and clParagraphView classes handle most forms of pen input
automatically. Applications need not handle recognition events in these types of
views explicitly unless they need to do something unusual. The clView class, on
the other hand, provides no built-in recognition behavior. Views of this type must
provide all recognition behavior themselves.

The system provides recognizer engines (also called rccognizcrs) that classify
pen input as clicks, strokes, gestures, shapes, or words. Each view can specify
independently which recognizers it uses and how the recognition system is to process
pen input that occurs within its boundaries. For example, you could configure a view
to recognize text and shapes, or you might enable only text recognition in a view
not intended to accept graphical input.

About the Recognition System 9-1

ARENDI-DEFS00003991

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 145 of 201 PageID #: 28989

CHAP T ER 9

Recognition

Although no recognizers are associated with clicks and strokes, they do pass
through the recognition system, allowing your view to respond to them by means
of optional ViewClickScript and ViewStrokeScript methods that you
supply as necessary. The ViewClickScript method of aview that accepts pen
input takes application-specific action when the pen contacts or leaves the surface
of the screen within the view's boundaries. The ViewStrokeScript method
performs application-specific processing of input strokes before they are passed on
to the gesture, shape, or text recognizers.

The gesture recognizer identifies system-defined gestures such as scrubbing items
on the screen, adding spaces to words, selecting items on the screen, and so on.
Views based on the clEditview and clParagraphview classes (edit views
and paragraph views, respectively) respond automatically to standard system-
defined gestures; other kinds of views do not. Your view can provide an optional
ViewGesturescript method to perform application-specific processing of
system-defined gestures. You cannot define new gestures to the system.

Only views based on the clEditview class can recognize shapes. The shape
recognizer uses symmetry found in input strokes to classify them as shapes. The
shape recognizer may make the original shape more symmetrical, straighten its
curves, or close the shape. There is no developer interface to shape recognition.

The system provides two text recognizers—one optimized for a printed handwriting
style and another optimized for a cursive handwriting style. The printed text
recognizer (also called the printed rccognizcr) requires that the user lift the pen
from the screen between letters. The cursive text recognizer (also called the cursive
rccognizcr) accepts cursive input (letters connected within a single word), printed
input (disconnected letters within a single word), or any combination of these two
kinds of input.

In views that recognize text, the system enables the printed recognizer by default
unless the cursive recognizer is enabled explicitly. The user can specify the use of a
particular text recognizer from within the Handwriting Recognition preferences
slip. This user preference slip and others that affect recognition behavior are
discussed in "User Preferences for Recognition" beginning on page 9-14.

Only one text recognizer can be active at a time—all views on the screen share the
same text recognizer—but individual views can specify options that customize its
behavior for a particular view. Individual views can also use any combination of
other recognizers in addition to the specified text recognizer. Regardless of which
text recognizer is in use, the recognition system limits the size of individual input
strings to 32 characters—longer words may not be recognized correctly.

Although the Newton platform currently supports only its built-in recognizers,
future versions of the system may permit the use of third-parry recognizer engines.

The next section describes how the recognition system classifies input as text,
shapes, or gestures.

9-2 About the Recognition System

ARENDI-DEFS00003992

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 146 of 201 PageID #: 28990

CHAP T ER 9

Recognition

Classifying Strokes

Recognition is an iterative process that compares raw input strokes with various
system-defined models to identify the best matches for further processing. When
the user writes or draws in an edit view or paragraph view that accepts user input,
the system

■ notifies the view that a pen event occurred within its boundaries.

■ provides user feedback, in the form of electronic ink drawn on the screen as the
pen moves across its surface.

■ attempts to group strokes meaningfully according to temporal and spatial data.

A view that accepts pen input is notified of pen events within its boundaries by
ViewClickscript messages that are sent when the pen contacts the screen
and when it is lifted from the screen. Views based on the clEditview and
clParagraphview classes handle these events automatically; other views may
not, depending on the type of view in which the pen event occurred. Your view can
supply an optional ViewClickscript method to take application-specific action
in response to these events as necessary.

The electronic ink displayed as the pen moves across the screen is called raw ink.
Raw ink is drawn in the same place on the screen as the original input strokes.
Views based on the clParagraphview view class can be configured to replace
the raw ink with another representation of the input strokes called ink text. Ink text
is a version of the original strokes that has been scaled for display and formatted
into paragraphs: spaces between groups of strokes are made uniform and groups of
strokes are wrapped to the margins of the screen. The size to which ink text is
scaled is specified by the user from the Text Editing Settings user preference slip.
This user preference slip and others that affect recognition behavior are discussed
in "User Preferences for Recognition" beginning on page 9-14.

The recognition system encapsulates raw input strokes in an object called a stroke
unit. Stroke units cannot be examined directly from NewtonScript; however, you
can pass them to functions that construct useful objects from them or perform
recognition using the stroke data they contain.

Views configured to image input as ink text display a scaled representation of the
original input strokes without performing any further processing; that is, they
circumvent the remainder of the recognition process described here.

When stroke units are made available to a view that performs recognition, all of
the recognizers enabled for the view compete equally to classify the input. Each
recognizer compares the input to a system-defined model; if there is a match,
the recognizer involved claims the stroke unit as its own.

Once a stroke unit is claimed by one of the recognizers, it is not returned to the
other recognizers for additional classification; however, recognizers may combine

About the Recognition System 9-3

ARENDI-DEFS00003993

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 147 of 201 PageID #: 28991

CHAP T ER 9

Recognition

multiple stroke units into meaningful groups. For example, certain letters (such as
an uppercase E) might be composed of multiple strokes. The process of grouping
input strokes is influenced by the user preference settings for handwriting style and
letter styles.

The recognizer that claimed one or more stroke units returns to the view one or
more interpretations of the strokes. The gesture and shape recognizers return
only one interpretation to the view. The text recognizer usually returns multiple
interpretations to the view.

Associated with each interpretation is a value, called the score, which indicates
how well the input matched the system-defined model used by the recognizer that
interpreted it. When multiple recognizers are enabled, the system selects the best
interpretations based on their scores and the application of appropriate heuristics.
For example, the text recognizer might choose between interpreting a stroke as a
zero or as the letter O based on whether you have specified that the view accepts
numeric or alphabetic input.

The recognizer that claimed the strokes places its best interpretations in another
kind of unit that is returned to the view. The text recognizer returns word units, the
shape recognizer returns shape units, and the gesture recognizer returns gesture
units. Each of these units contains data representing one or more strokes. A word
unit represents a single recognized word, a shape unit represents a single
recognized shape, and a gesture unit represents a single recognized gesture, as
shown in Figure 9-1. The next several sections describe how the system handles
each of these units.

Gestures

When the recognition system returns a gesture unit to the view, the view performs
the action associated with that gesture automatically. The action taken is dependent
on the kind of view that received the gesture unit.

Edit views and paragraph views respond automatically to system-defined gestures
such as scrubbing items on the screen, adding spaces to words, selecting items on
the screen, and so on. Other kinds of views may do nothing in response to a
particular gesture.

You can provide an optional viewGesturescript method to take action in
response to any standard gesture. For example, you can use this method to respond
to gestures in views that are not paragraph views or edit views. You can also use
this method to override or augment the standard behavior of a particular view in
response to system-defined gestures. At present, you cannot define custom gestures
to the system.

9-4 About the Recognition System

ARENDI-DEFS00003994

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 148 of 201 PageID #: 28992

CHAP T ER 9

Recognition

Figure 9-1 Recognizers create units from input strokes

Pen on tablet

Stroke units

Shapes

ABC

Recognizers

Shape
unit

Wo rd
unit

Text Ink text

Gesture
unit

Ink

When the recognition system returns a shape unit to the view, the shape is displayed
as the clPolygonview child view of a clEditview view. The shape unit contains
a single, cleaned-up version of the original strokes. The shape recognizer may
make the original shape more symmetrical, straighten its curves, or close the shape.

There is no developer interface to shape recognition. To manipulate shapes
returned by the recognition system, you must extract polygon view children from
edit views yourself. You can do so from within an optional
ViewAddChildscript method that you supply. The system invokes this method
for each clPolygonview or clParagraphview child added to an edit view.

About the Recognition System 9-5

ARENDI-DEFS00003995

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 149 of 201 PageID #: 28993

CHAP T ER 9

Recognition

Text

When the recognition system returns a word unit to a view based on the
clParagraphView or clEditView classes, the view displays or uses the best
interpretation of the original input strokes. Paragraph views display words directly;
edit views create a clParagraphView child automatically to display text that the
recognition system returns. Additionally, the recognition system constructs a
correction information frame from the word unit and saves learning data as
appropriate. For more information, see "Correction and Learning" (page 9-13)
and "Accessing Correction Information"(page 10-23). Your view can provide an
optional ViewWordscript method to perform application-specific processing of
the word unit.

The set of possible interpretations that the text recognizer returns to a view is
affected by

■ the text recognizer that the view uses to interpret the input strokes

■ options you have specified for the text recognizer in use

■ the dictionaries that are available to the view for recognition use

A dictionary is a system construct against which the user's input strings are
matched, as a means of ensuring the validity of the text recognizer's output. The
system supplies dictionaries that define names, places, dates, times, phone numbers,
and commonly used words to the text recognizers. The user can expand the
system's built-in vocabulary by adding new words to a RAM-based user dictionary
accessed from the Personal Word List slip. In addition, you can provide custom
dictionaries for the recognition system's use. For example, you might create a
custom dictionary to supply specialized vocabulary, such as medical or legal
terminology. The section "System Dictionaries" beginning on page 9-11 describes
the system-supplied dictionaries in more detail. The use of custom dictionaries for
recognition is described in "Using Custom Dictionaries" beginning on page 10-24.

Although the interpretations returned by the printed recognizer are never limited to
dictionary words, its output is influenced strongly by the set of dictionaries
available for its use. The interpretations returned by the cursive recognizer can be
restricted to those words appearing in the set of dictionaries available for its use;
however its default behavior is to return non-dictionary words in addition to words
appearing in available dictionaries.

Options specified for the currently enabled recognizer may also influence the
interpretations it returns to the view. For example, the cursive recognizer's default
settings enable its letter-by-letter recognition option, to increase the likelihood of
its returning strings not in the currently available set of dictionaries. The user can
control this option and others from within the Handwriting Settings preferences slip.

Note that even when the cursive and printed recognizers are configured similarly,
the results they return for the same input may differ. For example, using the cursive

9-6 About the Recognition System

ARENDI-DEFS00003996

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 150 of 201 PageID #: 28994

CHAP T ER 9

Recognition

recognizer's letter-by-letter option may produce different results than using the
printed recognizer (which always provides letter-by-letter recognition.) Options
for both recognizers are described throughout this chapter and in Chapter 10,
"Recognition: Advanced Topics."

Unrecognized Strokes

If the input strokes are not recognized, the system encapsulates them in an object
known as a stroke bundle. A stroke bundle is a NewtonScript object that
encapsulates stroke data for multiple strokes. The strokes in the bundle have been
grouped by the system according to temporal and spatial data gathered when the
user first entered them on the screen. You can access the information in stroke
bundles to provide your own form of deferred recognition, or to examine or modify
stroke data before it is recognized For information on using stroke bundles, see
Chapter 10, "Recognition: Advanced Topics."

Stroke bundles may be returned to the view under any of the following circumstances:

■ No recognizers are enabled for the view.

■ Recognizers are enabled for the view but recognition fails.

■ The view is configured to image input as ink text.

■ The view's vstrokesAllowed flag is set and a ViewStrokeScript method
is provided.

When the system passes a stroke bundle to a c1Editview view, the view images
the strokes in the bundle as ink text or sketch ink. Other kinds of views may require
you to provide code that displays the strokes.

When no recognizers are enabled for a c1Editview view, it displays input as
sketch ink. Input views for which no recognizers are enabled are not as unusual as
they might seem at first; for example, you might provide a view that accepts stroke
input without performing recognition as a means of capturing the user's handwritten
signature. And some views, such as those used in the built-in Notepad application,
allow the user to enable and disable recognizers at will.

When recognizers are enabled for the view but recognition fails, the view may
return ink text or sketch ink. Recognition may fail if input strokes are too sloppy to
classify or if the view is not configured correctly for the intended input. For more
information, see "Recognition Failure" beginning on page 9-11.

When the view is configured to display input as ink text, the system skips the
remainder of the recognition process—it does not attempt to further classify the input
strokes as letters or words. Instead, the view simply images the strokes as ink text.

The most important difference between ink text and sketch ink has to do with how
these two forms of ink are represented. Ink text is inserted into existing text in
paragraph views in the same way as recognized words are: as the contents of a

About the Recognition System 9-7

ARENDI-DEFS00003997

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 151 of 201 PageID #: 28995

CHAP T ER 9

Recognition

clParagraphview view child. Ink text automatically wraps to the paragraph
boundaries, just as recognized text does. Ink text is also usually reduced in size
when it is drawn, according to the user preference specified by the Ink Text Scaling
item in the Text Editing preferences slip. Sketch ink, on the other hand, is treated as
a graphic: it is inserted into the view as a c1Polygonview view child. Sketch ink
is always drawn at full size, and in the position at which it was written on the screen.

