Case 1:19-cv-00859-RTH Document 82-1 Filed 04/29/22 Page 1 of 55

EXHIBIT A

19-cv-00859-RTH Docu

%

ONE HUNDRED PERCENT

COMPREHENSIVE
AUTHORITATIVE
WHAT YOU NEED

ONE HUNDRED PERCENT

Master the

simple yet powerful
new markup
language that’s
revolutionizing

the Web

Zuild well-formed,
sensibly organized
Web documents

Creafe entirely new
markup languages to
fit your own needs

CD-ROM
INSIDE!

® Code for every numbered
listing in the book and
' additional examples

® XML browsers and tools

® Relevant W3C standards ; E"ione RUS'Y H(II'OId

Case 1:19-cv-00859-RTH Document 82-1 Filed 04/29/22 Page 3 of 55 H

XML Bible

=y o,

5 f“ﬁf&’fﬁﬁzﬁg

[P B TR R o R £ T B 5 SR N o

PEy Loy Ll Lt e L

AU, DioLe

37804

Case 1:19-cv-00859-RTH Document 82-1 Filed 04f29/22 Page 4 of 55

XML Bible

Elliotte Rusty Harold

i

IDG
BOOKS

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA 4+ Chicago, IL + Indianapolis, IN ¢ New York, NY

:19-cv-00859-RTH Document 82-1 Filed 04/29/22 Page 5 of 55

XML™ Bible For general information on IDG Books Worldwide’s
Published by books in the U.S., please call our Consumer Customer
IDG Books Worldwide, Inc. Service department at 800-762-2974. For reseller
An International Data Group Company information, including discounts and premium sales,
919 E. Hillsdale Blvd., Suite 400 please call our Reseller Customer Service department
Foster City, CA 94404 at 800-434-3422.
www . idgbooks . com (IDG Books Worldwide Web site) For information on where to purchase IDG Books
Copyright © 1999 IDG Books Worldwide, Inc. Al rights Worldwide’s books outside the U.S., please contact our
reserved. No part of this book, including interior International Sales department at 317-596-5530 or fax
design, cover design, and icons, may be reproduced or 317-572-4002.
transmitted in any form, by any means (electronic, For consumer information on foreign language
photocopying, recording, or otherwise) without the translations, please contact our Customer Service
prior written permission of the publisher. department at 1-800-434-3422, fax 317-572-4002, or e-
ISBN: 0-7645-3236-7 mail rights@idgbooks.com.
Printed in the United States of America For information on licensing foreign or domestic rights,
1098765 please phone +1-650-653-7098.

For sales inquiries and special prices for bulk
“.3/ Q.U/ QR/ QQ/ N . quantities, please contact our Sales department at 800-
Distributed in the United States by IDG Books 762-2974 or write to the address above.

Worldwide, Inc. For information on using IDG Books Worldwide’s books

Distributed by CDG Books Canada Inc. for Canada; by — in the classroom or for ordering examination copies,
Transworld Publishers Limited in the United Kingdom; please contact our Educational Sales department at
by IDG Norge Books for Norway; by IDG Sweden Books 80(-434-2086 or fax 317-572-4005.

for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-653-7000 or fax 650-653-

Gotop Information Inc. for Taiwan; by ICG Muse, Inc. Bl]

for Japan; by Intersoft for South Africa; by Eyrolles for For authorization to photocopy items for corporate,
France; by International Thomson Publishing for personal, or educational use, please contact Copyright
Germany, Austria and Switzerland; by Distribuidora Clearance Center, 222 Rosewood Drive, Danvers, MA

Cuspide for Argentina; by LR International for Brazil; 01923, or fax 978-750-4470.

by Galileo Libros for Chile; by Ediciones ZETAS.CR.

Ltda. for Peru; by WS Computer Publishing Library of Congress Cataloging-in-Publication Data
Corporation, Inc., for the Philippines; by Harold. Elliote Rust

Contemporanea de Ediciones for Venezuela; by i Y.

Express Computer Distributors for the Caribbean and XML bible / Elliote Rusty Harold.
West Indies; by Micronesia Media Distributor, Inc. for p. cm.
Micronesia; by Chips Computadoras S.A. de C.V. for ISBN 0-7645-3236-7 (alk. paper)
L XML (Document markup anguage) 1. Tl
' ’ QAT76.76.H94H34 1999 99-31021
005.72—dc21 CIP

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL
BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: For Dummies, Dummies Man, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily,
and related trade dress are registered trademarks or trademarks of IDG Books Worldwide, Inc. in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. IDG Books Worldwide is not associated with any product or vendor
mentioned in this book.

®

is a registered trademark under exclusive
license to IDG Books Worldwide, Inc. from
International Data Group, Inc.

2l

| 'WORLDWIDE

"19-CV- -R Document 82-1 Filed 04/29/22 Page 6 of 55

Attributes,

Empty Tags. k.
a“d XSL in This Chapter

Attributes

Attributes versus

Y elements

ou can encode a given set of data in XML in nearly

an infinite number of ways. There's no one right Empty tags

way to do it although some ways are more right than others,

and some are more appropriate for particular uses. In this XSL

chapter, we explore a different solution to the problem of

marking up baseball statistics in XML, carrying over the + * + *

baseball example from the previous chapter. Specifically,
we will address the use of attributes to store information
and empty tags to define element positions. In addition,
since CSS doesn’t work well with content-less XML
elements of this form, we'll examine an alternative —
and more powerful—style sheet language called XSL.

Attributes

In the last chapter, all data was categorized into the name of
a tag or the contents of an element. This is a straightforward
and easy-to-understand approach, but it’s not the only one.
As in HTML, XML elements may have attributes. An attribute
is a name-value pair associated with an element. The name
and the value are each strings, and no element may contain
two attributes with the same name.

You're already familiar with attribute syntax from HTML. For
example, consider this < IMG> tag:

<IMG SRC=cup.gif WIDTH=89 HEIGHT=67 ALT="Cup
of coffee">

”"-'96

part| 4 Introducing XML

It has four attributes, the SRC attribute whose value is Cup. gif, the WIDTH attribute
whose value is 89, the HEI GHT attribute whose value is 67, and the ALT attribute
whose value is Cup of coffee. However, in XML-unlike HTML-attribute values
must always be quoted and start tags must have matching close tags. Thus, the

XML equivalent of this tag is:

</ IMG>

~

ote between HTML and XML is that XML assigns no particular
G

Another difference
meaning to the IMG tag and its attributes. In particular, there's no guarantee that
an XML browser will interpret this tag as an instruction to load and display the

image in the file cup.gif.

You can apply attribute syntax to the baseball example quite easily. This has the
advantage of making the markup somewhat more concise. For example, instead of

containing a YEAR child element, the SEASON element only needs a Y EAR attribute.

CSEASON YEAR="1998">
</SEASON>

On the other hand, LEAGUE should be a child of the SEASON element rather than an
there are two leagues in a season. Anytime there’s likely to

attribute. For one thing,
be more than one of something child elements are called for. Attribute names must
be unique within an element. Thus you should not, for example, write a SEASON

element like this:

<{SEASON YEAR="1998" LEAGUE="National” League="Amer1’can“>
</SEASON?

The second reason LEAGUE is naturally a child element rather than an attribute is
that it has substructure; it is subdivided into DIVISION elements. Attribute values
are flat text. XML elements can conveniently encode structure-attribute values

cannot.

However, the name of aleagueis unstructured, flat text; and there’s only one name
per league so LEAGUE elements can easily have a NAME attribute instead of a

LEAGUE_NAME child element:

<LEAGUE NAME=“Nat1’ona1 League">
</LEAGUE>

Since an attribute is more closely tied to its element than a child element is, you
don’t run into problems by using NAME instead of LEAGUE_N AME for the name of the

attribute. Divisions and teams can also have NAME attributes without any fear 0
e. Since a tag can have more than one attribute

confusion with the name of a leagu
(as long as the attributes have different names), you can make a team’s city an

attribute as well, as shown below:

iled U220

2 Page 7 of 55

Chapter 5 + Attributes, Empty Tags, and XSL

e
97 |

CLEAGUE NAME="American Le "
<E%VISION NAME="East"> aouer
EAM NAME="Orioles™ CITY="Balti "
. imore"><
§¥Eﬁm NAME="Red Sox" CITY="Boston"></TE//AbT'IEAM>
P NQMET"YanKees“ CITY="New York"></TEAM>
A e R T e Toronto s/ TEAS
SoETsToNS y Y="Toronto"></TEAM>
</LEAGUE>

Players will have a lot of attributes i
tes if you choose to make each statisti i
: a
For example, here are Joe Girardi’s 1998 statistics as attributes: fistic an attribute.

CPLAYER GIVEN_NAME="Joe" SURNAME="Gi '
" " R " G -l !

GAMES="78" AT_BATS="254" RUNS="31"raE$%="70“
DOUBLES="11" TRIPLES="4" HOME_RUNS="3"
RUNS_BATTED_IN="31" WALKS="14" STRUCK_0UT="38"
STOLEN. BASES="2" CAUGHT_STEALING="4" ~
SACRIFICE_FLY="1" SACRIFICE_HIT="8"
HIT_BY_PITCH="2"> B

</PLAYER>

Listing 5-1 uses this new attribute st
his yle for a complete XML docum: ini
%L]feot);ili);lll (sitatlitlcsl for the 1998 major league season. It displaysetrl‘ltecs(:xlttlzlmng
.e., two leagues, six divisions 30 teams, and ni
Listing 4-1 in the last chapter. It is m : o 1 shorn
: . . erely marked up differently. Fi
this document loaded into Internet Explorer 5.0 without a stylz.sl:g::e Tl shows

| 2 MU B b ACD s ource 05451 xml - Miciosolt |

= . = —} e
JE{:* Fowad Stop amm;fﬁﬂs?e&ﬁi&%& H?;y %'é
Agdioss 2] D WML\BbIe\CD\souoe\05\ . snl —= —_—

= ueribgeteAnd Al A— ¥

<7xmi version="1.0" ="yes" 7
- <SEASOHN YEAR:"lgztBa"r‘ldalone_ e
- <LEAGUE NAME="National League":>
- <DIVISION NAME="East">
- <TEAM CITY="Atlanta" NAME="Braves™:
<PLAYER GIVEN_NAME="Marty" S'JRNAME="MO||O "
POSITION="Second Base’ GAMES="11" Y
ggﬁng_SI-AETEDgB" AT_BATS="28" RUNS="3" HITS="5"
sTéA S.— :;l. TRIPLES="0" HOME_RUNS="1" RBI="1"
oac LS="0" CAUGHT_STEALING="0" SACRIFICE_HITS="0"
: RIFICE_FLIES="0" ERRORS="0" WALKS="2"
<DL';RUCK_0UT="2' HIT_BY_PITCH="0" />
YER GIVEN_NAME="Ozzie" SURNAME="Guillen"
ZOSITION:‘Shurtstop" GAMES="83"
Hf%Eﬁ_STARTED:"SQ" AT_BATS="264" RUNS="35"
="73" DOUBLES="15" TRIFLES="1" HOME_RUNS="1"

gar=" s
J="29" STEAI S="1" CALCHT STEALINGZ"A"

Figure 5-1: Th ;
. : The 1998 major league baseball statisti i
attributes for most information. 8 atistics using

__ e T Document 82-1 Filed 047

o8 Patl ¢ Introducing XML

Listing 5-1: A complete XML document th

store baseball statistics

<?xmi version="1.0" standa]one=“yes"?>

<SEASON YEAR="1998">
<LEAGUE NAME=“Nationa1 League">

<DIVISION NAME="East">
" NAME="Braves">

VEN_NAME="Marty” SURNAME="Malloy"
POSITION="SeC0nd Base" GAMES="11" GAMES_STARTED="8"
AT_BATS="28" RUNS="3" HITS="5" DOUBLES="1"
TRIPLES="0" HOME_RUNS="1" RBI="1" STEALS="0"
CAUGHT_STEALING="0" SACRIFICE_HITS=
SACRIFICE_FLIES="0" ERRORS="0" WALKS="2"

STRUCK_OUT="2" HIT_BY_PITCH="0">

</PLAYER>

<PLAYER GIVEN_NAME=“Ozzie" SURNAME="Gu111en"

POSITION=“Sh0rtstOp" GAMES="83" GAMES_STARTED="59“
AT_BATS="264" RUNS="35" HITS="73" DOUBLES="15"
TRIPLES="1" HOME_RUNS="1" RBI="22" STEALS="1"
CAUGHT_STEALING=“4“ SACRIFICE_HITS=“4“
SACRIFICE_FLIES="Z" ERRORS="6" WALKS="24"
STRUCK_OUT="25" HIT_BY_PITCH="1“>

</PLAYER>

<PLAYER GIVEN_NAME="Danny“ SURNAME=“Bautista"

POSITION=“0utf1e1d“ GAMES="82" GAMES_STARTED="27"
AT_BATS="144" RUNS="17" HITS="36" DOUBLES="11"
TRIPLES="0" HOME_RUNS="3" RBI="17" STEALS="1"
CAUGHT_STEALING="0“ SACRIFICE_HITS="3“
SACRIFICE_FLIES=“2" ERRORS="2" WALKS="7"
STRUCK_OUT="21" HIT_BY_PITCH="0“>

</PLAYER>

<PLAYER GIVEN_NAME=“Gera1d“ SURNAME="W1111amS"

POSITION="Outfie1d" GAMES="129" GAMES_STARTED="51“
AT_BATS="266" RUNS="46" HITS="81" DOUBLES="18"
TRIPLES="3" HOME_RUNS="10" RBI="44" STEALS="11"
CAUGHT_STEALING="5" SACRIFICE_HITS=“2"
SACRIFICE_FLIES=“1“ ERRORS="5" WALKS="17"

STRUCK_OUT="48" HIT_BY_PITCH="3">

</PLAYER>

<PLAYER GIVEN_NAME="Tom" SURNAME=“G1aV1ne"
POSITION="Starting pitcher” GAMES=" "
GAMES_STARTED=“33" WINS="20" LOSSES="6" SAVES="0"
COMPLETE_GAMES="4" SHUT_OUTS="3" ERA="2.47"

INNINGS="229.1" HOME_RUNS_AGAINST="13"
RUNS_AGAINST="67" EARNED_RUNS="63" HIT_BATTER="2"

WILD_PITCHES="3" BALK="0" NALKED_BATTER="74"
STRUCK_OUT_BATTER="157“>

</PLAYER>
<PLAYER GIVEN_NAME=“Jav1er“ SURNAME="Lopez"
POSITION=“CatCher“ GAMES="133" GAMES_STARTED=
w73" HITS="139" DOUBLES="21"

AT_BATS="489" RUNS=
TRIPLES="1" HOME_RUNS="34" RBI="106" STEALS="5"

" On

Page 8 of 55

at uses attributes to

"124"

Chapter 5 4+ Attributes, Empty Tags, and XSL

STRUCK_OUT="85" S="5" WALKS="30"
</PLAYER> HIT_BY_PITCH="6">
BT A
AT BATS="427" aﬁhg*“GAwES=n129" GAMES_STARTED="124"
TRIPLES="1" H ="69" HITS="117" DOUBLES="29"
CAUGHT_STEA OME_RUNS="18" RBI="70" STEALS="5"
SACRIFICE LING="3" SACRIFICE_HITS="0"
STRUCK ou?£5é2§=H?; ERRORS="2" WALKS="56"
</PLAYER> _BY_PITCH="3">
<p .
Péé¥$?OﬁlYETF2€ME= Al:]dF‘ES" SURNAME="Galarraga"
AT_BATS="555" R ase” GAMES="153" GAMES_STARTED="151"
TRTPLES="1" Ho UNS="103" HITS="169" DOUELES:"27" 51
CAUGHT_STEA ME_RUNS="44" RBI="121" STEALS="7"
SACRIFICE FLING="6 SACRIFICE_HITS="0"
STRUCK ouf=&{§27 a; ERRORS="11" WALKS="63"
</PLAYER> T_BY_PITCH="25">
T e Ao e
AT BATS="13"1r Baﬁe' GAMES="7" GAMES STARTED="2"
TRTPLES="0-- RUNS="2" HITS="4" DOUBLES="1"
CAUGHT_STEA HOMEFRUN5="1" RBI="2" STEALS="0"
CAlGH LING="0" SACRIFICE_HITS="0"
ETRUCK OUTe a" HIT ERRORS="1" WALKS="0"
K_QUT="4" HIT_BY PITCH="0" =
</PLAYER> - >
</TEAM>
<TEAM CITY="] " "
</TEAM> Florida” NAME="Marlins">
<TEAM CITY=" " "
STEAN S1TY="Montreal™ NAME="Expos™>
<TEAM CITY=" " .
</TEAM> New York" NAME="Mets">
<TEAM CITY=" . -
CTEAMS Philadelphia" NAME="Phillies">
</DIVISION>
<D£¥éiéOEI¥AME="CEHtra1">
Y=u . W R
</TEAMD Chicago" NAME="Cubs">
<TEAM CITY="C]i . .
STEAMS Cincinnati" NAME="Reds">
<TEAM CITY=" " .
</TEAMD Houston™ NAME="Astros">
<TEAM CITY="Mi ;
STEAMS Milwaukee" NAME="Brewers">
<TEAM CITY=|| . "
</TEAM> Pittsburgh" NAME="Pirates">
<TEAM CITY=" -
</TEAM> St. Louis™ NAME="Cardinals">
</DIVISION>

Continued

99

e o Do IR 111 bocument 82-1 Filed 04/2P/22 Page 9 of 55

Chapter 5 + Attributes, Empty Tags, and XSL -I 0 .I
' ‘| 00 part| 4 Introducing XML

Listing 5-1 uses only attributes for player information. Listing 4-1 used only element
i content. There are intermediate approaches as well. For example, you could make
5l & ontinued) the player’s name part of element content while leaving the rest of the statistics as
Listing 5-1 (C | attributes, like this:

CDIVISION NAME="HESt o e +Diamondbacks™

="Arjzona" <P>
g%é’fmgm vRockies" On Tuesday <PLAYER GAMES="78" AT_BATS="254" RUNS="31"
CTEAM CITY="Colorado” NAME="RO - HITS="70" DOUBLES="11" TRIPLES-"4" HOME_RUNS="3"
TIERI s amE="Dodgers®> RUNS_BATTED_IN="31" WALKS="14" STRIKE_OUTS="38"
CTEAM CITY="Los Angeles” NA STOLEN_BASES="2" CAUGHT_STEALING="4"
CIEA SACRIFICE_FLY="1" SACRIFICE_HIT="8"

CTEAM CITY="San Diego" NAME="Padres"> HI"(Ij'_BY_PITCH="2">Joe Girardi</PLAYER> struck out twice
and. ..

b " = " L " >
i’/fIZiQMEITYHSan Francisco NAME="Giants y
C/TEAMY | | | | ‘ . . ‘
</DIVISIONS This would include Joe Girardi's name in the text of a page while still making his
e statistics available to readers who want to look deeper, as a hypertext footnote or

CLEAGUE NAME="American League">

ON NAME="Ea§t">) e .
<D£¥IE/SS¢I4 cITY="Baltimore NAME="0rioles

tool tip. There's always more than one way to encode the same data. Which way
you pick generally depends on the needs of your specific application.

AM> " _n "
§4TEE\M cITY="Boston NAME="Red SoOXx >
AMD> " =" "> 3
TN | eNew York® NAME="Yarkees Attributes versus Elements
- i " >
%TEE\QWCITYHTamPa Bay" NAME= Devil Rays There are no hard and fast rules about when to use child elements and when to use
</ TEAMD . —"Blue Jays"> attributes. Generally, you'll use whichever suits your application. With experience,
CTEAM CITY=" Toronto NAME= you'll gain a feel for when attributes are easier than child elements and vice versa.
{JTEAMS Until then, one good rule of thumb is that the data itself should be stored in
</DIVISION> elements. Information about the data (meta-data) should be stored in attributes.

<DIVISION NAME:"CthFa] ZME_—:"wh]te SOX">

- " And when in doubt, put the information in the elements.
CTEAM CITY="Chicago” N P

CTEAMD> City" NAME="Roy als"> To differentiate between data and meta-data, ask yourself whether someone reading
CITY="Kansas . .) - .
<TE§T\M> . . the document would want to see a particular piece of information. If the answer is
i'/fIZAM C1TY="Detroit” NAME="Tigers"> yes, then the information probably belongs in a child element. If the answer is no,
<JTEAMD . NAME="Indians"™> then the information probably belongs in an attribute. If all tags were stripped from
CTEAM CITY="Clev eland” NA the document along with all the attributes, the basic information should still be
CJTEAMD . . NAME="Twins"> present. Attributes are good places to put ID numbers, URLs, references, and other
CTEAM CITY="Minnes ota information not directly or immediately relevant to the reader. However, there are
< /TEAbi%N) gaily exceptions to the basic principal of storing meta-data as attributes. These
</DIVIS . " clude:
<DIVISTON %Eg;n\;ﬁzgmi NAME="Angels™>
(TEAM CI 4+ Attributes can’t hold structure well.
</ TEAMD . q" NAME="Athletics"?
CTEAM CITY="0a klan 4 Elements allow you to include meta-meta-data (information about the
< /TEAMEITY—“ seattle” NAME="Mariners "> information about the information).
g%éT\M)) . NAME="Rangers”> + Not everyone always agrees on what is and isn’t meta-data.
S %/\;T\M(;ITY— Texas 4 Elements are more extensible in the face of future changes.
</DIVISION>
</LEAGUE>

</SEASON>

structured Meta-data

rincipal to remember is that elements can have substructure and

attributes can't. This makes elements far more flexible, and may convince you to
encode meta-data as child elements. For example, suppose you're writing a paper

One important p
and you want to include a source for a fact. It might look something like this:

aseball,

History of B
k. Carroll &:

(FACT SOURCE="The Biographical
i ella (New Yor

Donald Dewey and Nicholas Acoc
Graf Publishers, inc. 1995) p. 169">
e history of baseball to

Josh Gibson is the only person in th
hit a pitch out of Yankee Stadium.

</FACTS

e information “The Biog
ew York: Carr

raphical History of Baseball, Donald Dewey and
Inc. 1995) p. 169" is

oll & Graf Publishers,
formation about the fact. However,

Clearly th
bstructure. You might find it more

Nicholas Acocella N
meta-data. It is not the fact itself. Rather it is in

the SOURCE attribute contains a lot of implicit su
useful to organize the information like this:

{SOURCE>
<AUTHOR>Donald Dewey</AUTHOR>
CAUTHOR>Nicholas Acocell a</AUTHOR>

<BOOK>
CTITLE>The Biographica] History of

(PAGES>169</PAGES”>
CYEAR>1995</YEAR>

</BOOK>
</SOURCE>

BasebaH(/TITLE>

t straightforward to
esses, a URL where an

ements instead of attributes makes i
heme of the particular

like the authors’ e-mail addr
an be found, the titleor t
Ise that seems important.

e of meta-data about
d. This is important for
lude a DATE

Furthermore, using el
include additional information
electronic copy of the document ¢
issue of the journal, and anything €

Dates are another common example. One common piec
scholarly articles is the date the article was first receive
establishing priority of discovery and invention. It's easy to inc

attribute in an ARTI CLE tag like this:

CARTICLE DATE="06/28/1969">
ons in Organic Compounds

Polymerase Reacti
</ARTICLE>
s substructure signified by the /. Getting that
lue, howevey, is much more difficult than reading

However, the DATE attribute ha
t, as shown below:

structure out of the attribute va
child elements of a DATE elemen

2B/22 Page 10 of 55

Chapter 5 + Attributes, Empty Tags, and XSL

<DATE>
<YEAR>1969</YEAR>
<MONTH>06</MONTH>
<DAY>28</DAY>
</DATE>

For instance, with CSS
, or XSL, it’s easy to f
that only the year appears. For examgle, u;)irnIgaCtStStol'e day and month Invisibly so

YEAR {display: inli

: n
MONTH {display: noneE}B}
DAY {display: none}

N y re s n as

XML tools and child elements.

