

EXHIBIT 4

Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 1 of 32Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 1 of 32

EXHIBIT 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Transport Layer Security
Transport Layer Security (TLS), and its now-deprecated predecessor, Secure Sockets Layer (SSL),[1] are cryptographic protocols designed to provide communications security over a computer
network.[2] Several versions of the protocols find widespread use in applications such as web browsing, email, instant messaging, and voice over IP (VoIP). Websites can use TLS to secure all
communications between their servers and web browsers.

The TLS protocol aims primarily to provide privacy and data integrity between two or more communicating computer applications.[2]:3 When secured by TLS, connections between a client (e.g., a web
browser) and a server (e.g., wikipedia.org) should have one or more of the following properties:

The connection is private (or secure) because symmetric cryptography is used to encrypt the data transmitted. The keys for this symmetric encryption are generated uniquely for
each connection and are based on a shared secret that was negotiated at the start of the session (see § TLS handshake). The server and client negotiate the details of which
encryption algorithm and cryptographic keys to use before the first byte of data is transmitted (see § Algorithm below). The negotiation of a shared secret is both secure (the
negotiated secret is unavailable to eavesdroppers and cannot be obtained, even by an attacker who places themselves in the middle of the connection) and reliable (no attacker
can modify the communications during the negotiation without being detected).
The identity of the communicating parties can be authenticated using public-key cryptography. This authentication can be made optional, but is generally required for at least one
of the parties (typically the server).
The connection is reliable because each message transmitted includes a message integrity check using a message authentication code to prevent undetected loss or alteration of
the data during transmission.[2]:3

In addition to the properties above, careful configuration of TLS can provide additional privacy-related properties such as forward secrecy, ensuring that any future disclosure of encryption keys cannot
be used to decrypt any TLS communications recorded in the past.[3]

TLS supports many different methods for exchanging keys, encrypting data, and authenticating message integrity (see § Algorithm below). As a result, secure configuration of TLS involves many
configurable parameters, and not all choices provide all of the privacy-related properties described in the list above (see the § Key exchange (authentication), § Cipher security, and § Data integrity
tables).

Attempts have been made to subvert aspects of the communications security that TLS seeks to provide, and the protocol has been revised several times to address these security threats (see § Security).
Developers of web browsers have also revised their products to defend against potential security weaknesses after these were discovered (see TLS/SSL support history of web browsers).[4]

The TLS protocol comprises two layers: the TLS record and the TLS handshake protocols.

TLS is a proposed Internet Engineering Task Force (IETF) standard, first defined in 1999, and the current version is TLS 1.3 defined in RFC 8446 (August 2018). TLS builds on the earlier SSL
specifications (1994, 1995, 1996) developed by Netscape Communications[5] for adding the HTTPS protocol to their Navigator web browser.

Description

History and development
Secure Network Programming
SSL 1.0, 2.0, and 3.0
TLS 1.0
TLS 1.1
TLS 1.2
TLS 1.3

Digital certificates
Certificate authorities

Algorithm
Key exchange or key agreement
Cipher
Data integrity

Applications and adoption
Websites
Web browsers
Libraries
Other uses

Security
SSL 2.0
SSL 3.0
TLS
Attacks against TLS/SSL
Forward secrecy
TLS interception

Protocol details
TLS handshake
TLS record

Support for name-based virtual servers

Standards
Primary standards
Extensions
Informational RFCs

See also

References

Further reading

External links

Contents

Description

Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 2 of 32

f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Cryptographic_protocol
https://en.wikipedia.org/wiki/Communications_security
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Web_navigation
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Voice_over_IP
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Privacy
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Shared_secret
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Eavesdropping
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Computer_configuration
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/IETF
https://en.wikipedia.org/wiki/Internet_Standard
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc8446
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/HTTP_Secure
https://en.wikipedia.org/wiki/Netscape_Navigator
https://www.docketalarm.com/

SSL and TLS protocols

Protocol Published Status

SSL 1.0 Unpublished Unpublished

SSL 2.0 1995 Deprecated in 2011 (RFC 6176)

SSL 3.0 1996 Deprecated in 2015 (RFC 7568)

TLS 1.0 1999 Deprecation planned in 2020[11]

TLS 1.1 2006 Deprecation planned in 2020[11]

TLS 1.2 2008

TLS 1.3 2018

Client-server applications use the TLS protocol to communicate across a network in a way designed to prevent eavesdropping and tampering.

