
EXHIBIT 64 PART 1

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 1 of 200 PageID #: 28645Case 1:13-cv-00919—LPS Document 311-5 Filed 03/10/21 Page 1 of 200 PageID #: 28645

EXHIBIT 64 PART 1

Apple
P RESS

Newton Programmer's Guide

For Newton 2.0

A
v1

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York

Don Mills, Ontario Harlow, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Paris Seoul Milan Mexico City Taipei

ARENDI-DEFS00003649

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 2 of 200 PageID #: 28646

S Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.

No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for licensed Newton platforms.

Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New York
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Apple Press, the Apple Press Signature,
eWorld, Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are trademarks
of Apple Computer, Inc.

Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.

CompuServe is a registered service
mark of CompuServe, Inc.

FrameMaker is a registered trademark
of Frame Technology Corporation.

Helvetica and Palatino are registered
trademarks of Linotype Company.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Microsoft is a registered trademark of
Microsoft Corporation. Windows is a
trademark of Microsoft Corporation.

QuickViewTM is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND

REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS

MANUAL, INCLUDING IMPLIED

WARRANTIES OF

MERCHANTABILITY AND FITNESS

FORA PARTICULAR PURPOSE, ARE

LIMITED IN DURATION TO NINETY

(90) DAYS FROM THE DATE OF THE

ORIGINAL RETAIL PURCHASE OF

THIS PRODUCT.

Even though Apple has reviewed this

manual, APPLE MAKES NO

WARRANTY OR REPRESENTATION,

EITHER EXPRESS OR IMPLIED, WITH

RESPECT TO THIS MANUAL, ITS

QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS

FORA PARTICULAR PURPOSE. AS A

RESULT, THIS MANUAL IS SOLD "AS

IS," AND YOU, THE PURCHASER, ARE

ASSUMING THE ENTIRE RISK AS TO

ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE

FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL

DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS

MANUAL, even if advised of the possibility

of such damages.

THE WARRANTY AND REMEDIES SET

FORTH ABOVE ARE EXCLUSIVE AND

IN LIEU OF ALL OTHERS, ORAL OR

WRITTEN, EXPRESS OR IMPLIED. No

Apple dealer, agent, or employee is

authorized to make any modification,

extension, or addition to this warranty.

Some states do not allow the exclusion or

limitation of implied warranties or liability

for incidental or consequential damages, so

the above limitation or exclusion may not

apply to you. This warranty gives you

specific legal rights, and you may also have

other rights which vary from state to state.

ARENDI-DEFS00003650

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 3 of 200 PageID #: 28647

ririTable of Contents

Figures and Tables xxxiii

Preface About This Book xiiii

Chapter 1

Who Should Read This Book xliii
Related Books xliii
Newton Programmer's Reference CD-ROM xliv

Sample Code xlv
Conventions Used in This Book xlv
Special Fonts xlv
Tap Versus Click xlvi

Frame Code xlvi
Developer Products and Support xlvii

Undocumented System Software Objects xlviii

Overview 1-1

Operating System 1-1

Memory 1-3
Packages 1-4

System Services 1-4

Object Storage System 1-5

View System 1-6
Text Input and Recognition

Stationery 1-8
Intelligent Assistant 1-8

Imaging and Printing 1-9

Sound 1-9
Book Reader 1-10
Find 1-10

Filing 1-11

1-7

iii

ARENDI-DEFS00003651

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 4 of 200 PageID #: 28648

Communications Services 1-11

NewtonScript Application Communications 1-13
Routing Through the In/Out Box
Endpoint Interface 1-14

Low-Level Communications 1-14

Transport Interface 1-14

Communication Tool Interface
Application Components 1-15

Using System Software 1-17

The NewtonScript Language 1-18

What's New in Newton 2.0 1-18
NewtApp 1-18

Stationery 1-19

Views 1-19
Protos 1-20
Data Storage 1-20
Text Input 1-20

Graphics and Drawing 1-21

System Services 1-21
Recognition 1-22

Sound 1-22

Built-in Applications 1-22
Routing and Transports 1-23
Endpoint Communication 1-23

Utilities 1-24

Books 1-24

Chapter 2 Getting Started 2-1

1-13

1-15

Choosing an Application Structure 2-1
Minimal Structure 2-1
NewtApp Framework 2-2

Digital Books 2-3

Other Kinds of Software 2-4
Package Loading, Activation, and Deactivation
Loading 2-5

Activation 2-5
Deactivation 2-6

iv

2-4

ARENDI-DEFS00003652

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 5 of 200 PageID #: 28649

Effects of System Resets on Application Data
Flow of Control 2-8

Using Memory 2-8
Localization 2-9
Developer Signature Guidelines 2-9

Signature 2-9
How to Register 2-10
Application Name 2-10
Application Symbol 2-11

Package Name 2-11

Summary 2-12

View Classes and Protos 2-12
Functions 2-12

Chapter 3 VIeWS 3-1

2-7

About Views 3-1
Templates 3-2

Views 3-4

Coordinate System 3-6

Defining View Characteristics 3-8

Class 3-9
Behavior 3-9
Location, Size, and Alignment 3-10

Appearance 3-20

Opening and Closing Animation Effects
Other Characteristics 3-24
Inheritance Links 3-24

Application-Defined Methods 3-26

View Instantiation 3-26
Declaring a View 3-27

Creating a View 3-28

Closing a View 3-29

View Compatibility 3-30
New Drag and Drop API 3-30
New Functions and Methods 3-30

New Messages 3-30
New Alignment Flags 3-31

3-23

V

ARENDI-DEFS00003653

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 6 of 200 PageID #: 28650

Changes to Existing Functions and Methods
New Warning Messages 3-32

Obsolete Functions and Methods 3-32

Using Views 3-32

Getting References to Views 3-32

Displaying, Hiding, and Redrawing Views
Dynamically Adding Views 3-33

Showing a Hidden View 3-34
Adding to the stepChildren Array 3-34

Using the AddStepView Function 3-35

Using the BuildContext Function 3-36

Creating Templates 3-36
Making a Picker View 3-37

Changing the Values in viewFormat 3-37
Determining Which View Item Is Selected
Complex View Effects 3-38
Making Modal Views 3-38

Finding the Bounds of Views 3-39
Animating Views 3-40
Dragging a View 3-40
Dragging and Dropping with Views 3-40

Scrolling View Contents 3-41
Redirecting Scrolling Messages 3-42

Working With View Highlighting 3-42

Creating View Dependencies 3-43

View Synchronization 3-43
Laying Out Multiple Child Views 3-43

Optimizing View Performance 3-44

Using Drawing Functions 3-44

View Fill 3-44
Redrawing Views 3-44
Memory Usage 3-45

Scrolling 3-46

Summary of Views 3-47

Constants 3-47
Functions and Methods 3-51

vi

3-31

3-33

3-37

ARENDI-DEFS00003654

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 7 of 200 PageID #: 28651

Chapter 4 NewtApp Applications 4-1

About the NewtApp Framework 4-1
The NewtApp Protos 4-2

About newtApplication 4-4
About newtSoup 4-5
The Layout Protos 4-5
The Entry View Protos 4-8

About the Slot View Protos 4-9

Stationery 4-11
NewtApp Compatibility 4-11

Using NewtApp 4-12

Constructing a NewtApp Application 4-12

Using Application Globals 4-13

Using newtApplication 4-14

Using the Layout Protos 4-16

Using Entry Views 4-19

Using the Required NewtApp Install and Remove Scripts 4-21

Using Slot Views in Non-NewtApp Applications 4-22
Modifying the Base View 4-22

Using a False Entry View 4-23

Creating a Custom Labelled Input-Line Slot View 4-24

Summary of the NewtApp Framework 4-25
Required Code 4-25

Protos 4-25

Chapter 5 Stationery 5-1

About Stationery 5-1
The Stationery Buttons 5-2

Stationery Registration 5-4

Getting Information about Stationery

Compatibility Information 5-5

Using Stationery 5-5
Designing Stationery 5-5

Using FillNewEntry 5-6
Extending the Notes Application 5-7
Determining the SuperSymbol of the Host

5-5

5-7

vii

ARENDI-DEFS00003655

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 8 of 200 PageID #: 28652

Creating a DataDef 5-8

Defining DataDef Methods 5-9

Creating ViewDefs 5-11
Registering Stationery for an Auto Part

Using the MinimalBounds ViewDef Method

Stationery Summary 5-15
Data Structures 5-15
Protos 5-15
Functions 5-17

5-13
5-14

Chapter 6 Pickers, Pop-up Views, and Overviews 6-1

About Pickers and Pop-up Views 6-1
Pickers and Pop-up View Compatibility 6-2
New Pickers and Pop-up Views 6-2

Obsolete Function 6-4

Picker Categories 6-4

General-Purpose Pickers 6-4

Using protoGeneralPopup 6-7
Map Pickers 6-8

Text Pickers 6-10
Date, Time, and Location Pop-up Views 6-17
Number Pickers 6-21
Picture Picker 6-21

Overview Protos 6-22

Using protoOverview 6-24

Using protoListPicker 6-26

Using the Data Definitions Frame in a List Picker

Specifying Columns 6-29
Having a Single Selection in a List Picker 6-30
Having Preselected Items in a List Picker 6-30

Validation and Editing in protoListPicker 6-31

Changing the Font of protoListPicker 6-33

Using protoSoupOverview 6-33
Determining Which protoSoupOverview Item Is Hit

Displaying the protoSoupOverview Vertical Divider

Roll Protos 6-35

View Classes 6-36

6-29

6-33
6-34

ARENDI-DEFS00003656

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 9 of 200 PageID #: 28653

Chapter 7

Specifying the List of Items for a Popup

Summary 6-41

General Picker Protos 6-41
Map Pickers 6-45
Text Picker Protos 6-46

Date, Time, and Location Pop-up Views
Number Pickers 6-53
Picture Picker 6-53

Overview Protos 6-54

Roll Protos 6-57

View Classes 6-58
Functions 6-59

6-37

Controls and Other Protos 7-1

6-50

Controls Compatibility 7-1

Scroller Protos 7-2
Implementing a Minimal Scroller 7-3
Automatic Arrow Feedback 7-3

Scrolling Examples 7-4

Scrolling Lines of Text 7-4

Scrolling in the Dates Application 7-5

Scrolling In a Graphics Application 7-5

Scroll Amounts 7-5

Advanced Usage 7-6
Button and Box Protos 7-6

Implementing a Simple Button 7-10

Selection Tab Protos 7-11

Gauge and Slider Protos 7-12
Implementing a Simple Slider 7-13

Time Protos 7-14
Implementing a Simple Time Setter 7-15

Special View Protos 7-16

View Appearance Protos 7-18

Status Bar Protos 7-19

Summary 7-20

Scroller Protos 7-20
Button and Box Protos 7-22

ix

ARENDI-DEFS00003657

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 10 of 200 PageID #: 28654

Selection Tab Protos 7-25

Gauges and Slider Protos 7-25
Time Protos 7-27

Special View Protos 7-28

View Appearance Protos 7-30

Status Bar Protos 7-31

Chapter 8 Text and Ink Input and Display 8-1

About Text 8-1
About Text and Ink 8-1

Written Input Formats 8-2

Caret Insertion Writing Mode 8-3
Fonts for Text and Ink Display 8-3

About Text Views and Protos 8-3
About Keyboard Text Input 8-4

The Keyboard Registry 8-5
The Punctuation Pop-up Menu 8-5

Compatibility 8-6

Using Text 8-6

Using Views and Protos for Text Input and Display
General Input Views 8-6
Paragraph Views 8-10
Lightweight Paragraph Views 8-11

Using Input Line Protos 8-12
Displaying Text and Ink 8-14
Text and Ink in Views 8-14

Using Fonts for Text and Ink Display 8-17

Rich Strings 8-22
Text and Styles 8-25

Setting the Caret Insertion Point 8-26

Using Keyboards 8-26

Keyboard Views 8-26

Using Keyboard Protos 8-28
Defining Keys in a Keyboard View 8-30

Using the Keyboard Registry 8-36

Defining Tabbing Orders 8-36
The Caret Pop-up Menu 8-38

x

8-6

ARENDI-DEFS00003658

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 11 of 200 PageID #: 28655

Chapter 9

Handling Input Events 8-38

Testing for a Selection Hit 8-38

Summary of Text 8-39
Text Constants and Data Structures 8-39

Views 8-42

Protos 8-43
Text and Ink Display Functions and Methods
Keyboard Functions and Methods 8-49
Input Event Functions and Methods 8-50

Recognition 9-1

8-47

About the Recognition System 9-1

Classifying Strokes 9-3

Gestures 9-4

Shapes 9-5

Text 9-6

Unrecognized Strokes 9-7
Enabling Recognizers 9-8

View Flags 9-9

Recognition Configuration Frames 9-9

View Flags vs. RecConfig Frames 9-10

Where to Go From Here 9-10
Recognition Failure 9-11

System Dictionaries 9-11

Correction and Learning 9-13

User Preferences for Recognition 9-14
Handwriting Recognition Preferences 9-15

RecToggle Views 9-18
Flag-Naming Conventions 9-19
Recognition Compatibility 9-20

Using the Recognition System 9-21

Types of Views 9-21

Configuring the Recognition System 9-22

Obtaining Optimum Recognition Performance
Accepting Pen Input 9-24

Taps and Overlapping Views 9-24
Recognizing Shapes 9-25

9-23

xi

ARENDI-DEFS00003659

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 12 of 200 PageID #: 28656

Recognizing Standard Gestures 9-25

Combining View Flags 9-26
Recognizing Text 9-27
Recognizing Punctuation 9-28

Suppressing Spaces Between Words
Forcing Capitalization 9-29

Justifying to Width of Parent View

9-28

9-29
Restricting Input to Single Lines or Single Words
Validating Clipboard and Keyboard Input 9-29

Using the vAnythingAllowed Mask 9-30

Summary 9-31

Constants 9-31
Data Structures 9-33

Chapter 10 Recognition: Advanced Topics 10-1

9-29

About Advanced Topics in Recognition 10-1

How the System Uses Recognition Settings 10-1
ProtoCharEdit Views 10-4
Ambiguous Characters in protoCharEdit Views 10-5

Deferred Recognition 10-5

User Interface to Deferred Recognition 10-5
Programmer's Overview of Deferred Recognition 10-6

Compatibility Information 10-7

Using Advanced Topics in Recognition 10-7

Using recConfig Frames 10-8

Creating a recConfig Frame 10-9

Using RecConfig Frames to Enable Recognizers 10-10
Returning Text, Ink Text or Sketch Ink 10-10

Fine-Tuning Text Recognition 10-12
Manipulating Dictionaries 10-13

Single-Character Input Views 10-13

Creating Single-Letter Input Views 10-15

Changing Recognition Behavior Dynamically 10-17

Using protoRecToggle Views 10-19

Creating the recToggle View 10-19

Configuring Recognizers and Dictionaries for recToggle

Views 10-20

Creating the recogSettings Slot 10-20

xii

ARENDI-DEFS00003660

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 13 of 200 PageID #: 28657

Providing the _recogPopup Slot 10-22

Accessing Correction Information 10-23

Using Custom Dictionaries 10-24

Creating a Custom Enumerated Dictionary 10-24

Creating the Blank Dictionary 10-25

Adding Words to RAM-Based Dictionaries 10-26
Removing Words From RAM-Based Dictionaries 10-27

Saving Dictionary Data to a Soup 10-27
Restoring Dictionary Data From a Soup 10-28

Using Your RAM-Based Custom Dictionary 10-28
Removing Your RAM-Based Custom Dictionary 10-30

Using System Dictionaries Individually 10-30

Working With the Review Dictionary 10-30

Retrieving the Review Dictionary 10-31
Displaying Review Dictionary Browsers 10-31
Adding Words to the User Dictionary 10-32
Removing Words From the User Dictionary 10-32

Adding Words to the Expand Dictionary 10-33
Removing Words From the Expand Dictionary 10-34
Retrieving Word Expansions 10-34
Retrieving the Auto-Add Dictionary 10-34

Disabling the Auto-Add Mechanism 10-35
Adding Words to the Auto-Add Dictionary 10-35
Removing Words From the Auto-Add Dictionary 10-36

Using protoCharEdit Views 10-36

Positioning protoCharEdit Views 10-36
Manipulating Text in protoCharEdit Views 10-37
Restricting Characters Returned by protoCharEdit Views

Customized Processing of Input Strokes 10-40

Customized Processing of Double Taps 10-41

Changing User Preferences for Recognition 10-41
Modifying or Replacing the Correction Picker

Using Stroke Bundles 10-42

Stroke Bundles Example 10-42

Summary of Advanced Topics in Recognition

Constants 10-44
Data Structures 10-45

Recognition System Prototypes 10-49
Additional Recognition Functions and Methods

10-42

10-44

10-54

10-38

ARENDI-DEFS00003661

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 14 of 200 PageID #: 28658

Chapter 11 Data Storage and Retrieval 11-1

About Data Storage on Newton Devices 11-1
Introduction to Data Storage Objects 11-2

Where to Go From Here 11-6

Stores 11-6
Packages 11-7

Soups 11-7

Indexes 11-8

Saving User Preference Data in the System Soup 11-10

Queries 11-10

Querying for Indexed Values 11-10

Begin Keys and End Keys 11-12
Tag-based Queries 11-14

Customized Tests 11-14
Text Queries 11-15

Cursors 11-16
Entries 11-17
Alternatives to Soup-Based Storage 11-18
Dynamic Data 11-18

Static Data 11-19

Compatibility Information 11-20

Obsolete Store Functions and Methods 11-20

Soup Compatibility Information 11-20

Query Compatibility Information 11-23

Obsolete Entry Functions 11-24

Obsolete Data Backup and Restore Functions 11-24

Using Newton Data Storage Objects 11-25

Programmer's Overview 11-25

Using Stores 11-28

Store Object Size Limits 11-29
Referencing Stores 11-29
Retrieving Packages From Stores 11-29
Testing Stores for Write-Protection 11-30
Getting or Setting the Default Store 11-30
Getting and Setting the Store Name 11-30
Accessing the Store Information Frame 11-31

Using Soups 11-31

Naming Soups 11-31
Registering and Unregistering Soup Definitions 11-32

xiv

ARENDI-DEFS00003662

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 15 of 200 PageID #: 28659

Retrieving Existing Soups 11-33

Adding Entries to Soups 11-34
Adding an Index to an Existing Soup 11-35
Removing Soups 11-36

Using Built-in Soups 11-36

Making Changes to Other Applications' Soups 11-37
Adding Tags to an Existing Soup 11-37

Using Queries 11-37

Querying Multiple Soups 11-38

Querying on Single-Slot Indexes 11-38
Querying for Tags 11-41
Querying for Text 11-43
Internationalized Sorting Order for Text Queries 11-44
Queries on Descending Indexes 11-45

Querying on Multiple-Slot Indexes 11-47
Limitations of Index Keys 11-51

Using Cursors 11-53

Getting a Cursor 11-53
Testing Validity of the Cursor 11-53

Getting the Entry Currently Referenced by the Cursor 11-54
Moving the Cursor 11-54
Counting the Number of Entries in Cursor Data 11-56
Getting the Current Entry's Index Key 11-56
Copying Cursors 11-56

Using Entries 11-57

Saving Frames as Soup Entries 11-57
Removing Entries From Soups 11-58
Modifying Entries 11-59
Moving Entries 11-60

Copying Entries 11-60
Sharing Entry Data 11-61
Using the Entry Cache Efficiently 11-61

Using Soup Change Notification 11-63
Registering Your Application for Change Notification 11-63
Unregistering Your Application for Change Notification 11-65
Responding to Notifications 11-65
Sending Notifications 11-66

Summary of Data Storage 11-68
Data Structures 11-68

Data Storage Functions and Methods 11-71

xv

ARENDI-DEFS00003663

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 16 of 200 PageID #: 28660

Special-Purpose Objects for
Chapter 12 Data Storage and Retrieval 12-1

Chapter 13

About Special-Purpose Storage Objects 12-1
Entry Aliases 12-1

Virtual Binary Objects 12-2

Parts 12-3

Store Parts 12-4
Mock Entries 12-4
Mock Stores, Mock Soups, and Mock Cursors 12-6

Using Special-Purpose Data Storage Objects 12-7

Using Entry Aliases 12-7

Using Virtual Binary Objects 12-8

Creating Virtual Binary Objects 12-8

Modifying VBO Data 12-10

VBOs and String Data 12-12

Using Store Parts 12-12

Creating a Store Part 12-13

Getting the Store Part 12-14
Accessing Data in Store Parts 12-14

Using Mock Entries 12-14
Implementing the EntryAccess Method 12-15

Creating aNew Mock Entry 12-15

Testing the Validity of a Mock Entry 12-16

Getting Mock Entry Data 12-16

Changing the Mock Entry's Handler 12-16

Getting the Mock Entry's Handler 12-16

Implementing Additional Handler Methods 12-16

Summary of Special-Purpose Data Storage Objects 12-17
Data Structures 12-17
Functions and Methods 12-17

Drawing and Graphics 13-1

About Drawing 13-1

Shape-Based Graphics 13-2
Manipulating Shapes 13-7

The Style Frame 13-7

xvi

ARENDI-DEFS00003664

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 17 of 200 PageID #: 28661

Drawing Compatibility 13-8

New Functions 13-8
New Style Attribute Slots 13-8

Changes to Bitmaps 13-8

Changes to the HitShape Method 13-8

Changes to View Classes 13-9

Using the Drawing Interface 13-9
How to Draw 13-9
Responding to the ViewDrawScript Message 13-9

Drawing Immediately 13-10

Using Nested Arrays of Shapes 13-10
The Transform Slot in Nested Shape Arrays 13-11
Default Transfer Mode 13-12

Transfer Modes at Print Time 13-12

Controlling Clipping 13-12
Transforming a Shape 13-13

Using Drawing View Classes and Protos 13-14

Displaying Graphics Shapes and Ink 13-14
Displaying Bitmaps, Pictures, and Graphics Shapes
Displaying Pictures in a clEditView 13-15
Displaying Scaled Images of Other Views 13-15

Translating Data Shapes 13-16
Finding Points Within a Shape 13-16

Using Bitmaps 13-17
Making CopyBits Scale Its Output Bitmap 13-18

Storing Compressed Pictures and Bitmaps 13-18

Capturing a Portion of a View Into a Bitmap 13-18
Rotating or Flipping a Bitmap 13-19
Importing Macintosh PICT Resources 13-20

Drawing Non-Default Fonts 13-20
PICT Swapping During Run-Time Operations 13-21

Optimizing Drawing Performance 13-22

Summary of Drawing 13-23

Data Structure 13-23

View Classes 13-23
Protos 13-24
Functions and Methods 13-26

13-15

xvii

ARENDI-DEFS00003665

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 18 of 200 PageID #: 28662

Chapter 14 Sound 14-1

About Newton Sound 14-1
Event-related Sounds 14-2
Sounds in ROM 14-2
Sounds for Predefined Events 14-2

Sound Data Structures 14-3
Compatibility 14-3

Using Sound 14-4
Creating and Using Custom Sound Frames 14-4
Creating Sound Frames Procedurally 14-5
Cloning Sound Frames 14-5

Playing Sound 14-5
Using a Sound Channel to Play Sound 14-5

Playing Sound Programmatically 14-6
Synchronous and Asynchronous Sound 14-7

Advanced Sound Techniques 14-8
Pitch Shifting 14-9
Manipulating Sample Data 14-10

Summary of Sound 14-11
Data Structures 14-11
Protos 14-11
Functions and Methods 14-12
Sound Resources 14-12

Chapter 15 Filing 15-1

About Filing 15-1
Filing Compatibility Information 15-9

Using the Filing Service 15-10
Overview of Filing Support 15-10
Creating the Labels Slot 15-11
Creating the appName Slot 15-11
Creating the appAll Slot 15-12
Creating the appObjectFileThisln Slot 15-12
Creating the appObjectFileThisOn Slot 15-12
Creating the appObjectUnfiled Slot 15-12
Specifying the Target 15-13

xviii

ARENDI-DEFS00003666

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 19 of 200 PageID #: 28663

Creating the labelsFilter slot 15-14

Creating the storesFilter slot 15-14
Adding the Filing Button 15-14
Adding the Folder Tab View 15-14

Customizing Folder Tab Views 15-15

Defining a TitleClickScript Method 15-15
Implementing the FileThis Method 15-15
Implementing the NewFilingFilter Method 15-16

Using the Folder Change Notification Service 15-18

Creating the doCardRouting slot 15-18

Using Local or Global Folders Only 15-19
Adding and Removing Filing Categories
Programmatically 15-19

Interface to User-Visible Folder Names 15-19

Summary 15-20
Data Structures for Filing 15-20
Application Base View Slots 15-20

Filing Protos 15-21
Filing Functions and Methods 15-22
Application-Defined Filing Functions and Methods

Chapter 16 Find 16-1

15-22

About the Find Service 16-1

Compatibility Information 16-6

Using the Find Service 16-6
Technical Overview 16-6

Global and Selected Finds 16-9

Checklist for Adding Find Support 16-10

Creating the title Slot 16-11

Creating the appName Slot 16-11

Using the Finder Protos 16-11

Implementing Search Methods 16-14

Using the StandardFind Method 16-15

Using Your Own Text-Searching Method 16-16
Finding Text With a ROM_CompatibleFinder 16-17

Implementing the DateFind Method 16-18
Adding Application Data Sets to Selected Finds 16-19
Returning Search Results 16-21

xix

ARENDI-DEFS00003667

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 20 of 200 PageID #: 28664

Chapter 17

Implementing Find Overview Support 16-21

The FindSoupExcerpt Method 16-21
The ShowFoundItem Method 16-22

Replacing the Built-in Find Slip 16-24
Reporting Progress to the User 16-24

Registering for Finds 16-25

Summary 16-26
Finder Protos 16-26
Functions and Methods 16-28

Application-Defined Methods 16-28

Additional System Services 17-1

About Additional System Services 17-1

Undo 17-1

Undo Compatibility 17-2

Idler Objects 17-2

Change Notifications 17-2

Online Help 17-3
Alerts and Alarms 17-3

User Alerts 17-3

User Alarms 17-3
Periodic Alarms 17-4
Alarms Compatibility 17-5

Progress Indicators 17-5
Automatic Busy Cursor 17-5
Notify Icon 17-5

Status Slips With Progress Indicators 17-6

Power Registry 17-7
Power Compatibility Information 17-7

Using Additional System Services 17-7

Using Undo Actions 17-8

The Various Undo Methods 17-8
Avoiding Undo-Related "Bad Package" Errors

Using Idler Objects 17-9

Using Change Notification 17-10

Using Online Help 17-10

xx

17-9

ARENDI-DEFS00003668

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 21 of 200 PageID #: 28665

Using Alerts and Alarms 17-11

Using the Notify Method to Display User Alerts
Creating Alarms 17-11

Obtaining Information about Alarms 17-12
Retrieving Alarm Keys 17-12

Removing Installed Alarms 17-13

Common Problems With Alarms 17-13

Using the Periodic Alarm Editor 17-14

Using Progress Indicators 17-15

Using the Automatic Busy Cursor 17-15

Using the Notify Icon 17-15

Using the DoProgress Function 17-16

Using DoProgress or Creating Your Own

protoStatusTemplate 17-18

Using protoStatusTemplate Views 17-18

Using the Power Registry 17-24
Registering Power-On Functions 17-24

Registering Login Screen Functions 17-25
Registering Power-Off Functions 17-25

Using the Battery Information Functions 17-26

Summary of Additional System Services 17-27

Undo 17-27
Idlers 17-27
Notification and Alarms 17-27
Reporting Progress 17-28

Power Registry 17-29

Chapter 18 Intelligent Assistant 18-1

17-11

About the Assistant 18-1
Introduction 18-1

Input Strings 18-2

No Verb in Input String 18-2
Ambiguous or Missing Information 18-4
The Task Slip 18-4

Programmer's Overview 18-5

Matching Words With Templates 18-8
The Signature and PreConditions Slots 18-10

xxi

ARENDI-DEFS00003669

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 22 of 200 PageID #: 28666

Chapter 19

The Task Frame 18-11

The Entries Slot 18-11
The Phrases Slot 18-11
The OrigPhrase Slot 18-12
The Value Slot 18-12

Resolving Template-Matching Conflicts 18-13

Compatibility Information 18-14

Using the Assistant 18-15
Making Behavior Available From the Assistant 18-15

Defining Action and Target Templates 18-15
Defining Your Own Frame Types to the Assistant 18-16
Implementing the PostParse Method 18-17
Defining the Task Template 18-18

Registering and Unregistering the Task Template 18-19
Displaying Online Help From the Assistant 18-19
Routing Items From the Assistant 18-20

Summary 18-21

Data Structures 18-21
Templates 18-21
Developer-Supplied Task Template 18-22
Developer-Supplied Action Templates 18-25

Developer-Supplied Target Templates 18-27
Assistant Functions and Methods 18-27
Developer-Supplied Functions and Methods 18-28
Application Base View Slots 18-28

Built-in Applications and System Data 19-1

Names 19-2
About the Names Application 19-2
Names Compatibility 19-3

Using the Names Application 19-4

Adding a New Type of Card 19-4
Adding a New Data Item 19-4
Adding a New Card Layout Style 19-5
Adding New Layouts to the Names Application

Using the Names Methods and Functions 19-6

Using the Names Soup 19-7

Using the Names Protos 19-7

19-6

ARENDI-DEFS00003670

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 23 of 200 PageID #: 28667

Dates 19-8

About the Dates Application 19-8
Dates Compatibility 19-9

Using the Dates Application 19-10
Adding Meetings or Events 19-11

Deleting Meetings and Events 19-12
Finding Meetings or Events 19-13
Moving Meetings and Events 19-14

Getting and Setting Information for Meetings or Events

Creating aNew Meeting Type 19-17
Examples of Creating New Meeting Types 19-19
Miscellaneous Operations 19-20

Controlling the Dates Display 19-21

Using the Dates Soups 19-22
To Do List 19-22
About the To Do List Application 19-22
To Do List Compatibility 19-23

Using the To Do List Application 19-23

Creating and Removing Tasks 19-24
Accessing Tasks 19-24

Checking-Off a Task 19-25

Miscellaneous To Do List Methods 19-26

Using the To Do List Soup 19-26
Time Zones 19-27
About the Time Zones Application 19-27

Time Zone Compatibility 19-27

Using the Time Zone Application 19-28

Obtaining Information About a City or Country 19-28
Adding a City to a Newton Device 19-29

Using Longitude and Latitude Values 19-30

Setting the Home City 19-30
Notes 19-30
About the Notes Application 19-31

Notes Compatibility 19-31

Using the Notes Application 19-32

Creating New Notes 19-32
Adding Stationery to the Notes Application 19-33

Using the Notes Soup 19-33

19-15

ARENDI-DEFS00003671

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 24 of 200 PageID #: 28668

Fax Soup Entries 19-34

About Fax Soup Entries 19-34

Using Fax Soup Entries 19-34
Prefs and Formulas Rolls 19-35
About the Prefs and Formulas Rolls 19-35

Prefs and Formulas Compatibility 19-36

Using the Prefs and Formulas Interfaces 19-36
Adding a Prefs Roll Item 19-36
Adding a Formulas Roll Item 19-36

Auxiliary Buttons 19-36
About Auxiliary Buttons 19-36
Auxiliary Buttons Compatibility 19-36

Using Auxiliary Buttons 19-37

Icons and the Extras Drawer 19-38
About Icons and the Extras Drawer 19-38
Extras Drawer Compatibility 19-39

Using the Extras Drawer's Interface for Icon Management

Using Extras Drawer Cursors 19-40

Changing Icon Information 19-40
Adding a Soup Icon 19-40
Removing a Soup Icon 19-41

Creating a Script Icon 19-42

Using the Soupervisor Mechanism 19-43

System Data 19-44
About System Data 19-44

Using System Data 19-44
Functions for Accessing User Configuration Data
Storing Application Preferences in the System Soup

Summary 19-46

Constants and Variables 19-46

User Configuration Variables 19-47
Protos 19-48

Soup Formats 19-49

Functions and Methods 19-53

xxiv

19-45

19-39

19-45

ARENDI-DEFS00003672

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 25 of 200 PageID #: 28669

Chapter 20 Localizing Newton Applications 20-1

About Localization 20-1
The Locale Panel and the International Frame 20-1

Locale and ROM Version 20-2
How Locale Affects Recognition 20-2

Using the Localization Features of the Newton 20-3
Defining Language at Compile Time 20-3

Defining a Localization Frame 20-4

Using LocObj to Reference Localized Objects 20-4

Use ParamStr Rather Than "&" and "&&" Concatenation
Measuring String Widths at Compile Time 20-6

Determining Language at Run Time 20-6
Examining the Active Locale Bundle 20-6

Changing Locale Settings 20-7

Creating a Custom Locale Bundle 20-7

Adding a New Bundle to the System 20-8
Removing a Locale Bundle 20-8

Changing the Active Locale 20-9

Using a Localized Country Name 20-9

Summary Customizing Locale 20-9
Localized Output 20-10
Date and Time Values 20-10

Currency Values 20-13

Summary of Localization Functions 20-14

Compile-Time Functions 20-14
Locale Functions 20-14
Date and Time Functions 20-14

Utility Functions 20-15

Chapter 21 Routing Interface 21-1

20-5

About Routing
The In/Out Box
The In Box

The Out Box
Action Picker

21-1
21-1

21-2

21-3
21-3

xxv

ARENDI-DEFS00003673

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 26 of 200 PageID #: 28670

Routing Formats 21-5

Current Format 21-8
Routing Compatibility 21-8
Print Formats 21-8

Using Routing 21-8

Providing Transport-Based Routing Actions 21-9

Getting and Verifying the Target Object 21-10

Getting and Setting the Current Format 21-11

Supplying the Target Object 21-12

Storing an Alias to the Target Object 21-13

Storing Multiple Items 21-14

Using the Built-in Overview Data Class 21-14
Displaying an Auxiliary View 21-15

Registering Routing Formats 21-16

Creating a Print Format 21-18
Page Layout 21-18
Printing and Faxing 21-19

Creating a Frame Format 21-21

Creating a New Type of Format 21-22
Providing Application-Specific Routing Actions 21-22
Performing the Routing Action 21-24

Handling Multiple Items 21-24
Handling No Target Item 21-25

Sending Items Programmatically 21-26

Creating aName Reference 21-27

Specifying a Printer 21-28

Opening a Routing Slip Programmatically 21-29

Supporting the Intelligent Assistant 21-30
Receiving Data 21-31

Automatically Putting Away Items 21-31
Manually Putting Away Items 21-33
Registering to Receive Foreign Data 21-34
Filing Items That Are Put Away 21-34

Viewing Items in the In/Out Box 21-34

View Definition Slots 21-35
Advanced Alias Handling 21-36

Summary of the Routing Interface 21-37

Constants 21-37
Data Structures 21-37

xxvi

ARENDI-DEFS00003674

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 27 of 200 PageID #: 28671

Chapter 22

Protos 21-38

Functions and Methods 21-39
Application-Defined Methods 21-40

Transport Interface 22-1

About Transports 22-1
Transport Parts 22-2

Item Frame 22-2

Using the Transport Interface 22-5
Providing a Transport Object 22-5

Installing the Transport 22-5

Setting the Address Class 22-6

Grouping Transports 22-7

Sending Data 22-8

Sending All Items 22-9

Converting an E-Mail Address to an Internet Address
Receiving Data 22-9
Handling Requests When the Transport Is Active
Canceling an Operation 22-13

Obtaining an Item Frame 22-13

Completion and Logging 22-16

Storing Transport Preferences and Configuration
Information 22-17

Extending the In/Out Box Interface 22-17
Application Messages 22-19
Error Handling 22-20
Power-Off Handling 22-20

Providing a Status Template 22-21

Controlling the Status View 22-23
Providing a Routing Information Template 22-25
Providing a Routing Slip Template 22-26

Using protoFullRouteSlip 22-27

Using protoAddressPicker 22-31
Providing a Preferences Template 22-33

Summary of the Transport Interface 22-36

Constants 22-36
Protos 22-36
Functions and Methods 22-39

22-9

22-12

xxvii

ARENDI-DEFS00003675

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 28 of 200 PageID #: 28672

Chapter 23 Endpoint Interface 23-1

About the Endpoint Interface 23-1
Asynchronous Operation 23-2

Synchronous Operation 23-3
Input 23-3
Data Forms 23-4
Template Data Form 23-5

Endpoint Options 23-7
Compatibility 23-7

Using the Endpoint Interface 23-8

Setting Endpoint Options 23-8
Initialization and Termination 23-10
Establishing a Connection 23-11
Sending Data 23-11
Receiving Data Using Input Specs 23-12
Specifying the Data Form and Target 23-13
Specifying Data Termination Conditions 23-14
Specifying Flags for Receiving 23-15
Specifying an Input Time-Out 23-16
Specifying Data Filter Options 23-16
Specifying Receive Options 23-17
Handling Normal Termination of Input 23-17
Periodically Sampling Incoming Data 23-18
Handling Unexpected Completion 23-18
Special Considerations 23-18

Receiving Data Using Alternative Methods 23-19
Streaming Data In and Out 23-20
Working With Binary Data 23-20
Canceling Operations 23-21
Asynchronous Cancellation 23-21

Synchronous Cancellation 23-22

Other Operations 23-22
Error Handling 23-23
Power-Off Handling 23-23
Linking the Endpoint With an Application 23-24