Thus, stroke bundles are normally returned only to views that do not perform
recognition. To cause the system to always return stroke bundles to the view (in
addition to any word units, gesture units or shape units that may be passed to the
view), set the view's vstrokesAl lowed flag and provide a viewStrokeScript
method, as described in "Customized Processing of Input Strokes" beginning on
page 10-40.

The recognition system's classification of user input is essentially a process of
elimination. Enabling and configuring only the recognizers and dictionaries
appropriate to a particular context is the primary means by which you optimize the
recognition system's performance within your application.

Enabling Recognizers

Each view has a viewFlags slot that contains a bit field. The bits in this field
specify characteristics that the view does not inherit from its view class, such as its
recognition behavior. When you set a view flag, it sets bits in this field to enable
combinations of recognizers and dictionaries suited to the input you anticipate the
view to receive.

Not all of the bits in this field affect recognition; some are used to set other
characteristics, such as the view's placement on the screen. The bits in this field
that affect the recognition system are referred to as the view's input mask. When
the view is constructed at run time, the system copies the input mask bits and other
view flags' bits into the view's viewFlags slot. shows the relationship of
recognition-related view flags to bits in the viewFlags slot.

You can set bits in the viewFlags slot from within the graphical view editor in
Newton Toolkit or you can set them programmatically from within your own
NewtonScript code. Either approach allows you to set combinations of bits to
produce a variety of behaviors.

This book uses the NewtonScript approach for all examples. For information on
using the graphical view editor in Newton Toolkit, see Newton Toolkit User's Guide.

9-8 About the Recognition System

ARENDI-DEFS00003998

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 152 of 201 PageID #: 28996

CHAP T ER 9

Recognition

Figure 9-2

vAddressField-

vNameField

vCapsRequired,

Recognition-related view flags

vClickable

vStrokesAllowed

vGesturesAllowed

vAnythingAllowed vSingleUnit

11

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 "LU 15 1U

I
vNoth

vCustomDictionaries

vTimeField

vDateField

vPhoneField

Reserved for system use
vShapesAllowed

View Flags

5

ingAllowed

vCharsAllowed

vNumbersAllowed

vLettersAllowed

vPunctuationAllowed

0

The system supplies a number of constants, called view flags, which are used to set
bits in a view's viewFlags slot programmatically. In general, each of these flags
activates a combination of recognizers and dictionaries suited to recognizing a
particular kind of input. Thus, a view's view flags specify the kinds of data it is
likely to recognize successfully. For a summary of the view flags that affect
recognition, see "Constants" (page 9-31).

There are two ways to set view flags from NewtonScript you can place view flag
constants in your view template's viewFlags slot or you can supply arecognition
configuration (recConf ig) frame for the view. Occasionally, the use of both
techniques is appropriate, but in most cases you'll use only one or the other.

Recognition Configuration Frames

Recognition configuration frames (recConf ig frames) provide an alternate
programmatic interface to the recognition system. They can be used to provide any
behavior that view flags provide, and can also be used to provide specialized
recognition behaviors that view flags cannot. For example, view flags generally set

About the Recognition System 9-9

ARENDI-DEFS00003999

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 153 of 201 PageID #: 28997

CHAP T ER 9

Recognition

multiple bits in the input mask to produce a particular behavior. You can use a
recConf ig frame to set individual bits in the input mask, allowing you to control
aspects of recognition behavior that view flags do not.

Some features of the recognition system require the use of a recConf ig frame.
For example, to create a view that provides single-letter input areas suitable for
accepting pen input in a crossword puzzle application, you must supply a
recConf ig frame that provides an rcGridlnfo frame. The system-supplied
rcGridlnfo frame is used to specify the location of one or more single-letter
input views.

This chapter focuses on the use of view flags to configure recognition. The use of
recConf ig frames is described in Chapter 10, "Recognition: Advanced Topics."
System-supplied recConf ig frames are described in "System-Supplied recConfig
Frames" (page 8-18) in Newton Programmer's Reference.

View Flags vs. RecConfig Frames

In most cases, view flags provide the easiest and most efficient way to configure
the recognition system. Although recConf ig frames provide more flexible and
precise control over the configuration of recognition behavior, they require more
effort to use correctly.

It is recommended that you use view flags to configure recognition unless you need
some special recognition behavior that they cannot provide. Examples of such
behavior include constraining recognition on a character-by-character basis,
implementing customized forms of deferred recognition, and defining baseline or
grid information.

The rest of this chapter discusses configuration of the recognition system only in
terms of the view flag model. You need to read this material even if you plan to use
recConf ig frames in your application, because the description of recConf ig
frames in Chapter 10, "Recognition: Advanced Topics," assumes an understanding
of the view flag model upon which these frames are based.

Where to Go From Here

If you're anxious to begin experimenting with view flags, you can skip ahead to
"Using the Recognition System" beginning on page 9-21 and test the effects of
various flags using the viewFlags sample application provided with Newton
Toolkit. However, it is recommended that you read the rest of this section before
attempting to work with the recognition system.

9-10 About the Recognition System

ARENDI-DEFS00004000

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 154 of 201 PageID #: 28998

CHAP T ER 9

Recognition

Recognition Failure

Recognition may fail when the handwritten input is too sloppy for the system to
make a good match against its internal handwriting model, when the view is not con-
figured correctly for the intended input, or (in the case of dictionary-based recognition
only) when none of the interpretations of the input strokes match a dictionary entry.
In such cases, the recognition system may return sketch ink or ink text.

Ink text looks similar to sketch ink; however, ink text is scaled and placed in a
c1Paragraphview view as text. Sketch ink is not placed in a paragraph but
drawn in a c1Polygonview view on top of anything else that appears in the
polygon view's c1Editview parent. Both ink text and sketch ink hold stroke data
that can be used to recognize the strokes at another time. Deferred recognition—
the process of recognizing saved ink at a later time—is described in more detail in
"Deferred Recognition" (page 10-5), in Chapter 10, "Recognition: Advanced
Topics."

System Dictionaries

The system supplies a variety of dictionaries against which names, places, dates,
times, phone numbers, and commonly used words are matched. There are two
kinds of dictionaries used for text recognition: enumerated and lexical. An
enumerated dictionary is simply a list of strings that can be matched. A lexical
dictionary specifies a grammar or syntax that is used to classify user input. The
kind of dictionary used for a particular task is dependent upon task-specific
requirements. For example, it would be impractical to create an enumerated
dictionary of phone numbers; however, the clearly defined format imposed on these
numbers makes them ideal candidates for definition in a lexical dictionary.

The specific set of dictionaries that the system provides for a particular purpose
generally varies according to the user's locale. For example, because currency
formats vary from country to country, the particular lexical dictionary that the
system uses for matching monetary values may change according to the current
locale. However, you usually need not be concerned with the specific set of
dictionaries used by a particular locale. For more information, see Chapter 20,
"Localizing Newton Applications."

Dictionaries can be in ROM or in RAM (internal or card-based). Most of the system-
supplied dictionaries are in ROM; however, the user dictionary resides in RAM.

Applications must never add items to the user dictionary without the user's
consent. The user dictionary is intended to be solely in the user's control—adding
items to it is akin to changing the user's handwriting preferences or Names entries.
It's also important to leave room for users to store their own items.

About the Recognition System 9-11

ARENDI-DEFS00004001

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 155 of 201 PageID #: 28999

CHAP T ER 9

Recognition

IMPORTANT

An excessively large user dictionary can slow the system when
performing searches that are not related to your application. It is
therefore recommended that applications do not add items to the
user dictionary at all. A

The system supports a total of about 1,000 items in the RAM-based user dictionary
(also known as the review dictionary). Note that this number may change in future
Newton devices. A persistent copy of the user word list is kept on the internal store
in the system soup. The user dictionary is loaded into system memory (not the
NewtonScript heap or store memory) when the system restarts and saved when the
user closes the Personal Word List slip. For more information, see "Working With
the Review Dictionary" (page 10-30).

A separate dictionary called the expand dictionary allows you or the user to
define word expansions that are substituted for abbreviations automatically. The
substitution takes place after the abbreviation has been recognized, but before it has
been displayed. For example, you could specify that the string w/be expanded to
the string with, or the string appt expand to appointment. In addition to permitting
the substitution of an entirely different string for the one recognized, the expand
dictionary can be used to correct recurring recognition mistakes or misspellings
automatically.

The expand dictionary is not used directly by the recognition system. Instead, each
word to be expanded is added to both the user dictionary and the expand dictionary.
Then the user dictionary and any appropriate additional dictionaries are used to
perform stroke recognition. Before the recognizer returns the list of recognized
words to the view, it determines whether any of the items in the list are present in
the expand dictionary. If so, the expanded version of the word is inserted into the
list of recognized words before the original version of the word. The original version
is also included in the list, just in case the user doesn't want to expand the word.

As words not present in any of the currently enabled dictionaries are recognized, the
auto-add mechanism may add them to the user dictionary automatically. This
feature is enabled when the cursive recognizer is active, but not when the printed
recognizer is active. (Although both recognizers use dictionaries to improve
accuracy, the use of dictionaries does not benefit the printed recognizer enough to
justify default use of the auto-add mechanism.) You can improve the printed
recognizer's treatment of problematic words by making them available from a
dictionary, but it is recommended that you create a custom dictionary that provides
those words; the user dictionary is intended to be under the user's control.

The auto-add dictionary is a list of words that have been added to the user
dictionary automatically. If the auto-add dictionary is not empty, the Recently
Written Words slip displays its contents when the user opens the Personal Word
List slip. The Recently Written Words slip prompts the user to indicate whether
each of the words it displays should remain in the user dictionary. To encourage the

9-12 About the Recognition System

ARENDI-DEFS00004002

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 156 of 201 PageID #: 29000

CHAP T ER 9

Recognition

user to make individual decisions about each word in the list, this slip does not
permit selection.

Although the Recently Written Words slip asks the user whether to add words to
the Personal Word List, the words have already been added to both the user
dictionary and the auto-add dictionary by the time they are displayed in this slip if
the cursive recognizer is in use. Rather than actually adding words to any
dictionaries, this slip actually removes those words that the user does not confirm
as candidates for addition to the user and auto-add dictionaries.

Note

When the printed text recognizer is in use, the automatic
addition of words to the user dictionary and the auto-add
dictionary is disabled.

The size of the auto-add dictionary is limited to 100 words. A persistent copy of the
auto-add dictionary is kept on the internal store in the system soup. The auto-add
dictionary is loaded in system memory (not the NewtonScript heap or store
memory) when the system restarts and saved when the user opens or edits the
Recently Written Words slip. For more information, see "Working With the Review
Dictionary" beginning on page 10-30.

Another dictionary, the symbols dictionary, is always enabled for any view that
performs text recognition. This dictionary includes alphabetic characters, numerals,
and some punctuation marks. Use of this dictionary permits the user to correct
single characters by writing over them on the screen.

Correction and Learning

When the recognition system returns a word unit to the view, it constructs a
correction information frame from the word unit and may save learning data as
well. The correction information frame holds information used to correct
misrecognized words. Learning data is used by the system to improve the cursive
recognizer s accuracy.

The system provides a developer interface to the information in the correction
information frame, as well as a user interface to a subset of this data. For complete
descriptions of the protoCorrectInfo, protoWordInfo and
protoWordlnterp system prototypes that provide access to correction
information, see "Recognition System Prototypes" (page 8-31) in Newton
Programmer's Reference

The picker (popup menu) shown in Figure 9-3 provides the user interface to
correction information. This picker is displayed automatically when the user
double-taps a previously recognized word. This picker's items include

■ the five best interpretations returned by the recognizer.

■ the alternative capitalization of the most highly scored interpretation.

About the Recognition System 9-13

ARENDI-DEFS00004003

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 157 of 201 PageID #: 29001

CHAP T ER 9

Recognition

■ the expansions of words that match entries in the expansion dictionary.

■ a graphical representation of the original input strokes as ink.

■ buttons for the soft keyboard and text-corrector views.

■ a Try Letters button when the cursive recognizer is active.

Figure 9-3 Text-corrector picker

G) Wed 11/8

• Unfiled Notes

MM

WHO with Daphne
daphne
Daphne
Dapnne
DAPhne

p~ "r,

The words in this list are one example of correction information stored by the
system as it recognizes words. In addition to word lists, correction information
includes the original stroke data and information known as learning data.

Learning data is information gathered as the user corrects misrecognized words. It
is used to modify the system's internal handwriting model to more closely match
the way the user actually writes. This information is called learning data because
the system can be said to learn various characteristics of the user's handwriting
style, with a resulting increase in recognition accuracy. Not all recognizers return
learning data.

User Preferences for Recognition

The user can specify several preferences that affect the overall configuration of the
recognition system. This information is provided for reference purposes only;
generally, you should not change the user's recognition preferences settings.

9-14 About the Recognition System

ARENDI-DEFS00004004

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 158 of 201 PageID #: 29002

CHAP T ER 9

Recognition

This section describes only those user preferences for which the system provides a
NewtonScript interface. It does not provide a comprehensive summary of the user
interface to recognition, which may vary on different Newton devices. For a
description of the user interface to a particular Newton device, see the user manual
for that device.

The user preference settings for recognition that this section describes are stored as
the values of slots in a system-maintained frame that holds user configuration data.
These slots are described in "System-Wide Settings" (page 8-2) in Newton
Programmer's Reference.

The user preference settings described here may be affected by the setting of a
protoRecToggle view associated with the view performing recognition. For a
description of this view, see "RecToggle Views" beginning on page 9-18.

