
EXHIBIT 22

Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 1 of 11 PageID #: 26718Case 1:13-cv-00919—LPS Document 307-2 Filed 03/10/21 Page 1 of 11 PageID #: 26718

EXHIBIT 22

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 2 of 11 PageID #: 26719Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 2 of 11 PageID #: 26719

CyberDesk: A Framework for Providing Self-Integrating

Ubiquitous Software Services

Anind K. Dey, Gregory Abowd, Mike Pinkerton

Graphics, Visualization & Usability Center

Georgia Institute of Technology

Atlanta, GA 30332-0280 USA
+1 -404-894-75 12

{anind, abowd, mpinkert}@cc.gatech.edu
ABSTRACT

Current software suites suffer from problems due to poor

integration of their individual tools. They require the de-

signer to think of all possible integrating behaviours and

leave little flexibility to the user. In this paper, we discuss

CyberDesk, a component software framework that auto-

matically integrates desktop and network services, requir-

ing no integrating decisions to be made by the tool design-

ers and giving total control to the user. We describe Cy-

berDesk’s architecture in detail and show how CyberDesk

components can be built. We give examples of extensions

to CyberDesk such as chaining, combining, and using

higher level context to obtain powerful integrating behav-
lours.

Keywords

Adaptive interfaces, automated integration, dynamic inte-

gration, software components, context-aware computing,

future computing environments, ubiquitous services

INTRODUCTION

Users are tired of using monolithic application suites that

allow little to no customization, just because they are in-

dustry standards. Tightly integrated suites of tools/services

currently available are unsatisfactory for three reasons.

First, they require designers to predict how users will want

to integrate various tools. Second, they force users to either

be satisfied with design decisions or program their own

additional complex relationships between the tools. Fi-

nally, users must be satisfied with the available services

themselves, because they are often given no opportunity to

replace or add services.

In response, software companies have been adopting the

notion of component software: using small software mod-

ules as building blocks for a larger application. While there

are many competing standards (OLE [11], Active X [10],

Java Beans [6], OpenDoc [1]), the prevailing view is to

provide a framework which programmers and sophisticated

users can build upon to create desired application suites.

Unfortunately, current component solutions do not entirely

relieve the burden from the designer and end user. Design-

ers must still predict how users will want to integrate vari-

ous services, without knowing what services the user will

have. Designers must also build services specifically for a

particular component solution, rather than build a general

solution that can be used in multiple frameworks. Users

Andrew Wood

School of Computer Science

The University of Birmingham

Edgbaston, Birmingham, B15 2TT UK

amw@cs.bham.ac.uk

now have the ability to replace and add services at will, but

are still forced to accept the integration behaviour of serv-

ices implemented by the designer.

In this paper, we present the CyberDesk system, a compo-
nent software framework that relieves most of the burden

of integrating services from both the designer of individual

services and the end user, provides greater flexibility to the

user, and automatically suggests how independent services

can be integrated in interesting ways. We begin by giving a

short description of CyberDesk and presenting a sample

scenario showing how the system could be used. Next, we

discuss the architecture underlying the framework and de-

scribe the benefits of our system. We end by showing how

CyberDesk is being extended to provide more powerful

integration behaviour and by describing our future plans.

WHAT IS CYBERDESK?

CyberDesk is a component-based framework written in

Java, that supports automatic integration of desktop and
network services [16]. The framework is flexible, and can

be easily customized and extended. The components in

CyberDesk treat all data uniformly, regardless of whether

the data came from a locally running application or from a

service running on the World Wide Web (WWW). The

services and applications themselves can be running any-

where, meeting CyberDesk’s goal of providing ubiquitous
access to services.

User Scenario

The user selects which applications/components they would

like to use by adding them to a Hypertext Markup Lan-

guage (HTML) page. He loads the HTML page into a web

browser running on his mobile computer and starts to inter-

act with the system.1

The user walks to a grocery store, and the system asks if he

wants to see his shopping list, get more information about

the grocery store, or get directions to his house. The user

chooses the grocery list and goes shopping. He walks to a

friend’s house but nobody is home. The system asks if he

1 A demo version of CyberDesk is available at
http://www.cc.gatech.edu/fce/cyberdesk. The video ac-

companying the paper summarizes CyberDesk and shows

more sample scenarios. Code samples are available at

http://www. cc. gatech. edu/fce/cyberdesk/samples.

