Exhibit 17

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Proceedings of

The Fifth International Virus Bulletin Conference

VIRUS BULLETIN CONFERENCE @1995 Virus Rulletin I to 21 The Quadrant Abingdon Oxfordebire OX14 3VS England

Find authenticated court documents without watermarks at docketalarm.com.

SCANNERS OF THE YEAR 2000: HEURISTICS

Dmitry O. Gryaznov

S&S International Plc, Alton House, Gatehouse Way, Aylesbury, Bucks, HP19 3XU, UK Tel +44 1296 318700 · Fax +44 1296 318777 · Email grdo@sands.co.uk

INTRODUCTION

At the beginning of 1994, the number of known MS-DOS viruses was estimated at around 3,000. One year later, in January 1995, the number of viruses was estimated at about 6,000. By the time this paper was written (July 1995), the number of known viruses exceeded 7,000. Several anti-virus experts expect this number to reach 10,000 by the end of the year 1995. This large number of viruses, which keeps growing fast, is known as the glut and it does cause problems to anti-virus software – especially to scanners.

Today, scanners are the most frequently used type of anti-virus software. The fast-growing number of viruses means that scanners should be updated frequently enough to cover new viruses. Also, as the number of viruses grows, so does the size of the scanner or its database, and in some implementations the scanning speed suffers.

It was always very tempting to find a final solution to the problem; to create a generic scanner which can detect new viruses automatically without the need to update its code and/or database. Unfortunately, as proven by Fred Cohen, the problem of distinguishing a virus from a non-virus program is algorithmically unsolvable as a general rule.

Nevertheless, some generic detection is still possible, based on analysing a program for features typical or not typical of viruses. The set of features, possibly together with a set of rules, is known as heuristics. Today, more and more anti-virus software developers are looking towards heuristical analysis as at least a partial solution to the glut problem.

Working at the Virus Lab, *S&S International Plc*, the author is also carrying out a research project on heuristic analysis. The article explains what heuristics are. Positive and negative heuristics are introduced and some practical heuristics are represented. Different approaches to a heuristical program analysis are discussed and the problem of false alarms is explained and discussed. Several well-known scanners employing heuristics are compared (without naming the scanners) both virus detection and false alarms rate.

1 WHY SCANNERS?

DOCKE.

If you are following computer virus-related publications, such as the proceedings of anti-virus conferences, magazine reviews, anti-virus software manufacturers' press releases, you read and hear mainly 'scanners, scanners, scanners'. The average user might even get the impression that there is no anti-virus software other than scanners. This is not true. There are other methods of fighting computer viruses – but they are not

as popular or as well known as scanners; and anti-virus packages based on non-scanner technology do not sell well. Sometimes people who are trying to promote non-scanner based anti-virus software even come to the conclusion that there must be some kind of an international plot of popular anti-virus scanner producers. Why is this? Let us briefly discuss existing types of anti-virus software. Those interested in more detailed discussion and comparison of different types of anti-virus software can find it in [*Bontchev1*], for example.

1.1 SCANNERS

So, what is a scanner? Simply put, a scanner is a program which searches files and disk sectors for byte sequences specific to this or that known virus. Those byte sequences are often called *virus signatures*. There are many different ways to implement a scanning technique; from the so-called 'dumb' or 'grunt' scanning of the whole file, to sophisticated virus-specific methods of deciding which particular part of the file should be compared to a virus signature. Nevertheless, one thing is common to all scanners: they detect only *known* viruses. That is, viruses which were disassembled or analysed and from which virus signatures unique to a specific virus were selected. In most cases, a scanner cannot detect a brand new virus until the virus is passed to the scanner developer, who then extracts an appropriate virus signature and updates the scanner. This all takes time – and new viruses appear virtually every day. This means that scanners have to be updated frequently to provide adequate anti-virus protection. A version of a scanner which was very good six months ago might be no good today if you have been hit by just one of the several thousand new viruses which have appeared since that version was released.

So, are there any other ways to detect viruses? Are there any other anti-virus programs which do not depend so heavily on certain virus signatures and thus might be able to detect even new viruses? The answer is yes, there are: *integrity checkers* and *behaviour blockers (monitors)*. These types of anti-virus software are almost as old as scanners, and have been known to specialists for ages. Why then are they not used as widely as scanners?