Recognition-oriented user preference settings may also be overridden by a
recConf ig frame associated with the view performing recognition. For complete
information on recConf ig frames, see Chapter 10, "Recognition: Advanced
Topics."

Handwriting Recognition Preferences

The Handwriting Recognition preferences slip shown in Figure 9-4 specifies the
overall characteristics of the user's handwriting. In general, you should not override
the user settings specified in this slip.

The Printing and Cursive radio buttons specify whether a printed or cursive style
of lettering is used. This system-wide setting enables either the printed or cursive
recognizer by setting the value of the 1 e t t e rS e t S e 1 e c t i on slot in the system's
user configuration data. It is strongly recommended that you do not change
this setting.

The user can also specify the amount of blank space the recognizer may find
between words; this setting influences the recognition system's initial grouping of
stroke data. The value returned by the slider control in this slip is kept in the
1etterSpaceCursiveOption slot in the system's user configuration data. This
value may be overridden by views that perform recognition.

About the Recognition System 9-15

ARENDI-DEFS00004005

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 159 of 201 PageID #: 29003

CHAP T ER 9

Recognition

Figure 9-4 Handwriting Recognition preferences

Options
Button

~! Handwriting Recognition/

My handwriting style is

..i Printing (separate letters)

Cursive (connected letters)

WV

closely spaced widely spaced

Configure for guest user

+Options Align Pen 9

letterSetSelection

letterSpaceCursiveoption

V Handwriting Recognition

My handwriting style is

..i Printing (separate letters)

Cursive (connected letters)

m /kv 12-3
closely spaced widely spaced

Configure for guest user

*Options Align Pen

Checking the "Configure for guest user" checkbox causes the system to

■ save all current recognition system settings.

■ save the owner's learning data.

■ temporarily reset all recognition system preferences to their default values.

■ learn the guest user's writing style as misrecognized words are corrected if the
cursive recognizer is in use. (The printed recognizer does not use learning data.)

When the user deselects the "Configure for guest user" checkbox, the guest user's
learning data is discarded and the original user's learning data, preferences, and
other settings are restored. Note that the system's use of the auto-add mechanism is
not affected by the setting of this checkbox—when the cursive recognizer is
enabled, the system always adds new words to the auto-add dictionary.

The Options button displays a picker from which the user can access options for
various preferences. The items included in this picker vary according to whether
the printed or cursive recognizer is enabled. When the cursive recognizer is enabled,
this picker provides the Text Editing Settings, Handwriting Settings, Letter Shapes,
and Fine Tuning items. When the printed recognizer is enabled, this picker provides
only the Text Editing Settings and Fine Tuning items. Because the system provides
no developer interface to the Letter Shapes slip, it is not discussed here.

Figure 9-5 shows the Text Editing Settings slip that is displayed for both the
printed and cursive recognizers. Of the adjustments available from the Text Editing
Settings slip, the "Add new words to Personal Word List" checkbox is of interest to
developers. The cursive recognizer adds new words to the RAM-based user
dictionary automatically when this checkbox is selected. The printed recognizer
never adds new words automatically, regardless of the setting of this checkbox. You

9-16 About the Recognition System

ARENDI-DEFS00004006

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 160 of 201 PageID #: 29004

CHAP T ER 9

Recognition

can always add new words to the user dictionary programmatically, regardless of
which recognizer is enabled. To display or edit the personal word list, the user taps
the book icon on the soft keyboard.

Figure 9-5 Text Editing Settings slip

ZA Text Editing Settings

l Ink Text Scaling 75% Sena i ng
M Insert new words at caret

Y~ Add new words to Personal Word List

❑X

The system provides two versions of the Fine Tuning slip, one for each of the
cursive and printed text recognizers, as shown in Figure 9-6. Both slips provide a
"Transform my handwriting" slider control that allows the user to fine-tune the
system's use of temporal cues to determine when a group of strokes is complete.
This slider sets the value of the timeoutCursiveoption slot in the system's
user configuration data.

Figure 9-6 Fine Tuning handwriting preferences slips

ZA Fine Tuning

Recognize my handwriting

slowly, more fast, less

accurately accurately

Transform my handwriting

immediately after a delay

For cursive recognizer

speedCursiveoption

timeoutCursiveoption

Z/ Fine Tuning

Transform my handwriting

immediately after a delay

For printed recognizer

The Fine Tuning slip used by the cursive recognizer includes an additional slider
that allows the user to trade some measure of accuracy for a faster response from
the recognizer. The "Recognize my handwriting" slider sets the value of the
speedCursiveoption slot in the system's user configuration data.

When the cursive recognizer is enabled, the Options button in the Handwriting
Recognition preferences slip provides access to the Handwriting Settings slip
shown in Figure 9-7.

About the Recognition System 9-17

ARENDI-DEFS00004007

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 161 of 201 PageID #: 29005

CHAP T ER 9

Recognition

Figure 9-7 Handwriting Settings slip

ZA Handwriting Settings

_Y~ Letter-by-letter in fields

_7 f Letter-by-letter in notes

_7 f Learn my handwriting

letterInFieldsOption

lettersCursiveOption

learningEnabledoption

When the "Learn my handwriting" checkbox is selected, the system sets the value
of the 1 earningEnabl edOpt ion slot in its user configuration data to true.

When this slot holds the value true, the system modifies its internal handwriting
model as the user corrects misrecognized words when the cursive recognizer is
enabled. The printed recognizer does not provide or use learning data.

The user can cause the cursive recognizer to perform character-based recognition
(rather than dictionary-based recognition) in certain kinds of views by selecting the
"Letter-by-letter in fields" or "Letter-by-letter in notes" checkboxes in the
Handwriting Settings slip. (The printed recognizer can always return character
combinations that do not appear in dictionaries.)

The "Letter-by-letter in fields" checkbox enables the cursive recognizer's letter-by-
letter option in protoLabel InputLine views that use this recognizer. The
intended use of this flag is to permit the user to enable letter-by-letter recognition
automatically for views that are unlikely to find user input in dictionaries. For
example, an application that restricts the cursive recognizer to returning dictionary
words might enable this recognizer's letter-by-letter option selectively for views
intended to accept surnames. When the "Letter-by-letter in fields" box is selected,
the value of the letterinFieldsOption slot in the system's user configuration
data is set to true. For more information, see the description of this slot in
"System-Wide Settings" (page 8-2) in Newton Programmer's Reference.

The "Letter-by-letter in notes" checkbox enables letter-by-letter recognition for
views based on the c1Editview class that use the cursive recognizer. When the
"Letter-by-letter in notes" box is selected, the lettersCursiveOption slot in
the system's user configuration data is set to true. The built-in Notes application
and notes associated with items in the Names and Dates applications demonstrate
this behavior. For more information, see the lettersCursiveOption description
in "System-Wide Settings" (page 8-2) in Newton Programmer's Reference.

RecToggle Views

The protoRecToggle view is abutton that allows the user to control the
recognition behavior of one or more views easily. This button is usually provided
as a child of your application's status bar. When the user taps this button, it

9-18 About the Recognition System

ARENDI-DEFS00004008

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 162 of 201 PageID #: 29006

CHAP T ER 9

Recognition

displays a picker from which the user can choose recognition behaviors that you
specify. When this picker is collapsed, the appearance of the button indicates the
current recognition settings for the view or views that it controls. Figure 9-8 shows
the appearance of typical protoRecToggle view when it is collapsed and when
it is expanded to display the pick list of recognizers it can enable.

Figure 9-8 Use of protoRecToggle view in the Notes application

Expanded

Collapsed 9)

A Text
a Ink Text

Efi Shapes
?&- Sketches

Q Preferences

The default picker provides all of the items shown in Figure 9-8 in the order
illustrated. You can specify that this picker display a subset of these items in the
order you specify.

The topmost item in the picker indicates the recognizer that the recToggle view
enables by default; unless you specify otherwise, the recToggle view enables the
text recognizer by default, as shown in the figure.

You can also provide code that restores the user's most recent recToggle setting
or initializes the recToggle to apredetermined setting each time your
application opens.

The picker's Preferences item opens the Handwriting Recognition user preferences
slip by default.

For more information on protoRecToggle views, see Chapter 10, "Recognition:
Advanced Topics," as well as the description of this prototype in Newton
Programmer's Reference.

Flag-Naming Conventions

This section describes conventions used to name recognition-related view flags, as
well as the significance of the use of the words Field and Allowed in flag names.

The Entry Flags area of the Newton Toolkit (NTK) view editor actually sets view
flags. The distinction that Newton Toolkit makes between "view flags" and "entry
flags" is an artifact of the way certain views create child views dynamically at
run time.

For example, when the user taps a protoLabel InputLine view, it creates and
opens a clParagraphView child that is the input line view in which text

About the Recognition System 9-19

ARENDI-DEFS00004009

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 163 of 201 PageID #: 29007

CHAP T ER 9

Recognition

recognition takes place. The Entry Flags area of the NTK screen specifies the view
flags for this dynamically created child view separately from the view flags for the
container view in which it appears. When the system creates the child view, it
copies the Entry Flags bits into the child view's viewFlags slot.

For simplicity's sake, this chapter refers to all recognition-oriented flags as "view
flags." This chapter and its corresponding section of the Newton Programmer's
Reference document all such flags as view flags.

Although the NTK view editor describes vAnythingAl lowed as a "flag" it is
actually a mask that sets all bits in a c1Editview view's input mask. This chapter
refers to this construct as the "vAnythingAl lowed mask." See (page 9-8) for a
graphical depiction of the relationships between bits in the input mask and
recognition-related view flags.

The use of Field in the names of some flags and Allowed in others is meant to
reflect these flags' intended use, rather than a functional difference.

The "field" flags are intended for setting up input views that accept a single kind of
input, such as dates. For example, setting the vDateFie1d flag specifies that the
view accepts numeric input in a format commonly used for dates in the current
locale. Setting this flag enables the set of dictionaries appropriate for recognizing
such input.

On the other hand, the more inclusive "allowed" flags are intended for use with
views that must recognize several kinds of input; for example, setting the
vNumbersAl lowed flag specifies that the view accepts a wide range of numeric
input, such as currency values, times, and dates. Setting the vNumbersAl lowed
flag alone, then, enables a more inclusive set of dictionaries than obtained by
setting the vDateField flag alone.

Despite differences in naming conventions (and despite the fact that the Field Type
popup menu in the NTK view editor considers these flags mutually exclusive), the
"field" and "allowed" flags can be mixed in any combination. Keep in mind,
though, that the more choices the recognizer has, the more opportunity it has to
make the wrong choice.

Recognition Compatibility

In addition to the cursive recognizer available in previous systems, version 2.0 of
system software adds a recognizer optimized for printed characters. This recognizer,
represented by the Printed radio button in the Handwriting Recognition preferences
slip, is the default text recognizer used when you or the user do not specify otherwise.

Selecting the Cursive radio button in the Handwriting Recognition preferences slip
equates to selecting the Mixed Cursive and Printed radio button available in
previous versions of this slip: the cursive recognizer is enabled, all printed and

9-20 About the Recognition System

ARENDI-DEFS00004010

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 164 of 201 PageID #: 29008

CHAP T ER 9

Recognition

cursive letter styles in the system's handwriting model are enabled, and the system
disables unused letter styles over time as the user corrects misrecognized words.

The default settings of the cursive recognizer in version 2.0 enable this recognizer's
letter-by-letter recognition option. Previous versions of the system disabled this
option by default, causing the cursive recognizer to return only words appearing in
the set of dictionaries available to the view performing recognition.

The protoLetterByLetter prototype, which appears at the lower-left corner
of the screen in the Notepad application on the MessagePad 100 and MessagePad
110, is obsolete. It has been replaced by the protoRecToggle prototype. For
more information, see "RecToggle Views" (page 9-18).

Prior to version 2.0 of Newton system software, correction information was not
accessible from NewtonScript. Version 2.0 of Newton system software makes this
information available as frame data. For more information, see "Correction and
Learning" (page 9-13).

Combining the vLettersAl lowed flag with flags used to specify recognition of
numeric values (such as vPhoneField, vNumbersAl lowed, vDateField,
vTimeField, and vAddressField) produced undesirable results in system
software prior to version 2.0. System software version 2.0 supports these kinds of
view flag combinations.

Deferred recognition—the ability to convert strokes to text at some time other than
when the strokes are first entered on the screen—was introduced in Newton system
software version 1.3 with no application programming interface. Version 2.0 of
Newton system software provides a NewtonScript interface to this feature.

Using the Recognition System

This section describes how to use view flags to enable recognition in views. This
chapter discusses only those view flags that interact with the recognition system.
For a summary of these view flags, see "Constants" (page 9-31). For information
on other kinds of view flags, see Chapter 3, "Views." For complete descriptions of
all view flags, see Newton Programmer's Reference.

For information on the use of recToggle views, recConf ig frames and advanced
features of the recognition system, see Chapter 10, "Recognition: Advanced
Topics."

Types of Views

The kind of view that you use to recognize input affects the amount of work you'll
have to do to support recognition. Views based on the c1Editview class handle
most recognition events automatically once you've specified their intended

Using the Recognition System 9-21

ARENDI-DEFS00004011

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 165 of 201 PageID #: 29009

CHAP T ER 9

Recognition

recognition behavior by setting view flags or providing a recConf ig frame.
Specifically, clEditview views create clParagraphView or
c1Polygonview child views automatically as required to display output from the
recognition system. To use other kinds of views for recognition, you may need to
provide viewXxxscript methods that create these child views and respond in
other ways to recognition system events.