ARENDI-DEF800001151

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 3 of 11 PageID #: 26720Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 3 of 11 PageID #: 26720

wants to check his friend’s calendar, contact him via e-mail

or phone, or get directions to go home. The user chooses

the first option and the system tells him that his friend is at

work. So, he chooses the second option, sends his friend an

e-mail saying that he stopped by, and starts walking home.

On the way home, the system notifies him that he has re-
ceived an e-mail from his friend. The user reads the e-mail

(see Figure 1 below) which has information on a new book

written by his favourite author. The e-mail contains a Web
site address and an e-mail address for the author. The user

highlights the e-mail address (a) and the system gives him

some suggestions (b) on what he can do: search for more

information on the author, put the author’s contact infor-

mation in the contact manager, call the author, or send an

e-mail to the author. He chooses the first two options (c

and d), saves the e-mail, and heads home.

[gm Unrrusted Java Applet Wlndow

l Cmraclkookflslngnumcs such U
' Han

—Cl3l;;clnJLnn w: m s mum;——‘

 3:21 Unirus'ed Java Annie: Windm/

 # Nebcape:Alravlslaseaull:SlmpleQuelyJohn Due . g
m. an w... :- mun-m om: Dir-my mm.

<

.' may ancorbc mm; [Mariam
2w Unrrusred Java Anpler Wlndow

 y

Figure 1. Mock screenshot of above user scenario

The scenario described has not been completely realized

with the CyberDesk system. Although, every action and

suggested action in the scenario can be realized and sup-

ported using the CyberDesk framework. We will show

how CyberDesk can support these complex interactions

without requiring effort by the user or the system designer.

ARCHITECTURE

The CyberDesk system has a simple but innovative archi-
tecture. It is based on an event-driven model, where com-

ponents act as event sources and/or event sinks. Events, in

this current version, are generated from explicit user inter-

action with the system. The system consists of five core

components: the Locator, the IntelliButton, the ActOn

Button Bar, the desktop and network services, and the type

converters. The Locator maintains the registry of event
sources and sinks. This allows the IntelliButton to auto-

matically find matches between event sources and event

sinks based on a given input event, a task normally required

of the system or service designer. The IntelliButton dis-

plays the matches in the form of suggestions to the user, via

the ActOn Button Bar. It is through the ActOn Button Bar

that the user accesses the integrating functionality of Cy-
berDesk. The services are the event sources and sinks

themselves, and are the tools the user ultimately wants to

use. The type converters provide more powerful integrat-

ing behaviour by converting given events into other events,

allowing for a greater number of matches. The five com-

ponents are discussed in greater detail below.

User selects
text

 data type

Deskto -——
"

App. new data types
converter

data type

 providesservice information
for matching

user picksservice

Figure 2: Runtime architecture diagram

All five of the components have been implemented as Java

applets for simplicity of network programming. We also

chose Java for its promise of platform independence, its

ability to execute within a web browser, and its object-

oriented nature. The first two features support our goal of

ubiquity, the second feature allows us to treat the browser

as our desktop [3], and the last feature made development

easier. Also, most of the network services implemented are
available via the web, so the natural access method was via
a web browser.

Inter-component communication was performed using

techniques based on the CAMEO toolkit [15], a C++ tool-

kit built previously by one of the authors to facilitate the

integration of application-sized components via the use of

agent-like components. Components are able to invoke

methods of other components directly via the use of a com-

ponent handle. The parameter passed in these method calls

is a structured message of the following form:
:sender <1'd>

:receiver <1'd>

:interface <array ofjnterface names>

:property <array ofevent/status names>

:arguments <data>

The first two fields contain the object handles for the

method caller and method callee, respectively. The inter-

face field refers to the types of actions the component sup-

ports. Components declare their ability to be event sinks
and sources via the interface field. This will be discussed

further in the following section. The types of events that a

component consumes or generates is stored in the property

field. Data associated with events is passed in the argu-
ments field.

Locator

The Locator component in CyberDesk keeps a directory of

all the other components in the system, what events they

can generate and/or what events they can consume. In any

ARENDI-DEF800001152

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 4 of 11 PageID #: 26721Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 4 of 11 PageID #: 26721

system where an arbitrary number of components (where

types and location are unknown at compile time) are going

to be interacting, a method of communication is required;

in other words, a rendezvous mechanism that provides in-

troductions between components is needed.