Summary of the Endpoint Interface 23-25

Constants and Symbols 23-25
Data Structures 23-26
Protos 23-28
Functions and Methods 23-30

xxviii

ARENDI-DEFS00003676

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 29 of 200 PageID #: 28673

Chapter 24 Built-in Communications Tools 24-1

Serial Tool 24-1

Standard Asynchronous Serial Tool 24-1

Serial Tool with MNP Compression 24-4
Framed Asynchronous Serial Tool 24-4

Modem Tool 24-6
Infrared Tool 24-8

AppleTalk Tool 24-9

Chapter 25

Resource Arbitration Options 24-10
AppleTalk Functions 24-12
The Net Chooser 24-13

Summary 24-16
Built-in Communications Tool Service Option Labels
Options 24-16

Constants 24-18

Functions and Methods 24-21

Modem Setup Service 25-1

24-16

About the Modem Setup Service 25-1
The Modem Setup User Interface 25-2
The Modem Setup Process 25-3

Modem Communication Tool Requirements
Defining a Modem Setup 25-5

Setting Up General Information 25-5

Setting the Modem Preferences Option 25-5

Setting the Modem Profile Option 25-6

Setting the Fax Profile Option 25-7

Summary of the Modem Setup Service 25-9

Constants 25-9

25-4

ARENDI-DEFS00003677

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 30 of 200 PageID #: 28674

Chapter 26 Utility Functions 26-1

Compatibility 26-2

New Functions 26-2

New Object System Functions 26-2

New String Functions 26-3

New Array Functions 26-3

New Sorted Array Functions 26-3

New Integer Math Functions 26-4

New Financial Functions 26-4

New Exception Handling Functions 26-4

New Message Sending Functions 26-4

New Deferred Message Sending Functions 26-4

New Data Stuffing Functions 26-5

New Functions to Get and Set Globals 26-5

New Debugging Functions 26-5

New Miscellaneous Functions 26-5

Enhanced Functions 26-6

Obsolete Functions 26-6

Summary of Functions and Methods 26-7

Object System Functions 26-7

String Functions 26-8

Bitwise Functions 26-9

Array Functions 26-9

Sorted Array Functions 26-9

Integer Math Functions 26-10

Floating Point Math Functions 26-10

Financial Functions 26-12

Exception Functions 26-12

Message Sending Functions 26-12

Deferred Message Sending Functions 26-12

Data Extraction Functions 26-13

Data Stuffing Functions 26-13

Getting and Setting Global Variables and Functions

Debugging Functions 26-13

Miscellaneous Functions 26-14

xxx

26-13

ARENDI-DEFS00003678

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 31 of 200 PageID #: 28675

Appendix The Inside Story on Declare A-1

Compile-Time Results A-1

Run-Time Results A-2

Glossary GL-1

Index IN-1

XXXi

ARENDI-DEFS00003679

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 32 of 200 PageID #: 28676

ARENDI-DEFS00003680

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 33 of 200 PageID #: 28677Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 33 of 200 PageID #: 28677

AREN D I—DEFSOOOO3680

Figures and Tables

Chapter 1 Overview 1-1

Figure 1-1 System software overview 1-2

Figure 1-2 Communications architecture 1-12
Figure 1-3 Using components 1-16

Chapter 3 Views 3-1

Chapter 4

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 3-8

Template hierarchy 3-3

View hierarchy 3-5

Screen representation of view hierarchy

View system coordinate plane 3-7

Points and pixels 3-7

Bounds parameters 3-11

View alignment effects 3-18

Transfer modes 3-22

Table 3-1 viewJustify constants 3-14

NewtApp Applications 4-1

3-6

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

The main protos in a NewtApp-based application 4-3

A roll-based application (left) versus a card-based
application 4-6

Calls is an example of a page-based application 4-7

Multiple entries visible simultaneously 4-8

An Information slip 4-9

The smart name view and system-provided
people picker 4-11

The message resulting from a nil value for
forceNewEntry 4-17

The overview slots 4-17

The information button and picker. 4-20

ARENDI-DEFS00003681

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 34 of 200 PageID #: 28678

Chapter 5 Stationery 5-1

Chapter 6

xxxiv

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

The IOU extension in the New picker 5-3

The IOU extension to the Notes application

The Show menu presents different views of
application data 5-4

The default viewDef view template 5-12

Pickers, Pop-up Views, and Overviews 6-1

5-3

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Figure 6-6

Figure 6-7

Figure 6-8

Figure 6-9

Figure 6-10

Figure 6-11

Figure 6-12

Figure 6-13

Figure 6-14

Figure 6-15

Figure 6-16

Figure 6-17

Figure 6-18

Figure 6-19

Figure 6-20

Figure 6-21

Figure 6-22

Figure 6-23

Figure 6-24

Figure 6-25

Figure 6-26
Figure 6-27

Figure 6-28

Figure 6-29

Figure 6-30

Figure 6-31

Figure 6-32

Figure 6-33

Figure 6-34

A protoPopupButton example 6-5

A protoPopinPlace example 6-5

A protoLabelPicker example 6-5

A protoPicker example 6-6

A protoGeneralpopup example 6-6

A protoTextList example 6-7

A protoTable example 6-7

A protoCountryPicker example 6-9

A protoProvincePicker example 6-9

A protoStatePicker example 6-9

A protoWorldPicker example 6-10

A protoTextPicker example 6-10

A protoDateTextPicker example 6-11

A protoDateDurat ionTextPicker example 6-12

A protoDateNTimeTextPicker example 6-13

A protoTimeTextPicker example 6-13

A protoDurat ionTextPicker example 6-14

A protoTimeDeltaTextPicker example 6-14

A protoMapTextPicker example 6-15

A protoUSstatesTextPicker example 6-15

A protoCit iesTextPicker example 6-16

A protoLongLat Text Picker example 6-16

A protoDatepopup example 6-17

A protoDatePicker example 6-17

A protoDateNTimepopup example 6-18

A protoDatelntervalpopup example 6-18
A protoMultiDatepopup example 6-19

A protoYearPopup example 6-19

A protoTimepopup example 6-19

A protoAnalogTimepopup example 6-20

A protoTimeDeltapopup example 6-20

A protoTimelntervalpopup example 6-20

A protoNumberPicker example 6-21

A protoPictIndexer example 6-21

ARENDI-DEFS00003682

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 35 of 200 PageID #: 28679

Figure 6-35

Figure 6-36

Figure 6-37

Figure 6-38

Figure 6-39

Figure 6-40

Figure 6-41

Figure 6-42

Figure 6-43

Figure 6-44

Figure 6-45

Figure 6-46

Figure 6-47

Figure 6-48

Table 6-1

Table 6-2

Table 6-3

A protoOverview example 6-22

A protoSoupOverview example 6-23

A protoListPicker example 6-24

A ProtoListPicker example 6-26

Creating a new name entry 6-27

Highlighted row 6-27

Selected row 6-27

Pop-up view displayed over list 6-28

Slip displayed for gathering input 6-28

A protoRoll example 6-35

A protoRollBrowser example 6-36

Example of an expandable text outline 6-36

Example of a month view 6-37

Cell highlighting example for protoPicker

Item frame for strings and bitmaps 6-38

Item frame for string with icon 6-38

Item frame for two-dimensional grid 6-39

Chapter 7 Controls and Other Protos 7-1

6-40

Figure 7-1

Figure 7-2

Figure 7-3

Figure 7-4

Figure 7-5

Figure 7-6

Figure 7-7

Figure 7-8

Figure 7-9

Figure 7-10

Figure 7-11

Figure 7-12

Figure 7-13
Figure 7-14

Figure 7-15

Figure 7-16

Figure 7-17

Figure 7-18

Figure 7-19

Figure 7-20

Figure 7-21

Figure 7-22

A protoHorizontal2DScroller view 7-2

A protoLeftRightScroller view 7-2

A protoUpDownScroller view 7-3

A protoHorizontalUpDownScroller view

A protoTextButton view 7-6

A protoPictureButton view 7-7

A protolnfoButton view 7-7

A protoOrientation view 7-7

A cluster of protoRadioButtons 7-8

A cluster of protoPictRadioButtons 7-8

A protoCloseBox view 7-8

A protoLargeCloseBox view 7-9

A protoCheckBox view 7-9
A protoRCheckBox view 7-9

A proto=abs view 7-11

A protoAZVertTabs view 7-11

A protoSlider view 7-12

A protoGauge view 7-12

A protoLabeledBatteryGauge view 7-12

A clGaugeview view 7-13

A protoDigitalClock view 7-14

A protoNewsetClock view 7-15

7-3

XXXV

ARENDI-DEFS00003683

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 36 of 200 PageID #: 28680

Figure 7-23

Figure 7-24

Figure 7-25

Figure 7-26

Figure 7-27

Figure 7-28

Figure 7-29

Figure 7-30

Figure 7-31

Figure 7-32

A protoAMPMCluster view 7-15

A protoDragger view 7-16

A protoDragNGo view 7-16

A protoGlance view 7-17

A protoStaticText view 7-17

A protoBorder view 7-18

A protoDivider view 7-18

A protoTitle view 7-18

A protoStatus view 7-19

A protoStatusBar view 7-19

Table 7-1 Scroller bounds frame slots 7-4

Chapter 8 Text and Ink Input and Display 8-1

Figure 8-1

Figure 8-2

Figure 8-3

Figure 8-4

Figure 8-5

Figure 8-6

Figure 8-7

Figure 8-8

Figure 8-9

Figure 8-10

Figure 8-11

Figure 8-12

Figure 8-13

Figure 8-14

Figure 8-15

Table 8-1

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Table 8-6

Table 8-7

Table 8-8

xxxvi

The Punctuation pop-up menu 8-5

An example of a protoLabellnputLine 8-13

The Recognition menu 8-15

Resized and recognized ink 8-16

A paragraph view containing an ink word
and text 8-25

The built-in alphanumeric keyboard 8-26

The built-in numeric keyboard 8-27

The built-in phone keyboard 8-27

The built-in time and date keyboard 8-27

An example of a protoxeyboard 8-29

The keyboard button 8-29

The small keyboard button 8-30

A generic keyboard view 8-31

Keyboard codes 8-34

I ndependent tabbing orders within a parent view 8-37

Views and protos for text input and display 8-4

viewStationery slot value for clEditview
children 8-9

Font family symbols 8-18

Font style (face) values 8-18

Built-in font constants 8-19

Font packing constants 8-21

Rich string functions 8-24

Key descriptor constants 8-34

ARENDI-DEFS00003684

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 37 of 200 PageID #: 28681

Chapter 9 Recognition 9-1

Chapter 10

Figure 9-1

Figure 9-2

Figure 9-3

Figure 9-4

Figure 9-5

Figure 9-6

Figure 9-7

Figure 9-8

Recognizers create units from input strokes 9-5

Recognition-related view flags 9-9

Text-corrector picker 9-14

Handwriting Recognition preferences 9-16

Text Editing Settings slip 9-17

Fine Tuning handwriting preferences slips 9-17

Handwriting Settings slip 9-18

Use of protoRecToggle view in the Notes
application 9-19

Recognition: Advanced Topics 10-1

Figure 10-1 Example of protocharEdit view 10-4

Figure 10-2 User interface to deferred recognition, with
i nverted ink 10-6

Figure 10-3 Single-character editing box specified by rcBaselnfo
frame 10-13

Figure 10-4 Two-dimensional array of input boxes specified by
rcGridInfo frame 10-14

Figure 10-5 One recToggle controls all views 10-21

Figure 10-6 Each recToggle view controls a single input
view 10-21

Figure 10-7 Example of a protocharEdit view 10-36

Table 10-1 Recognition failure in paragraph or edit view controlled
by recToggle 10-12

Table 10-2 Symbols appearing in the recogPopup slot 10-22

Chapter 11 Data Storage and Retrieval 11-1

Figure 11-1

Figure 11-2

Figure 11-3

Figure 11-4

Figure 11-5

Figure 11-6

Figure 11-7

Table 11-1

Stores, soups and union soups 11-4

An index provides random access and imposes
order 11-11

Using beginxey and endxey values to specify an
index subrange 11-12

Using beginExclKey and endExclKey values to
specify a subrange 11-13

Cursor presents discontiguous index key values
contiguously 11-16

Cursor operations on descending index 11-46

Specifying ends of a descending index 11-47

Effect of functions and methods on entry cache 11-63

ARENDI-DEFS00003685

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 38 of 200 PageID #: 28682

Chapter 12 Special-Purpose Objects for Data Storage and Retrieval 12-1

Chapter 13

Table 12-1 Parts and type identifiers 12-4

Drawing and Graphics 13-1

Figure 13-1 A line drawn with different bit patterns and
pen sizes 13-3

Figure 13-2 A rectangle 13-3

Figure 13-3 An oval 13-4

Figure 13-4 An arc and a wedge 13-4

Figure 13-5 A rounded rectangle 13-5

Figure 13-6 A polygon 13-6

Figure 13-7 A region 13-6

Figure 13-8 A simple picture 13-7

Figure 13-9 Example of nested shape arrays 13-11

Figure 13-10 Example ofviewlntoBitmap method 13-19

Figure 13-11 Example of MungeBitmap method 13-19

Table 13-1 Summary of drawing results 13-11

Chapter 15 Filing 15-1

Figure 15-1

Figure 15-2

Figure 15-3

Figure 15-4

Figure 15-5

Figure 15-6

Figure 15-7

Figure 15-8

Chapter 16 Find 16-1

Two examples of filing button views 15-2

Filing slip 15-3

Creating a local folder 15-4

Filing slip without external store 15-5

Filing slip for ' onlyCardRouting 15-5

A protoNewFolderTab view 15-6

A protoClockFolderTab view 15-7

Choosing a filing filter 15-8

Figure 16-1

Figure 16-2

Figure 16-3

Figure 16-4

Figure 16-5

Figure 16-6

Figure 16-7

Figure 16-8

The system-supplied Find slip 16-2

Specifying text or date searches in the Find slip

A local Find operation 16-3

Searching selected applications 16-3

Progress slip 16-4

The Find overview 16-5

Find status message 16-5

Strings used in a Find overview 16-8

16-2

ARENDI-DEFS00003686

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 39 of 200 PageID #: 28683

Chapter 17

Figure 16-9 The ShowFoundltem method displays the view of an
overview item 16-9

Figure 16-10 Typical status message 16-24

Table 16-1 Overview of Rom SoupFinder methods 16-13

Additional System Services 17-1

Figure 17-1

Figure 17-2

Figure 17-3

Figure 17-4

Figure 17-5

Figure 17-6

Figure 17-7

Figure 17-8

User alert 17-3

Alarm slip with Snooze button 17-4

A view based on protoPeriodicAl arm Editor

Busy cursor 17-5

Notify icon 17-5

Progress slip with barber pole gauge 17-6

A user alert 17-11

Built-in status view configurations 17-20

Chapter 18 Intelligent Assistant 18-1

Chapter 19

17-4

Figure 18-1

Figure 18-2

Figure 18-3

Figure 18-4

Assist slip 18-3

The Please picker 18-3

Calling task slip 18-4

Simplified overview of the Assistant's matching
process 18-7

Built-in Applications and System Data 19-1

Figure 19-1

Figure 19-2

Figure 19-3

Figure 19-4

Figure 19-5

Figure 19-6

Figure 19-7

Figure 19-8

Figure 19-9

Figure 19-10

Names application Card and All Info views 19-3

Dates application Day and Day's Agenda views 19-9

The To Do List application 19-23

The Time Zones application 19-27

Time Zones application's All Info view 19-28

Notes note and Checklist views 19-31

Note added using NewNote method 19-33

Custom Prefs and Formulas Panels 19-35

The Notes application with and without an auxiliary
button 19-37

The information slips for an application's soup that do
and do not support the soupervisor mechanism (note
extra filing button) 19-39

ARENDI-DEFS00003687

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 40 of 200 PageID #: 28684

Chapter 20 Localizing Newton Applications 20-1

Chapter 21

Chapter 22

Chapter 23

X1

Figure 20-1 The Locale settings in Preferences 20-2

Table 20-1 Using the kIncludeAllElements constant 20-13

Routing Interface 21-1

Figure 21-1

Figure 21-2

Figure 21-3

Figure 21-4

Figure 21-5

In Box and Out Box overviews 21-2

Action picker 21-3

Transport selection mechanism for action picker

Format picker in routing slip 21-7

Auxiliary view example 21-15

Table 21-1 Routing data types 21-7

Transport Interface 22-1

21-6

Figure 22-1 Status view subtypes 22-22

Figure 22-2 Routing information view 22-26

Figure 22-3 protoFullRouteslip view 22-27

Figure 22-4 Complete routing slip 22-29

Figure 22-5 protoPeoplePicker view 22-31

Figure 22-6 Address picker with remembered names 22-32

Figure 22-7 Address picker set up by Intelligent Assistant 22-32

Figure 22-8 Information picker and preferences view 22-33

Figure 22-9 protoTransportPrefs view 22-34

Figure 22-10 Print preferences 22-35

Table 22-1 Status view subtypes 22-21

Endpoint Interface 23-1

Table 23-1

Table 23-2

Data form applicability 23-5

I nput spec slot applicability 23-13

ARENDI-DEFS00003688

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 41 of 200 PageID #: 28685

Chapter 24 Built-in Communications Tools 24-1

Chapter 25

Chapter 26

Appendix

Figure 24-1

Figure 24-2

Figure 24-3

Table 24-1

Table 24-2

Table 24-3

Table 24-4

Table 24-5

Table 24-6

Table 24-7

Table 24-8

Default serial framing 24-5

NetChooser view while searching 24-14

NetChooser view displaying printers 24-14

Summary of serial options 24-2

Summary of serial tool with MNP options 24-4

Summary of framed serial options 24-5

Summary of modem options 24-7

Summary of Infrared Options 24-8

Summary of AppleTalk options 24-10

Resource arbitration options 24-11

AppleTalk functions 24-13

Modem Setup Service 25-1

Figure 25-1 Modem preferences view 25-3

Table 25-1 Summary of configuration string usage 25-7

Utility Functions 26-1

Table 26-1 Summary of copying functions 26-2

The Inside Story on Declare A-1

Figure A-1 Declare example A-3

xli

ARENDI-DEFS00003689

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 42 of 200 PageID #: 28686

ARENDI-DEFS00003690

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 43 of 200 PageID #: 28687Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 43 of 200 PageID #: 28687

AREN D I—DEFSOOOO3690

P R E F A C E

About This Book

This book, Newton Programmer's Guide, is the definitive guide to Newton
programming, providing conceptual information and instructions for using the
Newton application programming interfaces.

This book is a companion to Newton Programmer's Reference, which provides
comprehensive reference documentation for the routines, system prototypes, data
structures, constants, and error codes defined by the Newton system. Newton
Programmer's Reference is included on the CD-ROM that accompanies this book.

Who Should Read This Book

This guide is for anyone who wants to write NewtonScript programs for the
Newton family of products.

Before using this guide, you should read Newton Toolkit User's Guide to learn how
to install and use Newton Toolkit, which is the development environment for
writing NewtonScript programs for Newton. You may also want to read The
NewtonScript Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is used throughout
the Newton Programmer's Guide.

To make best use of this guide, you should already have a good understanding of
object-oriented programming concepts and have had experience using a high-level
programming language such as C or Pascal. It is helpful, but not necessary, to have
some experience programming for a graphic user interface (like the Macintosh
desktop or Windows). At the very least, you should already have extensive
experience using one or more applications with a graphic user interface.

Related Books

This book is one in a set of books available for Newton programmers. You'll also
need to refer to these other books in the set:

■ Newton Toolkit User's Guide. This book comes with the Newton Toolkit
development environment. It introduces the Newton development environment
and shows how to develop applications using Newton Toolkit You should read
this book first if you are a new Newton application developer.

ARENDI-DEFS00003691

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 44 of 200 PageID #: 28688

P R E F A C E

■ The NewtonScript Programming Language. This book comes with the Newton
Toolkit development environment. It describes the NewtonScript programming
language.

■ Newton Book Maker User's Guide. This book comes with the Newton Toolkit
development environment. It describes how to use Newton Book Maker and
Newton Toolkit to make Newton digital books and to add online help to Newton
applications.

■ Newton 2.0 User Interface Guidelines. This book contains guidelines to help
you design Newton applications that optimize the interaction between people
and Newton devices.

Newton Programmer's Reference CD-ROM

This book is accompanied by a CD-ROM disc that contains the complete text of
Newton Programmer's Reference. Newton Programmer's Reference is the
comprehensive reference to the Newton programming interface. It documents all
routines, prototypes, data structures, constants, and error codes defined by the
Newton system for use by NewtonScript developers.

The companion CD-ROM includes three electronic versions of Newton
Programmer's Reference. The CD-ROM contains these items, among others:

■ The complete Newton Programmer's Reference in QuickView format for the
Mac OS — the same format used by the Macintosh Programmer's Toolbox
Assistant In this format, you can use the extremely fast full-text searching
capabilities and ubiquitous hypertext jumps to find reference information quickly.

■ The complete Newton Programmer's Reference in Windows Help format This
format provides quick and convenient access to the reference information for
developers working on Windows platforms.

■ The complete Newton Programmer's Reference in Adobe Acrobat format This
format provides a fully formatted book with page-numbered table of contents,
index, and cross-references. You can print all or portions of the book, and you can
also view it online. When viewing online, you can use the indexed search facilities
of Adobe Acrobat Reader 2.1 for fast lookup of any information in the book.

The companion CD-ROM also includes an Adobe Acrobat version of this book,
Newton Programmer's Guide, and a demo version of the Newton Toolkit
development environment for the Mac OS.

ARENDI-DEFS00003692

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 45 of 200 PageID #: 28689

P R E F A C E

Sample Code

The Newton Toolkit development environment, from Apple Computer, includes
many sample code projects. You can examine these samples, learn from them, and
experiment with them. These sample code projects illustrate most of the topics
covered in this book. They are an invaluable resource for understanding the topics
discussed in this book and for making your journey into the world of Newton
programming an easier one.

The Newton Developer Technical Support team continually revises the existing
samples and creates new sample code. The latest sample code is included each
quarter on the Newton Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly mailing. Sample
code is updated on the Newton Development side on the World Wide Web (http : /
/dev. info . apple. com/newton) shortly after it is released on the Newton
Developer CD. For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section "Developer Products and Support,"
on page xlvii.

The code samples in this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code samples have been
compiled and, in most cases, tested. However, Apple Computer does not intend that
you use these code samples in your application.

To make the code samples in this book more readable, only limited error handling
is shown. You need to develop your own techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds of information.

Special Fonts
This book uses the following special fonts:

■ Boldface. Key terms and concepts appear in boldface on first use. These terms
are also defined in the Glossary.

■ Courier typeface. Code listings, code snippets, and special identifiers in
the text such as predefined system frame names, slot names, function names,
method names, symbols, and constants are shown in the Courier typeface to
distinguish them from regular body text. If you are programming, items that
appear in Courier should be typed exactly as shown.

xlv

ARENDI-DEFS00003693

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 46 of 200 PageID #: 28690

xlvi

P R E F A C E

■ Italic typeface. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which you must replace
with your own names. The names of other books are also shown in italic type,
and rarely, this style is used for emphasis.

Tap Versus Click

Throughout the Newton software system and in this book, the word "click"
sometimes appears as part of the name of a method or variable, as in
ViewClickScript or ButtonClickScript. This may lead you to believe that
the text refers to mouse clicks. It does not. Wherever you see the word
"click" used this way, it refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code

If you are using the Newton Toolkit (NTK) development environment in conjunction
with this book, you may notice that this book displays the code for a frame (such as
a view) differently than NTK does.

In NTK, you can see the code for only a single frame slot at a time. In this book,
the code for a frame is presented all at once, so you can see all of the slots in the
frame, like this:

{ viewClass: clview,

viewBounds: RelBounds(20, 50, 94, 142),

viewFlags: vNoFlags,

viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),

viewJustify: vjCenterH,

ViewSetupDoneScript: func()

:UpdateDisplay(),

UpdateDisplay: func()

SetValue(display, 'text, value);

};

If while working in NTK, you want to create a frame that you see in the book,
follow these steps:

1. On the NTK template palette, find the view class or proto shown in the book.
Draw out a view using that template. If the frame shown in the book contains a
_proto slot, use the corresponding proto from the NTK template palette. If the
frame shown in the book contains a viewClass slot instead of a _proto slot,
use the corresponding view class from the NTK template palette.

ARENDI-DEFS00003694

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 47 of 200 PageID #: 28691

P R E F A C E

2. Edit the viewBounds slot to match the values shown in the book.

3. Add each of the other slots you see listed in the frame, setting their values to the
values shown in the book. Slots that have values are attribute slots, and those
that contain functions are method slots.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer's worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring all current
versions of Apple development tools and the most popular third-party development
tools. ADC offers convenient payment and shipping options, including site
licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order. adc@applelink. apple. com

World Wide Web http://www.devcatalog.apple.com

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For Newton-specific information, see the Newton developer World Wide Web page
at:http://dev.info.apple.com/newton

xlvii

ARENDI-DEFS00003695

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 48 of 200 PageID #: 28692

P R E F A C E

Undocumented System Software Objects

xlviii

When browsing in the NTK Inspector window, you may see functions, methods,
and data objects that are not documented in this book. Undocumented functions,
methods, and data objects are not supported, nor are they guaranteed to work in
future Newton devices. Using them may produce undesirable effects on current
and future Newton devices.

ARENDI-DEFS00003696

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 49 of 200 PageID #: 28693

C H A P T E R 1

Overview

This chapter describes the general architecture of the Newton system software,
which is divided into three levels, as shown in Figure 1-1 (page 1-2).

The lowest level includes the operating system and the low-level communications
system. These parts of the system interact directly with the hardware and perform
basic operations such as memory management, input and output, and task switching.
NewtonScript applications have no direct access to system services at this level.

The middle level consists of system services that NewtonScript applications can
directly access and interact with to accomplish tasks. The system provides
hundreds of routines that applications can use to take advantage of these services.

At the highest level are components that applications can use to construct their user
interfaces. These reusable components neatly package commonly needed user
interface objects such as buttons, lists, tables, input fields, and so on. These
components incorporate NewtonScript code that makes use of the system services
in the middle level, and that an application can override to customize an object.

Operating System

The Newton platform incorporates a sophisticated preemptive, multitasking
operating system. The operating system is a modular set of tasks performing
functions such as memory management, task management, scheduling, task to task
communications, input and output, power management, and other low-level
functions. The operating system manages and interacts directly with the hardware.

A significant part of the operating system is concerned with low-level communication
functions. The communication subsystem runs as a separate task. It manages the
hardware communication resources available in the system. These include serial,
fax modem, AppleTalk networking, and infrared. The communication architecture
is extensible, and new communication protocols can be installed and removed at
run time, to support additional services and external devices that may be added.

Operating System 1-1

ARENDI-DEFS00003697

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 50 of 200 PageID #: 28694

Operating
System

C HAPTER 1

Overview

Figure 1-1 System software overview

Application Components

NewtonScript Application Program

User Interface Components

System Services

Find

Filing

Sound

Book Reader

Routing and Transport

Endpoint Communications

Imaging and Printing

I ntelligent Assistant

Stationery

Text Input and Recognition

View System

Object Storage System

Operating System

Low-level
Communications

System
C>

Newton Hardware

 s

1-2 Operating System

ARENDI-DEFS00003698

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 51 of 200 PageID #: 28695

CHAPTER 1

Overview

Another operating system task of interest is the Inker. The Inker task is responsible
for gathering and displaying input from the electronic tablet overlaying the screen
when the user writes on the Newton. The Inker exists as a separate task so that the
Newton can gather input and display electronic ink at the same time as other
operations are occurring.

All Newton applications, including the recognition system, built-in applications,
and applications you develop, run in a single operating system task, called the
Application task.

NewtonScript applications have no direct access to the operating system level of
software. Access to certain low-level resources, such as communications, is
provided by higher-level interfaces.

Memory

It is helpful to understand the use of random access memory (RAM) in the system,
since this resource is shared by the operating system and all applications. Newton
RAM is divided into separate domains, or sections, that have controlled access.
Each domain has its own heap and stack. It is important to know about three of
these domains:

■ The operating system domain. This portion of memory is reserved for use by the
operating system. Only operating system tasks have access to this domain.

■ The storage domain. This portion of memory is reserved for permanent,
protected storage of user data. All soups, which store the data, reside here, as
well as any packages that have been downloaded into the Newton. To protect the
data in the storage domain from inadvertent damage, it can only be accessed
through the object storage system interface, described in Chapter 11, "Data
Storage and Retrieval." If the user adds a PCMCIA card containing RAM, Flash
RAM, or read-only memory (ROM) devices, the memory on the card is used to
extend the size of the storage domain.

The storage domain occupies special persistent memory; that is, this memory is
maintained even during a system reset. This protects user data, system software
updates, and downloaded packages from being lost during system resets. The
used and free space in the storage domain is reported to the user in the Memory
Info slip in the Extras Drawer.

■ The application domain. This portion of memory is used for dynamic memory
allocation by the handwriting recognizers and all Newton applications. A fixed
part of this domain is allocated to the NewtonScript heap. The NewtonScript
heap is important because most objects allocated as a result of your NewtonScript
application code are allocated from the NewtonScript heap. These are the only
memory objects to which you have direct access. The NewtonScript heap is
shared by all applications.

Operating System 1-3

ARENDI-DEFS00003699

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 52 of 200 PageID #: 28696

CHAPTER 1

Overview

The system performs automatic memory management of the NewtonScript heap.
You don't need to worry about memory allocation or disposal in an application.
The system automatically allocates memory when you create a new object in
NewtonScript. When references to an object no longer exist, it is freed during the
next garbage collection cycle. The system performs garbage collection
automatically when it needs additional memory.

The Newton operating system optimizes use of memory by using compression.
Various parts of memory are compressed and decompressed dynamically and
transparently, as needed. This occurs at a low level, and applications don't need to
be concerned with these operations.

Packages

A package is the unit in which software is installed on and removed from the
Newton. Packages can combine multiple pieces of software into a single unit. The
operating system manages packages, which can be installed from PCMCIA cards,
from a serial connection to a desktop computer, a network connection, or via
modem. When a package comes into the Newton system, the system automatically
opens it and dispatches its parts to appropriate handlers in the system.

A package consists of a header, which contains the package name and other
information, and one or more parts, which contain the software. Parts can include
applications, communication drivers, fonts, and system updates (system software
code loaded into RAM that overrides or extends the built-in ROM code). A
package can also export objects for use by other packages in the system, and can
import (use) objects that are exported by other packages.

Packages are optionally stored compressed on the Newton. Compressed packages
occupy much less space (roughly half of their uncompressed size), but applications
in compressed packages may execute somewhat slower and use slightly more
battery power, because of the extra work required to decompress them when they
are executed.

For more information about packages, refer to Chapter 11, "Data Storage and
Retrieval."

System Services

The Newton system software contains hundreds of routines organized into
functional groups of services. Your application can use these routines to accomplish
specific tasks such as opening and closing views, storing and retrieving data,
playing sounds, drawing shapes, and so on. This section includes brief descriptions
of the more important system services with which your application will need to
interact. Note that communications services are described in a separate section
following this one.

1-4 System Services

ARENDI-DEFS00003700

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 53 of 200 PageID #: 28697

CHAPTER 1

Overview

Object Storage System

This system is key to the Newton information architecture. The object storage
system provides persistent storage for data.

Newton uses a unified data model. This means that all data stored by all applications
uses a common format. Data can easily be shared among different applications,
with no translation necessary. This allows seamless integration of applications with
each other and with system services.

Data is stored using a database-like model. Objects are stored as frames, which are
like database records. A frame contains named slots, which hold individual pieces
of data, like database fields. For example, an address card in the Names application
is stored as a frame that contains a slot for each item on the card: name, address,
city, state, zip code, phone number, and so on.

Frames are flexible and can represent a wide variety of structures. Slots in a single
frame can contain any kind of NewtonScript object, including other frames, and
slots can be added or removed from frames dynamically. For a description of
NewtonScript objects, refer to The NewtonScript Programming Language.

Groups of related frames are stored in soups, which are like databases. For example,
all the address cards used by the Names application are stored in the Names soup,
and all the notes on the Notepad are stored in the Notes soup. All the frames stored
in a soup need not contain identical slots. For example, some frames representing
address cards may contain a phone number slot and others may not.

Soups are automatically indexed, and applications can create additional indexes on
slots that will be used as keys to find data items. You retrieve items from a soup by
performing a query on the soup. Queries can be based on an index value or can
search for a string, and can include additional constraints. A query results in a
cursor—an object representing a position in the set of soup entries that satisfy the
query. The cursor can be moved back and forth, and can return the current entry.

Soups are stored in physical repositories, called stores. Stores are akin to disk
volumes on personal computers. The Newton always has at least one store—the
internal store. Additional stores reside on PCMCIA cards.

The object storage system interface seamlessly merges soups that have the same
name on internal and external stores in a union soup. This is a virtual soup that
provides an interface similar to a real soup. For example, some of the address cards
on a Newton may be stored in the internal Names soup and some may be stored in
another Names soup on a PCMCIA card. When the card is installed, those names
in the card soup are automatically merged with the existing internal names so the
user, or an application, need not do any extra work to access those additional
names. When the card is removed, the names simply disappear from the card file
union soup.

System Services 1-5

ARENDI-DEFS00003701

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 54 of 200 PageID #: 28698

CHAPTER 1

Overview

The object storage system is optimized for small chunks of data and is designed to
operate in tight memory constraints. Soups are compressed, and retrieved entries
are not allocated on the NewtonScript heap until a slot in the entry is accessed.

You can find information about the object storage system interface in Chapter 11,
"Data Storage and Retrieval."

View System

Vicws are the basic building blocks of most applications. A view is simply a
rectangular area mapped onto the screen. Nearly every individual visual item you
see on the screen is a view. Views display information to the user in the form of
text and graphics, and the user interacts with views by tapping them, writing in
them, dragging them, and so on. A view is defined by a frame that contains slots
specifying view attributes such as its bounds, fill color, alignment relative to other
views, and so on.

The view system is what you work with to manipulate views. There are routines to
open, close, animate, scroll, highlight, and lay out views, to name just a few
operations you can do. For basic information about views and descriptions of all
the routines you can use to interact with the view system, refer to Chapter 3, "Views."

An application consists of a collection of views all working together. Each application
has an application base view from which all other views in the application
typically descend hierarchically. In turn, the base view of each application installed
in the Newton descends from the system root view. (Think of the hierarchy as a
tree structure turned upside down, with the root at the top.) Thus, each application
base view is a child of the root view. We call a view in which child views exist the
parent view of those child views. Note that occasionally, an application may also
include views that don't descend from the base view but are themselves children of
the root view.

The system includes several different primitive view classes from which all views
are ultimately constructed. Each of these view classes has inherently different
behavior and attributes. For example, there are view classes for views that contain
text, shapes, pictures, keyboards, analog gauges, and so on.

As an application executes, its view frames receive messages from the system and
exchange messages with each other. System messages provide an opportunity for a
view to respond appropriately to particular events that are occurring. For example,
the view system performs default initialization operations when a view is opened.
It also sends the view a viewsetupFormscript message. If the view includes a
method to handle this message, it can perform its own initialization operations in
that method Handling system messages in your application is optional since the
system performs default behaviors for most events.

1-6 System Services

ARENDI-DEFS00003702

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 55 of 200 PageID #: 28699

CHAPTER 1

Overview

Text Input and Recognition

The Newton recognition system uses a sophisticated multiple-recognizer
architecture. There are recognizers for text, shapes, and gestures, which can be
simultaneously active (this is application-dependent). An arbitrator examines the
results from simultaneously active recognizers and returns the recognition match
that has the highest confidence.

Recognition is modeless. That is, the user does not need to put the system in a
special mode or use a special dialog box in order to write, but can write in any
input field at any time.

The text recognizers can handle printed, cursive, or mixed handwriting. They can
work together with built-in dictionaries to choose words that accurately match what
the user has written. The user can also add new words to a personal dictionary.

Depending on whether or not a text handwriting recognizer is enabled, users can
enter handwritten text that is recognized or not. Unrecognized text is known as ink
text. Ink text can still be manipulated like recognized text—words can be inserted,
deleted, moved around, and reformatted—and ink words can be intermixed with
recognized words in a single paragraph. Ink words can be recognized later using
the deferred recognition capability of the system.

The shape recognizer recognizes both simple and complex geometric objects,
cleaning up rough drawings into shapes with straight lines and smooth curves. The
shape recognizer also recognizes symmetry, using that property, if present, to help
it recognize and display objects.

For each view in an application, you can specify which recognizers are enabled and
how they are configured. For example, the text recognizer can be set to recognize
only names, or names and phone numbers, or only words in a custom dictionary
that you supply, among other choices.

Most recognition events are handled automatically by the system view classes, so
you don't need to do anything in your application to handle recognition events,
unless you want to do something special. For example, when a user writes a word
in a text view, that view automatically passes the strokes to the recognizer, accepts
the recognized word back, and displays the word. In addition, the view automatically
handles corrections for you. The user can double-tap a word to pop up a list of
other possible matches for it, or to use the keyboard to correct it.

For information on methods for accepting and working with text input, refer to
Chapter 8, "Text and Ink Input and Display." For information on controlling
recognition in views and working with dictionaries, refer to Chapter 9, "Recognition."