Configuring the Recognition System

You can take the following approaches to configuring the recognition system:

■ Set view flags only. This approach works well for most applications and is
described in this chapter.

■ Set view flags and allow the user to configure recognition from a
protoRecToggle view that you provide. The easiest way to do this is by
setting the vAnythingAl lowed mask, which is described in this chapter.
This approach supports the use of ink text in c1Editview views. Use of
the protoRecToggle view is described in Chapter 10, "Recognition:
Advanced Topics."

■ Set view flags and supply a recognition configuration frame based on
ROM _rcInkOrText. This approach supports ink text in clEditView views.
You should provide a protoRecToggle view as well, to allow the user to
switch easily between text and ink text.

■ Supply a recognition configuration frame of some other kind. This approach
offers you the most control and flexibility, but also requires the most work to
implement. The difficulty of enabling ink text according to the value of a
protoRecToggle view depends on the particular implementation of your
recConf ig frame. Recognition configuration frames are described in
Chapter 10, "Recognition: Advanced Topics."

■ Use the RecogSettingsChanged message sent by the protoRecToggle
view to enable recognition behaviors dynamically. This technique is described in
Chapter 10, "Recognition: Advanced Topics."

Except where noted otherwise, all of the flags described in this chapter are set in
the view's viewFlags slot. When setting the values of viewFlags slots,
remember that in order to produce useful behavior you may need to set other bits in
addition to the recognition-oriented ones that this chapter describes. To preserve
settings that your view's viewFlags slot inherits from its view class, you should
logically OR changes to bits in this slot.

For information on non-recognition view flags provided by the system, see
Chapter 3, "Views."

9-22 Using the Recognition System

ARENDI-DEFS00004012

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 166 of 201 PageID #: 29010

CHAP T ER 9

Recognition

Obtaining Optimum Recognition Performance

To obtain the most accurate results from the recognition system, you must define as
precisely as possible the type of input that the view is to recognize Aside from
potentially introducing errors, enabling superfluous recognizers may slow the
recognition system's performance.

The view flags that enable text recognition also enable dictionaries suited to
recognizing particular kinds of input, such as dates, phone numbers, and so on.
Some view flags activate multiple dictionaries, and the sets of dictionaries activated
by various flags may overlap. The system shows no preference towards any single
dictionary in a set except for a slight weighting of results in favor of words found
in the user dictionary, which most view flags enable.

The specific dictionaries that a particular flag enables varies according to the user's
locale and the ROM version of the Newton device. You usually need not be
concerned with this implementation detail, nor should you rely on the presence of a
particular dictionary when setting view flags.

When you need to control precisely which dictionaries a view uses for recognition,
you can set its vCustomDictionaries flag and use a dictionaries slot to
specify explicitly which dictionaries are to be used. For information about custom
dictionaries, see "Using Your RAM-Based Custom Dictionary" (page 10-28), in
Chapter 10, "Recognition: Advanced Topics." For information about locale and the
recognition system, see "How Locale Affects Recognition" (page 20-2), in
Chapter 20, "Localizing Newton Applications."

For best performance, you need to specify the minimum combination of recognizers
and dictionaries required to process the kind of input you expect the view to receive.
This equates to enabling the minimum set of view flags that allow the view to
recognize appropriate input correctly. By restricting the possible interpretations
returned by the recognition system to only those that are appropriate for a particular
view, you increase the system's chances of interpreting the input correctly. For
example, when configuring a view for the entry of numeric data, you would not
specify that the recognition system return alphabetic characters to that view.

The printed and cursive text recognizers appear nearly identical to NewtonScript
applications. The main difference between them is that while the cursive recognizer
can be made to use the value of the viewFlags slot as a strict definition of what it
can recognize, the printed recognizer uses this value as only a hint—that is, it can
always return values not specified by the input view's view flags. When configuring
views for text recognition, you should set view flags that describe the input you
anticipate the view to receive and then verify that you obtain acceptable results
from both text recognizers.

Because the printed recognizer lets you write anything in the input view, it may be
difficult to determine whether your viewFlags settings are appropriate when this
recognizer is enabled; the cursive recognizer usually provides better feedback in

Using the Recognition System 9-23

ARENDI-DEFS00004013

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 167 of 201 PageID #: 29011

CHAP T ER 9

Recognition

this regard. If necessary, you can provide a ViewWordscript or
ViewChangedscript method that validates the recognizer's output; this method
can be especially useful when working with the printed recognizer.

Accepting Pen Input

When setting up any view, you must specify whether it accepts pen input at all. If
you set the vNothingAl lowed flag (or turn off all recognition-oriented flags), the
view does not accept pen input. If you want the view to accept pen input, you must
set the vClickable flag in its viewFlags slot. Setting this flag only causes the
view to accept pen taps and send ViewClickscript messages; it does not
enable ink handling or send messages to any of the unit-handling methods that
provide recognition behavior.

Setting the vClickable flag specifies that the view system is to send the
ViewClickscript message to the view once for each pen tap that occurs within
the view. Note that this is the case only when vClickable is the only flag set for
the view—other flags, such as the vCustomDictionaries flag, set the
vClickable bit in the view's input mask also.

When this flag is set, the system sends additional messages to the view to signal
taps, strokes, gestures, and words. All pen input is signaled by the
ViewClickscript message, which indicates that the pen contacted the screen
or was lifted from it within the boundaries of the view. If you supply a
ViewClickscript method, it should return true to indicate that the message
was handled, or nil to pass the message on to another view. If this message is not
handled by the view and additional recognition flags are set, other messages may
be sent to the view, depending on what was written. These other messages include
ViewStrokeScript, ViewGestureScript, and ViewWordScript—in that
order, if all are sent.

Each of the corresponding input-related view methods accept as an argument a unit
object passed to it by the system. The unit contains information about the pen
input. You cannot examine the unit directly from NewtonScript, but you can pass it
to other system-supplied functions that extract information from it such as the
beginning and ending points of the stroke, an array of stroke points, the stroke
bounds, and so on.

Taps and Overlapping Views

When views overlap, taps can "fall through" from the top view to the one beneath,
causing unexpected results. For example, when the user taps in an area of the top
view that doesn't handle taps, and the view beneath provides a button in the
vicinity of the tap, the button may be activated unintentionally.

9-24 Using the Recognition System

ARENDI-DEFS00004014

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 168 of 201 PageID #: 29012

CHAP T ER 9

Recognition

You can solve this problem by setting the top view's vC1ickab1e flag without
providing a ViewC1ickscript method. (The top view need not handle the taps,
only prevent them from being passed on to the other view.)

Recognizing Shapes

The vshapesAl lowed flag enables the recognition of geometric shapes such as
circles, straight lines, polygons, and so on. Do not set this flag for views that
handle text input only. This flag is intended for use only in views based on the
clEditview class. The clEditview class provides the built-in Notepad
application's note stationery with much of its recognition behavior.

The shapes displayed on the screen are clPolygon views returned as the children
of the clEditview that accepted the input strokes. There is no developer
interface to shape recognition; to manipulate shapes returned by the recognition
system, you must extract the polygon views from the edit view yourself. In some
cases, you may find the ViewAddChildScript method useful for this purpose.
The ViewAddChi 1dscript message is sent when a child view is added to a view.

When multiple shapes are returned to an edit view, its ViewAddChildScript
method is called once for each shape.

When multiple ink text words are returned to an edit view, the
ViewAddChildScript method is invoked when the clParagraphView that
holds the ink text is added as the child of the edit view, but this method is not
invoked as ink text words are added to the paragraph view.

In views not based on the clEditview class, the arrival of each ink word is
signalled by a ViewlnkWordscript message.

Recognizing Standard Gestures

Setting the vGesturesAl lowed flag supplies system-defined behavior for the
gestures tap, double tap, highlight, scrub, line, caret, and caret-drag. Most input
views set the vGesturesAl lowed flag, as they need to respond to standard
gestures such as scrubbing to delete text or ink. At present, you cannot define new
gestures to the system.

When the vGesturesAl lowed flag is set, the gesture recognizer invokes the
view's ViewGesturescript method before handling the gesture. Normally,
you don't need to supply a ViewGesturescript method for clEditview or
clParagraphView views. These views handle all system-defined gestures
automatically.

Your ViewGesturescript method is invoked only for gestures that the view
system does not handle automatically. For information on intercepting standard
gestures before the view system handles them, see "Customized Processing of

Using the Recognition System 9-25

ARENDI-DEFS00004015

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 169 of 201 PageID #: 29013

CHAP T ER 9

Recognition

Double Taps" beginning on page 10-41. See also "ViewGestureScript" (page 8-71)
in Newton Programmer's Reference.

Combining View Flags

Generally, you must combine multiple view flags to produce useful recognition
behavior. For example, most views that accept user input set the vClickable flag
to enable pen input and the vGesturesAl lowed flag to enable recognition of
standard gestures such scrubbing and inserting spaces.

Except where noted otherwise, the NewtonScript "plus" operator (+) is used to
combine view flags, as in the following code fragment.

myViewTemplate --

I
// recognize taps, gestures, and shapes

viewFlags: vClickable+vGesturesAllowed+vShapesAllowed,

... }

Note

Most combinations of view flags include the vClickable flag.
If you do not set the vClickable flag, the view does not accept
pen input at all.

Sometimes a particular combination of view flags produces results that seem
incorrect. For example, you might be surprised to discover that a view setting only
the flags vClickable+vLettersAll owe d can occasionally recognize numeric
values. (The vLettersAl lowed flag enables the recognition of single text
characters by the cursive recognizer.) This behavior is caused by the presence of
the symbols dictionary in the set of dictionaries available to the view. The symbols
dictionary includes alphabetic characters, numerals and some punctuation marks.
Most view flags enable this dictionary to support the correction of single letters or
numerals by overwriting. As a side effect, it becomes possible to recognize
extraneous characters or numerals in fields that ostensibly should not support such
input. This behavior is rarely a problem, however, because the recognition system
is designed to show a strong preference for "appropriate" interpretations of input as
defined by the view flags set for the view.

Although you might expect that the presence of the symbols dictionary would
allow a view setting only the flags vClickable+vNumbersAllowed to return
alphabetic characters, this behavior is quite difficult to produce. Views that set the
vNumbersAl lowed flag show a much stronger preference for single-digit
numbers than single alphabetic characters. However, letters that do not look similar
to numeric values—for example, the letter W—may produce this particular form of
misrecognition.

9-26 Using the Recognition System

ARENDI-DEFS00004016

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 170 of 201 PageID #: 29014

CHAP T ER 9

Recognition

When troubleshooting recognition errors, remember that view flags may enable
multiple dictionaries and that the sets of dictionaries enabled by various flags
may overlap.

As a general rule, the fastest and most accurate recognition occurs when the fewest
recognizers and dictionaries necessary to successfully analyze the input are
enabled. Enabling unnecessary recognizers and dictionaries may decrease the
speed and accuracy with which recognition is performed.

Recognizing Text

The vCharsAl lowed and vLettersAl lowed flags enable text recognition in
views that accept pen input. Either flag enables the text recognizer specified by the
Handwriting Recognition preferences slip.

Each of these flags specifies different recognition options and dictionary sets. The
unique behaviors associated with each flag are demonstrated most clearly by the
cursive recognizer. The cursive recognizer can be made to return only words
present in the set of dictionaries available to the view performing recognition. In
contrast, the printed recognizer can always return words or letter combinations that
are not present in dictionaries.

The vCharsAl lowed flag enables a default set of dictionaries that provide
vocabulary used in common speech, names of days, names of months, proper
names, and words in the user dictionary. When the vCharsAl lowed flag is set
and the vLettersAl lowed flag is not, the cursive recognizer returns only words
that appear in the set of dictionaries available to the view performing recognition.

Note that the complete set of dictionaries available to the view may include those
enabled by other flags. For example, the NTK view editor provides a Field Type
popup menu that allows you to specify whether the view is to accept phone, date,
time, address or name data. The choices in this menu set the vPhoneFie1d,
vDateField, vTimeField, vAddressField and vNameField flags,
respectively. Each of these flags enables one or more dictionaries suited to
recognizing the specified input data. Custom dictionaries may also be made
available to the view performing recognition by setting the
vCustomDictionaries flag and providing a valid dictionaries slot in the
view that performs recognition.

The vLettersAl lowed flag enables the cursive recognizer's letter-by-letter
recognition option. When the vLettersAllowed flag is set, the cursive recognizer
may return words not appearing in dictionaries as well as nonword letter
combinations. Note that this configuration increases the cursive recognizer's chances
of misrecognizing words that appear in the set of dictionaries available to it.

Although both text recognizers provide a letter-based recognition feature, the two
recognition engines are completely distinct. Consequently, the results produced by

Using the Recognition System 9-27

ARENDI-DEFS00004017

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 171 of 201 PageID #: 29015

CHAP T ER 9

Recognition

the cursive recognizer's letter-by-letter option may be different from those returned
by the printed recognizer for the same input data.