Since applications can communicate either with or without TLS (or SSL), it is necessary for the client to indicate to the server the setup of a TLS connection.[6] One of the main ways of achieving this is
to use a different port number for TLS connections, for example port 443 for HTTPS. Another mechanism is for the client to make a protocol-specific request to the server to switch the connection to
TLS; for example, by making a STARTTLS request when using the mail and news protocols.

Once the client and server have agreed to use TLS, they negotiate a stateful connection by using a handshaking procedure.[7] The protocols use a handshake with an asymmetric cipher to establish not
only cipher settings but also a session-specific shared key with which further communication is encrypted using a symmetric cipher. During this handshake, the client and server agree on various
parameters used to establish the connection's security:

The handshake begins when a client connects to a TLS-enabled server requesting a secure connection and the client presents a list of supported cipher suites (ciphers and hash
functions).
From this list, the server picks a cipher and hash function that it also supports and notifies the client of the decision.
The server usually then provides identification in the form of a digital certificate. The certificate contains the server name, the trusted certificate authority (CA) that vouches for the
authenticity of the certificate, and the server's public encryption key.
The client confirms the validity of the certificate before proceeding.
To generate the session keys used for the secure connection, the client either:

encrypts a random number with the server's public key and sends the result to the server (which only the server should be able to decrypt with its private key); both parties then
use the random number to generate a unique session key for subsequent encryption and decryption of data during the session
uses Diffie–Hellman key exchange to securely generate a random and unique session key for encryption and decryption that has the additional property of forward secrecy: if
the server's private key is disclosed in future, it cannot be used to decrypt the current session, even if the session is intercepted and recorded by a third party.

This concludes the handshake and begins the secured connection, which is encrypted and decrypted with the session key until the connection closes. If any one of the above steps fails, then the TLS
handshake fails and the connection is not created.

TLS and SSL do not fit neatly into any single layer of the OSI model or the TCP/IP model.[8][9] TLS runs "on top of some reliable transport protocol (e.g., TCP),"[10] which would imply that it is above
the transport layer. It serves encryption to higher layers, which is normally the function of the presentation layer. However, applications generally use TLS as if it were a transport layer,[8][9] even though
applications using TLS must actively control initiating TLS handshakes and handling of exchanged authentication certificates.[10]

Early research efforts towards transport layer security included the Secure Network Programming (SNP) application programming
interface (API), which in 1993 explored the approach of having a secure transport layer API closely resembling Berkeley sockets, to
facilitate retrofitting pre-existing network applications with security measures.[12]

Netscape developed the original SSL protocols.[13][14] Version 1.0 was never publicly released because of serious security flaws in
the protocol; version 2.0, released in February 1995, contained a number of security flaws which necessitated the design of version
3.0.[15][13] Released in 1996, SSL version 3.0 represented a complete redesign of the protocol produced by Paul Kocher working
with Netscape engineers Phil Karlton and Alan Freier, with a reference implementation by Christopher Allen and Tim Dierks of
Consensus Development. Newer versions of SSL/TLS are based on SSL 3.0. The 1996 draft of SSL 3.0 was published by IETF as a
historical document in RFC 6101.

Taher Elgamal, chief scientist at Netscape Communications from 1995 to 1998, has been described as the "father of SSL".[16][17]

SSL 2.0 was deprecated in 2011 by RFC 6176.

In 2014, SSL 3.0 was found to be vulnerable to the POODLE attack that affects all block ciphers in SSL; RC4, the only non-block cipher supported by SSL 3.0, is also feasibly broken as used in SSL
3.0.[18]

SSL 3.0 was deprecated in June 2015 by RFC 7568.