System Services 1-7

ARENDI-DEFS00003703

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 56 of 200 PageID #: 28700

CHAPTER 1

Overview

Stationery

Stationery is a capability of the system that allows applications to be extended by
other developers. The word "stationery" refers to the capability of having different
kinds of data within a single application (such as plain notes and outlines in the
Notepad) and/or to the capability of having different ways of viewing the same data
(such as the Card and All Info views in the Names file). An application that supports
stationery can be extended either by adding a new type of data to it (for example,
adding recipe cards to the Notepad), or by adding a new type of viewer for existing
data (a new way of viewing Names file entries or a new print format, for example).

To support stationery, an application must register with the system a frame, called a
data definition, that describes the data with which it works. The different data
definitions available to an application are listed on the pop-up menu attached to the
New button. In addition, an application must register one or more view definitions,
which describe how the data is to be viewed or printed. View definitions can
include simple read-only views, editor-type views, or print formats. The different
view definitions available in an application (not including print formats) are listed
on the pop-up menu attached to the Show button.

Stationery is well integrated into the NewtApp framework, so if you use that frame-
work for your application, using stationery is easy. The printing architecture also
uses stationery, so all application print formats are registered as a kind of stationery.

For more information about using stationery, see Chapter 5, "Stationery."

I ntelligent Assistant

A key part of the Newton information architecture is the Intelligent Assistant. The
Intelligent Assistant is a system service that attempts to complete actions for the
user according to deductions it makes about the task that the user is currently
performing. The Assistant is always instantly available to the user through the
Assist button, yet remains nonintrusive.

The Assistant knows how to complete several built-in tasks; they are Scheduling
(adding meetings), Finding, Reminding (adding To Do items), Mailing, Faxing,
Printing, Calling, and getting time information from the Time Zones map. Each of
these tasks has several synonyms; for example, the user can write "call," "phone,"
"ring," or "dial' to make a phone call.

Applications can add new tasks so that the Assistant supports their special capabilities
and services. The Newton unified data model makes it possible for the Assistant to
access data stored by any application, thus allowing the Assistant to be well integrated
in the system.

For details on using the Intelligent Assistant and integrating support for it into your
application, see Chapter 18, "Intelligent Assistant"

1-8 System Services

ARENDI-DEFS00003704

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 57 of 200 PageID #: 28701

CHAPTER 1

Overview

I maging and Printing

At the operating system level, the Newton imaging and printing software is based
on an object-oriented, device-independent imaging model. The imaging model is
monochrome since the current Newton screen is a black-and-white screen.

NewtonScript application programs don't call low-level imaging routines directly
to do drawing or image manipulation. In fact, most drawing is handled for
applications by the user interface components they incorporate, or when they call
other routines that display information. However, there is a versatile set of
high-level drawing routines that you can call directly to create and draw shapes,
pictures, bitmaps, and text. When drawing, you can vary the pen thickness, pen
pattern, fill pattern, and other attributes. For details on drawing, refer to Chapter 13,
"Drawing and Graphics."

The Newton text imaging facility supports Unicode directly, so the system can be
easily localized to display languages using different script systems. The system is
extensible, so it's possible to add additional fonts, font engines, and printer drivers.

The high-level interface to printing on the Newton uses a model identical to that
used for views. Essentially, you design a special kind of view called a print format
to specify how printed information is to be laid out on the page. Print formats use a
unique view template that automatically adjusts its size to the page size of the
printer chosen by the user. When the user prints, the system handles all the details
of rendering the views on the printer according to the layout you specified.

The Newton offers the feature of deferred printing. The user can print even though
he or she is not connected to a printer at the moment. An object describing the print
job is stored in the Newton Out Box application, and when a printer is connected
later, the user can then select that print job for printing. Again, this feature is
handled automatically by the system and requires no additional application
programming work.

For information on how to add printing capabilities to an application, refer to
Chapter 21, "Routing Interface."

Sound

The Newton includes a monophonic speaker and can play sounds sampled at rates
up to 22 kHz. You can attach sounds to particular events associated with a view,
such as showing it, hiding it, and scrolling it. You can also use sound routines to
play sounds synchronously or asynchronously at any other time.

Newton can serve as a phone dialer by dialing phone numbers through the speaker.
The dialing tones are built into the system ROM, along with several other sounds
that can be used in applications.

System Services 1-9

ARENDI-DEFS00003705

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 58 of 200 PageID #: 28702

CHAPTER 1

Overview

Besides the sounds that are built into the system ROM, you can import external
sound resources into an application through the Newton Toolkit development
environment.

For information about using sound in an application, see Chapter 14, "Sound."

Book Reader

Book Reader is a system service that displays interactive digital books on the
Newton screen. Digital books can include multiple-font text, bitmap and vector
graphics, and on-screen controls for content navigation. Newton digital books
allow the user to scroll pages, mark pages with bookmarks, access data directly by
page number or subject, mark up pages using digital ink, and perform text searches.
Of course, the user can copy and paste text from digital books, as well as print text
and graphics from them.

Newton Press and Newton Book Maker are two different development tools that
you use to create digital books for the Newton. Nonprogrammers can easily create
books using Newton Press. Newton Book Maker is a more sophisticated tool that
uses a text-based command language allowing you to provide additional services to
the user or exercise greater control over page layout. Also, using Book Maker, you
can attach data, methods, and view templates to book content to provide customized
behavior or work with the Intelligent Assistant.

The Book Maker application can also be used to create on-line help for an
application. The installation of on-line help in an application package requires
some rudimentary NewtonScript programming ability; however, nonprogrammers
can create on-line help content, again using only a word processor and some basic
Book Maker commands.

Refer to the book Newton Book Maker User's Guide for information on Book
Reader, the Book Maker command language, and the use of Newton Toolkit to
create digital book packages and on-line help. Refer to the Newton Press User's
Guide for information on using Newton Press.

Find

Find is a system service that allows users to search one or all applications in the
system for occurrences of a particular string. Alternatively, the user can search for
data time-stamped before or after a specified date. When the search is completed,
the Find service displays an overview list of items found that match the search
criteria. The user can tap an item in the list and the system opens the corresponding
application and displays the data containing the selected string. Users access the
Find service by tapping the Find button.

1-10 System Services

ARENDI-DEFS00003706

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 59 of 200 PageID #: 28703

CHAPTER 1

Overview

If you want to allow the user to search for data stored by your application, you
need to implement certain methods that respond to find messages sent by the
system. You'll need to supply one method that searches your application's soup(s)
for data and returns the results in a particular format, and another method that
locates and displays the found data in your application if the user taps on it in the
find overview. The system software includes routines and templates that help you
support find in your application. For details on supporting the Find service, refer to
Chapter 16, "Find."

Filing

The Filing service allows users to tag soup-based data in your application with
labels used to store, retrieve, and display the data by category. The labels used to
tag entries are represented as folders in the user interface; however, no true
hierarchical filing exists—the tagged entries still reside in the soup. Users access
the filing service through a standard user interface element called the file folder
button, which looks like a small file folder.

When the user chooses a category for an item, the system notifies your application
that filing has changed. Your application must perform the appropriate application-
specific tasks and redraw the current view, providing to the user the illusion that the
item has been placed in a folder. When the user chooses to display data from a
category other than the currently displayed one, the system also notifies your
application, which must retrieve and display data in the selected category.

The system software includes templates that help your application implement the
filing button and the selector that allows the user to choose which category of data
to display. Your application must provide methods that respond to filing messages
sent by the system in response to user actions such as filing an item, changing the
category of items to display, and changing the list of filing categories. For details
on supporting the Filing service, refer to Chapter 15, "Filing."

Communications Services

This section provides an overview of the communications services in Newton
system software 2.0.

The Newton communications architecture is application-oriented, rather than
protocol-oriented. This means that you can focus your programming efforts on
what your application needs to do, rather than on communication protocol details.
A simple high-level NewtonScript interface encapsulates all protocol details, which
are handled in the same way regardless of which communication transport tool you
are using.

Communications Services 1-11

ARENDI-DEFS00003707

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 60 of 200 PageID #: 28704

CHAPTER 1

Overview

The communication architecture is flexible, supporting complex communication
needs. The architecture is also extensible, allowing new communication transport
tools to be added dynamically and accessed through the same interface as existing
transports. In this way, new communication hardware devices can be supported.

The Newton communications architecture is illustrated in Figure 1-2.

Figure 1-2 Communications architecture

Application

NewtonScript

Routing interface

In/out box

Transport interface

Transport Endpoint interface

Endpoint object

Z'-.,

Low-level communications system

Communication tools

Serial Modem MNP IR FAX ATalk ...

Hardware devices

Modem Radio Keybd GSM CDPD

Figure 1-2 shows four unique communications interfaces available for you to use:

■ routing interface

■ endpoint interface

1-12 Communications Services

ARENDI-DEFS00003708

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 61 of 200 PageID #: 28705

CHAPTER 1

Overview

■ transport interface

■ communication tool interface

The first two, routing and endpoint interfaces, are available for NewtonScript
applications to use directly.

The transport interface is a NewtonScript interface, but it isn't used directly by appli-
cations. A transport consists of a special kind of application of its own that is installed
on a Newton device and that provides new communication services to the system.

The communication tool interface is a low-level C++ interface.

These interfaces are described in more detail in the following sections.

NewtonScript Application Communications

There are two basic types of NewtonScript communications an application can do.
The most common type of communication that most applications do is routing
through the In/Out Box. As an alternative, applications can use the endpoint interface
to control endpoint objects.

Typically, an application uses only one of these types of communication, but
sometimes both are needed. These two types of communication are described in
the following sections.

Routing Through the In/Out Box

The routing interface is the highest-level NewtonScript communication interface.
The routing interface allows an application to communicate with the In/Out Box
and lets users send data and receive data from outside the system. In applications,
users access routing services through a standard user interface element called the
Action button, which looks like a small envelope. Users access the In/Out Box
application through icons in the Newton Extras Drawer. The In/Out Box provides a
common user interface for all incoming and outgoing data in the system.

The routing interface is best suited for user-controlled messaging and transaction-
based communications. For example, the Newton built-in applications use this
interface for e-mail, beaming, printing, and faxing. Outgoing items can be stored in
the Out Box until a physical connection is available, when the user can choose to
transmit the items, or they can be sent immediately. Incoming items are received in
the In Box, where the user can get new mail and beamed items, for example.

For information on the routing interface, refer to Chapter 21, "Routing Interface."

The In/Out Box makes use of the transport and endpoint interfaces internally to
perform its operations.

If you are writing an application that takes advantage of only the transports
currently installed in the Newton system, you need to use only the routing

Communications Services 1-13

ARENDI-DEFS00003709

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 62 of 200 PageID #: 28706

CHAPTER 1

Overview

interface. You need to use the transport or endpoint interfaces only when writing
custom communication tools.

Endpoint Interface

The endpoint interface is a somewhat lower-level NewtonScript interface; it has no
visible representation to the Newton user. The endpoint interface is suited for
real-time communication needs such as database access and terminal emulation. It
uses an asynchronous, state-driven communications model.

The endpoint interface is based on a single proto—protoBasicEndpoint—that
provides a standard interface to all communication tools (serial, fax modem,
infrared, AppleTalk, and so on). The endpoint object created from this proto
encapsulates and maintains the details of the specific connection. This proto
provides methods for

■ interacting with the underlying communication tool

■ setting communication tool options

■ opening and closing connections

■ sending and receiving data

The basic endpoint interface is described in Chapter 23, "Endpoint Interface."

Low-Level Communications

There are two lower-level communication interfaces that are not used directly by
applications. The transport and communication tool interfaces are typically used
together (along with the endpoint interface) to provide a new communication
service to the system.

These two interfaces are described in the following sections.

Transport Interface

If you are providing a new communication service through the use of endpoints
and lower-level communication tools, you may need to use the transport interface.
The transport interface allows your communication service to talk to the In/Out
Box and to make itself available to users through the Action button (envelope icon)
in most applications.

When the user taps the Action button in an application, the Action picker appears.
Built-in transports available on the Action picker include printing, faxing, and
beaming. Any new transports that you provide are added to this list.

For more information, refer to Chapter 22, "Transport Interface."

1-14 Communications Services

ARENDI-DEFS00003710

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 63 of 200 PageID #: 28707

CHAPTER 1

Overview

Communication Tool Interface

Underlying the NewtonScript interface is the low-level communications system.
This system consists of a communications manager module and several code
components known as communication tools. These communication tools interact
directly with the communication hardware devices installed in the system. The
communication tools are written in C++ and are not directly accessible from
NewtonScript—they are accessed indirectly through an endpoint object.

The built-in communication tools include:

■ Synchronous and asynchronous serial

■ Fax/data modem (data is V34 with MNPN..42 and fax is V.17 with Class 1, 2,
and 2.0 support)

■ Point-to-point infrared—called beaming (Sharp 9600 and Apple IR-enhanced
protocols)

■ AppleTalk ADSP protocol

For information about configuring the built-in communication tools through the
endpoint interface, refer to Chapter 24, ̀Built-in Communications Tools."

Note that the communications manager module, and each of the individual
communication tools, runs as a separate operating system task. All NewtonScript
code is in a different task, called the Application task.

The system is extensible—additional communication tools can be installed at run
time. Installed tools are made available to NewtonScript client applications through
the same endpoint interface as the built-in tools.

At some point, Apple Computer, Inc. may release the tools and interfaces that
allow C++ communication tool development.

Application Components

At the highest level of system software are dozens of components that applications
can use to construct their user interfaces and other nonvisible objects. These
reusable components neatly package commonly needed user interface objects such
as buttons, lists, tables, input fields, and so on. These components incorporate
NewtonScript code that makes use of other system services, and which an
application can override to customize an object.

These components are built into the Newton ROM. When you reference one of
these components in your application, the code isn't copied into your application—
your application simply makes a reference to the component in the ROM. This
conserves memory at run time and still allows your application to easily override
any attributes of the built-in component. Because you can build much of your

Application Components 1-15

ARENDI-DEFS00003711

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 64 of 200 PageID #: 28708

CHAPTER 1

Overview

application using these components, Newton applications tend to be much smaller
in size than similar applications on desktop computers.

A simple example of how you can construct much of an application using
components is illustrated in Figure 1-3. This simple application accepts names and
phone numbers and saves them into a soup. It was constructed in just a few minutes
using three different components.

The application base view is implemented by a single component that includes the
title bar at the top, the status bar at the bottom, the clock and the close box, and the
outer frame of the application. The Name and Phone input lines are each created
from the same component that implements a simple text input line; the two buttons
are created from the same button component. The only code you must write to
make this application fully functional is to make the buttons perform their actions.
That is, make the Clear button clear the input lines and make the Save button get
the text from the input lines and save it to a soup.

Figure 1-3 Using components

The components available for use by applications are shown on the layout palette
in Newton Toolkit. These components are known as protos, which is short for
"prototypes." In addition to the built-in components, Newton Toolkit lets you create
your own reusable components, called user protos. The various built-in components
are documented throughout the book in the chapter containing information related
to each proto. For example, text input protos are described in Chapter 8, "Text and
Ink Input and Display;" protos that implement pickers and lists are described in
Chapter 6, "Pickers, Pop-up Views, and Overviews;" and protos that implement
controls and other miscellaneous protos are described in Chapter 7, "Controls and
Other Protos."

1-16 Application Components

ARENDI-DEFS00003712

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 65 of 200 PageID #: 28709

CHAPTER 1

Overview

The NewtApp framework consists of a special collection of protos that are designed
to be used together in a layered hierarchy to build a complete application. For more
information about the NewtApp protos, refer to Chapter 4, "NewtApp Applications."

Using System Software

Most of the routines and application components that comprise the Newton system
software reside in ROM, provided in special chips contained in every Newton
device. When your application calls a system routine, the operating system executes
the appropriate code contained in ROM.

This is different from traditional programming environments where system
software routines are accessed by linking a subroutine library with the application
code. That approach results in much larger applications and makes it harder to
provide new features and fix bugs in the system software.

The ROM-based model used in the Newton provides a simple way for the
operating system to substitute the code that is executed in response to a particular
system software routine, or to substitute an application component. Instead of
executing the ROM-based code for some routine, the operating system might
choose to load some substitute code into RAM; when your application calls the
routine, the operating system intercepts the call and executes the RAM-based code.

RAM-based code that substitutes for ROM-based code is called a system update.
Newton system updates are stored in the storage memory domain, which is
persistent storage.

Besides application components, the Newton ROM contains many other objects
such as fonts, sounds, pictures, and strings that might be useful to applications.
Applications can access these objects by using special references called magic
pointers. Magic pointers provide a mechanism for code written in a development
system separate from the Newton to reference objects in the Newton ROM or in
other packages. Magic pointer references are resolved at run time by the operating
system, which substitutes the actual address of the ROM or package object for the
magic pointer reference.

Magic pointers are constants defined in Newton Toolkit. For example, the names of
all the application components, or protos, are actually magic pointer constants. You
can find a list of all the ROM magic pointer constants in the Newton 2.0 Defs file,
included with Newton Toolkit.

Using System Software 1-17

ARENDI-DEFS00003713

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 66 of 200 PageID #: 28710

CHAPTER 1

Overview

The NewtonScript Language

You write Newton applications in NewtonScript, a dynamic object-oriented
language developed especially for the Newton platform, though the language is
highly portable. NewtonScript is designed to operate within tight memory
constraints, so is well suited to small hand-held devices like Newton.

NewtonScript is used to define, access, and manipulate objects in the Newton
system. NewtonScript frame objects provide the basis for object-oriented features
such as inheritance and message sending.

Newton Toolkit normally compiles NewtonScript into byte codes. The Newton
system software contains a byte code interpreter that interprets the byte codes at
run time. This has two advantages: byte codes are much smaller than native code,
and Newton applications are easily portable to other processors, since the
interpreter is portable. Newton Toolkit can also compile NewtonScript into native
code. Native code occupies much more space than interpreted code, but in certain
circumstances it can execute much faster.

For a complete reference to NewtonScript, refer to The NewtonScript Programming
Language.

What's New in Newton 2.0

Version 2.0 of the Newton System Software brings many changes to all areas.
Some programming interfaces have been extended; others have been completely
replaced with new interfaces; and still other interfaces are brand new. For those
readers familiar with previous versions of system software, this section gives a
brief overview of what is new and what has changed in Newton 2.0, focusing on
those programming interfaces that you will be most interested in as a developer.

NewtApp

NewtApp is a new application framework designed to help you build a complete,
full-featured Newton application more quickly. The NewtApp framework consists
of a collection of protos that are designed to be used together in a layered hierarchy.
The NewtApp framework links together soup-based data with the display and
editing of that data in an application. For many types of applications, using the
NewtApp framework can significantly reduce development time because the protos
automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

1-18 The NewtonScript Language

ARENDI-DEFS00003714

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 67 of 200 PageID #: 28711

CHAPTER 1

Overview

The NewtApp framework is not suited for all Newton applications. If your
application stores data as individual entries in a soup, displays that data to the user
in views, and allows the user to edit some or all of the data, then it is a potential
candidate for using the NewtApp framework. NewtApp is well suited to "classic"
form-based applications. Some of the built-in applications constructed using the
NewtApp framework include the Notepad and the Names file.

Stationery

Stationery is anew capability of Newton 2.0 that allows applications to be extended
by other developers. If your application supports stationery, then it can be extended by
others. Similarly, you can extend another developer's application that supports
stationery. You should also note that the printing architecture now uses stationery,
so all application print formats are registered as a kind of stationery.

Stationery is a powerful capability that makes applications much more extensible
than in the past. Stationery is also well integrated into the NewtApp framework, so
if you use that framework for your application, using stationery is easy. For more
information about stationery, see the section "Stationery" (page 1-8).

Views

New features for the view system include a drag-and-drop interface that allows you
to provide users with a drag-and-drop capability between views. There are hooks to
provide for custom feedback to the user during the drag process and to handle
copying or moving the item.

The system now includes the capability for the user to view the display in portrait
or landscape orientation, so the screen orientation can be changed (rotated) at any
time. Applications can support this new capability by supporting the new
ReorientToscreen message, which the system uses to alert all applications to
re-layout their views.

Several new view methods provide features such as bringing a view to the front or
sending it to the back, automatically sizing buttons, finding the view bounds
including the view frame, and displaying modal dialogs to the user.

There is a new message, viewPostQuitscript, that is sent to a view (only on
request) when it is closing, after all of the view's child views have been destroyed.
This allows you to do additional clean-up, if necessary. And, you'll be pleased to
know that the order in which child views receive the viewQuitscript message
is now well defined: it is top-down.

Additionally, there are some new viewiustify constants that allow you to
specify that a view is sized proportionally to its sibling or parent view, horizontally
and/or vertically.

What's New in Newton 2.0 1-19

ARENDI-DEFS00003715

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 68 of 200 PageID #: 28712

CHAPTER 1

Overview

Protos

There are many new protos supplied in the new system ROM. There are new
pop-up button pickers, map-type pickers, and several new time, date, and duration
pickers. There are new protos that support the display of overviews and lists based
on soup entries. There are new protos that support the input of rich strings (strings
that contain either recognized characters or ink text). There are a variety of new
scroller protos. There is an integrated set of protos designed to make it easy for you
to display status messages to the user during lengthy or complex operations.

Generic list pickers, available in system 1.0, have been extended to support bitmap
items that can be hit-tested as two-dimensional grids. For example, a phone keypad
can be included as a single item in a picker. Additionally, list pickers can now
scroll if all the items can't fit on the screen.

Data Storage

There are many enhancements to the data storage system for system software 2.0.
General soup performance is significantly improved. A tagging mechanism for
soup entries makes changing folders much faster for the user. You can use the
tagging mechanism to greatly speed access to subsets of entries in a soup. Queries
support more features, including the use of multiple slot indexes, and the query
interface is cleaner. Entry aliases make it easy to save unique references to soup
entries for fast access later without holding onto the actual entry.

A new construct, the virtual binary object, supports the creation and manipulation
of very large objects that could not be accommodated in the NewtonScript heap.
There is a new, improved soup change-notification mechanism that gives applications
more control over notification and how they respond to soup changes. More precise
information about exactly what changed is communicated to applications. Soup
data can now be built directly into packages in the form of a store part. Additionally,
packages can contain protos and other objects that can be exported through magic
pointer references, and applications can import such objects from available packages.

Text Input

The main change to text input involves the use of ink text. The user can choose to
leave written text unrecognized and still manipulate the text by inserting, deleting,
reformatting, and moving the words around, just as with recognized text. Ink words
and recognized words can be intermixed within a single paragraph. A new string
format, called a rich string, handles both ink and recognized text in the same string.

There are new protos, protoRichlnputLine and
protoRichLabel InputLine, that you can use in your application to allow
users to enter ink text in fields. In addition, the view classes c1Editview and

1-20 What's New in Newton 2.0

ARENDI-DEFS00003716

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 69 of 200 PageID #: 28713

CHAPTER 1

Overview

clParagraphview now support ink text. There are several new functions that
allow you to manipulate and convert between regular strings and rich strings. Other
functions provide access to ink and stroke data, allow conversion between strokes,
points, and ink, and allow certain kinds of ink and stroke manipulations.

There are several new functions that allow you to access and manipulate the
attributes of font specifications, making changing the font attributes of text much
easier. A new font called the handwriting font is built in. This font looks similar to
handwritten characters and is used throughout the system for all entered text. You
should use it for displaying all text the user enters.

The use of on-screen keyboards for text input is also improved. There are new
proto buttons that your application can use to give users access to the available
keyboards. It's easier to include custom keyboards for your application. Several
new methods allow you to track and manage the insertion caret, which the system
displays when a keyboard is open. Note also that a real hardware keyboard is
available for the Newton system, and users may use it anywhere to enter text. The
system automatically supports its use in all text fields.

Graphics and Drawing

Style frames for drawing shapes can now include a custom clipping region other
than the whole destination view, and can specify a scaling or offset transformation
to apply to the shape being drawn.

Several new functions allow you to create, flip, rotate, and draw into bitmap
shapes. Also, you can capture all or part of a view into a bitmap. There are new
protos that support the display, manipulation, and annotation of large bitmaps such
as received faxes. A new function, InvertRect, inverts a rectangle in a view.

Views of the class c1Pictureview can now contain graphic shapes in addition to
bitmap or picture objects.

System Services

System-supplied Filing services have been extended; applications can now filter the
display of items according to the store on which they reside, route items directly to
a specified store from the filing slip, and provide their own unique folders. In
addition, registration for notification of changes to folder names has been simplified.

Two new global functions can be used to register or unregister an application with
the Find service. In addition, Find now maintains its state between uses, performs
"date equal" finds, and returns to the user more quickly.

Applications can now register callback functions to be executed when the Newton
powers on or off. Applications can register a view to be added to the user preferences
roll. Similarly, applications can register a view to be added to the formulas roll.

What's New in Newton 2.0 1-21

ARENDI-DEFS00003717

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 70 of 200 PageID #: 28714

CHAPTER 1

Overview

The implementation of undo has changed to an undo/redo model instead of two
levels of undo, so applications must support this new model.

Recognition

Recognition enhancements include the addition of an alternate high-quality
recognizer for printed text and significant improvements in the cursive recognizer.
While this doesn't directly affect applications, it does significantly improve
recognition performance in the system, leading to a better user experience. Other
enhancements that make the recognition system much easier to use include a new
correction picker, a new punctuation picker, and the caret insertion writing mode
(new writing anywhere is inserted at the caret position).

Specific enhancements of interest to developers include the addition of a
recConf ig frame, which allows more flexible and precise control over
recognition in individual input views. A new proto, protoCharEdit, provides a
comb-style entry view in which you can precisely control recognition and restrict
entries to match a predefined character template.

Additionally, there are new functions that allow you to pass ink text, strokes, and
shapes to the recognizer to implement your own deferred recognition. Detailed
recognition corrector information (alternate words and scores) is now available
to applications.

Sound

The interface for playing sounds is enhanced in Newton 2.0. In addition to the
existing sound functions, there is a new function to play a sound at a particular
volume and there is a new protosoundChannel object. The
protosoundChannel object encapsulates sounds and methods that operate on
them. Using a sound channel object, sound playback is much more flexible—the
interface supports starting, stopping, pausing, and playing sounds simultaneously
through multiple sound channels.

Built-in Applications

Unlike in previous versions, the built-in applications are all more extensible in
version 2.0. The Notepad supports stationery, so you can easily extend it by adding
new "paper" types to the New pop-up menu. The Names file also supports stationery,
so it's easy to add new card types, new card layout styles, and new data items to
existing cards by registering new data definitions and view definitions for the
Names application. There's also a method that adds a new card to the Names soup.

1-22 What's New in Newton 2.0

ARENDI-DEFS00003718

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 71 of 200 PageID #: 28715

CHAPTER 1

Overview

The Dates application includes a comprehensive interface that gives you the ability
to add, find, move, and delete meetings and events. You can get and set various
kinds of information related to meetings, and you can create new meeting types for
the Dates application. You can programmatically control what day is displayed as
the first day of the week, and you can control the display of a week number in the
Calendar view.

The To Do List application also includes a new interface that supports creating new
to do items, retrieving items for a particular date or range, removing old items, and
other operations.

Routing and Transports

The Routing interface is significantly changed in Newton 2.0. The system builds
the list of routing actions dynamically, when the user taps the Action button. This
allows all applications to take advantage of new transports that are added to the
system at any time. Many hooks are provided for your application to perform
custom operations at every point during the routing operation. You register routing
formats with the system as view definitions. A new function allows you to send
items programmatically.

Your application has much more flexibility with incoming items. You can choose to
automatically put away items and to receive foreign data (items from different
applications or from a non-Newton source).

The Transport interface is entirely new. This interface provides several new protos
and functions that allow you to build a custom communication service and make it
available to all applications through the Action button and the In/Out Box. Features
include a logging capability, a system for displaying progress and status information
to the user, support for custom routing slips, and support for transport preferences.

Endpoint Communication

The Endpoint communication interface is new but very similar to the 1.0 interface.
There is a new proto, protoBasicEndpoint, that encapsulates the connection
and provides methods to manage the connection and send and receive data.
Additionally, a derivative endpoint, protoStreamingEndpoint, provides the
capability to send and receive very large frame objects.

Specific enhancements introduced by the new endpoint protos include the ability to
handle and identify many more types of data by tagging the data using data forms
specified in the form slot of an endpoint option. Most endpoint methods can now
be called asynchronously, and asynchronous operation is the recommended way to
do endpoint-based communication. Support is also included for time-outs and
multiple termination sequences. Error handling is improved.

What's New in Newton 2.0 1-23

ARENDI-DEFS00003719

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 72 of 200 PageID #: 28716

CHAPTER 1

Overview

There have been significant changes in the handling of binary (raw) data. For input,
you can now target a direct data input object, resulting in significantly faster
performance. For output, you can specify offsets and lengths, allowing you to send
the data in chunks.

Additionally, there is now support for multiple simultaneous communication
sessions.

Utilities

Many new utility functions are available in Newton 2.0. There are several new
deferred, delayed, and conditional message-sending functions. New array functions
provide ways to insert elements, search for elements, and sort arrays. Additionally,
there's a new set of functions that operate on sorted arrays using binary search
algorithms. New and enhanced string functions support rich strings, perform
conditional substring substitution, tokenize strings, and perform case-sensitive
string compares. A new group of functions gets, sets, and checks for the existence
of global variables and functions.

Books

New Book Reader features include better browser behavior (configurable
auto-closing), expanded off-line bookkeeping abilities, persistent bookmarks, the
ability to remove bookmarks, and more efficient use of memory.

New interfaces provide additional ways to navigate in books, customize Find
behavior, customize bookmarks, and add help books. Book Reader also supports
interaction with new system messages related to scrolling, turning pages, installing
books, and removing books. Additional interfaces are provided for adding items to
the status bar and the Action menu.

1-24 What's New in Newton 2.0

ARENDI-DEFS00003720

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 73 of 200 PageID #: 28717

C H A P T E R 2

Getting Started

This chapter describes where to begin when you're thinking about developing a
Newton application. It describes the different kinds of software you can develop
and install on the Newton and the advantages and disadvantages of using different
application structures.

Additionally, this chapter describes how to create and register your developer
signature.

Before you read this chapter, you should be familiar with the information described
in Chapter 1, "Overview."

Choosing an Application Structure

When you create an application program for the Newton platform, you can use one
of the following basic types of application structures:

■ minimal predefined structure, by basing the application on a view class of
clView or the protoApp proto

■ highly structured, by basing the application on the NewtApp framework of protos

■ highly structured and specialized for text, by building a digital book

Alternatively, you might want to develop software that is not accessed through an
icon in the Extras Drawer. For example, you might want to install stationery, a
transport, or some other kind of specialized software that does something like
creating a soup and then removing itself.

These various approaches to software development are discussed in the following
sections.

Minimal Structure

The minimalist approach for designing a Newton application starts with an empty
or nearly empty container that provides little or no built-in functionality—thus the
"minimalist" name. This approach is best suited for specialized applications that

Choosing an Application Structure 2-1

ARENDI-DEFS00003721

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 74 of 200 PageID #: 28718

CHAP T ER 2

Getting Started

don't follow the "classic" form-based model. For example, some types of
applications that might use this approach include games, utilities, calculators, and
graphics applications.

The advantage of using the minimalist approach is that it's simple and small.
Usually you'd choose this approach because you don't need or want a lot of
built-in support from a comprehensive application framework, along with the extra
size and overhead that such support brings.

The disadvantage of the minimalist approach is that it doesn't provide any support
from built-in features, like the NewtApp framework does. You get just a simple
container in which to construct your application.

To construct an application using the minimalist approach, you can use the view
class clView or the proto protoApp as your application base view. The view
class clView is the bare minimum you can start with. This is the most basic of the
primitive view classes. It provides nothing except an empty container. The
protoApp provides a little bit more, it includes a framed border, a title at the top,
and a close box so the user can close it. For details on these objects, see clView
(page 1-1) and protoApp (page 1-2) in Newton Programmer's Reference.

Neither of these basic containers provide much built-in functionality. You must add
functionality yourself by adding other application components to your application.
There are dozens of built-in protos that you can use, or you can create your own
protos using NTK. Most of the built-in protos are documented in these two chapters:
Chapter 6, "Pickers, Pop-up Views, and Overviews,"and Chapter 7, "Controls and
Other Protos." Note also that certain protos in the NewtApp framework can be
used outside of a NewtApp application. For information on NewtApp protos, see
Chapter 4, "NewtApp Applications."

NewtApp Framework

NewtApp is an application framework that is well suited to "classic" form-based
applications. Such applications typically gather and store data in soups, display
individual soup entries to users in views, and allow the user to edit some or all of
the data. For example, some types of applications that might use NewtApp include
surveys and other data gathering applications, personal information managers, and
record-keeping applications. Some of the built-in applications constructed using
NewtApp include the Notepad, Names file, In/Out Box, Calls, and Time Zones.

The advantage of NewtApp is that it provides a framework of protos designed to
help you build a complete, full-featured Newton application more quickly than if
you started from scratch. The NewtApp protos are designed to be used together in a
layered hierarchy that links together soup-based data with the display and editing
of that data in an application. For many types of applications, using the NewtApp
framework can significantly reduce development time because the protos

2-2 Choosing an Application Structure

ARENDI-DEFS00003722

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 75 of 200 PageID #: 28719

CHAP T ER 2

Getting Started

automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The disadvantage of NewtApp is that it is structured to support a particular kind of
application—one that allows the creation, editing, and display of soup data. And
particularly, it supports applications structured so that there is one data element
(card, note, and so on) per soup entry. If your application doesn't lend itself to that
structure or doesn't need much of the support that NewtApp provides, then it
would be better to use a different approach to application design.

For details on using the NewtApp framework to construct an application, see
Chapter 4, "NewtApp Applications."

Digital Books

If you want to develop an application that displays a large amount of text, handles
multiple pages, or needs to precisely layout text, you may want to consider making
a digital book instead of a traditional application. In fact, if you are dealing with a
really large amount of text, like more than a few dozen screens full, then you could
make your job much easier by using the digital book development tools.

Digital books are designed to display and manipulate large amounts of text and
graphics. Digital books can include all the functionality of an application—they
can include views, protos, and methods that are executed as a result of user actions.
In fact, you can do almost everything in a digital book that you can do in a more
traditional application, except a traditional application doesn't include the text
layout abilities.

The advantage of using a digital book structure is that you gain the automatic text
layout and display abilities of Book Reader, the built-in digital book reading appli-
cation. Additionally, the book-making tools are easy to use and allow you to quickly
turn large amounts of text and graphics into Newton books with minimal effort.

The disadvantage of using a digital book is that it is designed to support a
particular kind of application—one that is like a book. If your application doesn't
lend itself to that structure or doesn't need much of the text-handling support that
Book Reader provides, then it would be better to use a different approach to
application design.

For information on creating digital books using the Book Maker command
language and/or incorporating NewtonScript code and objects into digital books,
see Newton Book Maker User's Guide. For information on creating simpler digital
books see Newton Press User's Guide.

Choosing an Application Structure 2-3

ARENDI-DEFS00003723

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 76 of 200 PageID #: 28720

CHAP T ER 2

Getting Started

Other Kinds of Software

There are other kinds of software you can develop for the Newton platform that are
not accessed by the user through an icon in the Extras drawer. These might include
new types of stationery that extend existing applications, new panels for the
Preferences or Formulas applications, new routing or print formats, communication
transports, and other kinds of invisible applications. Such software is installed in a
kind of part called an auto part (because its part code is auto).

You can also install a special kind of auto part that is automatically removed after it
is installed. The Insta11Script function in the auto part is executed, and then it
is removed. (For more information about the znstallScript function, see the
section "Package Loading, Activation, and Deactivation" beginning on page 2-4.)
This kind of auto part is useful to execute some code on the Newton, for example,
to create a soup, and then to remove the code. This could be used to write an installer
application that installs just a portion of the data supplied with an application. For
example, you might have a game or some other application that uses various data
sets, and the installer could let the user choose which data sets to install (as soups)
to save storage space.

Any changes made by an automatically removed auto part are lost when the
Newton is reset, except for changes made to soups, which are persistent.

For additional information about creating auto parts and other kinds of parts such
as font, dictionary, and store parts, refer to Newton Toolkit User's Guide.

Package Loading, Activation, and Deactivation

When a package is first loaded onto the Newton store from some external source,
the system executes the DoNot Install script function in each frame part in
the package. This function gives the parts in the package a chance to prevent
installation of the package. If the package is not prevented from being installed,
next it is activated.

When a package containing an application or auto part is activated on the Newton,
the system executes a special function in those parts: the znstallScript
function. A package is normally activated as a result of installing it—by inserting a
storage card containing it, by moving it from one store to another, by downloading
it from a desktop computer, by downloading it via modem or some other communi-
cation device, or by soft resetting the Newton device. Packages can also exist in an
inactive state on a Newton store, and such a package can be activated by the user at
a later time.

When a package is deactivated, the system executes another special function in
each of the application and auto parts in the package: the Removescript
function. A package is normally deactivated when the card it resides on is removed,

2-4 Package Loading, Activation, and Deactivation

ARENDI-DEFS00003724

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 77 of 200 PageID #: 28721

CHAP T ER 2

Getting Started

when it is moved to another store (it is deactivated then reactivated), or when the
user deletes the application icon in the Extras Drawer. Packages can also be
deactivated without removing them from the store.

When a package is removed as a result of the user deleting it from the Extras
Drawer, the system also executes the Deletionscript function in each of the
package frame parts. This occurs before the Removescript function is executed.

The following sections describe how to use these functions.

