

EXHIBIT 15

Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 1 of 7Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 1 of 7

EXHIBIT 15

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 2 of 7Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 2 of 7

Location-Independent Naming for Virtual
Distributed Software Repositories*

Shirley Browne! Jack Dongarra, Stan Green, Keith Moore
Theresa Pepin, Tom Rowan, and Reed Wade

University of Tennessee
Eric Grosse

AT&T Bell Laboratories

Abstract

A location-independent naming system for network re-
sources has been designed to facilitate organization and de-
scription of software components accessible through a vir-
tual distributed repository. This naming system enables
easy and efficient searching and retrieval, and it addresses
many of the consistency, authenticity, and integrity issues
involved with distributed software repositories by providing
mechanismsfor grouping resources and for authenticity and
integrity checking. This paper details the design of the nam-
ing system, describes a prototype implementation of some of
the capabilities, and describes how the system fits into the
development of the National HPCC Software Exchange, a
virtual software repository that has the goal of providing ac-
cess to reusable software components for high-performance
computing.

1. Introduction

Well-maintained software repositories are central to software
reuse because they make high-quality software widely avail-
able and easily accessible. One such repository is Netlib',
a collection of high-quality publicly available mathematical
software[6, 4]. Netlib, in operation since 1985, currently
processes over 300,000 requests a day. Netlib is serving as a
prototype for development of the National HPCC Software
Exchange (NHSE)*, which has the goal of encompassingall
High Performance Computing Consortium (HPCC)software
repositories and of promoting reuse of software components
developed by Grand Challenge and other scientific com-
puting researchers [5]. Other network-accessible software

*The work described in this paper is sponsored by NASA under
Grant No. NAG 5-2736, by the National Science Foundation under
Grant No. ASC-9103853, and by AT&T Bell Laboratories.

tAuthor to whom correspondence should be directed. 107
Ayres Hall, Computer Science Department, University of Tennessee,
Knoxville, TN 37996-1301, (615) 974-5886, browne@cs.utk.edu

laccessible- from a World Wide Web browser at
http://www.netlib.org/

? accessible at http://www.netlib.org/nse/

Permission to copy withoutfee all or part of this materialis
granted provided that the copies are not madeordistributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise,or to republish, requires
a fee and/or specific permission.
SSR '95, Seattle, WA,USA
© 1995 ACM 0-89791-739-1/95/0004...$3.50

repositories include ASSET’, CARDS‘, DSRS®, ELSA®, the
GAMSVirtual Software Repository’, and STARS®. AS-
SET, CARDS, DSRS, and ELSA are participating in an
interoperability experiment that allows a user of any one of
these repositories to access software exported from the other
repositories.

The software reuse marketplace is expanding in at least
two dimensions. One dimension is the expansion from intra-
organizational reuse to inter-organizational reuse. For ex-
ample, various federal agencies have established their own
internal software reuse programs. Several efforts are now
underway to promote reuse of software across agencies.
Similarly, companies are becoming interested in accessing
software produced by academic and government research
groups. Another dimension of expansion is from reuse within
a particular application domain to interdisciplinary reuse.
Reuse of software from other disciplines is being fostered,
for example, by efforts to solve interdisciplinary Grand Chal-
lenge problems. Solution of such problems will require col-
laboration by scientists from different disciplines, as well as
sharing of software produced by application and computer
scientists.

Another recent development that affects the software
reuse marketplace is the growth of the World Wide Web
(WWW), together with the ease with which individuals may
make resources available on a WWW server. A contributor

need only make the files composing an resource available
on a file server and make available a descriptive HTMLfile
containing pointers to the resourcefiles.

Growth in the popularity of the Internet and the World
Wide Web, as well as the wide availability of WWW
client and server software, has accelerated the shift from
centrally maintained software repositories to virtual, dis-
tributed repositories. For example, the GAMS Repository,
once a central repository, is now a virtual repository that
catalogs software maintained by other repositories [2]. Sim-
ilarly, the NHSEwill provide a uniform interface to a virtual
HPCCsoftware repository that will be built on top of a dis-
tributed set of discipline-oriented repositories[5], as shown —
in Figure 1.