TLS 1.0 was first defined in RFC 2246 in January 1999 as an upgrade of SSL Version 3.0, and written by Christopher Allen and Tim Dierks of Consensus Development. As stated in the RFC, "the
differences between this protocol and SSL 3.0 are not dramatic, but they are significant enough to preclude interoperability between TLS 1.0 and SSL 3.0". TLS 1.0 does include a means by which a TLS
implementation can downgrade the connection to SSL 3.0, thus weakening security.[19]:1–2

The PCI Council suggested that organizations migrate from TLS 1.0 to TLS 1.1 or higher before June 30, 2018.[20][21] In October 2018, Apple, Google, Microsoft, and Mozilla jointly announced they
would deprecate TLS 1.0 and 1.1 in March 2020.[11]

TLS 1.1 was defined in RFC 4346 in April 2006.[22] It is an update from TLS version 1.0. Significant differences in this version include:

Added protection against cipher-block chaining (CBC) attacks.

The implicit initialization vector (IV) was replaced with an explicit IV.
Change in handling of padding errors.

Support for IANA registration of parameters.[19]:2

TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 1.1 specification. Major differences include:

The MD5-SHA-1 combination in the pseudorandom function (PRF) was replaced with SHA-256, with an option to use cipher suite specified PRFs.
The MD5-SHA-1 combination in the finished message hash was replaced with SHA-256, with an option to use cipher suite specific hash algorithms. However, the size of the hash
in the finished message must still be at least 96 bits.[23]

The MD5-SHA-1 combination in the digitally signed element was replaced with a single hash negotiated during handshake, which defaults to SHA-1.

History and development

Secure Network Programming

SSL 1.0, 2.0, and 3.0

TLS 1.0

TLS 1.1

TLS 1.2

Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 3 of 32

f

Find authenticated court documents without watermarks at docketalarm.com.

https://tools.ietf.org/html/rfc6176
https://tools.ietf.org/html/rfc7568
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Proprietary_protocol
https://en.wikipedia.org/wiki/Tamper-evident
https://en.wikipedia.org/wiki/Client_(computing)
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Opportunistic_TLS
https://en.wikipedia.org/wiki/Usenet
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Asymmetric_cipher
https://en.wikipedia.org/wiki/Symmetric_cipher
https://en.wikipedia.org/wiki/Cipher_suite
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Hostname
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Presentation_layer
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Paul_Kocher
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc6101
https://en.wikipedia.org/wiki/Taher_Elgamal
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc6176
https://en.wikipedia.org/wiki/POODLE
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc7568
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc2246
https://en.wikipedia.org/wiki/Payment_Card_Industry_Security_Standards_Council
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc4346
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_(CBC)
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Padding
https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc5246
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Pseudorandom_function_family
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cipher_suite
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Handshaking
https://www.docketalarm.com/

Enhancement in the client's and server's ability to specify which hashes and signature algorithms they accept.
Expansion of support for authenticated encryption ciphers, used mainly for Galois/Counter Mode (GCM) and CCM mode of Advanced Encryption Standard (AES) encryption.

TLS Extensions definition and AES cipher suites were added.[19]:2

All TLS versions were further refined in RFC 6176 in March 2011, removing their backward compatibility with SSL such that TLS sessions never negotiate the use of Secure Sockets Layer (SSL)
version 2.0.

TLS 1.3 was defined in RFC 8446 in August 2018. It is based on the earlier TLS 1.2 specification. Major differences from TLS 1.2 include:

Separating key agreement and authentication algorithms from the cipher suites
Removing support for weak and lesser-used named elliptic curves
Removing support for MD5 and SHA-224 cryptographic hash functions
Requiring digital signatures even when a previous configuration is used
Integrating HKDF and the semi-ephemeral DH proposal
Replacing resumption with PSK and tickets
Supporting 1-RTT handshakes and initial support for 0-RTT
Mandating perfect forward secrecy, by means of using ephemeral keys during the (EC)DH key agreement
Dropping support for many insecure or obsolete features including compression, renegotiation, non-AEAD ciphers, non-PFS key exchange (among which are static RSA and static
DH key exchanges), custom DHE groups, EC point format negotiation, Change Cipher Spec protocol, Hello message UNIX time, and the length field AD input to AEAD ciphers
Prohibiting SSL or RC4 negotiation for backwards compatibility
Integrating use of session hash
Deprecating use of the record layer version number and freezing the number for improved backwards compatibility
Moving some security-related algorithm details from an appendix to the specification and relegating ClientKeyShare to an appendix
Adding the ChaCha20 stream cipher with the Poly1305 message authentication code
Adding the Ed25519 and Ed448 digital signature algorithms
Adding the x25519 and x448 key exchange protocols