Although the printed recognizer can always return non-dictionary words, it does
make extensive use of the dictionaries available to the view for recognition. Users
may improve the printed recognizer's accuracy for problematic non-dictionary
words by adding them to the user dictionary. You can supply custom dictionaries to
improve the recognition of specialized vocabulary. It is recommended that
applications do not add words to the user dictionary.

Recognizing Punctuation

The vPunctuationAl lowed flag permits the cursive recognizer to return
common punctuation marks such as the period (); comma (); question mark (?);
single quotation marks (` and '); double quotation marks (" and "); and so on. The
printed recognizer can always return these characters, regardless of whether this
flag is set.

Views restricted to the entry of phone numbers, dates, or times need not set the
vPunctuationAl lowed flag because the vPhoneField, vDateField, and
vTimeField flags already allow the entry of appropriate punctuation.

The cursive recognizer can also apply some simple rules when deciphering
ambiguous input; for example, it can make use of the fact that most punctuation
marks follow rather than precede words.

Suppressing Spaces Between Words

Setting the vsingleunit flag causes the recognition system to ignore spatial
information when grouping input strokes as words; instead, the system relies on
temporal cues to determine when the user has finished writing a word. When this
flag is set, the recognizer ignores short delays, such as those that occur between
writing the individual characters in a word. Longer delays cue the recognizer to group
the most recently completed set of strokes as a word. The amount of time considered
to be a longer delay is a function of the speed of the processor and the recognition
system, as well as the value of the timeoutCursiveoption user preference.

The vsingleunit flag is useful for views in which the presence of gratuitous
spaces may confuse the recognizer; for example, phone number entry fields usually
suppress the recognition of spaces. If you want to suppress all spaces in the displayed
text, you can use the vNoSpaces flag in conjunction with the vsingleunit flag.

Rather than suppressing the input of spatial cues, the vNospaces flag suppresses
the insertion of spaces between groups of strokes or recognized text in views based
on the clParagraphview class. This post-processing flag does not restrict the
interpretation of the input strokes or affect word segmentation, as thevsingleUnit
flag does.

9-28 Using the Recognition System

ARENDI-DEFS00004018

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 172 of 201 PageID #: 29016

CHAP T ER 9

Recognition

The vNospaces flag must appear in an evaluate slot named textFlags that you
create in the view. The vsingleUnit flag appears in the view's viewFlags slot,
as usual.

Forcing Capitalization

The vCapsRequired flag directs the system to capitalize the first letter of each
word returned by the recognizer before displaying the text in the view.

Setting the vCapsRequired flag does not affect the recognizer's behavior—it
affects post-processing performed on the recognizer's output before it is returned to
the view.

Justifying to Width of Parent View

Setting the vwidthzsParentwidth flag for a view based on the
clParagraphview class causes the view to extend its right boundary to match
that of its parent automatically.

The vwidthzsParentwidth flag must appear in an evaluate slot named
textFlags that you create in the view.

Like other flags set in the textFlags slot, the vwidthzsParentwidth flag
does not affect the recognizer's behavior—it affects post-processing performed on
the recognizer's output before it is returned to the view.

Restricting Input to Single Lines or Single Words

Including the oneLineOnly flag in your view's viewJustify slot causes the
view to accept only a single line of text input, with no word wrapping provided.

You can restrict input to a single word by including the onewordOnly flag in the
view's viewJustify slot. If this flag is set, the view replaces the currently
displayed word with the new one when the user writes in the view. You can also
restrict input to single characters by using this flag in conjunction with a custom
dictionary of single letters.

For more information on these flags, see their descriptions in Chapter 3, "Views."
For information on the use of custom dictionaries, see "Using Custom
Dictionaries" beginning on page 10-24.

Validating Clipboard and Keyboard Input

It is possible for the user to enter invalid values in fields by dragging text from the
Clipboard or by using a keyboard to type in the field. For example, setting the
vPhoneField flag normally restricts input to numeric values in phone number
formats; however, the user can still enter invalid values in such a field by dragging

Using the Recognition System 9-29

ARENDI-DEFS00004019

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 173 of 201 PageID #: 29017

CHAP T ER 9

Recognition

or typing them. To prevent invalid input by these means, you can implement a
ViewChangedScript method that validates its view's input.

Using the vAnythingAllowed Mask

The vAnythingAl lowed mask can be used only with views based on the
clEditview class. When used by itself, this mask sets all of the bits in the view's
input mask, potentially enabling all of the system-supplied recognizers and
dictionaries. However, the actual recognition behavior of views that use this mask
varies according to current user preference settings.

For a view that sets the vAnythingAl lowed mask, the recognition system
replaces the set of view flags you've specified with a set of flags derived from the
current settings of user preferences that affect recognition.The actual set of
recognizers enabled for the view is controlled by

■ user preferences specified in the system's user configuration data.

■ the application's protoRecToggle view, if it has one.

■ the view's recConf ig frame, if it has one.

Slots in the system's user configuration data specify recognition behaviors that all
views inherit. However, an optional protoRecToggle view can specify different
behaviors for individual views by overriding values inherited from user configuration
data. Similarly, each view can provide a recConf ig frame that overrides settings
specified by the protoRecToggle view or the system's user configuration data.

Thus, in practice, the vAnythingAl lowed mask usually is not what its name
implies: if any bit in this mask is turned off (by another flag, or by a recToggle
view, for example), the input mask is no longer vAnythingAl lowed.

The built-in Notepad application provides a good example of the behavior of views
that use the vAnythingAl lowed mask, including the use of a
protoRecToggle view to change recognition settings.

9-30 Using the Recognition System

ARENDI-DEFS00004020

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 174 of 201 PageID #: 29018

CHAP T ER 9

Recognition

Summary

Constants

Text Recognition View Flags

Constant Value Description

vcharsAl lowed i << 12 Enables default text recognizer and default
or dictionary set.
0x01000

vLettersAl lowed l << 14 Enables letter-by-letter text recognition.
or
0x04000

vAddressField l << 21 Enables recognizers and dictionaries suitable for
or the input of address data in the current locale.
0x0200000

vNumbersAllowed l << 13 Enables the recognition of numeric characters,
or monetary values (for example, $12.25), decimal
0 x 0 2 0 0 0 points, and signs (+ or

vNameField l << 22 Enables text recognition optimized for name
or data; usually combined w/ vCapsRequi red.
0x0400000

vCustomDictionaries l << 24 Enables text recognition using dictionaries
or specified by the view's dictionaries slot.
0x01000000

vPunctuationAllowed l << 15 Enables recognition of punctuation marks by the
or cursive recognizer. (Printed recognizer always
ox08000 recognizes punctuation marks.)

vCapsRequired l << 23 Forces capitalization of the first character of
or each recognized word.
0x0800000

Summary 9-31

ARENDI-DEFS00004021

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 175 of 201 PageID #: 29019

CHAP T ER 9

Recognition

Non-Text Recognition View Flags

Constant

vNothingAllowed

vAnythingAllowed

vClickable

vStrokesAllowed

vGesturesAllowed

Value

Ox00000000

or
OX0000

65535 << 9

or
OxOlFFFE00

Description

The view accepts no handwritten or keyboard input.

Recognize any input. Use only for views based on
the clEditview class.

1 << 9 Accept taps and send ViewClickScript
or message to the view once for each tap that
O x O 2 0 0 occurs within the view.

Accept stroke input and send the
Viewstrokescript message at the end
of each stroke.

Recognize gesture strokes such as scrub, highlight,
tap, double tap, caret, caret-drag, and line. Send
the ViewGesturescript message when the
view recognizes a gesture that it does not handle
automatically.

Enables shape recognition. Use only for views
based on the clEditview class.

1 << 10
or
0x0400

1 << 11

or
Ox0800

vShapesAllowed 1 << 16

or
Ox010000

vSingleUnit 1 << 8

or
Ox0100

vNoSpaces 1 << 1

or
0X0002

vWidthIsParentWidth 1 << 0
or
Ox0001

9-32 Summary

Disable the use of spatial cues (distance between
strokes). Meaningful for text recognizers only.

Directs a view based on the clParagraphView
class to not insert spaces between existing text and
new text.

Extend right boundary of clParagraphView
view to match that of its parent.

ARENDI-DEFS00004022

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 176 of 201 PageID #: 29020

CHAP T ER 9

Recognition

View Flags Enabling Lexical Dictionaries

Constant

vNumbersAllowed

vPhoneField

vDateField

vTimeField

Value

1 << 13

or
0x02000

1 << 18

or
0x040000

1 << 19

or
0x080000

1 << 20

or
0x0100000

Data Structures

Description

Enables recognition of numbers, monetary values (for
example, $12.25), decimal points, and mathematical
signs (+ and

Enables recognition of phone numbers. Note that the
set of lexical dictionaries enabled by this flag varies
with the text recognizer currently in use.

Enables recognition of date formats (such as March
3-95), names of months, and names of days.

Enables recognition of times.

Recognition-Related User Configuration Slots

Use the GetUserConf ig and SetUserConf ig global functions to access
these slots.

Slot name

letterSetSelection

learningEnabledOption

letterSpaceCursiveOption

timeoutCursiveOption

speedCursiveOption

letterInFieldsOption

lettersCursiveOption

doAutoAdd

Summary

Notes

Text recognizer in use.

true enables cursive learning.

Space between stroke groups.

Time between individual strokes.

Time spent analyzing input.

true enables cursive recognizer's
letter-by-letter option in
protoLabelInputLine views.

true enables cursive recognizer's
letter-by-letter option in built-in Names
and Dates applications'
protoLabelInputLine views.

true adds new words to user dictionary and
auto-add dictionary automatically.

continued

9-33

ARENDI-DEFS00004023

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 177 of 201 PageID #: 29021

CHAP T ER 9

Recognition

Slot name Notes

doTextRecognition true enables teat recognition
unconditionally.

doShapeRecognition true enables shape recognition
unconditionally.

do InkWordRecognition true causes text recognizer to return ink
teat rather than sketch ink.

9-34 Summary

ARENDI-DEFS00004024

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 178 of 201 PageID #: 29022

C H A P T E R 1 0

Recognition:
Advanced Topics

This chapter describes advanced uses of the Newton recognition system. If you are
developing an application that supports ink text, implements specialized recognition
system behavior, or provides unusual input views, you'll need to understand one or
more topics presented here. This chapter describes

■ the use of recConf ig frames. An individual view can use a recConf ig frame
to specify its own recognition behavior, support ink text, specify baseline
information, support deferred recognition, and define input areas for single letters.

■ the use of text-corrector views and text-correction information.

■ the programmatic manipulation of system dictionaries and custom dictionaries.

Before reading this chapter, you should understand the contents of Chapter 9,
"Recognition," which provides an overview of the recognition system and
describes how to implement its most common behaviors. Depending on your
application development goals, you may also find it helpful to be familiar with
soups, as described in Chapter 11, "Data Storage and Retrieval."

About Advanced Topics in Recognition

This section provides conceptual information regarding

■ how views configure recognizers and dictionaries based on the interaction of
view flags, recConf ig frames, recToggle views, and recognition-related
user preferences.

■ the use of protoCharEdit views.

■ deferred recognition.

How the System Uses Recognition Settings

A number of settings that control the behavior of the various recognizers are
specified by the system's user configuration data. All views that perform recognition
inherit behavior from these values, which is why it's rarely appropriate for individual

About Advanced Topics in Recognition 10-1

ARENDI-DEFS00004025

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 179 of 201 PageID #: 29023

CHAPT ER 1 0

Recognition: Advanced Topics

applications to change these system-wide settings. Instead, individual views can
customize their own recognition behavior by using a recConf ig frame or
recToggle view to override these inherited values locally.

In practice, most views' recognition behavior is defined by a combination of
inherited and overridden values. For example, because most users tend not to
change the speed at which they write, it's common for views to use inherited values
for the timeoutCursiveoption slot, which specifies the relative delay required
to consider a group of input strokes complete. At the same time, individual views
may customize certain recognition settings by overriding values that would
otherwise be inherited from the system's user configuration data. For example, a
view can use a recConf ig frame to disable the automatic addition of new words
to the user dictionary.

A view based on the protoRecToggle system prototype provides another way to
override inherited recognition settings. This view provides a picker that allows the
user to change recognition settings easily. Each view controlled by this picker must
provide a _recogsettings slot that the picker sets according to the user's
current choice of recognition settings. The value in the _recogsettings slot
overrides values inherited from the system's user configuration data.

Your application supplies only one _recogsettings slot for each recToggle
view it provides. Because views use parent inheritance to find a_ recogsettings
slot, a single recToggle view and a single _recogsettings slot can control
the recognition behavior of one view or multiple views, depending on the
_recogsettings slot's position in the view hierarchy. For more information, see
"Creating the recogSettings Slot" beginning on page 10-20.

You can also provide an optional RecogsettingsChanged method in the
_parent chain of any view controlled by the recToggle view. If a
RecogsettingsChanged method is provided, the recToggle view sends this
message to self when the user chooses an item in the recToggle picker.Your
RecogsettingsChanged method can perform any application-specific task that
is appropriate; typically, this method reconfigures recognition settings in response
to the change in the recToggle view's state.

Finally, any view can provide an optional recConf ig frame that specifies the
view's recognition behavior at the local level.