Furthermore, the attrib
urtl) ute syntax is ambi
cignify? In t ibu iguous. What doe “ "
coun?:ries \ir)ﬁlr:;ftl:ral:; és; g} gzc(t](a:‘)?e(ri .lﬁlth or November lOth?thgaedctla?'tsefr;% ldliéflsrgg t
ot there's a differently. Even if your parse ne
no guarantee the people entering the datapwill ernl:::lt('j ;r(s:grrlg St;)m'al"h
ctly. The

XML, by contrast, is unambiguous.

revised article was received. For example:

<ARTICLE>
<TITLE>
Maximum Proj i i i
s jectile Velocity in an Augmented Railgun
2ﬁ3¥:8§>£1110tte Harold</AUTHOR>
T >Brucg Bukiet</AUTHOR>
OR>William Peter</AUTHO
<DATE> v
<YEAR>1992</YEAR>
<MONTH>10</MONTH>
<DAY>29</DAY>
</DATE>
<DATE>
<YEAR>1993</YEA
R>
2%2$I§210</MONTH>
<
</DATE> JOAY>
</ARTICLE>

103 |

et 521 Filed 00022 Page 11 of 55

_ Chapter 5 + Attributes, Empty Tags, and XsL ']'05 : lr Ir
104 part| 4+ Introducing XML — il.!

idertheALTaﬂxﬁnneofanIMGtangHTN?KTEﬁzﬁ;and <IT§L$§C_ 05021.gif" WIDTH="819" HEIGHT="623">
imi ingle string of text. However, given that a picture is wor a <TABLE>
lerzﬁje: ;(())3 xsnigght well \frant to replace an IMG with marked up text. For instance, | <TR>
considerthepiechartshow“inﬁg“resz' | </%?Startmg Pitcher</TD> <TD>242</TD> <TD>20%</TD>
i <TR>
| <TD>Relief Pitcher</TD> <TD>336</TD> <TD>27%</TD>
1 </TR>
' <TR>
<TD>Catcher</TD> <TD>104</TD> <TD>9%</TD>
</TR>
<TR>
<TD>Outfield</TD> <TD>235</TD> <TD>19%</TD>
</TR>
<TR>
<TD>First Base</TD> <TD>67</TD> <TD>6%</TD>
</ITR>
<TR>
<TD>Shortstop</TD> <TD>67</TD> <TD>6%</TD>
</TR>
<TR>
<TD>Second Base</TD> <TD>88</TD> <TD>7%</TD>
</TRY
<TR>
<TD>Third Base</TD> <TD>67</TD> <TD>6%</TD>
/TR
</TABLE>
</ALT>

As another example, cons

Major League Baseball Positions

You might even provide the actual Postscript, SVG, or VML code to render the
picture in the event that the bitmap image is not available.

@Starting pitcher @ Relief Pitcher @ Catcher Q0utfield mFirst Base @Shortstop B Second Base @Third Base

Meta-Meta-Data

Using elements for meta-data also easily allows for meta-meta-data, or information
about the information about the information. For example, the author of a poem
may be considered to be meta-data about the poem. The language in which that
author’s name is written is data about the meta-data about the poem. This isn’t a
trivial concern, especially for distinctly non-Roman languages. For instance, is the
author of the Odyssey Homer or Qpunoes? If you use elements, it’s easy to write:

Figure 5-2: Distribution of positions in major league baseball

Using an ALT attribute, the best description of this picture you can provide is:

RC="05021.gif" . ')
e iLT=“P1‘e Chart of Positions 1n Major League Baseball

WIDTH="819" HEIGHT="623">

</ IMGY <POET LANGUAGE="English">Homer</POET>

<POET LANGUAGE="Greek">Qumos</POET>

i i ibility because you can
er, with an ALT child element, you have more flexi
l:r?lvt:zg markup. For example, you might provide a table of the relevant numbers

instead of a pie chart.

R ocument 82-1 Filed 04/28/22 Page 12 of 55
l

ing XML E Chapter 5 + Attributes, Empty Tags,andXst 107 1‘
1 06 part| ¢ Introducing - |
_) . t, you're stuck with Ik Although any such change will probably require some revision of your documents,
However, if POET is an atml?ute rather than a child element, y style sheets, and associated programs, it’s still much easier to change a simple
unwieldy constructs like this: ' element to a tree of elements than it is to make an attribute a tree of elements.
. e ' However, if you used an attribute, then you're stuck. It's quite difficult to extend
" " = 1 h | '
<POEPr:11 E?\EETJ AEET(E Eng'])?g];‘;ANGUAGE Englis | your attribute syntax beyond the region it was originally designed for.
P?Zﬁ me. O Muse, of the cunning man... '
</POEM> e and Greek Good Times to Use Attributes
. i t's Englis .
And it’s even more bulky if you want to provide both the poe 8 : Having exhausted all the reasons why you should use elements instead of
names.

attributes, I feel compelled to point out that there are nonetheless some times when
attributes make sense. First of all, as previously mentioned, attributes are fully
appropriate for very simple data without substructure that the reader is unlikely to
want to see. One example is the HEIGHT and WIDTH attributes of an IMG. Although
the values of these attributes may change if the image changes, it’s hard to imagine

=" " NGUAGE 1="English"
C(POEM POET_NAME_1= Homer"™ POET_LA iE_ 3
E’gET_NAME_2="prq0§" POET_LANGUAGE 2= Greek
POEM_LANGUAGE="Eng1ish">)

Tell me, 0 Muse, of the cunning man...

</POEM> how the data in the attribute could be anything more than a very short string of

text. HEIGHT and WIDTH are one-dimensional quantities (in more ways than one) so
’ they work well as attributes.
What's Your Meta-data Is Someone Else’s Data |
is reading your document and wky Furthermore, attributes are appropriate for simple information about the document

e ading ormines beh‘i‘;“*‘:g:;é:ﬁ ‘il’zgd};ta and what they consider that has nothing to do with the content of the document. For example, it is often

they are reading it determlrl‘es.fw hit’re E?mply reading an article ina scholarly journal, useful to assign an 1D attribute to each element. This is a unique string possessed

to be meta-data. For example, il yO

then the author of the article is tangential to the informatior_l it cqntz:'i:; :—(l)o;zv;;; cl)f N
re sitti d promotions committee scanning a jou .
you're sitting on a tenure an f ng 2 Journe B o articles
ishi i the authors and the nu
shing and who is not, then the names O .
?llll:;}ve plglblished may be more important to you than what they wrote (sad but true)

only by one element in the document. You can then use this string for a variety of
tasks including linking to particular elements of the document, even if the elements
move around as the document changes over time. For example:

<SQURCE ID="S1">

<AUTHOR ID="Al1">Donald Dewey</AUTHOR>

<AUTHOR ID="A2">Nicholas Acocella</AUTHOR>
<BOOK ID="B1">

<TITLE ID="B2">

The Biographical History of Baseball
</TITLE>
<PAGES ID="B3">169</PAGES>

<YEAR ID="B4">1995</YEAR>
</BOOK>

</SOURCE>

In fact, you may change your mind about what’sl meta and X?;:kdigt \C)\Q‘l‘a‘tl sseosntlyyle
i become crucial to you ne .
tangentially relevant today, may e ets 10 B
i i today, and change the styl€ _
sheets to hide unimportant elements \ s ' D e firet
it’ iffi later reveal information that w
em later. However, it's more difficult t9 ve .
tsttlored in an attribute. Usually, this requires rewriting the document itself rather
than simply changing the style sheet.

Elements Are More Extensible

WO
Attributes are certainly convenient when you only rtlﬁed 't[(:1 g;r;\:zrl ic:lne?yoll; ; vo
i i these cases, there
words of unstructured information. In : ’
current need for a child element. However, this doesn’t preclude such a need
in the future.

1D attributes make links to particular elements in the document possible. In this
way, they can serve the same purpose as the NAME attribute of HTML's A elements.
Other data associated with linking— HREFs to link to, SRCs to pull images and
binary data from, and so forth— also work well as attributes.

icle,
For instance, you may now only need to store the ?ame 03 tlheta:;t;:)erso{{ a(x)r;, 21“;; il
; isti ish between the first and 1as .)
and you may not need to distinguis ; s rasses.
tore first and last names, e-m
the future you may uncover a needto s ’ e
institution?snail mail address, URL, and morg. If you've store-d t{ledauttrtlli(;raL(c)1 ol
article as an element, then it’s easy to add child elements to inclu e

information.

You'll see more examples of this when XLL, the Extensible Linking Language, is dis-
cussed in Chapter 16, XLinks, and Chapter 17, XPointers.

part| + Introducing XML

ed to store document-specific style information. For
generally rendered as bold text but if you want

so often us
both bold and italic, you might write something

E elements are
TITLE element

Attributes are al
example, if TITL
to make just on€
like this:

(TITLE sty1e=“f0nt—sty1e: 1'ta11‘c“>S1'gn1'ficant 0thers</TITLE>
the tree

e embedded without changing
lement, this

This enables the styl

structure of the document. e a separate €

scheme gives documen
elements to the tag s€
might require the use 0
the DTD. Nonetheless, they
individual pages. Use this scheme with re
yourself back in the HTML hell XML was suppose
formatting is freely intermixed with meaning and document:

maintainable.

minor adjustments to

straint, however, or you'll soon find
d to save us from, where
s are no longer

want to allow them to make

to maintain compatibility with HTML. To the
L such as , <P,

The final reason to use attributes is
Jeast look similar to HTM

extent that you're using tags that at
and <10>, you might as well employ the standard HTML attributes for these tags.

This has the double advantage of enabling legacy browsers to at least partially
parse and display your document, and of being more familiar to the people writing

the documents.

Empty Tags

Last chapter’s no-attribute appro
swing to the other extreme — Sto
in the content. In general, Idon'tr
information in element content — whil
with in practice. However, this section
attributes for the sake of elucidation.

tion. It’s also possible to
n the attributes and none
h. Storing all the

is much easier to work
bility of using only

ach was an extreme posi
ring all the information i
ecommend this approac
e equally extreme—
entertains the possi

content, you can use empty tags asa
can include one
ing /> instead of
uld write

the element will have no
including both a start and an end tag you
are distinguished from start tags by a clos
instead of <PLAY ER></PLAYER> you wo

As long as you know
short cut. Rather than
empty tag. Empty tags
simply a closing >. For instance,

(PLAYER/>.
g for Joe Girard

Empty tags may contain attributes. For example, here’s an empty ta
with several attributes:

" SURNAME="G1 rardi"”

<PLAYER GIVEN_NAME="Jo&
GAMES="78" AT_BATS="254" RUNS="31" HITS="70"
DOUBLES="11" TRIPLES="4" HOME_RUNS="3"
"31" WALKS="14" STRUCK_OUT="38“

RUNS_BATTED_IN=

STOLEN_BASES="2" e

CAUGHT_STEALING=

0/22 Page 13 of 55

Chapter 5 + Attributes, Empty Tags, and XSL

SACRIFICE—FLY="1" SA wnqw
HIT_BY_PITCH="2"/> CRIFICE_HIT="8

XML o .
KL grzlitris:;sr;?sa(tﬂthls identically to the non-empty equivalent. This PLAYER
y equal (though not identical) to the previous PLAY ER element

formed with an empty tag.

<PEQLE§=9§¥ENK$AEi;;J92;4SURNAME=“Girardi"

78 : | = L RUNS="31II HIT =II "

DOUBLES="11" TRIPLES="4" 70

IPLES= HOME_RUNS="3"
gggEEEATTED_Iw='31' WALKS="14" STRUCK_OUT="38"
A _BASES="2" CAUGHT_STEALING="4" -
: CRIFICE_FLY="1" SACRIFICE_HIT="8"
IT_BY_PITCH="2"></PLAYER> -

The diff
The n; tﬁgﬁfglﬁgztv;/fe;g:(zéﬁl El}}(/ > and <PLAYER></PLAYER> is syntactic sugar,
A it ike the empty tag syntax, or find it hard to read,’you

XSL

Attribu isible i

g ‘t::v:;e ::1?3: Clrsl SantleL source view of the document as shown in Figure

o1 He]_,istin’g ncea ths g e sheet is applied the attributes disappear. Figure 53

et losis like a b e baseball stats style sheet from the previous. chapter i

G attr‘ba ank document because CSS styles only apply to elep ot

conten s’hould : ibutes. If you use CSS, any data you want to display t hment
e part of an element’s content rather than one of itg ailtr?btxt:zs

T D \XMLATible\ 0% At A siyledat! teshortgtatz aml - Miciosoll Internct Explores L]
ML e] B K
ulesh 1 998 syl tributeshor i l
D Hableh0h Al a9 4 i L] I Expl [|OOf X1

-[.-_—& E® View Fovodes Joos Heb

e . = . 9 ' 7 :
[Back Fowwd Stp Ru@m H@» _ s?a. Favorites H?;y. 2
1&/@09«@»\% ibutes\ 19385034 m == Pw:’ o
a5 : = el
B
EE

Figure 5-3:
to an XMEd ;\czl:‘]f;l; tdott:‘ument is displayed when CSS is applied
haracter data, whose elements do not contain any

110

e Do.1 Filed OM20/22 Page 14 of 55

part1 + Introducing XML

ive style sheet language that does allow you to access

However, there is an alternat
and display attribute data. This language is the Extensible Style Language (XSL);

and it is also supported by Internet Explorer
two sections, transformations and formatting.

5.0, at least in part. XSL is divided into

The transformation part of XSL enables you to replace one tag with another. You
can define rules that replace your XML tags with standard HTML tags, or with
HTML tags plus CSS attributes. You can also do a lot more including reordering the

elements in the document and adding additional content that was never present in
the XML document.

The formatting part of XSL defines an extremely powerful view of documents as
you to specify the appearance and layout of a page

pages. XSL formatting enables
%t flow around objects, line spacing, assorted font

including multiple columns, t€
properties, and more. It’s designed to be powerful enough to handle automated

layout tasks for both the Web and print from the same source document. For
instance, XSL formatting would allow one XML document containing show times
and advertisements to generate both the print and online editions of a local
newspaper’s television listings. However, IE 5.0 and most other tools do not yet
support XSL formatting. Therefore, in this section I'll focus on XSL transformations.

_gross- 1\ XSL formatting is discussed in Chapter 15, XSL Formatting Objects.

. Reference

XSL Style Sheet Templates

An XSL style sheet contains templates into which data from the XML document is
poured. For example, one template might look something like this:

<HTML>
<HEAD>
(TITLE>
XSL Instructions to get the title
<JTITLE>
{/HEAD>
<HI>XSL Instruction
<BODY>
XSL Instructions to get the statistics
</BODY>
{/HTML>

s to get the title</H1>

The italicized sections will be replaced by particular XSL elements that copy data
ly this templaté

from the underlying XML document into this template. You can app
to many different data sets. For instance, if the template is designed to work wit
the baseball example, then the same style sheet can display statistics from different

seasons.

L
|

eference |

Chapter 5 4 Attributes, Empty Tags,andXsL 111

This ma; i

is very Izl:slx:lll]rll((l }S'Z?vof S(.)me.server-side include schemes for HTML. In fact, thi

s XML docunen ter—s:jde includes. However, the actual transfomiation o} thls
and XSL style sheet takes place on the client rather than(i)n

]

XSL instructions can retrieve any d i
T y data stored in the elements
Jots g}lgifn e;l::na(i?:“c)ontent, elgment names, and, most imp(c))frtgst)l(ywzcl)‘rd:: pment:
e € e elemem’sutes. P;*rtlcular e.lements are chosen by a pattern tha:
e B elative n.a.me,.lts value, its attributes’ names and values, its
Ao i;‘)oilttlon in the tree structure of the XML document’ and
manipulated in a variet; o: a\f;;(sj f\:\(lzamw:)r;’iligl:: o canhbe e, COpiéd, g
1 : ¢ f ways. r everythi i
;r:;:zf:;ﬁ:m;:tstm this pnef introduction. However, yOYtu vtr?l% l)g;l:ncil: 1? Y ‘;V(lsth o
pretty amazing documents that can be viewed on the Web fieght l;‘:/(;y

C .
hapter 14, XSL Transformations, covers XSL transformations in depth

The Body of the Document

Let’s begin by looking at a sim

: ple example and applying i

X Kin, > pplying it t

:;1), {;Zerxlset:all sta.mstlcs shown in Listing 5-1. Listinpg}é-Zgisl ar?)t(tSlE XtM lL dOCument.
eet provides the HTML mold into which XML data will bespglfr:geet. e

| Listing 5-2: An XSL style sheet

Z?xr{ﬂ version="1.0"7>
Xxs1:
stylesheet xmins:xsl="http://www.w3.0rg/TR/WD-xs1">

<xs1:templa ="/"
<HTML>p te match="/">
<HEAD>
<TITLE>
</¥?%EE>League Baseball Statistics
</HEAD>
<BODY>

<H1>Major League Baseball Statistics</HI>

<HR></HR>
Copyright 1999

<A HREF="http://
<5l11°tte Ruzfy ngﬁéTngGQ-com/persona1,htm1u>

Continued

"

- :
Document 82-1 Filed 04/29/22 Page 15 of 55

ducing XML
Chapter 5 + Attributes, Empty Tags, and xst. 113

A . < e
: ttrt:fgttl:t[;(g) :V}:’zr)((jsgsrtljlglley s;:;ft o<f?Llst1mg 5.2 to the XML document in Listing 5-1 is
> 5 a<?xml-stylesheet?> ing i i i
: ?> processin
: g 2 stabt;;?ute V\gth value text/xs1 and an href attribute that gp:)r:rsl:;utf)tlt?ln wtltll] y
een the XML declaration and the root element. For example: osve

1g 5-2 (continued)

<A HREF="ma1‘1to:e1haro@meta1ab.unc.

el naro@metal ab.unc.edu
<A

edu">
<?xml version="1.0"7>

<?xml-stylesheet type=" " .
CSEASON ERer 1998%S text/xs1" href="5-2.xs1"%>

</BODY>
<JHTMLY
/xs1:templ ate>

This is the same way a CSS st i
. : yle sheet is attached to a do
difference is that the type attribute is text/xs1 instead cffu &ir‘lct} ;l‘ sh f ony

sl :sty]esheet)

s
B_as.e_?iull Gratistics - Microzofl Internet Explorer

[Be g You Faotes Dok b
e —— . .
‘_Baok s F::ud 4 g’ Ruh r@: | s?m Fa% H@ Y
B — - o i
|| Agdress [D 0L Bibe\CD\eouce\ \stiedS T - S Pn:j & —|
L I b,

— 4

»

xs1:template element. In other

smbles an HTML file included inside an
5 its structure looks like this:

Major League Baseball

xml version=“1.0"?>
1=“http://www.w3.org/TR/WD-xs1 ">
Statistics

s .stylesheet xmins xS

Copyright 1999 Elliotte Rusty Harcld

(xsl:template match="/">

HTML file goes here
</xsl .template>

/xs1 .stylesheet>

ing 5-2 is not only an XSL style sheet; it'salso a well-formed XML document.
egins with an XML declaration. The root element of this document is xsl:
N esheet. This style sheet contains a single template for the XML data

1ate element has a match

.oded as an xS .template element. The xs1:temp
tent is a well-formed HTML document. It's

ribute with the value / and its con

t a coincidence that the output HTML is wellformed. Because the HTML must
st be part of an XSL style sheet, and because XSL style sheets are well-formed
iL. documents, all the HTML in a XSL style sheet must be well-formed.

:;f:;; t5e-ll|s The data zom the XML document, not the XSL
, is missin icati ;
Listing 5.2 g after application of the XSL style sheet in

The Title

- Of cour i
e ;lfttr?:rs(: »;/:s ;omgthlpg.rather obvious missing from Figure 5-4 —the data!
Bheet o Figure %/_ 3)sit edet in lrlstmg 5-2 displays something (unlike the CSS style .
B e t oo XL oesn t. show any data from the XML document. To add thi
B cimant into the Xérltstt;:lnc;;:; e{?n:.entss t:;) copy data from the sour;:e XML ®
i - . Listing 5-3 adds the necessar XSLi i
e YEAR attribute from the SEASON element and insert};t in t}llr:es?IuTcl'_ﬂEOZz(:o

ata from the XML document, only from the XSL temp! B cader of
3 eader .
B of the resulting document. Figure 5-5 shows the rendered document

o match parts of the XML document against each
atches the root of the docume
ds the template and inserts data from

instructions. However, this particular

ts contents are merely copied verbatim
jgul

1e Web browser tries t
;1:template element. The / template m

(e entire document itself. The browser rea

1e XML document where indicated by XSL

:mplate contains no
1to the Web browser, pro
_4 does not display any d

112

part! + introducing XML

P2 Page 16 of 55

Chapter 5 + Attributes, Empty Tags, and XSL

113

Attaching the XSL style sheet of Listing 5-2 to the XML document in Listing 5-1 is
straightforward. Simply add a <?xm1-stylesheet?> processing instruction with a
: d) type attribute with value text/xs1 and an href attribute that points to the style
B -2 (continué
Listing 5-2 (

sheet between the XML declaration and the root element. For example:

.edu">
A HREF=“maﬁ1to:e1haro@meta1ab.unc
<e]haro@meta1ab.unc.edu

<?xml version="1.0"?>
<?xml-stylesheet type="text/xs1" href="5-2.xs1"?>
<SEASON YEAR="1998">
<A R
</BODY>
CJHTMLY

¢/xs1:template>

This is the same way a CSS style sheet is attached to a document. The only
¢/xsl:stylesheet?

difference is that the type attribute is text/xs1 instead of text/css.

e T—

A Major League Baseball Statistics - Microsoft internet Explorer

| e EQt Yow Favoes look Heb

o0 damoE s
| & . & , B »
her | Bk Fowad Stop Refiesh Home | Semch Favortes Hiloy = Mad Pt
ded inside an xs1 template element. et || Addess [1 D OOML B bie\D source\Bteds T e _ 2] @8e
ML file inclu e i =
&;ﬁﬂiﬂzﬁi&ﬂ; looks like this: Major League Baseball
. w1 07 JTR/WD-xs1">
<ol Vem?\n:tlignﬁ>s:xs1="http://WWW-W3'°rg
(xsl:stylesne

Statistics
(xs1:template match="/">

NTML file goes here
(/xs1:template”

Copyright 1999 Ellintte Rusty Harcld
elharo@metalat. ung. edu

¢/xsl:stylesheet?

d XML document.
sheet; it's also @ well-fo}'me ent is X51°

Listing 52 is not 0¥ &4)C(IS;::X)‘: The root element of . ;f):l e XML data

it begins with an X ML] esheet contains a single temp a] ate element has a mat.Ch

stylesheet. This sty’e 1ate element. The xs1:temp ed HTML document. It's

encoded as.alll t)k(xiv:aﬁ\exzp/ and its con'(e‘L“t e aevﬁ?(l)-rfglr:i Because the H'i":Vfl(l)a"“‘“‘;t
ibute wi TML is well- : e well!

?‘t‘::‘:léomddence iy t’? Teorttlg‘eltt, };nd because X5L Stylf ;: S:t:lsl-fa;rmed-

first e part & K HTML in a XSL style sheet mus

XML documents,

Figure 5-4: The data from the XML document, not the XSL
template, is missing after application of the XSL style sheet in
Listing 5-2.

The Title
j h
t against eactt
tries to match parts of the);M: t%%cmte rc1>f tt%e document; t
The Web browser e template matche
lement.
xs1:templatee

o ngr
. i

Although the style sheet in Listing 5-2 displays something (unlike the CSS style

sheet of Figure 5-3) it doesn’t show any data from the XML document. To add this,

Jou need to use XSL instruction elements to copy data from the source XML

ied verd
merely COPIEC So
. its contents are Notice thé
; L instructions, SO in Figure 5-4. y

template cotl:'gnn‘sﬂ zgrx;?roduc" ng the output you see in Fg
into the Web bro '

document into the XSL template. Listing 5-3 adds the necessary XSL instructions to
E€xtract the YEAR attribute from the SEASON element and insert it in the TITLE and
nly from the XSL te8 R
menta 0
from the XML docu
R lay any data
54 does not disp

1 header of the resulting document. Figure 5-5 shows the rendered document.