The main advantage of distributing a repository is to

3 Accessible at http://source.asset.com/
4 Accessible at http://dealer.cards.com/
5 Accessible at http://ssed1.ims.disa.mil/srp/dsrspage.html
5 Accessible at

http://rbse.mountain.net/ELSA/elsa_lob.html
7 Accessible at http://gams.nist.gov/
5 Accessible at

http://www.stars.ballston.paramax.com/index.html

179

JNPR-FNIN2902900487891f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 3 of 7Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 3 of 7

Figure 1: Virtual Repository Architecture

allow the software to be maintained by those in the best po-
sition to keep it up-to-date. Also, copies of popular software
packages may be mirrored by a numberofsites to increase
availability (e.g., if one site is unreachable, the software may
be retrieved from a different site) and to prevent bottlenecks.

Despite the benefits, distributed maintenance and mir-
roring of software poses the following challenges.

e Maintaining the quality of software and of indexing
information and presenting a uniform searching and
browsing interface become much moredifficult.

The WWW mechanism ofspecifyingafile by its Uni-
form Resource Locator (URL)is inadequate for ensur-
ing the consistency and currency of mirrored copies, as
a URLfor an independently mirrored copy of a soft-
ware package may point to an out-of-date copy and
give no indication that it is not up-to-date. Further-
more, mirror copies of a file cannot be located from a
URLreference, since each copy has a different URL.

e Consistency between a set of files that are meant to
be used together must be maintained. For example,
the Netlib Software Repository provides dependency
checking that allows the user to retrieve a top-level
routine plus all routines in its dependency tree (ie.,
those routines that are called directly or indirectly by
the top-level routine). Another example is a graph-
ical parallel programming environment that relies on
an underlying parallel communications support pack-
age. The problem becomes more complex when differ-
ent pieces might be retrieved from different physical
repositories. Ideally, the user should be able to have
a consistent set retrieved automatically without hav-
ing to scan documentation to verify that compatible
pieces have been retrieved.

e As the number of reuse libraries grows, users cannot
be expected to access each of them separately using
a different interface. Thus, scalable interoperability
between separately managed repositories is needed.

e In the environment of accessing a few well-established
repositories that the user knows and trusts, a user
is assured of the integrity and authenticity of a re-
trieved file because these properties are provided by
the administrative procedures of that repository. With
a large number of less familiar repositories, however,
it becomes necessary to establish interoperable trust
mechanisms and to reduce the number of parties with
whom the user must establish trust.

e The more decentralized and smaller the individual

repositories become, the less practical it becomes for
each individual repository to provide the full range of
search and authentication services.

Most of the above problems can be alleviated by im-
plementing a location-independent naming system that in-
cludes mechanisms for authenticity and integrity checking.
We have designed a naming system that provides for two
levels of naming. The binding between a lower-level name
(called a LIFN) andfile contents is unchangeable and ver-
ifiable. A lower-level name may be resolved to multiple,
mirrored copies. In the case where it represents a set of
files, the name may beresolved to a list of other names. A
higher-level name {called a URN)is associated with a cat-
aloging record that includes the lower-level nameas well as
other descriptive information. This record may be crypto-
graphically signed by the publisher so that users may verify
the authenticity of a retrieved resource. At any given time,
a higher-level name is associated with exactly one lower-
level name, but this binding may change over time. Higher-
level names allow for long-lived human-readable references,
while lower-level names permit reliable caching and mirror-
ing as well as permitting precise references when needed.
Location-independent names will be the basis of transpar-
ent mirroring. They will also provide a unique key to which
third parties may attach value-added information such as
additional cataloging information and quality assessments.
This paper describes the design of our naming system. We
also describe our implementation of a prototype name-to-
location service and of a modified WWW client that does

name resolution. A glossary of acronyms and terms used in
this paper is included as an appendix.