Loading

The DoNot Instal 1Script function in apackage part is executed when a
package is first loaded onto a Newton store from some external source (this does
not include inserting a storage card containing the package or moving it between
stores). This function applies to all types of frame parts (for example, not store parts).

This method gives the parts in the package a chance to prevent installation of the
entire package. If any of the package parts returns a non-ni 1 value from this
function, the package is not installed and is discarded.

You should provide the user with some kind of feedback if package installation is
prevented, rather than silently failing. For example, to ensure that a package is
installed only on the internal store you could write a DoNot Instal 1Script
function like the following:

func ()

begin

if GetStores()[0] <> GetVBOStore(ObjectPkgRef('foo)) then

begin

GetRoot():Notify(kNotifyAlert, kAppName,

"This package was not installed.

It can be installed only onto the internal store.");

true;

end;

end

Activation

The Instal 1Script function in apackage part is executed when an application
or auto part is activated on the Newton or whenever the Newton is reset.

This function lets you perform any special installation operations that you need to
do, any initialization, and any registration for system services.

Package Loading, Activation, and Deactivation 2-5

ARENDI-DEFS00003725

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 78 of 200 PageID #: 28722

CHAP T ER 2

Getting Started

IMPORTANT

Any changes that you make to the system in the
InstallScript function must be reversed in the
RemoveScript function. For example, if you register your
application for certain system services or install print formats,
stationery, or other objects in the system, you must reverse
these changes and remove or unregister these objects in the
RemoveScript function. If you fail to do this, such changes
cannot be removed by the user, and if your application is on a
card, they won't be able to remove the card without getting a
warning message to put the card back. A

Only applications and auto parts use the znstallScript function. Note that the
znstallScript function takes one extra argument when used for an auto part.
Applications built using the NewtApp framework require special
InstallScript and RemoveScript functions. For details, see Chapter 4,
"NewtApp Applications."

Deactivation

The RemoveScript function in apackage part is executed when an application or
auto part is deactivated.

This function lets you perform any special deinstallation operations that you need
to do, any clean-up, and any unregistration for system services that you registered
for in the InstallScript function.

Note that automatically removed auto parts do not use the RemoveScript
function since such auto parts are removed immediately after the
InstallScript is executed—the RemoveScript is not executed.

In addition to the RemoveScript function, another function, DeletionScript,
is executed when the user removes a package by deleting it from the Extras
Drawer. This function applies to all types of frame parts, and is actually executed
before the RemoveScript function.

The DeletionScript function is optional. It lets you do different clean-up
based on the assumption that the user is permanently deleting a package, rather
than simply ejecting the card on which it happens to reside. For example, in the
DeletionScript function, you might want to delete all the soups created by the
application—checking with the user, of course, before performing such an
irreversible operation.

2-6 Package Loading, Activation, and Deactivation

ARENDI-DEFS00003726

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 79 of 200 PageID #: 28723

CHAP T ER 2

Getting Started

Effects of System Resets on Application Data

Two kinds of reset operations—hard resets and soft resets—can occur on Newton
devices. All data in working RAM (the NewtonScript heap and the operating
system domain) is erased when a hard or soft reset occurs.

Unless a hard reset occurs, soups remain in RAM until they are removed explicitly,
even if the Newton device is powered down. Soups are not affected by soft resets,
as they are stored in the protected storage domain. The remainder of this section
describes reset operations in more detail and suggests ways to ensure that your
application can deal with resets appropriately.

A hard reset occurs at least once in the life of any Newton device—when it is
initially powered on. The hard reset returns all internal RAM to a known state: all
soups are erased, all caches are purged, all application packages are erased from
the internal store, application RAM is reinitialized, the NewtonScript heap is
reinitialized, and the operating system restarts itself It's the end (or beginning) of
the world as your application knows it.

Note

Data on external stores is not affected by a hard reset.

A hard reset is initiated only in hardware by the user. Extreme precautions have
been taken to ensure that this action is deliberate. On the MessagePad, the user
must simultaneously manipulate the power and reset switches to initiate the
hardware reset. After this is accomplished, the hardware reset displays two dialog
boxes warning the user that all data is about to be erased; the user must confirm
this action in both dialog boxes before the hard reset takes place.

It is extremely unlikely that misbehaving application software would cause a hard
reset. However, a state similar to hardware reset may be achieved if the battery that
backs up internal RAM is removed or fails completely.

It's advisable to test your application's ability to install itself and run on a system
that has been initialized with a hard reset. The exact sequence of steps required to
hard reset a Newton device is documented in its user guide.

Newton devices may also perform a soft reset operation. A soft reset erases all data
stored by applications in the NewtonScript heap, for example all data stored in
slots in views or other frames in memory. A soft reset also reinitializes the data
storage system frames cache, while leaving soup data intact. Any frames in the
cache are lost, such as new or modified entries that have not been written back to
the soup. A soft reset can be initiated in software by the operating system or from
hardware by the user.

Effects of System Resets on Application Data 2-7

ARENDI-DEFS00003727

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 80 of 200 PageID #: 28724

CHAP T ER 2

Getting Started

When the operating system cannot obtain enough memory to complete a requested
operation, it may display a dialog box advising the user to reset the Newton device.
The user can tap the Reset button displayed in the dialog box to reset the system, or
can tap the Cancel button and continue working.

The user may also initiate a soft reset by pressing a hardware button provided for
this purpose. This button is designed to prevent its accidental use. On the
MessagePad, for example, it is recessed inside the battery compartment and must
be pressed with the Newton pen or similarly-shaped instrument.

A soft reset may also be caused by misbehaving application software. One way to
minimize the occurrence of unexpected resets is to utilize exception-handling code
where appropriate.

The only way applications can minimize the consequences of a soft reset is to be
prepared for one to happen at any time. Applications need to store all permanent
data in a soup and write changed entries back to the soup as soon as is feasible.

It's advisable to test your application's ability to recover from a soft reset. The
exact sequence of steps required to soft-reset a particular Newton device is
documented in its user guide.

Flow of Control

The Newton system is an event-driven, object-oriented system. Code is executed in
response to messages sent to objects (for example, views). Messages are sent as a
result of user events, such as a tap on the screen, or internal system events, such as
an idle loop triggering. The flow of control in a typical application begins when the
user taps on the application icon in the Extras Drawer. As a result of this event, the
system performs several actions such as reading the values of certain slots in your
application base view and sending a particular sequence of messages to it.

For a detailed discussion of the flow of control and the order of execution when an
application "starts up," see the section "View Instantiation" beginning on page 3-26.

Using Memory

The tightly-constrained Newton environment requires that applications avoid
wasting memory space on unused references. As soon as possible, applications
should set to n 1 any object reference that is no longer needed, thereby allowing
the system to reclaim the memory used by that object. For example, when an
application closes, it needs to clean up after itself as much as possible, removing its
references to soups, entries, cursors, and any other objects. This means you should
set to nil any application base view slots that refer to objects in RAM.

2-8 Flow of Control

ARENDI-DEFS00003728

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 81 of 200 PageID #: 28725

CHAP T ER 2

Getting Started

IMPORTANT

If you don't remove references to unused soups, entries, cursors,
and other objects, the objects will not be garbage collected,
reducing the amount of RAM available to the system and
other applications. A

Localization

If your application displays strings, and you want your application to run on
localized Newton products, you should consider localizing your application. This
involves translating strings to other languages and using other formats for dates,
times, and monetary values.

There are some features of NTK that make string localization simple, allowing you
to define the language at compile time to build versions in different languages
without changing the source files. Refer to Newton Toolkit User's Guide for more
information.

For details on localizing an application, see Chapter 20, "Localizing Newton
Applications."

Developer Signature Guidelines

To avoid name conflicts with other Newton application, you need to register a
single developer signature with Newton DTS. You can then use this signature as
the basis for creating unique application symbols, soup names and other global
symbols and strings according to the guidelines described in this section.

Signature

A signature is an arbitrary sequence of approximately 4 to 10 characters. Any
characters except colons () and vertical bars(l) can be used in a signature. Case is
not significant.

Like a handwritten signature, the developer signature uniquely identifies a Newton
application developer. The most important characteristic of a signature is that it is
unique to a single developer, which is why Newton DTS maintains a registry of
developer signatures. Once you have registered a signature with Newton DTS it is
yours, and will not be assigned to any other developer.

Localization 2-9

ARENDI-DEFS00003729

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 82 of 200 PageID #: 28726

CHAP T ER 2

Getting Started

Examples of valid signatures include

NEWTONDTS

Joe's Cool Apps

1NEWTON2DTS

What the #$*? SW

How to Register

To register your signature, you need to provide the following information to the
Newton Development Information Group at Apple.

Company Name:

Contact Person:

Mailing Address:

Phone:

Email Address:

Desired Signature ist choice:

Desired Signature 2nd choice:

Send this information to the e-mail address

NEWTONDEV@applelink.apple.com

or send it via US Mail to:

NewtonSysOp
c/o: Apple Computer, Inc.
1 Infinite Loop, M/S: 305-2A
Cupertino, CA 95014
USA

Application Name

The application name is the string displayed under your application's icon in the
Extras drawer. Because it is a string, any characters are allowed.

This name does not need to be unique, because the system does not use it to
identify the application. For example, it is possible for there to be two applications
named Chess on the market. The application name is used only to identify the
application to the user. If there were in fact two applications named Chess
installed on the same Newton device, hopefully the user could distinguish one from
the other by some other means, perhaps by the display of different icons in the
Extras drawer.

2-10 Developer Signature Guidelines

ARENDI-DEFS00003730

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 83 of 200 PageID #: 28727

CHAP T ER 2

Getting Started

Examples of valid application names include

Llama

Good Form

2 Fun 4 U

Chess

Note

It's recommended that you keep your application
names short so that they don't crowd the names
of other applications in the Extras drawer.

Application Symbol

The application symbol is created by concatenating the application name, a
colon (:) and your registered developer signature. This symbol is not normally
visible to the end user. It is used to uniquely identify an application in the system.
Because application symbols contain a colon (:), they must be enclosed by vertical
bars (l) where they appear explicitly in NewtonScript code.

Examples of valid application symbols include:

'lLlama:NEWTONDTSI

1 12 Fun 4 U:Joe's Cool Appsl

You specify the application symbol in the Output Settings dialog of NTK. At the
beginning of a project build, NTK 1.5 or newer defines a constant for your project
with the name kAppSymbol and sets it to the symbol you specify as the
application symbol. Use of this constant throughout your code makes it easier to
maintain your code.

At the end of the project build, if you've not created a slot with the name
appsymbol in the application base view of your project, NTK creates such a slot
and places in it the application symbol. If the slot exists already, NTK doesn't
overwrite it.

Package Name

The package name is usually a string version of the application symbol. The
package name may be visible to the user if no application name is provided.
Package names are limited to 26 characters, so this places a practical limit on the
combined length of application names and signatures.

Developer Signature Guidelines 2-11

ARENDI-DEFS00003731

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 84 of 200 PageID #: 28728

CHAP T ER 2

Getting Started

Summary

View Classes and Protos

clView

aView := {

viewClass: clView, // base view class

viewBounds: boundsFrame, // location and size
viewJustify: integer, // viewiustify flags
viewFlags: integer, // viewFlags flags
viewFormat: integer, // viewFormat flags

}

protoApp

anApp := {

_proto: protoApp, // proto application

title: string, // application name
viewBounds: boundsFrame, // location and size
viewJustify: integer, // viewiustify flags
viewFlags: integer, // viewFlags flags
viewFormat: integer, // viewFormat flags
declareSelf: 'base, // do not change

}

Functions

Application-Defined Functions

Install Script (partFrame) // for application parts
Install Script (partFrame, removeFrame) // for auto parts
DeletionScript()

DoNotInstallScript()

RemoveScript (frame)

2-12 Summary

ARENDI-DEFS00003732

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 85 of 200 PageID #: 28729

C H A P T E R 3

Views

This chapter provides the basic information you need to know about views and how
to use them in your application.

You should start with this chapter if you are creating an application for Newton
devices, as views are the basic building blocks for most applications. Before
reading this chapter, you should be familiar with the information in Newton Toolkit
Users Guide and The NewtonScript Programming Language.

This chapter introduces you to views and related items, describing

■ views, templates, the view coordinate system, and the instantiation process for
creating a view

■ common tasks, such as creating a template, redrawing a view, creating special
view effects, and optimizing a view's performance

■ view constants, methods, and functions

About Views

Views are the basic building blocks of most applications. Nearly every individual
visual item you see on the screen—for example, a radio button, or a checkbox—is
a view, and there may even be views that are not visible. Views display information
to the user in the form of text and graphics, and the user interacts with views by
tapping them, writing in them, dragging them, and so on.

Different types of views have inherently different behavior, and you can include
your own methods in views to further enhance their behavior. The primitive view
classes provided in the Newton system are described in detail in Table 2-2 (page 2-4)
in the Newton Programmer's Reference.

You create or lay out a view with the Newton Toolkit's graphic editor. The Newton
Toolkit creates a template; that is, a data object that describes how the view will
look and act on the Newton. Views are then created from templates when the
application runs on the Newton.

About Views 3-1

ARENDI-DEFS00003733

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 86 of 200 PageID #: 28730

CHAP T ER 3

Views

This section provides detailed conceptual information on views and other items
related to views. Specifically, it covers the following:

■ templates and views and how they relate to each other

■ the coordinate system used in placing views

■ components used to define views

■ application-defined methods that the system sends to views

■ the programmatic process used to create a view

■ new functions, methods, and messages added for 2.0 as well as modifications to
existing view code

Templates

A template is a frame containing a description of an object. (In this chapter the
objects referred to are views that can appear on the screen.) Templates contain data
descriptions of such items as fields for the user to write into, graphic objects,
buttons, and other interactive objects used to collect and display information.
Additionally, templates can include methods, which are functions that give the
view behavior.

Note
A template can also describe nongraphic objects like
communication objects. Such objects have no visual
representation and exist only as logical objects.

An application exists as a collection of templates, not just a single template. There
is a parcnt template that defines the application window and its most basic
features. From this parent template springs a hierarchical collection of child
templates, each defining a small piece of the larger whole. Each graphic object,
button, text field, and so on is defined by a separate template. Each child template
exists within the context of its parent template and inherits characteristics from its
parent template, though it can override these inherited characteristics.

Within the Newton object system, a template for a view exists as a special kind of
frame; that is, a frame containing or inheriting a particular group of slots
(viewClass, viewBounds, viewFlags, and some other optional slots) that
define the template's class, dimensions, appearance, and other characteristics.
Templates are no different from any other frames, except that they contain or
inherit these particular slots (in addition to others). For more information about
frames, slots, and the NewtonScript language, see The NewtonScript Programming
Language.

3-2 About Views

ARENDI-DEFS00003734

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 87 of 200 PageID #: 28731

CHAP T ER 3

Views

Figure 3-1 shows a collection of template frames that might make up an application.
The frame at the top represents the highest-level parent template. Each template
that has children contains aviewChildren (or stepchildren) slot whose
value is an array of references to its child templates.

Figure 3-1 Template hierarchy

Parent Template

{Slot: data
Slot: data

viewChildren:
[frameRef, frameReQ }

Child Template

{Slot: data
Slot: data

viewChildren:
[frameRef, frameReQ }

4
Child Template

{Slot: data
Slot: data

}

V

Child Template

{Slot: data
Slot: data

}

Child Template

{Slot: data
Slot: data

}

Arrows indicate
v a reference to objects

About Views 3-3

ARENDI-DEFS00003735

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 88 of 200 PageID #: 28732

CHAP T ER 3

Views

Views

A template is a data description of an object. A view is the visual representation of
the object that is created when the template is instantiated. The system reads the
stored description in the template and creates a view on the screen—for example, a
framed rectangle containing a title.

Besides the graphic representation you see on the screen, a view consists of a
memory object (a frame) that contains a reference to its template and also contains
transient data used to create the graphic object. Any changes to view data that occur
during run time are stored in the view, not in its template. This is an important point—
after an application has started up (that is, once the views are instantiated from their
templates), all changes to slots occur in the view; the template is never changed.

This distinction between templates and views with respect to changing slot values
occurs because of the NewtonScript inheritance mechanism. During run time,
templates, containing static data, are prototypes for views, which contain dynamic
data. To understand this concept, it is imperative that you have a thorough
understanding of the inheritance mechanism as described in The NewtonScript
Programming Language.

You can think of a template as a computer program stored on a disk. When the
program starts up, the disk copy (the template) serves as a template; it is copied
into dynamic memory, where it begins execution. Any changes to program
variables and data occur in the copy of the program in memory (the view), not in
the original disk version.

However, the Newton system diverges from this metaphor in that the view is not
actually a copy of the template. To save RAM use, the view contains only a reference
to the template. Operations involving the reading of data are directed by reference
to the template if the data is not first found in the view. In operations in which data
is written or changed, the data is written into the view.

Because views are transient and data is disposed of when the view is closed, any
data written into a view that needs to be saved permanently must be saved elsewhere
before the view disappears.

A view is linked with its template through a _proto slot in the view. The value of
this slot is a reference to the template. Through this reference, the view can access
slots in its template. Templates may themselves contain _proto slots which
reference other templates, called protos, on which they are built.

Views are also linked to other views in a parent-child relationship. Each view
contains a _parent slot whose value is a reference to its parent view; that is, the
view that encloses it. The top-level parent view of your application is called the

3-4 About Views

ARENDI-DEFS00003736

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 89 of 200 PageID #: 28733

CHAP T ER 3

Views

application base view. (Think of the view hierarchy as a tree structure in which
the tree is turned upside down with its root at the top. The top-level parent view is
the root view.)

Figure 3-2 shows the set of views instantiated from the templates shown in
Figure 3-1. Note that this example is simplified in that it shows a separate template
for each view. In practice, multiple views often share a single template. Also, this
example doesn't show templates that are built on other protos.

Figure 3-2 View hierarchy

Views
(transient, writable)

Parent View

{_proto:

Child View A

{_parent: -
J*

proto: ••••

Child View C

{_parent:
proto:

Child View B

{

_parent:
proto:

}

Templates
(permanent, read-only)

Parent Template

viewChildren:[]
}

v

Child Template A

{

Child View D

{

I
_parent:
_proto:

}

Arrows indicate a
reference to parent/child

Arrows indicate a
reference to protos

viewChildren:[]
}

v

Child Template B

{

}

Child Template C Child Template D

}

About Views 3-5

ARENDI-DEFS00003737

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 90 of 200 PageID #: 28734

CHAP T ER 3

Views

Figure 3-3 shows an example of what this view hierarchy might represent on
the screen.

Figure 3-3 Screen representation of view hierarchy

Parent
View

Child A

Color

0 Red

Blue

Child B

Child C

Child D

The application base view of each application exists as a child of the system root
view. The root view is essentially the blank screen that exists before any other
views are drawn. It is the ancestor of all other views that are instantiated.

Coordinate System

The view coordinate system is a two-dimensional plane. The (0, 0) origin point of
the plane is assigned to the upper-left corner of the Newton screen, and coordinate
values increase to the right and (unlike a Cartesian plane) down. Any pixel on the
screen can be specified by a vertical coordinate and a horizontal coordinate.
Figure 3-4 (page 3-7) illustrates the view system coordinate plane.

Views are defined by rectangular areas that are usually subsets of the screen. The
origin of a view is usually its upper-left corner, though the origin can be changed.
The coordinates of a view are relative to the origin of its parent view—they are not
screen coordinates.

It is helpful to conceptualize the coordinate plane as a two-dimensional grid.
The intersection of a horizontal and vertical grid line marks a point on the
coordinate plane.

Note the distinction between points on the coordinate grid and pixels, the dots
that make up a visible image on the screen. Figure 3-5 illustrates the relationship
between the two: the pixel is down and to the right of the point by which it
is addressed.

3-6 About Views

ARENDI-DEFS00003738

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 91 of 200 PageID #: 28735

CHAP T ER 3

Views

Figure 3-4 View system coordinate plane

6 5 4 3 2 1 - h
< I >

1 — 1 2 3 4 5 6

2-

3-

4-

5-

6— v

v

Figure 3-5 Points and pixels

Grid lines

Point

Pixel

About Views 3-7

ARENDI-DEFS00003739

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 92 of 200 PageID #: 28736

CHAP T ER 3

Views

As the grid lines are infinitely thin, so a point is infinitely small. Pixels, by contrast,
lie between the lines of the coordinate grid, not at their intersections.

This relationship gives them a definite physical extent, so that they can be seen on
the screen.

Defining View Characteristics

A template that describes a view is stored as a frame that has slots for view
characteristics. Here is a NewtonScript example of a template that describes a view:

{viewClass: clView,

viewBounds: RelBounds(20, 50, 94, 142),

viewFlags: vNoFlags,

viewFormat:vfFillWhite+vfFrameBlack+vfPen(1),

viewJustify: vjCenterH,

viewFont: simpleFontlO,

declareSelf: 'base,

debug: "dialer",

};

Briefly, the syntax for defining a frame is:

I slotName: slotValue,
slotName: slotValue,
...};

where slotName is the name of a slot, and slotValue is the value of a slot. For more
details on NewtonScript syntax, refer to The NewtonScript Programming Language.

Frames serving as view templates have slots that define the following kinds of view
characteristics:

Class The viewClass slot defines the class of graphic object from
which the view is constructed.

Behavior The viewFlags slot defines other primary view behaviors
and controls recognition behavior.

Location, size, and alignment
The viewBounds and viewJustify slots define the
location, size, and alignment of the view and its contents.

Appearance The viewFormat slot defines the frame and fill
characteristics. The viewFillPattern and
viewFramePattern slots control custom patterns.
Transfer modes used in drawing the view are controlled
by the viewTransferMode slot.

3-8 About Views

ARENDI-DEFS00003740

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 93 of 200 PageID #: 28737

CHAP T ER 3

Views

Opening and closing animation effects
The viewEffect slot defines an animation to be performed
when the view is displayed or hidden.

Other attributes Some other slots define view characteristics such as font,
copy protection, and so on.

Inheritance links The proto parent, viewChildren, and
stepchildren slots contain links to a view's template,
parent view, and child views.

These different categories of view characteristics are described in the following
sections.

Class

The viewClass slot defines the view class. This information is used by the
system when creating a view from its template. The view class describes the type
of graphic object to be used to display the data described in the template. The view
classes built into the system serve as the primitive building blocks from which all
visible objects are constructed. The view classes are listed and described in Table 2-2
(page 2-4) in the Newton Programmer's Reference.

Behavior

The viewFlags slot defines behavioral attributes of a view other than those that
are derived from the view class. Each attribute is represented by a constant defined
as a bit flag. Multiple attributes are specified by adding them together, like this:

vVisible+vFramed

Note that in the NTK viewFlags editor, multiple attributes are specified simply by
checking the appropriate boxes.

Some of the viewFlags constants are listed and described in Table 2-4 (page 2-11)
in the Newton Programmer's Reference. There are also several additional constants
you can specify in the viewFlags slot that control what kinds of pen input (taps,
strokes, words, letters, numbers, and so on) are recognized and handled by the view.
These other constants are described in "Recognition" (page 9-1).

View behavior is also controlled through methods in the view that handle system
messages. As an application executes, its views receive messages from the system,
triggered by various events, usually the result of a user action. Views can handle
system messages by having methods that are named after the messages. You
control the behavior of views by providing such methods and including code that
operates on the receiving view or other views.

For a detailed description of the messages that views can receive, and information
on how to handle them, see "Application-Defined Methods" (page 3-26)."

About Views 3-9

ARENDI-DEFS00003741

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 94 of 200 PageID #: 28738

CHAP T ER 3

Views

Handling Pen Input

The use of the vClickable viewFlags constant to control pen input is
important to understand, so it is worth covering here, even though it is discussed in
more detail in "Recognition" (page 9-1). The vClickable flag must be set for a
view to receive input. If this flag is not set for a view, that view cannot accept any
pen input.

If you have a view whose vClickable flag is not set, pen events, such as a tap,
will "fall through" that view and be registered in a background view that does
accept pen input. This can cause unexpected results if you are not careful. You
can prevent pen events from registering in the wrong view by setting the
vClickable flag for aview and providing a ViewClickScript method in the
view that returns non-ni 1. This causes the view to capture all pen input within
itself, instead of letting it "fall through" to a different view. If you want to capture
pen events in a view but still prevent input (and electronic ink), do not specify any
other recognition flags besides vClickable.

If you want strokes or gestures but want to prevent clicks from falling through up
the parent chain, return the symbol I skip. This symbol tells the view system not
to allow the stroke to be processed by the parent chain, but instead allows the
stroke to be processed by the view itself for recognition behavior.

Several other viewFlags constants are used to control and constrain the recognition
of text, the recognition of shapes, the use of dictionaries, and other input-related
features of views. For more information, refer to "Recognition" (page 9-1).

Location, Size, and Alignment

The location and size of a view are specified in the viewBounds slot of the view
template. The viewJustify slot affects the location of aview relative to other
views. The viewJustify slot also controls how text and pictures within the view
are aligned and limits how much text can appear in the view (one line, one word,
and so on).

The vieworiginx and viewOriginY slots control the offset of child views
within a view.

View Bounds

The viewBounds slot defines the size and location of the view on the screen. The
value of the viewBounds slot is a frame that contains four slots giving the view
coordinates (all distances are in pixels). For example:

{left: leftValue,
top: top Value,
right: rightValue,
bottom: bottom Value
}

3-10 About Views

ARENDI-DEFS00003742

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 95 of 200 PageID #: 28739

CHAP T ER 3

Views

leftlValue

top Value

rightlValue

bottom Value

The distance from the left origin of the parent view to the left
edge of the view.

The distance from the top origin of the parent view to the top
edge of the view.

The distance from the left origin of the parent view to the
right edge of the view.

The distance from the top origin of the parent view to the
bottom edge of the view.

Note

The values in the viewBounds frame are interpreted as
described here only if the view alignment is set to the default
values. Otherwise, the view alignment setting changes the way
viewBounds values are used. For more information, see "View
Alignment" (page 3-13).

As shown in Figure 3-6, all coordinates are relative to a view's parent, they are not
actual screen coordinates.

Figure 3-6 Bounds parameters

Parent View

View

Top

Bottom

 Left

 Right

When you are using the Newton Toolkit (NTK) to lay out views for your applica-
tion, the viewBounds slot is set automatically when you drag out a view in the
layout window. If you are writing code in which you need to specify avi ewBounds
slot, you can use one of the global functions such as SetBounds or RelBounds,
which are described in "Finding the Bounds of Views" (page 3-39).

About Views 3-11

ARENDI-DEFS00003743

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 96 of 200 PageID #: 28740

CHAP T ER 3

Views

View Size Relative to Parent Size

A view is normally entirely enclosed by its parent view. You shouldn't create a
view whose bounds extend outside its parent's bounds. If you do create such a view,
for example containing a picture that you want to show just part of, you need to set
the vClipping flag in the viewFlags slot of the parent view.

If you do not set the vClipping flag for the parent view, the behavior is
unpredictable. The portions of the view outside the parent's bounds may or may
not draw properly. All pen input is clipped to the parent's bounds.

Note that the base views of all applications (all root view children, in fact) are
automatically clipped, whether or not the vClipping flag is set.

If your application base view is very small and you need to create a larger floating
child view, for example, a slip, you should use the BuildContext function. This
function creates a special view that is a child of the root view. To open the view,
you send the open message to it.

Using Screen-Relative Bounds

Newton is a family of products with varying screen sizes. If you want your
application to be compatible with a variety of individual Newton products, you
should design your application so that it sizes itself dynamically (that is, at run
time), accounting for the size of the screen on which it is running, which could be
smaller or larger than the original Newton MessagePad screen.

You may want to dynamically size the base view of your application so that it
changes for different screen sizes, or you may want it to remain a fixed size on all
platforms. In the latter case, you should still check the actual screen size at run
time to make sure there is enough room for your application.

You can use the global function GetAppParams to check the size of the screen at
run time. This function returns a frame containing the coordinates of the drawable
area of the screen, as well as other information (see "Utility Functions Reference"
(page 23-1) in the Newton Programmer's Reference for a description). The frame
returned looks like this:

{appAreaLeft: 0,

appAreaTop: 0,

appAreaWidth: 240,

appAreaHeight: 320,

The following example shows how to use the ViewsetupFormscript method in
your application base view to make the application a fixed size, but no larger than
the size of the screen:

3-12 About Views

ARENDI-DEFS00003744

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 97 of 200 PageID #: 28741

CHAP T ER 3

Views

viewSetupFormScript: func()

begin

local b := GetAppParams();

self.viewbounds := RelBounds(

b.appAreaLeft,

b.appAreaTop,

min(200, b.appAreaWidth), // 200 pixels wide max

min(300, b.appAreaHeight)); // 300 pixels high max

end

Don't blindly size your application to the full extents of the screen. This might look
odd if your application runs on a system with a much larger screen.

Do include a border around your application base view. That way, if the application
runs on a screen that is larger than the size of your application, the user will be able
to clearly see its boundaries.

The important point is to correctly size the application base view. Child views are
positioned relative to the application base view. If you have a dynamically sizing
application base view, make sure that the child views also are sized dynamically, so
that they are laid out correctly no matter how the dimensions of the base view
change. You can ensure correct layout by using parent-relative and sibling-relative
view alignment, as explained in the next section, "View Alignment."

One additional consideration you should note is that on a larger screen, it may be
possible for the user to move applications around. You should not rely on the
top-left coordinate of your application base view being fixed. To prevent this from
happening check your application's current location when you work with global
coordinates. To do this, send the GlobalBox message to your application base view.

View Alignment

The viewJustify slot is used to set the view alignment and is closely linked in
its usage and effects with the viewBounds slot.

The viewJustify slot specifies how text and graphics are aligned within the
view and how the bounds of the view are aligned relative to its parent or sibling
views. (Sibling views are child views that have a common parent view.)

In the viewJustify slot, you can specify one or more alignment attributes,
which are represented by constants defined as bit flags. You can specify one
alignment attribute from each of the following groups:

■ horizontal alignment of view contents (applies to views of class
clParagraphView and clPictureView only)

■ vertical alignment of view contents (applies to views of class
clParagraphView and clPictureView only)

About Views 3-13

ARENDI-DEFS00003745

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 98 of 200 PageID #: 28742

CHAP T ER 3

Views

■ horizontal alignment of the view relative to its parent or sibling view

■ vertical alignment of the view relative to its parent or sibling view

■ text limits

For example, you could specify these alignment attributes for a button view that has
its text centered within the view and is placed relative to its parent and sibling views:

vjCenterH+vjCenterV+vjSiblingRightH+vjParentBottomV+oneLineOnly

If you don't specify an attribute from a group, the default attribute for that group
is used.

The view alignment attributes and the defaults are listed and described in Table 3-1.
The effects of these attributes are illustrated in Figure 3-7, following the table.

Sibling setting are not used if the view has not previous setting, instead the parent
settings are used.

Table 3-1 viewJustify constants

Constant Value Description

Horizontal alignment of view contents

vj LeftH 0 Left alignment (default).

vjCenterH 2 Center alignment (default for clPictureView only).

vj RightH 1 Right alignment.

vj Ful lH 3 Stretches the view contents to fill the entire view width.

Vertical alignment of view contents

vj TopV 0

vjCenterV 4

vj BottomV 8

vj FullV 12

Top alignment (default).

Center alignment (default for clPictureView only).

Bottom alignment.

For views of the clPictureView class only;
stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling viev&~

vj ParentLeftH 0 The left and right view bounds are relative to the
parent's left side (default).

3-14 About Views

continued

ARENDI-DEFS00003746

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 99 of 200 PageID #: 28743

CHAP T ER 3

Views

Table 3-1 viewJustify constants (continued)

Constant

vjParentCenterH

vjParentRightH

vjParentFullH

vjSiblingNoH

vjSiblingLeftH 2048

vjSiblingCenterH 512

vjSiblingRightH

vjSiblingFullH

Value Description

16 The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in the parent view. If you
specify any other number for left, the view is offset
by that much from a centered position (for example,
specifying left = 10 and right = width+10 offsets the
view 10 pixels to the right from a centered position).

32 The left and right view bounds are relative to the
parent's right side, and will usually be negative.

48 The left bounds value is used as an offset from the left
edge of the parent and the right bounds value as an
offset from the right edge of the parent (for example,
specifying left = 10 and right = —10 leaves a 10-pixel
margin on each side).

0 (Default) Do not use sibling horizontal alignment.

The left and right view bounds are relative to the
sibling's left side.

The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in relation to the sibling
view. If you specify any other number for left,
the view is offset by that much from a centered
position (for example, specifying left = 10 and
right = width+10 offsets the view 10 pixels to the
right from a centered position).

1024 The left and right view bounds are relative to the
sibling's right side.

1536 The left bounds value is used as an offset from the left
edge of the sibling and the right bounds value as an
offset from the right edge of the sibling (for example,
specifying left = 10 and right = —10 indents the view
10 pixels on each side relative to its sibling).

Vertical alignment of the view relative to its parent or sibling view3

vj ParentTopv 0 The top and bottom view bounds are relative to the
parent's top side (default).

About Views

continued

3-15

ARENDI-DEFS00003747

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 100 of 200 PageID #: 28744

CHAP T ER 3

Views

Table 3-1 viewJustify constants (continued)

Constant

vjParentCenterV

vjParentBottomV 128

vjParentFullV 192

vjSiblingNoV 0

vjSiblingTopV 16384

vjSiblingCenterV 4096

vjSiblingBottomV

vjSiblingFullV

3-16 About Views

Value Description

64 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the parent
view. If you specify any other number for top,
the view is offset by that much from a centered
position (for example, specifying top = —10 and
bottom = height-10 offsets the view 10 pixels above
a centered position).

The top and bottom view bounds are relative to the
parent's bottom side.

The top bounds value is used as an offset from the top
edge of the parent and the bottom bounds value as an
offset from the bottom edge of the parent (for
example, specifying top = 10 and bottom = —10 leaves
a 10-pixel margin on both the top and the bottom).

(Default) Do not use sibling vertical alignment.

The top and bottom view bounds are relative to the
sibling's top side.

The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation to
the sibling view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top = —10 and
bottom = height-10 offsets the view 10 pixels above a
centered position).

8192 The top and bottom view bounds are relative to the
sibling's bottom side.

12288 The top bounds value is used as an offset from the top
edge of the sibling and the bottom bounds value as an
offset from the bottom edge of the sibling (for
example, specifying top = 10 and bottom = —10
indents the view 10 pixels on both the top and the
bottom sides relative to its sibling).

continued

ARENDI-DEFS00003748

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 101 of 200 PageID #: 28745

CHAP T ER 3

Views

Table 3-1 viewJustify constants (continued)

Constant

Text limits

Value Description

noLineLimits 0

oneLineOnly 8388608

oneWordOnly 16777216

I ndicate that a bounds value is a ratio

vj NoRatio 0

vj LeftRatio 67108864

vj RightRatio 134217728

vj TopRatio 268435456

vj BottomRatio —536870912

vj ParentAnchored 256

(Default) No limits, text wraps to next line.

Allows only a single line of text, with no wrapping.

Allows only a single word. (If the user writes another
word, it replaces the first.)

(Default) Do not use proportional alignment.

The value of the slot viewBounds . left is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

The value of the slot viewBounds . right is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

The value of the slot viewBounds . top is
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

The value of the slot viewBounds . bottom is
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

The view is anchored at its location in its parent view,
even if the origin of the parent view is changed. Other
sibling views will be offset, but not child views with
this flag set.

1 For views of the c1ParagraphView class, the vertical alignment constants vj TopV, vj CenterV, and
vj Bottomv apply only to paragraphs that also have the oneLineonly viewiustify flag set.

2 If you are applying horizontal sibling-relative alignment and the view is the first child, it is positioned according
to the horizontal parent-relative alignment setting.

3 If you are applying vertical sibling-relative alignment and the view is the first child, it is positioned according to
the vertical parent-relative alignment setting.

About Views 3-17

ARENDI-DEFS00003749

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 102 of 200 PageID #: 28746

CHAP T ER 3

Views

Figure 3-7 View alignment effects

Application

Justify_vjLeftH......................

Justi_fg._YjCenterH

Justi_fy .vjRightH

J us t i f g_Y...j...F...u...i._I.. H

Justify v jFulIV

O

Horizontal alignment of view contents

3-18 About Views

Application

Justify vjTopV

Justify vjCenterV

J ust.i.f.y...v.j.B a.tt am.V

*~M
E3a

Vertical alignment of view contents

ARENDI-DEFS00003750

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 103 of 200 PageID #: 28747

CHAP T ER 3

Views

Figure 3-7 View alignment effects (continued)

Parent Application

JustifyvjParentl-eftHviewBounds:

fleft:0. Top:25,

Right: 175,

Bottom:75}

Justi.fg._vj.ParentCenterHviewBounds:

{left:O. Top: 100,

Right: 175,

Bottom:1501

Justi.fg_vjParentRightHviewBounds:

f left: 175.

Top:175, Right:0,

Bottom:2251

Justi_f y._v j ParentFul_1HviewBounds:

fleft:0. Top:250,

Right: o,
Bottom:3001

Horizontal alignment of the view
relative to its parent view

Parent View

vjParentTopV

viewBounds:

fleft:5. Top:O,

Right:45,

Bottom:40}

vjParentCenterV

viewBounds:

fleft:0. Top:100,

Right:175,

Bottom:1501

vjParentBottomV

viewBounds:

fleft:105.