Part| + Introducing XML

: Listing'sei'): An XSL style sheet with instructions to eXt;act _tli_e.”
7 SEASON element and YEAR attribute |

¢<?xml version="1.0"7> .
¢(xs1:stylesheet xmlns:xs1=“http://www.w3.org/TR/wD—xs1 >
<xs]:template match="/">
<HTMLY
<HEAD>

KTITLE>
<{xs1:for-each select="SEASON">

¢(xsl:value-of select="@YEAR"/>
</xs1:for-each> o
Major League Baseball Statistics
<JTITLE>
</HEAD>
<BODY>

(xsl:for-each sel ect="SEASON">

<H1>
¢(xs1:value-of sel ect="@YEAR"/>

Major League Baseball Statistics

</HLS
</xs1:for-each>

CHRY></HR>

Copyright 1999 ,
<ApHREF="http://www.macfaq.com/persona] chtml®>

E11iotte Rusty Harol d

 .

elharo@metal ab.unc.edu
<IA>

</BODY>
</HTML>
<(/xsl:template>

</xsl:stylesheet>

=i

The new XSL instructions that extract the YEAR attribute from the

<xs1:for-each select="SEASON">
{xsV:value-of select="@YEAR"/>

</xs1:for-each>

SEASON element arg:

Page 17 of 55

Chapter 5 + Attributes, Empty Tags, and XSL 115

T3 1998 Ma | eague: Ba Statiztics - Miciosoll Inteinet Exploces

Toe ch gom pote o b
[« . =.Q Al m 3B 3
| ok Foat | Stp meieh Vo Seoch Fovoles Mooy | 9 P e
I B - &5
=
1998 Major League Baseball
Statistics
Copyright 1999 Elliotte Rusty Harold
elharc@metalab. unc eou
e -
@ [[[My Computer %
Figure 5-5: Listing 5-1 after application of the XSL style sheet
in Listing 5-3

These instructions appear twice because we want the year to appear twice in the
output document-once in the H1 header and once in the TITLE. Each time they
appear, these instructions do the same thing. <xs1:for-each select=" SEASON™>
finds all SEASON elements. <xs1:value-of select="@YEAR"/> inserts the value
of the YEAR attribute of the SEASON element — that is, the string “1998” —found by
<xs]:for-each select="SEASON">.

This is important, so let me say it again: x s1:for-each selects a particular XML
element in the source document (Listing 5-1 in this case) from which data will be
read. xs1:value-of copies a particular part of the element into the output
document. You need both XSL instructions. Neither alone is sufficient.

XSL instructions are distinguished from output elements like HTML and H1 because
the instructions are in the xs1 namespace. That is, the names of all XSL elements
begin with xs1:. The namespace is identified by the xmins:xs1 attribute of the
root element of the style sheet. In Listings 5-2, 5-3, and all other examples in this
book, the value of that attribute is http://www .w3.org/TR/WD-xs1.

Namespaces are covered in depth in Chapter 18, Namespaces.

Leagues, Divisions, and Teams

Next, let’s add some XSL instructions to pull out the two LEAGUE elements. We'll
map these to H2 headers. Listing 5-4 demonstrates. Figure 5-6 shows the document
rendered with this style sheet.

parti ¢ introducing XML

116

Listing 5-4: An XSL style sheet with instructions to extract
LEAGUE elements

<7 xml version="1.0"?>
<xsl .stylesheet xm]ns:xs1=“http: //www.w3.org/TR/wD-xs1 ">

(xsl:template match="/">

<xs . for-each se1ect="SEASON“>
<xs .value-of se\ect=“@YEAR"/>

</xs .for-each?

Major League gaseball Statistics
¢JTITLE>
{/HEADY
<BODY>

<xs - for-each sel ect="SEASON">

<H1>
¢xsl:val ue-of sel ect="@YEAR"/>

Major League Baseball Statistics
</HLY

<xsl -for-each se]ect="LEAGUE">
<{H2 ALIGN="CENTER">
<xs] .value-of se1ect="@NAME"/>
{IH2S
&/ xs .for-each?

</ xs .for-each>

CHRY<C/HRY

Copyright 1999

Elliotte Rusty Harold
<A

el haro@metal ab.unc.edu
<A

</BODY>
C/HTMLY
</xs .template>

</ xs) .stylesheet>

ent 82-1

Filed 04‘:9/2'2 Page 18 of 55

. Chapter 5 + Attributes, Empty Tags, and XSL

117

) 1998 M I"_
| Fle E® Vew Favoites k*.wbl =
1 oo 2 T - =
Jaid_‘ Fmd'? B A QA @ @ B
[M“ME op Refiesh Home | Seaich Favodtes Hi | - éa »
I | A D-\XML\Bible\CD\source\D5\styled5-1 xmi — oy | Mal Pt
' = __Jiew|
| 1998 Maj — 2
) jor League Ba
'- - seba
Statistics I
National League
American League
Copyright 1999 Ellintte Fust
gbgm%maﬁgbi&_ﬁ“&' Harold
|

Figure 5-6: The lea
: gue names are di
the XSL style sheet in Listing 5-4 is a;flli:zjed as H2 headers when

<xsl:fo "
il r-each select="SEASON">

<xs1:value-of select="@YEAR"/>

Major Le
i3 ague Baseball Statistics

<X5]:f0r-each Se]
ect=" "
<H2 ALIGN="CENTER"> LEAGUE">

<{xsl:value- "
PRI ue-of select="@NAME"/>

</xs1:for-each>

</XS]:for_eaCh>

The outermost i
t instruction s

selected, we then fi ays to select the SEASON elem <

and </H1> alonegn“f;i;t]g tt}l:: ngtAR tattribute of that element aﬁrétbﬁlct: itthte)ntdement

the browser lo ratext Major Lea etween <H1>

ops through) gue Baseball Statisti

the value of i gh each LEAGUE child of th istics. Next,

Although thore's anly et Do o e s places

all the LEAGUE eleme}l,'n:)sntehxi 1:for-each matching a LEAGUE eer[rllerft/HD'

this template works fo at are immediate children of the SEASON It loops over

r anywhere from zero to an indefinite “Umbef lff[?em- Thus,

eagues.

The same t .
echnique
teams. Listin can be used to assign H3
: g55d gn H3 headers to divisi
endered with this setm l(c)e "sttlrates the procedure and Figure ;Y;sslggs ang 14 headers to
he XML data. yle sheet. The names of the divisions and teawmsst . docgment
are read from

g8 1:19-cv-00859-RTH Document_82-1

118 Parti+ Introducing XML

Listing 5-5: An XSL style sheet with instructions to extract
EAM elements

DIVISION and T

<?xml version="1.0"7>
"http://www.w3.0rg/TR/wD—xs1 ">

(xsl:stylesheet xmins:xsl=

{xsl:template match="/">
CHTMLY>
<HEAD>
CTITLE>
<(xs1:for-each se]ect="SEASON">
¢(xs1:value-of se]ect="@YEAR“/>
</xs1:for—each>
Major League Baseball Statistics
<JTITLE>
</HEAD>
<BODY>

{(xs1:for-each sel ect="SEASON">

CH1>
(xsl:value-of select="@YEAR"/>
Major League Baseball Statistics

<HLD
{xs1:for-each select="LEAGUE">
<H2 ALIGN="CENTER">
<(xs1:value-of se]ect="@NAME“/>
<IH2S

¢(xs1:for-each se1ect=“DIVISION">
<H3 ALIGN="CENTER">
¢(xs1:value-of selec
</H3D

{xs1:for-each select="TEAM

<HA4 ALIGN="CENTER">
lect="@CITY"/>

(xs1:value-of se
¢(xs1:value-of select="@NAME"/>
</HAS

(/xs1:for-each>

(/xsl:for-each>

t="@NAME"/>

||>

(/xsl:for-each>
(/xs):for-each>

CHR>S/HRY
Copyright 1999

Filed 04/2 J22 Page 19 of 55

Chapter 5 + Attributes, Empty Tags, and XSL

Elliotte Rust

> y Harold

<A HREF="mailto:elh
<?2\Earo@meta1ab:uncéggﬁmeta]ab'unc'edu">

</BODY>
</HTMLD
<{/xsl:template>

</xsl:stylesheet>

-3 1938 M3 24 aseball Statist Micio n -
3 Major Lt,d_gue B 5 ball 5 c3 icrosoft nternet Expl
n orei

| Bo E& Yew Fovoies Jook Heb
| N I L R AN :
v - ¢ @ @ I ~ = =
S 2% 2

|J, Back Forward Stop Refiesh Home ‘ Search Favorites
.iﬂm]ﬂ D \XMLABBIeACD \source\ D5 styled5-1 sl =]
stled — ____ e

1998 Major Lea u_e B "
Statistics 9 aseball

National League

East

Atlanta Braves
Florida Marlins
Montreal Expos
New York Mets
Philadelphia Phillies

Central
=

Figure 5-7: Divisi
re 5-7: sions and team names are di
application of the XSL style sheet in Listing 5_|§|.>Iayed ater

In the case of
' the TEAM elem
are used as cont ents, the values of both its CITY and N ;
;ach elements tl?:ttss::(l)écttt;eszisheadfn Also notice that the neStin;ZEt?lt;r;Z#t? fs or
ierarchy of the doc seasons, leagues, divisions, and teams mi SR
: . ' rrors the
possible that don’ Umgnt itself. That’s not a coinciden i
i t require matching hi . ce. While other scheme
ighly str . atching hierarchies, this i . mes are
uctured data like the baseball statistics, of lls‘izi;l;esfllmplest, especially for

I eument 82-1 FiledI04/29/22 Page 20 of 55

120 pati+ Introducing XML

Players

The next step is to add tic
way to do this is in a table. Listing 5-6 sh

heir stats in a table. No new
fh and xs1:val ue-of elemen

statistics for individual players

players and t
xs1:for-eac .
its attributes. The output is stan

results.

ts are used on the

An XSL style sheet that places player

Listing 5-6: Y
g statistics in a table

¢7xml version="1.0"%> 1="http://www.w3.or9/TR/WD'X5]

<xs1:sty1esheet xmlns:xs

(xsl:template match="/">
CHTMLY
<HEAD>

CTITLE>) .
¢xs1:for-each select= SEASON">

¢xs1:value-of se]ect="@YEAR“/>
</xs1:f0r-each>

Major League Baseball Statistics
</TITLES
{/HEAD>

<BODY>
(xsl:for-each se]ect="SEASON">

NP elect="@YEAR"/>

< g}:value-of s M2
M:jor League Baseball Statistics

</HIS

<xs1:for-each se1ect="LEAGUE">

2 ALIGN=“CENTER“> . .
<H<xs1:va1ue-of select= @NAME" />

</H2>

(xs1:for-each select="DIVISION“>

<H3 ALIGN="CENTER"> .)
<xs]:va1ue-of select= @NAME" />

</H3>

<xs1:for—each se]ect="TEAM">

<H4 ALIGN="CENTER"> . .
(xsl:value-of select="@CITY />

¢xs1:value-of se]ect=“@NAME"/>
</H4>

<TABLE>

on a team. The mo
ows an XSL style sheet that arranges the

ents are introduced. The same
i PLAYER element and

dard HTML table tags. Figure 5-8 displays the

s and their

Chapter 5 + Attributes, Empty Tags, and XSL

<THEAD>
<TR>
CTH>PTlayer</TH><TH>PL/TH>XTH>G</TH>
CTHD>GSK/TH>KTH>ABL/ TH>XTHORS/TH>KTHOHC/TH>
CTHODC/ THOCTH> T/ THY>KTHOHRL/ TH>KTH>RBILK/TH>
CTHYSK/THOCTHY>CS</THOCTHY SHS/ TH>CKTH>SFL</TH>
KTHYES/THOCTHY BB/ TH>XTH>SO</ TH>KTH>HBP L/ TH>
/TR
<{/THEAD>
<TBODY>
<xs1:for-each select="PLAYER">
<TR>
KT
<xsl:value-of select="@GIVEN_NAME"/>
<xs1:value-of select="@SURNAME"/>
/T
<TD><xs1:value-of select="@POSITION"/></TD>
<TD><xs1:value-of select="@GAMES"/></TD>
<TD>
<xs1:value-of select="@GAMES_STARTED"/>
</TD>
<TD><xs1:value-of select="@AT_BATS"/></TD>
<TD><xs1:value-of select="@RUNS"/></TD>
<TD><xs1:value-of select="@HITS"/>/TD>
<TD><xs1:value-of select="@DOUBLES"/></TD>
<TD><xs1:value-of select="@TRIPLES"/></TD>
{TD><xs1:value-of select="@HOME_RUNS"/></TD>
<TD><xs1:value-of select="@RBI"/></TD>
<TD><xs1:value-of select="@STEALS"/></TD>
<TD>
<xs]:value-of select="@CAUGHT_STEALING"/>
</TD>
<TD>
{xs1:value-of select="@SACRIFICE_HITS"/>
ST
<TD>
{xsl:value-of select="@SACRIFICE_FLIES"/>
/TS
<TD><xs1:value-of select="@ERRORS"/></TD>
<TD><xs1:value-of select="@WALKS"/></TD>
<TD>
{xsl:value-of select="@STRUCK_OUT"/>
</TD>
<TD>
<xs1:value-of select="@HIT_BY_PITCH"/>
</TD>
</TR>
</xsl:for-each>
</TBODY>
</TABLE>

</xsl:for-each>

Continued

121

122 Parti ¢ introducing XML

Listing 5-6 (continued)
¢/xs):for-each>

¢/xs] .for-each>
</xs] -for-each>

CHRY<C/HRY 1999
right .
E?\p{lREL“http://www.macfaq.com/persona1 .htmi">
E11iotte Rusty Harold
<A

 .

e1haro@meta1ab.unc.edu
<A
</BODY>
</HTMLY
¢/xs1:template?
</xs) .stylesheet>
Separation of Pitchers and Batters
Figure 58 is that the pitchers aren't handled

iscrepancy you might notice in : : :
g?:p(lrly. Tl;\rou};gout this chapter and Chapter 4, we've always given tlh'e ;:ltec‘ttlg‘st

a completely different set of statistics, whether those stats were store in e o
content or attributes. Therefore, the pitchers really need a table that is Sgpther o
the other players. Before putting a player into the .table, you.mu“st _te;t v»:’ teh paghan
or is not a pitcher. If his POSITION attribute contains the smr.lg pitcher R
edure in a second table that only includes pitchers-

him. Then reverse the proc ; iat only 10¢ 7
elements whose POSITION attribute contains the string pitcher”.
code to the xs1:for- each element that

dd additional
“You 1 players. Instead, you select those players

You don’t select al ! L
e is not pitcher. The syntax looks like this:

“PLAYER[(@POSITION = 'pitcher’ '

To do this, you hav
selects the players.
whose POSITI ON attribut

(xs1:for-each select=
g and relief pitchers:

But because the XML document distinguishes between startin

the true answer must test both cases:
1ect=“PLAYER[(@POSITION 1= 'Starting pitcher)

: -each se !
o N = 'Relief pitcher')1">

and (@POSITIO

Chapter 5 + Attributes, Empty Tags, andXsL 123

-JIE!'.!!] Major |eague Bazehall Statishes - Miciosol! Internet Exploner

-]_Eie Edt Yew fgvoies Jools Heb

) 8 -
J__B_a_ok ~ Fowad Stop Reftesh l@\e | s?eh ravc:.am H?w‘ % % -
[ST e N '

1998 Major League Baseball Statistics

National League

East
Atlanta Braves
Player P G GS AB R H D THRR
BI S CSSHSF E BB S
Marty Malloy SecondBase 11 8 28 3 5 1 01 1 000 0O0C2 20 E'BP
Ozzie Guillen Shortstop 83 SO 26435 73 1511 22 1 4 4 2 6 2425 1
Dannl\c'jBautlstaOutfield 82 27 14417 36 1103 17 1 0 3 2 27 21 0
Gera .
Williams Outfield 12951 26646 81 18310 44 115 2 1 5 1748 3
. Starting
Tom Glavine pitcher 33 33
Javier Lopez Catcher 13312448973 139211 34 106
‘ 531 8 53085 6
F;yzn Klesko Outfield 12012442769 11729118 70 5 3 0 4 2 5666 3
ndre)
ED;:_S _ FirstRase 153151 55510131AQ27144 1217 A N 5 11AR14ADS 2l
T (S MyComper

Figure 5-8: Player statistics are displayed after applying the XS
sheet in Listing 5-6. Y pplying L style

For the table of pitchers, you logicall i iti i

(> . : , y reverse this to the position being equal to
either “Starting Pitcher” or “Relief Pitcher”. (It is not sufficient to just c%ar?ge not
equal to equal. You also have to change and to or.) The syntax looks like this:

<xs1:for-each select="PLAYER[(@POSITION = 'Starti i
= rt !
or (@POSITION = 'Reljef Pitcher')]"> ing Pitcher?)

Only a single equals sign is used to test for equal
) ' quality rather than the double equals
sign used in C and Java. That's because there’s no equivalent of an assign?nent

operator in XSL.

:l‘liift:rlegnst-z sg;ows an X?L style’z sheet separating the batters and pitchers into two

it 5_la es.c;l‘he. pltchgrs table. adds columns for all the usual pitcher statistics.

- g i encodes in attributes: wins, losses, saves, shutouts, etc. Abbreviations
sed for the column labels to keep the table to a manageable width. Figure 5-9

shows the results.

o cLUment 82-1 Filed 0029/22 Page 22 of 55

Chapter 5 4+ Attributes, Empty Tags, and XSL
part| 4 Introducing XML

<TBODY>
<xsl:for-each select="PLAYER[(@POSITION
I= 'Starting Pitcher')
and (@POSITION != 'Relief Pitcher')]">
<TR>
T
<xsl:value-of select="@GIVEN_NAME"/>
<xs1l:value-of select="@SURNAME"/>
<JTD

Listing 5-7: An XSL style sheet that separates batters

and pitchers

. _" "? _]n)
E?XT]s¥§;Zé%2etlig1né:xsl="http://WWW-W3-°r9/TR/WD xS
XS1e

¢xs):template match="/"> <TD><xs1:value-of select="@POSITION"/></TD>
CHTMLY <TD><xs1:value-of select="@GAMES"/></TD>
<HEAD> <TD>
<TITLED _w "y <xs1:value-of select="@GAMES_STARTED"/>
¢xs]:for-each select= SE%?%QR“/> </TD>

(xs):value-of select=

<TD><xs1:value-of select="@AT_BATS"/></TD>
¢/xs1:for-each>

<TD><xs1:value-of select="@RUNS"/></TD>
<TD><xs1:value-of select="@HITS"/></TD>

istics
Statist <TD><xs1:value-of select="@DOUBLES"/></TD>

Major League Baseball

(JTITLES <TD><xs1:value-of select="@TRIPLES"/></TD>
</HEADY <TD>
<BODY> <xsl:value-of select="@HOME_RUNS"/>
£="SEASON"> </TD>
¢xs1:for-each select= <TD><xs1:value-of select="@RBI"/></TD>
CHI> . £ se]ect=“@YEAR"/> <TD><xs1:value-of select="@STEALS"/></TD>
<xsl:value-0 istics <TD>
Major League Baseball Stati ¢<xs1:value-of select="@CAUGHT_STEALING"/>
</HL> </TD>
_w £ <TD>
¢xs1:for-each select="LEAG <xs1:value-of select="@SACRIFICE_HITS"/>
<H2 ALIGN="CENTER lect="@NAME" /> </TD>
¢xs):value-of se ec <TDD>
</HZ> <xsl:value-of select="@SACRIFICE_FLIES"/>
</TD>

<xsl:for—each select=“DIVISION“>

" <TD><xs1:value-of select="@ERRORS"/></TD>
<H3 ALIGN="CENTER >

o /> <TD><xs1:value-of select="@WALKS"/></TD>
¢xs):value-of select @NAME"/ <TDS
C/H3D <xs1:value-of select="@STRUCK_OUT"/>
t="TEAM"> </TD>
<xs1:for-eac? select <TD>
<H4 ALIGN= CENTER"> —"@CITY"/> <xs1:value-of select="@HIT_BY_PITCH"/>
.value-of select .
<xsl:va lect="@NAME" /> </TD>
¢xsl:value-of se /TR
</HA> </xsl:for-each> <!— PLAYER —>
</TBODY>
<Eéi;%§ON>Batters</CAPT10N> </TABLE>
(THEAD> <TABLE>
<E$;>P1ayer</TH><TH>P</TH;§Lﬂ7$;ézH> ZgﬁglégN>P1tchers</CAPTION>
THXLT '
<TH>GS</TH><TH>AB</ THY< CTRS
H><THYHRL/
<T“>D<”“iﬂ‘ﬁﬂé@m><m>sa</TH> <TH>Player</TH><XTH>PL/TH>XTH>G</TH>
i¥:;§§§¥g><TH>BB</TH><TH>SO</TH> <TH>GSK/TH>KTHOWL/TH>KTH> LK/ TH>KTH>S</TH>
CTHYHBPC/THY Continued

/TR
</THEAD>

125

:Li_'s_ﬁng 5-7 (continued)

<TH>CGLK/THY
CTHYTPL/THY
<THYHBL/TH>
CTHYKL/THY
</TRY
</THEAD>

<TBODY>
<xs1:for-each select=

= 'Starting pitcher')
or (@POSITION = ‘Relief
<TR>

<TD>
(xs1:value-of select="@

¢(xs]:value-of select=

</TD>
<TD><xs1:va

<TH>SO</TH><TH>ERA</TH>
<TH>HR</TH)(TH)R(/TH><TH>ER</TH>

<TH>NP</TH><TH>B</TH

1ue-of select=

>(TH>BBL/TH>

"PLAYER[(@POSITION

pitcher')1">

GIVEN_NAME"/>

"@SURNAME" /2

"@POSITION"/></TD>
"@GAMES" /></TD>

<TD><xs1:va1ue-of select=
<TD>
(xsl:value-of se1ect=“@GAMES_STARTED“/>

</TD>
(TD><xs1:value
<TD><xs1:va1ue-of selec

(TDY<xs1:vatue-0
<TD>

</TD>
<TD>
<xs1:va1ue-of select=
/TS
le

<TD><xs1:va1ue—of se
<TD><xs\:va1ue-of se

<TD>
¢xsl:value-of se]ect=“@HOME_RUNS_AGAINST“/>
<JTD>
<TD>
<xs1:va1ue-of se1ect="@RUNS_AGAINST"/>
/TS
<TD>
<xs1:va1ue-of se1ect=“@EARNED_RUNS"/>
<JTD>
<TD>
<(xs1:value-of se]ect=“@HIT_BATTER"/>
/TS
<TD>
(xs1:value-of se1ect=“@wILD_PITCH“/>
</TD>
<TD><xs1:va1ue—of se1ect="@BALK“/></TD>
<TD>
¢xsl:value-of se1ect=“@WALKED_BATTER“/>
</TD>

<TB>

f selec

<xs1:va1ue—of select="

t="@WINS"/></TD>
t="@LOSSES"/></TD>
t="@SAVES"/></TD>

@COMPLETE_GAMES"/>

"@SHUT_OUTS" />
ct="@ERA"/></TD>

1ect=“@INNINGS"/></TD>

Chapter 5 4 Attributes, Empty Tags, and XSL

<xsl:value-of ="
YELN select="@STRUCK_QUT_BATTER"/>
</TR>
</xsl:for-each -
st ch> <!= PLAYER —>
</TABLE>

</xs1:for-each> <!
I— TEAM —
y </xsl:for-each> <!— DIVISION>—>
xsl:for-each> <!— LEAGUE —>
{/xsl:for-each> <!— SEASON —>

<HR></HR>
Sipﬁﬁéght 1999
F="http://www
ElTiotte Rusty HaréTngaq.Com/persona1,htm]">

elharo@metal
A ab.unc.edu

</B0ODY>
</HTMLD
</xsl:template>

</xsl:stylesheet>

3 1998 Major Liswie B -
L i Lisaguie Bareball Stabistics - Mic —
? £ Yoo F Imu* cratoft Infetnet Exploser
= LIRSS

TR N g L
" _ Stop Reftesh Home = Seach Favortes History >
A E_Dwmm\cownm\ﬂ%1m...... Favortes Mad

e

a

P

TAST
Atlanta Braves
Player Batters
P G GS Al
ey gecond o 8 R H DTHRRBI S CSSHSF E §
ase 28 3 5
Ozzle Guill ot e
Damny Balmelrs\ta Zhogstop 83 59 26435 73 1511 22 1 2 ol
R erelt! Will s Out !eld 82 27 14417 36 1103 17 1 5333
Javier Lopes Cu:gfld 12951 26646 81 18310 44 110 S
o Ko oitf' elr 13312448973 139211 34 106 5 g s
ms ield 12912442769 11729118 70 S5 3 é) 3 ;
Fi
- ::l:ns |r'st Base 153151 555103169271 44 1217 6 O
ThirdBase 7 2 132 4 1 0t 2 O o
00 01 {

Pitchers

Tom Glavi G GSWLSCGS
ne Starting Pitcher 33 33 060 & o oy 2a0 1 s tyeh pENC D g
: 11367632 0

Florida Marlins

5-9: Pitchers are distingui
. istinguished from ot
Pplying the XSL style sheet in Listing Sc_l;ler players

127

128

part1 ¢ Introducing XML

Element Contents and the select Aﬂ"?ltse N
tored in

i using XSL to format data s o

In i ff)C"‘ls"atd azrclessibgle when using CSS. However, XSL works(oe:li\:‘ y

element becans e o haracter data rather than

well when Yo by e lement’s text is to be copied into the

i i i indicate thatan €
addmm:im) Y ?:ctrslg:ll;t)es. e nt's name as the value of the select
output document,

1 ple, consider, once again, Listing
attribute of the xs1:va

5-8:

ly use the eleme
Tue-of element. For exam

=Il "'7>
san="1.0" standalone yes"?
isti - ing . xml<7xml version="1 C %3
lzl?i;wgt;zz;i?tgpe="text/xs1" href= greetwng.xs]
CGREETING>
Hello XML!
</GREETING>

“ " i header. First,
's suppose you want to copy the greeting Hello XM';! into an H1 he
l;itusussepfﬂ . for-each to select the GREETING element:

(xs1:for-each sel ect="GREETING“>

<H1>
</H1>
</xsh -for-each>

i the text of
is alone is enough to copy the two H1 tags into the outfpu?it"[‘(;)1 gl::]eect e e,
The o SE]T ING element between them, use xs1:V alue-o EVélT P are aot
E[l']: GRby default, the contents of the current element (GR
en, s
Listing 5-9 shows the complete style sheet.