Although recConf ig frames have thus far been presented as simply an alternate
interface to the recognition system, they are actually used internally by the system
to represent the recognition behavior of each view. When the user writes, draws, or
gestures in a view, the system builds a recConf ig frame that specifies the precise
settings of all the recognizers needed for the view. If you supply a recConf ig
frame for the view, the recConf ig frame that the system builds is based on the
recConf ig frame you have supplied and any recognition-related user preferences
that may apply.

10-2 About Advanced Topics in Recognition

ARENDI-DEFS00004026

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 180 of 201 PageID #: 29024

CHAPT ER 1 0

Recognition: Advanced Topics

On the other hand, if the view does not supply a recConf ig frame, the recognition
system builds one based on the set of view flags enabled for that view, the contents
of its dictionaries slot (if present) and any recognition-related user preferences
that may apply. Thus, every view that performs recognition is eventually associated
with a recConf ig frame that the system uses to perform setup tasks when the
view is opened.

Note that the recConf ig frame actually used to configure recognition is the one
that the system builds, not the one that you supply. The recConf ig frame that
you supply is referenced by the _proto slot of the recConf ig frame that the
system builds.

The recConf ig frame built by the system is passed to a recognition area, which is
an object used internally by the system to describe the recognition characteristics
of one or more views. Because similar views can share an area, the use of
recognition areas minimizes the reconfiguration of the recognition system required
to respond to changes in views on the screen.

A small number of recognition areas are kept in a cache. You can change the
recognition behavior of a view dynamically by specifying new recognition settings
and invalidating the area cache. The next time the view accepts input, the system
builds a new recognition area reflecting its currently-specified recognition behavior
and the dictionaries it is to use for recognition.

In addition to providing an efficient and flexible means of configuring the
recognition system programmatically, recConf ig frames provide support for
future expansion of the recognition system. The recConf ig frame allows
applications to specify recognition configurations in a uniform way that is not
dependent on the use of any particular recognizer engine. Although the Newton
platform currently supports only its built-in recognizers, future versions of the
system may permit the use of third-party recognizer engines.

The system provides several standard recConf ig frames that can be placed in your
view's recConf ig slot or used as a starting point for building your own
recConf ig frames. For descriptions of system-supplied recConf ig frames, see
"System-Supplied recConfig Frames" (page 8-18) in Newton Programmer's
Reference.

In summary, the recognition behavior that a view exhibits is ultimately determined
by a combination of the following values:

■ values inherited from the system's user configuration data.

■ values in the view's viewFlags and entryFlags slots.

■ values in the view's dictionaries slot when the vCustomDictionaries
flag is set.

■ values specified by an optional recToggle view, which may override values
inherited from user configuration data or supply additional values.

About Advanced Topics in Recognition 10-3

ARENDI-DEFS00004027

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 181 of 201 PageID #: 29025

CHAPT ER 1 0

Recognition: Advanced Topics

■ values specified by an optional recConf ig frame, which may override values
inherited from user configuration data, override values specified by a
recToggle view, or supply additional values.

ProtoCharEdit Views

The protoCharEdit system prototype provides a comb-style entry view (or
comb view) that allows the user to edit individual characters in words easily.

Figure 10-1 Example of protoCharEdit view

b. e t

Individual character positions (or cells) in the comb view are delimited by vertical
dotted lines. Each cell that can be edited has a dotted line beneath it to indicate that
it can be changed. The user can edit a character by writing a new character over
one currently occupying a cell; the recognized value of the character is displayed in
the cell. When the user taps a cell, it displays a picker containing the best
interpretations of the input strokes. The user can correct the character in that
position by choosing an item from the picker.

The user can delete an individual character by tapping it and then selecting
"Delete" from the picker that is displayed. Alternatively, the user can delete one or
more characters by writing the scrub gesture over one or more cells.

The user can insert a space by tapping on the cell at the position that the new space
is to occupy and choosing Insert from the picker that is displayed.

Alternatively, the user can enter the caret gesture in a cell to perform the same
operation. When an insertion takes place in a cell already occupied by a character,
the comb view shifts that character and those comprising the rest of the word to
the right.

Tapping a blank cell before or after a word in the comb view displays a list of
punctuation characters that may be appropriate for that position.

The recognition behavior of a protoCharEdit view is controlled by values you
supply in an optional template slot. If this slot's value is nil, the comb view is
said to be unformatted because input is not restricted in any way. The recognition
behavior of an unformatted comb view is similar to that of the text-corrector view
provided by the built-in Notepad application: all characters are allowed, insertion
and deletion are supported fully, and spaces are added at the ends of words to allow
them to be extended.

10-4 About Advanced Topics in Recognition

ARENDI-DEFS00004028

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 182 of 201 PageID #: 29026

CHAPT ER 1 0

Recognition: Advanced Topics

A formatted comb view utilizes a template you define which specifies characteristics
of the view's behavior or appearance. A comb view's template may specify an
initial value for the string that the view displays, the editing characteristics for each
position in the comb view, and filters that restrict the values recognized in each of
these positions. The template may also define methods for initializing and post-
processing the string displayed by the comb view. These methods may be useful
when the string displayed in the comb needs to be different from the input string or
when an externally-displayed string must differ from its internal representation.

When the user taps a character in a formatted comb view, it displays the list of
characters specified by its template, if that list contains ten or fewer items. (Note
that this value may change in future platforms.) Otherwise, it displays the list of
top-ranking alternate interpretations returned by the text recognizer.

Ambiguous Characters in protoCharEdit Views

Because there are several characters that are ambiguous in appearance—for
example, the value zero (o) and the letter O, or the value one (1) and the letter L—
the built-in system fonts provide enhanced versions of these characters that
improve their readability. However, continuous use of these characters can be
distracting to the user. Thus, these fonts contain character codes that map to
alternate versions of the ambiguous characters, and the system provides functions
for mapping between the codes for the normal and enhanced characters. For more
information, see the descriptions of the MapAmbiguousCharacters and
UnMapAmbiguousCharacters functions under "protoCharEdit Functions and
Methods" (page 8-47) in Newton Programmer's Reference.

Deferred Recognition

Deferred recognition is the ability to convert strokes to text at some time other
than when the strokes are first entered on the screen. Views that are to perform
deferred recognition must be capable of capturing ink text or ink. For example, a
view that bases its recConf ig frame on the system-supplied ROM InkOrText
frame and uses a protoRecToggle view to configure the recognition system
need not do anything more to provide the deferred recognition feature.

This section describes the user interface to deferred recognition and then provides a
programmer's overview of this feature.

User Interface to Deferred Recognition

A view that performs deferred recognition uses the same settings as it would for
real-time text recognition: a combination of settings specified by user preferences
and settings specified by the view flags or recConf ig frame associated with the
view in which recognition takes place.

About Advanced Topics in Recognition 10-5

ARENDI-DEFS00004029

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 183 of 201 PageID #: 29027

CHAPT ER 1 0

Recognition: Advanced Topics

The user can enter unrecognized ink by enabling ink text or sketch ink. In this
mode, strokes appear as ink. To convert the ink to text, the user double-taps the ink
word; the user can cause multiple words to be recognized by selecting them
beforehand and then double-tapping the selection. The recognition system responds
by inverting the ink word or selection, as shown in Figure 10-2, and returning the
recognized text, which replaces the selection.

Figure 10-2 User interface to deferred recognition, with inverted ink

10.35 Wed 713 4 All Notes

Q Wed 713 Mig

Programmer's Overview of Deferred Recognition

Deferred recognition is available in views based on the c1Editview class or
clParagraphview views that support ink text. This feature works with any
amount of input, from a single letter to a full page of text.

To initiate deferred recognition, the user double-taps the child views that display
the ink to be recognized The recognized text is added to an edit view as if the user
had just written it. That is, a new c 1 Paragraphvi ew child is added, or the
recognized text is appended to a nearby clParagraphview. After the recognized
text has been added, the original view containing the sketch ink or the ink text is
removed from its edit view parent.

Deferred recognition also invokes the viewAddChildscript and
ViewDropChildscript methods of the recognized text and unrecognized ink
views. Words added to nearby paragraphs invoke ViewChangedscript
methods for those paragraphs, updating the text slot in those views; for some
paragraph views, the viewBounds slot is updated as well.

You can pass recConf ig frames to the global functions Recognize,
RecognizePara, and RecognizePoly to implement your own form of
deferred recognition. For more information, see "Deferred Recognition Functions"
(page 8-89) in Newton Programmer's Reference.

10-6 About Advanced Topics in Recognition

ARENDI-DEFS00004030

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 184 of 201 PageID #: 29028

CHAPT ER 1 0

Recognition: Advanced Topics

Compatibility Information

The ReadDomainOpt ions function is obsolete. It has been replaced by the
ReadCursiveOptions function.

The AddToUserDictionary function is obsolete. It has been replaced by the
AddWord method of the review dictionary.

Two new dictionary constants, kMoneyOnlyDictionary and
kNumbersOnlyDictionary, provide access to new lexical dictionaries used for
recognizing monetary and numeric values, respectively.

Most lexical dictionaries are no longer locale-specific—aside from a few exceptions,
each lexical dictionary is used for all locales. For detailed information, see
"System-Supplied Dictionaries" (page 8-16) in Newton Programmer's Reference.

All of the dictionary information provided by previous versions of system software
is still present in version 2.0; however, certain dictionary constants now provide a
superset of the information they previously referenced, as follows:

■ The kLastNamesDictionary is obsolete. This information is now included
in the kSharedPropersDictionary dictionary.

■ The kLocalCompaniesDictionary constant is obsolete.This information is
now included in the kSharedPropersDictionary dictionary.

■ The kLocal State sAbbrevsDictionary constant is obsolete.This
information is now included in the kSharedPropersDictionary dictionary.

■ The kDateLexDictionary constant is obsolete. It has been replaced by the
kLocalDateDictionary constant.

■ The kTimeLexDictionary constant is obsolete. It has been replaced by the
kLocalTimeDictionary constant.

■ The kMoneyLexDictionary constant is obsolete. This information is now
included in the kLocalNumberDictionary dictionary.

■ The kNumberLexDictionary constant is obsolete. This information is now
included in the kLocalNumberDictionary dictionary.

Using Advanced Topics in Recognition

This section describes how to provide advanced recognition behaviors. It presumes
understanding of conceptual material provided in this and other chapters. Topics
discussed here include

■ using recConf ig frames to specify recognition behavior

■ changing the recognition behavior of views dynamically

Using Advanced Topics in Recognition 10-7

ARENDI-DEFS00004031

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 185 of 201 PageID #: 29029

CHAPT ER 1 0

Recognition: Advanced Topics

■ using protoRecToggle views to specify recognition behavior

■ defining single-letter input areas within a view

■ accessing text correction information

■ using custom dictionaries for recognition

■ manipulating the review dictionary (includes the user dictionary, expand
dictionary, and auto-add dictionary)

■ using protoCharEdit views for correcting text

■ using stroke bundles

Using recConfig Frames

This section describes how to use a recConf ig frame to specify a view's
recognition behavior. Note that the use of view flags is generally the best (and
simplest) way to configure views to recognize common input such as words and
shapes. You need not use a recConf ig frame unless you require some recognition
behavior that cannot be provided using the view's viewFlags and
dictionaries slots. For example, the use of a recConf ig frame is required for
views that restrict recognition of individual characters to a specified set, or
implement customized forms of deferred recognition.

This section describes the use of recConf ig frames for

■ enabling recognizers

■ supporting ink text

■ fine-tuning recognition options

■ specifying the dictionaries used for recognition

A recConf ig frame can be used to specify any set of recognizers and
dictionaries, including combinations not supported by the view flag model;
however, views controlled by recConf ig frames are subject to the same
limitations as all views that perform recognition:

■ The text recognizer (printed or cursive) made available to all views is determined
by the value of the letterSetSelection slot in the system's user
configuration data. Individual views cannot override this system-wide setting.

■ The system's ability to save learning data is enabled by the value of the
1 e a rn i ngEnab 1 e dOp t i on slot in the system's user configuration data.
Individual views cannot override this system-wide setting.

Do not include letterSetSelection or 1 earningEnabl edOpt ion slots in
your recConf ig frame.

10-8 Using Advanced Topics in Recognition

ARENDI-DEFS00004032

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 186 of 201 PageID #: 29030

CHAPT ER 1 0

Recognition: Advanced Topics

Creating a recConfig Frame

For any view that is to use a recConf ig frame, you must supply a recConf ig
slot, usually by defining it in your view's template. The frame in your view's
recConf ig slot must be modifiable; that is, it must be RAM-based. When your
view template supplies a recConf ig frame, the view system builds a RAM-based
recConf ig frame along with the view—you need not do anything more to cause
the view to use the recConf ig frame.

To create your own recConf ig frame at run time, you need to call the
PrepRecConf ig function to create a RAM-based recConf ig frame that the
system can use. Although you could obtain similar results by cloning a
recConf ig frame that your view template defines, using the PrepRecConf ig
function is more efficient:

■ The PrepRecConf ig function creates a smaller frame than that obtained by
cloning your view template's recConf ig frame.

■ The frame that the PrepRecConf ig function returns can be used as it is by the
recognition system. Any other frame that you place in the view's recConf ig
slot is used by the system to create the recConf ig frame actually used by the
view, with the result being the creation of two frames in RAM rather than just one.

■ Consistent use of this function to create recConf ig frames saves RAM by
permitting similar recConf ig frames to share the same frame map.