Top:40,

Right:145,

Bottom:0}

-Application

I®

Vertical alignment of the view
relative to its parent view

About Views

Sibling View

Each of the
paragraph views
has the same
viewBounds•
{Left:0,

Top:23,

Right: 18s,

Bottom:43}

Sibling View

Each of the
paragraph views
has the same
viewBounds:
f Left: 31,

Top: 0,

Right: 215,

Bottom:20}

Application

Justify vjSiblingLeftH

Justify vjSiblingCenterH

JustifyvjSiblingRightH

Justify vj5iblingFullH

Horizontal alignment of the view
relative to its sibling view

Application

Justify vj5iblingTopV

vjParentFullV

viewBounds:

fleft:165.

Top: 40,

Right: 205,

Bottom:40} Y

Justify vjSiblingCenterV

Justify YiSiblingBottomV

Justifg..vj5i.bl_i_ngFul_1_V

Vertical alignment of the view
relative to its sibling view

3-19

ARENDI-DEFS00003751

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 104 of 200 PageID #: 28748

CHAP T ER 3

Views

viewOriginX and viewOriginY Slots

These slots can be read but not written or set. Instead, use Setorigin to set the
origin offset for a view. For more information, see "Scrolling View Contents"
(page 3-41).

If you use these slots to specify an offset, the point you specify becomes the new
origin. Child views are drawn offset by this amount. This is useful for displaying
different portions of a view whose content area is larger than its visible area.

Appearance

The viewFormat slot defines view attributes such as its fill pattern, frame pattern,
frame type, and so on. Custom fill and frame patterns are defined using the
viewFillPattern and viewFramePattern slots.

The viewTransf erMode slot controls the appearance of the view when it is drawn
on the screen; that is, how the bits being drawn interact with bits on the screen.

View Format

The viewFormat slot defines visible attributes of a view such as its fill pattern,
frame type, and so on. In the viewFormat slot, you can specify one or more
format attributes, which are represented by constants defined as bit flags. You can
specify one format attribute from each of the following groups:

■ view fill pattern

■ view frame pattern

■ view frame thickness

■ view frame roundness

■ view frame inset (this is the white space between the view bounds and view frame)

■ view shadow style

■ view line style (these are solid or dotted lines drawn in the view to make it look
like lined paper)

Multiple attributes are specified by adding them together like this:

vfFillWhite+vfFrameBlack+vfPen(2)+vfLinesGray

Note that the frame of a view is drawn just outside of the view bounding box, not
within it.

The fill for a view is drawn before the view contents and the frame is drawn after
the contents.

3-20 About Views

ARENDI-DEFS00003752

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 105 of 200 PageID #: 28749

CHAP T ER 3

Views

IMPORTANT

Many views need no fill pattern, so you may be inclined to set the
fill pattern to "none" when you create such a view. However, it's
best to fill the view with white, if the view may be explicitly
dirtied (in need of redrawing) and if you don't need a transparent
view. This increases the performance of your application because
when the system is redrawing the screen, it doesn't have to update
views behind those filled with a solid color such as white.
However, don't fill all views with white, since there is some small
overhead associated with fills; only use this technique if the view
is one that is usually dirtied.

Also, note that the application base view always appears opaque,
as do all child views of the root view. That is, if no fill is set for
the application base view, it automatically appears to be filled
with white. A

The view format attributes are listed and described in Table 2-5 (page 2-13) in the
Newton Programmer's Reference.

Custom Fill and Frame Patterns

Custom fill and custom view frame patterns are set for a view by using the
of Custom flag, as shown in Table 2-5 (page 2-13) in the Newton Programmer's
Reference, and by using following two slots:

viewFillPattern

Sets a custom fill pattern that is used to fill the view.

viewFramePattern

Sets a custom pattern that is used to draw the frame lines
around the view, if the view has a frame.

You can use custom fill and frame patterns by setting the value of the
viewFillPattern and viewFramePattern slots to abinary data structure
containing a custom pattern. A pattern is simply an eight-byte binary data structure
with the class 'pattern.

You can use this NewtonScript trick to create binary pattern data structures "on
the fly":

DefineGlobalConstant('myPat,SetLength(SetClass(Clone

("\u "),'pattern), 8));

This code clones a string, which is already a binary object, and changes its class to
' pattern. The string is specified with hexadecimal character codes whose binary
representation is used to create the pattern. Each two-digit hex code creates one
byte of the pattern.

About Views 3-21

ARENDI-DEFS00003753

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 106 of 200 PageID #: 28750

CHAP T ER 3

Views

Drawing Transfer Mode for Views

The viewTransferMode slot specifies the transfer mode to be used for
drawing in the view. The transfer mode controls how bits being drawn are placed
over existing bits on the screen. The constants that you can specify for the
viewTransferMode slot are listed and described in Table 2-6 (page 2-14) in
the Newton Programmer's Reference.

The transfer mode is used to specify how bits are copied onto the screen when
something is drawn in a view. For each bit in the item to be drawn, the system finds
the existing bit on the screen, performs a Boolean operation on the pair of bits, and
displays the resulting bit.

The first eight transfer modes are illustrated in Figure 3-8. The last transfer mode,
in addition to those shown, modeMask, is a special one, and its effects are
dependent on the particular picture being drawn and its mask.

Figure 3-8 Transfer modes

NOON■■
■ NOON ■
■ ■ ■■ ■■
■ ■■ ■■■
■ NOON ■
NOON■■

Source

■ ■■■■ ■

■ NOON ■

modeCopy

modesNotCopy

■ ■

mode Or

■ ■

modesNotOr

■■
■ NOON

■
■

NOON■■

NOON■■
■ NONE ■

Destination (Screen)

modeXor

modesNotXor

■■ ■■ ■■
NONE

NOON

■ ■ No

mode Bic

modesNotBic

In Figure 3-8, the Source item represents something being drawn on the screen.
The Destination item represents the existing bits on the screen. The eight patterns
below these two represent the results for each of the standard transfer modes.

3-22 About Views

ARENDI-DEFS00003754

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 107 of 200 PageID #: 28751

CHAP T ER 3

Views

Opening and Closing Animation Effects

Another attribute of a view that you can specify is an animation that occurs when
the view is opened or closed on the screen. If an effect is defined for a view, it occurs
whenever the view is sent an Open, Close, Show, Hide, or Toggle message.

Use the viewEf f e c t slot to give the view an opening or closing animation.
Alternately, you can perform one-time effects on a view by sending it one of these
view messages: Effect, SlideEffect, RevealEffect, or Delete. These
methods are described in "Animating Views" (page 3-40).

The viewEf f e c t slot specifies an animation that occurs when a view is shown or
hidden. If this slot is not present, the view will not animate at these times. There
are several predefined animation types. You can also create a custom effect using a
combination of viewEffect flags from Table 2-7 (page 2-86) in Newton
Programmer's Reference. To use one of the predefined animation types, specify the
number of animation steps, the time per step, and the animation type, with the
following values:

f x S t ep s (x) In x specify the number of steps you want, from 1 to 15.

fxStepTime (x) In xspecify the number of ticks that you want each step to
take, from zero to 15 (there are 60 ticks per second).

Specify one of the following values to select the type of animation effect desired:

■ fxCheckerboardEf fect—reveals a view using a checkerboard effect, where
adjoining squares move in opposite (up and down) directions.

■ fxBarnDoorOpenEf fect—reveals a view from center towards left and right
edges, like a barn door opening where the view is the inside of the barn.

■ fxBarnDoorCloseEf fect—reveals a view from left and right edges towards
the center, like a barn door closing where the view is painted on the doors.

■ fxVenetianBlindsEffect—reveals aview so that it appears behind
venetian blinds that open.

■ fxlrisOpenEffect—changes the size of an invisible "aperture" covering the
view, revealing an ever-increasing portion of the full-size view as the aperture
opens.

■ fxlrisCloseEffect—like fxlrisOpenEffect, except that it decreases
the size of an invisible "aperture" covering the view, as the aperture closes.

■ f xPopDownEf f ect—reveals aview as it slides down from its top boundary.

■ f xD rawe rE f f e c t—reveals aview as it slides up from its bottom boundary.

■ fxzoomopenEf fect—expands the image of the view from apoint in the
center until it fills the screen; that is, the entire view appears to grow from a
point in the center of the screen.

About Views 3-23

ARENDI-DEFS00003755

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 108 of 200 PageID #: 28752

CHAP T ER 3

Views

■ fxZoomCloseEffect—opposite of fxZoomOpenEffect. This value
shrinks the image of the view from a point in the center until it disappears or
closes on the screen.

■ fxzoomverticalEffect—the view expands out from a horizontal line in the
center of its bounds. The top half moves upward and lower half moves
downward.

A complete viewEf f e c t specification might look like this:

fxVenetianBlindsEffect+fxSteps(6)+fxStepTime(8)

You can omit the fxSteps and fxStepTime constants and appropriate defaults
will be used, depending on the type of the effect.

Table 2-7 (page 2-86) in Newton Programmer's Reference lists the constants that
you can use in the viewEf f e c t slot to create custom animation effects. You
combine these constants in different ways to create different effects. For example,
the predefined animation type fxCheckerboardEffect is defined as:

fxColumns(8)+fxRows(8)+fxColAltPhase+fxRowAltPhase+fxDown

It is difficult to envision what the different effects will look like in combination, so it
is best to experiment with various combinations until you achieve the effect you want.

Other Characteristics

Other view characteristics are controlled by the following slots:

vi ewFont Specifies the font used in the view. This slot applies only to
views that hold text, that is, views of the class
clParagraphView. For more information about how to
specify the font, see the section "Using Fonts for Text and
Ink Display" (page 8-17) in "Text and Ink Input and Display"

declareSel f When the template is instantiated, a slot named with the
value of this slot is added to the view. Its value is a reference
to itself. For example, if you specify declareSelf : base,
a slot named base is added to the view and its value is set to
a reference to itself. Note that this slot is not inherited by the
children of a view; it applies only to the view within which
it exists.

Inheritance Links

These slots describe the template's location in the inheritance chain, including
references to its proto, parent, and children. The following slots are not inherited
by children of the template.

_proto Contains areference to aproto template. This slot is created
when the view opens.

3-24 About Views

ARENDI-DEFS00003756

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 109 of 200 PageID #: 28753

CHAP T ER 3

Views

_parent Contains a reference to the parent template. This slot is
created when the view opens. Note that it's best to use the
Parent function to access the parent view at run time, rather
than directly referencing the _parent slot.

stepChildren Contains an array that holds references to each of the
template's child templates. This slot is created and set
automatically when you graphically create child views in
NTK. This slot is for children that you add to a template.

viewChildren Contains an array that holds references to each of a system
proto's child templates. Because this slot is used by system
protos, you should never modify it or create a new one with
this name. If you do so, you may be inadvertently overriding
the children of a system proto. An exception to this rule
occurs for clEditView; you might want to edit the
viewChildren slot of a clEditView. See Table 2-1, "View
class constants," (page 2-2) in Newton Programmer's Guide
for details.

The reason for the dual child view slots is that the vi ewChi ldren slot is used by
the system protos to store their child templates. If you create a view derived from
one of the system protos and change the viewChildren slot (for example, to add
your own child templates programmatically), you would actually be creating a new
viewChildren slot that would override the one in the proto, and the child
templates of the proto would be ignored.

The stepChi ldren slot has been provided instead as a place for you to put your
child templates, if you need to do so from within a method. By adding your
templates to this slot, the viewChildren slot of the proto is not overridden. Both
groups of child views are created when the parent view is instantiated.

If you are only creating views graphically using the Newton Toolkit palette, you don't
need to worry about these internal details. The Newton Toolkit always uses the
stepChi ldren slot for you.

You may see either viewChildren, stepChildren, or both slots when you
examine a template at run time in the Newton Toolkit Inspector window. Child
templates can be listed in either slot, or both. When a view is instantiated, all the
child views from both of these two slots are also created. Note that the templates in
the viewChildren slot are instantiated first, followed by the templates in the
stepChildren slot.

If you are adding child views in a method that will not be executed until run time,
you need to use the stepChildren slot to do this. If there isn't a
stepChildren slot, create one and put your views there.

About Views 3-25

ARENDI-DEFS00003757

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 110 of 200 PageID #: 28754

CHAP T ER 3

Views

IMPORTANT

Remember that the viewChildren and stepChildren arrays
contain templates, not views. If you try to send a message like
Hide to one of the objects listed in this array, the system will
probably throw an exception because it is not a view.

During run time, if you want to obtain references to the child
views of aparticular view, you must use the Chi ldviewFrames
method. This method returns views from both the
viewChildren and stepChildren slots. This method is
described in "Getting References to Views" (page 3-32). A

Application-Defined Methods

As your application executes, it receives messages from the system that you can
choose to handle by providing methods that are named after the messages. These
messages give you a chance to perform your own processing as particular events
are occurring.

For example, with views, the system performs default initialization operations
when aview is instantiated. It also sends a view a viewsetupFormscript
message. If you provide a method to handle this message, you can perform your
own initialization operations in the method. However, handling system messages in
your application is optional.

The system usually performs its own actions to handle each event for which it
sends your view messages. Your system message-handling methods do not override
these system actions. You cannot change, delete, or substitute for the default system
event-handling actions. Your system message-handling methods augment the
system actions.

For example, when the view system receives a Show command for a view, it
displays the view. It also sends the view the viewshowscript message. If you
have provided a viewshowscript method, you can perform any special
processing that you need to do when the view is displayed.

The system sends messages to your application at specific times during its handling
of an event. Some messages are sent before the system does anything to respond to
the event, and some are sent after the system has already performed its actions. The
timing is explained in each of the message descriptions in "Application—Defined
Methods" (page 2-65) in the Newton Programmer's Reference.

View Instantiation

View instantiation refers to the act of creating a view from its template. The process
of view instantiation includes several steps and it is important to understand when
and in what order the steps occur.

3-26 About Views

ARENDI-DEFS00003758

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 111 of 200 PageID #: 28755

CHAP T ER 3

Views

Declaring a View

Before diving into the discussion of view instantiation, it is important to understand
the term declaring. Declaring a view is something you do during the application
development process using the Newton Toolkit (NTK). Declaring a view allows it
to be accessed symbolically from another view.

In NTK, you declare a view using the Template Info command. (Although the
phrase "declaring a view" is being used here, at development time, you're really
just dealing with the view template.) In the Template Info dialog, you declare a
view by checking the box entitled "Declare To," and then choosing another view in
which to declare the selected view. The name you give your view must be a valid
symbol, and not a reserved word or the name of a system method.

You always declare a view in its parent or in some other view farther up the parent
chain. It's best, for efficiency and speed, to declare a view in the lowest level
possible in the view hierarchy; that is, in its parent view or as close to it as possible.
If you declare a view in a view other than the parent view, it may get the wrong
parent view. Because the view's parent is wrong, its coordinates will be wrong as
well, so it will show up at the wrong position on screen.

Declaring a view simply puts the declared view in the named slot. See Appendix A,
"The Inside Story on Declare," for a complete description. The slot name is the
name of the view you are declaring. The slot value, at run time, will hold a
reference to the declared view.

The base view of your application is always declared in the system root view. Note
that the application base view is declared in a slot named with its application symbol,
specified in the Application Symbol field of the Project Settings slip in NTK.

Why would you want to declare a view? When a view is declared in another view,
it can be accessed symbolically from that other view. The NewtonScript inheritance
rules already allow access from a view to its parent view, but there is no direct
access from a parent view to its child views, or between child views of a common
parent. Declaring a view provides this access.

For example, if you have two child views of a common parent, and they need to
send messages to each other, you need to declare each of them in the common
parent view. Or, if a parent view needs to send messages to one of its child views,
the child view must be declared in the parent view.

One key situation requiring a declared view is when you want to send the open
message to show a nonvisible view. The open message can only be sent to a
declared view.

Declaring a view has a small amount of system overhead associated with it. This is
why the system doesn't just automatically declare every view you create. You
should only declare views that you need to access from other views.

About Views 3-27

ARENDI-DEFS00003759

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 112 of 200 PageID #: 28756

CHAP T ER 3

Views

For a more detailed technical description of the inner workings of declaring a view,
see Appendix A, "The Inside Story on Declare."

Creating a View

A view is created in two stages. First, a view memory object (a frame) is created in
RAM. This view memory object contains a reference to its template, along with
other transient run-time information. In the following discussion, the phrase,
"creating the view" is used to describe just this part of the process. Second, the
graphic representation of the view is created and shown on the screen. In the
following discussion, the phrase, "showing the view" is used to describe just this
part of the process.

A view is created and shown at different times, depending on whether or not it is a
declared view.

■ If the view is declared in another open (shown) view, it is created when the view
in which it is declared is sent the open message. For example, a child view
declared in the parent of its parent view is created when that "grandparent" view
is opened. Note, however, that the child view is not necessarily shown at the
same time it is created.

■ If the view is not declared in any view, it is created and also shown when its
immediate parent view is sent the open message. (Note that if a nondeclared
view's vvisible flag is not set, that view can never be created.)

Here is the view creation sequence for a typical application installed in the Newton
Extras Drawer and declared in the system root view:

I. When your application is installed on the Newton device, its base view is
automatically created, but not shown.

2. When the user taps on the icon representing your application in the Extras
Drawer, the system sends the ButtonTogglescript message to the
application's base view.

3. When the application is launched from the Extras Drawer, a view is created (but
not shown yet) for each template declared in the base view. Slots with the names
of these views are created in the base view. These slots contain references to
their corresponding views.

4. The viewSetupFormScript message is sent to the base view, viewFlags,
viewFormat, viewBounds, viewiustify, and declareSelf slots, and so
on, are read from the view template. The global bounds of the view are adjusted
to reflect the effects of the viewiustifyf lags, but the viewBounds values
are not changed, and the viewSetupChildrenScript message is sent to
the base view.

3-28 About Views

ARENDI-DEFS00003760

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 113 of 200 PageID #: 28757

CHAP T ER 3

Views

5. The viewChildren and stepChildren slots are read and the child views
are instantiated using this same process. As part of the process, the following
messages are sent to each child view, in this order: ViewsetupFormscript,
ViewSetupChildrenScript, and ViewSetupDoneScript.

6. The ViewSetupDoneScript message is sent to the view.

7. The view is displayed if its vvisible viewFlags bit is set.

8. The Viewshowscript message is sent to the view and then the
ViewDrawscript message is sent to the view. (Note that the
Viewshowscript message is not sent to any child views, however.)

9. Each of the child views is drawn, in hierarchical order, and the
ViewDrawscript message is sent to each of these views, immediately
after it is drawn.

As you can see from step 5, when a view is opened, all child views in the hierarchy
under it are also shown (as long as they are flagged as visible). A nonvisible child
view can be subsequently shown by sending it the open message—as long as it
has been declared.

Closing a View

When you send a view the Close message, the graphic representation of the view
(and of all of its child views) is destroyed, but the view memory object is not
necessarily destroyed. There are two possibilities:

■ If the view was declared, and the view in which it was declared is still open, the
frame is preserved. You can send the view another open or Toggle message to
reopen it at a later time.

A view memory object is finally destroyed when the view in which it was
declared is closed. That is, when a view is closed, all views declared in it are
made available for garbage collection.

■ If the view being closed was not declared, both its graphic representation and its
view memory object are made available for garbage collection when it is closed.

When a view is closed, the following steps occur:

I. If the view is closing because it was directly sent the Close or Toggle
message, the system sends it the Viewxidescript message. (If the view
is closing because it is a child of a view being closed directly, the
ViewHideScript message is not sent to it.)

2. The graphic representation of the view is removed from the screen.

3. The view is sent the ViewQuitscript message.

The view itself may or may not be marked for garbage collection, depending on
whether or not it was declared.

About Views 3-29

ARENDI-DEFS00003761

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 114 of 200 PageID #: 28758

CHAP T ER 3

Views

View Compatibility

The following new functionality has been added for the 2.0 release of Newton
System Software. See the Newton Programmer's Reference for complete
descriptions on each new function and method.

New Drag and Drop API

A drag and drop API has been added. This API now lets users drag a view, or part
of a view, and drop it into another view. See "Dragging and Dropping with Views"
(page 3-40) for details.

New Functions and Methods

The following functions and methods have been added.

■ AsyncConf irm creates and displays a slip that the user must dismiss before
continuing.

■ ButtonTogglescript lets the application perform special handling when its
icon is tapped in the Extras Drawer.

■ Di rtyBox marks a portion of a view (or views) as needing redrawing.

■ GetDrawBox returns the bounds of the area on the screen that needs redrawing.

■ GlobalouterBox returns the rectangle, in global coordinates, of the specified
view, including any frame that is drawn around the view.

■ ModalConfirm creates and displays a slip.

■ MoveBehind moves a view behind another view, redrawing the screen as
appropriate.

■ StdButtonWidth returns the size that abutton needs to be in order to fit some
specified text.

New Messages

The following messages have been added.

■ ReorientToScreen is sent to each child of the root view when the screen
orientation is changed.

■ viewPostQuitscript is sent to aview following the viewQuitscript
message and after all of the view's child views have been destroyed.

3-30 About Views

ARENDI-DEFS00003762

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 115 of 200 PageID #: 28759

CHAP T ER 3

Views

New Alignment Flags

The viewJustify slot contains new constants that allow you to specify that a
view is sized proportionally to its sibling or parent view, both horizontally and/or
vertically.

A change to the way existing vi ewJu s t i f y constants work is that when you are
using sibling-relative alignment, the first sibling uses the parent alignment settings
(since it has no sibling to which to justify itself).

Changes to Existing Functions and Methods

The following changes have been made to existing functions and methods for 2.0.

■ Remove Stepview. This function now removes the view template from the
stepChi1dren array of the parent view. You do not need to remove the
template yourself.

■ Setvalue. You can now use this global function to change the recognition
behavior of a view at run time by setting new recognition flags in the
viewFlags slot. The new recognition behavior takes effect immediately
following the Setvalue call.

■ GlobalBox. This method now works properly when called from the
ViewSetupFormScript method of a view. If called from the
ViewSetupFormScript method, GlobalBox gets the viewBounds and
V i ewJu s t i f y slots from the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
frame in global coordinates.

■ LocalBox. This method now works properly when called from
the ViewSetupFormScript method of a view. If called from the
ViewSetupFormScript method, LocalBox gets the viewBounds and
V i ewJu s t i f y slots from the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
frame in local coordinates.

■ ViewQuitscript. When this message is sent to aview, it propagates down to
child views of that view. In system software version 1.0, the order in which child
views received this message and were closed was undefined.

In system software version 2.0, the order in which this message is sent to
child views is top-down. Also, each view has the option of having
ViewPostQuitscript called in child-first order. The return value of
the ViewQuitscript method determines whether or not the
ViewPostQuitscript message is sent.

About Views 3-31

ARENDI-DEFS00003763

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 116 of 200 PageID #: 28760

CHAP T ER 3

Views

New Warning Messages

Warning messages are now printed to the inspector when a NewtonScript
application calls a view method in situations where the requested operation is
unwise, unnecessary, ambiguous, invalid, or just a bad idea.

Obsolete Functions and Methods

The following functions and methods are obsolete with version 2.0 of the Newton
System Software:

■ Confirm, which created and displayed an OK/Cancel slip. Use
AsyncConf irm instead.

■ DeferredConfirmedCall and DeferredConfirmedSend have both been
replaced by AsyncConf irm.

Using Views

This section describes how to use the view functions and methods to perform
specific tasks. See "Summary of Views" (page 3-47) for descriptions of the
functions and methods discussed in this section.

Getting References to Views

Frequently, when performing view operations, you need access to the child or
parent views of a view, or to the root view in the system. You need to use the
ChildViewFrames and Parent methods as well as the GetRoot and GetView
functions to return references to these "related" views.

To test whether an application is open or not, for example, you can use the
GetRoot function and the application's signature, together with the global
function kViewIsOpenFunc:

call kViewIsOpenFunc with (GetRoot().appsignature)

The Chi ldViewFrames method is an important method you must use if you need
access to the child views of a view. It returns the views in the same order in which
they appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will appear later in the list. Views
with the vFloating flag (which always appear above nonfloating views) will be
at the end of the array.

3-32 Using Views

ARENDI-DEFS00003764

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 117 of 200 PageID #: 28761

CHAP T ER 3

Views

Displaying, Hiding, and Redrawing Views

To display a view (and its visible child views), send it one of the following
view messages:

■ open—to open the view

■ Toggle—to open or close the view

■ Show—to show the view if it had previously been opened, then hidden

■ To hide a view (and its child views), send it one of the following view messages:

■ Close—to hide and possibly delete it from memory

■ Toggle—to close or open the view

■ Hide—to hide it temporarily

You can cause a view (and its child views) to be redrawn by using one of the
following view messages or global functions:

■ Dirty—flags the view as "dirty" so it is redrawn during the next system
idle loop

■ Refreshviews—redraws all dirty views immediately

■ Setvalue—sets the value of a slot and possibly dirties the view

■ syncview—redraws the view if its bounds have changed

Dynamically Adding Views

Creating a view dynamically (that is, at run time) is a complex issue that has
multiple solutions. Depending on what you really need to do, you can use one of
the following solutions:

■ Don't create the view dynamically because it's easier to accomplish what you
want by creating an invisible view and opening it later.

■ Create the view by adding a new template to its parent view's stepChildren
array in the ViewSetupChildrenScript method.

■ Create the template and the view at run time by using the Addstepview
function.

■ Create the template and the view at run time by using the BuildContext
function.

■ If you want a pop-up list view, called a picker, use the PopupMenu function to
create and manage the view.

These techniques are discussed in the following sections. The first four techniques
are listed in order from easiest to most complex (and error prone). You should use
the easiest solution that accomplishes what you want. The last technique, for
creating a picker view, should be used if you want that kind of view.

Using Views 3-33

ARENDI-DEFS00003765

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 118 of 200 PageID #: 28762

CHAP T ER 3

Views

Showing a Hidden View

In many cases, you might think that you need to create a view dynamically. However,
if the template can be defined at compile time, it's easier to do that and flag the
view as not visible. At the appropriate time, send it the open message to show it.

The typical example of this is a slip, which you can usually define at compile time.
Using the Newton Toolkit (NTK), simply do not check the vvisib1e flag in the
viewFlags slot of the view template. This will keep the view hidden when the
application is opened.

Also, it is important to declare this view in your application base view. For
information on declaring a view, see the section "View Instantiation" (page 3-26).

When you need to display the view, send it the open message using the name
under which you have declared it (for example, myvi ew : open O).

This solution even works in cases where some template slots cannot be set until run
time. You can dynamically set slot values during view instantiation in any of the
following view methods: ViewSetupFormScript,
ViewSetupChildrenScript, and ViewSetupDoneScript. You can also set
values in a declared view before sending it the open message.

Adding to the stepChildren Array

If it is not possible to define the template for a view at compile time, the next best
solution is to create the template (either at compile time or run time) and add it to
the stepChildren array of the parent view using the
ViewSetupChildrenScript method. This way, the view system takes care of
creating the view at the appropriate time (when the child views are shown).

For example, if you want to dynamically create a child view, you first define the
view template as a frame. Then, in the ViewSetupChildrenScript method of
its parent view, you add this frame to the stepChildren array of the parent view.
To ensure that the stepChildren array is in RAM, use this code:

if not HasSlot(self, 'stepChildren) then

self.stepChildren := Clone(self.stepChildren);

AddArraySlot (self. stepChildren, myDynamicTemplate);

The if statement checks whether the stepChildren slot already exists in the
current view (in RAM). If it does not, it is copied out of the template (in ROM)
into RAM. Then the new template is appended to the array.

All of this takes place in the ViewSetupChildrenScript method of the parent
view, which is before the stepChildren array is read and the child views are
created.

3-34 Using Views

ARENDI-DEFS00003766

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 119 of 200 PageID #: 28763

CHAP T ER 3

Views

If at some point after the child views have been created you want to modify the
contents of the stepChildren array and build new child views from it, you can
use the RedoChildren view method. First, make any changes you desire to the
stepChildren array, then send your view the RedoChildren message. All of
the view's current children will be closed and removed. A new set of child views
will then be recreated from the stepChildren array.

Also, note that reordering the stepChildren array and then calling
RedoChi ldren or MoveBehind is the way to reorder the child views of a
view dynamically.

For details on an easy way to create a template dynamically, see "Creating
Templates" (page 3-36).

Using the AddStepView Function

If you need to create a template and add a view yourself at run time, use the
function AddStepView. This function takes two parameters: the parent view to
which you want to add a view, and the template for the view you want to create.
The function returns a reference to the view it creates. Be sure to save this return
value so you can access the view later.

The AddStepView function also adds the template to the parent's
stepChildren array. This means that the stepChildren array needs to be
modifiable, or Addstepview will fail. See the code in the previous section for an
example of how to ensure that the stepChildren array is modifiable.

The AddStepView function doesn't force aredraw when the view is created, so
you must take one of the following actions yourself:

■ Send the new view a Dirty message.

■ Send the new view's parent view a Dirty message. This is useful if you're
using AddStepView to create several views and you want to show them all at
the same time.

■ If you created the view template with the vvi s ib 1 e bit cleared, the new view
will remain hidden and you must send it the Show message to make it visible.
This technique is useful if you want the view to appear with an animation effect
(specified in the vi ewE f f e c t slot in the template).

Do not use the AddStepView function in a ViewSetupFormScript method or
a ViewSetupChildrenScript method—it won't work because that's too early
in the view creation process of the parent for child views to be created. If you are
tempted to do this, you should instead use the second method of dynamic view
creation, in which you add your template to the stepChi ldren array and let the
view system create the view for you.

Using Views 3-35

ARENDI-DEFS00003767

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 120 of 200 PageID #: 28764

CHAP T ER 3

Views

To remove a view created by Addstepview, use the Remove stepview function.
This function takes two parameters: the parent view from which you want to
remove the child view, and the view (not its template) that you want to remove.

For details on an easy way to create a template dynamically, see "Creating
Templates" (page 3-36).

Using the BuildContext Function

Another function that is occasionally useful is Bui ldContext. It takes one
parameter, a template. It makes a view from the template and returns it. The view's
parent is the root view. The template is not added to any viewChi1dren or
stepchildren array. Basically, you get a free-agent view.

Normally, you won't need to use Bui ldContext. It's useful when you need to
create a view from code that isn't part of an application (that is, there's no base
view to use as aparent). For instance, if your Install Script or
RemoveScript needs to prompt the user with a slip, you use BuildContext to
create the slip.

Bui ldContext is also useful for creating a view, such as a slip, that is larger than
your application base view.

For details on an easy way to create a template dynamically, see the next section,
"Creating Templates"

Creating Templates

The three immediately preceding techniques require you to create templates. You
can do this using NewtonScript to define a frame, but then you have to remember
which slots to include and what kinds of values they can have. It's easy to make
a mistake.

A simple way of creating a template is to make a user proto in NTK and then use it
as a template. That allows you to take advantage of the slot editors in NTK.

If there are slots whose values you can't compute ahead of time, it doesn't matter.
Leave them out of the user proto, and then at run time, create a frame with those
slots set properly and include a _proto slot pointing to the user proto. A typical
example might be needing to compute the bounds of a view at run time. If you
defined all the static slots in a user proto in the file called dynoTemplate, you
could create the template you need using code like this:

template := {viewBounds: RelBounds(x, y, width, height),

_proto: GetLayout("DynoTemplate"),

}

This really shows off the advantage of a prototype-based object system. You create
a small object "on the fly" and the system uses inheritance to get the rest of the

3-36 Using Views

ARENDI-DEFS00003768

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 121 of 200 PageID #: 28765

CHAP T ER 3

Views

needed values. Your template is only a two-slot object in RAM. The user proto
resides in the package with the rest of your application. The conventional, RAM-
wasting alternative would have been:

template := Clone(PTdynoTemplate);_

template.viewBounds = RelBounds(x, y, width, height);

Note that for creating views arranged in a table, there is a function called
LayoutTable that calculates all the bounds. It returns an array of templates.

Making a Picker View

To create a transient pop-up list view, or picker, you can use the function
PopupMenu. This kind of view pops up on the screen and is a list from which the
user can make a choice by tapping it. As soon as the user chooses an item, the
picker view is closed.

You can also create a picker view by defining a template using the protoPicker
view proto. See "Pickers, Pop-up Views, and Overviews" (page 6-1) for
information on protoPicker and PopupMenu.

Changing the Values in viewFormat

You can change the values in the viewFormat slot of a view without closing and
reopening a view. Use the Setvalue function to update the view with new
settings. For example:

SetValue(myView, `viewFormat, 337)

// 337 = vfFillWhite + vfFrameBlack+vfPen(1)

Setvalue, among other things, calls Dirty if necessary, so you don't need to
call it to do a task that the view system already knows about, such as changing
vi ewBounds or text slots in a view.

Determining Which View Item Is Selected

To determine which view item is selected in a view call Ge tH i 1 i t e 0 f f s e t s.
You must call this function in combination with the HiliteOwner function.
When you call GetHiliteOffsets, it returns an array of arrays. Each item in
the outer array represents selected subviews, as in the following example:

x:= gethiliteoffsets()

#440CA69 [[{#4414991}, 0, 21 ,

[1#4417B01}, 0, 5],

[1#44180291, 1, 3]}

Using Views 3-37

ARENDI-DEFS00003769

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 122 of 200 PageID #: 28766

CHAP T ER 3

Views

Each of the three return values contains three elements:

■ Element 0: the subview that is highlighted. This subview is usually
a clParagraphView, but you need to check to make sure. A
clPolygonview is not returned here even if Hi1iteOwner returns a
clEditView when a clPolygonview child is highlighted.

■ Element 1: the start position of the text found in the text slot of a
clParagraphView.

■ Element 2: the end position of the text found in the text slot of a
clParagraphView.

To verify that your view is a clParagraphView, check the viewClass slot of
the view. The value returned (dynamically) sometimes has a high bit set so you
need to take it into consideration using a mask constant, vcClassMask:

theviews.viewClass=clParagraphView OR
theView.viewClass - vcClassMask=clParagraphView
BAnd(thViews.viewClass, BNot(vcClassMask))=clParagraphView

If agraphic is highlighted and Hiliteowner returns a clEditview, check its
view children for non-nil values of the 'h i l i t e s slot (the ' h i l i t e s slot is for
use in any view but its contents are private).

Complex View Effects

If you have an application that uses ViewQuitscript in numerous places, your
view may close immediately, but to the user the Newton may appear to be hung
during the long calculations. A way to avoid this is to have the view appear open
until the close completes.

You can accomplish this effect in one of two ways. First, put your code in
ViewHidescript instead of ViewClosescript. Second, remove the view's
ViewEf fect and manually force the effect at the end of ViewQuitscript
using the E f f e c t method.

Making Modal Views

A modal view is one that primarily restricts the user to interacting with that view.
All taps outside the modal view are ignored while the modal view is open.

In the interest of good user interface design, you should avoid using modal views
unless they are absolutely necessary. However, there are occasions when you may
need one.

3-38 Using Views

ARENDI-DEFS00003770

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 123 of 200 PageID #: 28767

CHAP T ER 3

Views

Typically, modal views are used for slips. For example, if the user was going to
delete some data in your application, you might want to display a slip asking them
to confirm or cancel the operation. The slip would prevent them from going to
another operation until they provide an answer.

Use AsyncConf irm to create and display a slip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to AsyncConf irm
returns immediately, allowing the currently executing NewtonScript code to finish.
You can also use ModalConf irm but this method causes a separate OS task to be
created and doesn't return until after the slip is closed. It is less efficient and takes
more system overhead.

Once you've created a modal view, you can use the FilterDialog or
ModalDialog to open it. Using FilterDialog is the preferred method as it
returns immediately. As with ModalConf irm, ModalDialog causes a separate
OS task to be created.

Finding the Bounds of Views

The following functions and view methods calculate and return a viewBounds
frame.

Run-time functions:

■ Re1Bounds— calculates the right and bottom values of a view and returns a
bounds frame.

■ SetBounds—returns a frame when the left, top, right, and bottom coordinates
are given.

■ GlobalBox—returns the rectangle, in coordinates, of a specified view.

■ GlobalouterBox—returns the rectangle, in coordinates, of a specified view
including any frame that is drawn around a view.

■ LocalBox—returns a frame containing the view bounds relative to the view itself.

■ MoveBehind— moves a view behind another view.

■ DirtyBox— marks a portion of a view as needing redrawing.

■ GetDrawBox— returns the bounds of an area on the screen that needs redrawing.

Compile-time functions:

■ ButtonBounds—returns a frame when supplied with the width of a button to
be placed in the status bar.

■ PictBounds— finds the width and height of a picture and returns the proper
bounds frame.

Using Views 3-39

ARENDI-DEFS00003771

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 124 of 200 PageID #: 28768

CHAP T ER 3

Views

Animating Views

There are four view methods that perform special animation effects on views. They
are summarized here:

■ Effect performs any animation that can be specified in the viewEf f ect slot.

■ S l i de E f f e c t—slides a whole view or its contents up or down.

■ RevealEf fect—slides part of a view up or down.

■ Delete—crumples a view and tosses it into a trash can.

Note that these animation methods only move bits around on the screen. They do
not change the actual bounds of a view, or do anything to a view that would change
its contents. When you use any of these methods, you are responsible for supplying
another method that actually changes the view bounds or contents. Your method is
called just before the animation occurs.

Dragging a View

Dragging a view means allowing the user to move the view by tapping on it,
holding the pen down, and dragging it to a new location on the screen. To drag a
view, send the view a Drag message.

Dragging and Dropping with Views

Dragging and dropping a view means allowing a user to drag an item and drop it
into another view.

