EXHIBIT 16

TO THE DECLARATION OF BRIAN J. NISBET IN SUPPORT OF DEFENDANTS' MOTION FOR SUMMARY JUDGMENT OR, IN THE ALTERNATIVE, SUMMARY ADJUDICATION

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(10) International Publication Number

WO 2006/042241 A2

(43) International Publication Date 20 April 2006 (20.04.2006)

(51) International Patent Classification: A61M 5/32 (2006.01)

(21) International Application Number:

PCT/US2005/036454

(22) International Filing Date: 11 October 2005 (11.10.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/617,498 8 October 2004 (08.10.2004) US 60/720,710 26 September 2005 (26.09.2005)

- (71) Applicant (for all designated States except US): NUVA-SIVE, INC. [US/US]; 4545 Towne Centre Court, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MARTINELLI, Scot [US/US]: 15973 Crown Valley Rd, San Diego, CA 92064 (US). ARAMBULA, Jared [US/US]; 1803 Burton Street, San Diego, CA 92111 (US). FINLEY, Eric [US/US]; 5663 West L-6 Ave, Lancaster, CA 93536 (US). MILES, Patrick [US/US]; 5227 Greenwillow Lane, San Diego, CA 92130 (US).
- (74) Agent: SPANGLER, Jonathan, D.; 4545 Towne Centre Court, San Diego, CA 92121 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SURGICAL ACCESS SYSTEM AND RELATED METHODS

(57) Abstract: A surgical access system including a tissue distraction assembly 40 and a tissue retraction assembly 10, both of which may be equipped with one or more electrodes 23 for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor 15 to a surgical target site. The tissue retraction assembly 10 has a plurality of blades 12, 16, 18 which may be introduced while in a closed configuration, after which point they may be opened to create an operation corridor 15 to the surgical target site, including pivoting at least one blade 12, 16, 18 to expand the operative corridor 15 adjacent to the operative site.

WO 2006/042241 PCT/US2005/036454

SURGICAL ACCESS SYSTEM AND RELATED METHODS

CROSS-REFERENCES TO RELATED APPLICATIONS

The present international patent application claims the benefit of priority from commonly 5 owned and co-pending U.S. Provisional Patent Application Serial No. 60/617,498, entitled "Surgical Access System and Related Methods," filed on October 8, 2004 and U.S. Provisional Patent Application Serial No. 60/720,710, entitled "Surgical Access System and Related Methods," filed on September 26, 2005, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein. The present application 10 also incorporates by reference the following co-pending and co-assigned patent applications in their entireties: PCT App. Ser. No. PCT/US02/22247, entitled "System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery," filed on July 11, 2002; PCT App. Ser. No. PCT/US02/30617, entitled "System and Methods for Performing Surgical Procedures and Assessments," filed on Sept. 25, 2002; PCT App. Ser. No. PCT/US02/35047, 15 entitled "System and Methods for Performing Percutaneous Pedicle Integrity Assessments," filed on October 30, 2002; and PCT App. Ser. No. PCT/US03/02056, entitled "System and Methods for Determining Nerve Direction to a Surgical Instrument," filed January 15, 2003 (collectively "Neuro Vision PCT Applications").

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates generally to systems and methods for performing surgical procedures and, more particularly, for accessing a surgical target site in order to perform surgical procedures.

II. Discussion of the Prior Art

A noteworthy trend in the medical community is the move away from performing surgery via traditional "open" techniques in favor of minimally invasive or minimal access techniques.

Open surgical techniques are generally undesirable in that they typically require large incisions

20

25

and high amounts of tissue displacement to gain access to the surgical target site, which produces concomitantly high amounts of pain, lengthened hospitalization (increasing health care costs), and high morbidity in the patient population. Less-invasive surgical techniques (including so-called "minimal access" and "minimally invasive" techniques) are gaining favor due to the fact that they involve accessing the surgical target site via incisions of substantially smaller size with greatly reduced tissue displacement requirements. This, in turn, reduces the pain, morbidity and cost associated with such procedures. The access systems developed to date, however, fail in various respects to meet all the needs of the surgeon population.

One drawback associated with prior art surgical access systems relates to the ease with which the operative corridor can be created, as well as maintained over time, depending upon the particular surgical target site. For example, when accessing surgical target sites located beneath or behind musculature or other relatively strong tissue (such as, by way of example only, the psoas muscle adjacent to the spine), it has been found that advancing an operative corridorestablishing instrument directly through such tissues can be challenging and/or lead to unwanted or undesirable effects (such as stressing or tearing the tissues). While certain efforts have been undertaken to reduce the trauma to tissue while creating an operative corridor, such as (by way of example only) the sequential dilation system of US Pat No. 5,792,044 to Foley et al., these attempts are nonetheless limited in their applicability based on the relatively narrow operative corridor. More specifically, based on the generally cylindrical nature of the so-called "working cannula," the degree to which instruments can be manipulated and/or angled within the cannula can be generally limited or restrictive, particularly if the surgical target site is a relatively deep within the patient.

This highlights yet another drawback with the prior art surgical access systems, namely, the challenges in establishing an operative corridor through or near tissue having major neural structures which, if contacted or impinged, may result in neural impairment for the patient. Due to the threat of contacting such neural structures, efforts thus far have largely restricted to establishing operative corridors through tissue having little or substantially reduced neural structures, which effectively limits the number of ways a given surgical target site can be

5

10

15

20

25

accessed. This can be seen, by way of example only, in the spinal arts, where the exiting nerve roots and neural plexus structures in the psoas muscle have rendered a lateral or far lateral access path (so-called trans-psoas approach) to the lumbar spine virtually impossible. Instead, spine surgeons are largely restricted to accessing the spine from the posterior (to perform, among other procedures, posterior lumbar interbody fusion (PLIF)) or from the anterior (to perform, among other procedures, anterior lumbar interbody fusion (ALIF)).

Posterior-access procedures involve traversing a shorter distance within the patient to establish the operative corridor, albeit at the price of oftentimes having to reduce or cut away part of the posterior bony structures (e.g. lamina, facets, spinous process) in order to reach the target site (which typically comprises the disc space). Anterior-access procedures are relatively simple for surgeons in that they do not involve reducing or cutting away bony structures to reach the surgical target site. However, they are nonetheless disadvantageous in that they require traversing through a much greater distance within the patient to establish the operative corridor, oftentimes requiring an additional surgeon to assist with moving the various internal organs out of the way to create the operative corridor.

The present invention is directed at eliminating, or at least minimizing the effects of, the above-identified drawbacks in the prior art.

SUMMARY OF THE INVENTION

The present invention accomplishes this goal by providing a novel access system and related methods which involve detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor through (or near) any of a variety of tissues having such neural structures which, if contacted or impinged, may otherwise result in neural impairment for the patient. It is expressly noted that, although described herein largely in terms of use in spinal surgery, the access system of the present invention is suitable for use in any number of additional surgical procedures wherein tissue having significant neural structures must be passed through (or near) in order to establish an operative corridor. It is also expressly noted that, although shown and described herein

5

10

15

20

25

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