Typically, such a directory service is run at a well-known

location. In CyberDesk, the Locator is implemented as a

uniquely named applet on an HTML page containing all the

CyberDesk applets in use. Upon startup, each of the com-

ponent applets register themselves with the Locator. It be-

haves as a yellow pages directory by allowing any compo-

nent to request a list of all the components supporting a

particular interface and property. We currently support two
different interfaces: method and select. If the interface field

is set to “method”, the component contains a method(s) that

will consume a particular event type. If the interface field

is set to “select”, the component is declaring that it can

generate a particular event type. Note that a component can

support multiple interfaces, in any combination of selects
and methods.

The Locator supports the following API:

insert (componentiname, interfaces [])

adds a component's interfaces to the registry

remove (componentiname, interfaces [])

removes a component's interfaces from the registry

locate (componentiname, interfaces [])

locates and returns all components matching a given
1nterface(s)

IntelliButton

The IntelliButton component is really the core of the Cy-

berDesk system, as it provides the automatic integrating

behaviour. It uses the Locator to keep track of all the

desktop and network services and the type converters, and

all the events sources and sinks they provide. When new

components are added to the system, the IntelliButton noti-

fies them that it is interested in all the events that they can

generate (i.e. it is an event sink). So when a component

generates an event, it notifies the IntelliButton and any

other components that have expressed interest. The inter-

ested components are called observers, as they observe

events in other components. Any component can observe

multiple components and can be observed by multiple
components.

The IntelliButton uses the event information (passed in the

form of a structured message) to find any matches; i.e. any

components registered with the Locator that can consume

the event. It uses simple type checking to identify potential

services that the user may wish to call upon to operate on
the data associated with the event. The matches are dis-

played to the user via the ActOn Button Bar, from which

the user can select any or none of the integrating services

suggested. If the user does choose one of the integrating
services, the IntelliButton is notified and it accesses the

correct service passing the associated data and event as

parameters. In the above scenario, when the user high-

lighted the e-mail address, the IntelliButton used that event

information to determine what services were available

(send an e-mail, save the contact information, etc.) and

suggested them.

ActOn Button Bar

The ActOn Button Bar, as described before, is simply the

user interface for the integrating IntelliButton. We chose to

keep the interface separate from the actual integrating

functionality to allow easier experimentation with alterna-

tive interfaces. Currently, the interface is very simplistic.

It is a dynamically generated list of buttons, where each

button corresponds to a particular service that can be exe-

cuted based on an user-generated event and its corre-

sponding data. The list of buttons is provided by the Intel-
liButton. Each button is labeled with a short textual de-

scription of the following form:

<action> <datatype> using <service>

For example:

Send e-mail to this EmailAddress using Netscape.

Search for a string on the Web using AltaVista.

The ActOn button bar also provides short help messages

when the mouse is placed over the button. These messages

are provided by the individual service and are made avail-
able via the IntelliButton.

Desktop and Network Services

The previous three components discussed provide the core

functionality of CyberDesk. Regardless of what tools the

user wants to use, these three components are required.

The fourth type of component, desktop and network serv-
ices, are the actual services the user wants to access.

Desktop services include e-mail browsers, contact manag-
ers, and schedulers. Network services include web search

engines, telephone directories, and map retrieval tools.

To be included into the CyberDesk system, these services

must register themselves with the Locator, providing a

component handle and a list of interfaces that they support.

These interfaces declare the list of services that they can be

called upon to provide, and a set of data selection events

that they can generate that could be used to trigger inte-

grating behaviour. Currently, most data selection events

are generated when the user selects some text with the

mouse. Others are generated when significant changes in

status occur, as will be seen in the section on higher level
context.

The declaration implementation is usually a simple matter

of writing a wrapper object for an existing service. Cur-

rently, the wrapper must be written by either the service

designer, end user, or a middleman. We are looking at

ways to automate this process. One method is to force all

components in the system to support a common interface,

like the JavaBeans initiative. This would enable the Cy-

berDesk system to query each component and determine

the events it can consume and generate.

One of the services available in CyberDesk is a gateway to

the AltaVista search engine available on the web. The

ARENDI-DEF800001153

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 1:13-cv-00919-LPS Document 307-2 Filed 03/10/21 Page 5 of 11 PageID #: 26722Case 1:13-cv-00919-LPS Document 307-2

wrapper for this service, that allows it to interact with other

CyberDesk components, consists of two main pieces. The

first piece handles the declaration of its "method" interface

to the Locator, stating that it can perform a web search on a

String:

CameoProper properties : new CameoProperty

(“search or”, Class.forName(‘gava.lan XString”),‘ Search for a string on the We usrng tavrsta’);

Cameolnterface interfaces : _
new CameolnterfaceC‘method”, propertres);

The second piece actually implements the search when

called upon by the IntelliButton. With this interface, this

search would be suggested by the IntelliButton whenever a

text string is the target of a selection (assuming the compo-

nent in which the text selection is done, supports the "se-

lect" interface). By their very nature, none of the network

services support the "select" interface. They usually can

not generate events and are of the form: receive input data

and display output data. However, we will see how we can

exploit this to provide even more interesting integrating

behaviour in a process called "chaining".