To enable dragging and dropping capability, you must first create a frame that
contains slots that specify how the drop will behave. For example, you specify the
types of objects that can be dropped into a view, if any. Examples include ' text
or ' picture. See the draglnfo parameter to the DragAndDrop method
(page 2-46) in the Newton Programmer's Reference for a complete description
of the slots.

You must set up code to handle a drag and drop in one of two ways: either add
code to create a frame and code to call DragAndDrop's view method in each
source and destination view that accepts a drag and drop message, or you can
create a proto and use it as a template for each view.

Each view must also have the following methods. The system calls these methods
in the order listed.

■ viewGetDropTypesscript— is sent to the destination view. It is called
repeatedly while the pen is down. viewGetDropTypesscript is passed the
current location as the dragged item is moved from its source location to its
destination location. An array of object types is also returned. In this method,
you must return an array of object types that can be accepted by that location.

3-40 Using Views

ARENDI-DEFS00003772

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 125 of 200 PageID #: 28769

CHAP T ER 3

Views

■ GetDropDatascript— is sent to the source view when the destination view
is found.

■ ViewDropscript— is sent to the destination view. You must add the object to
the destination view.

■ ViewDropMovescript— is sent to the source view. It is used when dragging
an object within the same view. ViewDropRemoveScript and
ViewDropscript are not called in this case.

■ ViewDropRemoveScript — is sent to the source view. It is used when
dragging an object from one view to another. You must delete the original from
the source view when the drag completes.

Additional optional methods can also be added. If you do not include these, the
default behavior occurs.

■ ViewDrawDragDataScript — is sent to the source view. It draws the image
that will be dragged. If you don't specify an image, the area inside the rectangle
specified by the DragAndDrop bounds parameter is used.

■ ViewDrawDragBackgroundScript— is sent to the source view. It draws
the image that will appear behind the dragged image.

■ ViewFindTargetscript— is sent to the destination view. It lets the
destination view change the drop point to a different view.

■ ViewDragFeedbackScript— is sent to the destination view. It provides
visual feedback while items are dragged.

■ ViewDropDonescript— is sent to the destination view to tell it that the
object has been dropped.

Scrolling View Contents

There are different methods of scrolling a view, supported by view methods you
call to do the work. Both methods described here operate on the child views of the
view to which you send a scroll message.

One method is used to scroll all the children of a view any incremental amount in
any direction, within the parent view. Use the SetOrigin method to perform this
kind of scrolling. This method changes the view origin by setting the values of the
viewOriginX and viewOriginY slots in the view.

Another kind of scrolling is used for a situation in which there is a parent view
containing a number of child views positioned vertically, one below the other. The
Sync scro11 method provides the ability to scroll the child views up or down the
height of one of the views. This is the kind of scrolling you see on the built-in
Notepad application.

Using Views 3-41

ARENDI-DEFS00003773

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 126 of 200 PageID #: 28770

CHAP T ER 3

Views

In the latter kind of scrolling, the child views are moved within the parent view by
changing their view bounds. Newly visible views will be opened for the first time,
and views which have scrolled completely out-of-view will be closed. The
viewOriginX and viewOriginY slots are not used.

For information about techniques you can use to optimize scrolling so that it
happens as fast as possible, see "Scrolling" (page 3-46), and "Optimizing View
Performance" (page 3-44).

Redirecting Scrolling Messages

You can redirect scrolling messages from the base view to another view. Scrolling
and overview messages are sent to the frontmost view; this is the same view that is
returned if you call GetView ('viewFrontMost) .

The viewFrontMost view is found by looking recursively at views that have
both the vVisible and vApplication bits set in their viewFlags. This
means that you can set the vApplication bit in a descendant of your base view,
and as long as vApplication is set in all of the views in the parent chain for that
view, the scrolling messages will go directly to that view. ThevApplication bit
is not just for base views, despite what the name might suggest.

If your situation is more complex, where the view that needs to be scrolled cannot
have vApplication set or is not a descendant of your base view, you can have the
base view's scrolling scripts call the appropriate scripts in the view you wish scrolled.

Working With View Highlighting

A highlighted view is identified visually by being inverted. That is, black and white
are reversed.

To highlight or unhighlight a view, send the view the Hi 1 i to message.

To highlight or unhighlight a single view from a group, send the view the
HiliteUnique message. (The group is defined as all of the child views of one
parent view.)

To highlight a view when the current pen position is within it, send the view the
Trackxi1ite message. The view is unhighlighted when the pen moves outside
the view bounds. If the view is a button, you can send the view the TrackButton
message to accomplish the same task.

To get the view containing highlighted data, you can call the global function
H i l i t e Owne r; to get the highlighted text use Ge tH i l i t e O f f sets.

To highlight some or all of the text in a paragraph, you can use the Setxilite
method.

3-42 Using Views

ARENDI-DEFS00003774

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 127 of 200 PageID #: 28771

CHAP T ER 3

Views

To determine if a given view is highlighted, check the vselected bit in the
viewFlags. vselected should not be set by your application, but you can test it
to see if a view is currently selected (that is, highlighted.) If
BAND (viewflags, vselected) <> 0 is non-nil, the view is selected.

Creating View Dependencies

You can make one view dependent upon another by using the global function
Tieviews. The dependent view is notified whenever the view it is dependent
on changes.

This dependency relationship is set up outside the normal inheritance hierarchy.
That is, the views don't have to be related to each other in any particular way in the
hierarchy. The views must be able to access each other, and so need references to
each other. Declaring them to a common parent view is one way to accomplish this.

View Synchronization

View synchronization refers to the process of synchronizing the graphic representa-
tion of the view with its internal data description. You need to do this when you
add, delete, or modify the children of a view, in order to update the screen.

Typically you would add or remove elements from the stepChildren array of a
parent view, and then call one of the view synchronization functions to cause the
child views to be redrawn, created, or closed, as appropriate. Remember that if you
need to modify the stepChildren array of a view, the array must be copied into
RAM; you can't modify the array in the view template, since that is usually stored
in ROM or in a package. To ensure that the stepChildren array is in RAM, use
this code:

if not HasSlot(self, 'stepChildren) then

self.stepChildren := Clone(self.stepChildren);

To redraw all the child views of a view, you can send two different messages to a
view: RedoChildren or SyncChildren. These work similarly, except that
RedoChildren closes and reopens all child views, while SyncChildren only
closes obsolete child views and opens new child views.

Laying Out Multiple Child Views

Two different methods are provided to help lay out a view that is a table or consists
of some other group of child views.

To lay out a view containing a table in which each cell is a child view, send the
view the message LayoutTable.

Using Views 3-43

ARENDI-DEFS00003775

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 128 of 200 PageID #: 28772

CHAP T ER 3

Views

To lay out a view containing a vertical column of child views, send the view the
message LayoutColumn.

Optimizing View Performance

Drawing, updating, scrolling, and performing other view operations can account
for a significant amount of time used during the execution of your application.
Here are some techniques that can help speed up the view performance of your
application.

Using Drawing Functions

Use the drawing functions to draw lines, rectangles, polygons, and even text in a
single view, rather than creating these objects as several separate specialized views.
This technique increases drawing performance and reduces the system overhead
used for each view you create. The drawing functions are described in "Drawing
and Graphics" (page 13-1)

View Fill

Many views need no fill color, so you may be inclined to set the fill color to "none"
when you create such a view. However, it's best to fill the view with white, if it
may be individually dirtied and you don't need a transparent view. This increases
the performance of your application because when the system is redrawing the
screen, it doesn't have to update views behind those filled with a solid color such as
white. However, don't fill all views with white, since there is some small overhead
associated with fills; use this technique only if the view is one that is usually dirtied.

Redrawing Views

A view is flagged as dirty (needing redrawing) if you send it the Dirty message,
or as aresult of some other operation, such as calling the Setva1ue function for a
view. All dirty views are redrawn the next time the system event loop executes.
Often this redrawing speed is sufficient since the system event loop usually
executes several times a second (unless a lengthy or slow method is executing).

However, sometimes you want to be able to redraw a view immediately. The fastest
way to update a single view immediately is to send it the Dirty message and then
call the global function Refreshviews. In most cases, only the view you dirtied
will be redrawn.

If you call Refreshviews and there are multiple dirty views, performance can be
significantly slower, depending on where the dirty views are on the screen and how
many other views are between them. In this case, what is redrawn is the rectangle
that is the union of all the dirty views (which might include many other nondirty

3-44 Using Views

ARENDI-DEFS00003776

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 129 of 200 PageID #: 28773

CHAP T ER 3

Views

views). Also, if there are multiple dirty views that are in different view hierarchies,
their closest common ancestor view is redrawn, potentially causing many other
views to be redrawn needlessly.

If you want to dirty and redraw more than one view at a time, it may be faster to
send the Dirty message to the first view, then call Ref reshviews, send the
Dirty message to the second view, then call Ref reshviews, and so on, rather
than just calling Ref reshviews once after all views are dirtied. The performance
is highly dependent on the number of views visible on the screen, the location of
the dirty views, and their positions in the view hierarchy, so it's best to experiment
to find the solution that gives you the best performance.

Memory Usage

Each view that you create has a certain amount of system overhead associated with
it. This overhead exists in the form of frame objects allocated in a reserved area of
system memory called the NewtonScript heap. The amount of space that a frame
occupies is entirely dependent on the complexity and content of the view to which
it corresponds. As more and more views are created, more of the NewtonScript
heap is used, and overall system performance may begin to suffer as a result.

This is not usually an issue with relatively simple applications. However, complex
applications that have dozens of views open simultaneously may cause the system
to slow down. If your application fits this description, try to combine and eliminate
views wherever possible. Try to design your application so that it has as few views
as possible open at once. This can increase system performance.

You should also be aware of some important information regarding hidden and
closed views and the use of memory. This information applies to any view that is
hidden, it has been sent the Hide message, or to any declared view that is closed
but where the view it is declared in is still open. In these cases, the view memory
object for the view still exists, even though the view is not visible on the screen. If
the hidden or closed view contains large data objects, these objects continue to
occupy space in the NewtonScript heap.

You can reduce memory usage in the NewtonScript heap by setting to nil those
slots that contain large objects and that you don't need when the view is hidden or
closed. You can do this in the ViewHideScript or ViewQuitscript methods,
and then reload these slots with data when the view is shown or opened again,
using the ViewShowScript or ViewSetupFormScript methods. Again, the
performance impact of these techniques is highly application-dependent and you
should experiment to see what works best.

Note that this information applies to the base view of your application, since it is
automatically declared in the system root view. As long as it is installed in the
Newton, slots that you set in the base view of your application will continue to
exist, even after the application is closed. If you store large data objects in the base

Using Views 3-45

ARENDI-DEFS00003777

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 130 of 200 PageID #: 28774

CHAP T ER 3

Views

view of your application, you should set to nil those slots that aren't needed when
the application is closed, since they are wasting space in the NewtonScript heap. It
is especially important to set to nil slots that reference soups and cursors, if they
are not needed, since they use relatively much space.

If your application is gathering data from the user that needs to be stored, store the
data in a soup, rather than in slots in one of the application views. Data stored in
soups is protected, while slots in views are transient and will be lost during a
system restart.

For information on declaring views, see "View Instantiation" (page 3-26). For
information on storing data in soups, see Chapter 11, "Data Storage and Retrieval."

Scrolling

Scrolling the contents of a view can sometimes seem slow. Here are some techniques
you can use to improve the speed:

■ Scroll multiple lines at a time, rather than just a single line at a time, when the
user taps a scroll arrow.

■ In general, reduce the number of child views that need to be redrawn, if
possible. For example, make a list that is implemented as several paragraphs
(separate views) into a single paragraph.

■ Set the view fill to white. For more information, see "View Fill" (page 3-44).

3-46 Using Views

ARENDI-DEFS00003778

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 131 of 200 PageID #: 28775

CHAP T ER 3

Views

Summary of Views

Constants

Class Constants

Constant Value

clView 74

clPictureView 76

clEditView 77

clKeyboardView 79

clMonthView 80

clParagraphView 81

clPolygonView 82

clRemoteView 88

clPickView 91

clGaugeView 92

clOutline 105

viewFlags Constants

Constant Value

vNoFlags 0

vVisible 1

vReadOnly 2

vApplication 4

vCalculateBounds 8

vClipping 32

vFloating 64

vWriteProtected 128

vClickable 512

vNoScripts 134217728

Summary of Views 3-47

ARENDI-DEFS00003779

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 132 of 200 PageID #: 28776

CHAP T ER 3

Views

viewFormat Constants

Constant Value
vfNone 0

vfFillWhite 1

vfFillLtGray 2

vfFillGray 3

vfFillDkGray 4

vfFillBlack 5

vfFillCustom 14

vfFrameWhite 16

vfFrameLtGray 32

vfFrameGray 48

vfFrameDkGray 64

vfFrameBlack 80

vfFrameDragger 208

vfFrameCustom 224

vfFrameMatte 240

of Pen (pixels) pixels
256

vfLinesWhite 4096

vfLinesLtGray 8192

vfLinesGray 12288

vfLinesDkGray 16384

vfLinesBlack 20480

vfInset (pixels) pixels
65536

vfLinesCustom 57344

of Shadow (pixels) pixels
262144

vfRound (pixels) pixels
16777216

3-48 Summary of Views

ARENDI-DEFS00003780

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 133 of 200 PageID #: 28777

CHAP T ER 3

Views

vicwTransfcrModc Constants

Constant Value
modeCopy 0

modeOr 1

modeXor 2

modeBic 3

modeNotCopy 4

modeNotOr 5

modeNotXor 6

modeNotBic 7

modeMask 8

vicwEffcct Constants

Constant Bit Flag Integer Value

fxColumns (x) ((x-1) << fxColumnsShift) x-1

fxRows (x) ((x-1) << fxRowsShift) (x-1)*32

fxHStartPhase (1 << fxHStartPhaseShift) 1024

fxVStartPhase (1 << fxVStartPhaseShift) 2048

fxColAltHPhase (1 << fxColAltHPhaseShift) 4096

fxCo1A1tVPhase (1 << fXCO1A1tVPhaseShift) 8192

fxRowAltHPhase (1 << fxRowAltHPhaseShift) 16384

fxRowAltVPhase (1 << fXRowA1tVPhaseShift) 32768

fxMoveH (1 << fxMoveHShift) 65536

fxRight fxMoveH 65536

fxLeft fxHStartPhase+fxMoveH 66560

fxUp fxVStartPhase+fxMoveV 133120

fxDown fxMoveV 131072

fxMoveV (1 << fxMoveVShift)

fxVenetianBlindsEffect

fxRows(8)+fxDown

131072

131296

fxDrawerEffect fxUp 133120

Summary of Views

continued

3-49

ARENDI-DEFS00003781

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 134 of 200 PageID #: 28778

CHAP T ER 3

Views

Constant Bit Flag

fxCheckerboardEffect

Integer Value

fxColumns(8)+fxRows(8)+fxColAltVPhase+ 155879
fxRowAltHPhase+fxDown

fxZoomVerticalEffect

fxCo1umns(1)+fxRows(2)+fxUp+ 165920
fxRowAltVPhase

fxZoomCloseEffect

fxColumns (2) +fxRows (2) +fxUp+fxLeft 199713

fxZoomOpenEffect

fxColumns (2) +fxRows (2) +fxUp+fxLeft+ 236577
fxColAltHPhase+fxRowAltVPhase

fxRevealLine (1 << fxRevealLineShift) 262144

fxPopDownEffect

fxWipe

fxDown+fxRevealLine 393216

1 << fxWipeShift) 524288

fxBarnDoorCloseEffect

fxCo1umns(2)+fxCo1A1tHPhase+
fxRowAltVPhase+fxRight+fxWipe

fxBarnDoorOpenEffect

fxCo1umns(2)+fxCo1A1tHPhase+
fxRowAltVPhase+fxLeft+fxWipe

fxIrisCloseEffect

fxIrisOpenEffect

626689

627713

fxColumns (2) +fxRows (2) +fxUp+fxLeft+ 986145
fxRevealLine+fxWipe

fxColumns (2) +fxRows (2) +fxUp+fxLeft+ 1023009
fxColAltHPhase+fxRowAltVPhase+
fxRevealLine+fxWipe

fxFromEdge (1 << fxFromEdgeShift) 1048576

fxSteps (x) ((num-1) << fxStepsShift) (x--1)*

2097152

fxStepTime(x) ((num) << fxStepTimeShift) x*33554432

3-50 Summary of Views

ARENDI-DEFS00003782

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 135 of 200 PageID #: 28779

CHAP T ER 3

Views

Functions and Methods

Getting References to Views
view:ChildViewFrames()
view: Parent ()
GetRoot()
GetView (symbol)

Displaying, Hiding, and Redrawing Views
view: Open ()
view: Close ()
view: Toggle ()
view: Show ()
view: Hide ()
view: Dirty ()
RefreshViews()

SetValue (view, slotSymbol, value)
view: SyncView ()
viewToMove: MoveBehind (view)

Dynamically Adding Views
AddStepView , (parentView, childTemplate)
Remove StepView (parentView, childView)
AddView (parentView, childTemplate)

BuildContext (template)

Making Modal Views
AsyncConf irm (confirruMessage, buttonList, fn)
Modal Conf i rm (confirruMessage, buttonList)
view.ModalDialog ()
view:FilterDialog()

Setting the Bounds of Views
RelBounds (left, top, width, height)
SetBounds (left, top, right, bottom)
view: GlobalBox ()
view:GlobalOuterBox ()
view: LocalBox ()
viewToMove: MoveBehind(view)
view: DirtyBox (boundsFrame)
view: GetDrawBox ()
ButtonBounds (width)
PictBounds (name, left, top)

Animating Views
view: Effect (effect, offScreen, sound, methodName, methodParameters)
view: SlideEffect (contentOffset, viewOffset, sound, methodName,

methodParameters)

Summary of Views 3-51

ARENDI-DEFS00003783

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 136 of 200 PageID #: 28780

CHAP T ER 3

Views

view: RevealEffect (distance, bounds, sound, methodName,
methodParameters)

view: Delete (methodName, methodParameters)

Dragging a View
view: Drag (unit, dragBounds)

Dragging and Dropping an Item
view: DragAndDrop (unit, bounds, limitBounds, copy, draglnfo)

Scrolling View Contents
view: SetOrigin (originX, origin Y)
view: SyncScroll (What, index, upDown)

Working With View Highlighting
view:Hilite (on)
view:HiliteUnique (on)
view: TrackHi 1 i te (unit)
view: TrackButton (unit)
HiliteOwner()

GetHiliteOffsetS()
view..SetHi1ite(start, end, unique)

Creating View Dependencies
TieViews (main View, dependentView, methodName)

Synchronizing Views
view:RedoChildren()
view:SyncChildren()

Laying Out Multiple Child Views
view: Layout Table (tableDefinition, columnStart, rowStart)
view: Layout Column (childViews, index)

Miscellaneous View Operations
view: SetPopup ()
GetViewFlags (template)
Visible (view)
ViewIsOpen(view) //platform file function

Application-Defined Methods
ViewSetupFormScript()

ViewSetupChildrenScript()

ViewSetupDoneScript()
ViewQuitScript()
ViewPostQuitScript()
ViewShowScript()
ViewHideScript()

ViewDrawScript()
ViewHiliteScript(on)
ViewScrollDownScript()

3-52 Summary of Views

ARENDI-DEFS00003784

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 137 of 200 PageID #: 28781

CHAP T ER 3

Views

ViewScrollUpScript()
ViewOverviewScript()
ViewAddChildScript (child)
ViewChangedScript (slot, view)
ViewDropChildScript (child)
ViewIdleScript()
sourceView:ViewDrawDragDataScript (bounds)

source View: Vi ewDrawDragBackgroundScript (bounds, copy)

destView:ViewGetDropTypesScript (currentPoint)

src: ViewGetDropDataScript (dragType, dragRef)

destView:ViewDragFeedbackScript (draglnfo, currentPoint, show)

source View.'ViewDropApproveScript (destView)

source View: ViewGetDropDataScript (dragType, dragRef)

destView:ViewDropScript (dropType, dropData, dropPt)

source View: ViewDropMoveScript (dragRef, offset, lastDragPt, copy)

destView.'ViewFindTargetScript (draglnfo)

source View:ViewDropRemoveScript (dragRef)

destView.'ViewDropDoneScript ()

Summary of Views 3-53

ARENDI-DEFS00003785

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 138 of 200 PageID #: 28782

ARENDI-DEFS00003786

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 139 of 200 PageID #: 28783Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 139 of 200 PageID #: 28783

AREN D I—DEFSOOOO3786

C H A P T E R 4

NewtApp Applications

NewtApp is a collection of prototypes that work together in an application frame-
work. Using these protos you can quickly construct a full-featured application that
includes functionality like finding and filing.

Whether or not you have written an application for the Newton platform before,
you should read this chapter. If you're new at writing Newton applications, you'll
find that using NewtApp is the best way to start programming for the Newton
platform. If you've created Newton applications before, the process of putting
together a NewtApp application will be familiar, though you'll find the time
required is significantly less.

Newton applications can be created with the NewtApp framework protos, which
are described in this chapter, or by constructing them from protos described in
almost every other chapter of this book. Chapter 2, "Getting Started," gives you an
overview of the process.

Before reading this chapter you should be familiar with the concepts of views,
templates, protos, soups, and stores. However, you don't need to know the details
of the interfaces to these objects before proceeding with NewtApp. Simply read the
first part of the appropriate chapters to get a good overview of the information. These
subjects are covered in Chapter 3, "Views," Chapter 11, "Data Storage and Retrieval,"
Chapter 16, "Find," Chapter 15, "Filing," and Chapter 21, "Routing Interface."

To work with the examples in this chapter, you should also be familiar with
Newton Toolkit (NTK) which is described in the Newton Toolkit User's Guide.

About the NewtApp Framework

You can construct an entire application by using the protos in the NewtApp frame-
work, without recreating a lot of support code; that is, the code necessary for
providing date and text searching, filing, setting up and registering soups, flushing
entries, notifying the system of soup changes, formatting data for display, displaying
views, and handling write-protected cards. You set the values of a prescribed set of
slots, and the framework does the rest.

About the NewtApp Framework 4-1

ARENDI-DEFS00003787

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 140 of 200 PageID #: 28784

CHAP T ER 4

NewtApp Applications

You can create most kinds of applications with the NewtApp framework. If your
application is similar to a data browser or editor, or if it implements an automated
form, you can save yourself a significant amount of time by using the NewtApp
framework.

If you're creating a specialized application (for example, a calculator) or if you
need to display more than one soup at a time, you shouldn't construct it with
NewtApp, but should use the protos described in other chapters of this book. These
chapters include Chapter 3, "Views," Chapter 6, "Pickers, Pop-up Views, and
Overviews," Chapter 7, "Controls and Other Protos," Chapter 8, "Text and Ink
Input and Display," Chapter 13, "Drawing and Graphics," Chapter 16, "Find," and
Chapter 15, "Filing."

Some NewtApp protos work in nonframework applications. For example, you may
want to update an existing application to take advantage of the functionality
provided by the NewtApp slot view protos. Updating requires a bit of retrofitting,
but it can be done. See "Using Slot Views in Non-NewtApp Applications"
(page 4-22) for an example.

When you use the NewtApp framework protos, your user interface is updated as
the protos change with new system software releases, thereby staying consistent
with the latest system changes. In addition, the built-in code that manages system
services for these protos is also automatically updated and maintained as the
system software advances.

A NewtApp-based application can present many different views of your data. For
example, the Show button displays different views of information; the New button
creates new formats for data input.

NewtApp applications use a programming device known as stationery—a
collective term for data definitions (known as dataDefs) and view definitions
(known as viewDefs)—to enable this feature. You should use viewDefs to add
different views of your data and dataDefs to create different data formats. Stationery
is documented in Chapter 5; its use in a NewtApp application is demonstrated in
this chapter.

The NewtApp Protos

When you put the application protos together in a programming environment like
Newton Toolkit and set the values of slots, the framework takes care of the rest.
Your applications automatically take advantage of extensive system management
functionality with little additional work on your part. For example, to include your
application in system-wide date searches, just set a slot in the base view of your
application called dateFindSlot. (See "newtApplication" (page 3-8) in Newton
Programmer's Reference.)

4-2 About the NewtApp Framework

ARENDI-DEFS00003788

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 141 of 200 PageID #: 28785

CHAP T ER 4

NewtApp Applications

The parts of the NewtApp framework are designed to fit together using the
two-part NewtonScript inheritance scheme. Generally speaking, the framework is
constructed so the user interface components of your application (such as views
and buttons) use proto inheritance to make methods and application-state variables,
which are provided by NewtApp (and transparent to you), available to your
application. Parent inheritance implements slots that keep track of system details.

Because the NewtApp framework structure is dependent on both the parent and
proto structure of your application, it requires applications to be constructed in a
fairly predictable way. Children of certain NewtApp framework protos are required
to be particular protos; for example, the application base view must be a
newtApplication proto.

WARNING

When you override system service methods and functions be
careful to use the conditional message send operator (: ?) to avoid
inadvertently overriding built-in functionality; otherwise, your
code will break.

There may also be alternate ways to construct a NewtApp
application, other than those recommended in this chapter and in
Chapter 5, "Stationery." Be forewarned that applications using
alternate construction methods are not guaranteed to work in
the future. A

Figure 4-1 shows the four conceptual layers of NewtApp protos that you use to
construct an application: the application base view, the layout view, the entry view,
and the slot views.

Figure 4-1 The main protos in a NewtApp-based application

 r L

_proto: newtClockShow Bar

_proto: newtApplication
itle: " MyApp",

_proto: newtLayout

_proto: newtEntryView

_proto: newtLabellnputLine
path: 'name.frst,
label: "First",

_proto:
newt

LabellnputLine
path: 'name.last,
label: "Last",

 F_

_proto: newtStatusBar

Base View

Layout View

Entry View

— Slot View

About the NewtApp Framework 4-3

ARENDI-DEFS00003789

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 142 of 200 PageID #: 28786

CHAP T ER 4

NewtApp Applications

Note

This drawing does not depict the protos as they would appear in a
Newton Toolkit layout window.

The basic NewtApp protos are defined here in very general terms. Note that unlike
Figure 4-1, this list includes the proto for storing data, which does not have a visual
representation in a layout file.

■ The newtApplication proto is the application's base view. As in
nonframework applications, the base view proto either contains or has
references to all the other application parts.

■ The newtsoup proto is used to create and manage the data storage soup for
your application; it is not displayed.

■ The newtLayout protos govern the overall look of your data.

■ The newtEntryview protos is the view associated with current soup entry and
is contained in the default layout view. A newtEntryview proto does not
display on the screen, but instead manages operations on a soup.

■ The slot views are a category of protos used to edit and/or display data from the
slots in your application's soup entry frames.

About newtApplication

The newtApplication proto serves as the base view for your application; it
contains all other application protos. The a11S cup s slot of this proto is where you
set up the application soup (based on the newtsoup proto).

The functionality defined in this proto layer manages application-wide functions,
events, and globals. For example, the functionality for opening and registering
soups, dispatching events, and maintaining state information and application
globals is implemented in this proto layer.

Also managed by this proto layer are the application-wide user interface elements.

Application-wide Controls

Several control protos affect the entire application. Because of this, the protos are
generally placed in the newtApplication base view layer. The buttons include
the standard Information and Action buttons, as well as the New and Show
stationery buttons. Stationery buttons, which you can use to tie viewDefs and
dataDefs into your application, are defined in Chapter 5, "Stationery." The
NewtApp controls that should be in the newtApplication base view include the
standard status bar, the folder tab, and the A-Z alphabet tabs.

4-4 About the NewtApp Framework

ARENDI-DEFS00003790

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 143 of 200 PageID #: 28787

CHAP T ER 4

NewtApp Applications

About newtSoup

Application data is stored in persistent structures known as soups in any Newton
application. In a NewtApp application, soup definitions, written in the
newtApp1i cat ion. a11 Soup s slot, must be based on the newt Soup proto.

Within a soup, data is stored in frames known as entries. In turn, entries contain the
individual slots in which you store your application's data. The data in these slots is
accessed by using a programming construct known as a cursor.

The newtSoup proto defines its own version of a set of the data storage objects
and methods. If you are not already familiar with these concepts and objects, you
should read the introductory parts of Chapter 11, "Data Storage and Retrieval,"
before trying to use the newtSoup proto.

The Layout Protos

Each NewtApp application must have two basic views of the application data,
known as layouts, which are:

■ an overview—seen when the Overview button is tapped

■ a default view—seen when the application is first opened

Three kinds of layouts correspond to three basic application styles:

■ the card (see newtLayout)

■ the continuous roll (see newt Rol 1Layout)

■ the page (see newtPageLayout)

Card-based and roll-based applications differ in the number of entries each may
have visible at one time. The built-in Names application is a card-based application.
For this type of application, only one entry is displayed at a time. In contrast, the
built-in Notes application, which is a roll-based application, can have multiple
entries visible at once. They must be separated by a header, that incorporates Action
and Filing buttons to make it obvious to which entry a button action should apply.
Examples of card-based and a roll-based applications are shown in Figure 4-2.

About the NewtApp Framework 4-5

ARENDI-DEFS00003791

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 144 of 200 PageID #: 28788

CHAP T ER 4

NewtApp Applications

Figure 4-2 A roll-based application (left) versus a card-based application

~s~raerriuTfi~ ! Unfiled Notes
Tue 1013 d 0

'f 0 Finished reviewing Newtonseript
 Chapter 2

0 Sent out review espies of
 NewtApp and Stationery ehapten

E9 WEB ME

U Fri 1016 d 0

::'• 0 Date with my husband
 A

11 0 M M

IQ's
Names Dates Extras * Undo Find Assist

QThu 1112

7-57 Thu 11/2 !Unfiled Notes

M 0

• Unfiled Names

aed of gh ij kl Rop qr st uvj-.Tyz

Alice's Restaurant

100 Main St.
Newton, MA 02165

It 617 555-2020
It 617 555-1212 F

q~3 ~41
~

Names Dates Extras * Undo Find Assist

The page-based application is a hybrid of the card-based and roll-based applications.
Like the card-based application, the page-based application shows only one entry
at a time. However, unlike the card-based application but like the roll-based
application, an entry may be longer than a screen's length. The built-in Calls
application, shown in Figure 4-3, is an example of a page-based application.

4-6 About the NewtApp Framework

ARENDI-DEFS00003792

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 145 of 200 PageID #: 28789

CHAP T ER 4

NewtApp Applications

Figure 4-3 Calls is an example of a page-based application

12.20 Wed 10/25 • Unfiled Calls

Call placed

*Name Alice's Restauran

as

Phone{ 1x1,1 ~ 555-2020

•When Wed, OCt 25 11:59 alm

8129195 9:53 am called 510 791 5683

Call Cancelled (Duration 0:25)

10125195 12:02 pm called 408 746--

Left Message (Duration 0.35)

10125195 12:04 pm called 510 226-_

T-F-ft LIP-RSiiAP- (Durtrtinn 0-11)

11 A M CO Place Call I Fal a
416

Names pates Extras I undo Find Assist

The overview protos are also layouts; they include the newtOverLayout and
newtRollOverLayout protos.

The NewtApp framework code that governs soups, scrolling, and all the standard
view functionality, is implemented in the layout protos. A main (default) view
layout and an overview layout must be declared in the al lLayouts slot of the
newtApplication base view. See "newtApplication" (page 3-8) in Newton
Programmer's Reference for details.

Your layout can also control which buttons show on the status bar; you can set the
menuLeftButtons and menuRightBut tons slots of the layout proto, along
with the statusBarSlot of the base view (newtApplication proto). This
control becomes important when more than one entry is shown on the screen, as in
a roll-style application. For example, when multiple entries are showing on one
screen, the Action and Filing buttons would not be on the status bar. Instead, they
would be on the header of each entry, so the entry on which to perform an action is
unambiguous.

About the NewtApp Framework 4-7

ARENDI-DEFS00003793

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 146 of 200 PageID #: 28790

CHAP T ER 4

NewtApp Applications

The Entry View Protos

The entry view is the focal point for operations that happen on one soup entry
frame at a time. These include functions such as displaying and updating data
stored in the entry's slots.

The NewtApp framework has three entry view protos: newtEntryview,
newtRollEntryView, and newtFalseEntryView. The newtEntryView
and newtRollEntryviewprotos are used within aNewtApp application, while
the newtFalseEntryView and newtRollEntryView protos allows you to use
the framework's slot views in an application that is not based on the NewtApp
framework.

The entry view also contains the user interface components that perform operations
on one entry at a time. These components include the header bars, which are used
as divider bars to separate multiple entries displayed simultaneously. This behavior
happens in the Notes application. An example of the Notes application with multiple
entries and header bars is shown in Figure 4-4.

Figure 4-4 Multiple entries visible simultaneously

Sun 9117

A

• Unfiled Notes

(a) 0

E) Sun 9117 0 0

E) Sun 9117 0 0

Sun 9117 010

Names Dates Extras V Undo Find
Iq-

Assist

4-8 About the NewtApp Framework

ARENDI-DEFS00003794

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 147 of 200 PageID #: 28791

CHAP T ER 4

NewtApp Applications

Note that the header bar contains the Action and Filing buttons on its right side.
These buttons appear on the header bar to prevent any ambiguity regarding the
entry to be acted upon by those buttons.

In addition, the header bar contains a Title and icon on the left. When the icon is
tapped, the Information slip appears, as shown in Figure 4-5. This slip is created
from a newt lnfoBox proto and displays an informational string, which it obtains
from the description slot of the dataDef. See Chapter 5, "Stationery," for more
information about dataDefs.

Figure 4-5 An Information slip

5-06 Fri 10113 All Items

[D Fri 10113 Business

I

Title F r i 10/ 13

❑ An loll Entry
Date: 12:14 pm Fri 10113195

Size: 81 bytes

Where: Card 9

It is at the entry view level of your application that the specific slots for accessing
and displaying data in your application soup are set up. The target entry, which is
the entry to be acted on, is set in the entry view. The target view is then created by
the entry view; the view in which the data in that entry appears. Finally, the data
cursor is created by the entry view and is used to access the entries.

The entry view protos also contain important methods that act on individual
entries. These methods include functionality for managing and changing existing
data in the soup, such as the FlushData method.

About the Slot View Protos

The slot view protos retrieve, display, edit, and save changes to any type of data
stored in the slots of your application soup's entry frame.

Unless they are contained by either a newtEntryview or a
newtFalseEntryView, the slot views do not work. This is because the
entry views are responsible for setting references to a specific entry. These
references are used by the slot view to display data.

Slot views exist in two varieties: simple slot views and labelled input-line slot
views. Both kinds of slot views are tailored to display and edit a particular kind of

About the NewtApp Framework 4-9

ARENDI-DEFS00003795

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 148 of 200 PageID #: 28792

CHAP T ER 4

NewtApp Applications

data which they format appropriately. For example, the number views
(newtNumberview and newtRONumberView) format number data (according to
the value of a format slot you set).

The labelled input-line slot view protos provide you with a label, which you may
specify, for the input line. Additionally, the label may include a picker (pop-up menu).

These views also format a particular kind of data. To do this they use a special
NewtApp object known as a filter to specify a value for the f lavor slot of the
labelled input-line slot views.

The filter object essentially acts as a translator between the target data frame (or
more typically, a slot in that frame) and the text field visible to the user. For
example, in the newtDatelnputLine proto, afilter translates the time from a
time-in-minutes value to a string, which is displayed. The filter then translates the
string back to a time-in-minutes value, which is saved in the soup.

You can create custom filters by basing them on the proto newtFilter or on the
other filters documented in Table 3-1 (page 3-60) in the Newton Programmer's
Reference. You can also create custom labelled input-line slot views. See the example
in "Creating a Custom Labelled Input-Line Slot View," beginning on page 4-24.

You can have your label input-line protos remember a list of recent items. To do so,
all you need do is assign a symbol to the ' memory slot of your template. This
symbol must incorporate your developer signature. The system automatically
maintains the list of recent items for your input line. To use the list, you need to
use the same symbol with the AddMemoryItem, AddMemoryItemUnique,
GetMemoryItems, and GetMemorySlot functions, which are described in
Chapter 26, "Utility Functions."

In addition, one special slot view, called the newt SmartNameView proto, allows
the user to choose a name from the soup belonging to the built-in Names application.
It adds the pop-up menu item, Other, to the picker; when the user chooses Other
from the newt SmartNameView proto, it displays the names in the Names
application soup in a system-provided people picker.

After you choose a name and close the view displaying the Names soup, that
name is displayed on the input line. The name is also put into the Picker menu.
A newt SmartNameView proto is shown in Figure 4-6.

4-10 About the NewtApp Framework

ARENDI-DEFS00003796

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 149 of 200 PageID #: 28793

CHAP T ER 4

NewtApp Applications

Figure 4-6 The smart name view and system-provided people picker

1 -08 Wed 10/25 All Items

❑ Fri 10113

Gregory Christie

Bob Anderson

Other

Personal

a '
Names Dates Extras * Undo Find Assist

Stationery

1.16 Wed 10/25 All Items

❑ Fri 10113

Who

Names

A

Personal

• All Names

~cd of gh ij kl op qr st 'u. F_ 7.)yx

' Alice's Restaurant
:.- Anderson, Bob
:: Apple Child Care Center

Bey, Christopher
:. Bunny (Cuts
:::: Burward-Hoy, Anne & Trevor
:: Chambers, Cheryl
:: Chambers, Keith and Wanda
:: Christie, Gregory
:: Concern
:: Conglomerated Credit
:: CRW Financial

;E] Selected Only cm

46 41~

Names Dates Extras Undo Find Assist

Stationery, an extension you can add to any NewtApp application, is tightly
integrated with the NewtApp framework.