Listing 5-9: greeting.xsl

< =II " ?>
<?7xml version 1.0" 7% B
¢xs1:stylesheet xm]nszﬁsl—
¢xs1:template match="/">
<HTMLY
<BODY>
(xsl:for-eac
<H1>
¢xs):value-of/>
<HLY
</xs\:f0r—each>
</BODY>
{/HTML>
¢/xs):template>
</x51:sty1esheet>

“http://www.w3.org/TR/ND—xs] ">

h sel ect="GREETING">

9/22 Page 24 of 55

Chapter 5 4 Attributes, Empty Tags, and XSL

You can also use select to choose the contents of a child element. Simply make the
name of the child element the value of the select attribute of xs1:value-of. For
instance, consider the baseball example from the previous chapter in which each
player’s statistics were stored in child elements rather than in attributes. Given this
structure of the document (which is actually far more likely than the attribute-based
structure of this chapter) the XSL for the batters’ table looks like this:

<TABLE>
<CAPTION>Batters</CAPTION>
<THEAD>
<TR>
<TH>PTayer</TH>XTH>PL/TH>KTH>GK/TH>
<TH>GSK/TH>KTH>ABL/TH>KTH> RS/ TH>KTH>HL/TH>
CTHYDLS/THYXKTH> TS/ TH>KTH>HRL/TH>CTH>RBIK/TH>
CTHYS</THO>KTH>CSK/THXKTH> SHS/TH>KTH> SFC/TH>
<THY>E</TH><TH>BB<L/TH><TH>SO</TH><TH>HBPL/TH>
</TR>
<{/THEAD>
<TBODY>
<xs1:for-each select="PLAYER[(POSITION
= 'Starting Pitcher')
and (POSITION != °'Relief Pitcher')1">
<TR>
<TD>
{xs1:value-of select="GIVEN_NAME"/>
<xsl:value-of select="SURNAME"/>
</TD>
<TD><xsl1:value-of select="POSITION"/></TD>
<TD><xs1:value-of select="GAMES"/></TD>
<TD>
<xs1:value-of select="GAMES_STARTED"/>
</TD>
<TD><xs1:value-of select="AT_BATS"/><{/TD>
<TD><xs1:value-of select="RUNS"/></TD>
<TD><xs1:value-of select="HITS"/></TD>
<TD><xs1:value-of select="DOUBLES"/></TD>
<TD><xs1:value-of select="TRIPLES"/></TD>
<TD><xs1:value-of select="HOME_RUNS"/></TD>
<TD><xsV:value-of select="RBI"/></TD>
<TD><xs1:value-of select="STEALS"/></TD>
<TD>
<xs1:value-of select="CAUGHT_STEALING"/>
T
<TD>
<xs1:value-of select="SACRIFICE_HITS"/>
</TD>
<TD>
<xs1:value-of select="SACRIFICE_FLIES"/>
</TD>
<TD><xs1:value-of select="ERRORS"/></TD>

129

Oy 00850 Boctment 82-1 Filed 04M0/22 Page 25 of 55
1

part|1 + Introducing XML

(TD><xs1:val ue-of sel ect="WALKS" /></TD>

<EBZ1:va1ue-of se]ect="STRUCK_0UT“/>
<JTD>
<£321:va1ue—of se]ect="HIT_BY_PITCH“/>
</TD>
<§i§$ifor—each> (1— PLAYER —>
</TBODY>
{/TABLE>

ment’s
i within each PLAYER element, the contents Toé Sh:; elBeATS e s,
VN NA SURNAME POSITION, GAMES, GAMES_STARTED, S?EALI’NG
GIVEN—NAME'ES TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT_CK ALING,
HITS, DOUBL LS, o CRIFICE_FLIES, ERRORS, HALKS, STRUCK 0UTand
N FICF_—HH t;ildren are ex—tracted and copied to the qutpu '.[he e ild
:‘t{g ;:Ei:n—epxi;r(x:lesc for the attributes in this1 c_ha;’;e\t(’) :: i‘g:ncgg ;10:0 e P tvalent

i eis > €€

eler'?emf)fi ?J:st:ienlélgt';t}l?t?éei;a;?llfiief?;tgce is that the @ signs are missing. They
section .

indicate an attribute rather than a child.

i t elements: by

i ttribute. You can selec .

ore with the select a e sth);

You,c.an %?o(:ve?{r;rr:ple, the first, second, last, seventeen.th e::trlrclgrelti)arems Lo

pw(i)tstlln;:::'ticular contents; with specific attributle v:hchce:l, S;n e o o olete
i or attribute values. \ ly -

e e Certaml f)(;):t'?:)srs to combine different selection conditions. We w

CSS or XSL?

CSS.
i inly more powerful than
ome extent. XSL is certa_m : O on
e X)%L(’): eg\?vzrt ?ssmatched by its complexity. This dll'ap::j o:;rls(/j tt(:arder s
However f wgat you can do with XSL. X5L is moré comp ll'(iauld’you S and
ihe basllilst;)se than CSS, which raises the question, When sho
earn a ,

when should you use XSL?”

orted for
CSS is more broadly supported than XSL. Parts of CSS Level 1 are supp

oyin
HTML elements by Netscape 4 and Internet Explorer 4 (although annoy g

Internet Explorer 5.0 and. o ’ ol
“k?:\b{-lfl‘olv‘l)f ¥§3ssuc‘;1%(())l:§1(;%}éosngives you more compatibility with a broader !
an . ,

of browsers.

i t of the CS5 you've
Additionally, CSS is more stable. CSS level 1 (which covers mos > oarly

S

Chapter 5 4 Attributes, Empty Tags,and XsSL] 3]

working draft, and won't be finalized until after this book is printed. Early adopters
of XSL have already been burned once, and will be burned again before standards
gel. Choosing CSS means you're less likely to have to rewrite your style sheets from

month to month just to track evolving software and standards. Eventually, however,
XSL will settle down to a usable standard.

Furthermore, since XSL is so new, different software implements different variations
and subsets of the draft standard. At the time of this writing (spring 1999) there are
at least three major variants of XSL in widespread use. Before this book is published,
there will be more. If the incomplete and buggy implementations of CSS in current
browsers bother you, the varieties of XSL will drive you insane.

However, XSL is definitely more powerful than CSS. CSS only allows you to apply
formatting to element contents. It does not allow you to change or reorder those
contents; choose different formatting for elements based on their contents or

attributes; or add simple, extra text like a signature block. XSL is far more appro-

priate when the XML documents contain only the minimum of data and none of
the HTML frou-frou that surrounds the data.

With XSL, you can separate the crucial data from everything else on the page,
like mastheads, navigation bars, and signatures. With CSS, you have to include all
these pieces in your data documents. XML+XSL allows the data documents to live

separately from the Web page documents. This makes XML+XSL documents more
maintainable and easier to work with.

In the long run XSL should become the preferred choice for real-world, data-intensive
applications. CSS is more suitable for simple pages like grandparents use to post
pictures of their grandchildren. But for these uses, HTML alone is sufficient. If you've
really hit the wall with HTML, XML+CSS doesn’t take you much further before you run
into another wall. XML+XSL, by contrast, takes you far past the walls of HTML. You
still need CSS to work with legacy browsers, but long-term XSL is the way to go.

Summary

In this chapter, you saw examples of creating an XML document from scratch.
- Specifically, you learned:

4+ Information can also be stored in an attribute of an element.
4 An attribute is a name-value pair included in an element’s start tag.

+ Attributes typically hold meta-information about the element rather than the
element’s data.

+ Attributes are less convenient to work with than the contents of an element.

i ﬁi 132 Patl introducing XML
I i its
i i :on that's unlikely to changel
i ry simple information t unlikel; :
v ?tmbmits\:, ((i)(:lél‘xlvr:gnfto ;\;,:lvis. In particular, style and linking information
orm as _
works well as an attribute. -

i on
4+ Empty tags offer syntactic sugar for elements with no ¢ —
4 XSL is a powerful style language that enables you to access an

attribute data and transform documents.

i that well-formed

11 specify the exact rul(?s ‘

t\?e&’lr,’;lilzllso l:e’zxplfgre some additional means of emb%ddilrl:sgt ctions.
L documents including comments and processt g

* + +

XML documents

In the next chap
must adhere to.
information in XML

P Bocument 82-1 Filed 04/5@/22 Page 26 of 55

Well-Formed
XML Documents

H TML 4.0 has about a hundred different tags. Most of
these tags have half a dozen possible attributes for

several thousand different possible variations. Because XML is
more powerful than HTML, you might think you need to know
even more tags, but you don’t. XML gets its power through
simplicity and extensibility, not through a plethora of tags.

In fact, XML predefines almost no tags at all. Instead XML
allows you to define your own tags as needed. However these
tags and the documents built from them are not completely
arbitrary. Instead they have to follow a specific set of rules
which we will elaborate upon in this chapter. A document that
follows these rules is said to be well-formed. Well-formedness
is the minimum criteria necessary for XML processors and
browsers to read files. In this chapter, you’'ll examine the rules
for well-formed XML documents and well-formed HTML.
Particular attention is paid to how XML differs from HTML.

What XML Documents
re Made Of

* An XML document contains text that comprises XML markup
and character data. It is a sequential set of bytes of fixed

- length, which adheres to certain constraints. It may or may

" not be a file. For instance, an XML document may:

+ Be stored in a database

Be created on the fly in memory by a CGI program

*+ Be some combination of several different files, each of
‘Which is embedded in another

#* Never exist in a file of its own

1

{]

V4
CHPrPTER

+ + + +
in This Chapter

What XML documents
are made of

Markup and
character data

Wellformed XML
in stand-alone
documents

Wellformed HTML

+ + * +

Case 1:19-cv-00859-RTH

Document 82-1 Filed Ozi:

Page 27 of 55

Document Type
Definitions and
Validity

XML has been described as a meta-markup language, that
is, a language for describing markup languages. In this
chapter you begin to learn how to document and describe the
new markup languages you create. Such markup languages
(also known as tag sets) are defined via a document type
definition (DTD), which is what this chapter is all about.
Individual documents can be compared against DTDs in a
process known as validation. If the document matches the
constraints listed in the DTD, then the document is said to be
valid. If it doesn’t, the document is said to be invalid.

Document Type Definitions

The acronym DTD stands for document type definition. A
document type definition provides a list of the elements,
attributes, notations, and entities contained in a document, as
well as their relationships to one another. DTDs specify a set
of rules for the structure of a document. For example, a DTD
may dictate that a BOOK element have exactly one ISBN child,
exactly one TITLE child, and one or more AUTHOR children,
and it may or may not contain a single SUBTITLE. The DTD
accomplishes this with a list of markup declarations for
particular elements, entities, attributes, and notations.

rCross- \\ This chapter focuses on element declarations. Chapters 9,
R°'°"_’“°°*: 10, and 11 introduce entities, attributes, and notations,
respectively.

DTDs can be included in the file that contains the document
they describe, or they can be linked from an external URL.

r)' |
CHAPYTER

¢

oAl
in This Chapter

Document Type
Definitions (DTDs}

Document type
declarations

Validation against
a DD

The list of elements

Element declarations

Comments in DTDs

Common DTDs that
can be shared

among documents

+ + + +

Case 1:19-cv-00859-RTH Document 82-1

]92 ET I f'DémmentTypeDeﬁniﬁoqs |

Such external DTDs can be
shared by different d
i o e st _ ocuments and Web si
gocum atmeans for applications, organizations, and interest groub e e
ent, and enforce adherence to markup standards ps 10 agree tpon,

For example, a publisher m
ple, ay want an author to adh i
hor s I ; adhere to a part
bec Vt’lzvel tl}tl ;r:le;liis it easier to lay out a book. An author may pI)re;ell'c:/l\/ll?i:iilormat i
ey it a szll;rgrelzcgl ?:;:jlt rtr;latcl;ling up each bullet point in the frontgo‘f/vtohrcf,i -
\ e the chapter. If the ites i i
o author writes ’
e (I:Jitflitégsl:le: l:o Bt’;%ck whether the author adhered to the predg:éilt\ldllidr’l ltisfeasy "
specifics frgm fhe i , antd %zen to find out exactly where and how the aeuth(t))rmat
rmat. This is much easier th i i .
e . r than having edi
d uments with the hope that they spot all the minor degi ti o e et
S on style alone. ations from the format,

DTDs also help ensure that di
) t different peopl
DTDs alsc ' : ple and programs can r ’
possm(l)}r, :{r;:t&c;er; tlf cheg}lsts agree on a single DTD for basic che;r?\ii?ﬂdr:(?tg:?r)
Doy ;:il::les :::;Ztgf ?t:lezpt[l)]ropriatel:) professional organization sué(t)lne;s
the : \ ey can be assured that
auo&res;e;l(l)daone anpth_er s papers. The DTD defines exactly wh;??sy :;1([11 ‘a“ e and
allowed to ;tp:igvlir:lsglie (z; dgctument. The DTD establishes a standard f:)srr':ﬁ:e

r nd editing software must s
e / upport. E i i
hzt};l;l;)s}iise Ei(tszr;ac,)ns beycc>lnd those that the DTD ggclares‘;ig $§z)::laicllm'lr‘)lcl)rtm'ltt e

are vendors from embraci i otocols

order to lock users into their proprietary softlvr:'zg\rznd extending open protocols n

Furthermore, a DTD shows how the diff
Fur ho . erent elements of a pa
youroclllct) calfrt;::rllltysgrowdmg their data. A DTD enables you topscgee fhr: :tl;'rl?:t%ed f
T ios and fop;?;:::,. from the actual data. This means you can slap a lol;eo(f)
o o paint ah ing opto the underlying structure without destroying it
reader of your page mg;ls;:o?;?eog: 2:,1::11 %2 gaits baS;C o lying plan.}'ll'hi)

Ot ware o i
?jr:g?i f;glsaﬁgiﬁ{ hum'an authors and JavaScripts, g]((;l: nsde(:l\.'llyeltrlzg Strucmre, o

puma , , databases, and

There’s more you can do with DTDs. You can

‘ . . use them to defi iti

;t;z‘; ;rtl:ler:'tt ll]):;z[llgr{)la’ce text such as a signature block or and:(::jnr(;sgslzosz)z:lrz onities

e data to :rij efntry clerk.s are adhering to the format you neéd Youacr;

migrate date to tormrotntl relational .':}nd object databases. You can e\;en use ;ML

an intexmes at to convert different formats with suitable DTD ’ o
d and see what DTDs really look like. > Solets get

Document Type Declarations

A document type declarati ifi T T m
tion specifies the DTD
e c ’ a document uses. Th
gee rootle(:)l[; alzlr)l(taalrts u; ;\ ;l(())::@eg;c S é)rolog, after the XML declarati?)g(;f; bilflctrz >
¢ ment. It m ain the document t initi URL fy
tha fila wh yPe definiti ‘ ity
ara the dncument tvbe definition is found. It mav(::rgrrl zontai;d te)ggl i
‘ ,in

9/22 Page 28 of 55

 Chopters + DosumentType pefinitions and validty 193

which case the document type definition has two parts, the internal and external

subsets.

/Gaution A document type declaration is not the same thing as a document type definition.
~ Only the document type definition is abbreviated DTD. A document type declara-
gy, 1 tion must contain of refer to a document type definition, but a document type
definition never contains a document type declaration. | agree that this is unnec-
essarily confusing. Unfortunately, XML seems stuck with this terminology.
Fortunately, most of the time the difference between the two is not significant.

o

Recall Listing 32 (greeting.xml) from Chapter 3.1t is shown below:

¢7xml versi on="1.0" standal one="yes"?>

CGREETING>

Hello XML!

</GREETING>

nt, GREETING. (Remember, ¢7xml version
-"1.0" standalone= "yes"?>isa processing instruction, not an element.) Listing
8-1 shows this document, but now with a document type declaration. The docu-
ment type declaration declares that the root element is GREETING. The document
type declaration also contains a document type definition, which declares that the

GREETING element contains parsed character data.

This document contains a single eleme

Listing 8-1: Hello XML with DTD

<71xml versi on="1.0" standal one="yes"?>

<1DOCTYPE GREETING [
CVELEMENT GREETING (#PCDATA)>

1>
(GREETING>
Hello XML!
{/GREETING>

The only difference between Listing 3-2 and Listing 8-1 are the three new lines

added to Listing 8-1:

<IDOCTYPE GREETING [
CVELEMENT GREETING (#PCDATA)>

»

81's document type declaration. The document type
tself. The XML

the XML declaration and the document i
declaration and the document type declaration together aré called the prolog of the

document. In this short example, <2xml version="1.0" standa\one=“yes"?>is
ING [<!ELEMENT GREETING (#PCDATA)>

the XML declaration; <1DOCTYPE GREET
1> is the document type declaration; <! ELEMENT GREETING (4#PCDATA)> is the

These lines are this Listing
declaration comes between

|
|
|
7

194

Case 1:19-cv-00859-RTH Document 82-1 Filed

Part Il + Document Type Definitions

document type definition; and <GREETING> Hello XML! </GREETING) is the
document or root element.

A document type declaration begins with <! DOCTYPE and ends with 1>. It’s
customary to place the beginning and end on separate lines, but line breaks and
extra whitespace are not significant. The same document type declaration could be
written on a single line:

<!DOCTYPE GREETING [<!ELEMENT GREETING (#PCDATA)> 1>

The name of the root element—GREETING in this example follows <!DOCTYPE. This
is not just a name but a requirement. Any valid document with this document type
declaration must have the root element GREETING. In between the [and the] is the
document type definition.

The DTD consists of a series of markup declarations that declare particular
elements, entities, and attributes. One of these declarations declares the root
element. In Listing 8-1 the entire DTD is simply this one line:

CIELEMENT GREETING (#PCDATA)>
In general, of course, DTDs will be much longer and more complex.

The single line <! ELEMENT GREETING (#fPCDATA)> (case-sensitive as most things
are in XML) is an element type declaration. In this case, the name of the declared
element is GREETING. It is the only element. This element may contain parsed
character data (or #fPCDATA). Parsed character data is essentially any text that’s not
markup text. This also includes entity references, such as &, that are replaced
by text when the document is parsed.

You can load this document into an XML browser as usual. Figure 8-1 shows Listing
8-1 in Internet Explorer 5.0. The result is probably what you’'d expect, a collapsible
outline view of the document source. Internet Explorer indicates that a document
type declaration is present by adding the line <!DOCTYPE GREETING (View
Source for full doctype...)> inblue.

3 D: XMLABible\CD \source\DBVA.1 xin - Miciosolt Internel Explorer

|| e Ed View Favoites Tools Help

: — .

N e R A e) YE§' &
_B»epk Forward Stop __Raﬁesh que_ | Such Favosites History | Mgi___ Print

| Agdress [2] D AXML\BIbIe\CD\source\08\8-1 sl ~] @6o

<7xml version="1,0" standalone="yes" 7>
<!DOCTYPE GREETING (View Source for full doctype...)>
<GREETING>Hello XML!</GREETING>

€100 : - [T e
Figure 8-1: Hello XML with DTD displayed in Internet Explorer 5.0

9/22 Page 29 of 55

Chapter 8 + Document Type Definitions and\laliditv i 195

Of course, the document can be combined with a style sheet just as it was in Listing
3-6 in Chapter 3. In fact, you can use the same style sheet. Just add the usual
<?xml1-stylesheet?> processing instruction to the prolog as shown in Listing 8-2.

Listing 8-2: Hello XML with a DTD and style sheet

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="greeting.css"?>
<!DOCTYPE GREETING [
C!ELEMENT GREETING ({#fPCDATA)>
»
<GREETING>
Hello XML!
</GREETING>

Figure 8-2 shows the resulting Web page. This is exactly the same as it was in Figure
3-3 in Chapter 3 without the DTD. Formatting generally does not consider the DTD.

T D \XML\Bib ourc 1

| Fle EM View Favoies Took Hep e
= T T, T TR Ty S *
¢« Lol N AT W3
Back | Foward Stop Reliesh Homa | Sesch Favorles Histow
|Agddvess [12] D ML\BibIe\CD source\0BAB-2 xr

Hello XML!

“DA\source\08\8-2 xml - Mictosoll Inteinet E

(&) Dene i e T
Figure 8-2 Hello XML with a DTD and style sheet displayed in Internet Explorer 5.0

Validating Against a DTD

A valid document must meet the constraints specified by the DTD. Furthermore, its
root element must be the one specified in the document type declaration. What the
document type declaration and DTD in Listing 8-1 say is that a valid document must
look like this:

<GREETING>
various random text but no markup
<{/GREETING>

i

S

SO

- 196 Partil + Document Type Definitions

Note

o

Case 1:19-cv-00859-RTH Document 82-1 Filed 04

A valid document may not look like this:

<GREETING>

{sometag>various random text</sometag>
<someEmptyTag/>
</GREETING>

Nor may it look like this:

<GREETING>

<GREETING>various random text</GREETING>
</GREETING>

This document must consist of nothing more and nothing less than parsed
character data between an opening <GREETING> tag and a closing </GREETING>
tag. Unlike a merely well-formed document, a valid document does not allow
arbitrary tags. Any tags used must be declared in the document’s DTD.
Furthermore, they must be used only in the way permitted by the DTD. In Listing

8-1, the <GREETING> tag can be used only to start the root element, and it may not
be nested.