Network Security Services (NSS), the cryptography library developed by Mozilla and used by its web browser Firefox, enabled TLS 1.3 by default in February 2017.[24] TLS 1.3 was added to Firefox
52.0, which was released in March 2017, but it was disabled by default due to compatibility issues for some users.[25] It has been enabled by default since Firefox 60.0.[26]

Google Chrome set TLS 1.3 as the default version for a short time in 2017. It then removed it as the default, due to incompatible middleboxes such as Blue Coat web proxies.[27]

Pale Moon enabled the use of TLS 1.3 as of version 27.4, released in July 2017.[28] During the IETF 100 Hackathon which took place in Singapore, The TLS Group worked on adapting open-source
applications to use TLS 1.3.[29][30] The TLS group was made up of individuals from Japan, United Kingdom, and Mauritius via the cyberstorm.mu team.[30] During the IETF 101 Hackathon which took
place in London, more work was done on application support of TLS 1.3.[31] During IETF 102 Hackathon, work continued to inter-operate lesser known TLS 1.3 implementations along with application
integration.[32]

wolfSSL enabled the use of TLS 1.3 as of version 3.11.1, released in May 2017.[33] As the first commercial TLS 1.3 implementation, wolfSSL 3.11.1 supported Draft 18 and now supports Draft 28,[34]

the final version, as well as many older versions. A series of blogs was published on the performance difference between TLS 1.2 and 1.3.[35]

In September 2018, the popular OpenSSL project released version 1.1.1 of its library, in which support for TLS 1.3 was "[t]he headline new feature".[36]

The Electronic Frontier Foundation praises TLS 1.3 and warns about "a look-alike protocol brewing called ETS (or eTLS) that intentionally disables important security measures in TLS 1.3".[37]

A digital certificate certifies the ownership of a public key by the named subject of the certificate, and indicates certain expected usages of that key. This
allows others (relying parties) to rely upon signatures or on assertions made by the private key that corresponds to the certified public key.

TLS typically relies on a set of trusted third-party certificate authorities to establish the authenticity of certificates. Trust is usually anchored in a list of
certificates distributed with user agent software,[38] and can be modified by the relying party.

According to Netcraft, who monitors active TLS certificates, the market-leading certificate authority (CA) has been Symantec since the beginning of
their survey (or VeriSign before the authentication services business unit was purchased by Symantec). Symantec currently accounts for just under a third
of all certificates and 44% of the valid certificates used by the 1 million busiest websites, as counted by Netcraft.[39]

As a consequence of choosing X.509 certificates, certificate authorities and a public key infrastructure are necessary to verify the relation between a
certificate and its owner, as well as to generate, sign, and administer the validity of certificates. While this can be more convenient than verifying the
identities via a web of trust, the 2013 mass surveillance disclosures made it more widely known that certificate authorities are a weak point from a
security standpoint, allowing man-in-the-middle attacks (MITM) if the certificate authority cooperates (or is compromised).[40][41]

Before a client and server can begin to exchange information protected by TLS, they must securely exchange or agree upon an encryption key and a cipher to use when encrypting data (see § Cipher).
Among the methods used for key exchange/agreement are: public and private keys generated with RSA (denoted TLS_RSA in the TLS handshake protocol), Diffie–Hellman (TLS_DH), ephemeral
Diffie–Hellman (TLS_DHE), elliptic-curve Diffie–Hellman (TLS_ECDH), ephemeral elliptic-curve Diffie–Hellman (TLS_ECDHE), anonymous Diffie–Hellman (TLS_DH_anon),[2] pre-shared key
(TLS_PSK)[42] and Secure Remote Password (TLS_SRP).[43]

The TLS_DH_anon and TLS_ECDH_anon key agreement methods do not authenticate the server or the user and hence are rarely used because those are vulnerable to man-in-the-middle attacks. Only
TLS_DHE and TLS_ECDHE provide forward secrecy.