2 Related Work

The use of a public-key encryption technique for authenti-
cating the source of a software component and for ensuring
that the component has not been altered subsequent to its
publication is proposed in [9]. Cryptographic information,in
the form of a digital signature created by signing the hashed
digest of the contents of a component, is included within
the component’s unique identifier. The proposed method
is intended to prevent not only changes by unauthorized
parties, but also changes by the original author - i.e., the
author is not permitted to modify a component without as-
signing a new unique identifier. The method assumes that
each author has been assigned aa globally unique Author
ID, has chosen an asymmetric public/private key pair, and
has publicized the public key to the community of poten-
tial re-users. A newly chosen symmetric encryption key is
used to encrypt the componentitself. Then the symmetric
key, the hashed digest of the component, and the Author
ID are concatenated and encrypted using the asymmetric
private key, and the result is concatenated to the cleart-
ext version of the Author ID to create the unique identifier
for the component. The method does not address name-
to-location resolution, other than to say that the encrypted
component is madeavailable along with the unique identifier
and any other cleartext information. The proposed unique
identifier is similar to our LIFN, and encryption of the hash
digest and Author ID is similar to our method of having
the author cryptographically sign a catalogue record that
includes the author name andthefile’s MD5 signature. Our
method allows a choice of encryption algorithms, however,
and allows the digital signature used for authentication to

180

JNPR-FNIN2902900487892f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 4 of 7Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 4 of 7

be generated independently andat a different time from the
component’s identifier.

Functional requirements for Uniform Resource Names
(URNs) are proposed in [12] by the IETF Uniform Resource
Identification (URI) Working Group. Accordingto [12], the
function of a URN is to provide a globally unique, per-
sistent identifier used for recognition of and for access to
characteristics of a resource or to the resource itself. URN

assignment is delegated to naming authorities, the names
of which are persistent and globally unique, and who may
assign names directly or delegate their authority to sub-
authorities. Global uniqueness of URNs is guaranteed by
requiring each naming authority to guarantee uniqueness
within its portion of the URN namespace. It is left up to
each naming authority to determine the conditions under
which it will issue a URN (for example, whether or not to
issue a new URN whenthe contents ofa file change). Some
test implementations of URNsare underway by members of
the URI Working Group at Georgia Tech and Bunyip Cor-
poration ®. The Georgia Tech testbed uses the whois++
protocol for URN to URCresolution. A URC, or Uniform
Resource Characteristic, is a catalog record which includes
locations, or URLs, at which the resource may be accessed.
The URCserver supports searching by other attributes, in
addition to URN lookup, via the whois++ protocol. A mod-
ified version of Mosaic that does URN to URC resolution is

available. A proxy server based on CERN httpd that does
cacheing by URNSsis also running at Georgia Tech.

As part of the Computer Science Technical Report
(CSTR) project [8], which is developing an architecture
for distributed digital documentlibraries, the Corporation
for National Research Initiatives (CNRI) is implementing a
name-to-location resolution service called the Handle Man-

agement System (HMS) '°. CNRI’s handleis a name for a
digital object and is analogous to IETF’s URN. The HMSin-
cludes a Handle Generator that a naming authority may run
and use to create globally unique handles, Handle Servers
that process update requests from naming authorities and
query requests from clients to resolve handles, and a Handle
Server Directory that maps a handle to the appropriate Han-
dle Server. The distribution of handles to Handle Servers is

based on a hashing algorithm. An electronic mail interface
is used by handle administrators to add, delete, and modify
handle entrics in the Handle Server database. Clients use

a UDP datagram interface to request location data associ-
ated with a handle. A modified version of Mosaic that does

handle resolution is available from CNRI. The types of lo-
cation information stored by Handle Servers include URL,
repository name, email address, and X.500 Distinguished
Name. Use of a repository name by a client requires an-
other round of name-to-location resolution. CNRI’s proper-
ties record that describes the properties of a digital object
is analogous to IETF’s URC. The properties record is not
stored by the HMS,but rather by an Information and Refer-
ence (IR) Server that is to be maintained by each repository.
Each naming authority may also maintain an IR server con-
taining a properties record for each digital object within its
authority.