The desktop services are a little more complicated because

they have the potential to support the "select" interface.

This means the wrapper has to deal with generating the

necessary data selection events. In this case, the wrapper
has an interface declaration section, as before, where it de-

clares any "method" and "select" interfaces. For example,
the Scheduler’s interface is:

CameoPro er ro erties : new CameoPro ert
(“lodl<u1t:»yDIateR, p y
Class.forName(“cyberdesk.types.Date”),
“Goto the date 1n the Scheduler”);

Cameolnterface interfaces[0 : _
new Cameolnterface(‘ method”, propertres);

Cameolnterface interfaces[1 :
new Cameolnterface(‘ select”, null);

The first interface declares that it can consume date selec-

tion events and the second interface declares that it can

generate data selection events.

The second section, where it implements the interfaces is

slightly more complicated than with the network services.

The wrapper must have "hooks" into the original applica-

tion code to intercept and broadcast the appropriate data

selection events (for the "select" interfaces), and to execute

a service on data passed to it (for the "method" interfaces).

At the time of development, there were three ways to ap-

proach this problem for the "select" interface. First, we

could modify the original application's event processing

loop to broadcast events in the CyberDesk fashion. Sec-

ond, we could modify the original application code to make

calls to a notification routine in the wrapper when data is

selected. Third, we could rely on the original application to

have a suitable API for retrieving those events. Obviously

the third method is the simplest and is not intrusive to the

original application. Unfortunately, not all of the applica-

tions had APIs that allowed us to retrieve the necessary
data selection events.

All of the desktop applets currently being used in CyberD-

Filed 03/10/21 Page 5 of 11 PageID #: 26722

esk (2 e-mail browsers, contact manager, 2 calendar man-

agers/schedulers, scratchpad) were previously written by

other Georgia Tech students. For those that did not provide

sufficient APIs, we used the second method for capturing
data selection events. It was far less intrusive than the first

method, and we had access to the original code, allowing us

to make changes.

In the newest release of the Java Development Kit (version

1.1), support was added for transferring data between (Java

and non-Java) applications via a clipboard-style inter-
face[7]. The use of this feature will allow us to avoid al-

tering any application code in future versions of CyberD-
esk.

The problem is much simpler for the "method" interface.

Either the application contained a method for acting on the

given data, or it didn't. In cases where it didn't, we added

additional methods to act on provided data. Note, that this

didn't change the fundamental integration behaviour of Cy-

berDesk, but only added additional features for us to ex-

ploit.

Type Converters

Data typing is used extensively in the interface declarations

of the event sources and sinks that applications provide.

The property field that corresponds to each interface de-

clares the datatype/event that a component is interested in

or can provide. The CyberDesk system takes advantage of

the Java type system to do the data typing.

Initially, we hardcoded applications to generate events for

different data types. For example, the e-mail browser de-

clares that it can generate String selection events when text

is highlighted, but also EmailAddress selection events

when the "To:" or "From:" field in an e-mail message is

selected. When EmailAddress selection events were gener-

ated, they were passed through the CyberDesk system, as

described before, to the ActOn Button Bar, which displayed
services that could consume EmailAddress selection events

(e.g. Send an E-mail to this E-mail Address using Net-

scape). However, this required the applications themselves

to be aware of the CyberDesk type system. It was also

limiting since e-mail addresses could also appear in the

unformatted body text of an e-mail message and only be

recognized as a String selection.

Consequently, we chose to use type converters. Using

simple heuristics, it is possible to identify potential text

strings that might be e-mail addresses. It would have been

desirable to augment our e-mail browser with this capabil-

ity, so that any time text was selected in it, it would try to

convert the text to an EmailAddress object and create an

EmailAddress selection event rather than just a String se-

lection event. But, rather than just giving this type conver-

sion capability to the e-mail browser, we wanted to add that

ability to the system once, and allow it to be used in every

application where e-mail addresses might appear. We took

the type detection ability out of the individual applications

and created type converters, an independent and extensible

layer in the architecture.

ARENDI-DEF800001154

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