Public key certificates used during exchange/agreement also vary in the size of the public/private encryption keys used during the exchange and hence the robustness of the security provided. In July
2013, Google announced that it would no longer use 1024-bit public keys and would switch instead to 2048-bit keys to increase the security of the TLS encryption it provides to its users because the
encryption strength is directly related to the key size.[4][44]

TLS 1.3

Digital certificates

Example of a website with digital
certificate

Certificate authorities

Algorithm

Key exchange or key agreement

Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 4 of 32

f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/CCM_mode
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc6176
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc8446
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/TLS-PSK
https://en.wikipedia.org/wiki/Round-trip_delay_time
https://en.wikipedia.org/wiki/Round-trip_delay_time
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/ChaCha20
https://en.wikipedia.org/wiki/Poly1305
https://en.wikipedia.org/wiki/Ed25519
https://en.wikipedia.org/wiki/X25519
https://en.wikipedia.org/wiki/Network_Security_Services
https://en.wikipedia.org/wiki/Mozilla
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/History_of_Firefox#Version_52–59
https://en.wikipedia.org/wiki/History_of_Firefox#Firefox_60
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Blue_Coat_Systems
https://en.wikipedia.org/wiki/Pale_Moon_(web_browser)
https://en.wikipedia.org/wiki/Hackathon
https://en.wikipedia.org/wiki/Singapore
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/United_Kingdom
https://en.wikipedia.org/wiki/Mauritius
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/WolfSSL
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://en.wikipedia.org/wiki/Netcraft
https://en.wikipedia.org/wiki/Symantec
https://en.wikipedia.org/wiki/Verisign
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Web_of_trust
https://en.wikipedia.org/wiki/Global_surveillance_disclosures_(2013%E2%80%93present)
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Key-agreement_protocol#Exponential_key_exchange
https://en.wikipedia.org/wiki/TLS-PSK
https://en.wikipedia.org/wiki/TLS-SRP
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/File:Let%27s_Encrypt_Certificate_Firefox_example.png
https://www.docketalarm.com/

Key exchange/agreement and authentication

Algorithm SSL 2.0 SSL 3.0 TLS 1.0 TLS 1.1 TLS 1.2 TLS 1.3 Status

RSA Yes Yes Yes Yes Yes No

Defined for TLS 1.2 in RFCs

DH-RSA No Yes Yes Yes Yes No

DHE-RSA (forward secrecy) No Yes Yes Yes Yes Yes

ECDH-RSA No No Yes Yes Yes No

ECDHE-RSA (forward secrecy) No No Yes Yes Yes Yes

DH-DSS No Yes Yes Yes Yes No

DHE-DSS (forward secrecy) No Yes Yes Yes Yes No[45]

ECDH-ECDSA No No Yes Yes Yes No

ECDHE-ECDSA (forward secrecy) No No Yes Yes Yes Yes

PSK No No Yes Yes Yes

PSK-RSA No No Yes Yes Yes

DHE-PSK (forward secrecy) No No Yes Yes Yes

ECDHE-PSK (forward secrecy) No No Yes Yes Yes

SRP No No Yes Yes Yes

SRP-DSS No No Yes Yes Yes

SRP-RSA No No Yes Yes Yes

Kerberos No No Yes Yes Yes

DH-ANON (insecure) No Yes Yes Yes Yes

ECDH-ANON (insecure) No No Yes Yes Yes

GOST R 34.10-94 / 34.10-2001[46] No No Yes Yes Yes Proposed in RFC drafts

Cipher security against publicly known feasible attacks

Cipher Protocol version
Status

Type Algorithm Nominal
strength (bits) SSL 2.0 SSL 3.0

[n 1][n 2][n 3][n 4]
TLS 1.0
[n 1][n 3]

TLS 1.1
[n 1]

TLS 1.2
[n 1]

TLS
1.3

Block
cipher
with

mode of
operation

AES GCM[47][n 5]

256, 128

N/A N/A N/A N/A Secure Secure

Defined for TLS 1.2 in
RFCs

AES CCM[48][n 5] N/A N/A N/A N/A Secure Secure

AES CBC[n 6] N/A N/A
Depends on
mitigations

Depends on
mitigations

Depends on
mitigations N/A

Camellia GCM[49][n 5]