3 Publishing and Name Assignment

Internet-accessible resources are currently referenced using
Uniform Resource Locators (URLs). Because URLsarelo-

°More information is available at http://www.gatech.edu/ilir/
10 More information available at

http://www.cnri.reston.va.us/

18

181

cations rather than names, their use as references presents
at least two problems. One problem is that files get moved,
changing ther URLs. Then pointers that contain the old
URLs becomestale. One can leave a forwarding address at
the old URL, but forwarding addresses are an awkward and
inelegant solution. Another problem with using URLs as
references is that mirrored copies offiles cannot be located
from a URLreference, since each copy has a different URL.

It has been widely recognized that a solution to the
above problemsis to assign location-independent names to
files and to provide a name-to-location service that, given
a name, returns a list of locations for that name. A re-
source provider who moves somefiles need only delete the
old name-to-location bindings and register the new bindings
with the name-to-location service. Likewise, a site that mir-
rors a copy ofafile need only register its location with the
name-to-location service. Then a user attempting to retrieve
the file corresponding to a location-indcpendent name may
query the name-to-location service for a list of alternative
locations to be tried.

Our work is similar to the IETF’s Uniform Resource

Identifier Working Group's work on Uniform Resource
Names (URNs) [12] and to CNRI’s work on unique docu-
ment identifiers for digital libraries [8]. However, neither of
these groups has addressed thereliability and consistency is-
sues addressed by our two-level naming system. Our system
includes a lower-level name a called Location Independent
File Name (LIFN) and a higher-level namecalled a Uniform
Resource Name (URN).

An important question is whether the byte contents of
the file referred to by a location-independent name should
be fixed or be allowed to change. If the byte contents are
allowed to change, then a further question arises as to what
should be the consistency requirements for alternative loca-
tions for the same name. Valid arguments for both cases
can be madefor different situations. For example, for soft-
ware resources it is desirable to have an unambiguousrefer-
ence to the fixed byte contents for the purpose of attaching
a review or reporting experimental or performance results.
Fixed contents also make it possible to compute a file di-
gest that may be cryptographically signed by the author
of the resource, allowing verification of the integrity of a
retrieved file. On the other hand, it is desirable to have a
reference to a software package that need not be changed ev-
ery time a bug fix or minorrevision takes place, especially
if the cataloging information (e.g., title, author, abstract)
does not change. The cataloging information for a software
package might contain a reference to a Web page describing
and/or documenting the package. The author of the Web
page would like to be able to update the page without. having
to change all the references to it. A non-software example
where it would be desirable to allow contents to changeis
a namethat refers to a file containing the “current weather
map”.

Because both types of name are needed, we have imple-
mented both. The type of namethatrefers to fixed byte con-.
tents is called a Location Independent File Name, or LIFN.
Once a LIFN has been assigned to a particular sequence of
bytes, that binding may not be changed. The type of name
for which the contents to which it refers may changeis called
a Uniform Resource Name, or URN.

We divide the file access system into two levels. The
upper level is where publishing, cataloging, and searching
activities take place. These upper-level activities are con-
cerned with the semantic, or intellectual, contents offiles.
The lowerlevel is where distribution, mirroring, and caching

JNPR-FNIN_2902900487893f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 5 of 7Case 3:17-cv-05659-WHA Document 96-19 Filed 06/07/18 Page 5 of 7

activities occur. These lower-level activities are not con-

cerned with the semantic contents of files, only with ensur-
ing that files may be accessed efficiently and that the byte
contents of files are not corrupted.

The above arguments about the need for two types of
name pertain to the upper level. At the lower level, there is
a need for LIFNs, but not for URNs. Mirrorsites use LIFNs
and their associated file digests to ensure that their copies of
files have not been corrupted. A cache site needs to be able
to tell a user or client program whether it holds a copy of
a requested file, and for this purpose it can answer whether
or not it holds a copy of a particular LIFN.