Suppose we make a simple change to Listing 8-2 by replacing the <GREETING> and
.</GREETI NG> tags with <foo> and </fo0>, as shown in Listing 8-3. Listing 8-3 is
invalid. 1t is a well-formed XML document, but it does not meet the constraints
specified by the document type declaration and the DTD it contains.

Listing 8-3: Invalid Hello XML does not meet DTD rules

zzxm} version="1.0" standalone="yes"?>

?xml-stylesheet type="text/css" href="greetj "7
<IDOCTYPE GREETING [sreeting.costty
]><!ELEMENT GREETING (#PCDATA)>

<foo>

Hello XML!

</foo>

Not all documents have to be valid, and not all parsers check documents for valid-

ity. In fact, most Web browsers including IES and Morzilla do not check documents
for validity.

A validating parser reads a DTD and checks whether a document adheres to the
rules specified by the DTD. If it does, the parser passes the data along to the XML
applif:ation (such as a Web browser or a database). If the parser finds a mistake
then it reports the error. If you're writing XML by hand, you'll want to validate y,our

[22 Page 30 of 55

Chapter 8 4+ Document Type Definitions and Validity

documents before posting them so you can be confident that readers won’t
encounter errors.

There are about a dozen different validating parsers available on the Web. Most of
them are free. Most are libraries intended for programmers to incorporate into their
own, more finished products, and they have minimal (if any) user interfaces.
Parsers in this class include IBM’s alphaWorks’ XML for Java, Microsoft and
DataChannel’s XJParser, and Silfide’s SXP.

XML for Java: http://www.alphaworks.ibm.com/tech/xml
XJParser: http://www.datachannel.com/xml_resources/
SXP: http://www.loria.fr/projets/XSilfide/EN/sxp/

Some libraries also include stand-alone parsers that run from the command line.
These are programs that read an XML file and report any errors found but do not
display them. For example, XJParse is a Java program included with IBM’s XML for
Java 1.1.16 class library in the samples.XJParse package. To run this program,
you first have to add the XML for Java jar files to your Java class path. You can
then validate a file by opening a DOS Window or a shell prompt and passing the
local name or remote URL of the file you want to validate to the XJParse program,
like this:

C:\xml4j>java samples.XJParse.XJParse -d D:\XML\O8\invalid.xml

At the time of this writing IBM’s alphaWorks released version 2.0.6 of XML for Java.
In this version you invoke only XJParse instead of samples.XJParse. However, ver-
sion 1.1.16 provides more features for stand-alone validation.

You can use a URL instead of a file name, as shown below:

C:\xml4j>java samples.XJParse.XJParse -d
http://metalab.unc.edu/books/bible/examples/08/invalid.xml

In either case, XJParse responds with a list of the errors found, followed by a tree
form of the document. For example:

D:\XML\O7\invalid.xml: 6, 4: Document root element, "foo", must
match DOCTYPE root, "GREETING".
D:\XML\O7\invalid.xml: 8, 6: Element
this context.
<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="greeting.css"?>
<!DOCTYPE GREETING [

<VELEMENT GREETING (#fPCDATA)>
1>
<foo>
Hello XML!
</foo>

"<{foo>" is not valid in

197

I

Case 1:19-cv-00859-RTH Document 82-1 Filed Page 31 of 55

i i = L
Chapter 8 4+ Document Type Definitions and Validity 199 i

This is not especially attractive output. However, the purpose of a validating parser
such as XJParse isn’t to display XML files. Instead, the parser’s job is to divide the
document into a tree structure and pass the nodes of the tree to the program that
will display the data. This might be a Web browser such as Netscape Navigator or
Internet Explorer. It might be a database. It might even be a custom program you've
written yourself. You use XJParse, or other command line, validating parser to
verify that you've written good XML that other programs can handle. In essence,
this is a proofreading or quality assurance phase, not finished output.

Fmaéw fioms Sewoh Newcae P Secuty Sop
_§ Booknaks j Looston: [t /7wwen cogeored sc uk i TE richasdisi checs il

| XML fvell-formedness checker and
validator

Use this form to check an XML document for well-formedness and {optionally) validity. The
checker uses the RXP parser. Extemal entity references are icluded.

Because XML for Java and most other validating parsers are written in Java, they
share all the disadvantages of cross-platform Java programs. First, before you can

TFthe document is well-formed, the parser outputs the correspondng canomcal ML
run the parser you must have the Java Development Kit (JDK) or Java Runtime

Environment installed. Secondly, you need to add the XML for Java jar files to your Cnty HITTE i s e I

class path. Neither of these tasks is as simple as it should be. None of these tools [recpi//sunaice unc. edu/xmi/ invalid. ol _checkit | clear]
were designed with an eye toward nonprogrammer end-users; they tend to be

poorly designed and frustrating to use. F_validaie?

Figure 8-3: Richard Tobin’s RXP-based, Web-hosted XML
If you're writing documents for Web browsers, the simplest way to validate them is well-formedness checker and validator
to load them into the browser and see what errors it reports. However, not all Web
browsers validate documents. Some may merely accept well-formed documents

without regard to validity. Internet Explorer 5.0 beta 2 validated documents, but the
release version did not.

55 XML checker results N-.elscru‘! el s " : - o
Flo Edt Yew Go Communicator Hep ~ = = = L LoD
e iy AL s ml

'nﬁ m%.e a?u u?; — Metscaps Pt Seculy Sl

Web-based validators are an alternative if the documents are placed on a Web
server and aren’t particularly private. These parsers only require that you enter the
URL of your document in a simple form. They have the distinct advantage of not
requiring you to muck around with Java runtime software, class paths, and
environment variables.

; _m:t’ Bd&:nék: l&;;elinu check cgi?url=htip%34%2F % 2F sunsite.unc. edu’ 2 xmi% 2Finvakd xmitvalidate=on &}

XML checker results

The document appears to be well-formed. The canonical XML follows

Richard Tobin’s RXP-based, Web-hosted XML well-formedness checker and
validator is shown in Figure 8-3. You'll find it at http://www.cogsci.ed.ac.uk/
%7Erichard/xml-check.html. Figure 84 shows the errors displayed as a result of
using this program to validate Listing 8-3.

Any vahdity errors follow:

Warning: Start tag for undeclared element foo, o
in unnamed entity at line 6 char 5 of http:/fsunsite.unc. edw/xkmbinvalid xml

Warning. Root element is foo, should be greetng L
Brown University’s Scholarly Technology Group provides a validator at http:// in unnamed entity at line 6 char 5 of hitp://sunsite.unc edwimifinvalid.zml
www.stg.brown.edu/service/xmlvalid/ that’s notable for allowing you to
upload files from your computer instead of placing them on a public Web server.
This is shown in Figure 8-5. Figure 8-6 shows the results of using this program to

validate Listing 8-3.

Please report any problems with this checker to nchard@cogscied ac uk

S =B=[TT T [Document Done : B T
Figure 8-4: The errors with Listing 8-3, as reported by Richard
Tobin's XML validator

Case 1:19-cv-00859-RTH Document 82-1 Filed

200 Partli + Document Type Definitions

- XML Validation Form
About STG
Projects To validate a small XML document, just paste it into the text field below and hit

validate button Ifthe document is too large to be conveniently pasted into the td
field, enter its filename into the local file field instead. For more mstructions, see
Seazch below

Publicstions

Staff Note that this validator is just that - a vadator. It therefore requires a valid
Webs 4,570 DOCTYPE declaration On the reasons why DOCTYPE declarations specificallf

and validation generally, are criical to the success of XML, see STG techmcal re
Contact TG 19982 See also the FAQ

Local file:

[p:\XHLABib e\ CDYsource\ 07y 7-3., xml

™ Suppress waming messages

Validate [Chirjl

Text:

i AT St ST

Figure 8-5: Brown University’s Scholarly Technology Group’
Web-hosted XML validator

#= Vahdation Hesults foi U ZbLAML 50 BibleZ50 LD 29U soulcezL Ul %

fie ER View Qo Lommunicsor Hep

| d 2 3 N 2 @ 3 & i
| Bk Fowwd Peosd fome Seach Neficape Piml Secwly Swp

7 w_f‘nm & Loction: [ritp 77w stg brown edu/cgbindsmivalid/smivaid pl
Validation Results for
D:%35CXML%S5CBible%S5CCD%5Csource%5S

&
i

HL7 -3 xml - Nel

A list of error and warning messages follows along with (if needed, and ff supplied) a line-numbered dump
of the original document up to the last erroneous line

Errors, Warnings:

e 6, D%5CXMLY%5CBible%5CCD%5Csource%5C07%5C7-3 sl
error (1102); tag uses G for an undeclared element: foc
line 8, D:%5CXML%5CBible%5CCD%5Csource% SCO7%5C7-3.xml:
error (1150 enclosing tag undefined or lacks content model; can't check child: /Ciiar Date:)
Iine &, D%35CXML%5CBible%5CCD%5Csource%5C07%5C7-3 zml:
error (1103): end tag uses GI for an undeclared element: joo
line 9, D:%5CXMLY%5CBible%5CCD%5Csource%5C07%5C7-3.xml

error (401): doctype name doesn't match Gl for top-level element £

Xmiparse ext status = 4

FEs] —rl

=

Figure 8-6: The errors with Listing 8-3, as reported by Brown
University’s Scholarly Technology Group’s XML validator

29/22 Page 32 of 55

Listing the Elements

The first step to creating a DTD appropriate for a particular document is to .
understand the structure of the information you'll encode using the elements defined

in the DTD. Sometimes information is quite structured, as in a contact lis.t. Otht?r
times it is relatively free-form, as in an illustrated short story or a magazine article.

Let’s use a relatively structured document as an example. In particular, let’s return
to the baseball statistics first shown in Chapter 4. Adding a DTD to that document
enables us to enforce constraints that were previously adhered to only by
convention. For instance, we can require that a SEASON contain exactly two LEAGUE
children, every TEAM have a TEAM_CITY and a TEAM_NAME, and the TEAM_CITY

always precede the TEAM_NAME.

Recall that a complete baseball statistics document contains the following

elements:

SEASON

YEAR

LEAGUE
LEAGUE_NAME
DIVISION
DIVISION_NAME
TEAM
TEAM_CITY
TEAM_NAME
PLAYER
SURNAME
GIVEN_NAME
POSITION
GAMES
GAMES_STARTED
AT_BATS
RUNS

HITS
DOUBLES
TRIPLES
HOME_RUNS

RBI

STEALS
CAUGHT_STEALING
SACRIFICE_HITS
SACRIFICE_FLIES
ERRORS

WALKS
STRUCK_OUT
HIT_BY_PITCH
COMPLETE_GAMES
SHUT_OUTS

ERA

INNINGS
HOME_RUNS

RUNS
EARNED_RUNS
HIT_BATTER
WILD_PITCHES
BALK
WALKED_BATTER
STRUCK_OUT_BATTER

 Chapters + Document Type Definitions and Validty

i s,

Case 1:19-cv-00859-RTH Document 82-1 Filec

202 Partil + Document Type Definitions

WINS COMPLETE_GAMES
LOSSES SHUT_OUTS
SAVES

The DTD you write needs element declarations for each of these. Each element
declaration lists the name of an element and the children the element may have.
For instance, a DTD can require that a LEAGUE have exactly three DIVISION
children. It can also require that the SURNAME element be inside a PLAYER element,
never outside. It can insist that a DIVISION have an indefinite number of TEAM

elements but never less than one.

A DTD can require that a PLAYER have exactly one each of the GIVEN_NAME,
SURNAME, POSITION, and GAMES elements, but make it optional whether a PLAYER
has an RBI or an ERA. Furthermore, it can require that the GIV EN_NAME, SURNAME,
POSITION, and GAMES elements be used in a particular order. A DTD can also
require that elements occur in a particular context. For instance, the GIVEN_NAME,
SURNAME, POSITION, and GAMES may be used only inside a PLAYER element.

It's often easier to begin if you have a concrete, well-formed example document in
mind that uses all the elements you want in your DTD. The examples in Chapter 4
serve that purpose here. Listing 84 is a trimmed-down version of Listing 4-1 in
Chapter 4. Although it has only two players, it demonstrates all the essential

elements.

Listing 8-4: A well-formed XML document for which a DTD

will be written

<?xml version="1.0" standalone="yes"?>
<SEASON>

<YEAR>1998</YEAR>
<LEAGUE>

<LEAGUE_NAME>National</LEAGUE_NAME>
<DIVISION>

<DIVISTON_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
{TEAM_NAME>Marlins</TEAM_NAME>
<PLAYER>
<{SURNAME> Ludwick</SURNAME>
<GIVEN_NAME>Eric</GIVEN_NAME>

<POSITION>Starting Pitcher</POSITION>
<WINS>I</WINS>

<LOSSES>4</LOSSES>
{SAVES>0</SAVES>
<GAMES>13</GAMES>

29/22 Page 33 of 55

Chapter 8 + Document‘lypebeﬁnitionsand Va[idily."

<{GAMES_STARTED>6</GAMES_STARTED>
<COMPLETE_GAMES>0</COMPLETE_GAMES>
<SHUT_OUTS>0</SHUT_OUTS>
<ERA>7 .44</ERA>
CINNINGS>32.2</INNINGS>
<HOME_RUNS>46</HOME_RUNS>
<RUNS>7</RUNS>
<EARNED_RUNS>31</EARNED_RUNS>
<HIT_BATTER>27</HIT_BATTER>
<WILD_PITCHES>O</WILD_PITCHES>
<BALK>2</BALK>
<WALKED_BATTER>0</WALKED_BATTER>
<STRUCK_OUT_BATTER>17</STRUCK_OUT_BATTER>
</PLAYER>
<PLAYER>
<SURNAME>Daubach</SURNAME>
<GIVEN_NAME>Brian</GIVEN_NAME>
<POSITION>First Base</POSITION>
<GAMES>10</GAMES>
<GAMES_STARTED>3</GAMES_STARTED>
<AT_BATS>15</AT_BATS>
<RUNS>0</RUNS>
CHITS>3K/HITS>
<DOUBLES>1</DOUBLES>
{TRIPLES>0</TRIPLES>
<HOME_RUNS>0</HOME_RUNS>
<RBI>3</RBI> EALSS
{STEALS>0</ST
CCAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>T</WALKS>
<STRUCK_OUT>5</STRUCK_OUT>
CHIT_BY_PITCH>1</HIT_BY_PITCH>
</PLAYER>
</TEAMD
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>
</TEAM>
<TEAM>
CTEAM_CITY>New York</TEAM_CITY>
{TEAM_NAME>Mets</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>
<TEAM_NAME>Phi119es</TEAM_NAME>
</TEAMD

Continued

Case 1:19-cv-00859-RTH
204 Partll 4 Document Type Definitions

Listing 8-4 (continued)

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISI
TEA ON_NAME>
{TEAM_CITY>Chicago</TEAM_CITY>

{TEAM_NAME>Cubs</TEAM_NAME>
</TEAMD>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION
<TEAM> ~NAME>
KTEAM_CITY>Arizona</TEAM_CITY>

<TEAM_NAME>Diamondbacks</TEA
</TEAM> MoNANE?

</DIVISION>
</LEAGUE>
<LEAGUE>

<LEAGUE_NAME>American</LEAGUE_N
<DIVISIOND> ~NAME>

<DIVISION_NAME>East</DIVISION
<TEAM> ~NAME>
<TEAM_CITY>Baltimore</TEAM_CITY>

<TEAM_NAME>Orioles</TEAM_NAM
</TEAMD SNAME>

</DIVISION>
<DIVISION>
<DIVISTON_NAME>Central</DIVI
STEAMS SION_NAME>
<TEAM_CITY>Chicago</TEAM_CITY>

<TEAM_NAME>White Sox</TEAM
</TEAMD HNAMES

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DI
TEA VISION_NAME>
<TEAM_CITY>Anaheim</TEAM_CITY>
{TEAM_NAME>Ange1s</TEAM_NAME>
</TEAM>
</DIVISION>
</LEAGUE>
</SEASON>

Document 82-1 Filed 04

2D/22 Page 34 of 55

Chapter 8 4 Document Type D.e':ﬁni_t_ions‘an_d' Validitv ' 205

P e

Table 81 lists the different elements in this particular example, as well as the
conditions they must adhere to. Each element has a list of the other elements it must
contain, the other elements it may contain, and the element in which it must be
contained. In some cases, an element may contain more than one child element of the
same type. A SEASON contains one YEAR and two LEAGUE elements. ADIVISION
generally contains more than one TEAM. Less obviously, some batters alternate
between designated hitter and the outfield from game to game. Thus, a single PLAYER
element might have more than one POSITION. In the table, a requirement for a
particular number of children is indicated by prefixing the element with a number
(for example, 2 LEAGUE) and the possibility of multiple children is indicated by
adding (s) to the end of the element’s name, such as PLAYER(S).

Listing 84 adheres to these conditions. It could be shorter if the two PLAYER
elements and some TEAM elements were omitted. It could be longer if many other
PLAYER elements were included. However, all the other elements are required to be
in the positions in which they appear.

P

S as parsed character data, #PCDATA or PCDATA in this context. Compound ele-

Elements have two basic types in XML. Simple elements contain text, also known

ments contain other elements or, more rarely, text and other elements. There are
no integer, floating point, date, or other data types in standard XML. Thus, you
can’t use a DTD to say that the number of walks must be a non-negative integer, or
that the ERA must be a floating point number between 0.0 and 1.0, even though
doing so would be useful in examples like this one. There are some early efforts to
define schemas that use XML syntax to describe information that might tradition-
ally be encoded in a DTD, as well as data type information. As of mid-1999, these
are mostly theoretical with few practical implementations.

Now that you've identified the information you're storing, and the optional and
required relationships between these elements, you're ready to build a DTD for the
document that concisely —if a bit opaquely — summarizes those relationships.

It's often possible and convenient to cut and paste from one DTD to another. Many
elements can be reused in other contexts. For instance, the description of a TEAM
works equally well for football, hockey, and most other team sports.

You can include one DTD within another so that a document draws tags from both.
You might, for example, use a DTD that describes the statistics of individual players
in great detail, and then nest that DTD inside the broader DTD for team sports. To
change from baseball to football, simply swap out your baseball player DTD for a
football player DTD.

parameter entity references are discussed in Chapter 9, Entities.

M To do this, the file containing the DTD is defined as an external entity. External

Case 1:19-cv-00859-RTH Document 82-1 Filed 04/29/22 Page 35 of 55

i 206 Partll 4+ Document Type Definitions Chapter 8 4 Document Type Definitions and Validity 207

Table 8-1 Element (if any) in
i isti Elements It Elements It Which It Must
The Elements in the Baseball Statistics Element Mot Contain May Contain Be Contained
Element (if any) in PLAYER
Elements It Elements It Which It Must GAMES Text BLAVER
Element Must Contain May Contain Be Contained GAMES_ Text
SEASON YEAR 2 LEAGUE STARTED
YEAR T ' SEASON AT_BATS Text PLAYER
xt
) RUNS Text PLAYER
LEAGUE LEAGUE_NAME, SEASON PLAYER
3DIVISION HITS Text
LEAGUE_NAME Text LEAGUE DOUBLES Text PLAYER
ER
DIVISION DIVISION_NAME TEAM(s) LEAGUE TRIPLES Text PLAY
AL HOME_RUNS Text PLAYER
DIVISION Text DIVISION RBI Text PLAYER
_NAME STEALS Text PLAYER
TEAM TEAM_CITY, PLAYER(s) DIVISION CAUGHT. Toxt PLAYER
TEAM_NAME
TEAM CITY STEALING
- Text iz SACRIFICE_ Text PLAYER
TEAM_NAME Text TEAM HITS
PLAYER SURNAME, GIVEN GAMES_STARTED, AT TEAM SACRIFICE Text PLAYER
_NAME, POSITION, _BATS, RUNS, HITS, CFLIES
GAMES DOUBLES, TRIPLES, PLAYER
HOME_RUNS, RBI, ERRORS Text
STEALS, CAUGHT_ WALKS Text PLAYER
STEALING, PLAYER
SACRIFICE_HITS, STRUCK_OUT Text
SACRIFICE_FLIES, HIT_BY_ Text PLAYER
ERRORS, WALKS, PITCH
STRUCK_OUT, HIT_ PLAYER
xt
BY_PITCH, COMPLETE gm%ETE_ il
_GAMES, SHUT_OUTS, YER
ERA, INNINGS, HIT_ SHUT_OUTS Text PLA
BATTER, WILD_ ERA Text PLAYER
PITCHES, BALK, BLAYER
WALKED_BATTER, INNINGS Text
STRUCK_OUT_ HOME_RUNS Text PLAYER
BATTER _AGAINST
SURNAME Text PLAYER ConT
onlinue;
GIVEN_NAME Text PLAYER
POSITION Text PLAYER

Case 1:19-cv-00859-RTH Document 82-1 Filed 04/ /22 Page 36 of 55

f':_ 208 Partll + Documeni‘l’ype Definitions

Chapter 8 + Document Type Definitions and Validity 209

Table 8-1 (continued) ANY

The first thing you have to do is identify the root element. In the baseball example,
SEASON is the root element. The ! DOCTYPE declaration specifies this:

Element (if any) in

Elements It Elements It Which It Must

Element Must Contain May Contain Be Contained <IDOCTYPE SEASON [

RUNS_ Text PLAYER '

AGAINST ‘ >

HIT_BATTER Text PLAYER However, this merely says that the root tag is SEASON. It does not say anything

WILD Text PLAYER about what a SEASON element may or may not contain, which is why you must next

PITCHES declare the SEASON element in an element declaration. That’s done with this line of
code:

BALK Text PLAYER

WALKED_ Text PLAYER <IELEMENT SEASON ANY>

BATTER - .
All element type declarations begin with <! ELEMENT (case sensitive) and end with

Sgi% EEOUT Text PLAYER >. They include the name of the element being declared (SEASON in this example)

followed by the content specification. The ANY keyword (again case-sensitive) says
that all possible elements as well as parsed character data can be children of the
SEASON element.

Using ANY is common for root elements — especially of unstructured documents —
but should be avoided in most other cases. Generally it’s better to be as precise as
possible about the content of each tag. DTDs are usually refined throughout their

I
. \
Element Declarations |

Each tag used in a valid XML document must be declared with an element declara-

tion in the DTD. An element declaration specifies the name and possible contents of
an element. The list of contents is sometimes called the content specification. The
content specification uses a simple grammar to precisely specify what is and isn’t
allowed in a document. This sounds complicated, but all it really means is that you
add a punctuation mark such as *, ?, or + to an element name to indicate that it
may occur more than once, may or may not occur, or must occur at least once.

DTDs are conservative. Everything not explicitly permitted is forbidden. However,
DTD syntax does enable you to compactly specify relationships that are
cumbersome to specify in sentences. For instance, DTDs make it easy to say that
GIVEN_NAME must come before SURNAME —which must come before POSITION,
which must come before GAMES, which must come before GAMES_STARTED, which
must come before AT_BATS, which must come before RUNS, which must come
before HITS — and that all of these may appear only inside a PLAYER.

It’s easiest to build DTDs hierarchically, working from the outside in. This enables
you to build a sample document at the same time you build the DTD to verify that
the DTD is itself correct and actually describes the format you want.

development, and tend to become less strict over time as they reflect uses and
contexts unimagined in the first cut. Therefore, it’s best to start out strict and
loosen things up later.

#PCDATA

Although any element may appear inside the document, elements that do appear
must also be declared. The first one needed is YEAR. This is the element declaration
for the YEAR element:

<VELEMENT YEAR (4#fPCDATA)>

This declaration says that a YEAR may contain only parsed character data, that s,
text that’s not markup. It may not contain children of its own. Therefore, this YEAR
element is valid:

<YEAR>1998</YEAR>

210 ~ Partll 4+ Document Type Definitions

These YEAR elements are also valid:

<YEAR>98</YEAR>
CYEAR>1998 C.E. </YEAR?