256, 128

N/A N/A N/A N/A Secure N/A

Camellia CBC[50][n 6] N/A N/A
Depends on
mitigations

Depends on
mitigations

Depends on
mitigations N/A

ARIA GCM[51][n 5]

256, 128

N/A N/A N/A N/A Secure N/A

ARIA CBC[51][n 6] N/A N/A
Depends on
mitigations

Depends on
mitigations

Depends on
mitigations N/A

SEED CBC[52][n 6] 128 N/A N/A
Depends on
mitigations

Depends on
mitigations

Depends on
mitigations N/A

3DES EDE CBC[n 6][n 7] 112[n 8] Insecure Insecure Insecure Insecure Insecure N/A

GOST 28147-89
CNT[46][n 7] 256 N/A N/A Insecure Insecure Insecure N/A Defined in RFC 4357

IDEA CBC[n 6][n 7][n 9] 128 Insecure Insecure Insecure Insecure N/A N/A
Removed from TLS 1.2

DES CBC[n 6][n 7][n 9]
56 Insecure Insecure Insecure Insecure N/A N/A

40[n 10] Insecure Insecure Insecure N/A N/A N/A Forbidden in TLS 1.1
and laterRC2 CBC[n 6][n 7] 40[n 10] Insecure Insecure Insecure N/A N/A N/A

Stream
cipher

ChaCha20-Poly1305[57][n 5] 256 N/A N/A N/A N/A Secure Secure Defined for TLS 1.2 in
RFCs

RC4[n 11]
128 Insecure Insecure Insecure Insecure Insecure N/A Prohibited in all

versions of TLS by
RFC 746540[n 10] Insecure Insecure Insecure N/A N/A N/A

None Null[n 12] – N/A Insecure Insecure Insecure Insecure N/A
Defined for TLS 1.2 in

RFCs

Notes

1. RFC 5746 (https://tools.ietf.org/html/rfc5746) must be implemented to fix a
renegotiation flaw that would otherwise break this protocol.

2. If libraries implement fixes listed in RFC 5746 (https://tools.ietf.org/html/rfc5746), this
violates the SSL 3.0 specification, which the IETF cannot change unlike TLS. Most
current libraries implement the fix and disregard the violation that this causes.

3. The BEAST attack breaks all block ciphers (CBC ciphers) used in SSL 3.0 and TLS
1.0 unless mitigated by the client and/or the server. See § Web browsers.

4. The POODLE attack breaks all block ciphers (CBC ciphers) used in SSL 3.0 unless
mitigated by the client and/or the server. See § Web browsers.

5. AEAD ciphers (such as GCM and CCM) can be used in only TLS 1.2.

6. CBC ciphers can be attacked with the Lucky Thirteen attack if the library is not written
carefully to eliminate timing side channels.

7. The Sweet32 attack breaks block ciphers with a block size of 64 bits.[53]

8. Although the key length of 3DES is 168 bits, effective security strength of 3DES is
only 112 bits,[54] which is below the recommended minimum of 128 bits.[55]

Cipher

Case 3:17-cv-05659-WHA Document 470-6 Filed 05/13/19 Page 5 of 32

f

Find authenticated court documents without watermarks at docketalarm.com.

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.wikipedia.org/wiki/TLS-PSK
https://en.wikipedia.org/wiki/Pre-shared_key
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Pre-shared_key
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Pre-shared_key
https://en.wikipedia.org/wiki/TLS-SRP
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/GOST
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/CCM_mode
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/Camellia_(cipher)
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/Camellia_(cipher)
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/ARIA_(cipher)
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/ARIA_(cipher)
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/SEED_(cipher)
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/Triple_DES
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/GOST_(block_cipher)
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc4357
https://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/RC2
https://en.wikipedia.org/wiki/Cipher_block_chaining
https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/ChaCha20
https://en.wikipedia.org/wiki/Poly1305
https://en.wikipedia.org/wiki/RC4
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc7465
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc5746
https://en.wikipedia.org/wiki/Request_for_Comments_(identifier)
https://tools.ietf.org/html/rfc5746
https://en.wikipedia.org/wiki/AEAD_block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Galois/Counter_Mode
https://en.wikipedia.org/wiki/CCM_mode
https://en.wikipedia.org/wiki/Lucky_Thirteen_attack
https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