The above considerations led us to implement LIFNsat
the lower level of the file access system and URNsat the
upper level, but to make LIFNs visible at the upper level
as well. A publisher will be responsible for assigning both
a URN and a LIFN to any resource for which cataloging
information is provided. For otherfiles, only LIFNs need be
provided. At any given time, a URN thatrefers to a file or a
set of files is associated with exactly one LIFN. A URN may
be associated with a set of different LIFNs over the URN’s

lifetime, but we require that the set be in the form ofa linear
sequence, with the sequence order given by increasing time.

The LIFN and URN namespaces are subdivided among
several publishers, also called naming authorities, who are
responsible for ensuring the uniqueness of names assigned
within their portions of the name spaces. A nameis formed
by concatenating the registered naming authority identifier
with a unique string assigned by the naming authority. The
LIFN and URNare formatted as

LIFN:<publisher id>:string
URN: <publisher id>:string

The publisher id portion of the name is used to lo-
cate appropriate URN and LIFNservers for that publisher.
Given a URN, a URNserver returns a Uniform Resource
Citation (URC) for that URN that includes its currently
associated LIFN, as well as other cataloging information.
Given a LIFN, a LIFN server returnsalist of locations for
that LIFN. More information about accessing URCs and
files from their URNs and LIFNs may be found in Section
4.

The publisher provides cataloging information for each
URN it assigns. The catalog record includes information
such as title, author, abstract, etc. A recommendedset of
attributes for software assets is given by the Reuse Library
Interoperability Group (RIG) Basic Interoperability Data
Model [1]. In addition, the catalogue record for a URN in-
cludes its currently associated LIFN, as well as an MD5 or
similar fingerprint for that LIFN. This fingerprint is a 128-
bit quantity resulting from applying the MD5 function to
the contents of the file. The function is designed to make
it computationally infeasible to find a different sequence of
bytes that produces the same fingerprint [10]. To enable
authentication, the entire description may be cryplograpli-
cally signed, as discussed in Section 5, Portions of the cat-
alog record may be exported to resource discovery servers,
such as a Harvest Broker [3], which provide search services
based on resource descriptions. The URN exported to the
search service provides a unique long-lived key, so that de-
scriptions may be unambiguously associated with a resource,
and so that a resource turns up at most once in a list of
search hits.

For a name to be useful, there must be some means of
resolving a nameto a location from which the resource can
be retrieved or accessed. Thus, the publisher, as well as

Figure 2: Publishing steps

any other parties that mirror the resource, must register
such locations with the appropriate name-to-location lookup
services. Such name-to-location services are discussed in
Section 4.

Thus, publishing a resource involves the following steps,
shownin Figure 2:

1. creating the resource’s catalog record in the form of a
URC,

2. signing the catalog record with the publisher’s private
key,

3. making the resource files available on one or morefile
servers,

. registering the file locations with the LIFN server,

. registering the URC with the URNserver,

. Informing mirror sites of the new or updated file,NHoO
. exporting relevant portions of the URC to search ser-vices,

Steps 1 and 5 have been discussed above. Steps 2 is discussed
in Section 5, and Steps 3, 4, and 5 are discussed im Section4,

4 NameResolution and File Mirroring

Resources -available from the virtual repository will be
named by URNs and/or LIFNs,rather than by URLs. Thus,
WWWclients will need a meansof resolving a URN or LIFN
to one or more locations, expressed in the form of a URL,
to be able to access the resource. Access to files is provided
by conventional file servers, using protocols such as HTTP,
Gopher, and FTP.

For a non-file resource, such as a database service, a list
of locations is associated directly with the URN for that
resource. For a file resource, such as a file containing a
piece of software, the relationship between the URN and
the locations is indirect, via a LIFN — the URNis associated
with a LIFN,and the LIFNis associated with a list of URLs.

The LIFN-to-location mapping service is provided by
a network of LIFN servers, collectively called the LIFN
database. These servers process queries for locations of

182

JNPR-FNIN2902900487894f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