<YEAR>
The year of our lord one thousand,
nine hundred, & ninety-eight

</YEARD
not attempt to validate the

cause XML does
kup.

Even this YEAR element is valid be
contents of PCDATA, only that it is text that doesn’t contain mar
(YEAR>Delicious, delicious, oh how boring</YEAR>

ement is invalid because it contains child elements:

However, this YEAR el

<YEAR>
<MONTH>January</MONTH>
<MONTH>February</MONTH>
<MONTH>March</MONTH>
<MONTH>Apr11</MONTH>
<MONTH>May</MONTH>
<MONTH>June</MONTH>
<MONTH>Ju1y</MONTH>
<MONTH>August</MONTH>
<MONTH>September</MONTH>
<MONTH>October</MONTH>
<MONTH>November</MONTH>
<MONTH>December</MONTH>

</YEARD
e document type

The SEASON and Y EAR element declarations are included in th

declaration, like this:

<1DOCTYPE SEASON [
CVELEMENT SEASON ANY>
CIELEMENT YEAR ({#PCDATA)>

»
t. The order in which the

dentation are not significan
pear isn’t relevant either. This next document type

me thing:

As usual, spacing and in
element declarations ap
declaration means exactly the sa

<1DOCTYPE SEASON [
CIELEMENT YEAR ({fPCDATA)>
CVELEMENT SEASON ANY>

»

Page 37 of 55

Chapter 8 4+ Document Type Definitions and Validity

Both of these say that a SE
ASON element ma i
Soth o y contain parsed
deZlar er?ibeel:: r?lte ?1?};30‘}1;:?(deﬁl'al;?d elements in any ordlz:r. Thec;lnﬁ;agzﬁgf :lt.lil?nd
(, which ma i
instance, consider the document in {iggg'tgag_lsonly parsed character data. For

Listing 8-5: A valid document

<?xml version="1.0" " "
<!DOCTYPE SEASON ? standafone=tyest
<TELEMENT YEAR (#fPCDATA
D(!ELEMENT SEASON ANY> ”
<SEASON>
<YEAR>1998</YEAR>

</SEASON>

Because the SEASON elem
au ' ent may also contain pa
additional text outside of the YEAR. Listing 8-6 gegus::sfgizzcgl?igdata’ youcan add

. Listing 8-6: A valid doc i
an ument that contains a vtAr and normal

<?xml version="1.0" "
<IDOCTYPE SEASON [srandafoneziyests

<IELEMENT YEAR (4fPCDAT

A

]><!ELEMENT SEASON ANY> ”
<SEASON>

éYEAR>1998</YEAR>

ajor League B

</SEASON> ’ aoeball

S

Eventually we’ll di

y we'll disallow d

because SEASON | ocuments such as this. However, for it’

start with ANYOfNo:sageec]l;;ZiIO aﬁept ANY content. Most of the Ecli(r)n“:: 1itt;(ssl::ziailer to
eplace it wi until you define it’s chi

EPlace it with the actual children you want toalllls(::f it's children. Then you can

ou ¢an attach a si
. eIo_ped s }?ai)l;gf :ty{t.e speet, such as the baseballstats.css style sheet
Veb browser. a shown" oF.lstmg 8-6 —as shown in Listing 8-7— and load it int
in Figure 8-7. The baseballstats.css style sheet contailrlllso :

211

212

c L.19-CV-UUo

Part il ¢ Document Type Definitions

n the DTD or the document part of

ements that aren’t present i
owsers simply ignore any style rules for

his is not a problem. Web br

style rules for el
t in the document.

Listing 8-7, but t
elements that aren’t presen

7. Avalid document that contains a style sheet,a
vear, and normal text ' o

standalone="yes"?> .
"text/css"” href="baseballstats.css 7

Listing 8

<?xml version="1.0"
¢1xml-stylesheet type=

¢1DOCTYPE SEASON [
CLELEMENT YEAR ({fPCDATA)>

CIELEMENT SEASON ANY>

»
<SEASON>
<YEAR>1998</YEAR>

Major League Baseball
{/SEASON>

Forward Stop Refresh Home

1998

Major League Baseball

|
[25 vy Compidn J

at contains a style sheet, a YEAR
Explorer 5.0

figure 8-7: A valid document that c
element, and normal text displayed in Internet

Child Lists |
Because the SEASON element as a child,
elements could be tossed in wi
more or less unstructured, such a
bulleted lists, numbered lists, graphs, photogr
pretty much anywhere in the document. Howe
exercise more discipline and control over the p

lly-nilly. This is useful when you h
s a magazine article where paragraphs'
aphs, an
ver, sometim

lacement of your dat

O0-R Document 82-1 Filed 04/2

declared to accept any element
il o ave text that's
sideba

d subheads may app&at

0/22 Page 38 of 55

you could require that every LEAGUE have one LEAGUE_NAME, that every PLAYER
have a GIVEN_NAME and a SURNAME, and that the GIVEN_NAME come before the

SURNAME.

To declare that a LEAGUE must have a name, simply declare a LEAGUE_NAME
element, then include LEAGUE_NAME in parentheses at the end of the LEAGUE
declaration, like this:

C!ELEMENT LEAGUE (LEAGUE_NAME)>
CVELEMENT LEAGUE_NAME (#PCDATA)>

Each element should be declared in its own <! ELEMENT> declaration exactly once,
even if it appears as a child in other <! ELEMENT> declarations. Here I've placed the
declaration LEAGUE_NAME after the declaration of LEAGUE that refers to it, but that
doesn’t matter. XML allows these sorts of forward references. The order in which
the element tags appear is irrelevant as long as their declarations are all contained

inside the DTD.

You can add these two declarations to the document, and then include LEAGUE and
LEAGUE_NAME elements in the SEASON. Listing 8-8 demonstrates this. Figure 8-8

shows the rendered document.

7 Listing 8-8: A SEASON with two LEAGUE children

e

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="baseballstats.css"?>

<1DOCTYPE SEASON [
<IELEMENT YEAR (#fPCDATA)>
<IELEMENT LEAGUE (LEAGUE_NAME)>
<IELEMENT LEAGUE_NAME (##PCDATA)>
<VELEMENT SEASON ANY>

1
<{SEASON>

<YEAR>1998</YEAR>

<LEAGUE>

<LEAGUE_NAME>American League</LEAGUE_NAME>

</LEAGUE>

<LEAGUE>
_ {LEAGUE_NAME>National League</LEAGUE_N
- C/LEAGUE> ’ VENANE>
5'<iSEASON>

s ocument 82-1 Filed 04202 Page 39 of 55
© Chapter & + Document Type Definitions and Validity 215

It's straightforward to expand these techniques to cover divisions. As well as a

part Il ¢ Document Type pefinitions
LEAGUE_NAME, each LEAGUE has three DIVISION children. For example:

214

CTELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

One or More Children
Each DIVISION has a DIVISION_NAME and between four and six TEAM children

Specifying the DIVISION_NAME is easy. This is demonstrated below:

i m‘ '. . e
Agiess [D WOMLBHE\CO\ouce 0B ST

1998
American Leaguée
National League

style sheet, a

CVELEMENT DIVISION (DIVISION_NAME
_ >
<TELEMENT DIVISION_NAME (#PCDATA)i

However, the TEAM children are trickier. It’s easy to say you want four TEAM children

ina DIVISION, as shown below:
CVELEMENT DIVISION (DIVISION_NAME, TEAM, TEAM, TEAM TEAM)>

SRl !

Figure 8-8: A valid document that contains a

YEAR element, and two LEAGUE children
Sequences Fin and gix are not harder. But how do you say you want between four and six
N element as well. A SEASON contains exactly one YEAR, wﬁn‘:sé‘flee’ olnrrl I?g:;)g}% ;oesn': provide an easy way to do this. But you can say you
i iven elem i :
Instead of saying that a SEASON can name in the child list. For exampl:‘t by placing a plus sign (+) after the element
CVELEMENT DIVISION (DIVISION_NAME, TEAM+)>

Let’s restrict the SEASO
followed by exactly two
contain ANY elements, speci
element declaration, enclose

¢VELEMENT SEASON (YEA

A list of child elements separated by co
declaration, every valid SEASON elemen
followed by exactly two LEAGUE elements, an
document type declaration now looks like this:

LEAGUE elements.
fy these three chil

dren by including them in SEASON’s
d in parentheses and separat

ed by commas, as follows:
This says that a DIVISION element must contain a DIVISION_NAME element

followed by one or more TEAM elements.

:?:r:\eelnst: ll;a:d way to say that a DIVISION contains between four and six TEAM
. but not three and not seven. However, it's so ridiculously complex that

R, LEAGUE, LEAGUE)>
nobody would actually use it in practice. Once you finish reading this chapter, see

sequence. With this

mmas is called a
YEAR element,

t must contain exactly one

d nothing else. The complete
if you can figure out how to do it.

Zero or More Children

Each i
numbLEl:)hz gIC(X\;lEdRcecintam one TEAM_C ITY, one TEAM_NAME, and an indefinite
B o SRS :ments. In r_eahty, you need at least nine players for a baseball
for reasons of S’»pa ce Te}:‘amples in this book., many teams are listed without players
el . o us, we want'to specify that a TEAM can contain zero or more
. Do this by appending an asterisk (*) to the element name in the

hild list. For example:

J.._(!
ELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>

CLELEMENT TEAM_CIT
_CITY (4fPCDATA)>
~ SJELEMENT TEAM_NAME (#PCDATA;>

¢1DOCTYPE SEASON [
CIELEMENT YEAR ({fPCDATA)Y>
GUE (LEAGUE_NAME)>

CIELEMENT LEAGUE_NAME ({PCDATA)>
CIELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

8-8 does adhere to this DTD because its SEASON
by two LEAGUE children, and nothing
UE, then the document, = =
EAGUE came before the YEF
YEAR children, or if the
he document woulc

»
The document part of Listing
element contains one YEAR child followed
else. However, if the document included only one LEAG

though well-formed, would be invalid. Similarly, if the L
element instead of after it, or if the LEAGUE element had
document in any other way did not adhere to the DTD, thent

invalid and validating parsers would reject it.

2]6 '.‘ Part_l'l' +D"‘:“l“ellt‘l'\’pﬂ Definitions

Zero or One Child

The final elements in the document to be brought into play are the children of the
PLAYER. All of these are simple elements that contain only text. Here are their
declarations:

CIELEMENT
CIELEMENT
CLELEMENT
CTELEMENT
CLELEMENT
CIELEMENT
CIELEMENT
CYELEMENT
CIELEMENT
CVELEMENT
<IELEMENT
CLELEMENT
CLELEMENT
<IELEMENT
CTELEMENT
<TELEMENT
CLELEMENT
CTELEMENT
CVELEMENT
<LELEMENT
<IELEMENT
CTELEMENT
CIELEMENT
<ELEMENT
CTELEMENT
CLELEMENT
<LELEMENT
CIELEMENT
<TELEMENT
CLELEMENT
CTELEMENT
CIELEMENT
<IELEMENT
CVELEMENT

Now we can write the declaration for the PLA
SURNAME, one GIVEN_NAME, one POSITION, an o
each PLAYER also has one AT_BATS, RUNS, HITS, and so forth. However, 'mna@
it’s accurate to list zero runs for a pitc
likely will lead to division by zero errors when you start calculating batting av
and so on. If a particular element doesn’t apply to a given player, or if it's not
available, then the more sensible th
the player’s information. We don’t a

SURNAME (#fPCDATA)>
GIVEN_NAME (#fPCDATA)>
POSITION (#PCDATA)>

GAMES (ffPCDATA)>
GAMES_STARTED (#PCDATA)>
AT_BATS (#PCDATA)>

RUNS (#fPCDATA)>

HITS (#fPCDATA)>

DOUBLES ({fPCDATA)>
TRIPLES (4PCDATA)>
HOME_RUNS ({fPCDATA)>

RBI ({#PCDATA)>

STEALS (#fPCDATA)>
CAUGHT_STEALING (#PCDATA)>
SACRIFICE_HITS (#PCDATA)>
SACRIFICE_FLIES (#PCDATA)>
ERRORS (#fPCDATA)>

WALKS (#fPCDATA)>
STRUCK_QUT (#fPCDATA)>
HIT_BY_PITCH (#PCDATA)>
COMPLETE_GAMES (#PCDATA)>
SHUT_OUTS (#PCDATA)>

ERA ({fPCDATA)>

INNINGS (4fPCDATA)>
EARNED_RUNS (#fPCDATA)>
HIT _BATTER (#PCDATA)>
WILD_PITCHES (#PCDATA)>
BALK (#fPCDATA)>
WALKED_BATTER (4#fPCDATA)>
WINS (ffPCDATA)>

LOSSES (f#fPCDATA)>

SAVES ({fPCDATA)>
COMPLETE_GAMES (#PCDATA)>

STRUCK_OUT_BATTER (#PCDATA)>

YER element. All players have ORé
d one GAMES. We could declare

her who hasn’t batted. For one thing,

ing to do is to omit the particular statistic

llow more than one of each el

Page 40 of 55

Chapter 8 4 Document Type Definitions and Validity

player. Thus, we want zero or one elemen i
s, . t of the given type. Indicate this i i
element list by appending a question mark (?) to the ele}rlxﬁ)ent, as shgw:mlst;e?ovhlld

CIELEMENT PLAYER (GIVEN_NAME, SUR
_NAME, SURNAME, P
%é?ES_SIARTED, AT_BATS?, RUNS?, HITS?,OSéEéEEé?GAMES'
SACE%E?&E ﬂ??g?RUgiééIE?éE,FSTEALS?, CAUGHT_STEALING?
_HITS?, _FLIES?, ERRORS?, WALKS?,
STRUCK_OUT?, HIT_BY PITCH?, WI > %
_0UT?, HIT_BY_ 2, WINS?. LOSSES?, ?
COMPLETE_GAMES?, SHUT OUTS?, ERA?. INNINGS?,Séxgﬁéb RUNS?

HIT_BATTER? ,WILD_PITCHES? ?
> CIRUCK OUT BATTERY) ?, BALK?,WALKED_BATTER?,

"gil&sEza};sT;hat every PLAYER has a SURNAME, GIVEN_NAME, POSITION, GAMES, and
e S Rg&? Furthermore, each player may or may not have a si’ngle AT’ BATS
, , BLES, TRIPLES, HOME_RUNS, RBI, STEALS, CAUGHT_STEALING_ ’

SACRIFICE_HITS, SACRIFICE_FLIE
HIT_BY PITCH. - S, ERRORS, WALKS, STRUCK_OUT, and

The Complete Document and DTD

We now have a complete DTD for baseb. isti
all statistics. Thi i
document part of Listing 84, is shown in Listing é;-c; This DD along with the

Listing 8-9 only covers a single team a i

vel gle nd nine players. On the CD-ROM you'll fi
ahdocument containing statistics for all 1998 Major League teams and Y?: grﬁn'd
the examples/baseball/1998validstats.xml directory. Payes

Listing 8-9: A valid XML document on baseball
statistics with a DTD

<?xml version="1.0" sta _n "
<IDOCTYPE SEASON [ndalone="yes™>

EEEEESEN¥ [EAR (#PCDATA)>
! EAGUE (LEAGUE
CLELEMENT LEAGUE NAME (#FES%$A>EIVISION' DIVISTON. DIVISTON)>
<;EtEmENT DIVISION_NAME (#PCDATA)>
<;ELEME“$ DIVISION (DIVISION_NAME, TEAM+)>
CIELENENT SEASON (YEAR, LEAGUE. LEAGUE)>
CLELEMENT TEA (TEAW CITY. TEAM_NAME, PLAYER®)>
d T TEAM_CITY (#PCDATA)>
LELEMENT TEAM_NAME (#PCDATA)>

<IELEMENT PLAYER (G
TVEN_NAME, SURNAME
GAMES_STARTED, WINS?, LOSSES?, SAVEé??OSITION' BANES.

Continued

217

B . V-OUO0DI-K | H

Document 82-1 Filed Q

20/22 Page 41 of 55

218 Partil 4 Document Type Definitions ~ Chapter B.f.n,"mme'.'_twpebeﬁn'iﬁnné.aﬂd validiy 219 Eéﬁﬁ

e <DIVISION>
Listing 8-9 (continued) <DIVISION_NAME>East</DIVISION_NAME>
CTEAM -

AT _BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RB12, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,

HIT BY_PITCH?, COMPLETE_GAMES?, SHUT_OUTS?, ERA?, INNINGS?,
CARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?, BALKZ,
WALKED_BATTER?, STRUCK_OUT_BATTER?)

§$Eﬁm_ﬁiaY>F1orida</TEAM_CITY>

i E>Mar1ins</TEAM

<PLAYER> HAME?
CGIVEN_NAME>Eric</GIVEN_NAME>
CSURNAME> Ludwi ck</SURNAME>

<POSITION>Starting Pitcher</P
<GAMES>13</GAMES> OSTTION

CVELEMENT SURNAME ({fPCDATA)>
CVELEMENT GIVEN_NAME ({fPCDATA)>
CVELEMENT POSITION ({fPCDATA)>
CIELEMENT GAMES ({fPCDATA)>
CVELEMENT GAMES_STARTED ({fPCDATA)>
CTELEMENT COMPLETE_GAMES ({fPCDATA)>
CIELEMENT WINS ({fPCDATA)>

¢VELEMENT LOSSES ({fPCDATA)>
CVELEMENT SAVES ({fPCDATA)>
CVELEMENT AT_BATS ({fPCDATA)>
¢VELEMENT RUNS ({fPCDATA)>

¢IELEMENT HITS ({fPCDATA)>

CVELEMENT DOUBLES ({fPCDATA)>
CVELEMENT TRIPLES (#fPCDATA)>
CVELEMENT HOME_RUNS (fPCDATAY>
CIELEMENT RBI ({fPCDATA)>

CVELEMENT STEALS ({fPCDATA)>
CVELEMENT CAUGHT_STEALING (fPCDATA)>
CVELEMENT SACRIFICE_HITS ({fPCDATA)>
CVELEMENT SACRIFICE_FLIES (fPCDATAY>
CVELEMENT ERRORS ({fPCDATA)>
CLELEMENT WALKS ({#PCDATA)>

<GAMES_STARTED>6</GAMES_ST
CWINS>T</WINSY ~STARTED?

<LOSSES>4</LOSSES>
CSAVES>0</SAVES>
<COMPLETE_GAMES>0</COMPLETE_GAME
(SHUT_OUTS>0</SHUT_OUTS> >
CERA>T7 .44</ERA>
CINNINGS>32.2</INNINGS>
CEARNED_RUNS>31</EARNED_RUNS>
ES%IBBATTER>27</HIT_BATTER>
PITCHES>0</WILD_PITCH
<BALK>2</BALK> B =2
CWALKED_BATTER>0</WALKED_BATTER>

¢STRUCK_OUT_BATTER>17<
</PLAYER> /STRUCK_OUT_BATTER>

<PLAYER>
CGIVEN_NAME>Brian</GIVEN_NAME>
<SURNAME>Daubach</SURNAME>
<POSITION>First Base</POSITION>
igﬁmES>10</GAMES>
ES_STARTED>3</GAMES_STARTED>
(AT _BATS>15</AT_BATS>

CIELEMENT STRUCK_OUT (#PCDATA)>)

CIELEMENT HIT_BY_PITCH (#fPCDATA)> <5?¥§;gijﬁ¥¥§;

CUELEMENT SHUT_OUTS (H#PCDATA)> T3 LTS LEss
CIELEMENT ERA (#PCDATA)? <DOUBLES>1</DOUBLES)
CUELEMENT INNINGS (#PCDATA)> CTRIPLES>OC/TRIBLES |
CUELEMENT HOME_RUNS_AGAINST (#PCDATA)> O TS _RUNS>
CIELEMENT RUNS_AGAINST (#PCDATA)> R RE L s

CVELEMENT EARNED_RUNS ({PCDATA)>
CVELEMENT HIT_BATTER ({fPCDATA)>
CVELEMENT WILD_PITCHES ({fPCDATA)>
CVELEMENT BALK ({fPCDATA)>

CVELEMENT WALKED_BATTER ({#fPCDATA)>
CVELEMENT STRUCK_OUT_BATTER ({fPCDATA)>

<CAUGHT_STEALING>0</CAUGHT_STEALING
- _ >
<SACRIFICE_HITS>0</SACRIFICE_HITS>

<SACRIFICE_FLIES>0</SACRIFICE
<ERRORS>0</ERRORS> SFHE

<WALKS>1</WALKS>
<STRUCK_QUT>5</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

» _ </PLAYER>
<SEASON> ; </TEAM>
<YEAR>1998</YEAR> - ' <TEAM>
<LEAGUE> ? <TEAM_CITY>Montreal</TEAM_CITY>

e AGUE_NAME>National</LEAGUE_NAME> CTEAM_NAME>Expos</TEAM_NAME>

continued

ase 1:19-cv-00859-RTH Documentéz-l Filed 04,

- 220 ,.ga}t Il + Document Type Definitions

Listing 8-9 (continued)

</TEAMS

<TEAMY
{TEAM_CITY>New York</TEAM_CITY>

<TEAM_NAME>MEts</TEAM_NAME>
</TEAMS
AM>
% ITY>Ph11ade1ph1a</TEAM_CITY>

<TEAM_C
<TEAM_NAME>Ph111ies</TEAM_NAME>

</TEAMD>
</DIVISION>

<DIVISION>
<DIVISION_NAME>Centra1</DIVISION_NAME>

{TEAM>
<TEAM_CITY>Ch1Cago</TEAM_CITY>

<TEAM_NAME)CUDS(/TEAM_NAME>

</TEAMD
</DIVISION>
<DIVISION>
<DIVISION_NAME)NESt(/DIVISION_NAME)
>
T na</TEAM_CITY>

<TEAM_CITY>Arizo

<TEAM_NAME>D1amondbacks(/TEAM_NAME>

{/TEAMD
</DIVISIOND
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>Amer1Can(/LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Ba1timore</TEAM_CITY>
<TEAM_NAME>0F10les</TEAM_NAME>
</ TEAMD
</DIVISION>
<DIVISION>
<DIVISION_NAME>Centra1</DIVISION_NAME>
<TEAMD
<TEAM_CITY>Ch1cago(/TEAM_CITY)
CTEAM_NAME>White Sox</TEAM_NAME>
</TEAM>
</DIVISION>
>
OIS West</DIVISION_NAME>

<DIVISION_NAME>

<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Ange1S</TEAM_NAME>

</ TEAMD
</DIVISION>
</LEAGUE>
</SEASON>

/22 Page 42 of 55

~ Chapter8 + Document Type Definitions and Validity 22 | i

Listing 8-9 is not the only possible document that matches this DTD, however.
Listing 8-10 is also a valid document, because it contains all required elements in
their required order and does not contain any elements that aren’t declared. This is
probably the smallest reasonable document that you can create that fits the DTD.
The limiting factors are the requirements that each SEASON contain two LEAGUE
children, that each LEAGUE contain three DIVISION children, and that each

DIVISION contain at least one TEAM.

the baseball DBTD

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE SEASON [
CIELEMENT YEAR (##PCDATA)>
<!ELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>
<IELEMENT LEAGUE_NAME (#PCDATA)>
CIELEMENT DIVISION_NAME (#PCDATA)>
<IELEMENT DIVISION (DIVISION_NAME, TEAM+)>
<IELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>
CIELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<!ELEMENT TEAM_CITY (#PCDATA)>
(IELEMENT TEAM_NAME (#PCDATA)>
<!ELEMENT PLAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,

GAMES_STARTED, COMPLETE_GAMES?, WINS?, LOSSES?, SAVES?,
AT_BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUNS?,
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HITS?,
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?,
HIT_BY_PITCH?, COMPLETE_GAMES?, SHUT_OUTS?, ERA?, INNINGS?,
EARNED_RUNS?, HIT_BATTER?, WILD_PITCHES?, BALK?,

, WALKED_BATTER?, STRUCK_OUT_BATTER?)