1.2 BEHAVIOUR BLOCKERS

A behaviour blocker (or a monitor) is a memory-resident (TSR) program which monitors system activity and looks for virus-like behaviour. In order to replicate, a virus needs to create a copy of itself. Most often, viruses modify existing executable files to achieve this. So, in most cases, behaviour blockers try to intercept system requests which lead to modifying executable files. When such a suspicious request is intercepted, a behaviour blocker, typically, alerts a user and, based on the user's decision, can prohibit such a request from being executed. This way, a behaviour blocker does not depend on detailed analysis of a particular virus. Unlike a scanner, a behaviour blocker does not need to know what a new virus looks like to catch it.

Unfortunately, it is not that easy to block all the virus activity. Some viruses use very effective and sophisticated techniques, such as tunnelling, to bypass behaviour blockers. Even worse, some legitimate programs use virus-like methods which could trigger a behaviour blocker. For example, an install or setup utility is often modifying executable files. So, when a behaviour blocker is triggered by such a utility, it's up to the user to decide whether it is a virus or not – and this is often a tough choice: you would not assume that all users are anti-virus experts, would you?

But even an ideal behaviour blocker (there is no such thing in our real world, mind you!), which never triggers on a legitimate program and never misses a real virus, still has a major flaw. To enable a behaviour blocker to detect a virus, the virus must be run on a computer. Not to mention the fact that virtually any user would reject the very idea of running a virus on his/her computer, by the time a behaviour blocker catches the virus attempting to modify executable files, the virus could have triggered and destroyed some of your valuable data files, for example.

positive heuristics. This way we shall score top most points in the reviews. But what about the users? They normally run scanners not on a virus collection but on a clean disks. Thus, they won't notice our almost perfect detection rate, but are very likely to notice our not-that-perfect false alarms rate. Tough choice. That's why some developers have at least two modes of operation for their heuristical scanners. The default is the so-called 'normal' or 'low sensitivity' mode, when both positive and negative heuristics are used and a program needs to trigger enough positive heuristics to be reported as a virus. In this mode, a scanner is less prone to false alarms, but its detection rate might be far below what is claimed in its documentation or advertisement. The often-used (in advertising) figures of 'more than 90 per cent' virus detection rate by heuristic analyser refer to the second mode of operation, which is often called 'high sensitivity' or 'paranoid' mode. It is really a paranoid mode: in this mode, negative heuristics are usually discarded, and the scanner reports as a possible virus any program which happens to trigger just one or two positive heuristics. In this mode, a scanner can indeed detect 90 per cent of viruses, but it also produces hundreds and hundreds of false alarms, making the 'paranoid' mode useless and even harmful for real-life everyday use, but still very helpful when it comes to a comparative virus detection test. Some scanners have a special command-line option to switch the paranoid mode on; some others switch to it automatically whenever they detect a virus in the normal low sensitivity mode. Although the latter approach seems to be a smart one, it takes just a single false alarm out of many thousands of programs on a network file server to produce an avalanche of false virus reports.

2.5 HOW IT ALL WORKS IN PRACTICE: DIFFERENT SCANNERS COMPARED

Being myself an anti-virus researcher and working for a leading anti-virus manufacturer, I have developed a heuristic analyser of my own. And of course, I could not resist comparing it to other existing heuristic scanners. We believe the results will be interesting to other people. They underscore what was said about both virus detection and false alarms rates. As the products tested are our competitors, we decided not to publish their names in the test results. So, only FindVirus of *Dr Solomon's AntiVirus Toolkit* is called by its real name. All the other scanners are referred to with letters: Scanner_A, Scanner_B, Scanner_C and Scanner_D. The latest versions of the scanners available at the time of the test were used. For FindVirus, it was version 7.50 – the first version to employ a heuristic analyser.

Each scanner tested was run in heuristics-only mode, with normal virus signature scanning disabled. This was achieved by either using a special command-line option, where available, or using a special empty virus signature database in other cases.

The test consisted of two parts: virus detection rate and false alarms rate. For the virus detection rate *S&S International Plc* ONE OF EACH virus collection was used, containing more than 7,000 samples of about 6,500 different known DOS viruses. For the false alarms test the shareware and freeware software collection of SIMTEL20 CD-ROM (fully unpacked), all utilities from different versions of MS-DOS, IBM DOS, PC-DOS and other known files were used (current basic *S&S* false alarms test set).

When measuring false alarms and virus detection rate, all files reported were counted; reported either as 'Infected' or 'Suspicious'. Separate figures for the two categories are given where applicable.

In both parts of the test, the products were run in two heuristic sensitivity modes, where applicable: normal or low sensitivity mode, and paranoid or high sensitivity mode. The automatic heuristic sensitivity adjustment was prohibited, where applicable.

The results of the tests are as follows:

DOCKE