Stationery consists of two components that work together: a data definition (dataDef)
and a view definition (viewDef). The dataDef provides a definition of the data to be
used in the stationery. It is registered in conjunction with its display component,
which is a viewDef.

These extensions are available to the user through the New and Show stationery
buttons in the NewtApp application. The names of the viewDefs are displayed in
the Show menu. The New button is used either to propagate the new entry defined
in the dataDef or to display the names of the dataDefs. For more detailed
information, see Chapter 5, "Stationery."

NewtApp Compatibility

The NewtApp framework did not exist prior to version 2.0 of Newton system
software. Applications created with NewtApp protos will not run on previous
versions of the Newton system.

About the NewtApp Framework 4-11

ARENDI-DEFS00003797

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 150 of 200 PageID #: 28794

CHAP T ER 4

NewtApp Applications

Some NewtApp protos are usable in your non-NewtApp applications. For example,
there is a newtStatusBarNoClose proto, see page 3-29 in the Newton
Programmer's Reference, that is unique to NewtApp, which may be used, without
special provision, in a non-NewtApp application.

Other NewtApp protos—specifically the slot views—can function only within a
simulated NewtApp environment. The mechanism for creating this setup is the
newtFalseEntryView proto, described on page 3-44 in the Newton
Programmer's Reference.

The slot views, documented in "Slot View Protos" (page 3-49) in Newton
Programmer's Reference, provide convenient display and data manipulation
functionality that you can use to your advantage in an existing application.

Using NewtApp

The protos in the NewtApp application framework can be used to

■ create an application that has one data soup and can be built as a data viewer
or editor

■ add functionality to non-NewtApp applications

■ create and incorporate stationery extensions

When you use the set of protos that make up the NewtApp application framework,
you can quickly create an application that takes full advantage of the Newton
system services.

In addition, many of the protos may be used in applications built without the
framework. In particular, the slot views, used to display data, have built-in
functionality you may wish to use.

The framework works best when used with stationery to present different views of
and formats for the application's data. The sample application, described in the
following sections uses a single piece of stationery, which consists of a dataDef
with two viewDefs. Stationery is documented fully in Chapter 5, "Stationery."

The sample application is built using the Newton Toolkit (NTK) development envi-
ronment. See Newton Toolkit User's Guide for more information about using NTK.

Constructing a NewtApp Application

The sample "starter" application presented here shows how to get a NewtApp
application underway quickly. You may incorporate this sample code into your
applications without restriction. Although every reasonable effort has been made to
make sure the application is operable, the code is provided "as is." The

4-12 Using NewtApp

ARENDI-DEFS00003798

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 151 of 200 PageID #: 28795

CHAP T ER 4

NewtApp Applications

responsibility for its operation is 100% yours. If you are going to redistribute it,
you must make it clear in your source files that the code descended from
Apple-provided sample code and you have made changes.

The sample is an application for gathering data that supports the system services
routing, filing, and finding. It presents two views of the data to be collected: a
required default view; "IOU Info" (and an alternate "IOU Notes" view); and a
required overview. IOU Info and IOU Notes are stationery and appear as items in
the Show button's picker. In addition, it shows how to implement the application in
the three styles of NewtApp applications: card, page, and roll. See the DTS sample
code for details.

The application starts with three basic NTK layout files:

■ The application base view—a newtApplication proto.

■ A default layout—one of the layout protos.

■ An overview layout—either the newtOverLayout or
newtRollOverLayout proto.

The application also contains the NTK layout files for the stationery, a dataDef,
and its two corresponding viewDefs:

■ iouDataDef

■ iouDefaultViewDef

■ iouNotesViewDef

The creation of these files is shown in Chapter 5, "Stationery."

A NewtApp application must include standard Instal lScript and
Removescript functions. Any icons must be included with a resource file; the
example uses Cardstarter. . rsrc. In the example, there is also a text file,
Def initions . f, in which application globals are defined. Neither the resource
file nor the text file is required.

The basic view slots, viewBounds, viewFlags, and viewJustify,
are discussed in Chapter 3, "Views," and are called out in the samples only
when there is something unusual about them.

Using Application Globals

These samples use several application globals. When you use NTK as your
development system, they are defined in a definitions file, which we named
Definitions.f.

The values of the constants kSuperSymbol and kDataSymbol are set to the
application symbol. They are used to set slots that must have unique identifying
symbols. You are not required to use the application symbol for this purpose, but it
is a good idea, because the application symbol is known to be unique.

Using NewtApp 4-13

ARENDI-DEFS00003799

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 152 of 200 PageID #: 28796

CHAP T ER 4

NewtApp Applications

One other global, unique to this application, is set. It is the constant kAppTitle,
set to the string "Card Starter".

Using newtApplication

This proto serves as the template for the application base view. This section shows
you how to use it to set up the

■ application base view

■ application soup

■ status bar, for layout-level control of the appearance and disappearance of
its buttons.

■ layout slots

■ stationery slots

Setting Up the Application Base View

The application base view template, newtApplication, should contain the basic
application element protos. When you use NTK to create the layout for the
newtApplication proto, you add to it a newtStatusBar proto (the status bar
at the bottom of the application) and a newt ClockshowBar (the folder tab across
the top of the application).

Follow these steps to create the application base view:

1. Create anew layout and draw a newtApplication proto in it.

2. Place a newtStatusBar across the bottom of the layout.

3. Name the newtStatusBar proto status.

4. Place a newt ClockshowBar proto across the top of the layout.

5. Save the layout file as baseview. t.

6. Name the layout frame baseview.

There are more than a dozen slots that need to be set in a newtApplication
proto. Several of the newtApplication slots can be set quickly. Set these slots
as follows:

■ Set the t i t 1 e slot to kAppTi t 1 e. Note that you must define this constant.

■ Set the appSymbol slot to kAppSymbol. This constant is automatically
defined by NTK.

■ Set the appObject slot to ["Item" , "Items

■ Set the appAl l slot to "Al l Items". Note that you'll see this displayed on a
folder tab.

4-14 Using NewtApp

ARENDI-DEFS00003800

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 153 of 200 PageID #: 28797

CHAP T ER 4

NewtApp Applications

■ Optional. Set the statusBarSlot to contain the declared name of the status
bar so layouts can use it to control the buttons displayed on it. Use the symbol
status to set it.

If you wish to override a system message like viewsetupFormscript, which is
called before a view is displayed on the screen, make sure to call the inherited
method at the end of your own viewsetupFormscript method. Also, you may
wish to add a ReOrientToScreen method to the newtApplication base
view so your application can rotate to a landscape display. This message is sent to
each child of the root view when the screen orientation is changed. See
ReOrientToScreen (page 2-73) in Newton Programmer's Reference for details.

Finally, be sure to add the layout file baseview. t to your proiect and mark it as
the application base view.

Tying Layouts Into the Main Application

The allLayouts slot in the newtApplication proto is a frame that contains
symbols for the application's layout files. It must contain two slots, named
default and overview, that refer to the two layout files used for those
respective views.

The section "Using the Layout Protos," beginning on page 4-16, shows how to use
the NewtApp layout protos to construct these files. Assume they are named Default
Layout and Overview Layout for the purpose of setting the references to them in
the a11 Layout s slot. The following code segment sets the a11 Layout s slot
appropriately:

allLayouts:= {

default: GetLayout("Default Layout"),

overview: GetLayout("overview Layout"),

}

Setting Up the Application Soup

The newtApplication proto uses the values in its all Soups slot to setup and
register your soup with the system.

The framework also looks in the allS cup s slot to get the appropriate
soup information for each layout. It does this by matching the value of
the layout's mastersoupSlot to the name of aframe contained in the
newtApplication. allSoups slot. See the section "Using the Layout Protos,"
following this one.

This application contains only one soup, though a NewtApp application can
contain more than one. Each soup defined for a NewtApp application must be
based on the newtsoup proto. The slots soupName, soupindices, and
soupQuery must be defined within the allSoups soup definition frame.

Using NewtApp 4-15

ARENDI-DEFS00003801

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 154 of 200 PageID #: 28798

CHAP T ER 4

NewtApp Applications

Use code similar to the following example to set the all Soups slot:

allSoups:=

{ IOUSoup: {_proto: newtSoup,

soupName: "IOU:PIEDTS",

soupIndices: [

{structure: slot,

path: 'title,

type: 'string},

{structure: slot,

path: 'timeStamp,

type: lint},

{ structure: slot,

path: 'labels,

type: 'tags }

],

soupQuery: {type: index, indexPath:

'timeStamp},

soupDescr: "The IOU soup.",

defaultDataType: 'jBasicCard:sigj,}

}

Using the Layout Protos

Each NewtApp Application requires exactly two layouts: a default layout,
displayed when the application is opened, and an overview layout, displayed when
the Overview button is tapped.

The NewtApp framework layout proto you choose for your default view, sets up
your application as either a card-, roll-, or page-style application.

Unique slots in the layout protos include:

■ masterSoupSlot

■ forceNewEntry

The masterSoupSlot is the most important. It contains a reference to the
application soup in the newtApplication. allSoups slot, from which the
layout gets its data.

■ The forceNewEntry slot allows your application to deal gracefully with
the situation created when someone opens a folder that is empty. If the
forceNewEntry slot is set to true in that situation, an entry is automatically
created. Otherwise, an alert slip announces that there are no items in this list,

4-16 Using NewtApp

ARENDI-DEFS00003802

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 155 of 200 PageID #: 28799

CHAP T ER 4

NewtApp Applications

where items is replaced by the value of the appObi ect slot set in the
newtApplication base view. An example of this message from the Names
application is shown in Figure 4-7.

Figure 4-7 The message resulting from a nil value for f orceNewEntry

There are no Names in this folder.

Using newtOverLayout

The slots you must set for an overview are shown in the Overview Layout browser
in Figure 4-8.

Figure 4-8 The overview slots

Layout browser Ej Overview Di
newtOverLaq out: overviewLaq outQ centerTarget

foroeNewEntry
rnasterSoupSlot
rnenuLeftButtons
rnenuRi-htButtons
name
viewBounds
viewFormat
viewjustify
—proto

Specific - Methods Attributes

overviewLay out -name

"Overview" never used, but required.

I I lal

Follow these steps to create the required overview layout:

1. Open a new layout window and drag out a newtOverLayout proto.

2. Name it Overview Layout.

Using NewtApp 4-17

ARENDI-DEFS00003803

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 156 of 200 PageID #: 28800

CHAP T ER 4

NewtApp Applications

3. Set the mastersoupSlot to the symbol I IOUSoup. This correlates to the
name of the soup as it is set up in the newtApplication . allsoups slot.
See "Setting Up the Application Soup," beginning on page 4-15.

4. Add the forceNewEntry slot. Leave it with the default value true.
This causes a new entry to be created if a user tries to open an empty folder.

5. Add a viewFormat slot and set the Fill value to white. This makes the data
it displays look better and keeps anything from inadvertently showing through.
In addition, the white fill improves the speed of the display and enhances view
performance.

6. Set the name slot to a string like "Overview,.

7. Add a centerTarget slot and set it to true. This assures that the entries are
centered for display in the Overview.

Controlling Menu Buttons From Layouts

Once the name of the status bar is declared to the application base view (in the
newtApplication. statusBarSlot), you may control the appearance and
disappearance of buttons on the status bar, from the layout view, as needed.

To do this, you must specify which buttons should appear on the status bar by
using the slots menuLeftButtons and menuRightBut tons. Each of these is
an array that must contain the name of the button proto(s) that you wish to appear
on the menu bar's left and right sides. When you use these arrays, the button protos
listed in them are automatically placed correctly on the status bar, according to the
current human interface guidelines.

To appropriately set up the appearance of the status bar for display in the Overview,
first add the optional slots menuLeftButtons and menuRightBut tons. The
buttons you name in these slots replace the menu bar buttons from the main layout,
since the statusBarSlot is set there.

Set the menuLeftButtons slot to an array that includes the protos for the
Information and New buttons. These buttons are automatically laid out on the
status bar, going from left to right.

menuLeftButtons:=[

newtInfoButton,

newtNewStationeryButton,

Set the menuRightBut tons slot to an array that includes the protos for the
Action and Filing buttons. These buttons are automatically laid out on the status
bar from right to left.

4-18 Using NewtApp

ARENDI-DEFS00003804

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 157 of 200 PageID #: 28801

CHAP T ER 4

NewtApp Applications

menuRightButtons:=[

newtActionButton,

newtFilingButton,

Be sure to add the Overview Layout template file to your NTK Project window.

Creating the Default Layout

This is the view you see upon opening the application. Since it will eventually
contain views that display the data, it needs to know about the application soup.

The mastersoupSlot identifies the application soup to the layout proto. The
symbol in this slot must match the name of a soup declared in the al lsoups slot
of the newtApplication base view, which was IOUsoup. In the layout it is
used as a symbol to set the value of the mastersoupSlot.

Follow these steps to create the required default layout:

1. Open a new layout window in NTK and drag out a newtLayout proto.

2. Name it default.

3. Set the mastersoupSlot to the symbol , iousoup. This correlates to the
name of the soup as it is set up in the newtApplication . allsoups slot.
See "Setting Up the Application Soup," beginning on page 4-15.

4. Add a forceNewEntry slot. Leave the default value true. This causes a new
entry to be created when a user tries to open an empty folder.

5. Set the viewFormat slot's Fill value to White. This makes the data it displays
look better and keeps anything from inadvertently showing through. In addition,
the white fill improves the speed of the display and enhances view performance.

Be sure to add the default template file to your NTK Project window.

Using Entry Views

Entry views are used as containers for the slot views that display data from the
slots in the target entry of the application soup. They are also the containers for the
different header bars. Note that entry views are not necessary in the overview
layout, since the overview layout displays items as shapes.

The entry view sets values needed to locate the data to be displayed in the slot
views it will contain. These values include references to the data cursor (the
dataCursor slot), the soup entry that contains the stored data (the target slot),
and the view to display data (the targetview slot).

Using NewtApp 4-19

ARENDI-DEFS00003805

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 158 of 200 PageID #: 28802

CHAP T ER 4

NewtApp Applications

Follow these steps to ready your application for the slot views:

1. Drag out a newtEntryView proto on top of the newtLayout proto.

2. Optional. Name it theEntry.

There are no unusual slots to set in an entry view. Therefore, you are ready to add
the header and slot view protos.

3. Drag out a newt Ent ryPageHeader across the top of the newtEntryView.

4. Under the header, drag out a newtstationeryview proto that covers the rest
of the entry view. This special view is not be visible; its function is to provide a
bounding box for the viewDef that will eventually be displayed.

The layout should look like the screen shot shown in Figure 4-9.

Figure 4-9 The information button and picker.

About
Help
Prefs

Registering DataDefs and ViewDefs

Several slots in the newtApplication base view enable you to identify the
stationery in your application. These slots include the a1lViewDef s,
allDataDefs, and superSymbol slots.

Note

To see how to create the stationery used as part of this application,
consult Chapter 5, "Stationery." The allDataDefs and
allViewDefs slots, which are discussed here, contain
references to those dataDefs and viewDefs.

The allDataDefs and allViewDefs slots are assigned references to the NTK
layout files containing your dataDefs and viewDefs. Once this is done, the
NewtApp framework automatically registers your stationery with the Newton
system registry when your application is installed on a Newton device.

Each allDataDefs and allViewDefs slot contains frames that are required to
contain slots with identical names, to indicate the dataDefs and viewDefs that work
together. (A dataDef must be registered with its set of viewDefs because dataDefs
use viewDefs to display their data.)

In the al lData.Def s slot is a frame containing a reference to the NTK layout
template for a single dataDef. In the frame within the a 11 V i ewD e f s slot is the

4-20 Using NewtApp

ARENDI-DEFS00003806

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 159 of 200 PageID #: 28803

CHAP T ER 4

NewtApp Applications

frame containing slots with references to all the viewDef layout templates that
work with that dataDef.

The recommended way to name the corresponding allDataDef s and
allViewDef s slots is to set the slot names to the data symbol constant,
as shown in the following code examples.

Set the allDataDef s slot to return a frame with references to all the application's
dataDefs, as follows:

result H;

result.(kDataSymbol) := GetLayout("IOUDataDef");

// result.(kData2Symbol) := ... to add a 2nd DataDef
result;

Set the allViewDef s slot to return a frame with references to all the application's
viewDefs, in a parallel manner, as shown in the following code:

result H;

result.(kDataSymbol) := {

default: GetLayout("IOUDefaultViewDef"),

notes: GetLayout("IOUNotesViewDef"),

iouPrintFormat: GetLayout("IOUPrintFormat"),

// Use for routing (beaming, mailing, transports):

frameFormat: {_proto: protoFrameFormat},

Use to add a 2nd DataDef:

result.(kData2Symbol) := I ... }

result;

A NewtApp application only accepts stationery when a dataDef has a
superSymbol with avalue matching the value of the newtAppl i cat ion
base view's superSymbol slot. For this reason you want the value of the
superSymbol slot to be a unique symbol. This sample application uses
the constant ksupersymbol, which is set to the application symbol
' I IOU: PIEDTS 1 , to set the superSymbol slot.

Using the Required NewtApp Install and Remove Scripts

An InstallScript function and RemoveScript function are required to
register your NewtApp application with the system for the various system services.
These scripts are boilerplate functions you should copy unaltered.

Using NewtApp 4-21

ARENDI-DEFS00003807

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 160 of 200 PageID #: 28804

CHAP T ER 4

NewtApp Applications

You should create a text file, which you save as Install &Remove . f, into which
to copy the functions:

InstallScript := func(partFrame)

begin

partFrame.removeFrame

(partFrame.theForm):NewtInstallScript(partFrame.theForm);

end;

RemoveScript := func(partFrame)

begin

(partFrame.removeFrame):NewtRemoveScript(removeFrame);

end;

This file should be the last one processed when your application is built. (In NTK
this means that it should appear at the bottom of the Project file list.)

If you have included the stationery files built in Chapter 5, "Stationery," you may
now build, download, and run your NewtApp application.

Using Slot Views in Non-NewtApp Applications

The NewtApp slot view protos have a lot of functionality built into them which you
may want to use in a non-NewtApp application. You can do this by keeping your
existing application base view, removing the existing entry view layer and its
contents, replacing it with a newtFalseEntryView proto, and placing the slot
views in the newtFalseEntryView.

The following requirements must be satisfied for slot views to work outside a
NewtApp application:

■ The parent of the newtFalseEntryView must have the following slots:

❑ target

❑ targetView

■ The slot views must be contained in a newtFalseEntryView proto.

■ The newtFalseEntryView must receive a Retarget message whenever
entries are changed.

Modifying the Base View

This discussion assumes that you already have a base view set up as part of your
NTK project and that a newtFal seEntryvi ew will be added to it later. If that is
the case, you already have slots set with specifications for a soup name, soup
indices, a soup query, and a soup cursor (among numerous others.)

4-22 Using NewtApp

ARENDI-DEFS00003808

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 161 of 200 PageID #: 28805

CHAP T ER 4

NewtApp Applications

Certain slots must be added to these base view slots for your application to be able
to utilize the false entry view and the slot views. First, you must be sure to add a
target slot and targetview slot, so that the false entry view can set them when
an entry is changed. Second, you should include a method that sends the
Retarget message to the false entry view when an entry is changed. As an
example, you may wish to implement the following method, or one like it:

baseView.DoReTargeting := func()
theFalseEntryView:Retarget()

There are several places in your code where this message could be sent. For
instance, if your application scrolls through entries, you should send the
DoReTargeting message, defined above, to ViewScrollUpScript
and ViewscrollDownscript. Following is an example of a
ViewScrollUpScript method that scrolls through soup entries:

func ()
begin

EntryChange(target);
cardSoupCursor:Prev();
:ResetTarget();
:DoRetargeting();

end

Other places where you may want to send the Retarget message include a
delete action method, a ViewsetupDonescript method (which executes
immediately before a view is displayed or redisplayed), or even the
ButtonClickscript method of abutton that generates new entries and
thus changes the soup and its display.

Using a False Entry View

The example used here, in which the newtFalseEntryview is implemented, is
a non-NewtApp application that supports the use of slot views. If you want to adopt
slot views into an existing application, you must use newtFalseEntryview.

Once you have an application base view set up, you may add the following slots to
yournewtFalseEntryView:

■ Add a data.CursorSlot and set it to the symbol ' cardSoupCursor. This
symbol should match a slot defined in your application base view. The slot may
be omitted if your base application view's cursor slot is set to the default name
dataCursor.

■ Add a datasoupSlot and set it to the symbol ' cardsoup. This symbol
should match a slot defined in your application base view. The slot may be

Using NewtApp 4-23

ARENDI-DEFS00003809

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 162 of 200 PageID #: 28806

CHAP T ER 4

NewtApp Applications

omitted if your base application view's soup slot is set to the default name
dataSoup.

■ Add a soupQueryslot and set it to the symbol ' cardSoupQuerySpec.
This symbol should match a slot defined in your application base view. The slot
may be omitted if your base application view's soup query slot is set to the
default name soupQuery.

Finally, you should make sure to declare the newtFalseEntryView to the
application base view so the base view can send Retarget messages to the false
entry view when data is changed.

For more information about the newtFalseEntryView see the Newton
Programmer's Reference.

Creating a Custom Labelled Input-Line Slot View

You may find situations in which you need to create a custom slot view to get one
that does exactly what your application requires. For example, the NewtApp
framework does not yet contain a slot view that can display a picture. This is
possible after you know more about how the slot views work.

In general, a slot view performs the following functions:

■ Target data; that is, updates a soup entry from its contents and vice versa.

■ Format data by using a filter.

■ Allow you to place (`jam") the data from another soup entry in this slot view. Of
the built-in slot views, the newtSmartName proto does this.

All slot views assume a soup entry has been set by the parent view as the value of
the target slot. The target slot contains areference to the soup entry. The soup
entry contains the slot with the data to be displayed in a given slot view and stores
the new data.

Slot views also require a path slot which refers to the specific slot within the
target entry. The path expression must lead to a slot that holds the correct
kind of data for a given slot view. For instance, the path slot of a
newt ROTextDateview proto must refer to a slot in an entry that contain a
integer date.

In the label input-line slot view protos, formatting is accomplished by selecting the
correct NewtApp data filter as the value of the slot view's f favor slot. Note that
some of the NewtApp data filters also specify a particular system picker which will
be available when you use the popup option for your slot view. See the DTS
sample code to see how to create a new newt proto.

4-24 Using NewtApp

ARENDI-DEFS00003810

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 163 of 200 PageID #: 28807

CHAP T ER 4

NewtApp Applications

Summary of the NewtApp Framework

Required Code

Required InstallScript

InstallScript := func(partFrame)

begin

partFrame.removeFrame := (partFrame.theForm):

NewtInstallScript(partFrame.theForm);

end;

Required RemoveScript

RemoveScript := func(partFrame)

begin

(partFrame.removeFrame):NewtRemoveScript(removeFrame);

end;

Protos

newtSoup

myNewtSoup := {

_proto: newtSoup, // NewtApp soup proto

soupName: "MyApp:SIG", // a string unique to your app.

soupIndices: [

soupQuery: {

//soup particulars, may vary

{structure: 'slot, //describing a slot
path: title, // named "title" which

type: 'string}, //contains a string

], // more descriptions may follow

// a soup query

type: index,

indexPath: ItimeStamp}, // slot to use as index

soupDescr:"The Widget soup."//string describing the soup
defaultDataType:'soupType, //type for your soup entry

Summary of the NewtApp Framework 4-25

ARENDI-DEFS00003811

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 164 of 200 PageID #: 28808

CHAP T ER 4

NewtApp Applications

AddEntry: //Adds the entry to the specified store

func (entry, store) ...

AdoptEntry: // Adds entry to the application soup while

func (entry, type) ... // preserving dataDef entry slots

CreateBlankEntry: // Returns a blank entry

func() ...

DeleteEntry: // Removes an entry from its soup

func (entry) ...

DuplicateEntry: // Clones and returns entry

func (entry) ...

DoneWithSoup: // Unregisters soup changes and soup

func (appSymbol) ...

FillNewSoup: // Called by MakeSoup to add soup

func() ...// values to a new soup

MakeSoup: // Used by the newtApplication proto

func (appSymbol) ... // to return and register a new soup

GetCursor: // Returns the cursor

func ()

SetupCursor: // Sets the cursor to an entry in the

func (querySpec) ... // master soup

Query: // Performs a query on a newtSoup

func (querySpec) ...

GetAlias: // Returns an entry alias.

func (entry) ...

GetCursorPosition: // Returns an entry alias.

func() ...

GoToAlias: // Returns entry referenced by the alias.

func (alias) ...

}

4-26 Summary of the NewtApp Framework

ARENDI-DEFS00003812

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 165 of 200 PageID #: 28809

CHAP T ER 4

NewtApp Applications

newtApplication

myNewtAppBaseView := {

_proto: newtapplication, // Application base view proto

appSymbol: 'IIOU:DTSI //Unique application symbol
title: "Roll Starter" // A string naming the app

appObject: ["Ox", "Oxen"]// Array with singular and
// plural strings describing application's data

appAll: "AR Notes" // Displayed in folder tab picker

allSoups:

}

{

allLayouts:

//Frame defining all known soups for app

mySoup: {
proto: newtSoup,

{

}

}

Frame with references to layout files;

both default and overview required.

default: GetLayout ("DefaultLayoutFile") ,
overview: GetLayout (" OverviewLayoutFile") ,

scrollingEndBehavior:'beepAndWrap // How scrolling is

handled at end of view; can also be 'wrap,'stop,or

'beepAndStop.

scrollingUpBehavior: 'bottom //Either 'top or 'bottom

statusBarSlot : ' myStatusBar //Declare name to base so
//layouts may send messages

al lDataDef s : { ' j appName: SIG I : GetLayout ("yourDataDeP) }
//Frame with dataDef symbols as slot names. Slot

// values are references to dataDef layout files.

allViewDefs:

{ ' j appName: SIG I : { default : GetLayout ("yourViewDeP') } }
Frame with dataDef symbols as slot names. Slot

values are references to frames of viewDef

layout files.

superSymbol: I jappName:SIGI //Unique symbol identifying
//superSet of application's soups

doCardRouting:true or 'onlyCardRouting //Enables

// filing and routing

Summary of the NewtApp Framework 4-27

ARENDI-DEFS00003813

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 166 of 200 PageID #: 28810

CHAP T ER 4

NewtApp Applications

dateFindSlot : pathExpression // Enables dateFind for your

// app. Path must lead to a slot containing a date.

routeScripts: //Contains default Delete and Duplicate

//route scripts.

labelsFilter: //Set dynamically for filing settings

layout: // Set to the current layout

newtAppBase: //Set dynamically to identify, for

//instance, view to be closed when close box tapped

retargetChain: // Dynamically set array of views

to update.

targetView: // Dynamically set to the view where

target soup entry is displayed

target: // Set to the soup entry to be displayed

AddEntryFromStationery: //Returns blank entry with class

func (stationerySymbol) // slot set to stationerySymbol

AdoptEntryFromStationery: // Returns entry with all slots

func (adoptee, stationerySymbol, store) ... // from adopted frame

//and class slot set to stationerySymbol

AdoptSoupEntryFromStationery: //Same as above plus

func (adoptee, stationerySymbol, store, soup) ... // you specify

//soup & store

FolderChanged: //Changes folder tab to new value

func (soupName, oldFolder, newFolder)

FilterChanged: //Updates folder labels for each soup

func() //in the allSoups frame.

ChainIn: //Adds views needing to be notified for

func (chainSymbol) //retargeting to chainSymbol array.

ChainOut: //Removes views from

func (chainSymbol) / / chainSymbol array.

GetTarget:

func ()

GetTargetView:

func ()

//Returns current soup entry.

//Returns view in which the

// target entry is displayed.

DateFind: // Default DateFind method defined in framework.

Set dateFindSlot in base view to enable it.

func (date, findType, results, scope, fndContext)

4-28 Summary of the NewtApp Framework

ARENDI-DEFS00003814

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 167 of 200 PageID #: 28811

CHAP T ER 4

NewtApp Applications

Find: // Default Find method as defined in framework.

func (text, results, scope, findContext) ...

ShowLayout:// Switches display to specified layout.

func (layout) ...

NewtDeleteScript:// Deletes entry.

func (entry, view) ... // Referenced in routeScripts array

NewtDuplicateScript:// Duplicates entry.

func (entry, view) ... // Referenced in routeScripts array

GetAppState:// Gets app preferences, sets app, & returns

func()... // prefs. Override to add own app prefs.

GetDefaultState:// Sets default app preferences.

func()... // Override to add own app prefs.

SaveAppState:// Sets default app preferences.

func()... // Override to add own app prefs.

newtlnfoButton

infoButton : _ { // The standard "i" info button
_proto: newtInfoButton,// Place proto in menuLeftButtons

DoInfoHelp: //Opens online help book

func () .

DoInfoAbout: //Either opens or closes an

func().... // About view

DoInfoPrefs: //Either opens or closes a

func() } // Preferences view

newtAction Button

actionButton : _ { // the standard action button
_proto: newtActionButton } // place in menuRightButtons

newtFilingButton

filingButton :_ { // the standard filing button

_proto: newtFilingButton } // place in menuRightButtons

Summary of the NewtApp Framework 4-29

ARENDI-DEFS00003815

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 168 of 200 PageID #: 28812

CHAP T ER 4

NewtApp Applications

newtAZTabs

myAZTab: = {
_proto: newtAZTabs,

PickActionScript:

func (letter) ... }

newtFolderTab

// the standard A-Z tabs

//Default definition keys to

// 'indexPath of allSoups soup query

myFolderTab: = { // the plain folder tab
_proto: newtFolderTab }

newtClockFolderTab

myClockFolderTab: = { // digital clock and folder tabs
_proto: newtClockFolderTab }

newtStatusBarNoC lose

aStatusBarNoOose: = { // status bar with no close box
_proto: newtStatusBarNoClose,

menuLeftButtons: [], //array of button protos
// laid out left to right

menuRightButtons: [], // array of button protos laid out
right to left

newtStatusBar

aStatusBar: = { // status bar with close box
_proto: newtStatusBar

menuLeftButtons: [], //array of button protos
// laid out left to right

menuRightButtons: [], // array of button protos laid out
right to left }

newtFloatingBar

aFloatingBar: = { // status bar with close box
_proto: newtFloatingBar,

array of button protosmenuButtons: [], //

newtAboutView

}

anAboutView: = { // The about view
_proto: newtAboutView }

4-30 Summary of the NewtApp Framework

ARENDI-DEFS00003816

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 169 of 200 PageID #: 28813

CHAP T ER 4

NewtApp Applications

newtPrefsView

aPrefsView: _ { // The preferences view
_proto: newtPrefsView }

newtLayout

aBasicLayout: _ { // The basic layout view
_proto: newtLayout,

name: I' ll , // Optional.

masterSoupSlot: 'mainSoup, // Required.
// Symbol referring to soup from allSoups slot

forceNewEntry: true, //Forces new entry when empty

//folder opened.

menuRightButtons:[], //Replaces slot in status bar

menuLeftButtons:[], //Replaces slot in status bar

dataSoup: 'soupSymbol,//Set to soup for this layout

dataCursor: // Set to top visible entry; main cursor

FlushData:

func () ,

//Flushes all children's entries

NewTarget: //Utility resets origin and

func(), // resets screen

ReTarget: //Sets the dataCursor slot and resets

func (setViews) , // screen if setViews is true

ScrollCursor: //Moves cursor delta entries and resets it.
func (delta) ,

SetUpCursor: //Sets cursor and returns entry.

func () ,

Scroller: //Moves numAndDirection entries. Scrolls
func (numAndDirection) //up if numAndDirection <0.

ViewScrollDownScript: // Calls scroller with the

func().... //value of 1.

ViewScrollUpScript: // Calls scroller with the

func().... //value of -1.

DoRetarget(): // Calls the "right" retarget

func () .

}

Summary of the NewtApp Framework 4-31

ARENDI-DEFS00003817

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 170 of 200 PageID #: 28814

CHAP T ER 4

NewtApp Applications

newtRollLayout

myRollLayout:= { // Dynamically lays out child views
_proto: newtRollLayout, // using protoChild as default

protoChild: GetLayout ("DefaultEntryView") , // Default view
name: I' ll , // Optional.

masterSoupSlot: 'mainSoup, // Required.
// Symbol referring to soup from allSoups slot

forceNewEntry: true, //Forces new entry when empty

//folder opened.

menuRightButtons:[], //Replaces slot in status bar

menuLeftButtons:[], //Replaces slot in status bar

dataSoup: 'soupSymbol,//Set to soup for this layout
dataCursor: // Set to top visible entry; main cursor

// All newtLayout methods are inherited.

}

newtPageLayout

myPageLayout:= { // Dynamically lays out child views
_proto: newtPageLayout, // using protoChild as default

protoChild: GetLayout ("DefaultEntryView") , // Default view
name: I' ll , // Optional.

masterSoupSlot: 'mainSoup, // Required.
// Symbol referring to soup from allSoups slot

forceNewEntry: true, //Forces new entry when empty

//folder opened.

menuRightButtons:[], //Replaces slot in status bar

menuLeftButtons:[], //Replaces slot in status bar

dataSoup: 'soupSymbol,//Set to soup for this layout
dataCursor: // Set to top visible entry; main cursor

// All newtLayout methods are inherited.

}

newtOverLayout

myOverLayout: = { // Overview for page and card type layout
_proto: newtOverLayout

centerTarget: nil, // True centers entry in overview

masterSoupSlot: 'mainSoup, // Required.
// Symbol referring to soup from allSoups slot

name: I' ll , // Required but not used.

4-32 Summary of the NewtApp Framework

ARENDI-DEFS00003818

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 171 of 200 PageID #: 28815

CHAP T ER 4

NewtApp Applications

forceNewEntry: true, //Creates blank entry for layout

menuRightButtons:[], //Replaces slot in status bar

menuLeftButtons:[], //Replaces slot in status bar

nothingCheckable: nil, //True suppresses checkboxes

Abstract: //Returns shapes for items in overviews

func (targetEntry, bbox) //Override to extract text
GetTargetInfo: //Returns frame with target information

func (targetType)
HitItem: //Called when overview item is tapped.

func (index, x, y)

// All newtLayout methods are inherited.

}

newtRollOverLayout

myOverLayout:= { // Overview for roll-type application
_proto: newtRollOverLayout //Same as newtOverLayout

centerTarget: nil, // True centers entry in overview

masterSoupSlot: 'mainSoup, // Required.
// Symbol referring to soup from allSoups slot

name: I' ll , // Required but not used.

menuRightButtons:[], //Replaces slot in status bar

menuLeftButtons:[], //Replaces slot in status bar

forceNewEntry: true, //Creates blank entry for layout

nothingCheckable: nil, //True suppresses checkboxes

Abstract: //Returns shapes for items in overviews

func (targetEntry, bbox) //Override to extract text
GetTargetInfo: //Returns frame with target information

func (targetType)
HitItem: //Called when overview item is tapped.

func (index, x, y)

// All newtLayout methods are inherited.

}

newtEntryView

anEntryView: = { // Invisible container for slot views
_proto: newtEntryView

entryChanged: //Set to true for flushing

entryDirtied: //Set to true if flush occurred

target: //Set to entry for display

currentDataDef: //Set to current dataDef

Summary of the NewtApp Framework 4-33

ARENDI-DEFS00003819

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 172 of 200 PageID #: 28816

CHAP T ER 4

NewtApp Applications

currentViewDef: //Set to current viewDef

currentStatView: //Set to current context of viewDef

StartFlush: // Starts timer that flushes entry

func () .

EndFlush: // Called when flush timer fires

func () .

EntryCool: // Is target read-only? True report

func (report) //displays write-protected message

JamFromEntry: // Finds children's jamFromEntry and sends

func (otherEntry) // message if found, then retargets
Retarget: // Changes stationery's display then sends

func() //message on to child views

DoRetarget: // Calls the "right" retarget

func() //

}

newtFalseEntryView

aFalseEntryView: _ J// Use as container for slot views in
_proto: newtFalseEntryView, // non-NewtApp applications.

targetSlot: 'target, //Parent needs to have slots

dataCursorSlot: 'dataCursor, //with names

targetSlot: 'dataSoup, //that match each of

dataSoup: 'soupQuery // these symbols.

newtFalseEntryView inherits all newtEntryView methods.

}

newtRollEntryView

aRo11EntryView:= I// Entry view for paper roll-style apps
_proto: newtRollEntryView, //stationery required.

bottomlessHeight: kEntryViewHeight, //Optional

Inherits slots and methods from newtEntryView.

}

newtEntryPageHeader

aPageHeader:= { // Header bar for card or page-style apps
_proto: newtEntryPageHeader,

// contains no additional slots or methods

}

4-34 Summary of the NewtApp Framework

ARENDI-DEFS00003820

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 173 of 200 PageID #: 28817

CHAP T ER 4

NewtApp Applications

newtEntryRollHeader

aRoMeader:_ { // Header/divider bar for page or
roll-style apps

_proto: newtEntryRollHeader,

hasFiling: true // Nil is no filing or action buttons

isResizable: true // Nil is no drag resizing

}

newtEntryViewAction Button

anEntryAcdonButton: = J// Action button to use on headers
// and within entry views

proto: newtEntryViewActionButton

}

newtEntryViewFilingButton

anEntryFMhgButton:= {// Filing button to use on headers
// and within entry views

_proto: newtEntryViewFilingButton

}

newtlnfoBox

anlnfoBox:= { // Floating view displayed when header
_proto: newtInfoBox, //icon tapped

icon: // Optional, default provided

description: II I',// Displayed in view next to icon.