CVELEMENT SURNAME (4#fPCDATA)>

CYELEMENT GIVEN_NAME (#fPCDATA)>

<TELEMENT POSITION (#PCDATA)>

<IELEMENT GAMES (#fPCDATA)>

<VELEMENT GAMES_STARTED (#PCDATA)>

C'ELEMENT COMPLETE_GAMES ({fPCDATA)>

CTELEMENT WINS (4fPCDATA)>

<IELEMENT LOSSES (#PCDATA)>

<YELEMENT SAVES (#fPCDATA)>

<VELEMENT AT_BATS (#PCDATA)>

CYELEMENT RUNS (#PCDATA)>

STELEMENT MITS (#PCDATA)>

~ CIELEMENT DOUBLES (#PCDATA)>

CELEMENT TRIPLES (§fPCDATA)>

- SIELEMENT HOME_RUNS (fPCDATA)>

Listing 8-10: Another XML, daeumentthat’s valid éccording to

Continued

927 veril + Document Typs efnitons

E _Listing 8-10 (continued) '

<VELEMENT
<VELEMENT
CVELEMENT
CVELEMENT
<CVELEMENT
CVELEMENT
CVELEMENT
<VELEMENT
CVELEMENT
<VELEMENT
CVELEMENT
CVELEMENT
CIELEMENT
CVELEMENT
CIELEMENT
CVELEMENT
CVELEMENT
CVELEMENT

RBI (#PCDATA)>

STEALS (#PCDATA)>

CAUGHT_STEALING ({PCDATA)>

SACRIFICE_HITS ({fPCDATA)>

SACRIFICE_FLIES ({fPCDATA)>

ERRORS (f#PCDATA)>

WALKS (ffPCDATA)>

STRUCK_OUT (ffPCDATA)>

HIT_BY_PITCH ({fPCDATA)>

SHUT_OUTS (ffPCDATA)>

ERA (#PCDATA)>

INNINGS (#PCDATA)>

HOME_RUNS_AGAINST (§fPCDATA)>

RUNS_AGAINST ({fPCDATA)>

EARNED_RUNS (#PCDATA)>

HIT_BATTER (#PCDATA)>

WILD_PITCHES ({fPCDATA)>

BALK (#PCDATA)>
(

<VELEMENT WALKED_BATTER ##PCDATA)>
<VELEMENT STRUCK_OUT_BATTER (#fPCDATA)>
»
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>Nati0na1</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

<TEAM>

<TEAM_CITY>At1anta(/TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>

</TEAMD

<TEAM

>

<TEAM_CITY>F10r1da</TEAM_CITY>
<TEAM_NAME>Mar11ns</TEAM_NAME>
</ TEAMS

<TE

AM>

<TEAM_CITY>Montrea1</TEAM_CITY>

<TEAM_NAME>ExpOS</TEAM_NAME>
</TEAMY
(TEAMD
CTEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>MetS</TEAM_NAME>
</ TEAMD
{TEAMD>
<TEAM_CITY>Phi1ade]ph1a</TEAM_CITY>
<TEAM_NAME>Ph1111es</TEAM_NAME>
</TEAMD

Document 82-1 Filed 04

/22 Page 43 of 55

Chapter 8 + Document Type Definitions and Validity

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central<
A /DIVISION_NAME>
<TEAM_CITY>Chicago</TEAM_CITY>

<TEAM_NAME>Cubs</TEAM
</TEAM> HNAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DI
AT VISION_NAME>
<TEAM_CITY>Arizona</TEAM_CITY>

<TEAM_NAME>D1iamondb
PRI acks</TEAM_NAME>

</DIVISION>
</LEAGUE>
<LEAGUE>

CLEAGUE_NAME>American</LE
<DIVISION> AOUENATE?

<DIVISION_NAME>East</DI
AR VISION_NAME>
<TEAM_CITY>Baltimore</TEAM_CITY>

<TEAM_NAME>Orioles</TE
</TEAM> AMNANES

</DIVISION>
<DIVISION>
<DIVISION_NAME>Central<
AT /DIVISION_NAME>
<TEAM_CITY>Chicago</TEAM_CITY>

<TEAM_NAME>White Sox<
G x</TEAM_NAME>

</DIVISION>
<DIVISION>
<DIVISION_NAME>West</
A DIVISION_NAME>
<TEAM_CITY>Anaheim</TEAM_CITY>

<TEAM_NAME>Angels</TE
<TEAMD ’ AMLNAMES

</DIVISION>
</LEAGUE>
</SEASON>

oices

general, a si

T in‘:f.;eu g:rent r(:,lement has many children. To indicate that the children

lément may be suffix((f:i, t .eﬁ’ are separated by commas. However, each such child

€ number of ti xed with a question mark, a plus sign, or an asterisk to adjust
mes it appears in that place in the sequence.

2= ToCV-UUc09-R TH Document 82-1 Filed 049/22 Page 44 of 55

224 part1l + Document Type Definitions

Often elements appear in more or less random ord

. ers. News magazi i
Ig)ﬁr(\::g&;ll)s'ig::tr’: :18 tlst:fbrl?osély followed by paragraphs of text, butgv?ftltl:;?;:)lﬁles
P byliné sideb: en,d . ea s,.anc'l pull qgotes interspersed throughout, perhabs with
B e chi e]erﬁe I(:tu can indicate 'Ehls sort of arrangement by listing all the
ot grouped ins'ds in the parent’s element declaration separated by vertical
e onthesis (I) i?l g;l;r;t{l;:te:. You can then place an asterisk outside the
elements in the parentheses are allo»«?;g.?or:lggrﬁ;?;rrences ofany ol the

So far, the assumption has been made that child elements appear Or do not appear

in a specific order. You may, however, wish to make your DTD more flexible, such as
different elements in a given

by allowing document authors to choose between
place. For example, in a DTD describing a purchase by a customer, each PAYMENT

element might have either a CREDIT_CARD child or a CASH child providing

information about the method of payment. However, an individual PAYMENT would

not have both.

You can indicate that the document author needs to input either one or another
element by separating child elements with a vertical bar (|) rather than a comma
(,) in the parent’s element declaration. For example, the following says that the

PAYMENT element must have a single child of type CASH or CREDIT_CARD.

CIELEMENT ARTICLE (TITLE, (P
, PH
| PULLQUOTE | SUBHEAD)*, BYlLINEg-)rg | GRAPH | STDEBAR

As another example, su
A : , suppose you want to say that a DOCUMENT
g::;rgae;ng's cglfligﬁn a:i a}ll, must have one TITLE followed by an; lr?lr:lrsggrrgft her than
: and images that may be freely intermingl
optional SIGNATURE block. Write its element declarationltf%i: Cb;glowed pyen

CVELEMENT PAYMENT (CASH | CREDIT_CARD)>

This sort of content specification is called a choice. You can separate any number
of children with vertical bars when you want exactly one of them to be used. For
example, the following says that the PAYMENT element must have a single child of

type CASH, CREDIT_CARD, or CHECK.

!
CVELEMENT DOCUMENT (TITLE, (PARAGRAPH | IMAGE)*, SIGNATURE?)>

y .

CIELEMENT PAYMENT (CASH | CREDIT_CARD | CHECK)>
IMAGE elements and nest that between the TITLE and the STGNATURE. For example:

The vertical bar is even more useful when you group elements with parentheses.
You can group combinations of elements in parentheses, then suffix the
parentheses with asterisks, question marks, and plus signs to indicate that
particular combinations of elements must occur Zero or more, Zero or one, or one

or more times.

<!'ELEMENT DOCUMENT (TITLE, BO
, DY, SI
<IELEMENT BODY ((PARAGRAPH | IMAGuE)glglé\-l—LJRE?)>

The di
The difference between these two approaches is that the second reqlres an
of organization that nflln in the document. This element provides an additional level
Ch-ld i h P th document. T 4 (or may not) be useful to the application that’s readi

liaren W|t aren eses be anoth . The question to ask is whether the reader of this document (wh ing the
The final thing you need to know about arranging child elements in parent element its own riegrhcto:el-,ll)):i:ep;z,g;,am) may want to consider the BODY as a singvlve i(i el?naiyn
declarations is how to group elements with parentheses. Each set of parentheses the sum of its elements e TITLE and the SIGNATURE and distinguished from
combines several elements as a single element. This parenthesized element can :
then be nested inside other parentheses in place of a single element. Furthermore For another example, consider internati

’ national addresses. Addresses outside the

t. You can United ’
States don’t always follow U.S. conventions. In particular, postal codes

it may then have a plus sign, a comma, or a question mark affixed 9 i '
group these parenthesized combinations into still larger parenthesized groups 0 sometimes precede th
e state or follow the countr i
y, as in these two examples:

produce quite complex structures. This is a very powerful technique.

Doberman-YP
For example, consider a list composed of two elements that must alternate with Box 2021 PAN
each other. This is essentially how HTML's definition list works. Each <dt> tag St. Nicholas QUEBEC
should match one <dd> tag. If you replicate this structure in XML, the declaratie CAN GOS-3LO
the d1 element looks like this: 1 or
CUELEMENT d1 (dt, dd)*> Editions Sybex

10/12 Villa Coeur-d

e-Ve
75685 Paris Cedex 14 4
France

peated;!

The parentheses indicate that it’s the matched <dt><dd> pair being re
<dd> alone.

226

= 19-CV-UUo O | H

Document 82-1 Filed 04

Part Il 4 Document Type Definitions

il wi i if pi f the address are out of
Although your mail will probably arrive even if pieces 0 ’
order igt’s 3IIJetter to allow an address to be more flexible. Here's one address element

declaration that permits this:

CIELEMENT ADDRESS (STREET+, (CITY | STATE | POSTAL_CODE

| COUNTRY)*)>

i n ADDRESS element must have one or more STREET children
’{;};Z\frz}(;sl:;l:tn?/ number of CITY, STATE, POSTAL_CODE, or COUNT RY elements. Even
this is less than ideal if you'd like to allow for no more than one of eac:h.
Unfortunately, this is beyond the power of aDTD tp‘enforce. By allowing a more
flexible ordering of elements, you give up some ability to control the maximum

number of each element.

i f different kinds of elements,
On the other hand, you may have a list compose.d o ' .
which may appear in an arbitrary order, as in a list of recorc?mgs that may contain
CDs, albums, and tapes. An element declaration to differentiate between the
different categories for this list would look like this:

CIELEMENT MUSIC_LIST (CD | ALBUM | TAPE)*>

You could use parentheses in the baseball DTD to specify different sets of statistics |
for pitchers and batters. Each player could have one set or the other, but not both.

The element declaration looks like this:

! LAYER (GIVEN_NAME, SURNAME, POSITION, GAMES,
<.Ek§%ENgTiR$ED, ((COMPLETE_GAMES?, WINS?, LOSSES?, SéVES?.
SHUT_OUTS?, ERA?, INNINGS?, EARNED_RUNS?, HIT~BATTE$%€R?)
WILD_PITCHES?, BALK?, WALKED_BATTER?, STRUCK_QUT_BA S?'
| CAT BATS?, RUNS?, HITS?, DOUBLES?, TRIPLES?, HOME_RUN [
RBI?, STEALS?, CAUGHT_STEALING?, SACRIFICE_HIIS..
SACRIFICE_FLIES?, ERRORS?, WALKS?, STRUCK_OUT?, -
HIT_BY_PITCH?)))> .

There are still a few things that are difficult to handle in elemen_t deFlaratTl?rTlls_.EFor
example, there’s no good way to say that a document must pegm with a el
element and end with a S1 GNATURE element, but may Cf)ntal!:l any other gl ;
between those two. This is because ANY may not combine with other chi

elements.

And, in general, the less precise you are about where things appez’xr, thetl:::ts :0
you have over how many of them there are. For example, you can't say 208
document should have exactly one TITLE element but that the T1 TLE may ap|

anywhere in the document.

i i enc
Nonetheless, using parentheses to create blocks of elements, either in (s)fr?;‘jié
with a comma or in parallel with a vertical bar, enables you to create C :

9/22 Page 45 of 55
Chapter 8 + Document Type Definitions and Validity 227 ||

structures with detailed rules for how different elements follow one another. Try
not to go overboard with this though. Simpler solutions are better. The more
complicated your DTD is, the harder it is to write valid files that satisfy the DTD, to
say nothing of the complexity of maintaining the DTD itself.

Mixed Content

You may have noticed that in most of the examples shown so far, elements either
contained child elements or parsed character data, but not both. The only
exceptions were the root elements in early examples where the full list of tags was
not yet developed. In these cases, because the root element could contain ANY data,
it was allowed to contain both child elements and raw text.

You can declare tags that contain both child elements and parsed character data.
This is called mixed content. You can use this to allow an arbitrary block of text to
be suffixed to each TEAM. For example:

CVELEMENT TEAM (ffPCDATA | TEAM_CITY | TEAM_NAME | PLAYER)*>

Mixing child elements with parsed character data severely restricts the structure
you can impose on your documents. In particular, you can specify only the names
of the child elements that can appear. You cannot constrain the order in which they
appear, the number of each that appears, or whether they appear at all. In terms of
DTDs, think of this as meaning that the child part of the DTD must look like this:

CVELEMENT PARENT (#PCDATA | CHILD1 | CHILD2 | CHILD3)* >

Almost everything else, other than changing the number of children, is invalid. You
cannot use commas, question marks, or plus signs in an element declaration that
includes ##PCDATA. A list of elements and #PCDATA separated by vertical bars is
valid. Any other use is not. For example, the following is illegal:

CVELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, #PCDATA)>

The primary reason to mix content is when you're in the process of converting old
text data to XML, and testing your DTD by validating as you add new tags rather
than finishing the entire conversion and then trying to find the bugs. This is a good
technique, and I do recommend you use it — after all, it is much easier to recognize
a mistake in your code immediately after you made it rather than several hours
lifter—however, this is only a crutch for use when developing. It should not be
visible to the end-user. When your DTD is finished it should not mix element

hildren with parsed character data. You can always create a new tag that holds
darsed character data.

| 228 ~ partll * ';bmqment_me Definitions

For example, you can include a block of text at the end of each TEAM element by
declaring a new BLURB that holds only #PCDATA and adding it as the last child
element of TEAM. Here's how this looks:

CVELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*, BLURB)>
CIELEMENT BLURB (#fPCDATA)Y>

This does not significantly change the text of the document. All it does is add one
more optional element with its opening and closing tags to each TEAM element.
However, it does make the document much more robust. Furthermore, XML
applications that receive the tree from the XML processor have an easier time
handling the data when it’s in the more structured format allowed by nonmixed

content.

Empty Elements

As discussed earlier, it's occasionally useful to define an element that has no
content. Examples in HTML include the image, horizontal rule, and break ,
<HR>, and
.In XML, such empty elements are identified by empty tags that end
with />, such as C(IMG/>, <HR/>,and
.

Valid documents must declare both the empty and nonempty elements used.
Because empty elements by definition don’t have children, they're easy to declare.
Use an <!ELEMENT> declaration containing the name of the empty element as nor-
mal, but use the keyword EMPTY (case-sensitive as all XML tags are) instead of a
list of children. For example:

CVELEMENT BR EMPTY>
CVELEMENT IMG EMPTY>
CIELEMENT HR EMPTY>

Listing 8-11isa valid document that uses both empty and nonempty elements.

Listing 8-11: A valid document that uses empty tags

<7 xml version="1.0" standa]one=“yes"?>
<1DOCTYPE DOCUMENT L
CVELEMENT DOCUMENT (TITLE, SIGNATURE)>
CVELEMENT TITLE ({#PCDATA)>
CVELEMENT COPYRIGHT (4##PCDATA)>
CVELEMENT EMAIL (4fPCDATAY>
CVELEMENT BR EMPTY>
CVELEMENT HR EMPTY>
CVELEMENT LAST_MODIFIED (4fPCDATAY>
CVELEMENT SIGNATURE (HR, COPYRIGHT, BR, EMAIL,

Chapter 8 4+ Document Type Definitions and Valid'ity

N BR, LAST_MODIFIED)>

<DOCUMENT>

KTITLE>Empty Tags<
<SIGNATURE> gsC/TITLE>

<HR/>
<COPYRIGHT>1999 Elliot

te Rusty H
<EMAIL>e1haro@meta]ab.umc.eduz/Eﬁ’l%lﬂ\?]_gilé(lé(/)z\(RIGHTXBR/>

<LAST_MODIFIED>T i
</SIGNATURE> hursday, April 22, 1999</LAST_MODIFIED>

</DOCUMENT>

Comments in DTDs

DTDs can i j i
comme:; tscg:;zlont z;glger}ts,' gjust like the rest of an XML document. These
r inside a declarati b .
comments . ion, but they can appe i
Comme contr;en?f(t)?n us;ed to organize the DTD in different parlzg tz:)rg:gllr(rjle Tt
particular elements, and to further explain V\;hat an el o the
ement is.

For example, the element d i
, e
For example claration for the YEAR element might have a comment

<I-- A four digit yea ;
<TELEMENT YEAR (#P)C/DA‘IFA]);ke 1998, 1999, or 2000 -->

AS ’ 9 .

O -| l f | . l] f. I I . l. l . ” I F
or

baseball terms be

cause they’re simpl i
approach i ey ply not obvious to the ¢ i
pproach is to use abbreviations but define them with com::alrl:til ti?lnit‘:::nl)a}ll't];!rnatlve

Listing 8-12 is simi
ilar to previ
abbreviated tags. previous baseball examples, but uses DTD comments and

sting 8-12: A valid XML document th
A t -
- tags defined in DTD commae::tsses pobreviated

<?xm] version=" "
CIDOCTYPE SEAsoN [~ ol oneTiyesT

CIELEMENT YEAR (#PCDATA)>

Continued

< "19-CV-UUcLY-RTH Document 82-1 Filed 04/29822 Page 47 of 55

Chapter 8 + Document Type Definitions and Validity 231 |

#

'23() Partil + Document Type Definitions

Listing 8-12 (continued) CIELEMENT D (#PCDATA)>
CIELEMENT LEAGUE (LEAGUE_NAME, DIVI

(1-- American or National -->
CVELEMENT LEAGUE_NAME (##PCDATA)>

<I= Tripl -
STON, DIVISION, DIVISION)> T G
CIELEMENT T (#PCDATA)>
<!-= Home Runs —>
<VELEMENT HR ({fPCDATA)>

<!— Runs Batted In —>

(1-- East, West, or Central -->
<VELEMENT RBI (#PCDATA)>

CVELEMENT DIVISTON_NAME (#PCDATA)>

CIELEMENT DIVISION (DIVISION_NAME, TEAM+)>

CVELEMENT SEASON (YEAR, LEAGUE, LEAGUE)>

CVELEMENT TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>

CIELEMENT TEAM_CITY ({fPCDATAY>

CIELEMENT TEAM_NAME ({fPCDATA)>

CIELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, HZ, 07, T2, HR?, RBI?, sB?, CS7?,

SF?, E?, BB?, 57, HBP?, CG?, SO?, ERA?, IP?,

HRA?, RA?, ER?, HB?, WP?, B?, WB?, K?)

{I-= Stolen Bases —>
CVELEMENT SB ({fPCDATA)>

<!- Caught Stealing —
g —>
{IELEMENT CS (4fPCDATA)>

{!= Sacrifice Hits —>
CIELEMENT SH (#fPCDATA)>

_____ <I— Sacrifice Flies —

(|— ====s=s=sssss=sSSEEITTET jes =

(1— Player Info —> <IELEMENT SF (#PCDATA)>
<1— Player's last name —
CVELEMENT SURNAME (#fPCDATA)>

<!= Errors —>
CIELEMENT E (§fPCDATA)>

(1— Player's first name - <1— Walks (B
CLELEMENT GIVEN_NAME (#PCDATA)? CLELEMENT BBa?f#PSBA'[Fa”S) ~
: A)>

¢1— Position —> <= Struck Out
CIELEMENT P (4PCDATA)> CIELEMENT S t'#PEBATA»
<1—Games Played <1- Hit By Pitch —>
<IELEMENT HBP (ffPCDATA)>

->
CVELEMENT G (#PCDATA)?

1—Games Started —>

CIELEMENT GS (fPCDATA)Y P
<!- Pitching Statistics —>

<{I- Complete Games
->
CIELEMENT CG (#PCDATA)>

<i— Shut Quts —>
<YELEMENT SO (#PCDATA)>

<I— ERA —>
CIELEMENT ERA (#PCDATA)>

(1= ==============s========
<1— Batting Statistics —>
(1— At Bats —>
CLELEMENT AB (4#PCDATA)>

{i— Runs —>
CVELEMENT R (4fPCDATA)>

<!= Innin ;
<1— Hits —> QEL gs Pitched —>
CUELEMENT H (#PCDATA)> EMENT IP (#PCDATA)>
(i— Doubles —>
Continued

5 T CV-UUc09-R IH Document 82-1 Filed 04/2 Page 48 of 55

5% Partll + Document Type Definitions

listing 812 (continued)

. net =
<1— Home Runs hit Agains
CIELEMENT HRA (##PCDATA)>

. . N
<1— Runs hit Against
CIELEMENT RA ({fPCDATA)>

<1— Earned Runs -
CVELEMENT ER (4fPCDATAY>

¢1— Hit Batter ->
CVELEMENT HB (4#PCDATA)>

(1— Wild Pitches -
CVELEMENT WP (4fPCDATAY>

<1— Balk —>
C1ELEMENT B ({IPCDATA)>

¢1— Walked Batter >
CIELEMENT WB (#PCDATA)>

(1— Struck Out Batter —>

Chapter 8 + Document Type Definitions and Validity

<D>15</D>
<T>1IK/T>
<HR>1</HR>
<RBI>22</RBI>
<SB>1</SB>
<CS>4</CS>
<SH>4</SH>
<SF>2</SF>
<E>6</E>
<BB>24</BB>
<S§>25</S>
<HBP>1</HBP>
</PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>

<TEAM_NAME>Mar1ins</TEAM_NAME>
</TEAM>

<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>

</TEAMD>

<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>

233

</TEAM>
ATA)D <TEAM>
CLELEMENT K (PCD <TEAM_CITY>Philadelphia</TEAM_CITY>
|_ memmem—=m===m========== =) <TEAM_NAME>Phi11ies</TEAM_NAME>
T tistics = </TEAM>
<o Fielding Sie ted - </DIVISION>
<= Not y <DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
1> , <TEAM_CITY>Chicago</TEAM_CITY>
<SE¢%2§>1998</YEAR> <TEAM_NAME>Cubs</TEAM_NAME>
</TEAM>
<LE€E%EGE_NAME>Nat10na1</LEAGUE_NAME> 26?6¥é?éﬁ§>
<DI¥E%§?2?0N NAME>East</DIVISION_NAME> <D%g1SION_NAME>West</DIVISION_NAME)
- <TEAM>
<TE$EZM CITY>Atlanta</TEAM CITY> <TEAM_CITY>Arizona</TEAM_CITY>
<TEAM—NAME>Braves</TEAM_NAME> /<TEAM_NAME>D1amondbacks</TEAM_NAME>
= </TEAM>
>
<3E?3Eﬁ NAME>0zzie</GIVEN_NAME> </DIVISION>
CSURNAME>Gu i 11en</SURNAME? -, $/LEAGUE>
¢P>Shortstop</P> Y CLEAGUE>
CEoB3</ 6> ZBEC?gE_NAME>Amer1can</LEAGUE_NAME>
<GS>59</6S> TON>
CAB>264</AB>
<RO35C/RY

Continued
<HYT 3L/ H>

ase 1:19-cv-00859-RTH Document 82-1 Filed 04

234 P« DoamentTpeDtintions

listing 812 (continued)
<DIV1SION_NAME>East</DIVISION_NAME>

<TEAMD
<TEAM_CITY>Bal timore</TEAM_CITY>
(TEAM_NAME>QOriol es</TEAM_NAME>
</TEAMD
</DIVISION>

<DIVISION>
(DIVISION_NAME>Central </DIVISION_NAME>

<TEAMD
(TEAM_CITY>Chi cago</TEAM_CITY>

(TEAM_NAME>White Sox</TEAM_NAME>
</ TEAMD
</DIVISION>

<DIVISION>
<DIVISION_NAME)West</DIVISION_NAME>

<TEAM>
<TEAM_CITY>Anahe1'm</TEAM_CITY>

<TEAM_NAME>Ange] s</TEAM_NAME>
</TEAMY
</DIVISION>
</LEAGUE>
</SEASON>

ncluded, the resulting document shrinks from
hort tags, a savings of 44 percent. The
rtually the same. Consequently, the compressed

When the entire Major League is i
699K with long tags to 391K with s
information content, however, is vi
sizes of the two documents are muc
versus 66K for the document with long tags.

nformation you can or should include in

comments. Including more does make your DTDs longer (and thus both harder n_
n the next couple of chapters, you'll lez

scan and slower to download). However, i
ways to reuse the same DTD in multiple XML documents, as well as break long
DTDs into more manageable pieces. Thus, the disadvantages of using comments @

temporary. I recommend using comments liberally in all of your DTDs, but
especially in those intended for public use.

