

EXHIBIT 17

Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 1 of 5Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 1of5

EXHIBIT 17

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 2 of 5Lase 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 2 of5

Volume 3 / Sorting and Searching

THE ART OF

COMPUTER PROGRAMMING

SIE

Reading, Massachusetts .
Menlo Park, California - London: Amsterdam: Don Mills, Ontario * SydneySereFTETIHAS

PUTERSS f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 3 of 5Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 3of5 .

This book is in the

ADDISON-WESLEY SERIES IN

COMPUTER SCIENCE AND INFORMATION PROCESSING

Consulting Editors

RICHARD §. VARGA and MICHAEL A, HARRISON

Copyright © 1973 by Addison-Wesley Publishing Company, Inc. Philippines copyright 1973
by Addison-Wesley Publishing Company,Inc.
All rights reserved. No part of this publication may be reproduced,stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher. Printed in the United
States of America. Published simultaneously in Canada. Library of Congress Catalog Card
No. 67-26020.

ISBN 0-201-03803.x
FGHIL-MA-79

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 4 of 5Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 4of5

| 6.4 HASHING 507

_will have the same month and day of birth! In other words,if we select a ran-
'dom function which maps 23 keys into a table of size 365, the probability that
no two keys map into the same location is only 0.4927 (less than one-half).
| Skeptics who doubt this result should try to find the birthday mates at the next
large parties they attend. [The birthday paradox apparently originated in
unpublished work of H. Davenport; ef. W. W. R. Ball, Math. Recreations and
| Essays (1939), 45. See also R. von Mises, Istanbul Uiniversitesi Fen Fakiiliesi
Mecmuasi 4 (1939), 145-163, and W. Feller, An Introduction to Probability
Theory (New York: Wiley, 1950), Section 2.3.]

On the other hand, the approach used in Table 1 is fairly flexible [ef. M. Gre-
_niewski and W. Turski, CACM 6 (1963), 322-323], and for a medium-sized table
-a suitable function can be found after about a day’s work. In fact it is rather
-amusing to solve a puzzle like this,

Of course this method has a serious flaw, since the contents of the table
must be known in advance; adding one morekey will probably ruin everything,
making it necessary to start over almost from scratch. We can obtain a: much
more versatile method if we give up the idea of uniqueness, permitting different

_keys to yield the same value f(K), and using a special method to resolve any
‘ambiguity after f(K) has been computed.

These considerations lead to a popular class of search methods commonly
| known as hashing or scatter storage techniques. The verb “to hash” means to
:chop something up or to make a mess out of it; the idea in hashing is to chop
| off some aspects of the key and to use this partial information as the basis for
‘searching. We compute a hash function h(K) and use this value as the address
| where the search begins.

The birthday paradox tells us that there will probably be distinct keys
‘Ky # K; which hash to the same value h(K;) = A(K;). Such an occurrenceis

ei n 5 &
1G = ww es 9 Fy z eG = z Tr oo a r H 8i H HAH H HF z o S So & Et = E = ph

Contents of rI1 after executing the instruction, given a particular key K

—8 —9 —9 —9 —9 —15 —16 —16 —16 —23 —23 —23 —23 —26 —26 —26 —28
—§ —9 —9 —9 —9 —15 —I16 —16 —16 —23 —23 ~—23 —23 —26 —26 —26 —28
—7 —17 —-2 5 6 —7 -18 ~9 —5 —23 —23 —23 —15 ~—33 —26 —25 —20
—7 —17 -2 5 6 —7 -18 -9 —5 —23 —23 —23 —15 —33 —26 —25 —20

18 —1 29 . 25 4 22 =©30 1 1 1 17 —16 —2 0 12
‘18 —1 29 +5 6=2 4 22 830 1 1 1 17 —16 —2 0 12

18 —J 29 5 6 25 4 22 30 1 1 1 17 —16 —2 0 12
12 20 . . . —26 —22 —18 —22 —21 —5 8
12 . 20 . —26 ~—22 —18 —22 —21 —5 8

. . . . —14 —6 2 1k —L 29 .

. : . —14 —6 2 ll —1 29 :
: . . —14 —6 2 11 —1 29 .
. : . . «—10 —2 : —5 ll :
. . . . —10 —2 . —5 iil .

12 —1 29 5 6 8620 4 22 30 —10 -6 -—2 17 1k —5 2 8
12 —1 29 5 6 20 4 22 380 —10 -—6 -2 17 Il —5 21 8

(12 —1 29 5 6 20 + 22 30 —10 -6 -—2 17 ll ~—5 2i 8

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 5 of 5Case 3:17-cv-05659-WHA Document 371-21 Filed 02/14/19 Page 5of5

508 SEARCHING 6.4

called a collision, and several interesting approaches have been devised to
handle the collision problem. In order to use a seatter table, a programmer
must make two almost independent decisions: He must choose a hash function
h(K), and he must select a method for collision resolution. We shall now con-
sider these two aspects of the problem in turn.

Hash functions. To make things more explicit, let us assume throughout this
section that our hash function h takes on at most M different values, with

0 < h(K) < M, (1)

for all keys K. The keysin actual files that arise in practice usually have a great
deal of redundancy; we must be careful to find a hash function that breaks up
clusters of almost identical keys, in order to reduce the numberofcollisions.

It is theoretically impossible to define a hash function that creates random
data from the nonrandom data in actualfiles. But in practice it is not difficult
to produce a pretty good imitation of random data, by using simple arithmetic
as we have discussed in Chapter 3. And in fact we can often do even better,
by exploiting the nonrandom properties of actual data to construct a hash
function that leads to fewer collisions than truly random keys would produce.

Consider, for example, the case of 10-digit keys on a decimal computer.
One hash function that suggests itself is to let IZ = 1000, say, and to let h(K)
be three digits chosen from somewherenear the middle of the 20-digit product
K xX K. This would seem to yield a fairly good spread of values between 000
and 999, with low probability of collisions. Experiments with actual data show,
in fact, that this “middle square” method isn’t bad, provided that the keys
do not have a lot of leading or trailing zeros; but it turns out that there are
safer and saner ways to proceed, just as we found in Chapter 3 that the middle
square method is not an especially good random numbergenerator.

Extensive tests on typicalfiles have shown that two major types of hash
functions work quite well. One of these is based on division, and the other is
based on multiplication.

The division method is particularly easy; we simply use the remainder
modulo M7:

h(K) = K mod M. (2)

In this case, some values of M are obviously much better than others. For
example, if M is an even number, h(K) will be even when K is even and odd
when K is odd, and this will lead to a substantial bias in manyfiles. It would
be even worse to let M be a powerof the radix of the computer, since K mod M
would then be simply theleast significant digits of K (independentof the other
digits). Similarly we can argue that M probably shouldn’t be a multiple of3
either; for if the keys are alphabetic, two keys which differ from each other
only by permutation of letters would then differ in numeric value by a multiple
of 3. (This occurs because 10" mod 3 = 4” mod 3 = 1.) In general, we want
to avoid values of M which divide r* +: a, where k and a are small numbers and
r is the radix of the alphabetic character set (usually r= 64, 256, or 100),

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