A function similar to the PrepRecConf ig function, the BuildRecConfig
function, is provided for debugging use. Do not use the BuildRecConfig
function to create your RAM-based recConf ig frame. The argument to the
BuildRecConfig function is the view itself, rather than its recConf ig frame.
This function builds an appropriate recConf ig frame for the specified view,
regardless of whether the view defines one. The system does not use the
recConf ig frame that this function returns, however—as stated previously, this
frame is for debugging use only.

IMPORTANT

The contents of the inputMask slot in the view's recConf ig
frame must match the input mask (the recognition-related bits)
provided by the view's viewFlags slot. For more information on
this slot and others that the recConf ig frame may contain, see
"protoRecConfig" (page 8-36) in Newton Programmer's
Reference. A

You can base your recConf ig frame on one of the system-supplied recConf ig
frames by simply placing the appropriate constant in your view template's
recConf ig slot. Alternatively, you can place in this slot a frame that uses its
_proto slot to reference one of the system-supplied recConf ig frames. A third
way to define a recConf ig frame is to supply all necessary values yourself. The

Using Advanced Topics in Recognition 10-9

ARENDI-DEFS00004033

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 187 of 201 PageID #: 29031

CHAPT ER 1 0

Recognition: Advanced Topics

exact complement of slots and values required is determined by the recognition
features your recConf ig frame is intended to supply; for more information,
including complete descriptions of the system-supplied recConf ig frames, see
"System-Supplied recConfig Frames" (page 8-18) in Newton Programmer's
Reference.

Once you've created a RAM-based recConf ig frame, you must cause the
recognition system to use it. This process is described in "Changing Recognition
Behavior Dynamically" beginning on page 10-17. For a code example showing
how to create a recConf ig frame based on one of the system-supplied
prototypes, see "Creating Single-Letter Input Views" beginning on page 10-15.

Using RecConfig Frames to Enable Recognizers

To enable or disable recognizers unconditionally, supply appropriate values
for the doTextRecognition, doShapeRecognition, or
do InkWordRecognition slots your view's recConf ig frame provides. For
descriptions of these slots, see "protoRecConfig" (page 8-36) in Newton
Programmer's Reference.

For some operations, you may wish to restrict the recognizers that the user can
enable in a view while still respecting the rest of the preferences indicated in the
system's user configuration data. The optional slots allowTextRecognition
and al lowShapeRecognition in the view's recConf ig frame are intended
for use with views having an input mask that is vAnythingAl lowed. For
complete descriptions of these slots, see "protoRecConfig" (page 8-36) in Newton
Programmer's Reference. Note that you can also allow the user to set the values of
these slots from a protoRecToggle view instead of setting them yourself in the
recConf ig frame.

Views that use the al lowSometbmgRecognition slots allow the user to turn on
only the recognizers that you specify while respecting all other user preferences.
Any subset of al lowSometbmgRecognition slots can be specified to allow
the user to enable any appropriate combination of recognizers from the
protoRecToggle view or user preferences.

For example, setting the value of the allowTextRecognition slot to true
allows the user to enable the text recognizer in the view controlled by the
recConf ig frame while the doTextRecognition slot in the system's user
configuration data holds a non-ni 1 value.

Returning Text, Ink Text or Sketch Ink

This section discusses the use of recToggle views with system-supplied view
classes and recConf ig frames to provide views that can display text, ink text, or
sketch ink.

10-10 Using Advanced Topics in Recognition

ARENDI-DEFS00004034

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 188 of 201 PageID #: 29032

CHAPT ER 1 0

Recognition: Advanced Topics

Sketch ink, like shapes, is displayed only in views based on the clEditview
class. As a rule of thumb, consider sketch ink and ink text to be mutually exclusive
when configuring recognition in views; for best results, configure your input view
to recognize only one of these two data types.

Views based on the clEditview class handle sketch ink and ink text automatically.
For other views, the system invokes the view's viewlnkWordscript or
ViewRawlnkscript method when ink arrives. For more details, see the
descriptions of these methods in Newton Programmer's Reference.

The system-supplied ROM _rc InkOrText constant provides a ready-to-use
recConf ig frame that allows views based on the clParagraphView class to
contain ink text in addition to normal text. To use this recConf ig frame to create
a view that supports ink text, you'll need to take the following steps:

■ Create a view template that protos from the clParagraphView class.

■ In your view template, create a recConf ig slot that holds the
ROM _rc InkOrText constant. For more information, see "Creating a recConfig
Frame" beginning on page 10-9.

■ Provide a protoRecToggle view that allows the user to choose text or ink
text settings; if your application provides a status bar, you need to provide the
recToggle view as one of its children. For more information, see "Creating
the recToggle View" beginning on page 10-19.

■ Provide a _recogsettings slot at an appropriate position in the recToggle
view's _parent chain. For more information see "Creating the recogSettings
Slot" beginning on page 10-20.

Normally, the input view tries to recognize input using all currently enabled
recognizers. If no recognizers are enabled or if recognition fails for some reason—
for example, due to messy input or some sort of error—then the view system
converts the input strokes into ink. The dolnkWordRecognition slot in the
input view's recConf ig frame specifies the kind of ink that the system creates
from the input strokes.

When the dolnkWordRecognition slot holds anon-nil value, the system
returns ink text; when this slot holds the nil value, the system returns sketch ink.
This slot is described fully in "protoRecConfig" (page 8-36) in Newton
Programmer's Reference. Table 10-1 on page 10-12 summarizes the kinds of data
returned by the recognition system when recognition fails in an edit view or
paragraph view that is controlled by a recToggle view.

Note that when the input view is set to recognize shapes, the smoothed and cleaned
up ink that is returned may be ink text but is more likely to be a curve shape. Aside
from the failure of shape recognition, the only time raw ink is returned to the view
is when its associated recToggle is set to "Sketches".

Using Advanced Topics in Recognition 10-11

ARENDI-DEFS00004035

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 189 of 201 PageID #: 29033

CHAPT ER 1 0

Recognition: Advanced Topics

Table 10-1 Recognition failure in paragraph or edit view controlled by recToggle

Recognizer enabled
by recToggle view Returns on failure

Text Ink text

Ink text Ink text (does not fail)

Shapes Sketch ink, smoothed

Sketch ink Nothing (occurs rarely)

As an alternative to using a recConf ig frame to provide support for ink text, you
can set your clParagraphView view's vAnythingAl lowed mask. Although
this is truly the easiest way to support ink text, it is less-preferred because it
provides you the least control over the view's recognition behavior. A variation on
this approach that may provide better performance is to enable an appropriate set
of view flags rather than setting the vAnythingAl lowed mask. The best way to
support ink text, however, is through the use of a recConf ig frame that provides
appropriate values.

Regardless of the approach you take to provide ink text support, you should test
your view's recognition behavior under both text recognizers, and under any other
configurations your recToggle view provides.

To support both ink text and sketch ink in a single view, or to take other application-
specific action in response to changes in the state of a recToggle view, your view
can provide a RecogsettingsChanged method that reconfigures the its
recognition behavior dynamically. For more information, see "Changing
Recognition Behavior Dynamically" beginning on page 10-17.

For more information on protoRecToggle views, see "Using protoRecToggle
Views" beginning on page 10-19. For detailed descriptions of recConf ig frames,
see "protoRecConfig" (page 8-36) and "System-Supplied recConfig Frames"
(page 8-18) in Newton Programmer's Reference.

Fine-Tuning Text Recognition

To fine-tune either text recognizer's interpretation of input strokes, you can add the
optional speedCursiveOption, timeoutCursiveOption, and
1etterSpaceCursiveOption slots to the recConf ig frame. These
mechanisms for controlling recognizer behavior may affect various recognizers
differently. For more information, see "protoRecConfig" (page 8-36) in Newton
Programmer's Reference. For a discussion of the dictionaries slot, see "Using
Your RAM-Based Custom Dictionary" beginning on page 10-28.

10-12 Using Advanced Topics in Recognition

ARENDI-DEFS00004036

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 190 of 201 PageID #: 29034

CHAPT ER 1 0

Recognition: Advanced Topics

Manipulating Dictionaries

You can control the view's use of dictionaries by including in your recConf ig
frame the dictionaries, rcSingleLetters, or
inhibitSymbolsDictionary slots as appropriate. These slots are described in
"protoRecConfig" (page 8-36) in Newton Programmer's Reference.

Single-Character Input Views

When recognizing single characters, the recognizer sometimes has difficulty
determining individual characters' baseline or size; for example, it can be difficult
to distinguish between an upper case P and a lower case p when relying strictly on
user input. If you know where the user will be writing with respect to a
well-defined baseline, you can provide an rcBaselnfo or rcGridlnfo frame to
specify to the recognition system precisely where characters are written.

The rcBaselnfo Frame

The rcBaselnfo frame is especially valuable in improving the recognition of
single characters, for which it is sometimes difficult to derive baseline or letter-size
values from user input.

Figure 10-3 depicts the editing box that an rcBaselnfo frame defines.

Figure 10-3 Single-character editing box specified by rcBaselnfo frame

The NewtonScript code used to create the baseline information for the editing box
shown in Figure 10-3 looks like the following example.

rcBaseInfo := {

base: 140,// global y-coordinate of baseline

smallHeight:15,// height of a lower case x

bigHeight:30,// height of an upper case X

descent:15,// size of descender below baseline

};

Using Advanced Topics in Recognition 10-13

ARENDI-DEFS00004037

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 191 of 201 PageID #: 29035

CHAPT ER 1 0

Recognition: Advanced Topics

To obtain the best performance and to conserve available memory, create your
rcBaseInfo frame by cloning the frame provided by the
ROM_canonicalBaseInfo constant. Store your frame in a slot named
rcBaseInfo in your input view's recConfig frame.

For a detailed description of the rcBaseInfo frame, see "Data Structures Used in
recConfig Frames" (page 8-24) in Newton Programmer's Reference.

The rcGridinfo Frame

The rcGridlnfo frame allows you to define the position of one or more single-
letter input areas within a single input view. Its purpose is to facilitate the creation
of views having multiple single-letter input areas, such as might be used by a
crossword puzzle application. Providing a separate view for each single letter input
area would be extremely inefficient; the use of an rcGridlnfo frame allows you
to draw one view that provides the illusion of many input views, by defining to the
recognizer the size of an individual input area and the spacing between input areas.

Figure 10-4 depicts an example of the grid that an rcGridlnfo frame defines.
The boxes shown in this figure are not views themselves, just lines on the screen
that indicate the location of the input areas to the user. The recognition behavior is
provided by the view that draws these boxes; the rcGridlnfo frame helps the
recognizer determine the precise location of user input, and, consequently, where to
display its output. By providing the proper slots, you can use an rcGridlnfo
frame to define a row, column, or matrix (as shown in the figure) of single-letter
input areas within a view.

Figure 10-4 Two-dimensional array of input boxes specified by rccridlnfo frame

 boxLeft
i

boxTop

boxBottom

xSpace

boxRight

ySpace

10-14 Using Advanced Topics in Recognition

ARENDI-DEFS00004038

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 192 of 201 PageID #: 29036

CHAPT ER 1 0

Recognition: Advanced Topics

If you provide a grid in which the user is to write characters or words, you need to
use an rcGridlnfo frame to define the grid to the text recognizer. For example,
the protoCharEdit system prototype uses an rcGridlnfo frame internally to
define the input areas (cells) in the comb view it provides.

The recognizer uses the information in an rcGridlnfo frame to make character-
segmentation decisions. You can use the rcGridlnfo frame in conjunction with
an rcBaselnfo frame to provide more accurate recognition within boxes in a
single view. Recognition in the most recently used grid box begins as soon as the
user writes in a new box in the grid.

The NewtonScript code used to create the grid shown in Figure 10-4 looks like the
following example.

rcGridInfo := {

boxLeft: 100,// x coordinate of left of top-left box

boxRight:145,// x coordinate of right of top-left box

xSpace:55,// x distance from boxLeft to boxLeft

boxTop: 50,// y coordinate of top of top-left box

boxBottom:95,// y coordinate of bottom of top-left box

ySpace:55// y distance from boxTop to boxTop

};

To obtain the best performance and to conserve available memory, create your
rcGridlnfo frame by cloning the frame provided by the
ROM_canonicalCharGrid constant. Store your frame in a slot named
rcGridInfo in your view's recconf ig frame.