There’s no limit to the amount of i

Sharing Common DTDs Among Documents

ed the DTD in the document’s prolog. The real

Previous valid examples includ
from common DTDs that can be shared among

power of XML, however, comes

h closer, 58K for the document with short tags

[22 Page 49 of 55

Chapter 8 4+ Document Type Definitions and Validity 235

azngoiﬁﬁgfrgjtvivsrilt_te; gy dfifferent people. If the DTD is not directly included in
! inked in from an external source, changes mad
?)ut(l)(ﬁatlcally propa{g'ate' to all documents using that DTD. Ogn the otr?etl? t:gr?dDTD
ackward compatibility is not guaranteed when a DTD is modified. Inco: ',b
changes can break documents. ' mpatible

When you use an external DTD, the docum

. . . , ent type declaration cha .

including the DTP in square brackets, the SYSTEM keyword is follov:le%de?) Il;Sntead o
absolute or relative URL where the DTD can be found. For example: Y

<IDOCTYPE root_element_name SYSTEM "DTD_URL">

!{ere)EK/IO fEe Tement_name is simply the name of the root element as before, SYSTEM
is an eyword, and DTD_URL is a relative or an absolute URL where th ’DT
can be found. For example: © the DD

<!DOCTYPE SEASON SYSTEM "baseball.dtd">

Let’s convert a familiar example to demonstrate this process. Listi i

aDI'lI‘ mte_rnal DT.D for baseball statistics. We’ll convert 'glis listing i(t)nlllif a}r? :}1(2:3:18
D. First, strip 01.1t the DTD and put it in a file of its own. This is everythin

ET'LDVSE?\](the opening <!DOCTYPE SEASON [and the closing 1> exclusive §

b:;\s - PdEdSEASON [a}nd .] >. are not included. This can be saved in a file called
eball. td, as shown in Listing 8-13. The file name is not important, th

extension .dtd is conventional. portant, though the

| Listing 8-13: The baseball DTD file

<=ELEMENT YEAR (#fPCDATA)>
<IELEMENT LEAGUE (LEAGUE_NAME, DIVISION, DIVISION, DIVISION)>

<!—= American or National —>
<IELEMENT LEAGUE_NAME (#PCDATA)>

<!— East, West, or Central —>
éiELEMENT DIVISION_NAME (§fPCDATA)>
<;EtEmE“T DIVISION (DIVISION_NAME, TEAM+)>
<iELEMEN$ SEASON (YEAR, LEAGUE, LEAGUE)>
<;ELEME TEAM (TEAM_CITY, TEAM_NAME, PLAYER*)>
<;ELE NT TEAM_CITY (#fPCDATA)>
<;ELEmENT TEAM_NAME (4fPCDATA)>

'GS Egl PLéYER (GIVEN_NAME, SURNAME, P, G,

SH5 ' R?, H?, D?, T?, HR?, RBI?, SB?, CS?

?, SF?, E?, BB?, S?, HBP?, CG?, SO07, ERA?,’IP?,

Continued

Case 1:19-cv-00859-RTH Document 82-1 Fil

236 Partll + Document Type Definitions

Listing 8-13 (continued)

HRA?, RA?, ER?, HB?, WP?, B?, WB?, K?)

{|— ======================= —)
<!— Player Info —
{!— Player's last name —>
CIELEMENT SURNAME (#PCDATA)>

(I— Player's first name —>
CVELEMENT GIVEN_NAME (#PCDATA)>

{!— Position —>
CVELEMENT P (ffPCDATA)>

<1—Games Played —>
CVELEMENT G (#fPCDATA)>

<l—Games Started —>
CVELEMENT GS (#PCDATA)>

(|- ======================= —)
<1— Batting Statistics —>
<!— At Bats —>
CVELEMENT AB ({fPCDATA)>

{!—= Runs —>
CVELEMENT R (4fPCDATA)>

<I= Hits —>
CYELEMENT H (#PCDATA)>

<!— Doubles —>
CVELEMENT D (4fPCDATA)>

1= Triples —>
CYELEMENT T (#fPCDATA)>

<!— Home Runs —>
CVELEMENT HR (4fPCDATA)>

<1— Runs Batted In —>
CVELEMENT RBI ({fPCDATA)>

<1— Stolen Bases —>
CVELEMENT SB (§fPCDATA)>

<!— Caught Stealing —>

CJELEMENT CS (ffPCDATA)>

(!— Sacrifice Hits —>
CVELEMENT SH (#PCDATA)>

(i— Sacrifice Flies —>
CVELEMENT SF (#PCDATA)>

(l— Errors —>
CIELEMENT E (#PCDATA)>

(1— Walks (Base on Balls) —>
CVELEMENT BB (ffPCDATA)>

<1— Struck Out —>
CIELEMENT S ({fPCDATA)>

{l— Hit By Pitch —>
CIELEMENT HBP (#PCDATA)>

{1— Pitching Statistics —>
<1— Complete Games —>
C1ELEMENT CG (#PCDATA)>

- ¢!= Shut Quts —>
<IELEMENT SO ({#fPCDATA)>

{!- ERA =
4VELEMENT ERA (#PCDATA)>

1{1— Innings Pitched —>
- CYELEMENT IP (#fPCDATA)>

<{!— Home Runs hit Against —>
CLELEMENT HRA ({fPCDATA)>

1= Runs hit Against —>
(!ELEMENT RA (#fPCDATA)>

I~ Earned Runs —>
'ELEMENT ER (ffPCDATA)>

(1= Hit Batter —>
YELEMENT HB (#PCDATA)>

= Wild Pitches —
ELEMENT WP (#fPCDATA)>

Continued

I

Part Il + Document Type Definitions

238

Listing 8-13 (continued)

<1— Balk —>
CVELEMENT B (#PCDATA)>

<1— Walked Batter -
CITELEMENT WB (#PCDATA)>

<1— Struck Out Batter —>
CVELEMENT K (4##PCDATA)>

(1= ============ss=========
(1— Fielding Statistics -
(1— Not yet supported —>

Next, you need to modify the document itself. The XML declaration is no longer a
stand-alone document because it depends on a DTD in another file. Therefore, the

standalone attribute must be changed to no, as follows:

"1.0" standa]one="no"?>

ag so it points to the DTD by including the
ve) where the DTD is found:

<?xml version=

Then you must change the <!DOCTYPE> t
SYSTEM keyword and a URL (usually relati

<1DOCTYPE SEASON SYSTEM "baseball .dtd">

before. However, now the prolog contains

The rest of the document is the same as
aration. It does not contain -

only the XML declaration and the document type decl
the DTD. Listing 8-14 shows the code.

Listing 8-14: Baseball statistics with an external DTD

<?2xml version="1.0" standalone="yes"?>
<1DOCTYPE SEASON SYSTEM "baseball.dtd">
<SEASON>

(YEAR>1998</YEARD>

<LEAGUE>
CLEAGUE_NAME>National </LEAGUE_NAME>

<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>

{TEAMY
C<TEAM_CITY>At] anta</TEAM_CITY>

<TEAM_NAME>Braves(/TEAM_NAME>
<PLAYER>

9-RTH Document 82-1 Filed

19Q2 Page 51 of 55

 Chapter 8 + Document Type Definitions and Validity

<GIVEN_NAME>Qzzie</GI
<SURNAME>Gu111en</SURxEuE§AME>
<P>Shortstop</P>
<G>83</G>
<GS>59</GS>
<AB>264</AB>
<R>35</R>
<CHY73</H
<D>15</D>
<T>1K/T>
<HR>1</HR>
<RBI>22</RBI>
<SB>1</SB>
<CS>4</CS>
<SH>4</SH>
<SF>2</SF>
<E>6</ED
<BB>24</BB>
<5>25</S>
<HBP>1</HBP>
</PLAYER>
</TEAMY
CTEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME> i B
St Marlins</TEAM_NAME>
<TEAM
<TEAM_CITY>Montreal</TEAM_CITY
<TEAM_NAME> M ’
A Expos</TEAM_NAME>
<TEAMS
<TEAM_CITY>New York</TEAM_CITY
CTEAM_NAME> 3 ’
PRSI Mets</TEAM_NAME>
<TEAM>
<TEAM_CITY>Philadelphia</TEA
<TEAM_NAM 114 p-eirr
CTEAMN E>Phillies</TEAM_NAME>

</DIVISION>
<DIVISION>

<DIVISION_NAME>Central</DIVISION_NAME>

<TEAM>

<TEAM_CITY>Chica

- go</TEAM_CITY>
<TEAM_NAME> m

A Cubs</TEAM_NAME>

</DIVISION>
<DIVISION>

<DIVISION_NAME>West</DIVISION_NAME>

<TEAM>

Continued

239

ase 1:19-cv-00859-RTH Document 82-1 Filed 04/2

240 Path ¢ Document Type Definitions

~ Listing 8-14 (continued)
<TEAM_CITY>Ar1‘zona<fTEAMﬂCITY>
<TEAM_NAME>D1’amondbacks</TEAM_NAME>
</TEAM>
</DIVISION>
</LEAGUE>

<LEAGUE>
CLEAGUE_NAME>Amer can</LEAGUE_NAME>

<DIVISION>
<DIVISION_NAME>EaSt</DIVISION_NAME>

<TEAMD
<TEAM_CITY>Bal timore</TEAM_CITY>

CTEAM_NAME>Oriol es</TEAM_NAME>

</TEAMD
</DIVISION>

<DIVISION>
<DIVISION_NAME>Centr‘a1 </DIVISTON_NAME>

<TEAM>
CTEAM_CITY>Chi cago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>
</TEAMY
</DIVISIOND

<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME)

<TEAMD
(TEAM_CITY>Anahei m</TEAM_CITY>

<TEAM_NAME>Angel s</TEAM_NAME>
</ TEAMD
</DIVISION>
</LEAGUE>
</SEASON>

ame directory and
ell, you see the

Make sure that both Listing 8-14 and baseball.dtd are inthe s
this same DTD to

then load Listing 8-14 into your Web browser as usual. Ifallisw
same output as when you loaded Listing 8-12. You can now use
describe other documents, such as statistics from other years.

ential parts of the document
ument file, the structure anc
ting is in the {
se relati

a style sheet, you have the three ess
different files. The data is in the doc
o the data is in the DTD file, and the format
u to inspect or change any Or all of the

Once you add
stored in three
semantics applied t
sheet. This structure enables yo
independently.

han the document and the

ally requires revalidating the document aI

The DTD and the document are more closely linked t

style sheet. Changing the DTD gener

22 Page 52 of 55

Chapter 8 4 Document Type Definitions and Validity 24 |

may requi i

Thgneg:;;?ts’d(:zst;%t::q?lzglé?gm o g ring it back into conformance with the DTD
i . epends on yo its: ; - .
issue, though removing elements may be p rgb‘llerr::t'it:, adding elements is rarely an

DTDs at Remote URLs

If a DTD is applied to multi
- ple documents
same d , you cannot always .
o specli;;c;?g;’i ::leacl}]l document f(.)r which it is used. Instg;\dpifntlh:ag?) . tSReI
DTD is found at ht);;v, /e;;et?:]D'lI;D is found. For example, let’s,suppose tliz gasebau
: . : : ab.unc.edu/
link to it by using the following <! DOCTYPE> t);ryil/]dt’;cisgrt;eié;ba] 1.dtd. You can

<!D?CTYPE SEASON SYSTEM
http://metalab.unc.edu/xml/dtds/baseball.dtd">

This example uses a full URL vali
valid from anywh
s : ’ ywhere. You may also wi
ey arfl:::;i éf(; :he Web server’s document root or the cuﬁren'(c) c‘l?ll':]c]ttg' lofate
documént Y acce;l:;:géh;t forms a valid URL relative to the location of tt}:e !
.Fo i
document s r example, these are all valid document type

|

<!DOCTYPE SEASON SYSTEM "/xml1/dtds/baseball.dtd">
<!DOCTYPE SEASON SYSTEM "dtds/baseball.dtd">
<!DOCTYPE SEASON SYSTEM "../baseball.dtd">

A docum '
oo one(-:;n!tchg TtYf;aEv>e tmore than one document type declaration, that is, more
ag. To use elements declared in more than one DTD, you

" Public DTDs

The SYSTEM keyword is i
Part of the ore s intended for p_rivate DTDs used by a single a
e induftrymsllsli l'(x)fa)s(I:/ll]L, Ihowever, is that broader orgasllﬁzatiogns cgg:e?irnoragnroup.
eir fields. Th{s s d-e SQ or the IEEE, can standardize public DTDs tog co
B e ftems l‘{r 1z.atlon. saves people from having to reinvent ta for
akes it easier for users to exchange interoperable dizizéﬁis

IDs designed i i
1 gned for writers outside the creating organization use the PUBLIC

i€yword instead of th
nta; ___10110ws: e SYSTEM keyword. Furthermore, the DTD gets a name. The

1DOCTYP
. E root_element_name PUBLIC "DTD_name" "DTD_URL">

247 Partll + Document Type Definitions Chapter 8 + Docum ent'l'ype b Eﬁniﬁonsand\hlidity 943 ;;u

Once again, root_el ement_name is the name of the root element. PUBLIC is an
XML keyword indicating that this DTD is intended for broad use and has a name.
DTD_name is the name associated with this DTD. Some XML processors may
attempt to use this name to retrieve the DTD from a central repository. Finally,
DTD_URL is a relative or absolute URL where the DTD can be found if it cannot be

retrieved by name from a well-known repository.

Internal and External DTD Subsets

ﬁ(l)t{krlltr)rtlog[llltmostldocuments consist of easily defined pieces, not all documents use a
SR Bl}lg ﬁﬁi.llew:gg.g(g)cunzents rlnay need to use standard DTDs such as the
. ing custom elements for their own use. Other d
may use only standard elements, but need t ‘ s, ome HTA
, o reorder them. For instan H
page may have a BODY that must contain exactl e
e may h . H1 header followed b
definition list while another ma; at e heront neads
y have a BODY that contains many diff
paragraphs, and images in no particular order. If i Y ent has o T
: . If a particular document h
different structure than other pages on the site, it can be useful to define issa

structure in the document itself rather than i
an in i
makes the document easier to edit. @ separate DTD. This approach also

DTD names are slightly different from XML names. They may contain only the ASCII
alphanumeric characters, the space, the carriage return, the linefeed characters,
and the following punctuation marks: -’O+,/:=?;!*#@$_%. Furthermore, the names of

public DTDs follow a few conventions.

If a DTD is an ISO standard, its name begins with the string “}SO.” If a non-ISO
standards body has approved the DTD, its name begins with a plus sign (+). If no
standards body has approved the DTD, its name begins with a hyphen (). These
initial strings are followed by a double slash (//) and the name of the DTD’s owner,
which is followed by another double slash and the type of document the DTD
describes. Then there’s another double slash followed by an ISO 639 language
identifier, such as EN for English. A complete list of ISO 639 identifiers is available
from http://www.iCS. uci.edu/pub/i etf/http/related/i 50639.txt. For

example, the baseball DTD can be named as follows:

To this end, a document can use both an i
nd, cur internal and an external DTD i
declarelltlons go inside square brackets at the end of the <!DOCTYPE> t.azhl?olllr] teral
E};t(rllgr z,nsc;lg;f)ggfe}rlo; w;;mt ; page that includes baseball statistics but a.lso has a
' . Such a document might look like Listing 8-15. Th
information is pulled from the file baseball.d i : ot DD
ulle .dtd, which forms the ext
2‘;2?1% J‘he definition of the root element DOCUMENT as well as thee TeIYWI'II?I!Z ?11'11‘(?
oo Th;Rs Ei se]:I]?tiﬁ:s come fr(l:/[m the internal DTD subset included in the document
. unusual. More commonly, the more generic pi i
fsell, T / ') ! generic pieces are likely to
T - etetics EN p an external DTD while the internal pieces are more topic-specific.

' Listing 8-15: A baseball documen

whose DTD has both an
‘subset bt

This example says this DTD is not standards-body approved (), belongs to Elliotte
Rusty Harold, describes baseball statistics, and is written in English. A full
document type declaration pointing to this DTD with this name follows:

4 internal and an e

<?xml version="1.0" standalone="no"?

<'D(3('ZEIIE§EE‘$CHSEB; SYSTEM "bageb2$1:<>jtd" L

! ENT

CIELEMENT TITLE (#Pégﬂkgi SEASON. STENATURE)
<IELEMENT COPYRIGHT (#PCDATA)>

<VELEMENT EMAIL ({PCDATA)>

Z%ELEMENT LAST _MODIFIED (#PCDATA)>

TELEMENT SIGNATURE (COPYRIGHT, EMAIL, LAST_MODIFIED)>

C1DOCTYPE SEASON PUBLIC
"_//E11iotte Rusty Harold//DTD baseball statistics//EN"

"http://metal ab.unc.edu/xml /dtds/baseball.dtd">

You may have noticed that many HTML editors such as BBEdit automatically plac
the following string at the beginning of every HTML file they create:

<1DOCTYPE HTML PUBLIC "_//W3C//DTD HTML//EN"> >
Now you know what this string means! It says the document follows a non- . CDOCUMENTS
standards-body-approved () DTD for HTML produced by the W3C in the English . <TITLE>1998 Major L '
language. <SEASONS eague Baseball Statistics</TITLE>
. <YEAR>1998</YEA
Note Technically the W3C is not a standards organization because it's membership <LEAGUE> v
limited to corporations that pay its fees rather than to official governme CLEAGUE_NAME>National</LEAGUE_NAME>

<DIVISION>

d of standard
<DIVISION_NAME>East</DIVISION_NAME>

approved bodies. It only publishes recommendations instea
practice, the distinction is irrelevant.
Continued

Case 1:19-cv-00859-RTH Document 82-1 Fi

 Listing 8-15 (continued) i

<TEAM>
CTEAM_CITY>Atlanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>
</TEAM>
<TEAM>
CTEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Mar1ins</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>
</TEAM>
<TEAM>
CTEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
</TEAM>
<TEAM>
C<TEAM_CITY>Philadelphia</TEAM_CITY>
<TEAM_NAME>Phi111ies</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>
<DIVISTON_NAME>Central</DIVISION_NAME>
<TEAM>
CTEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>
<TEAM>
CTEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>
</TEAM>
</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
CTEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>

Chapter 8 + Document Type Definitions and Validity

<TEAM_NAME>White Sox</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>
<DIVISION_NAME>DWest</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Ange1s</TEAM_NAME>
</TEAMD
</DIVISION>
</LEAGUE>
</SEASON>
<SIGNATURE>
CCOPYRIGHT>Copyright 1999 Elliotte Rusty Harold</COPYRIGHT>

CEMAIL>elharo@metalab.unc.edu</EMAIL>
{LAST_MODIFIED>March 10, 1999</LAST_MODIFIED>
<{/SIGNATURE>

</DOCUMENT>

In‘the event of a conflict between elements of the same name in the internal and
external DTD subsets, the elements declared internally take precedence. This
précedence provides a crude, partial inheritance mechanism. For example, suppose
you want to override the definition of a PLAYER element so that it can only contain
batting statistics while disallowing pitching statistics. You could use most of the

ame declarations in the baseball DTD, changing the PLAYER element as follows:

e

- <IDOCTYPE SEASON SYSTEM "baseball.dtd” [

~ <!'ELEMENT PLAYER (GIVEN_NAME, SURNAME, P, G,
GS, AB?, R?, H?, D?, T?, HR?, RBI?, SB?, CS?,
_ SH?, SF?, E?, BB?, S?, HBP?)

th igchapter, you learned how to use a DTD to describe the structure of a
iment, that is, both the required and optional elements it contains and how
€ elements relate to one another. In particular you learned:

A document type definition (DTD) provides a list of the elements, tags,
attributes, and entities contained in the document, and their relationships to
one another.

A document’s prolog may contain a document type declaration that specifies
heroot element and contains a DTD. This is placed between the XML declara-
ozt and before where the actual document begins. It is delimited by <!D0C-

T -PE ROOT [and 1>, where ROOT is the name of the root element.

245 |

vV UUOU - [0 "'.

5 Partil 4+ Document Type Definitions

4 DTDs lay out the permissible tags and the structure of a document. A docu-

ment that adheres to the rules of its DTD is said to be valid.

4 Element type declarations declare the name and children of an element.

4 Children separated by commas in an element type declaration must appear in

the same order in that element inside the document.

4 A plus sign means one or more instances of the element may appear.

4 An asterisk means zero or more instances of the element may appear.

4+ A question mark means z€ro or one instances of the child may appear.

4 A vertical bar means one element or another is to be used.

4 Parentheses group child elements to allow for more detailed element
declarations.

+ Mixed content contains both elements and parsed character data but limits

the structure you can impose on the parent element.
4+ Empty elements are declared with the EMPTY keyword.
4 Comments make DTDs much more legible.

+ External DTDs can be located using the SYSTEM keyword and a URL in the doc-

ument type declaration.

4 Standard DTDs can be located using the PUBLIC keyword in the document

type declaration.

4 Declarations in the internal DTD subset override conflicting declarations in

the external DTD subset

In the next chapter, you learn more about DTDs, including how entity references
provide replacement text and how to separate DTDs from the documents they
describe so they can be easily shared between documents. You also learn how to

use multiple DTDs to describe a single document.

+ + +

lled U 9

2 Page 55 of 55

CHAPTIER
b 4

Entities and
External DTD
Subsets

&0 e e

in This Chapter

What is an entity?

Internal general
entities
Asingle XML document may draw both data and
declarations from many different sources, in many
different files. In fact, some of the data may draw directly from
databases, CGl scripts, or other nonfile sources. The items
where the pieces of an XML file are stored, in whatever form
they take, are called entities. Entity references load these
entities into the main XML document. General entity
references load data into the root element of an XML
document, while parameter entity references load

External general
entities

Internal parameter
entities

External parameter

entities
| data into the document’s DTD. i.
How to build a
document from
L] .
at Is an Entity? ploces
Logically speaking, an XML document is composed of a prolog ?ntiiie‘? f"d %TDS
followed by a root element which strictly contains all other g‘o‘g’:me‘;‘;;“e

elements. But in practice, the actual data of an XML document
can spread across multiple files. For example, each PLAYER
element might appear in a separate file even though the root
element contains all 900 or so players in a league. The storage
units that contain particular parts of an XML document are
t.gaﬂed entities. An entity may consist of a file, a database record,
‘or ahy other item that contains data. For example, all the

‘ mplete XML files in this book are entities.

AU A

he storage unit that contains the XML declaration, the
i ument type declaration, and the root element is called
e document entity. However, the root element and its

A ?t‘:r_ldents may also contain entity references pointing to
tional data that should be inserted into the document. A
lidating XML processor combines all the different referenced
‘ ies into a single logical document before it passes the
ent onto the end application or displays the file.

T T T

