

EXHIBIT 10

Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 1 of 3Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 1 of 3

EXHIBIT 10

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 2 of 3

1. lang.reflect
1s. The Field

1 for any given
s; an invoke()
= Constructor

ivokes the rep-
class. It does

nd write array

) represent not
y types. There
tive types, and
special Class

ximitive types.

example, and

yject that repre-
ther type with
x Class object.

you can write
(PE.

:d quite a lot of
; “beans” as fol-

xe manipulated
; and interfaces

xeople who are
g that a builder
=, to determine
d what events it

o display to the
of naming con-

2 conventions, a

erties, methods,
ction to obtain
‘orm of a Bean-

ts describing the

ces intended for

thapter 10, java
iner, One of the
ss that all beans

n, beans should

-_ i

Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 2 of 3

follow certain naming conventions. The java.beans classes that a bean creator uses
‘ are generally auxiliary classes, used not by the bean, but by the builder tool that

manipulates the bean. These auxiliary classes are shipped with a bean, and provide
additional information or methods that a builder tool may use with the bean. These
classes are not included in finished software built with the bean.

For example, oneof the auxiliary classes a bean may define is a custom BeanInfo
class to provide information to the builder tool that is not available through the
Reflection API. This information might include a human-readable description of the
bean's properties, methods, and events, for example. Or, if a bean does not follow
the standard naming conventions, this custom Beaninfo class must also provide
more basic information about the bean’s properties, methods, and events.

Besides a BeanInfoclass, complex beans may also provide a Customizer class and
one or more PropertyEditor classes. A Customizer class is a kind of configuration
tool or “wizard” for a bean. It is instantiated by the buildertool in order to guide the
user through bean customization. A PropertyEditor class is used to allow the user
to edit the value of bean properties of a particular class. Builder tools have built-in
property editors for common types such as strings, colors, and fonts, but a bean that
has properties of some unusual or custom type may want to provide a Property-
Editor subclass to allow the userto easily specify values for those properties.

The third level at which the JavaBeans API can be used is by programmers who are
assembling an application using beans. Some programmers may do this through a
builder tool, while others may do it “by hand”, the old-fashioned way. Programmers
using beans do nottypically have to use the java.beans package. Atthis level,it is
more a matter of reading the documentation for the particular beans being used and
following those instructions. Nevertheless, a programmer using beans does need to
be familiar with the event model used by beans, which is the same as the Java 1.1
event model for AWT. Also, programmers using beans “by hand”should be familiar
with the naming conventions for bean properties, methods, and events, in order to
more easily understand how a given bean can be used. In Java 1.1, all AWT compo-
nents are beans and follow these naming conventions.

Enterprise APIs:JDBC, RMI, and Security
Java 1.1 provides a numberof important new features that are loosely grouped under
the name “Enterprise APIs.” These include JDBC Java DataBase Connectivity), RMI
(Remote Method Invocation) and Java Security. With release 1.1, Java has grown too
big for all of it to be documented, even in quick-reference format, in a single vol-
ume. Therefore, the JDBC, RMI, and Security packages may be documented, along
with other, forthcoming Enterprise APIs, in a separate volume. Note, however, that
while this volume does not cover the Java Security API, it does cover applet security,
signed applets, and the javakey program thatis used to create digital signatures, gen-
erate key pairs, and manage a databaseofentities and their keys.

Applet Changes
There are several new features in Java 1.1 that affect applets. The first is the intro-
duction of JAR files. “JAR” stands for Java ARchive, and a JAR file is just that: an
archive of files used by a Java applet. An applet often requires multiple class files, as
well as images, sounds, and other resources, to be loaded over the the network.
Prior to Java 1.1, each of these files was loaded through a separate HTTP request,

Applet Changes 99

gee rityeea7]

FINJAN-JN 358556

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 3 of 3Case 3:17-cv-05659-WHA Document 129-12 Filed 06/28/18 Page 3 of 3

which is fairly inefficient. With Java 1.1, all (or many) of the files an applet needs
can be combinedinto a single JAR file, which an applet viewer or Web browser can
download with a single HTTP request. Chapter 6, Applets, demonstrates the use of
JAR files.

JAR files are stored in the ZIP file format. A JAR archive can be created with the jar
tool shipped with the JDK. Once you have created a JAR file, you refer to it in a
<APPLET> tag with the ARCHIVE attribute. This ARCHIVE attribute may actually be set
to a comma-separated list of archive files to be downloaded. Note that specifying an
ARCHIVE attribute simply tells the applet viewer or browser the name of a JAR file or
files to load; it does nottell the browser the name of the appletthat is to be mn.
Thus, youstill must specify the CODE attribute (or the new OBJECT attribute, as we'll
see below), For example, you might use an <APPCET> tag like the followingtotell
the browser to download the animation. jar file and start the applet contained in the
file Animator.class:

<APPLET CODE="Animator.class" ARCHIVE="animation. jar" WIDTH=500 HETGHT=200>
</APPLET>

There is another advantage to the use of JAR files. Every JAR file contains a “mani-
fest” file, which you either specify explicitly when you create the archive, or whichis
created for you by the jar tool. The manifest is stored in a file named META-
INF/MANIFEST.MF and contains meta-information about the files in the archive. By
default, the jar tool creates a manifest file that contains MD5 and SHA message
digests for each file in the archive. This information can be used by the applet
viewer or Web browserto verifythat the files in the archive have not been corrupted
since the JAR file was created.

The main reason to include message digests in the manifestfile, however, is so that a
JAR file can have digital signatures added to it. An archive can be signed with the
javakeytool. What a digital signature allows you to dois verify that the files in a JAR
file have not been modifiedsince the digital signature was added tothe archive. If
you trust the person or entity who signed the file, then you oughttotrust the applet
contained in the JAR file. (The javakeytool allows you to specify whether or not you
trust any given entity.) Chapter 6 also describes how you might use digital signatures
and javakey. .

In JDK 1.1, the appletviewer tool understandsdigitally signed JAR files. When it loads
an applet that-has been signed bya trusted entity, it runs that applet without subject-
ing it to the usual security restrictions—the applet can read and write files, and do
anything that a standalone Java application can do. Common Web browsers are
likely to follow suit and give special privileges to trusted applets. One refinement
we may see in the future is the ability to specify varying levels oftrust, and toassign
different sets of privileges to applets at those varying trustlevels.

Besides the introduction of JAR files and trusted applets, Java 1.1 also supports “seri-
alized applets.” In an <APPLET> tag, you can specify the OBJECT attribute instead of
the CODE attribute. If you do this, the value of the OBJECT attribute should be the
name of a file that contains a serialized representation of the applet to be run.
Graphical application-builder tools may prefer to output applets as pre-initialized
object trees, rather than generating custom Java code to perform theinitializations.
See Chapter 9 for more information on serialized applets.

100 Chapter 4-— What's New inJava 1.1

 NewJDK U

JDK 1.1 includes
already seen jar
JAR archives. In
for managing a «
digital signatures

serialver is a nev

is deserialized, i
matches the vei

unique identifie:
‘When an incom;
puted, and the n
is used to compt

native2ascit is a

file encoding. TI
Unicode charact

convert its inpu:
file that uses the

locally-encoded

In addition to 1)

rmic and rmireg
They will be dox

FINJAN-JN 358557

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