}

newtROTextView

read0nlyTexMew:= {// All simple slot views based on this
_proto: newtROTextView,

path: 'pathExpr,// Text stored and retrieved from here

styles: nil,// Plain text.

tabs: nil,// Tabs not enabled.

jamSlot: 'jamPathExpr,// New path for JamFromEntry.

TextScript: // Returns a text representation of data

func().... //

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr)

}

Summary of the NewtApp Framework 4-35

ARENDI-DEFS00003821

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 174 of 200 PageID #: 28818

CHAP T ER 4

NewtApp Applications

newtTextView

editableTextView:= {// This is the editable text view
_proto: newtTextView,

path: 'pathExpr,// Text stored/retrieved from here

styles: nil,// Plain text.

tabs: nil,// Tabs not enabled.

jamSlot: 'jamPathExpr,// New path for JamFromEntry.

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtRONumView

readOnlyNumberView: _ J// Read-only number view
_proto: newtRONumView,

path: 'pathExpr,// Numbers stored/retrieved from here

format: %.10g,// For 10-place decimal; you may change

integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtNumView

editableNumberView: _ J// Editable number view
_proto: newtNumView,

path: 'pathExpr,// Numbers stored/retrieved from here

format: %.10g,// For 10-place decimal; you may change

integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtROTextDateView

readOnlyTextDateView:= {// Read-only text and date view. One
_proto: newtROTextDateView, //format slot must be non-nil

path: 'pathExpr,// Data stored/retrieved from here

4-36 Summary of the NewtApp Framework

ARENDI-DEFS00003822

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 175 of 200 PageID #: 28819

CHAP T ER 4

NewtApp Applications

longFormat: yearMonthDayStrSpec,// for LongDateStr

shortFormat: nil, // for ShortDateStr function

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtTextDateView

editableTextDateView:= {// Editable text and date view. One
_proto: newtTextDateView, //format slot must be non-nil

path: 'pathExpr,// Data stored/retrieved from here

longFormat: yearMonthDayStrSpec,// for LongDateStr

shortFormat: nil, // for ShortDateStr function

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtROTextTimeView

readOnlyTextTimeView:= {// Displays and formats time text
_proto: newtROTextTimeView,

path: 'pathExpr,// Data stored/retrieved from here

format: ShortTimeStrSpec,// for TimeStr function

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPatbExpr if not nil
func (jamPatbExpr) //

}

newtTextTi m eView

editableTextTime View:= J// Editable time text
_proto: newtTextTimeView,

path: 'pathExpr,// Data stored/retrieved from here

format: ShortTimeStrSpec,// for TimeStr function

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

Summary of the NewtApp Framework 4-37

ARENDI-DEFS00003823

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 176 of 200 PageID #: 28820

CHAP T ER 4

NewtApp Applications

newtROTextPhoneView

readOnlyTextPhoneView:= {// Displays phone numbers
_proto: newtROTextPhoneView,

path: 'pathExpr,// Data stored/retrieved from here

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtTextPhoneView

EditableTextPhoneView:= {// Displays editable phone numbers
_proto: newtTextPhoneView,

path: 'pathExpr,// Data stored/retrieved from here

TextScript: // Returns a text representation of data

func()....

JamFromEntry: // Retargets to jamPathExpr if not nil
func (jamPathExpr) //

}

newtAreaCodeLine

protonewtAreaCodeLine : = {

proto: protonewtAreaCodeLine,

flavor: newtPhoneFilter

access: 'query

label: string //text to display in the highlight window
path: 'pathExpr,// Data stored/retrieved from here

}

newtAreaCode Phone Line

protonewtAreaCodeLine : = {

proto: protonewtAreaCodeLine,

flavor: newtPhoneFilter

access: 'query

label: string //text to display in the highlight window
path: 'pathExpr,// Data stored/retrieved from here

}

4-38 Summary of the NewtApp Framework

ARENDI-DEFS00003824

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 177 of 200 PageID #: 28821

CHAP T ER 4

NewtApp Applications

newtROEditView

readOnlyEditView: _ { // A text display view, which

may have scrollers

_proto: newtROEditView,

optionFlags: kNoOptions, // disables scroller

//kHasScrollersOption enables scroller

doCaret: true, //caret is autoset

viewLineSpacing: 28,

path: 'pathExpr,// Data stored/retrieved from here

ScrolltoWord: // Finds words, scrolls to it, and high-

func (words, hilite) // lights it (if hilite is true)

}

newteditView

editView:= { // A text edit view, which

may have scrollers

_proto: newtEditView,

optionFlags: kNoOptions, // disables scroller

//kHasScrollersOption enables scroller

doCaret: true, //caret is autoset

viewLineSpacing: 28,

path: 'pathExpr,// Data stored/retrieved from here

ScrolltoWord: // Finds words, scrolls to it, and high-

func (words, hilite) // lights it (if hilite is true)

}

newtCheckBox

checkBoxView: _ { // A checkbox

_proto: newtCheckBox

assert: true,// Data stored/retrieved from here

negate: nil,// Data stored/retrieved from here

path: 'pathExpr,// Data stored/retrieved from here

ViewSetupForm: // Is target.(path)= assert?

func()....

ValueChanged: // Changes target.(path) value to its

func().... // opposite either true or false

}

Summary of the NewtApp Framework 4-39

ARENDI-DEFS00003825

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 178 of 200 PageID #: 28822

CHAP T ER 4

NewtApp Applications

newtStationeryView

stationeryView: _ { // Used as bounding box and container
view for viewDef

proto: newtStationeryView

}

newtEntryLocked Icon

entryLockedkon:= { HShows lock if slot is on locked media
_proto: newtEntryLockedIcon

icon: nil,// Can also be: lockedIcon

Retarget : // displays either lock or unlocked icon

func()....

SetIcon: // Changes target.(path) value to its

func().... // opposite either true or false

}

newtProtoLine

basiclnputbne: = { // Base for input line protos
_proto: newtProtoLine,

label: 11,// Text for input line label

labelCommands: [I' ll , 11 11 ,],// Picker options

curLabelCommand: 1,// Integer for current command

usePopup: true,// When true with labelCommands array

// picker is enabled

path: 'pathExpr,// Data stored/retrieved from here

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtFilter,// Don't change

memory: nil, // most recent picker choices

ChangePopup: // change picker items before they display

func (item, entry) //
UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtLabellnputLine

a LabellnputLine: = { // Labelled input line for text
_proto: newtLabelInputLine,

label: 11,// Text for input line label

labelCommands: [I' ll , 11 11 ,],// Picker options

curLabelCommand: integer,// Integer for current command

4-40 Summary of the NewtApp Framework

ARENDI-DEFS00003826

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 179 of 200 PageID #: 28823

CHAP T ER 4

NewtApp Applications

usePopup: true,// When true with labelCommands array

// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtTextFilter,//

memory: nil, // most recent picker choices

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //
UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtRO Label InputLine

a LabellnputLine: _ { // Labelled display line for text
_proto: newtROLabelInputLine,

label: 11,// Text for input line label

flavor: newtTextFilter,//

memory: nil, // most recent picker choices

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //
UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtLabelNum InputLine

aLabelNumberinputLine: _ { // Labelled number input line
_proto: newtLabelNumInputLine,

label: 11,// Text for input line label

labelCommands: [I' ll , 11,1 ,// Picker options

curLabe 1 Command: integer,// Integer for current command
usePopup: true,// When true with labelCommands array

// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtNumberFilter,//

memory: nil, // most recent picker choices

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //
UpdateText: // Used with Undo to update text to new text

func (newText) //
}

Summary of the NewtApp Framework 4-41

ARENDI-DEFS00003827

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 180 of 200 PageID #: 28824

CHAP T ER 4

NewtApp Applications

newtROLabelNum InputLine

aDisp1ayLabe1NumberinputLine:= {// Labelled number display line

_proto: newtROLabelNumInputLine,

label: 11,// Text for input line label

flavor: newtNumberFilter,//

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText) //

}

newtLabelDatelnputLine

editab1eLabe1NumberinputLine:= {// Labelled date input line

_proto: newtLabelDateInputLine,

label: 11,// Text for input line label

labelCommands: [I' ll , 11,1 ,// Picker options

curLabe 1 Command: integer,// Integer for current command

memory: nil, // most recent picker choices

usePopup: true,// When true with labelCommands array

// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtDateFilter,//

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //

UpdateText: // Used with Undo to update text to new text

func (newText) //

}

newtRO Label Date lnputLine

displayLabelDateLine: _ { // Labelled number display line

_proto: newtROLabelDateInputLine,

label: 11,// Text for input line label

flavor: newtDateFilter,// Don't change

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText) //

}

newtLabelSimpleDateInputLine

editab1eLabe1S1mp1eDateLine: _ J// Labelled date display line
// accepts dates like 9/15 or 9/15/95

4-42 Summary of the NewtApp Framework

ARENDI-DEFS00003828

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 181 of 200 PageID #: 28825

CHAP T ER 4

NewtApp Applications

_proto: newtLabelSimpleDateInputLine,

label: 11,// Text for input line label

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtSimpleDateFilter,//

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtNRLabel Date InputLine

pickerLabelDatelnputLine: _ { // Input through DatePopup picker
_proto: newtNRLabelDateInputLine,

label: 11,// Text for input line label

access: 'pickOnly,// Could be 'readOnly

flavor: newtDateFilter,//

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtROLabelTimelnputLine

displayLabelTimeLine: _ { // Labelled time display line
_proto: newtROLabelTimeInputLine,

label: 11,// Text for input line label

flavor: newtTimeFilter,// Don't change

path: 'pathExpr,// Data stored/retrieved from here

}

newtLabelTimelnputLine

aLabe1T1melnputbne: _ { // Labelled time input line
_proto: newtLabelTimeInputLine,

label: 11,// Text for input line label

labelCommands: [I' ll , 11,1 ,// Picker options

curLabe 1 Command: integer,// Integer for current command
usePopup: true,// When true with labelCommands array

// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtTimeFilter,// Don't change

memory: nil, // most recent picker choices

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //

Summary of the NewtApp Framework 4-43

ARENDI-DEFS00003829

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 182 of 200 PageID #: 28826

CHAP T ER 4

NewtApp Applications

UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtNRLabelTimeInputLine

pickerLabelTimelnputLine: = { // Input through TimePopup picker
_proto: newtNRLabelTimeInputLine,

label: 11,// Text for input line label

access: 'pickOnly,// Could be 'readOnly

flavor: newtTimeFilter,// Don't change

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtLabelPhonelnputLine

aLabelPhonelnputLine: = { // Labelled phone input line
_proto: newtLabelPhoneInputLine,

label: 11,// Text for input line label

usePopup: true,// When true with labelCommands array

// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtPhoneFilter,// Don't change

memory: nil, // most recent picker choices

path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display

func (item, entry) //
UpdateText: // Used with Undo to update text to new text

func (newText) //
}

newtSmartNameView

smartNamebne:= { // protoPeoplePicker Input
_proto: newtSmartNameView, // from Names soup

label: 11,// Text for input line label

access: 'readWrite,// Could be 'readOnly or 'pickOnly

flavor: newtSmartNameFilter,// Don't change

path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text

func (newText)
}

4-44 Summary of the NewtApp Framework

ARENDI-DEFS00003830

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 183 of 200 PageID #: 28827

C H A P T E R 5

Stationery

Stationery, which consists of new data formats and different views of your data,
may be built into an application or added as an extension. Once incorporated, these
data formats and views are available through the pickers (pop-up menus) of the
New and Show buttons.

Stationery works best when incorporated into a NewtApp application. It is part of the
NewtApp framework and is tightly integrated into its structures. If you are building
applications using the NewtApp framework, you'll probably want to read this chapter.

Before you begin you should already be familiar with the concepts documented in
Chapter 4, "NewtApp Applications," as well as the concepts of views and templates,
soups and stores, and system services like finding, filing, and routing. These subjects
are covered in Chapter 3, "Views," Chapter 11, "Data Storage and Retrieval,"
Chapter 16, "Find," Chapter 15, "Filing," and Chapter 21, "Routing Interface."

The examples in this chapter use the Newton Toolkit (NTK) development
environment. Therefore, you should also be familiar with NTK before you try the
examples. Consult Newton Toolkit User's Guide for information about NTK.

This chapter describes:

■ how to create stationery and tie it into an application

■ how to create, register, and install an extension

■ the stationery protos, methods, and global functions

About Stationery

Stationery application extensions provide different ways of structuring data and
various ways to view that data. To add stationery to your application, you must
create a data definition, also called a dataDef, and an adjunct view definition, also
called a viewDef. Both of the stationery components are created as view templates,
though only the viewDef displays as a view at run time. Stationery always consists
of at least one dataDef which has one or more viewDefs associated with it.

About Stationery 5-1

ARENDI-DEFS00003831

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 184 of 200 PageID #: 28828

CHAPTER 5

Stationery

A dataDef is based on the newtstationery proto and is used to create
alternative data structures. The dataDef contains slots that define, describe, and
identify its data structures. It also contains a slot, called supersymbol, that
identifies the application into which its data entries are to be subsumed. It also
contains a name slot where the string that names the dataDef is placed. This is the
name that appears in the New picker. Note that each of the items shown in the New
menu of the Notes application in Figure 5-1 is a dataDef name.

The viewDef is based on any general view proto, depending upon the
characteristics you wish to impart, but must have a specified set of slots added to it.
(For more information about the slots required in viewDefs and dataDefs, see the
"Stationery Reference" chapter in Newton Programmer's Reference.) The viewDef
is the view template you design as the input and display device for your data. It is
the component of stationery that imparts the "look and feel' for that part of the
application. Each dataDef must have at least one viewDef defined to display it,
though it can have several.

You may include or add stationery to any NewtApp application or any application
that already uses stationery. The stationery components you create appear as items
in the pickers (pop-up menus) of the New and Show buttons.

The Stationery Buttons

The stationery buttons are necessary to integrate stationery definitions with
an application. They must be in the application which is to display your
stationery components. They are defined as part of the NewtApp framework
and work only when included in a NewtApp application. (You can use the
newt S tat i one ryPopupButton proto to create your own non-
NewtApp buttons.)

The New button offers new data formats generated from dataDefs. For example,
the New button in the built-in Calls application creates one new data entry form by
default; if it contained more dataDefs there would be a New picker available. The
New button of the built-in Notes application offers a picker whose choices create a
new Note, Checklist, or Outline format for entering notes. The example used in this
chapter extends the built-in Notes application by adding the dataDef item IOU to
the New menu, as shown in Figure 5-1.

5-2 About Stationery

ARENDI-DEFS00003832

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 185 of 200 PageID #: 28829

CHAPTER 5

Stationery

Figure 5-1 The IOU extension in the New picker

Note

Checklist

❑ IOU

Outline

When you choose IOU from the New picker, an IOU entry is displayed, as shown
in Figure 5-2.

Figure 5-2 The IOU extension to the Notes application

10:14 Sat 1 O/28 • Unfiled Notes

❑ Sat 10128

♦Who= Gregory Christie

M 0

How Much:

♦ Date Due:

Due Time=

11 A M =
1

k
Names Dates Extras Undo Find Assist

The Show button offers different views for the display of application data. These
are generated by the viewDefs defined for an application. For example, the choices
in the Show button of the built-in Names application include a Card and All Info
view of the data. These views appear as shown in Figure 5-3.

About Stationery 5-3

ARENDI-DEFS00003833

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 186 of 200 PageID #: 28830

CHAPTER 5

Stationery

Figure 5-3 The Show menu presents different views of application data

• Un filed Na me s

07d of gN ij kl Rop qr st uv yz

n Alice's Restaurant

• 100 Main St.
Newton, MA 02 165

• $ 617 555-2420
• $ 617 555-12 12 F
• Birthday: 12-25-04
Anniversary: 5-12-34
Family: Joe, Jimmy, Janis

• Card Style:

91 =*Add *Show
Card
VAll Info

Stationery Registration

0

1.25 Mon 10/30 • Unfiled Notes

Mon 10/30

0

(a) 0

• Unfiled Names

07d of gh ij kl op qr st uv yx

Alice's Restaurant

100 Main St.
Newton, MA 02165

$ 617 555-2020
$ 617 555-1212 F

VCard
All Info

Your stationery, which may be built as part of an application or outside of an
application (as an NTK auto part), must be registered with the system when an
application is installed and unregistered when an application is uninstalled.
DataDef and viewDef registry functions coordinate those stationery parts by
registering the viewDef with its dataDef symbol, as well as its view template. The
dataDef registry function adds its view templates to the system registry.

When it is part of a NewtApp application, stationery registration is done
automatically—after you set slots with the necessary symbols. If you create your
stationery outside of a NewtApp application, you must register (and unregister)
your stationery manually by using the global functions provided for that
purpose (RegData.Def, UnRegData.Def, RegisterViewDef, and
UnRegisterViewDef) in the Installscript and RemoveScript functions
in your application part.

Once stationery is registered, applications can make use of those dataDefs whose
superSymbol slot matches the application's superSymbol slot.

5-4 About Stationery

ARENDI-DEFS00003834

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 187 of 200 PageID #: 28831

CHAPTER 5

Stationery

Getting Information about Stationery

By using the appropriate global function, you can get information about all the
dataDefs and viewDefs that have been registered and thus are part of the system
registry. These functions include GetDefs, GetDataDefs, GetAppDataDefs,
GetViewDefs, and so on. For details on these functions, see Newton
Programmer's Reference.

You can also obtain application-specific stationery information. This enables
applications that are registered for stationery to be extended by other developers.

Compatibility Information

The stationery feature and programming interface is new in Newton OS version
2.0. It is not supported on earlier system versions.

Using Stationery

Stationery allows you to:

■ Create discrete data definitions and view definitions.

■ Extend your own and other applications.

■ Create print formats.

Designing Stationery

Whether you use stationery in an application or an auto part, it is important to keep
the data and view definitions as discrete as possible. Encapsulating them, by
keeping all references confined to the code in the data or view definition, will make
them maximally reusable.

You should keep in mind that these extensions may be used in any number of
future programming situations that you cannot foresee. If your stationery was
created for an application (which you may have written at the same time), resist
any and all urges to make references to structures contained in that application,
thereby "hard-wiring" it to depend on that application. In addition, you should
provide public interfaces to any values you want to share outside the dataDef.

If your stationery is designed for a NewtApp, the stationery soup entries, which are
defined in the dataDef component of stationery, are adopted into the soup of a
NewtApp application (via the AdoptEntry method) so that your stationery's slots
are added to those already defined in the main application. This allows the
stationery and the host application to have discrete soup structures. See the
description of AdoptEntry (page 3-5) in Newton Programmer's Reference.

Using Stationery 5-5

ARENDI-DEFS00003835

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 188 of 200 PageID #: 28832

CHAPTER 5

Stationery

The dataDef component of your stationery should use a FillNewEntry method
to define its own discrete soup entry structure. Note that it is your responsibility to
set a c 1 a s s slot within each entry. The value of the c 1 a s s slot must match the
dataDef symbol and is used by the system when routing the entry (via faxing,
mailing, beaming, printing, and so on). An example of how to use Fi11NewEntry
follows.

Using FillNewEntry

You use the FillNewEntry method in your dataDef to create an entry structure
that is tailored to your data. This approach is recommended when your stationery is
implemented as part of a NewtApp application.

The Fi11NewEntry method works in conjunction with the NewtApp
framework's newtsoup . CreateBlankEntry method. The Fi11NewEntry
method takes a new entry, as returned by the CreateBlankEntry method, as a
parameter. This is done with a CreateBlankEntry implementation put in the
newtApplication. allSoups slot of your NewtApp application, as shown in
the following example:

CreateBlankEntry: func()

begin

local newEntry Clone({class:nil,

viewStationery: nil,

title: nil,

timeStamp: nil,

height: 176});

newEntry.title ShortDate(time());

newEntry.timeStamp := time();

newEntry;

end;

This new entry contains an entry template. In the following code example, that
new entry is passed as aparameter to the Fi11NewEntry method, which is
implemented in the stationery's dataDef. FillNewEntry adds a slot named
kDatasymbol, which contains an entry template for the stationery's data
definition. It then adds a class slot to the new entry, which is set to the same
constant (kDatasymbol). A viewStationery slot is then added and set to the
same constant (only needed for vestigial compatibility with the Notes application).
Finally, it adds a value to the dueDate slot of the kDatasymbol entry.

FillNewEntry: func(newEntry)

begin

newEntry (kDatasymbol) _

Clone({who: "A Name",

howMuch: 42,

dueDate: nil});

5-6 Using Stationery

ARENDI-DEFS00003836

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 189 of 200 PageID #: 28833

CHAPTER 5

Stationery

newEntry.class := kDataSymbol;

newEntry.viewStationery := kDataSymbol;

newEntry.(kDataSymbol).dueDate:=time();

newEntry;

end;

Extending the Notes Application

You may extend an existing application, such as the built-in Notes application, by
adding your own stationery. This is done by building and downloading an NTK
auto part that defines your stationery extensions.

The sample project used to illustrate many of the following sections consists of
these files, in the processing order shown:

■ ExtendNotes.rsrc

■ ExtendNotes Definitions.f

■ iouDataDef

■ iouDefaultViewDef

■ iouPrintFormat

■ ExtendNotes Install & Remove.f

Of these, the iouDataDef, iouDefaultViewDef, and ExtendNotes
Install & Remove. f files are used in the examples in this chapter. The
resource file (ExtendNotes. rsrc) contains the icon that is displayed next to the
dataDef name in the New menu (as shown in Figure 5-1). The definitions file
(ExtendNotes Definitions. f) is the file in which the constants, some of
which are used in examples, are defined. Finally, the iouPrintFormat file
defines a print format for the stationery.

Determining the SuperSymbol of the Host

Using stationery requires the presence of a matching supersymbol slot in both
the host application and the dataDef component of your stationery. The value in the
supersymbol slot is used to link a dataDef to an application.

If you do not know the value of the supersymbol slot for an application that is
installed on your Newton device, you may use the global function GetDef s to see
all the dataDefs that are registered by the system.

Using Stationery 5-7

ARENDI-DEFS00003837

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 190 of 200 PageID #: 28834

CHAPTER 5

Stationery

A call to the global function GetDef s in the NTK Inspector window returns a

series of frames describing dataDefs that have been registered with the system. An

excerpt of the output from a call made in the Inspector window follows.

GetDefs('dataDef,nil,nil)

#44150A9 [{_proto: {@451},

symbol: paperroll,

name: "Note",

superSymbol: notes,

description: "Note",

icon: {@717},

version: 1,

metadata: NIL,

MakeNewEntry: <function, 0 arg(s) #46938D>,

StringExtract: <function, 2 arg(s) #4693AD>,

textScript: <function, 2 arg(s) #4693CD>},

{_proto: {@451},

symbol: calllog,

name: "Calls",

superSymbol: callapp,

description: "Phone Message",

icon: {@718},

version: 1,

metadata: NIL,

taskSlip: PhoneHome:Newtonl ,

MakeNewEntry: <function, 0 arg(s) #47F9A9>,

StringExtract: <function, 2 arg(s) #47F969>,

textScript: <function, 2 arg(s) #47F989>1,

...I

GetDefsand other stationery functions are documented in Newton Programmer's
Reference.

Creating a DataDef

You create a dataDef by basing it on a newtstationery proto. In NTK it is

created as a layout file, even though it is never displayed. The following steps lead

you through the creation of the dataDef that is used to extend the built-in Notes

application.

Note again that the data definition is adopted into an application's soup only when

the application and dataDef have matching values in their superSymbol slots.

For instance, when you are building a dataDef as an extension to the Notes

application, as we are in this example, your dataDef must have ' notes as the

value of its superSymbol slot.

5-8 Using Stationery

ARENDI-DEFS00003838

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 191 of 200 PageID #: 28835

CHAPTER 5

Stationery

The following example uses the constant kSuperSymbol as the value of the
superSymbol slot. It is defined as follows in the Extend Notes
Definition. f file:

constant kSuperSymbol := 'notes;// Note's SuperSymbol

Once you have created an NTK layout, named the template iouDataDef, and
saved the file under the name iouDataDef, you may set the slots of the
iouDataDef as follows:

■ Set name to " IOU 11 . This shows up in the New button's picker.

■ Set superSymbol to the constant kSuperSymbol. This stationery can
only be used by an application that has a matching value in the
newtApplication base view's superSymbol slot.

■ Set description to "An IOU entry". This string shows up in the
information box that appears when the user taps the icon on the left side of
the header, as shown in Figure 4-5 (page 4-9).

■ Set symbol to kDataSymbol.

■ Set version to 1. This is an arbitrary stationery version number set at your
discretion.

■ Remove the vi ewBounds slot; it's not needed since this object is not a view.

There are a number of methods defined within the newtstationery proto that
you should override for your data type.

Defining DataDef Methods

The three methods MakeNewEntry, StringExtract, and TextScript are
illustrated in this section. You use the method MakeNewEntry to define the soup
entries for your dataDef, the method StringExtract is required by NewtApp
overview scripts to return text for display in the overview; and TextScript is
called by the routing interface to return a text description of your data.

The MakeNewEntry method returns a complete entry frame which will be added
to some (possibly unknown) application soup. You should use MakeNewEntry,
instead of the Fi l lNewEntry method (which works in conjunction with the
NewtApp framework's newtSoup . CreateBlankEntry), when your stationery
is being defined as an auto part.

The example of MakeNewEntry used here defines the constant
kEntryTemplate as a frame in which to define all the generic parts of the entry.

All the specific parts of the data definition are kept in a nested frame that has the
name of the data class symbol, kDataSymbol. By keeping the specific definitions
of your data grouped in a single nested frame and accessible by the class of the
data, you are assuring that your code will be reusable in other applications.

Using Stationery 5-9

ARENDI-DEFS00003839

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 192 of 200 PageID #: 28836

CHAPTER 5

Stationery

// Generic entry definition:

DefConst('kEntryTemplate, {

class: kDataSymbol,

viewStationery: kDataSymbol,// vestigial; for Notes

// compatibility

title: nil,

timeStamp: nil,

height: 176, For page and paper roll-type apps

this should be the same as height

slot in dataDef and viewDefHeight

slot in viewDef (if present)

});

// This facilitates writing viewDefs that can be reused

kEntryTemplate.(kDataSymbol)

who: nil,

howMuch: 0,

dueDate: nil,

};

{

MakeNewEntry: func()

begin

local theNewEntry DeepClone(kEntryTemplate);

theNewEntry.title ShortDate(time());

theNewEntry.timeStamp := time();

theNewEntry.(kDataSymbol).dueDate := time();

theNewEntry;

end;

The StringExtract method is called when an overview is generated and is
expected to return a one or two-line description of the data. Here is an example of a
StringExtract implementation:

StringExtract: func(item,numLines)

begin

if numLines = 1 then

return item.title

else

return item.title&&item.(kDataSymbol).who;

end;

The Textscript method is called by the routing interface to get a text version of
an entire entry. It differs from StringExtract in that it returns the text of the
item, rather than a description.

5-10 Using Stationery

ARENDI-DEFS00003840

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 193 of 200 PageID #: 28837

CHAPTER 5

Stationery

Here is an example:

TextScript: func(item,target)

begin

item.text :_ "IOU\n" & target.(kDataSymbol).who

&& "owes me" &&

NumberStr(target.(kDataSymbol).howMuch);

item.text;

end;

Creating ViewDefs

ViewDefs may be based on any of the generic view protos. You could use, for
instance, a c lvi ew, which has very little functionality. Or, if you wanted a picture
to display behind your data, you could base your viewDef on a c1Pictureview.

Routing and printing formats are also implemented as viewDefs. You can learn
more about using special protos to create routing and printing formats in Chapter 21,
"Routing Interface."

Note that these are just a few examples of views you may use as a base view in
your viewDef. Your viewDef will function as expected, so long as the required slots
are set and the resulting view template is registered, either in the al lviewDef s
slot of the newtApplication base view or through the Instaliscript
function of an auto part.

You may create the viewDef for the auto part that extends the Notes application by
using a clview as the base view. Create an NTK view template, named
iouDefaultviewDef, in which a clview fills the entire drawing area. Then
save the view template file (using the Save As menu item) as
iouDefaultViewDef.

You can now set the slots as follows:

■ Set the name slot to " IOU Info". This string appears in the Show button, if
there is one.

■ Set the symbol slot to ' default. At least one of the viewDefs associated with
a dataDef must have ' default as the value of its symbol slot.

■ Set the type slot to ' viewer. The three system-defined types for viewDefs are
,editor, 'viewer and ' route Format. You may define others as you wish.

■ Set the viewDef Height slot to 176 (of the four slot views that will be added
to this viewDef, each is 34 pixels high plus an 8-pixel separation between them
and an 8-pixel border at the bottom).

■ Set the viewBounds slot to 0, 0, 0, 0.

■ Set the vi ewiust i f slot to horizontal parent full relative and vertical parent
full relative.

Using Stationery 5-11

ARENDI-DEFS00003841

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 194 of 200 PageID #: 28838

CHAPTER 5

Stationery

Add the protos that will display the data and labels to the working application. The
protos used here include:

■ newtSmartNameView

■ newtLabelNumInputLine

■ newtLabelDateInputLine

■ newtLabelTimeInputLine

You can read more about these protos in Chapter 4, "NewtApp Applications." They
should be aligned as shown in Figure 5-4.

Figure 5-4 The default viewDef view template

~
f-lylt

rnewd Ae Vumrrga krw

newttabe~at~rrgxrtt ne

me w tt ab~e 7 7 irn~e tamer tt ins

Set the slots of the newt SmartNameView as follows:

■ Set the label slot to " Who °.

■ Set the path slotto [pathExpr : kDataSymbol , 'who]. The path slot
must evaluate to a slot in your data entry frame that contains a name (or a place
to store one).

■ Set the usePopup slot to true.

5-12 Using Stationery

ARENDI-DEFS00003842

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 195 of 200 PageID #: 28839

CHAPTER 5

Stationery

Set the slots of the newtLabelNuminputLine as follows:

■ Set the label slot to "How Much".

■ Set the path slot to [pathExpr : kDataSymbol, ' howMuch] . This path
slot must evaluate to a slot in your data entry frame that contains a number (or a
place to store one).

Add a newtLabelDatelnputLine at the top of the default template so that it
is aligned as shown. Then set the slots as follows:

■ Set the label slot to "Date Due".

■ Set the path slot to [pathExpr : kDataSymbol, 'dueDate] . This path
slot must evaluate to a slot in your data entry frame that contains a date (or a
place to store one).

Add a newtLabelTimelnputLine at the top of the default template so that it
is aligned as shown. Then set the slots as follows:

■ Set the label slot to "Due Time".

■ Set the path slot to [pathExpr : kDataSymbol, ' dueDate] . This path
must evaluate to a slot in your data entry frame that contains a time (or a place
to store one).

Registering Stationery for an Auto Part

When your stationery is implemented in an auto part, you are responsible for
registering and removing it. The following code samples show InstallScript
and RemoveScript functions that use the appropriate global functions to register
and unregister the viewDef and dataDef files in your auto part as it is installed and
removed, respectively. Note that the print format file is also registered as a viewDef
with the system.

InstallScript: func(partFrame,removeFrame)

begin

RegDataDef(kDataSymbol, GetLayout("iouData.Def"));

RegisterViewDef(GetLayout("iouDefaultViewDef"),

kDataSymbol);

RegisterViewDef(GetLayout("iouPrintFormat"),

kDataSymbol);

end;

RemoveScript: func(removeFrame)

begin

UnRegisterViewDef('default, kDataSymbol);

UnRegisterViewDef('iouPrintFormat, kDataSymbol);

UnRegDataDef(kDataSymbol);

end;

Using Stationery 5-13

ARENDI-DEFS00003843

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 196 of 200 PageID #: 28840

CHAPTER 5

Stationery

Using the MinimalBounds ViewDef Method

The MinimalBounds method must be used in a viewDef when the size of the
entry is dynamic, as it is in a paper-roll-style or page-style application. It's not
necessary for a card-style application, which has a fixed height; in that case you
should set a static height for your viewDef in the viewDefHeight slot.

The MinimalBounds method is used to compute the minimal size for the
enclosing bounding box for the viewDef at run time. The following is an
example of a MinimalBounds implementation where the viewDef contains
a newtEditView whose path slot is set to
[pathExpr:kData.Symbol,'notes]:

MinimalBounds: func(entry)

begin

local result := {left: 0, top: 0, right: 0,

bottom: viewDefHeight};

For an editView, make the bounds big enough to

contain all the child views.

if entry.(kDataSymbol).notes then

foreach item in entry.(kDataSymbol).notes do

result := UnionRect(result, item.viewBounds);

result;

end;

5-14 Using Stationery

ARENDI-DEFS00003844

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 197 of 200 PageID #: 28841

CHAPTER 5

Stationery

Stationery Summary

Data Structures

ViewDef Frame

myViewDef {

_proto : anyGenericView,
type: editor, // could also be 'viewer or a custom type

symbol: 'default, // required; identifies the view

name: string, // required; name of viewDef
version: integer, // required; should match dataDef
viewDefHeight: integer,// required, except in card-style
MinimalBounds: // returns the minimal enclosing

func (entry) // bounding box for data
SetupForm: // called by ViewSetupFormScript;

func (entry, entryView) // use to massage data

}

Protos

newtStationery

myDataDef := { // use to build a dataDef

_proto: newtStationery,

description: string, I // describes dataDef entries
height: integer, // required, except in card-style; should

match viewDefHeight
icon: resource, // optional; used in header & New menu
name: string, // required; appears in New button picker
symbol: kAppSymbol, // required unique symbol

superSymbol: aSymbol, // identifies "owning" application

version: integer, // required; should match viewDef' s version
FillNewEntry: // returns a modified entry

func (newEntry)
MakeNewEntry:

func()....

StringExtract:

used if FillNewEntry does not exist

creates string description

func (entry, nbnes)
TextScript: // extracts data as text for routing

func (fields, target)
}

Stationery Summary 5-15

ARENDI-DEFS00003845

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 198 of 200 PageID #: 28842

CHAPTER 5

Stationery

newtStationeryPopup Button

aStatPopup := { // used to construct New and Show buttons

_proto: newtStationeryPopupButton,

form: symbol, // 'viewDef or 'data.Def

symbols: nil, // gathers all or specify: [uniqueSym,...]
text: string, // text displayed in picker

types: [typeSym,...] , // type slots of viewDefs
sorter: 'Istr<l ,// sorted alphabetically by Sort function

shortCircuit: Boolean, // controls picker behavior
StatScript: // called when picker item chosen

func (stationeryltem) // define actions in this method
SetUpStatArray:// override to intercept picker items to

func().... // be displayed

}

newtNewStationeryButton

aNewButton := { // the New button collects dataDefs

_proto: newtNewStationeryButton,

sorter: 'Istr<l ,// sorted alphabetically by Sort function

shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func (stationeryltem) // define actions in this method
SetUpStatArray:// override to intercept picker items to

func().... // be displayed

}

newtShowStationeryButton

aShowButton := { // the Show button collects viewDefs

_proto: newtShowStationeryButton,

types: [typeSym,...] , // can specify type slots of viewDefs
sorter: 'Istr<l ,// sorted alphabetically by Sort function

shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func (stationeryltem) // define actions in this method
SetUpStatArray:// override to intercept picker items to

func().... // be displayed

}

5-16 Stationery Summary

ARENDI-DEFS00003846

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 199 of 200 PageID #: 28843

CHAPTER 5

Stationery

newtRol IShowStationeryButton

aRollShowButton := { // the Show button in paper roll apps

_proto: newtRollShowStationeryButton,

types: [typeSym,...] , // can specify type slots of viewDefs

sorter: 1 1str<j,// sorted alphabetically by Sort function

shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func (stationeryltem) // define actions in this method
SetUpStatArray:// override to intercept picker items to

func().... // be displayed

}

newtRol IShowStationeryButton

anEntryShowButton := { // Show button in paperroll apps

_proto: newtEntryShowStationeryButton,

types: [typeSym,...] , // can specify type slots of viewDefs

sorter: 1 1str<j,// sorted alphabetically by Sort function

shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func (stationeryltem) // define actions in this method
SetUpStatArray:// override to change entry displayed

func().... // can display different view for each

}

Functions

RegData.Def (dataDefSym, newDelTemplate) // register dataDef
UnRegData.Def(dataDefSym) // unregister dataDef

RegisterViewDef (viewDef, dataDefSym) // register viewDef
UnRegisterViewDef (viewDefSym, dataDefSym) //unregister viewDef
GetDefs (form, symbols, types) // returns view or data defs array

GetData.Defs(dataDefSym)// returns dataDef

GetAppData.Defs (superSymbol) // returns an app's data.Defs

GetEntryDataDef (soupEntry) // returns the entry's dataDef
Get Ent ryData.View (soupEntry, viewDefSym) // returns the entry's

// viewDef

GetViewDefs (dataDefSym) // returns viewDefs registered
with the dataDef

GetData.View (dataDefSym, viewDefSym) // returns a specific
// viewDef of the dataDef

Stationery Summary 5-17

ARENDI-DEFS00003847

Case 1:13-cv-00919-LPS Document 311-5 Filed 03/10/21 Page 200 of 200 PageID #: 28844