For a detailed description of the rcGridlnfo frame, see "Data Structures Used in
recConfig Frames" (page 8-24) in Newton Programmer's Reference

Creating Single-Letter Input Views

The following code fragment creates a single-letter input view's recconf ig
frame. This frame, which includes rcBaselnfo and rcGridlnfo frames, is
based on the ROM_rcSingleCharacterConfig frame supplied by the system.

specify box (or horizontal array of boxes)

into which character(s) are written.

myView := {

recConfig: ROM resinglecharacterconfig,

... }

// height of a lowercase letter

constant kSmallHeight := 11;

Using Advanced Topics in Recognition 10-15

ARENDI-DEFS00004039

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 193 of 201 PageID #: 29037

CHAPT ER 1 0

Recognition: Advanced Topics

// indent from left of view to first letter

constant kBoxIndent := 4;

// width of a single box in the grid

constant kCellWidth := 24;

// create editable recConfig frame and set initial values

myView.ViewSetupDoneScript := func()

begin

// prebuild RAM copy that we can change

recConfig := PrepRecConfig(recConfig);

// set these same flags in myView.viewFlags

recConfig.inputMask :=

vClickable+vGesturesAllowed+vCustomDictionaries;

// get global bounds of enclosing view

local box := :GlobalBox();

// calc left edge of boxes in grid

local leftX := box.left + kBoxIndent;

// specify baseline and expected letter height

recConfig.rcBaseInfo

{

// baseline for writing

base: box.top + viewLineSpacing,

// height of a small letter

smallHeight: kSmallHeight,

};

specify horizontal info for an array of boxes

recConfig.rcGridInfo

{

// left edge of first box

boxLeft: leftX,

// right edge of first box

boxRight: leftX + kCellWidth,

// width to left edge of next box

xSpace: kCellWidth,

};

// use new settings

PurgeAreaCache();

end;

10-16 Using Advanced Topics in Recognition

ARENDI-DEFS00004040

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 194 of 201 PageID #: 29038

CHAPT ER 1 0

Recognition: Advanced Topics

The PurgeAreaCache function causes the recognition system to adopt the
settings that the recConf ig frame specifies. This function is explained in more
detail in the next section, "Changing Recognition Behavior Dynamically."

Normally, you need not call the PurgeAreaCache function when specifying a
recConf ig frame as part of a view's template. However, you must call this
function to change a recConf ig frame at run time. For example, the previous
code fragment calculates values determining the size and location of the grid view
according to the size of the enclosing parent view; thus, the parent view must
already exist before the grid view's recConf ig frame can be constructed.
Therefore, the grid view's recConf ig frame is constructed from within the
viewsetupDonescript method of the parent view that encloses the grid view.
At the time the viewsetupDonescript method is executed, the system has
already used the recConf ig frame supplied by the enclosing view's template. In
order to cause the system to use the new recConf ig frame—the one that defines
the grid view—the viewsetupDonescript method must call the
PurgeAreaCache function.

Changing Recognition Behavior Dynamically

To change a view's recognition behavior dynamically, you must indicate the view's
new configuration (by setting view flags, changing the view's dictionaries
slot, or defining a recConf ig frame) and make the recognition system use the
new settings. The system supplies three functions that you can use to make the
system adopt new recognition settings; each is appropriate for a particular situation.

The function you use to adopt new settings depends on whether you are changing
the recognition behavior of all views or just changing the behavior of individual
views. Changes to user preferences for recognition affect the recognition behavior
of all views. On the other hand, changing the value of a single view's viewFlags
or recConf ig slot affects that view only.

Note

It is recommended that you do not change any user settings
without confirmation from the user.

To change the recognition behavior of a single view dynamically, use the global
function Setvalue to change the value of the view's viewFlags slot or
recConf ig slot. In addition to setting the new value, the Setvalue function
invalidates the area cache, which is a buffer that stores a small number of
recognition areas. Your changes to recognition behavior are incorporated when the
recognition area for your view is rebuilt.

Using Advanced Topics in Recognition 10-17

ARENDI-DEFS00004041

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 195 of 201 PageID #: 29039

CHAPT ER 1 0

Recognition: Advanced Topics

WARNING

The Setvalue function may not be appropriate for
setting the entryFlags slot in views that do not
have a viewFlags slot. In these kinds of views, set the
value of the entryFlags slot directly and then call the
PurgeAreaCache function to invalidate the area cache. If you
have changed values in the system's user configuration data, call
the ReadCursiveoptions function instead of the
PurgeAreaCache function. A

You can also use the PurgeAreaCache function to invalidate the area cache. This
function provides an efficient way to force the reconstruction of recognition areas
after you've changed the values of slots in multiple views. Note, however, that this
function does not resynchronize the recognition system with changes in the
system's user configuration data. Do not call PurgeAreaCache to effect changes
in user preferences for recognition.

User preferences that affect recognition behavior are saved as slot values in the
system's user configuration data. Some of these values, such as that of the
timeoutCursiveoption slot, affect all views; others affect only views that set
the vAnythingAl lowed mask. For detailed information about the slot you need
to set, see its description in "System-Wide Settings" (page 8-2) in Newton
Programmer's Reference.

When setting user preferences for recognition, do not modify the system's user
configuration data directly. Instead, use the GetUserConf ig and
SetUserConf ig global functions to manipulate user configuration values.

After calling the SetUserConf ig function to set one or more new values, you
must call the ReadCursiveoptions function to cause the recognition system to
use the new values. Do not call the PurgeAreaCache function after changing
values in the system's user configuration data—this function does not even test for
changes to user preferences. Because the ReadCursiveoptions function
invalidates the area cache, you need not call the PurgeAreaCache function after
calling the ReadCursiveoptions function.

IMPORTANT

The view's viewFlags slot must contain the same recognition
flags as the inputMask slot in its recConf ig frame. Certain
view system operations depend on the viewFlags slot being set
up properly. A

10-18 Using Advanced Topics in Recognition

ARENDI-DEFS00004042

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 196 of 201 PageID #: 29040

CHAPT ER 1 0

Recognition: Advanced Topics

Using protoRecToggle Views

A protoRecToggle view changes the recognition behavior of views by overriding
values inherited from the system's user configuration data. Note that values in the
view's recConfig frame override settings specified by theprotoRecToggle view.

The protoRecToggle view is usually used with clEditview views that set the
vAnythingAl lowed mask or clParagraphView views that support ink text.

Take the following steps to use a protoRecToggle view.

■ Create the recToggle view in NTK. If your application has a status bar, you
need to provide the recToggle view as a child of the status bar.

■ Configure input views appropriately to support the choices your recToggle
view provides. To do so, you need to provide an appropriate recConf ig frame
or set the vAnythingAl lowed mask for each view that is to be controlled by
the recToggle view.

■ Provide a_recogsettings slot at aplace in the _parent chain that allows
each view controlled by the recToggle view to inherit this slot.

You can take the following optional steps to customize your recToggle view's
appearance or behavior:

■ Provide a _recogPopup slot specifying the items to be included in the
protoRecToggle picker.

■ Implement a RecogsettingsChanged method in the _parent chain of any
view controlled by the recToggle view.

The next several sections describes these steps in detail.

Creating the recToggle View

To create a recToggle view, you'll first need to sketch it out in the NTK layout
editor. When you do so, you'll notice that regardless of where you draw it, the view
will appear in the upper-left corner of the layout. This is because the recToggle
view is intended to be displayed as a child of the status bar in applications that
have one.

When a recToggle view is a child of your application's status bar, the view system
positions the recToggle view on the status bar automatically, ignoring the value
of the recToggle view template's viewBounds slot in the process. When the
recToggle view is not a child of the status bar, you must create a viewBounds
slot for it and set appropriate values for this slot.

Using Advanced Topics in Recognition 10-19

ARENDI-DEFS00004043

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 197 of 201 PageID #: 29041

CHAPT ER 1 0

Recognition: Advanced Topics

Configuring Recognizers and Dictionaries for recToggle Views

Regardless of whether you use a recConf ig frame or view flags to specify your
view's recognition behavior, the view must be capable of enabling recognizers and
dictionaries appropriate for each choice in the recToggle picker. If your view
does not support all of the recognition settings provided by the default recToggle
view, you need to provide a _recogPopup slot that restricts the choices appearing
in the picker that the recToggle view displays. For more information, see
"Providing the _recogPopup Slot" beginning on page 10-22.

If you are using a recConf ig frame to specify your view's recognition behavior,
you can place the ROM_rcPref sConf ig constant in your recConf ig frame's
_proto slot to provide a general-purpose recConf ig frame that allows
recognition of all forms of pen input. Note that you must also enable recognition
behavior and dictionaries as appropriate in order to produce useful behavior.

Creating the _recogSettings Slot

Applications that use a recToggle view must provide a_ recogSettings slot
in a view that is a parent to both the recToggle view and the input view it
controls. Your view template should specify an initial value of n 1 for this slot.
Each time the user chooses an item from the recToggle picker, it saves a value
representing its current setting in this slot. You can preserve the user's recognition
settings by saving the contents of this slot when your application closes and
restoring this slot's value when your application reopens.

When a single recToggle view controls recognition for all of your application's
views, the recogSettings slot can reside in the application's base view, as
shown in Figure 10-5.

This approach can be used to synchronize the recognition behavior of multiple
views; for example, the built-in Notes application uses a single recToggle view
to control the recognition behavior of all currently visible notes. All of the views
controlled by a single recToggle view must provide the same set of recognizers
and dictionaries.

When each of several recToggle views must control individual input views, you
must provide a_ recogSettings slot for each recToggle view at an
appropriate place in the _parent chain of each view that performs recognition, as
shown in Figure 10-6.

10-20 Using Advanced Topics in Recognition

ARENDI-DEFS00004044

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 198 of 201 PageID #: 29042

CHAPT ER 1 0

Recognition: Advanced Topics

Figure 10-5 One recToggle controls all views

Input Strokes

G recognized as

G recognized as

G recognized as

appBase

myRecToggle

One RecToggle For Three Views

view 1

0

view2

0

view3

0

40 A

Figure 10-6 Each recToggle view controls a single input view

Input Strokes

G recognized as

Crecognized as

G recognized as

Each View Has Own RecToggle

view 1

view2

view3

40

recTogglel

recToggle2

recToggle3

appBase

Using Advanced Topics in Recognition 10-21

ARENDI-DEFS00004045

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 199 of 201 PageID #: 29043

CHAPT ER 1 0

Recognition: Advanced Topics

When the view receives input, it uses parent inheritance to find configuration
information. If a _recogsettings slot exists in the view's _parent chain, the
view uses the value of this slot, along with values supplied by an optional
recConf ig frame and values inherited from the system's user configuration data.

The recToggle view's viewSetupFormScript method uses the value of the
_recogsettings slot to set the state of the recToggle view. To restore the
recognition settings that were in effect the last time your application was used, you
can save the value of the _recogsettings slot when the application closes and
restore the value of this slot when the application reopens. If you prefer that the
recToggle view always open to a default setting, rather than a saved one, you
can place the value nil in the _recogsettings slot when your application opens.

Providing the _recogPopup Slot

You can customize the appearance and behavior of your recToggle view by
providing a _recogPopup slot in its view template. This slot contains an array of
symbols corresponding to items included in the picker that the recToggle view
displays. The first item in the array appears at the top of the picker and specifies the
default recognizer enabled by the recToggle view. The picker includes subsequent
items in the order in which they appear in the array.

Table 10-2 summarizes the symbols that may appear in the _recogPopup slot,
along with the corresponding item each produces in the recToggle picker.

Table 10-2 Symbols appearing in the recogPopup slot

Symbol

'recogText

'recogInkText

'recogShapes

'recogSketches

'recToggleSettings

'pickSeparator

Represents

Text recognizer

Ink text

Shape recognizer

Raw ink

Handwriting Recognition
preferences slip

No selection

Picker item

Text

Ink Text

Shapes

Sketches

Preferences

Dashed line

To specify that the recToggle view enable a default recognizer other than the one
specified by the first symbol in the _recogPopup array, your recToggle view's
template can provide a de f au 1 t I t em slot. This slot holds an integer value
specifying the array element to be used as the default.

10-22 Using Advanced Topics in Recognition

ARENDI-DEFS00004046

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 200 of 201 PageID #: 29044

CHAPT ER 1 0

Recognition: Advanced Topics

Avoid including inappropriate items in the recToggle popup, such as an ink text
item for a view that does not support ink text. It is your responsibility to ensure that
the _recogPopup array includes only symbols representing valid choices for the
view that the recToggle configures.

Accessing Correction Information

As words are recognized, the system saves correction information that includes

■ the stroke bundle. (See "Unrecognized Strokes" on page 9-7.)

■ alternate interpretations returned by the recognizer. (See "Classifying Strokes"
on page 9-3.)

■ learning data. (See "Correction and Learning" on page 9-13.)

You can call the GetCorrectlnfo global function at any time to obtain
correction information for recently-recognized words. This function returns a
correct Info frame based on the protoCorrectInfo system prototype.

The info slot in the correct Info frame holds an array of wordlnfo frames
based on the protowordlnfo system prototype. Each wordlnfo frame
represents a single written word.

The max slot in the correctlnfo frame specifies the maximum number of words
for which it holds correction information. When adding a new element to the info
array will cause this array to exceed the size specified by the max slot, the system
removes the first element of the info array, uses its learning data if necessary, and
adds the new wordlnfo frame to the info array.

The correct Info frame provides a number of methods that you can use to
manipulate its contents; for more information, see "CorrectInfo Functions and
Methods" (page 8-54) in Newton Programmer's Reference.

Each wordlnfo frame specifies the following information:

■ the view that contains the word.

■ the position of the word within the clParagraphview view that displays it.

■ the list of alternate interpretations of the input strokes.

■ an identifier specifying the recognizer that interpreted the input.

■ a stroke bundle (optional).

■ learning data (optional).

As an alternative to obtaining wordlnfo frames from the correctlnfo frame,
you can extract these frames from the word unit passed to an optional
ViewWordscript method that your view provides. For a description of this
method, see "Application-Defined Recognition Methods" (page 8-66) in Newton
Programmer's Reference.

Using Advanced Topics in Recognition 10-23

ARENDI-DEFS00004047

Case 1:13-cv-00919-LPS Document 311-6 Filed 03/10/21 Page 201 of 201 PageID #: 29045

